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Abstract

Optimisation is integral to all sorts of processes in science, economics and
arguably underpins the fruition of human intelligence through millions of
years of optimisation, or evolution. Scarce resources make it crucial to max-
imise their efficient usage. In this thesis, we consider the task of maximising
unknown functions which we are able to query point-wise. The function is
deemed to be costly to evaluate e.g. larger run time or financial expense,
requiring a judicious querying strategy given previous observations.

We adopt a probabilistic framework for modelling the unknown function and
Bayesian non-parametric modelling. In particular, we focus on the Gaussian
process (GP), a popular non-parametric Bayesian prior on functions. We
motivate these choices and give an overview of the Gaussian process in the
introduction, and its application to Bayesian optimisation.

A GP’s behaviour is intimately controlled by the choice of kernel or co-
variance function, typically chosen to be a parametric function. In chapter
2 we instead place a non-parametric Bayesian prior, known as an Inverse
Wishart process prior, over a GP kernel function, and show that this may be
marginalised analytically leading to a Student-t process (TP). Furthermore
we explore a larger class of elliptical processes, and show that the TP is
the most general for which analytic calculation is possible, and apply it
successfully for Bayesian optimisation.

The remainder of the thesis focusses on various Bayesian optimisation set-
tings. In chapter 3, we consider a setting where we are able to evaluate a
function at multiple locations in parallel. Our approach is to consider a
measure of information, entropy, to decide which batch of points to evaluate
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a function at next. We similarly apply information gain for multi-objective
Bayesian optimisation in chapter 4. Here, one wishes to find a Pareto fron-
tier of efficient settings with respect to several different objectives through
sequential evaluation. Finally, in chapter 5 we exploit the idea that in a
multi-objective setting, functions are correlated, incorporating this belief in
our choice of prior distribution over the multiple objectives.
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Chapter 1

Introduction

This thesis is about non-parameteric function modelling with Bayesian pri-
ors for the purpose of Bayesian optimisation. In this chapter, we begin
by providing a high level historical overview of machine learning including
research interest in neural networks and kernel machines. Next we introduce
Bayesian reasoning, Gaussian process and Bayesian optimisation, before
listing the subsequent contributions of this thesis in the remaining chapters.

The core of machine learning is the development of statistical and com-
putational methods for pattern recognition of data. A practitioner may wish
to use a trained model to make predictions or decisions when presented
with new unseen data, which is only possible when the model has a good
inductive bias, or generalisability.

Humans collect data about the world through continual interaction with
it and develop the ability to predict the results of new actions. Therefore,
techniques in machine learning are often inspired by human learning, for
example, the perceptron [Rosenblatt, 1962] was inspired by a model of a
human neuron [McCulloch and Pitts, 1943]. Neural networks began to be
popularised in the 1980s, a key attraction being their ability to adapt basis
functions, as opposed to traditional linear models with fixed basis functions
[Rumelhart et al., 1986]. The expressiveness and seeming flexibility of neural
network based models came at the cost of interpretability; there lacked a
principled framework for making key modelling choices, which could affect
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performance drastically in ways which were often difficult to explain.

In the 1990s, kernel methods grew in popularity [Cristianini and Shawe-
Taylor, 2000]. Kernel methods provided a way to consider infinitely many
fixed basis functions whilst utilising finite resources, thanks to the kernel
trick, which implicitly represents inner products of basis function representa-
tions of data points using a kernel matrix [Hofmann et al., 2008].

A successful kernel based, Bayesian modelling tool for modelling non-linear
functions is the Gaussian process [Rasmussen and Williams, 2006], which
we discuss in more detail in the next subsections. In the machine learning
community, Gaussian process research really spawned from the interest in
neural networks. In fact, Neal [1995] argued that since model performance
improved with the ability to account for additional structure in data, that
we should pursue the limits of large models. He went on to show that a
Gaussian process is in fact the limit of a particular Bayesian neural network
architecture, as the number of hidden units tends to infinity. Gaussian
process kernel machines are typically not able to scale to the size of today’s
large datasets. Simplifying assumptions have been studied to improve scal-
ability [Williams and Seeger, 2001; Csató and Opper, 2002; Snelson and
Ghahramani, 2006], but Gaussian processes appear to be most useful in a
low to medium data setting. Bayesian optimisation is the task of finding
the maximum of a black-box function through a small number of sequential
evaluations, a task well suited to the Gaussian procees and a key focus of
this thesis.

1.1 Parametric Modelling

In this section we briefly illustrate the differences between frequentist and
Bayesian reasoning in a regression task, in order to subsequently motivate
a Bayesian approach to function optimisation. Suppose we have a set of
observation pairs {xi, yi}n

i=1 where yi is the scalar observed output for a
known input vector xi, and that we wish to predict the output y∗ at a new
input x∗. The outputs may represent house prices for given inputs such as
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location, house size, number of bedrooms, etc.

A typical statistical approach to learn the mapping from inputs, x, to
outputs, y, is to consider a class of functions which are controlled by a set
of parameters, and learning the parameter values which lead to the best
fit of the training data, for example by minimising the difference between
predictions and true observed values. A simple class of functions which is
able to learn linear trends is a linear model of the form f(x,w) = w⊤x,
where w are the parameters, or weights. For more complicated tasks, we
may use a linear model with a vector of fixed non-linear basis functions, or
features ϕ(x) = [ϕ1(x), ϕ2(x), ..., ϕk(x)], with f(x,w) = w⊤ϕ(x). This is
a linear model, since f is a linear function with respect to the parameters,
but not necessarily with respect to the input space.

A common quantity to want to minimise for regression tasks where outputs
are in a continuous space is

E(w) = 1
n

n∑
i=1

(f(xi,w)− yi)2, (1.1)

the mean squared error of the predictions of the model over the training
data set. It is usually possible to minimise E(x) using gradient descent.
Often the output observations are modelled as being noisy, for example, a
reading instrument used to measure the output of a particular process may
inherently have a limit as to its accuracy due to hardware factors. For the
purposes of our example, we will continue to assume noiseless observations.

A fundamental issue with the framework we have outlined above, is that for
k (the number of features) very large, for example k ≫ n, minimising (1.1)
may lead to the model overfitting. This is where f(x,w) focuses on being
able to reproduce the training data very well, caring too much on the random
nuances of the training data rather than the true underlying trend, which
hurts generalisation to new data. Whilst larger k leads to a more expressive
regression model, it also makes overfitting more likely. A typical approach
used to control the level of overfitting, is to add a complexity penalty term
to the error being minimised. For example, the original objective can be
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modified to
Ẽ(w) = 1

n

n∑
i=1

(f(xi,w)− yi)2 + λw⊤w, (1.2)

for a positive scalar λ. Introducing a penalty term as we have done here
is called regularisation, the extra term acts so as to discourage weights
from being too large, which in turn limits the amount of overfitting. The
question becomes, “how should one set λ?” so as to trade off the error
and regularisation terms. A standard way to answer this question, is to
take a fraction of the training set and place it aside as a validation set. We
would proceed to train on the remaining data with different values of λ, and
validate the model by computing the error on the validation set. A search is
performed over λ to minimise the error on the validation set. This process
is called cross validation. In practice, it is unclear how one should decide
on what the validation set should be, and how many different settings of λ
should be validated with.

A very different approach to inference and regularisation is a Bayesian
one, where probability distributions are used to represent subjective un-
certainty of an inference algorithm [MacKay, 2003; Jaynes, 2003; Barber,
2012; Gelman et al., 2014]. Specifically, we place a prior distribution on
the weights, p(w), and now model each yi as a sample from probability
distribution e.g. N(f(xi,w), σ2) for some parameter σ. Bayes’ rule tells us
how to compute the posterior distribution of weights given the observed
data

p
(
w|{xi, yi}n

i=1

)
∝ p(w)

n∏
i=1

p(yi|w,xi). (1.3)

We subsequently may make a mean prediction at a new input point x∗

by computing an integral Ep(w|{xi,yi}n
i=1)[f(x∗,w)], an example of Bayesian

model averaging, since we are averaging the prediction over multiple function
models based on how likely they are given the observed data. This averag-
ing prevents overfitting as we are no longer considering one explanation of
the data, as was the case when optimising (1.1). More generally, we may
compute an entire probability distribution for our prediction at a new test
point, p

(
y∗|x∗, {xi, yi}n

i=1

)
, which enables us to consider all sorts of statistics

about the prediction including the variance, mode, median, etc. Having
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an entire predictive distribution over new outputs is crucial for Bayesian
decision making. The stochastic nature of predictions under a Bayesian
framework reflects the uncertainty in modelling, which at a low level may
come directly from measurement errors, or at a higher level from reasoning
about which model structure is ideal for the task. The probabilistic approach
uses probability theory to express all forms of uncertainty. Probability theory
is the mathematical language for representing and quantifying uncertainty
[Ghahramani, 2015].

In this section we have discussed parametric models, which have a fixed
representation capacity even as the number of datapoints increases. Non-
parametric models do not have a finite number of parameters, in fact, as
the number of data points increases, so do the number of parameters. The
Gaussian process is a non-parametric Bayesian model which we introduce in
the next section.

1.2 An Introduction to Gaussian Processes

Gaussian processes form a class of non-parametric stochastic processes over
the space of functions [Rasmussen and Williams, 2006]. Unlike parametric
models, the representational complexity of a Gaussian process (GP) grows
with the number of observations. This is one of the many reasons which
make GPs a popular choice for function modelling.

We proceed to provide a brief introduction to Gaussian process applica-
tions to statistical regression. Readers wishing to explore GPs in more detail
should benefit from referring to Rasmussen and Williams [2006].

1.2.1 Definition

A Gaussian process is a collection of random variables, of which any finite
number are jointly Gaussian distributed. Let f : X → R. We write

f ∼ GP(m, k) (1.4)
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to denote that f follows a Gaussian process with mean function m(x), and
covariance function k(x,x′), which fully specify the Gaussian process. The
function value f(x) has mean m(x) and has covariance with some other
function value f(x′) defined by k(x,x′). Therefore, forX ≡ [x1, ...,xn] ⊂ X ,
if we write fi ≡ f(xi) and f ≡ [f1, ..., fn]⊤, we have that

f |X ∼ N (m,K), (1.5)

where m ≡ [m(x1), ...,m(xn)]⊤ and K is a matrix with (i, j) entry Ki,j =
k(xi,xj).

1.2.2 Gaussian Processes for Regression

Regression problems are core to statistical inference and machine learning.
The goal is to learn a mapping from inputs to outputs based on a set of
observed input-output pairs {xi, yi}n

i=1. A typical application of learning this
mapping is to subsequently be able to predict an output y∗ at a new test input
x∗. We describe how one may use a Gaussian process and Bayesian inference
to respectively model and learn the function mapping from inputs to outputs.

As we described previously, Bayesian inference consists of placing a prior
distribution on parameters of interest, observing data and finally computing
the posterior belief about parameters given the data. In regression tasks,
the goal is to infer the function which maps inputs to outputs. A para-
metric approach to Bayesian regression is to consider a family of functions
parametrised by a finite set of random variables over which inference is per-
formed. A less confined approach to Bayesian inference would be to directly
specify a prior over an infinite-dimensional space of functions, instead of
implicitly specifying a prior over functions via parameters [Orbanz and Teh,
2011].

A Gaussian process is a very popular choice as a prior over continuous
functions. Suppose f ∼ GP(m, k) and that we evaluate the function at
points x1, ...,xn ∈ X , then f |x ∼ N (m,K) as described above. Further
suppose that each input location xi, we observe a real value yi which is
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Fig. 1.1 Gaussian process posterior from 5 noiseless observations (plus signs).
Coloured lines represent some possible functions to explain the observed
data. The shaded region represents a 95 % predictive interval of where
the function lies given observations. Figure from Rasmussen and Williams
[2006].

stochastically dependent on the underlying function value f(xi). Bayes’
theorem informs us on how to obtain a posterior distribution of the function
values at locations xi given the observations yi:

p(f |y,X) = p(y|f)p(f |X)
p(y|X) = p(y|f)N (f ;m,K)

p(y|X) . (1.6)

A typical scenario is that the observations yi are simply the true function
values corrupted by Gaussian noise, i.e. yi|fi ∼ N (fi, σ

2). In this case,
since both the likelihood p(yi|fi) and the prior p(f) are Gaussian, we can
analytically compute the posterior distribution

f |y,X ∼ N
(
m+ K(K + σ2I)−1(y −m),K−K(K + σ2I)−1K

)
, (1.7)

which is in fact multivariate Gaussian distributed. Figure 1.1, taken from
Rasmussen and Williams [2006], shows an example of some possible functions
which could explain 5 noiseless observations, along with a 95 % predictive
interval.
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1.2.3 Gaussian Process Prediction

Whilst the posterior distribution of the function f at observed input locations
X is useful, what is often of more interest is the predictive distribution
at new input locations. Let X∗ ≡ {x∗

1, ...,x
∗
n′} ⊂ X be a set of new

input locations. Let f ∗
i ≡ f(x∗

i ) and f ∗ ≡ [f ∗
1 , ..., f

∗
n′ ]⊤. Further let the

concatenation of old and new input locations be X+ ≡ X ∪X∗, and let
f+ ≡ [f1, ..., fn, f

∗
1 , ..., f

∗
n′ ]⊤. We write m∗ ≡ [m(x∗

1), ...,m(x∗
n′)]⊤ and m+

as the concatenation of m and m∗. Further let K+ be a (n+ n′)× (n+ n′)
covariance matrix such that

K+ =
( K K′

K′⊤ K∗

)
, (1.8)

where K∗
i,j = k(x∗

i ,x
∗
j) for i, j ∈ {1, ..., n′}, and K ′

i,j = k(xi,x
∗
j) for i ∈

{1, ..., n} and j ∈ {1, ..., n′}. Then

p(f ∗|y,X+) =
∫
p(f ∗|f ,X+)p(f |y,X)df , (1.9)

and

f ∗|y,X+ ∼ N
(

K′⊤(K + σ2I)−1(y −m) +m∗, (1.10)

K∗ −K′⊤(K + σ2I)−1K′
)
. (1.11)

Thus the posterior predictive distribution of a Gaussian process conditioned
on observations is itself a Gaussian process.

1.2.4 Hyperparameter Learning

The behaviour of a draw from a Gaussian process prior is predominantly
encoded in the choice of the covariance function, k. Typically, the Gaussian
process mean is chosen to be zero (or constant), and the covariance function
is chosen to be parametric, such that k = kθ, for some set of parameters
θ. The parameters of the covariance function are often referred to as
hyperparameters of the Gaussian process model. Hyperparameters control
the nature of the covariance between points in X , for example, length-scale
hyperparameters control how quickly covariance decays as a function of
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|xd − x′
d|. The hyperparameters can be learnt by maximising likelihood, i.e.

by optimising

p(y|X, θ) = −1
2y

⊤(Kθ + σ2I)−1y − 1
2 log |Kθ + σ2I| − n

2 log 2π (1.12)

with respect to θ by gradient ascent. Alternatively, one may apply a fully
Bayesian treatment to the hyperparameters by imposing a prior distribution
on them, and sampling from the posterior

p(θ|y,X) ∝ p(y|X, θ)p(θ). (1.13)

1.3 An Introduction to Bayesian Optimisa-
tion

Many tasks in engineering and science can be abstractly described in terms
of optimising a nonlinear function f(x) over a compact set X ⊂ Rd. More
precisely, the task can be described as

max
x∈X

f(x). (1.14)

In many instances, f is known in analytically and may also be differentiable,
in which case gradient based optimisation is often employed to find the
maximum of the function. However, there exist many scenarios where f
is not known analytically, and may only be evaluated pointwise through a
simulation or process requiring many resources e.g. time or money.

In a scenario where pointwise evaluation is costly, a strategy of evaluating at
points in X uniformly at random is naive and wasteful, and would converge
to large values of f far too slowly as the dimensionality of the input space
increases. Let x+ denote the best observed input location through sequential
evaluation, and let x∗ denote the true maximiser of the function f . In fact,
Betrò [1991] showed that an objective function with Lipschitz continuity
C would require O

(
(C/2ϵ)d

)
random uniform evaluations to ensure that

f(x+) ≥ f(x∗)− ϵ.
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Algorithm 1 Bayesian Optimisation
1: D ← ∅
2: for t = 1, 2, ..., T do
3: xt ← argmaxx∈X u(x|D)
4: ft ← f(xt)
5: D ← D ∪ {xt, ft}
6: x+ ← argmaxx∈ x1:T

f(x)
7: return x+

A Bayesian approach to optimising f , would be to model it by placing
a prior distribution over it, which would be updated sequentially using
Bayes’ rule as function evaluations are observed. The posterior model of f
given function evaluations is subsequently used to decide where in the input
domain, X , to evaluate the function next, in order to maximise a chosen
analytically tractable criterion which trades off exploration and exploita-
tion. The criterion, u(x), is often referred to as the acquisition function.
A basic version of the Bayesian optimisation procedure is outlined in Al-
gorithm 1 and illustrated in Figure 1.2 taken from [Brochu et al., 2009],
which offers a nice and more thorough introduction to Bayesian optimisation.

Bayesian optimisation research has been fuelled by many successful applica-
tions in a diverse range of tasks. A few such successes are listed below:

• Robotics and reinforcement learning. Parametrising a robot’s
gait parameters allows you to optimise over its velocity or smoothness
using Bayesian optimisation [Lizotte, 2008]. Similarly, robotic policy
parametrisation and search techniques can be used to navigate a robot
through landmarks whilst minimising uncertainty about location and
map estimation [Martinez-Cantin et al., 2007].

• Natural language, processing and text. Bayesian optimisation
has been used to improve text extraction [Wang et al., 2014] and to
tune representations for general text and language tasks [Yogatama
and Smith, 2015].

• Sensor placement. Meteorological sensors can be expensive to ob-
tain, so intelligent placement of them for the task at hand is useful.
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Bayesian optimisation has been used to tackle this problem [Garnett
et al., 2010]. For mobile sensing, a cost can be associated in mak-
ing a measurement (e.g. on a unmanned autonomous vehicle), this
cost can be incorporated in decision making processes using Bayesian
optimisation [Marchant and Ramos, 2012].

• Automatic machine learning. The goal is to automatically search
over hyperparameters of machine learning algorithms for a given task.
For example, when training a neural network, one has to choose a
learning rate, momentum, weight decay, etc. Cross validation can be
very expensive when a lot of parameters have to be searched over.
Bayesian optimisation has recently been successfully applied to search
over the space of hyperparameters, in some cases finding state of the
art settings [Snoek et al., 2012].

The two key design choices required for implementing a Bayesian optimisation
algorithm are: (i) the model for f , and (ii) the acquisition function to decide
where to evaluate the function next. We discuss each of these choices in the
following subsections.

1.3.1 Model Choice for f

Gaussian processes have been the most popular choice of prior over the
function f as they are non-parametric and permit analytically tractable
computation, as we will see in the next subsection. The use of Gaussian
process priors for Bayesian optimisation began in the late 1970s [O’Hagan,
1978; Zilinskas, 1980].

The choice of covariance function is integral to the Gaussian process prior
as it determines the smoothness properties of drawn samples. Various forms
of covariance functions are discussed in Rasmussen and Williams [2006].
For isotropic function modelling, the squared exponential kernel with single
hyperparameter θ is most common, and defined as

k(x,x′) = exp
(
− 1

2θ2 ||x− x
′||2
)
. (1.15)
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acquisition max

acquisition function (u( ·))

observation (x)
objective fn (f( ·))

t = 2

new observation (xt)

t = 3

posterior mean (µ( ·))

posterior uncertainty
(µ( ·)±σ( ·))

t = 4

Figure 1: An example of using Bayesian optimization on a toy 1D design problem.
The figures show a Gaussian process (GP) approximation of the objective function over
four iterations of sampled values of the objective function. The figure also shows the
acquisition function in the lower shaded plots. The acquisition is high where the GP
predicts a high objective (exploitation) and where the prediction uncertainty is high
(exploration)—areas with both attributes are sampled first. Note that the area on the
far left remains unsampled, as while it has high uncertainty, it is (correctly) predicted
to offer little improvement over the highest observation.

The posterior captures our updated beliefs about the unknown objective func-
tion. One may also interpret this step of Bayesian optimization as estimating
the objective function with a surrogate function (also called a response sur-
face), described formally in §2.1 with the posterior mean function of a Gaussian
process.

To sample efficiently, Bayesian optimization uses an acquisition function to
determine the next location xt+1 ∈ A to sample. The decision represents an
automatic trade-off between exploration (where the objective function is very
uncertain) and exploitation (trying values of x where the objective function is
expected to be high). This optimization technique has the nice property that it
aims to minimize the number of objective function evaluations. Moreover, it is
likely to do well even in settings where the objective function has multiple local
maxima.

3

Fig. 1.2 An example of Gaussian process based Bayesian optimisation on
a 1D objective to be maximised. Figures show 3 iterations of sampled
values from the objective function from top to bottom. Observations are
represented by dots, the true objective is the dotted line, the GP posterior
mean and 95 % predictive interval are given by the dark solid lines and the
purple shaded regions respectively. The green line at the bottom of each
plot shows the acquisition function at each iteration. The acquisition is
high where the GP predicts a high function value (exploitation) and where
the predictive uncertainty is high (exploration). Figure from Brochu et al.
[2009].

Most applications require anisotropic models which do not assume differences
in each component of x contribute to the covariance equally. In such a
scenario, the squared exponential with automatic relevance determination
(ARD) hyperparameters θ is a popular choice, defined as

k(x,x′) = exp
(
− 1

2(x− x′)⊤diag(θ)−2(x− x′)
)
, (1.16)

where diag(θ) is a diagonal matrix with dth diagonal entry θd. We can see
intuitively that if a particular θd has a small value, the covariance becomes
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less dependant on variations in the dth dimension of x, hence the kernel
function determines the relevance of each input dimension. One drawback of
the squared exponential kernels is that they lead to very smooth functions
which are infinitely differentiable. The Matérn kernel [Matérn, 1986] attempts
to alleviate this problem by incorporating a smoothness parameter ζ, and is
defined as

k(x,x′) = 1
2ζ−1Γ(ζ)

(
2
√
ζ||x− x′||

)ζ

Hζ

(
2
√
ζ||x− x′||

)
(1.17)

where Γ(.) and Hζ(.) are the Gamma function and the Bessel function of
order ζ. As ζ →∞, the Matérn kernel reduces to the squared exponential
kernel. It is common to incorporate ARD hyperparameters into the Matérn
kernel in practice. Kernels can be formed by composing other kernels.

1.3.2 Acquisition Functions

The acquisition function controls the search for the optimum of the unknown
objective function given the model. Typically, an acquisition function u(x|D)
defines the current expected utility of evaluating f at x given the observed
data so far, D, is defined such that values of high acquisition correspond to
input locations which offer more utility in evaluating the function at next.
Hence, maximising the acquisition function tells one where to evaluate f
next i.e. xt = argmaxxu(x|D).

In this subsection, we will describe 3 of the most common choices of acqui-
sition functions for Bayesian optimisation tasks. We assume a Gaussian
process prior over the function f , and that we have observed the pairs
D = {xs, fs}T

s=1, with x+ = argmaxx∈x1:T
f(x). We denote the posterior

mean and covariance of f given observations D at location x as µ(x) and
σ(x)2.

Kushner [1964] suggested maximising the probability of improving over
the current best evaluation f(x+) with some margin, τ ≥ 0, defining an
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acquisition function

uPI(x|D) = P(f(x) ≥ f(x+) + τ)

= Φ
(
µ(x)− f(x+)− τ

σ(x)

)
(1.18)

where Φ(.) is the standard normal cumulative distribution function. Large
values of τ lead to more exploration whilst small values encourage exploita-
tion, leading Kushner to recommend a schedule for τ such that it starts out
fairly high in the optimisation procedure and is decreased to zero as the
algorithm progresses. Note that the probability of improvement acquisition
function is indeed differentiable with respect to x, making gradient ascent
of the acquisition function possible.

Jones [2001b] studied the impact of the τ parameter on the performance of
Bayesian optimisation algorithm and concluded that it was highly sensitive.
A more satisfying approach would weigh up the magnitude of improvement
with the probability of improvement. In this vein, Mockus et al. [1978]
defined the expected improvement over the current best evaluation as

uEI(x|D) = E
[
max

(
f(x)− f(x+), 0

)]
= σ(x)

[
κ(x)Φ(κ(x)) + ϕ(κ(x))

]
(1.19)

where κ(x) =
(
µ(x)− f(x+)

)
/σ(x) and ϕ(.) is the standard normal density

function. The expected improvement acquisition function elegantly weighs
up both the probability and magnitude of improvement over the current
best. Another fairly simple way to trade off exploration and exploitation is
to maximise an upper confidence bound of the form

uUCB(x|D) = µ(x) + βtσ(x) (1.20)

where βt is O
(√

d log t
)

[Srinivas et al., 2010]. Note that each of the acquisi-
tion functions presented here are myopic, in the sense that they maximise a
quantity based on a one-step ahead reward. The task in Bayesian optimisa-
tion is to find an optimiser within T steps, or more concretely, to minimise



1.4 Contributions 15

f(x∗)−f(x+) after T steps. However, sampling multiple steps ahead quickly
becomes computationally infeasible due to the combinatorial explosion of
possibilities over multiple steps. Nevertheless, Ginsbourger et al. [2008] did
analytically compute expected improvement for the two-step ahead problem.

Bayesian optimisation is intimately related to the problem of multi-armed
bandits, where at each time step, a decision maker chooses an action from an
action set, at ∈ A, and receives a reward rt from the environment. The ac-
tions are commonly described as arms in an analogy to the choice a gambler
makes when deciding between several slot machines (one armed-bandits),
which has a random payoff dependent on the particular arm. The gambler
chooses so as to maximise their long term reward, by exploiting arms which
pay well and exploring arms for which we require more information [Robbins,
1952; Gittins, 1979]. There have been many successful applications of multi-
armed bandits including clinical trials [Thompson, 1933] and scheduling
[Veatch and Wein, 1996].

1.4 Contributions

Here I outline the key contributions in this dissertation. Most of the work
has been published in peer-reviewed conferences, but additional details and
derivations are included in this document.

Previously in this chapter, we introduced the Gaussian process. However,
the Gaussian distribution is only one of a large class of elliptical distributions.
In chapter 2, we explore the possibility of more general elliptical processes,
and prove that the Student-t process is the most general elliptical process
which permits analytically tractable predictions. We subsequently show that
the Student-t process is useful for applications with heavy tailed noise and
also for Bayesian optimisation.

In chapter 3 we develop a novel acquisition function for Bayesian opti-
misation where we are able to evaluate an objective function at multiple
points in parallel. The acquisition function uses the notion of information



16 Introduction

gain and statistical entropy in deciding at which points to evaluate next.
Our method is the only one known to us which is able to choose a batch of
points together, rather than one by one in a greedy fashion.

A similar but modified entropy based approach can be used in the multi-
objective optimisation setting. In chapter 4, we discuss the notion of a
Pareto frontier of optimal points when jointly trying to optimise multiple
objectives, and show how one can choose to evaluate multiple objectives at a
location which maximises the information gain about the true Pareto frontier.

Finally in chapter 5, we model correlations between objective functions
for the purpose of multi-objective optimisation. This proves to be fruitful in
realistic scenarios as the multiple objective one may wish to optimise jointly
are typically inherently correlated. In this work, we consider a volume based
generalisation of the expected improvement acquisition function, and derive
an analytically tractable approximation to the desired acquisition function.



Chapter 2

Student-t and Elliptical
Processes

In the introduction, I discuss the Gaussian process and the parameters which
control its behaviour. A key design choice in prescribing a Gaussian process
prior is in the covariance function. Whilst the kernel function is almost
always chosen to be a parametric function, in this chapter we consider a
non-parametric, stochastic alternative called the inverse Wishart process
(IWP), which attempts to learn the most appropriate form of covariance
function based on the training data. Marginalising the IWP prior on the
Gaussian process covariance function leads to a Student-t process.

A connection to a more general class called elliptical distributions is made,
and we construct a Student-t process via an alternative generative process,
shedding light on some of the redundancies of the inverse Wishart process
framework. The GP with IWP covariance function is designed to be able
to flexibly model the covariance between function points and therefore is
ideally suited to Bayesian optimisation, which is our primary application area.

The core of this chapter was research I conducted in collaboration with
Andrew Gordon Wilson and Zoubin Ghahramani, and has been published at
AISTATS [Shah et al., 2014]. The majority of the work including the param-
eterisation of the IWP, the experiments and the geometric interpretation
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of the IWP were developed by myself, whilst Andrew and Zoubin offered
guiding thoughts and suggestions for applications.

2.1 Introduction

Gaussian processes are rich distributions over functions, which provide a
Bayesian non-parametric approach to regression. Owing to their inter-
pretability, non-parametric flexibility, large support, consistency, simple
exact learning and inference procedures, and impressive empirical perfor-
mances [Rasmussen, 1996], Gaussian processes as kernel machines have
steadily grown in popularity over the last decade.

At the heart of every Gaussian process (GP) is a parametrised covari-
ance kernel, which determines the properties of likely functions under a
GP. Typically simple parametric kernels, such as the Gaussian (squared
exponential) kernel are used, and its parameters are determined through
marginal likelihood maximisation, having analytically integrated away the
Gaussian process. However, a fully Bayesian non-parametric treatment of
regression would place a non-parametric prior over the Gaussian process
covariance kernel, to represent uncertainty over the kernel function, and to
reflect the natural intuition that the kernel does not have a simple parametric
form.

Likewise, given the success of Gaussian processes kernel machines, it is
also natural to consider more general families of elliptical processes [Fang
et al., 1989], such as Student-t processes, where any collection of function
values has a desired elliptical distribution, with a covariance matrix con-
structed using a kernel.

As we will show, the Student-t process can be derived by placing an inverse
Wishart process prior on the kernel of a Gaussian process. Given their
intuitive value, it is not surprising that various forms of Student-t processes
have been used in different applications [Yu et al., 2007; Zhang and Yeung,
2010; Xu et al., 2011; Archambeau and Bach, 2010]. However, the connec-
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tions between these models and their theoretical properties, remain largely
unknown. Similarly, the practical utility of such models remains uncertain.
For example, Rasmussen and Williams [2006] wonder whether “the Student-t
process is perhaps not as exciting as one might have hoped”.

In this work, we precisely define and motivate the inverse Wishart pro-
cess [Dawid, 1981] as a prior over covariance matrices of arbitrary size,
and derive a Student-t process (TP), from hierarchical Gaussian process
models. Our Student-t process has analytic forms of marginal and predictive
distributions, and analytic derivatives of the marginal likelihood. We go on
to define elliptical distributions and corresponding processes, and prove that
the Student-t process is the most general elliptically symmetric process with
analytic marginal and predictive distributions. This result allowed us to
derive a new way of sampling from the inverse Wishart process, which intu-
itively resolves the seemingly bizarre marginal equivalence between inverse
Wishart and inverse Gamma priors for covariance kernels in hierarchical GP
models. Unlike for a GP, we show that the predictive covariance of a TP
depend on the values of training observations. Contrary to the Student-t
process described in Rasmussen and Williams [2006], we are able to derive
an analytic TP noise model which can be used to separate signal and noise
analytically.

The TP appears to be more robust to change-points and model misspecifica-
tion than the GP, and seems to have notably improved predictive covariance.
The TP further supports useful tail-dependence between distant function
values (which is separate from the choice of kernel). Both of these proper-
ties make the TP particularly promising for Bayesian optimisation, where
predictive covariance are especially important, as we show in Section 2.6.2.

We proceed by introducing and defining the inverse Wishart process, and
then apply it as a prior over a GP covariance function, leading to the
Student-t process. Next we discuss elliptical distributions and processes,
drawing on some interesting connections to our initial approach to deriving
a Student-t process. Finally we discuss some of our experimental findings
and discuss where a Student-t process appears most useful.
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2.2 Inverse Wishart Process

We claim that the inverse Wishart distribution is an attractive choice of
prior for covariance matrices of arbitrary size. The Wishart distribution is a
probability distribution over Π(n), the set of real valued, n× n, symmetric,
positive definite matrices. Its density function is defined as follows.

Definition 1. A random Σ ∈ Π(n) is Wishart distributed with parameters
ν > n− 1, K ∈ Π(n), and we write Σ ∼Wn(ν,K) if its density is given by

p(Σ) = cn(ν,K)|Σ|(ν−n−1)/2 exp
(
− 1

2Tr
(
K−1Σ

))
, (2.1)

where cn(ν,K) =
(
|K|ν/22νn/2Γn(ν/2)

)−1
.

The Wishart distribution defined with this parametrisation is consistent
under marginalisation. If Σ ∼ Wn(ν,K), then any n1 × n1 principal sub-
matrix, Σ11, is Wn1(ν,K11) distributed. This property is one which makes
the Wishart distribution appear to be an attractive prior over covariance
matrices. Unfortunately the Wishart distribution suffers a flaw which makes
it impractical for non-parametric Bayesian modelling.

Suppose we wish to model a covariance matrix using ν−1Σ, with expected
value E[ν−1Σ] = K, and var[ν−1Σij ] = ν−1(K2

ij + KiiKjj). Since we require
ν > n − 1, we must let ν → ∞ to define a process which has positive
semi-definite Wishart distributed marginals of arbitrary size. However, as
ν → ∞, ν−1Σ tends to the constant matrix K almost surely. Thus the
requirement ν > n− 1 prohibits defining a useful process which has Wishart
marginals of arbitrary size. Nevertheless, the inverse Wishart distribution
does not suffer this problem. Dawid [1981] parametrised the inverse Wishart
distribution as follows:

Definition 2. A random Σ ∈ Π(n) is inverse Wishart distributed with
parameters ν ∈ R+, K ∈ Π(n) and we write Σ ∼ IWn(ν,K) if its density is
given by

p(Σ) = cn(ν,K)|Σ|−(ν+2n)/2 exp
(
− 1

2Tr
(
KΣ−1

))
, (2.2)
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with cn(ν,K) = |K|(ν+n−1)/2

2(ν+n−1)n/2Γn((ν + n− 1)/2) .

If Σ ∼ IWn(ν,K), Σ has mean and covariance only when ν > 2 and
E[Σ] = (ν− 2)−1K. Both the Wishart and the inverse Wishart distributions
place prior mass on every Σ ∈ Π(n). Furthermore Σ ∼ Wn(ν,K) if and
only if Σ−1 ∼ IWn(ν − n+ 1,K−1).

Dawid [1981] shows that the inverse Wishart distribution defined as above
is consistent under marginalisation. If Σ ∼ IWn(ν,K), then any principal
submatrix Σ11 will be IWn1(ν,K11) distributed. Note the key difference in
the parametrisation of both distributions: the parameter ν does not need
to depend on the size of the matrix in the inverse Wishart distribution.
These properties are desirable and motivate defining a process which has
inverse Wishart marginals of arbitrary size. Let X be some input space and
k : X × X → R a positive definite kernel function.

Definition 3. Σ is an inverse Wishart process on X with parameters ν ∈ R+

and base kernel k : X × X → R if for any finite collection x1, ..., xn ∈ X ,
Σ(x1, ..., xn) ∼ IWn(ν,K) where K ∈ Π(n) with Kij = k(xi, xj). We write
Σ ∼ IWP(ν, k).

In the next section we use the inverse Wishart process as a non-parametric
prior over kernels in a hierarchical Gaussian process model.

2.3 Deriving the Student-t Process

Gaussian processes (GPs) are characterised by a mean function and a kernel
function. Practitioners tend to use parametric kernel functions and learn
their hyperparameters using maximum likelihood or sampling based methods.
We propose placing an inverse Wishart process prior on the kernel function,
leading to a Student-t process.

For a base kernel function kθ parametrised by θ, and a continuous mean
function ϕ : X → R, our generative approach is as follows
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σ ∼ IWP(ν, kθ)
y|σ ∼ GP(ϕ, (ν − 2)σ), (2.3)

where σ is an infinite dimensional covariance function defined on X × X .
Since the inverse Wishart distribution is a conjugate prior for the covariance
matrix of a Gaussian likelihood, we can analytically marginalise σ in the
generative model of (2.3). For any collection of data y = (y1, ..., yn)⊤ with
ϕ = (ϕ(x1), ..., ϕ(xn))⊤,

p(y|ν,K) =
∫
p(y|Σ)p(Σ|ν,K)dΣ

∝
∫ exp

(
− 1

2Tr
((

K + 1
ν−2(y − ϕ)(y − ϕ)⊤

)
Σ−1

))
|Σ|(ν+2n+1)/2 dΣ

∝
(

1 + 1
ν − 2(y − ϕ)⊤K−1(y − ϕ)

)−(ν+n)/2
. (2.4)

We leverage this result to define a Student-t process as follows.

Definition 4. y ∈ Rn is multivariate Student-t distributed with parameters
ν ∈ R+\[0, 2], ϕ ∈ Rn and K ∈ Π(n) if it has density

p(y) =
Γ(ν+n

2 )
((ν − 2)π)n

2 Γ(ν
2 )
|K|−1/2 ×

(
1 + (y − ϕ)⊤K−1(y − ϕ)

ν − 2

)− ν+n
2

(2.5)

We write y ∼ MVTn(ν,ϕ,K).

The mean and covariance of the MVT are easily computed using the genera-
tive derivation:

E[y] = E[E[y|Σ]] = ϕ

cov[y] = E[E[(y − ϕ)(y − ϕ)⊤|Σ]] = E[(ν − 2)Σ] = K. (2.6)

It is also straightforward to show that the Student-t is consistent under
marginalisation, which we do in the following Lemma.

Lemma 5. The multivariate Student-t is consistent under marginalisation.
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Proof. Assume the generative process of equation 3 of the main text. Σ11

is IWn1(ν,K11) distributed for any principal submatrix of Σ. Furthermore
y1|Σ11 ∼ Nn1(0, (ν − 2)Σ11) since the Gaussian distribution is consistent
under marginalisation. Hence y1 ∼ MVTn1(ν, µ1,K11).

We are now able to define a Student-t process.

Definition 6. f is a Student-t process on X with parameters ν > 2, mean
function Φ : X → R, and kernel function k : X × X → R if any finite
collection of function values have a joint multivariate Student-t distribution,
i.e. [f(x1), ..., f(xn)]⊤ ∼ MVTn(ν,ϕ,K) where K ∈ Π(n) with Kij =
k(xi, xj) and ϕ ∈ Rn with ϕi = Φ(xi). We write f ∼ TP(ν,Φ, k).

The Student-t process generalises the Gaussian process. In fact, a GP can
be seen as a limiting case of a TP as shown in the following Lemma.

Lemma 7. Suppose f ∼ TP(ν,Φ, k) and g ∼ GP(Φ, k). Then f tends to g
in distribution as ν →∞.

Proof. It is sufficient to show convergence in density for any finite collection
of inputs. Let y ∼ MVTn(ν,ϕ, K) and set β = (y − ϕ)⊤K−1(y − ϕ) then
as ν →∞,

p(y) ∝
(

1 + β

ν − 2

)−(ν+n)/2
→ e−β/2.

Hence the distribution of y tends to a Nn(ϕ, K) distribution as ν →∞.

The ν parameter controls how heavy tailed the Student-t process is. Smaller
values of ν correspond to heavier tails. As ν gets larger, the tails converge to
Gaussian tails. This is illustrated in prior sample draws shown in Figure 2.1.
Notice that the samples from the TP tend to have more extreme behaviour
than the GP, despite sharing the same mean and covariance functions.

ν also controls the dependence between variables which are jointly Student-t
distributed, and not just their marginal distributions. In Figure 2.2 we
show plots of samples which all have Gaussian marginals but different joint
distributions determined by either a Student-t or a Gaussian copula. Note
that in general, a bivariate distribution with Gaussian marginals but a
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(b) Student-t process samples

Fig. 2.1 Five samples (blue solid) from (a) GP(Φ, k) and (b) TP(ν,Φ, k),
with ν = 3. The mean and covariance functions are Φ(x) = cos(x) (red
dashed) and k(xi, xj) = 0.01 exp(−20(xi − xj)2) respectively. The grey
shaded area represents a 95% predictive interval under each model.

Student-t copula is not an elliptical distribution, hence the non-elliptical
nature of Figure 2.2(a). Notice how the tail dependency of these distri-
butions is controlled by ν. The dependency between y(xp) and y(xq) are
different depending on whether y is a TP or a GP, even if they share the
same covariance kernel.
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Figure 2: Bivariate samples from a student-t copula with ν = 3 (left), a student-t copula with ν = 10 (centre)
and a Gaussian copula (right). All marginal distributions are N(0, 1) distributed.

Proof. It is sufficient to show convergence in den-
sity for any finite collection of inputs. Let y ∼
MVTn(ν,φ,K) and set β = (y−φ)>K−1(y−φ) then

p(y) ∝
(

1 +
β

ν − 2

)−(ν+n)/2
→ e−β/2

an ν → ∞. Hence the distribution of y tends to a
Nn(φ,K) distribution as ν →∞.

The ν parameter controls how heavy tailed the process
is. The smaller it is, the heavier the tails. As ν gets
larger, the tails converge to mimic Gaussian tails. This
is illustrated in prior sample draws shown in Figure 1.
Notice that the samples from the TP leave the 95%
confidence band more often than the samples from the
GP, a clear indicator of the heavier tails.

It is important to note that ν also controls the nature
of the dependence between variables which are jointly
student-t distributed and not just the marginal distri-
bution of points. In Figure 2 we show plots of samples
which all have Gaussian marginals but different joint
distributions. Notice how the tail dependency of the
bivariate distributions is controlled by ν.

4.2 Conditional distribution

We now derive the conditional distribution for a
multivariate student-t distribution. Suppose y ∼
MVTn(ν,φ,K) and let y1 and y2 represent the first
n1 and remaining n2 entries of y respectively. Let
β1 = (y1 − φ1)>K−111 (y1 − φ1) and β2 = (y2 −
φ̃2)>K̃22

−1
(y2−φ̃2), where φ̃2 = K21K

−1
11 (y1−φ1)−

φ2 and K̃22 = K22 −K21K
−1
11 K12.

Note that β1 + β2 = (y − φ)>K−1(y − φ). We have

p(y2|y1) =
p(y1,y2)

p(y1)

∝
(

1 +
β1 + β2
ν − 2

)−(ν+n)/2(
1 +

β1
ν − 2

)(ν+n1)/2

∝
(

1 +
β2

β1 + ν − 2

)−(ν+n)/2
(6)

Comparing this density to the one in equation 5, we
note that

y2|y1 ∼ MVTn2

(
ν + n1, φ̃2,

ν + β1 − 2

ν + n1 − 2
× K̃22

)
. (7)

As ν tends to infinity, this predictive distribution tends
to a Gaussian process predictive distribution as we
would expect given Lemma 2. The predictive mean
has the same form as for a Gaussian process predic-
tive. The key difference is in the predictive covariance,
which is a scaled version of the Gaussian process pre-
dictive covariance.

A somewhat disappointing feature of the Gaussian
process is that for a given kernel, the predictive co-
variance of new samples does not explicitly depend on
previous observations.

The scaling constant of the multivariate student-t pre-
dictive covariance has an intuitive explanation. Note
that β1 is distributed as the sum of squares of n1 inde-
pendent MVT1(ν, 0, 1) distributions and hence E[β1] =
n1. If the observed value of β1 is larger than n1, the
predictive covariance is scaled up and vice versa. The
magnitude of scaling is controlled by ν.

The fact that the predictive covariance of the multi-
variate student-t depends on the data is one of the key
benefits of this distribution over a Gaussian one.

(a)
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Figure 2: Bivariate samples from a student-t copula with ν = 3 (left), a student-t copula with ν = 10 (centre)
and a Gaussian copula (right). All marginal distributions are N(0, 1) distributed.

Proof. It is sufficient to show convergence in den-
sity for any finite collection of inputs. Let y ∼
MVTn(ν,φ,K) and set β = (y−φ)>K−1(y−φ) then

p(y) ∝
(

1 +
β

ν − 2

)−(ν+n)/2
→ e−β/2

an ν → ∞. Hence the distribution of y tends to a
Nn(φ,K) distribution as ν →∞.

The ν parameter controls how heavy tailed the process
is. The smaller it is, the heavier the tails. As ν gets
larger, the tails converge to mimic Gaussian tails. This
is illustrated in prior sample draws shown in Figure 1.
Notice that the samples from the TP leave the 95%
confidence band more often than the samples from the
GP, a clear indicator of the heavier tails.

It is important to note that ν also controls the nature
of the dependence between variables which are jointly
student-t distributed and not just the marginal distri-
bution of points. In Figure 2 we show plots of samples
which all have Gaussian marginals but different joint
distributions. Notice how the tail dependency of the
bivariate distributions is controlled by ν.

4.2 Conditional distribution

We now derive the conditional distribution for a
multivariate student-t distribution. Suppose y ∼
MVTn(ν,φ,K) and let y1 and y2 represent the first
n1 and remaining n2 entries of y respectively. Let
β1 = (y1 − φ1)>K−111 (y1 − φ1) and β2 = (y2 −
φ̃2)>K̃22

−1
(y2−φ̃2), where φ̃2 = K21K

−1
11 (y1−φ1)−

φ2 and K̃22 = K22 −K21K
−1
11 K12.

Note that β1 + β2 = (y − φ)>K−1(y − φ). We have

p(y2|y1) =
p(y1,y2)

p(y1)

∝
(

1 +
β1 + β2
ν − 2

)−(ν+n)/2(
1 +

β1
ν − 2

)(ν+n1)/2

∝
(

1 +
β2

β1 + ν − 2

)−(ν+n)/2
(6)

Comparing this density to the one in equation 5, we
note that

y2|y1 ∼ MVTn2

(
ν + n1, φ̃2,

ν + β1 − 2

ν + n1 − 2
× K̃22

)
. (7)

As ν tends to infinity, this predictive distribution tends
to a Gaussian process predictive distribution as we
would expect given Lemma 2. The predictive mean
has the same form as for a Gaussian process predic-
tive. The key difference is in the predictive covariance,
which is a scaled version of the Gaussian process pre-
dictive covariance.

A somewhat disappointing feature of the Gaussian
process is that for a given kernel, the predictive co-
variance of new samples does not explicitly depend on
previous observations.

The scaling constant of the multivariate student-t pre-
dictive covariance has an intuitive explanation. Note
that β1 is distributed as the sum of squares of n1 inde-
pendent MVT1(ν, 0, 1) distributions and hence E[β1] =
n1. If the observed value of β1 is larger than n1, the
predictive covariance is scaled up and vice versa. The
magnitude of scaling is controlled by ν.

The fact that the predictive covariance of the multi-
variate student-t depends on the data is one of the key
benefits of this distribution over a Gaussian one.

(b)
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Figure 2: Bivariate samples from a student-t copula with ν = 3 (left), a student-t copula with ν = 10 (centre)
and a Gaussian copula (right). All marginal distributions are N(0, 1) distributed.

Proof. It is sufficient to show convergence in den-
sity for any finite collection of inputs. Let y ∼
MVTn(ν,φ,K) and set β = (y−φ)>K−1(y−φ) then

p(y) ∝
(

1 +
β

ν − 2

)−(ν+n)/2
→ e−β/2

an ν → ∞. Hence the distribution of y tends to a
Nn(φ,K) distribution as ν →∞.

The ν parameter controls how heavy tailed the process
is. The smaller it is, the heavier the tails. As ν gets
larger, the tails converge to mimic Gaussian tails. This
is illustrated in prior sample draws shown in Figure 1.
Notice that the samples from the TP leave the 95%
confidence band more often than the samples from the
GP, a clear indicator of the heavier tails.

It is important to note that ν also controls the nature
of the dependence between variables which are jointly
student-t distributed and not just the marginal distri-
bution of points. In Figure 2 we show plots of samples
which all have Gaussian marginals but different joint
distributions. Notice how the tail dependency of the
bivariate distributions is controlled by ν.

4.2 Conditional distribution

We now derive the conditional distribution for a
multivariate student-t distribution. Suppose y ∼
MVTn(ν,φ,K) and let y1 and y2 represent the first
n1 and remaining n2 entries of y respectively. Let
β1 = (y1 − φ1)>K−111 (y1 − φ1) and β2 = (y2 −
φ̃2)>K̃22

−1
(y2−φ̃2), where φ̃2 = K21K

−1
11 (y1−φ1)−

φ2 and K̃22 = K22 −K21K
−1
11 K12.

Note that β1 + β2 = (y − φ)>K−1(y − φ). We have

p(y2|y1) =
p(y1,y2)

p(y1)

∝
(

1 +
β1 + β2
ν − 2

)−(ν+n)/2(
1 +

β1
ν − 2

)(ν+n1)/2

∝
(

1 +
β2

β1 + ν − 2

)−(ν+n)/2
(6)

Comparing this density to the one in equation 5, we
note that

y2|y1 ∼ MVTn2

(
ν + n1, φ̃2,

ν + β1 − 2

ν + n1 − 2
× K̃22

)
. (7)

As ν tends to infinity, this predictive distribution tends
to a Gaussian process predictive distribution as we
would expect given Lemma 2. The predictive mean
has the same form as for a Gaussian process predic-
tive. The key difference is in the predictive covariance,
which is a scaled version of the Gaussian process pre-
dictive covariance.

A somewhat disappointing feature of the Gaussian
process is that for a given kernel, the predictive co-
variance of new samples does not explicitly depend on
previous observations.

The scaling constant of the multivariate student-t pre-
dictive covariance has an intuitive explanation. Note
that β1 is distributed as the sum of squares of n1 inde-
pendent MVT1(ν, 0, 1) distributions and hence E[β1] =
n1. If the observed value of β1 is larger than n1, the
predictive covariance is scaled up and vice versa. The
magnitude of scaling is controlled by ν.

The fact that the predictive covariance of the multi-
variate student-t depends on the data is one of the key
benefits of this distribution over a Gaussian one.

(c)

Fig. 2.2 Uncorrelated bivariate samples from (a) a Student-t copula with
ν = 3, (b) a Student-t copula with ν = 10 and (c) a Gaussian copula (right).
All marginal distributions are N(0, 1) distributed.

The conditional distribution for a multivariate Student-t has an analytic
form which we state and prove in Lemma 8.

Lemma 8. Suppose y ∼ MVTn(ν,ϕ,K) and let y1 and y2 represent the
first n1 and remaining n2 entries of y respectively. Then

y2|y1 ∼ MVTn2

(
ν + n1, ϕ̃2,

ν + β1 − 2
ν + n1 − 2 × K̃22

)
, (2.7)

where

ϕ̃2 = K21K−1
11 (y1 − ϕ1) + ϕ2

β1 = (y1 − ϕ1)⊤K−1
11 (y1 − ϕ1),

K̃22 = K22 −K21K−1
11 K12.

Note that

E[y2|y1] = ϕ̃2,

cov[y2|y1] = ν + β1 − 2
ν + n1 − 2 × K̃22.
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Proof. Let β2 = (y2 − ϕ̃2)⊤K̃−1
22 (y2 − ϕ̃2).

Note that β1 + β2 = (y − ϕ)⊤K−1(y − ϕ). We have

p(y2|y1) = p(y1,y2)
p(y1) ∝

(
1 + β1 + β2

ν − 2

)−(ν+n)/2(
1 + β1

ν − 2

)(ν+n1)/2

∝
(

1 + β2

β1 + ν − 2

)−(ν+n)/2

Comparing this expression to the definition of a MVT density function gives
the required result.

As ν tends to infinity, this predictive distribution tends to a Gaussian process
predictive distribution as we would expect given Lemma 7. Perhaps less
intuitively, this predictive distribution also tends to a Gaussian process
predictive as n1 tends to infinity. For n1 above 50, there typically would not
be a noticeable difference between the Student-t and Gaussian predictive
distribution. Therefore the Student-t process is interesting predominantly
in the low data setting.

The predictive mean has the same form as for a Gaussian process, con-
ditioned on having the same kernel k, with the same hyperparameters. The
key difference is in the predictive covariance, which now explicitly depends
on the training observations. Indeed, a somewhat disappointing feature of
the Gaussian process is that for a given kernel with fixed hyperparameters,
the predictive covariance of new samples does not depend on training ob-
servations. Importantly, since the marginal likelihood of the TP in (2.5)
differs from the marginal likelihood of the GP, both the predictive mean and
predictive covariance of a TP will differ from that of a GP, after learning
kernel hyperparameters.

The scaling constant of the multivariate Student-t predictive covariance
has an intuitive explanation. Note that β1 is distributed as the sum of
squares of n1 independent MVT1(ν, 0, 1) distributions and hence E[β1] = n1.
If the observed value of β1 is larger than n1, the predictive covariance is
scaled up, and the converse holds also. The magnitude of scaling is controlled
by ν.
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2.4 Elliptical Processes

Having derived the Student-t process and discussed some of its properties,
in this section we consider the more general class of elliptical processes. We
begin by motivating and describing an elliptical distribution.

Gaussian distributions are a popular choice for statistical modelling across a
broad range of sciences in part because its density has elliptical contours
centred around a single mode. This encodes the belief that a quantity has
one most likely value, and the probability density decreases as we move
away from this mode. It is worth asking the question, “what is the class
of distributions that are unimodal with elliptical contours?” Appropriately,
the answer is, elliptical distributions. We define an elliptical distribution
based on an equivalency result from Cambanis et al. [1981].

Definition 9. y ∈ Rn follows an elliptical distribution if and only if there
exists constant µ ∈ Rn, constant n × d matrix Ω with maximal rank d,
non-negative random scalar R and u independent random which is uniformly
distributed on the unit sphere in Rd, such that y D= µ + RΩu, where D=
denotes equality in distribution.

An overview of properties of elliptical distributions can be found at Fang
et al. [1989], along with the proof of the following lemma.

Lemma 10. Suppose R1 ∼ χ2(n) and R2 ∼ Γ−1(ν/2, 1/2) independently.
If R D=

√
R1, then y is Gaussian distributed. If R D=

√
(ν − 2)R1R2 then y

is MVT distributed.

The result above motivates an alternative way to generate a multivariate
Student-t distribution from a Gaussian distribution, which we prove in the
following lemma.

Lemma 11. Let K ∈ Π(n), ϕ ∈ Rn, ν > 2, ρ > 0, all constant, and

r−1 ∼ Γ(ν/2, ρ/2)
y|r ∼ Nn(ϕ, r(ν − 2)K/ρ), (2.8)

then marginally y ∼ MVTn(ν,ϕ,K).
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(b) Bessel density

Fig. 2.3 Density plots for elliptical distributions in 1 dimension including (a)
Kotz and (b) Bessel densities with various parameters.

Proof. Let β = (y − ϕ)⊤K−1(y − ϕ). We can analytically marginalise out
the scalar r,

p(y) =
∫
p(y|r)p(r)dr ∝

∫
exp

(
− ρβ

2(ν − 2)r

)
r− n

2 exp
(
− ρ

2r

)
r− (ν+2)

2 dr

∝
(

1 + β

ν − 2

)− (ν+n)
2
∫

exp
(
− 1

2r

)
r− (ν+n+2)

2 dr

∝
(

1 + β

ν − 2

)− (ν+n)
2

Hence y ∼ MVTn(ν,ϕ,K) . Note the redundancy in ρ. Without loss of
generality, let ρ = 1.

This is a surprising finding because previously, in (2.4), we derived a Student-
t process by placing an IWP prior on the covariance matrix, which appears to
be far more rich a distribution than a deterministic covariance function scaled
by an inverse Gamma random variable, yet they both lead to the Student-t
process! In the next section, we return to this idea, and use it to moti-
vate a new way to construct the IWP, shedding light on some of its properties.

Below are a couple of elliptical distributions and their probability den-
sity functions other than the multivariate Gaussian and Student-t. See
Figure 2.3 for plots of their densities.
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Example 12. The Kotz distribution, y ∼ Kn(µ,Σ, N, r) for N > 2−n
2 and

r > 0 has density

p(y) =
Γ
(

n
2

)
r

2N−2+n
2

Γ
(

2N−2+n
2

)
π

n
2 |Σ|n2

βN−1 exp(−rβ),

for β = (y − µ)⊤Σ−1(y − µ).

Example 13. The Bessel distribution, y ∼ Bn(µ,Σ, q, r) for q > −n
2 and

r > 0 has density

p(y) = 1
2q+n−1π

n
2 rn+qΓ

(
q + n

2

)
|Σ|n2

β
q
2Kq

(√
β

r

)
,

for β = (y − µ)⊤Σ−1(y − µ) and

Kq(z) = π

2 sin(qπ)(I−q(z)− Iq(z))

Iq(z) =
∞∑

k=0

1
k!Γ(k + q + 1)

(
z

2

)q+2k

.

Elliptical distributions characterise a large class of distributions which are
unimodal and where the likelihood of a point decreases in its distance from
this mode. The idea naturally extends to infinite dimensional objects.

Definition 14. Let Y = {yi} be a countable family of random variables. It
is an elliptical process if any finite subset of them jointly have an elliptical
distribution.

Not all elliptical distributions have densities (e.g. Lévy, alpha-stable distri-
butions). Even fewer elliptical processes have densities, and the set of those
that do is characterised in Theorem 15 due to Kelker [1970].

Theorem 15. Suppose Y = {yi} is an elliptical process. Any finite collection
z = {z1, ..., zn} ⊂ Y has a density if and only if there exists a non-negative
random variable r such that z|r ∼ Nn(µ, rΩΩ⊤).

Rather surprisingly, whilst there exist a vast range of elliptical distributions,
the theorem above suggests that the class of elliptical processes is significantly
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more limited. Scale mixtures of Gaussian distributions have been successfully
used for machine learning in the past [Wainwright and Simoncelli, 1999;
Portilla et al., 2003]. A simple corollary of the theorem describes the only
two cases where an elliptical process has an analytically representable density
function.

Corollary 16. Suppose Y = {yi} is an elliptical process. Any finite collec-
tion z = {z1, ..., zn} ⊂ Y has an analytically representable density if and
only if Y is either a Gaussian process or a Student-t process.

Proof. By Theorem 15, we need to be able to analytically solve
∫
p(z|r)p(r)dr,

where z|r ∼ Nn(µ, rΩΩ⊤). This is possible either when r is a constant with
probability 1 or when r ∼ Γ−1(ν/2, 1/2), the conjugate prior. These lead to
the Gaussian and Student-t processes respectively.

Since the Student-t process generalises the Gaussian process, it is the most
general elliptical process which has an analytically representable density.
The TP is thus an expressive tool for non-parametric Bayesian modelling.
We will return to applying the Student-t process to a range of regression
and Bayesian optimisation tasks in the experiments section, but first, we
take a slight detour into understanding the inverse Wishart process.

2.5 Deconstructing the Inverse Wishart Dis-
tribution

We show that the density of an inverse Wishart distribution depends only on
the eigenvalues of a positive definite matrix. To the best of our knowledge
this change of variables has not been computed previously. This decompo-
sition offers a novel way of sampling from an inverse Wishart distribution
and insight into why the Student-t process can be derived using either an
inverse Gamma, or an inverse Wishart process covariance prior.

Let Ξ(n) be the set of all n× n orthogonal matrices. A matrix is orthogonal
if it is square, real valued and its rows and columns are orthogonal unit
vectors. Orthogonal matrices are compositions of rotations and reflections,
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which are volume preserving operations. Symmetric positive definite (SPD)
matrices can be represented through a diagonal and an orthogonal matrix:

Theorem 17. Let Σ ∈ Π(n), the set of SPD, n × n matrices. Suppose
{λ1, ..., λn} are the eigenvalues of Σ. There exists Q ∈ Ξ(n) such that
Σ = QΛQ⊤, where Λ = diag(λ1, ..., λn).

Now suppose Σ ∼ IWn(ν, I). We compute the density of an IW using the
representation in Theorem 17, being careful to include the Jacobian of the
change of variable, J(Σ; Q,Λ), given in Edelman and Rao [2005]. From
(2.2) and using the facts that Q⊤Q = I and |AB| = |BA|,

p(Σ)dΣ = p(QΛQ⊤)|J(Σ; Q,Λ)|dΛdQ

∝ |QΛQ⊤|−(ν+2n)/2 exp
(
− 1

2Tr
(
(QΛQ⊤)−1

))
×
∣∣∣∣Q⊤ ∏

1≤i<j≤n

|λi − λj|
∣∣∣∣dΛdQ

∝ |Λ|−(ν+2n)/2 exp
(
− 1

2Tr
(
Λ−1

)) ∏
1≤i<j≤n

|λi − λj|ndΛdQ

∝
n∏

i=1

(
λ

− ν+2n
2

i e
− 1

2λi

∏
j ̸=i

|λi − λj|ndλi

)
dQ. (2.9)

We see from (2.9) that Q is uniformly distributed over Ξ(n) (e.g. from
a Υn,n distribution as described in Dawid [1977]) and that the λi are ex-
changeable, i.e., permuting the diag(Λ) does not affect its probability. We
denote this exchangeable distribution Θn(ν). We generate a draw from an
inverse Wishart distribution by sampling Q ∼ Υn,n, Λ ∼ Θn(ν) and setting
Σ = QΛQ⊤.

This result provides a geometric interpretation of what a sample from
IWn(ν, I) looks like. We first uniformly at random pick an orthogonal set of
basis vectors in Rn and then stretch these basis vectors using an exchangeable
set of scalar random variables. An analogous interpretation holds for the
Wishart distribution.

Finally, the generative process above gives us useful intuition into why
using an inverse Wishart process and an inverse Gamma scaled covariance
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prior both lead to the same Student-t process marginal distribution.

Recall from Lemma 10 that if u is uniformly distributed on the unit sphere
in Rn and R ∼ χ2(n) independently, then

√
Ru ∼ Nn(0, I). By (2.4) and

Lemma 10, if we sample Q and Λ from the generative process above, then√
(ν − 2)RQΛ1/2u is marginally a draw from MVT(ν, 0, I). Since the diago-

nal elements of Λ are exchangeable, Q is orthogonal and sampled uniformly
over Ξ(n), and u is spherically symmetric, composing the actions of Q and
Λ1/2 on u is equivalent to that of a scalar random variable. Concretely, we
must have that QΛ1/2u

D=
√
R′u for some positive scalar random variable

R′, by symmetry. By Lemma 10 we know R′ ∼ Γ−1(ν/2, 1/2). In summary,
the action of QΛ1/2 on u is equivalent in distribution to a rescaling by an
inverse Gamma variate.

2.6 Applications

We illustrate the benefits of a Student-t process model in regression and
Bayesian optimisation tasks in this section.

2.6.1 Regression

Consider a set of observations {xi, yi}n
i=1 for xi ∈ X and yi ∈ R. Analogous

to Gaussian process regression, we assume the following generative model

f ∼ TP(ν,Φ, kθ)
yi = f(xi) for i = 1, ..., n. (2.10)

In this work we consider parametric kernel functions. A key task when using
such kernels is in learning the parameters of the chosen kernel, which are
called the hyperparameters of the model, as described in the introduction to
Gaussian processes. The derivatives of the marginal log likelihood of the TP
with respect to the hyperparameters are typically used for gradient based
optimisation or sampling.
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TP Marginal Likelihood Derivatives

Suppose y ∼ MVTn(ν,ϕ,Kθ), then

log p(y|ν,ϕ,Kθ) = −n2 log((ν − 2)π) + log
(

Γ(ν+n
2 )

Γ(ν
2 )

)
(2.11)

− 1
2 log(|Kθ|)−

(ν + n)
2 log

(
1 + β

ν − 2

)
,

where β = (y − ϕ)⊤K−1
θ (y − ϕ) and its derivative with respect to hyperpa-

rameter θ is

∂

∂θ
log p(y|ν,ϕ,Kθ) = 1

2Tr
((

ν + n

ν + β − 2αα
⊤ −K−1

θ

)
∂Kθ

∂θ

)
,

where α = K−1
θ (y −ϕ). We may also learn ν using gradient based methods

and the following derivative

∂

∂ν
log p(y|ν,Kθ) =− n

2(ν − 2) + ψ
(
ν + n

2

)
− ψ

(
ν

2

)

− 1
2 log

(
1 + β

ν − 2

)
+ (ν + n)β

2(ν − 2)2 + 2β(ν − 2) (2.12)

where ψ is the digamma function.

It is also common to assume that the observations, yi, are actually noisy
versions of the function values, fi. We briefly describe our approach to
incorporating function noise into our model.

Incorporating Observation Noise

It is common practice to assume that outputs are the sum of a latent Gaus-
sian process and independent Gaussian noise. An advantage of such a model
is in the fact that the sum of independent Gaussian distributions is Gaussian
distributed and hence such a Gaussian process model remains analytic in
the presence of noise. Unfortunately the sum of two independent MVTs is
analytically intractable.

This problem was encountered by Rasmussen and Williams [2006], who
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Fig. 2.4 Scatter plots of points drawn from various 2-dim processes. Here ν =
2.1 and Kij = 0.8δij +0.2. (a) Samples from x+y, where x ∼ MVT2(ν, 0,K),
y ∼ MVT2(ν, 0, 0.5I), (b) samples from x, where x ∼ MVT2(ν, 0,K +
0.5I) (our model), (c) samples from x + y, where x ∼ MVT2(ν, 0,K),
y ∼ N2(0, 0.5I), (d) samples from x, where x ∼ N2(0,K + 0.5I).

went on to dismiss the multivariate Student-t process for practical purposes.
Our approach is to incorporate the noise into the kernel function, for example,
letting k = kθ + σ2δ, where kθ is a parametrised kernel and δ is a diagonal
kernel function. Such a model is not equivalent to adding independent noise,
since the scaling parameter ν will have an effect on the squared-exponential
kernel as well as the noise kernel. Zhang and Yeung [2010] propose a similar
method for handling noise; however, they incorrectly assume that the latent
function and noise are independent under this model. The noise will be
uncorrelated with the latent function, but not independent.

As ν →∞ this model tends to a GP with independent Gaussian noise, this
is a simple consequence of Lemma 7. In Figure 2.4, we consider samples
from various two dimensional processes when ν is small and the signal to
noise ratio is small. Here we see that the MVT with noise incorporated into
its kernel behaves similarly to a TP with independent Student-t noise.

There have been several attempts to make GP regression robust to heavy
tailed noise that rely on approximate inference [Neal, 1997; Vanhatalo et al.,
2009]. It is hence attractive that our proposed method can model heavy
tailed noise whilst retaining an analytic inference scheme. This is a novel
finding to the best of our knowledge.
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(a) Gaussian process posterior−10 −8 −6 −4 −2 0 2 4 6 8 10
−25
−20
−15
−10
−5
0

5

10

15

20

−10 −8 −6 −4 −2 0 2 4 6 8 10
−25
−20
−15
−10
−5
0

5

10

15

20

1

(b) Student-t process posterior

Fig. 2.5 Posterior distributions of 1 sample from Synthetic Data B under
(a) GP prior and (b) TP prior. The dotted green line is the true function
without noise, the solid red line is the posterior mean, the shaded area
represents a 95% posterior predictive interval, circles are training points and
crosses are test points.

Experiments

We test the Student-t process as a regression model on a number of datasets.
We sample hyperparameters using Hamiltonian Monte Carlo [Neal, 2011]
and use a kernel function which is a sum of a squared exponential and a
delta kernel function (kθ = kSE). The results for all of these experiments are
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Table 2.1 Predictive Mean Squared Errors (MSE) and Log Likelihoods (LL)
of regression experiments. The TP consistently has the lowest MSE and
highest LL.

Data set Gaussian Process Student-T Process
MSE LL MSE LL

Synth A 2.24 ± 0.09 -1.66± 0.04 2.29 ± 0.08 -1.00± 0.03
Synth B 9.53 ± 0.03 -1.45± 0.02 5.69 ± 0.03 -1.30± 0.02
Snow 10.2 ± 0.08 4.00 ± 0.12 10.5 ± 0.07 25.7 ± 0.18
Spatial 6.89 ±0.04 4.34±0.22 5.71 ±0.03 44.4±0.4
Wine 4.84 ± 0.08 -1.4 ± 1 4.20 ± 0.06 113 ± 2

summarised in Table 2.1.

Synthetic Data A. We sample 100 functions from a GP prior with Gaussian
noise and fit both GPs and TPs to the data with the goal of predicting test
points. For each function we train on 80 data points and test on 20. The TP,
which generalises the GP, has superior predictive uncertainty in this example.

Synthetic Data B. We construct data by drawing 100 functions from
a GP with a squared exponential kernel and adding Student-t noise inde-
pendently. The posterior distribution of one sample is shown in Figure 2.5.
The predictive means are also not identical since the posterior distributions
of the hyperparameters differ between the TP and the GP, due to their
different likelihoods. This is why placing priors over Gaussian process hy-
perparameters does not quite achieve the same effect as using a Student-t
process model. Here the TP has a superior predictive mean, since after
hyperparameter training it is better able to model Student-t noise. It also
seems like the GP posterior is too confident about some of its predictions
versus the TP e.g. for large positive input values on the right hand side of
the plots.

Whistler Snowfall Data1. Daily snowfall amounts in Whistler have been
1The snowfall dataset can be found at http://www.climate.weatheroffice.ec.gc.

ca.

http://www.climate.weatheroffice.ec.gc.ca.
http://www.climate.weatheroffice.ec.gc.ca.
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recorded for the years 2010 and 2011. This data exhibits clear change-point
type behaviour due to seasonality which the TP handles much better than
the GP.

Spatial Interpolation Data2. This dataset contains rainfall measure-
ments at 467 (100 observed and 367 for testing) locations in Switzerland on
8 May 1986.

Wine Data. This dataset due to Cortez et al. [2009] consists of 12 at-
tributes of various red wines including acidity, density, pH and alcohol level.
Each wine is given a corresponding quality score between 0 and 10. We
choose a random subset of 400 wines: 360 for training and 40 for testing.

The predictive ability of the Student-t process appears to be at least as good
as that of the Gaussian process amongst all of the regression tasks we have
explored, and is significantly better when the noise is heavy tailed, or when
there is any heteroskedastic unusual behaviour in the underlying process.

2.6.2 Bayesian Optimisation

The Student-t process often ends up having a similar predictive mean to that
of a Gaussian process model, however, they tend to differ in their predictive
uncertainty. This is in particular due to the ν parameter which controls the
tail-dependence of the TP. We were curious to apply the Student-t process
to a task where predictive uncertainty played a key role, and Bayesian
optimisation appeared to be the ideal candidate.

Method

In this work, we chose the expected improvement (EI) acquisition function,
and for reasons described in Snoek et al. [2012], used an ARD Matérn 5/2

2The spatial interpolation data can be found at http://www.ai_geostats.org
under SIC97.

http://www.ai_geostats.org
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kernel defined as

kM52(x,x′) = θ0

(
1 +

√
5r2
x,x′

)
exp

(
−
√

5r2
x,x′

)
(2.13)

where r2(x,x′) = ∑D
d=1

(xd−x′
d)2

θ2
d

.

We assume that the function we wish to optimise over is f : RD → R and is
a draw from a multivariate Student-t process with scale parameter ν > 2,
constant mean µ and kernel function of the form kM52(x,x′) + σ2δ(x,x′).

Our goal is to find where f attains its minimum. Let D = {xn, fn}N
n=1

be our current set of N observations and fbest = min{f1, ..., fN}. To com-
press notation we let θ represent the parameters θ, ν, µ. Let the acqui-
sition function aEI

(
x;D,θ

)
denote the expected improvement over the

current best value from choosing to sample at point x given current observa-
tions D and hyperparameters θ. Note that the distribution of f(x)|D,θ is
MVT1(ν +N, µ̃(x;Xn), τ̃(x;Xn, ν)2), where the form of µ̃ and τ̃ are derived
in Lemma 8. Let γ̃ = fbest−µ̃

τ̃
. Then

aEI
(
x;D,θ

)
= E

[
max

(
fbest − f(x), 0

)
|D,θ

]
=
∫ fbest

−∞
dy(fbest − y)1

τ̃
λν+N

(
y − µ̃
τ̃

)
=
∫ γ̃

−∞
dy(fbest − τ̃ y − µ̃)λν+N(y)

= γ̃τ̃Λν+N(γ̃) + τ̃
(

1 + γ̃2 − 1
ν +N − 1

)
λν+N(γ̃), (2.14)

where λν and Λν are the density and distribution functions of a MVT1(ν, 0, 1)
distribution respectively.

We treat the hyperparameters in a Bayesian fashion, placing vague gamma
priors on θ, σ and ν − 2, and a Gaussian prior on µ. The hyperparameters
are all sampled from the posterior using slice sampling [Neal, 2003]. Suppose
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(b) Student-t Expected improvement varying ν

Fig. 2.6 (a) Posterior distribution of a function to maximise under a GP
prior, red crosses at observed values, blue line for the predictive mean and
grey shade for the 95 % predictive interval. (b) Expected improvement
acquisition functions: the solid green line is the acquisition function for a
GP, the dotted red and dashed black lines are for TP priors with ν = 15
and ν = 5 respectively. All other hyperparameters are kept the same.

we have H sets of posterior samples {θh}H
h=1. We set

ãEI
(
x;D

)
= 1
H

H∑
h=1

aEI
(
x;D,θh

)
(2.15)

as our approximate marginalised acquisition function. The next evaluation
takes place at xnext = argmaxx∈RD ãEI

(
x;D

)
, found using gradient descent

based methods starting from a dense set of points in the input space.
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To get more intuition on how ν changes the behaviour of the acquisition
function, we study an example in Figure 2.6. Here we fix all hyperparameters
other than ν and plot the acquisition functions varying ν. In this example, it
is clear that in certain scenarios the TP prior and GP prior will lead to very
different proposals given the same information. The mode of the expected
improvement acquisition function can drastically change as ν changes.

Experiments

We compare a TP prior with a Matérn plus a delta function kernel to a GP
prior with the same kernel with Monte Carlo integration over the hyper-
parameters, for Bayesian optimisation. We consider 3 functions: a 1-dim
synthetic sinusoidal, the 2-dim Branin-Hoo function and a 6-dim Hartmann
function. All the results are shown in Figure 2.7.

Sinusoidal synthetic function In this experiment we aimed to find
the minimum of f(x) = −(x− 1)2 sin(3x+ 5x−1 + 1) in the interval [5, 10].
The function has 2 local minima in this interval. TP optimisation clearly
outperforms GP optimization in this problem; the TP was able to come
to within 0.1% of the minimum in 8.1± 0.4 iterations whilst the GP took
10.7± 0.6 iterations.

Branin-Hoo function This function is a popular benchmark for op-
timisation methods [Jones, 2001a] and is defined on the set {(x1, x2) : 0 ≤
x1 ≤ 15,−5 ≤ x2 ≤ 15}. We initialised the runs with 4 initial observations,
one for each corner of the input square.

Hartmann function This is a function with 6 local minima in [0, 1]6

[Picheny et al., 2013]. The runs are initialised with 6 observations at ran-
domly chosen corners of the unit cube in R6.

The performance of Bayesian optimisation with the Student-t process is
consistently better than that of the Gaussian process (Figure 2.7). The key
driver of the difference in performance is the control of the higher order
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moments of the process due to the ν parameter, which the Gaussian process
does not have the ability to do.

2.7 Conclusions

We have shown that the inverse Wishart process (IWP) is an appropriate
prior over covariance matrices of arbitrary size. We used an IWP prior over a
GP kernel and showed that marginalising over the IWP results in a Student-t
process (TP). The TP has consistent marginals, closed form conditionals
and contains the Gaussian process as a special case. We also proved that the
TP is the only elliptical process other than the GP which has an analytically
representable density function. The TP prior was applied in regression and
Bayesian optimisation tasks, showing improved performance over GPs with
no additional computational costs, other than sampling or optimising ν.

The take home message for practitioners should be that the TP has many
if not all of the benefits of GPs, but with increased modelling flexibility at
negligible extra cost. Our work suggests that it could be useful to replace
GPs with TPs in almost any application. The added flexibility of the TP is
orthogonal to the choice of kernel, and could complement recent expressive
closed form kernels [Wilson and Adams, 2013; Wilson et al., 2013] in future
work.

Other application areas where the TP should be successful are active and
reinforcement learning, where having good predictive uncertainty can be
crucial to guiding the search in an efficient way.
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Fig. 2.7 Function evaluations for the (a) synthetic function, (b) Branin-Hoo
function and (c) the Hartmann function. Evaluations under a Student-t
process prior (solid red line) and a Gaussian process prior (dashed blue line)
are shown. Error bars represent the standard deviation of 50 runs. In each
panel we are minimising an objective function. The vertical axis represents
the running minimum function value.



Chapter 3

Parallel Predictive Entropy
Search for Batch Optimisation

Bayesian optimisation has been introduced as the task of finding the global
optimum of a function, by sequentially deciding where to evaluate next,
based on previous observations. However, in practice, it is often possible
to evaluate a function at multiple points in parallel. For example, you
may possess several identical robots on which you can test different gait
parameters in parallel. Or your computer may have multiple cores on which
you can run algorithms in parallel with different hyperparameter settings.

This chapter outlines a novel method for deciding on a batch of points
where the function should be evaluated next in parallel. Most of the work is
based on a collaboration with Zoubin Ghahramani, and has been published
at NIPS [Shah and Ghahramani, 2015]. The key contribution we made,
was to define a way to directly measure the quality of a set of points to
evaluate the function in parallel, as opposed to previous methods which
greedily choose one point at a time until a batch is filled. Our approach
was to choose a set of points, which in expectation, maximally reduced our
uncertainty about the location of the optimiser of the objective function.
More concretely, we utilise the concept of predictive entropy to build our
method upon.
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3.1 Introduction

In this section, we introduce the concept of statistical entropy and how it
may be used for Bayesian optimisation.

3.1.1 Entropy

In his seminal work on information theory, Shannon considered a way to
describe how much information is gained by observing an outcome of a
random variable [Shannon and Weaver, 1949]. More concretely, consider
a discrete random variable, X, which takes values in {1, ..., n} such that
P[X = i] = pi. Define an information function, I, such that I[pi] is the
information acquired by observing the event {X = i}, which has probability
pi of occurring.

There are several properties that are intuitively desirable for an information
function. Information should be non-negative since observing an event should
never reduce how much information you have. No information is gained from
observing an almost sure event (an event which occurs with probability 1).
The higher the probability of an event, the less information observing that
event gives you, therefore the information function should be monotonically
decreasing. Finally, the total information from observing independent events
should be equal to the sum of the information of observing each event.
Formally, we require:

• I[p] ≥ 0,

• I[1] = 0,

• I[p1] > I[p2] when p1 < p2, and

• I[p1 × p2] = I[p1] + I[p2].

Shannon’s insight was that the function I[p] = − log(p) was an ideal choice
to satisfy the desired properties. The base of the logarithm is a choice
left to the user leading to different units of information: bits for base 2,
trits for base 3, nats for base e. Shannon defined H[X] as the entropy of a
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discrete random variable, X, the expected information gain from observing
an outcome of random variable X, such that

H[X] = E
[
I[X]

]
= −

n∑
i=1

pi log(pi). (3.1)

The term ‘entropy’ is in fact an old one, and was chosen due to the similarity
between the form of (3.1) and the Gibbs entropy in statistical thermody-
namics [Gibbs, 1878]. As examples, the entropy of the outcome of (i) a toss
of a fair coin is 1 bit, (ii) the roll of a fair die is log(6) bits, and (iii) the toss
of a double headed coin is 0 bits.

Shannon stated a generalisation of entropy for a random variable defined
on a continuous measure space, by defining the information function to be
the negative logarithm of the probability density function and taking the
expected value of this quantity using Lebesgue integration.

However, it can be shown that the limit of the discrete entropy as the
number of discrete values a random variable may take tends to infinity, does
not necessarily converge to this continuous definition of entropy [Marsh,
2013]. Nevertheless, the suggestion made by Shannon does have most of
the desired properties of measuring the average information gained from an
observation of a continuous random variable, and is commonly referred to
as differential entropy. Let X now be a continuous random variable with
density pX and support X , then the differential entropy of X is

H[X] = E
[
I[X]

]
= −

∫
X
pX(x) log

(
pX(x)

)
dx. (3.2)

Differential entropy may in fact be negative and is not invariant to a change
in variables, so should be used with dimensionless variables.

3.1.2 Predictive Entropy Search

In this section we review work by Hennig and Schuler [2012] and Hernández-
Lobato et al. [2014] which use the concept of entropy for Bayesian optimisa-
tion.
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In the introduction we outline three strategies for deciding on where to
evaluate a function next in a Bayesian optimisation framework, namely,
expected improvement, probability of improvement and upper confidence
bound. The former and latter operate in the units in which the unknown
function is defined, whilst probability of improvement is defined in proba-
bility space. We proceed by defining an information theoretic acquisition
function, measured in nats.

Let x∗ ≡ argmaxx∈Xf(x). Given a current set of observed function in-
put and output pairs, D, our posterior belief about x∗ is summarised by
p(x∗|D). One approach to the Bayesian optimisation problem would be to
choose to evaluate in a location which, in expectation, maximally increases
the information you gain about x∗. Taking the negative differential entropy
as a measure of information, the expected gain in information from making
an observation y at location x is given by

α(x|D) = H[x∗|D]− Ep(y|D,x)
[
H[x∗|D ∪ {x, y}]

]
. (3.3)

Note that α(x|D) ≥ 0 for all x ∈ X , despite the fact that differential entropy
may be negative, since H[x∗|D ∪ {x, y}] ≤ H[x∗|D] for all x ∈ X , y ∈ R i.e.
an extra observation cannot decrease your information about an unknown
quantity. The density p(x∗|D) is a difficult one to work with as it is ana-
lytically intractable and only accessible via the posterior distribution p(f |D).

It was the insight of Houlsby et al. [2012] to rearrange α into a more
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computationally and analytically tractable quantity as follows

α(x|D) = H[x∗|D]− Ep(y|D,x)
[
H[x∗|D ∪ {x, y}]

]
= −

∫
dx∗p(x∗|D) log

(
p(x∗|D)

)
+
∫
dyp(y|D,x)

∫
dx∗p(x∗|D ∪ {x, y}) log

(
p(x∗|D ∪ {x, y})

)
=
∫
dx∗

∫
dyp(x∗, y|D,x)

[
log

(
p(x∗|D ∪ {x, y})

)
− log

(
p(x∗|D)

)]

=
∫
dx∗

∫
dyp(x∗, y|D,x)

[
log

(
p(y|D,x,x∗)

)
− log

(
p(y|D,x)

)]

= −
∫
dyp(y|D,x) log

(
p(y|D,x)

)
+
∫
dx∗p(x∗|D)

∫
dyp(y|D,x,x∗) log

(
p(y|D,x,x∗)

)
= H[p(y|D,x)]− Ep(x∗|D)

[
H[y|D,x,x∗]

]
.

The equivalence can be seen by noting that (3.3) is the conditional mutual
information between y and x∗ givenD and x, and that the conditional mutual
information is a symmetric function [MacKay, 1992]. The quantity α has
been transformed from a quantity involving Lebesgue integrals with respect
to measures over x∗, the function optimiser, to a quantity involving Lebesgue
integrals with respect to measures over y, the function value. Measures over
the function value are computationally tractable under the assumption of a
Gaussian process model over f , making the new representation of α easier
to work with. Hernández-Lobato et al. [2014] exploit this property to derive
simple approximations and an algorithm based on expectation propagation
[Minka, 2001] to compute and optimise α.

3.2 Parallel Predictive Entropy Search (PPES)

In this section we describe our contribution to extending the method of
predictive entropy search to the setting of batch Bayesian optimisation,
where multiple function locations may be probed in parallel.
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3.2.1 Problem Statement and Setup

More formally, our aim is maximise an objective function f : X → R, which
is unknown but can be (noisily) evaluated pointwise at multiple locations
in parallel. We assume X is a compact subset of RD. At each decision, we
must select a set of Q points St = {xt,1, ...,xt,Q} ⊂ X , where the objective
function would next be evaluated in parallel. Each evaluation leads to a
scalar observation yt,q = f(xt,q) + ϵt,q, where we assume ϵt,q ∼ N (0, σ2) i.i.d.
We wish to minimise a future simple regret, rT = [f(x∗) − f(x̃T )], where
x∗ ∈ argmaxx∈Xf(x) is an optimal decision (assumed to exist) and x̃T is
our guess of where the maximiser of f is after evaluating T batches of input
points. It is intractable to make decisions T steps ahead in the setting
described, therefore it is common to consider the regret of the very next
decision. In this work, we shall assume f is a draw from a Gaussian pro-
cess with constant mean λ ∈ R and differentiable kernel function k : X 2 → R.

Our approach is to maximise information [MacKay, 1992] about the lo-
cation of the global maximiser x∗, which we measure in terms of the negative
differential entropy of p(x∗|D). Analogous to Hernández-Lobato et al. [2014],
PPES aims to choose the set of Q points, St = {xq}Q

q=1, which maximises

aPPES(St|D) = H
[
x∗|D

]
− E

p

(
{yq}Q

q=1

∣∣∣D,St

)[H[x∗|D ∪ {xq, yq}Q
q=1

]]
. (3.4)

Evaluating (3.4) exactly is typically infeasible. The prohibitive aspects are
that p

(
x∗|D ∪ {xq, yq}Q

q=1

)
would have to be evaluated for many different

combinations of {xq, yq}Q
q=1, and the entropy computations are not analyti-

cally tractable in themselves. Significant approximations need to be made
to (3.4) before it becomes practically useful [Hennig and Schuler, 2012]. A
convenient equivalent formulation of aPPES can be written as the mutual
information between x∗ and {yq}Q

q=1 given D [Houlsby et al., 2012]. By
symmetry of the mutual information, we can rewrite aPPES as

aPPES(St|D) = H
[
{yq}Q

q=1|D, St

]
− Ep(x∗|D)

[
H
[
{yq}Q

q=1|D, St,x
∗
]]
, (3.5)
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where p
(
{yq}Q

q=1|D, St,x
∗
)

is the joint posterior predictive distribution for
{yq}Q

q=1 given the observed data, D and the location of the global maximiser
of f . The key advantage of the formulation in (3.5), is that the objective
is based on entropies of predictive distributions of the observations, which
are much more easily approximated than the entropies of distributions on x∗.

In fact, the first term of (3.5) can be computed analytically. For con-
venience, fq ≡ f(xq). Since {fq}Q

q=1|D, St is multivariate Gaussian with
covariance K, then

H
[
{yq}Q

q=1|D, St

]
= 0.5 log[det(2πe(K + σ2I))]. (3.6)

We develop an approach to approximate the expectation of the conditional
predictive entropy in (3.5), using an expectation propagation based method
which we discuss in the following subsection.

3.2.2 How to Approximate the Conditional Predictive
Entropy

Assuming a sample of x∗, we discuss our approach to approximating
H
[
{yq}Q

q=1|D, St,x
∗
]

in (3.5) for a set of query Q points, St. Note that we
can write

p
(
{yq}Q

q=1|D, St,x
∗
)

=
∫
p
(
{fq}Q

q=1|D, St,x
∗
) Q∏

q=1
p(yq|fq) df1...dfQ, (3.7)

where p
(
{fq}Q

q=1|D, St,x
∗
)

is the posterior distribution of the objective func-
tion at the locations xq ∈ St, given previous evaluations D, and that x∗ is
the global maximiser of f . Recall that p(yq|fq) is Gaussian for each q. Our
approach will be to derive a Gaussian approximation to p

(
{fq}Q

q=1|D, St,x
∗
)
,

which would lead to an analytic approximation to the integral in (3.7).

The posterior predictive distribution of the Gaussian process, p
(
{fq}Q

q=1|D, St

)
,

is multivariate Gaussian distributed. However, by further conditioning on
the location x∗, the global maximiser of f , we impose the condition that
f(x) ≤ f(x⋆) for any x ∈ X . Imposing this constraint for all x ∈ X is
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extremely difficult and makes the computation of p
(
{fq}Q

q=1|D, St,x
∗
)

highly
intractable. We instead impose the following two conditions:

(i) f(x) ≤ f(x⋆) for each x ∈ St, and

(ii) f(x⋆) ≥ ymax + ϵ, where ymax is the largest observed noisy objective
function value and ϵ ∼ N (0, σ2). In fact, we marginalise ϵ out:

∫
I(f(x⋆) ≥ ymax + ϵ)N (ϵ; 0, σ2)dϵ = Φ

(
f ⋆ − ymax

σ

)
.

Constraint (i) is equivalent to imposing that f(x⋆) is larger than each other
objective function value at current query locations. Condition (ii) makes
f(x⋆) larger than all previous objective function evaluations, accounting for
noise. Denoting the two conditions C, and the variables f ≡ [f1, ..., fQ]⊤ and
f+ ≡ [f ; f ⋆], where f ⋆ ≡ f(x∗), we incorporate the conditions as follows

p
(
f |D, St,x

∗
)
≈
∫
p
(
f+|D, St,x

∗
)
Φ
(
f ⋆ − ymax

σ

) Q∏
q=1

I(f ⋆ ≥ fq) df ⋆, (3.8)

where I(.) is an indicator function, returning 1 when its argument is true and
0 otherwise. The integral in (3.8) can be approximated using expectation
propagation [Minka, 2001].

3.2.3 Expectation Propagation Inference

The Gaussian process predictive p(f+|D, St,x
∗) is N (f+; m+,K+). We

approximate each I(f ⋆ ≥ fq) in the integrand of (3.8), with a function of
the form Z̃qN (c⊤

q f+; µ̃q, τ̃q), where cq is a vector of length Q + 1 with qth

entry −1, Q+1st entry 1, and remaining entries 0. Similarly we approximate
Φ
(

f⋆−ymax
σ

)
with Z̃Q+1N (c⊤

Q+1f+; µ̃Q+1, τ̃Q+1), where cQ+1 is a vector of
length Q+ 1 with final entry 1 and remaining entries 0. Each Z̃q and τ̃q is
positive, whilst each µ̃q ∈ R. We have approximated each indicator function
and Gaussian c.d.f. with a scaled Gaussian p.d.f. The site parameters,
{Z̃q, µ̃q, τ̃q}Q+1

q=1 are to be optimised in a method we shall describe shortly.
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The final approximate integrand of (3.8) is w(f+), given by

w(f+) = N (f+; m+,K+)
Q+1∏
q=1

Z̃qN (c⊤
q f+; µ̃q, τ̃q). (3.9)

Since products of Gaussian p.d.f.s lead to unnormalised Gaussian p.d.f.s, we
find that w(f+) = ZN (f+;µ+,Σ+), where

µ+ = Σ+

(
K−1

+ m+ +
Q+1∑
q=1

µ̃q

τ̃q

cqc
⊤
q

)−1
, (3.10)

Σ+ =
(

K−1
+ +

Q+1∑
q=1

1
τ̃q

cqc
⊤
q

)−1

, (3.11)

logZ = −1
2
(
m+K−1

+ m+ + log |K+|
)

+
Q∑

q=1

(
log Z̃q −

1
2

( µ̃2
q

τ̃q

+ log σ̃2
q + log(2π)

))

+ 1
2
(
µ+Σ−1

+ µ+ + log |Σ+|
)
. (3.12)

We now describe the steps required to update the site parameters. We closely
follow the derivations in Cunningham et al. [2013]. We first compute the
cavity distributions,

w\q(f+) = w(f+)
Z̃qN (c⊤

q f+; µ̃q, τ̃q)
(3.13)

and compute their Gaussian parameters. Since we are dividing a Gaussian
p.d.f. by another Gaussian p.d.f. we have simple parameter updates given
by

τ\q =
(
(c⊤

q Σ−1
+ cq)−1 − τ̃−1

q )−1 (3.14)

µ\q = τ\q

(
c⊤

q µ+

c⊤
q Σ+cq

− µ̃q

τ̃q

)
. (3.15)

The next step of EP is the projection step and requires moment matching
Z̃qN (c⊤

q f+; µ̃q, τ̃q)w\q(f+) with tq(f+)w\q(f+), where tq(f+) is the true qth

factor being approximated. Therefore, tq(f+) ≡ I[c⊤
q f+ ≥ 0] for 1 ≤ q ≤ Q



52 Parallel Predictive Entropy Search for Batch Optimisation

and tQ+1(f+) ≡ Φ
(
c⊤

Q+1f+−ymax

σ

)
. We use derivatives of the logarithm of the

zeroth moment [Minka, 2001] to compute the parameters

Ẑq =
∫
tq(f+)w\q(f+)df+

= Φ(βq), (3.16)

µ̂q = µ\q + τ\q
∂ log Ẑq

∂µ\q

= µ\q +√τ\q
ϕ(βq)
Φ(βq)

, (3.17)

τ̂q = τ\q − τ 2
\q

((
∂ log Ẑq

∂µ\q

)2
− 2∂ log Ẑq

∂τ\q

)

= τ\q −
τ 3

\q

µ2
\q

(
ϕ(βq)
Φ(βq)

)(
ϕ(βq)
Φ(βq)

+ βq

)
, (3.18)

where βq = µ\q√
τ\q

for q ≤ Q and βQ+1 = Φ
(

µ\q−ymax√
σ2+τ\q

)
. To complete the

projection step, we update the site parameters to achieve the moments
computed above by setting

τ̃q =
(
τ̂−1

q − τ−1
\q

)−1
, (3.19)

µ̃q = τ̃q

(
τ̂−1

q µ̂q − τ−1
\q µ\q

)−1
. (3.20)

Z̃q = Ẑq

√
2π
√
τ\q + τ̃q exp

[
1
2

(
µ\q − µ̃q

)2(
τ\q + τ̃q

) ]. (3.21)

Finally we update the parameters µ+ and Σ+ as in equations 3.10 and 3.11,
and repeat the process until convergence.

3.2.4 The PPES Approximation

Once the site parameters {Z̃q, µ̃q, τ̃q}Q+1
q=1 have been learnt through expecta-

tion propagation, we have p
(
f+|D, St,C

)
≈ N (f+;µ+,Σ+). Since multivari-

ate Gaussians are consistent under marginalisation, a convenient corollary
is that p

(
f |D, St,x

∗
)
≈ N (f ;µ,Σ), where µ is the vector containing the

first Q elements of µ+, and Σ is the matrix containing the first Q rows and
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columns of Σ+. Since sums of independent Gaussians are also Gaussian
distributed, we see that p

(
{yq}Q

q=1|D, St,x
∗
)
≈ N ([y1, ..., yQ]⊤;µ,Σ + σ2I).

The final convenient attribute of our Gaussian approximation, is that the
differential entropy of a multivariate Gaussian can be computed analytically,
such that H

[
{yq}Q

q=1|D, St,x
∗
]
≈ 0.5 log[det(2πe(Σ + σ2I))].

3.2.5 Sampling from the Posterior over the Global
Maximiser

So far, we have considered how to approximate H
[
{yq}Q

q=1|D, St,x
∗
]
, given

the global maximiser, x∗. We in fact would like the expected value of this
quantity over the posterior distribution of the global maximiser, p(x∗|D).
Literally, p(x∗|D) ≡ p(f(x∗) = maxx∈X f(x)|D), the posterior probability
that x∗ is the global maximiser of f . Computing the distribution p(x∗|D) is
intractable, but it is possible to approximately sample from it and compute
a Monte Carlo based approximation of the desired expectation. We consider
two approaches to sampling from the posterior of the global maximiser: (i) a
maximum a posteriori (MAP) method, and (ii) a random feature approach.

MAP sample from p(x∗|D). The MAP of p(x∗|D) is its posterior mode,
given by x∗

MAP = argmaxx∗∈X p(x∗|D). We may approximate the expected
value of the predictive entropy by replacing the posterior distribution of x∗

with a single point estimate at x∗
MAP. There are two key advantages to using

the MAP estimate in this way. Firstly, it is simple to compute x∗
MAP, as it

is the global maximiser of the posterior mean of f given the observations D.
Secondly, choosing to use x∗

MAP assists the EP algorithm developed above to
converge as desired. This is because the condition f(x∗) ≥ f(x) for x ∈ X is
easy to enforce when x∗ = x∗

MAP, the global maximiser of the posterior mean
of f . When x∗ is sampled such that the posterior mean at x∗ is significantly
suboptimal, the EP approximation may be poor. Whilst using the MAP
estimate approximation is convenient, it is after all a point estimate and
fails to characterise the full posterior distribution. We therefore consider a
method to draw samples from p(x∗|D) using random features.
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Random Feature Samples from p(x∗|D). A naive approach to sam-
pling from p(x∗|D) would be to sample g ∼ p(f |D), and choosing argmaxx∈Xg.
Unfortunately, this would require sampling g over an uncountably infinite
space, which is infeasible. A slightly less naive method would be to sequen-
tially construct g, whilst optimising it, instead of evaluating it everywhere in
X . However, this approach would have cost O(m3) where m is the number
of function evaluations of g necessary to find its optimum. We propose
as in Hernández-Lobato et al. [2014], to sample and optimise an analytic
approximation to g.

By Bochner’s theorem [Bochner, 1959], a stationary kernel function, k,
has a Fourier dual s(w), which is equal to the spectral density of k. Setting
p(w) = s(w)/α, a normalised density, we can write

k(x,x′) = αEp(w)[e−iw⊤(x−x′)] = 2αEp(w,b)[cos(w⊤x+ b) cos(w⊤x′ + b)],
(3.22)

where b ∼ U [0, 2π]. Let ϕ(x) =
√

2α/m cos(Wx + b) denote an m-
dimensional feature mapping where W and b consist of m stacked samples
from p(w, b), then the kernel k can be approximated by the inner product of
these features, k(x,x′) ≈ ϕ(x)⊤ϕ(x′) [Rahimi and Recht, 2007]. The linear
model g(x) = ϕ(x)⊤θ + λ where θ|D ∼ N (A−1Φ⊤(y − λ1), σ2A−1) is an
approximate sample from p(f |D), where y is a vector of objective function
evaluations, A = Φ⊤Φ + σ2I and Φ⊤ = [ϕ(x1)...ϕ(xn)]. In fact, limm→∞ g

is a true sample from p(f |D) [Neal, 1995].

The generative process above suggests the following approach to approx-
imately sampling from p(x∗|D): (i) sample random features ϕ(i) and cor-
responding posterior weights θ(i) using the process above, (ii) construct
g(i)(x) = ϕ(i)(x)⊤θ(i) +λ, and (iii) finally compute x⋆(i) = argmaxx∈X g

(i)(x)
using gradient based methods.

3.2.6 Optimising the PPES Approximation

Let ψ denote the set of kernel parameters and the observation noise variance,
σ2. Our posterior belief about ψ is summarised by the posterior distribution
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p(ψ|D) ∝ p(ψ)p(D|ψ), where p(ψ) is our prior belief about ψ and p(D|ψ)
is the GP marginal likelihood of the data given the parameters ψ. For a
fully Bayesian treatment of ψ, we must marginalise aPPES with respect to
p(ψ|D). The expectation with respect to the posterior distribution of ψ is
approximated with Monte Carlo samples (see equation (3.23)). A similar
approach is taken in Snoek et al. [2012] and Hernández-Lobato et al. [2014].
Combining the EP based method to approximate the predictive entropy
with either of the two methods discussed previously to approximately sample
from p(x∗|D), we can construct âPPES an approximation to (3.5), defined by

âPPES(St|D) = 1
2M

M∑
i=1

[
log[det(K(i) + σ2(i)I)]− log[det(Σ(i) + σ2(i)I)]

]
,

(3.23)

where K(i) is constructed using ψ(i) the ith sample of M from p(ψ|D),
Σ(i) is constructed as above, assuming the global maximiser is x∗(i) ∼
p(x∗|D,ψ(i)). The PPES approximation is simple and amenable to gradient
based optimisation. Our goal is to choose St = {x1, ...,xQ} which maximises
âPPES in (3.23). Since our kernel function is differentiable, we may consider
taking the derivative of âPPES with respect to xq,d, the dth component of xq,

∂ âPPES

∂ xq,d

= 1
2M

M∑
i=1

[
Tr
[
(K(i)+σ2(i)I)−1∂K(i)

∂xq,d

]
−Tr

[
(Σ(i)+σ2(i)I)−1∂Σ(i)

∂xq,d

]]
.

(3.24)
Computing ∂K(i)

∂xq,d
is simple directly from the definition of the chosen kernel

function. Σ(i) is a function of K(i), {cq}Q+1
q=1 and {σ̃(i)

q }
Q+1
q=1 , and we know

how to compute ∂K(i)

∂xq,d
, and that each cq is a constant vector. Hence our

only concern is how the EP site parameters, {σ̃(i)
q }

Q+1
q=1 , vary with xq,d.

Rather remarkably, we may invoke a result from Section 2.1 of Seeger [2008],
which says that converged site parameters, {Z̃q, µ̃q, σ̃q}Q+1

q=1 , have 0 derivative
with respect to parameters of p(f+|D, St,x

∗). There is a key distinction
between explicit dependencies (where Σ actually depends on K) and implicit
dependencies where a site parameter, σ̃q, might depend implicitly on K.
A similar approach is taken in Cunningham et al. [2013], and discussed in
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Rasmussen and Williams [2006]. We therefore compute

∂Σ(i)
+

∂xq,d

= Σ(i)
+ K(i)−1

+
∂K(i)

+

∂xq,d

K(i)−1
+ Σ(i)

+ . (3.25)

On first inspection, it may seem computationally too expensive to compute
derivatives with respect to each q and d. However, note that we may compute
and store the matrices K(i)−1

+ Σ(i)
+ , (K(i) +σ2(i)I)−1 and (Σ(i) +σ2(i)I)−1 once,

and that ∂K(i)
+

∂xq,d
is symmetric with exactly one non-zero row and non-zero

column, which can be exploited for fast matrix multiplication and trace
computations.

Note that the approximation to the acquisition function we have devel-
oped, âPPES, is defined and optimised on the entire set of points St. This
results in a non-greedy batch selection procedure, where the Q points are
decided upon in one go. This was not the case for any other method pro-
posed in the literature until our NIPS 2015 submission to the best of our
knowledge.

3.3 Related Work

Most Bayesian optimisation research focuses on choosing a single point to
query at each decision i.e. Q = 1. A popular strategy in this setting is to
choose the point with highest expected improvement over the current best
evaluation, i.e. the maximiser of

aEI(x|D) = E
[
max(f(x)−f(xbest), 0)

∣∣∣D] = σ(x)
[
ϕ
(
τ(x)

)
+τ(x)Φ

(
τ(x)

)]
,

where D is the set of observations, xbest is the best evaluation point so far,
σ(x) =

√
Var[f(x)|D], µ(x) = E[f(x)|D], τ(x) = (µ(x) − f(xbest))/σ(x)

and ϕ(.) and Φ(.) are the standard Gaussian p.d.f. and c.d.f.

Aside from being an intuitive approach, a key advantage of using the expected
improvement strategy is in the fact that it is computable analytically and is
differentiable if the kernel, k is differentiable. This makes the problem of
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finding argmaxx∈XaEI(x|D) amenable to a plethora of gradient based opti-
misation methods. Unfortunately, the corresponding strategy for selecting
Q > 1 points to evaluate in parallel does not lead to an analytic expression.
Ginsbourger et al. [2011] considered an approach which sequentially used
the EI criterion to greedily choose a batch of points to query next. Snoek
et al. [2012] formalised and utilised this approach by defining

aEI−MC
(
x|D, {xq′}q

q′=1

)
=
∫

X q
aEI
(
x|D ∪ {xq′ , yq′}q

q′=1

)
× p

(
{yq′}q

q′=1|D, {xq′}q
q′=1

)
dy1..dyq,

the expected gain in evaluating x after evaluating {xq′ , yq′}q
q′=1, which can be

approximated using Monte Carlo samples, hence the name EI-MC. Choosing
a batch of points St using the EI-MC policy is doubly greedy: (i) the EI
criterion is greedy as it inherently aims to minimise one-step regret, rt,
and (ii) the EI-MC approach starts with an empty set and populates it
sequentially (and hence greedily), deciding the best single point to include
until |St| = Q.

A similar but different approach called simulated matching (SM) was in-
troduced by Azimi et al. [2010]. Let π be a baseline policy which chooses
a single point to evaluate next (e.g. EI). SM aims to select a batch St of
size Q, which includes a point ‘close to’ the best point which π would have
chosen when applied sequentially Q times, with high probability. Formally,
SM aims to maximise

aSM(St|D) = −ESQ
π

[
Ef

[
min
x∈St

(x− argmaxx′∈SQ
π
f(x′))2

∣∣∣∣D, SQ
π

]]
,

where SQ
π is the set of Q points which policy π would query if employed se-

quentially. A greedy k-medoids based algorithm is proposed to approximately
maximise the objective, which the authors justify by the submodularity of
the objective function.

The upper confidence bound (UCB) strategy [Srinivas et al., 2010] is an-
other method used by practitioners to decide where to evaluate an objective
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function next. The UCB approach is to maximise

aUCB(x|D) = µ(x) + α
1/2
t σ(x),

where αt is a domain-specific time-varying positive parameter which trades
off exploration and exploitation. In order to extend this approach to the
parallel setting, Desautels et al. [2012] noted that the predictive variance of a
Gaussian process depends only on where observations are made, and not the
observations themselves. Therefore, they suggested the GP-BUCB method,
which greedily populates the set St by maximising a UCB type equation Q

times sequentially, updating σ at each step, whilst maintaining the same µ
for each batch. This approach has the benefit that it is fairly simple and
intuitive to implement, however, it makes the very strong assumption that
observations all take values of the GP predictive mean, which can be thought
of as a maximum a posteriori approximation. This MAP approach may
potentially dramatically reduce the benefits of being fully Bayesian.

Finally, a variant of the GP-UCB was proposed by Contal et al. [2013].
The first point of the set St is chosen by optimising the UCB objective.
Thereafter, a ‘relevant region’ Rt ⊂ X which contains the maximiser of f
with high probability is defined. Points are greedily chosen from this region
to maximise the information gain about f , measured by expected reduction
in entropy, until |St| = Q. This method was named Gaussian process upper
confidence bound with pure exploration (GP-UCB-PE).

Each approach discussed here resorts to a greedy batch selection process. To
the best of our knowledge, no batch Bayesian optimisation method to date
has avoided a greedy algorithm. We avoid a greedy batch selection approach
with PPES. The benefits of our entropy based, non-greedy approach are
explored in the next section.

3.4 Empirical Study

In this section, we study the performance of PPES in comparison to afore-
mentioned methods. We model f as a Gaussian process with constant mean
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λ and covariance kernel k. Observations of the objective function are consid-
ered to be independently drawn from N (f(x), σ2). In our experiments, we
choose to use a squared-exponential kernel of the form

k(x,x′) = γ2 exp
[
− 0.5

∑
d

(xd − x′
d)2/l2d

]
. (3.26)

Therefore the set of model hyperparameters is {λ, γ, l1, ..., lD, σ}, a broad
Gaussian hyperprior is placed on λ and uninformative Gamma priors are
used for the other hyperparameters.

3.4.1 Assessing the Quality of the PPES Approxima-
tion

It is worth investigating how well âPPES (3.23) is able to approximate aPPES

(3.5). In order to test the approximation in a manner amenable to visualisa-
tion, we generate a sample f from a Gaussian process prior on X = [0, 1],
with γ2 = 1, σ2 = 10−4 and l2 = 0.025, and consider batches of size Q = 2.
We set M = 200. A rejection sampling based approach is used to compute
the ground truth aPPES, defined on XQ = [0, 1]2, implemented as follows.
We first discretise [0, 1]2, and sample p(x∗|D) in (3.5) by evaluating samples
from p(f |D) on the discrete points and choosing the input with highest
function value. Further samples from p(f |D) are evaluated on discrete
points in [0, 1]2 and rejected if the highest function value occurs not at x∗.
The non rejected samples are therefore samples from p(f |D,x∗). We add
independent Gaussian noise with variance σ2 to these non rejected samples
from the previous step and approximate H

[
p
(
y1, y2|D,x1,x2,x

∗
)]

using
kernel density estimation [Ahmad and Lin, 1976].

Figure 3.1 includes illustrations of (a) the objective function to be maximised,
f , with 5 noisy observations, (b) the aPPES ground truth obtained using the
rejection sampling method and finally (c) âPPES using the EP method we
develop in the previous section. The black squares on the axes of Figures
3.1(b) and 3.1(c) represent the locations in X = [0, 1] where f has been
noisily sampled, and the darker the shade, the larger the function value. The
lightly shaded horizontal and vertical lines in these figures correspond to
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(a) Synthetic function
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(b) aPPES(x, x′)
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(c) âPPES(x, x′)

Fig. 3.1 Assessing the quality of our approximations to the parallel predictive
entropy search strategy. (a) Synthetic objective function (blue line) defined
on [0, 1], with noisy observations (black squares). (b) Ground truth aPPES
defined on [0, 1]2, obtained by rejection sampling. (c) Our approximation
âPPES using expectation propagation. x and x′ are two points in a batch.
Dark regions correspond to pairs (x, x′) with high utility, whilst faint re-
gions correspond to pairs (x, x′) with low utility, with respect to expected
information gain.

input values where the function has been evaluated already, where little infor-
mation is to be gained from reevaluating, given that the data is not very noisy.

The figures representing aPPES and âPPES appear to be symmetric, as is
expected, since the set St = {x, x′} is not an ordered set, since all points in
the set are probed in parallel i.e. St = {x, x′} = {x′, x}. The surface of âPPES
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is similar to that of aPPES. In particular, the âPPES approximation often
appeared to be an annealed version of the ground truth aPPES, in the sense
that peaks were more pronounced, and non-peak areas were flatter. Since
we are interested in argmax{x,x′}∈X 2 aPPES({x, x′}), our key concern is that
the peaks of âPPES occur at the same input locations as aPPES. This appears
to be the case in our experiment, suggesting that the argmax âPPES is a
good approximation for argmaxaPPES. Hernández-Lobato et al. [2014] found
that a similar EP based approximation to the Q = 1 problem also matched
the true predictive entropy well in regions which the user is most interested in.

We now test the performance of PPES in the task of finding the optimum
of various objective functions. For each experiment, we compare PPES
(M = 200) to EI-MC (with 100 MCMC samples), simulated matching with a
UCB baseline policy, GP-BUCB and GP-UCB-PE. We use the random fea-
tures method to sample from p(x∗|D), rejecting samples which led to failed
EP runs. EP tended to fail when samples from p(x∗|D) were significantly
below the predictive mean of the Gaussian process at query locations; this
put a lot of pressure on the approximate EP Gaussian factors to learn low
valued means, µ̃q, and small variance, τ̃q, to force the approximate Gaussian
posterior to significantly lower its prediction of the function value conditioned
on x∗. The low values of τ̃q led to poorly conditioned approximate covariance
matrices, Σ, which in turn led to failed matrix inverse and determinant
operations. To improve stability, we forced τ̃q to be at least 0.0001 on each
run, however, we occasionally still experienced some failed EP runs.

An experiment of an objective function, f , consists of sampling 5 input
points sampled uniformly at random and running each algorithm start-
ing with these samples and their corresponding (noisy) function values.
We measure performance after t batch evaluations using immediate regret,
rt = |f(x̃t) − f(x∗)|, where x∗ is the known optimiser of f and x̃t is the
recommendation of an algorithm after t batch evaluations. We perform
100 experiments for each objective function, and report the median of the
immediate regret obtained for each algorithm. The confidence bands rep-
resent one standard deviation obtained from bootstrapping. The empirical
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(d) Hartmann

Fig. 3.2 Median of the immediate regret of the PPES, EI-MC, SMUCB,
BUCB and UCBPE algorithms over 100 experiments on benchmark synthetic
objective functions, using batches of size Q = 3.

distribution of the immediate regret is heavy tailed, making the median
more representative of where most data points lie than the mean.
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3.4.2 Comparison of Methods on Synthetic Objectives

Our first set of experiments is on a set of synthetic benchmark objective
functions including Branin-Hoo [Lizotte, 2008], a mixture of cosines [An-
derson et al., 2000], a Shekel function with 10 modes [Shekel, 1971] (each
defined on [0, 1]2) and the Hartmann-6 function [Lizotte, 2008] (defined on
[0, 1]6). We choose batches of size Q = 3 at each decision time. The plots in
Figure 3.2 illustrate the median immediate regrets found for each algorithm.
The results suggest that the PPES algorithm performs close to best if not
the best for each problem considered. EI-MC does significantly better on
the Hartmann function, which is a relatively smooth function with very few
modes, where greedy search appears beneficial. Entropy-based strategies
are more exploratory in higher dimensions. Nevertheless, PPES does signifi-
cantly better than GP-UCB-PE on 3 of the 4 problems, suggesting that our
non-greedy batch selection procedure enhances performance versus a greedy
entropy based policy.

3.4.3 Comparison of Methods on Real World Datasets
or Simulations

We next consider maximisation of real world objective functions. The first,
boston, returns the negative of the prediction error of a neural network
trained on a random train/text split of the Boston Housing dataset [Bache
and Lichman, 2013]. The weight-decay parameter and number of training
iterations for the neural network are the parameters to be optimised over.
The next function, hydrogen, returns the amount of hydrogen produced
by particular bacteria as a function of pH and nitrogen levels of a growth
medium [Burrows et al., 2009]. Thirdly we consider a function, rocket,
which runs a simulation of a rocket [Hasbun, 2008] being launched from the
Earth’s surface and returns the time taken for the rocket to land on the
Earth’s surface. The variables to be optimised over are the launch height
from the surface, the mass of fuel to use and the angle of launch with respect
to the Earth’s surface. If the rocket does not return, the function returns
0. Finally we consider a function, robot, which returns the walking speed
of a bipedal robot [Westervelt and Grizzle, 2007]. The function’s input
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(a) boston, Q = 2
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(b) boston, Q = 4
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(c) hydrogen, Q = 2

0 5 10 15 20
0

1

2

3

4

·10−2

t

re
gr
et

PPES
EI-MCMC
SMUCB
BUCB
UCBPE

0 10 20 30 40
0

2

4

6

8

10

12

14

t

re
gr
et

0 5 10 15 20
0

1

2

3

4

·10−2

t

re
gr
et

0 10 20 30 40
0

2

4

6

8

10

12

14

t

re
gr
et

1

(d) hydrogen, Q = 4
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(e) rocket, Q = 2
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(f) rocket, Q = 4
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(g) robot, Q = 2
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(h) robot, Q = 4

Fig. 3.3 Median of the immediate regret of the PPES and 4 other algorithms
over 100 experiments on real world objective functions. Figures in the top
row use batches of size Q = 2, whilst figures on the bottom row use batches
of size Q = 4.
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parameters, which live in [0, 1]8, are the robot’s controller. We add Gaussian
noise with σ = 0.1 to the noiseless function. Note that all of the functions
we consider are not available analytically. boston trains a neural network
and returns test error, whilst rocket and robot run physical simulations
involving differential equations before returning a desired quantity. Since the
hydrogen dataset is available only for discrete points, we define hydrogen
to return the predictive mean of a Gaussian process trained on the dataset.

Figure 3.3 show the median values of immediate regret by each method over
200 random initialisations. We consider batches of size Q = 2 and Q = 4.
We find that PPES consistently outperforms competing methods on the
functions considered. The greediness and nonrequirement of MCMC sam-
pling of the SM-UCB, GP-BUCB and GP-UCB-PE algorithms make them
amenable to large batch experiments, for example, [Desautels et al., 2012]
consider optimisation in R45 with batches of size 10. However, these three
algorithms all perform poorly when selecting batches of smaller size. The
performance on the hydrogen function illustrates an interesting phenomena;
whilst the immediate regret of PPES is mediocre initially, it drops rapidly
as more batches are evaluated.

This behaviour is likely due to the non-greediness of the approach we have
taken. EI-MC makes good initial progress, but then fails to explore the input
space as well as PPES is able to. Recall that after each batch evaluation, an
algorithm is required to output x̃t, its best estimate for the maximiser of the
objective function. We observed that whilst competing algorithms tended to
evaluate points which had high objective function values compared to PPES,
yet when it came to recommending x̃t, PPES tended to do a better job.
Our belief is that this occurred exactly because the PPES objective aims to
maximise information gain rather than objective function value improvement.

The rocket function has a strong discontinuity making if difficult to max-
imise. If the fuel mass, launch height and/or angle are too high, the rocket
would not return to the Earth’s surface, resulting in a 0 function value. It can
be argued that a stationary kernel Gaussian process is a poor model for this
function, yet it is worth investigating the performance of a GP based models
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since a practitioner may not know whether or not their black-box function
is smooth apriori. PPES seemed to handle this function best and had fewer
samples which resulted in 0 function value than each of the competing meth-
ods and made fewer recommendations which led to a 0 function value. The
relative increase in PPES performance from increasing batch size from Q = 2
to Q = 4 is small for the robot function compared to the other functions
considered. We believe this is a consequence of PPES’s tendency to be
more exploratory in higher dimensions than the alternative methods and the
fact that we are using a slightly suboptimal optimisation procedure to save
computation time. Our optimisation procedure first computes âPPES at 1000
points selected uniformly at random, and performs gradient ascent from the
best point. Since âPPES is defined on XQ = [0, 1]32, this method may miss a
global optimum. Other methods all select their batches greedily, and hence
only need to optimise in X = [0, 1]8. However, this should easily be avoided
by using a more exhaustive gradient based optimiser, if a practitioner is
willing to invest more time in the search loop.

3.5 Conclusions

We have developed parallel predictive entropy search, an information the-
oretic approach to batch Bayesian optimisation. Our method is greedy in
the sense that it aims to maximise the one-step information gain about the
location of x∗, but it is not greedy in how it selects a set of points to evaluate
next. Previous methods are doubly greedy, in that they look one step ahead,
and also select a batch of points greedily. Competing methods are prone
to under exploring, which hurts their performance on multi-modal, noisy
objective functions, as we demonstrate in our experiments.

There are several issues which may be addressed in future work. Firstly,
whilst in theory it is possible to find the global maximiser of âPPES, in prac-
tice it can be difficult and expensive to find. It may be interesting to consider
entropy based batch optimisation procedures which do not require a global
optimisation in the inner loop of the Bayesian optimisation procedure. If
you look closely at the final expression we use to define âPPES, our approach
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to deal with the hyperparameters ψ actually approximates the following
function

α̃(St|D) = Ep(ψ|D)

[
H
[
{yq}Q

q=1|D, St,ψ
]
−Ep(x∗|D)

[
H
[
{yq}Q

q=1|D, St,ψ,x
∗
]]]

.

What we would actually want is to marginalise out the Gaussian process and
all hyperparameters before computing entropies, as in the following equation

α(St|D) = H
[
Ep(ψ|D)

[
{yq}Q

q=1|D, St,ψ
]]

− Ep(x∗|D)

[
H
[
Ep(ψ|D)

[
{yq}Q

q=1|D, St,ψ,x
∗
]]]

.

The problem with the more desirable approach is that it would lead to
having to compute the entropy of a mixture of Gaussians, which is no longer
analytically tractable. Nevertheless, it would be interesting to study other
ways of dealing with model hyperparameters.





Chapter 4

Predictive Entropy Search for
Multi-Objective Optimisation

In this chapter, I describe an approach to extend the predictive entropy search
framework to multi-objective optimisation. Most of this work was done in
collaboration with Daniel Hernández-Lobato, José Miguel Hernández-Lobato
and Ryan P. Adams and has been published at ICML [Hernández-Lobato
et al., 2016]. Whilst the original idea and mathematical derivations of using
expectation propagation and predictive entropy search for multi-objective
optimisation analogous to PPES were my own, most of the implementation
and experimentation was done by Daniel and Miguel.

4.1 Introduction

Most engineering problems require making design choices which aim to si-
multaneously optimise multiple objectives. For example, in designing a new
drug, a pharmaceutical scientist may strive to simultaneously maximise the
likelihood of curing an illness, minimise the chance of unwanted side-effects
and minimise the cost of drug development. Typically there would not exist
a particular option for which each objective is fully optimised. Subsequently,
the scientist would wish to consider a range of options which trade off the
multiple objectives. In a complex robotic system, we may be interested
in minimising the energy consumption while maximising locomotion speed
Ariizumi et al. [2014]. The ultimate choice should be Pareto optimal; there
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should not exist an alternative option which can improve on the chosen
option in every objective simultaneously.

The objective functions are often unknown, and can only be ascertained
through pointwise evaluation. However, it can be expensive to evaluate
these objectives, in the sense that they may necessitate large computational,
economical or other resource. The challenge is to find a set of Pareto optimal
points in as few sequential evaluations of the multiple objective functions as
possible, so as to minimise the total expense.

A Bayesian theoretic approach to this task would be to probabilistically
model the multiple unknown objective functions. Where the function should
be evaluated next is decided by maximising the expected value of a chosen
acquisition, or utility function, based on the posterior distribution of the ob-
jective functions given evaluations. Promising results have been shown using
a Gaussian process to approximate each objective function [Knowles, 2006;
Emmerich, 2008; Ponweiser et al., 2008; Picheny, 2015]. The model-based
approach contrasts with model-free methods based on genetic algorithms or
evolutionary strategies that are known to be effective for approximating the
Pareto set, but demand a large number of function evaluations [Deb et al.,
2002; Li, 2003; Zitzler and Thiele, 1999a].

Despite these successes, there are notable limitations to current model-based
approaches: 1) they often build the acquisition function by transforming
the multi-objective problem into a single-objective problem using scalari-
sation techniques (an approach that is expected to be suboptimal), 2) the
acquisition function generally requires the evaluation of all of the objective
functions at the same location in each iteration, and 3) the computational
cost of evaluating the acquisition function typically grows exponentially with
the number of objectives, which limits their applicability to optimisation
problems with just 2 or 3 objectives.

In this chapter, we describe a strategy for multi-objective optimisation
which addresses the concerns above. It extends the concept of predictive
entropy search, by choosing a point to evaluate at next which is expected to
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reduce the entropy of the Pareto set the most. The proposed approach is
called predictive entropy search for multi-objective optimisation (PESMO).
Several experiments involving real-world and synthetic optimisation prob-
lems, show that PESMO can lead to better performance than related methods
from the literature. Furthermore, in PESMO the acquisition function is
expressed as a sum across the different objectives, allowing for decoupled
scenarios in which we can choose to only evaluate a subset of objectives at
any given location. In the robotics example, one might be able to decouple
the problems by estimating energy consumption from a simulator even if
the locomotion speed could only be evaluated via physical experimentation.
Another example, inspired by Gelbart et al. [2014], might be the design of a
low-calorie cookie: one wishes to maximise taste while minimising calories,
but calories are a simple function of the ingredients, while taste could require
human trials. The results obtained show that PESMO can obtain better
results with a smaller number of evaluations of the objective functions in
such scenarios. Furthermore, we have observed that the decoupled evalua-
tion provides significant improvements over a coupled evaluation when the
number of objectives is large. Finally, unlike other methods [Ponweiser et al.,
2008; Picheny, 2015], the computational cost of PESMO grows linearly with
the number of objectives.

Problem Formulation

Our aim is to jointly maximise L ≥ 2 bounded objectives fl : X → R for
l = 1, ..., L. Concretely, we wish to find a set of Pareto efficient points.
Given distinct yi ∈ RL for i = 1, ..., n, we write yj ⪰ yl when yj,l ≥ yk,l for
each l = 1, ..., L, and say “yj dominates yl”. For the set of distinct points
Y = {y1, ...,yn}, the subset of Pareto efficient points, P(Y) ⊆ Y , is defined
as

P(Y) ≡
{
yi ∈ Y : yj ⪰̸ yi ∀yj ∈ Y\{yi}

}
. (4.1)

In other words, the Pareto efficient subset is the subset of all non-dominated
points, and is always non empty. A dominated point, by definition, is a
suboptimal choice since there exists a point which achieves a higher value
for each of the L objectives. A measure of the quality of a set of Pareto
efficient points is the volume of the set of points which the Pareto efficient
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points dominate. This is defined more formally in the next chapter.

In a Bayesian optimisation setting, input locations x1,x2, ... ∈ X , at
which the expensive objective functions are evaluated, are chosen sequen-
tially. Given function evaluations ys = [f1(xs), ..., fL(xs)]⊤ for s = 1, ..., t,
xt+1 ∈ X is chosen with the goal of improving the set of Pareto points
as much as possible with as few future function evaluations. However, in
its current frame, this is a qualitative goal and not a quantitative formu-
lation. In the case of single objective Bayesian optimisation of a function
f : X → R, approaches for where to evaluate the function next are (a)
where it is expected to most improve upon the current best value (expected
improvement), (b) at a location which maximises a linear combination of
the predictive mean and standard deviation (UCB) [Brochu et al., 2009],
or (c) at a location which maximises information gain about the maximiser
(predictive entropy search). In this work we focus on the entropy based ideas,
following their success in the single-objective case. How can this quantitative
single objective framework be generalised to the multi-objective case? This
work, to the best of our knowledge, is the first attempt to apply entropy
based ideas to multi-objective Bayesian optimisation.

4.2 Multi-objective Bayesian Optimisation via
Predictive Entropy Search

In this section we describe the proposed approach for multi-objective opti-
misation based on predictive entropy search. Define the range set,

R ≡ {y ∈ RL : ∃ x ∈ X such that yl = fl(x) for l = 1, ..., L}, (4.2)

for the functions fl(·), with Pareto efficient subset P(R). We can therefore
define the set of Pareto efficient inputs as

X ∗ ≡ {x ∈ X : ∃ y∗ ∈ P(R) such that y∗
l = fl(x) for l = 1, ..., L}, (4.3)

which is the set we are interested in finding. Given some previous evalua-
tions of each objective function fl(·), we seek to choose new evaluations that
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maximise the information gained about the Pareto set X ⋆. This approach
requires a probabilistic model for the unknown objectives, and we therefore
assume that each fl(·) follows a Gaussian process (GP) prior [Rasmussen
and Williams, 2006], with observation noise that is i.i.d. Gaussian with zero
mean. For simplicity, we initially consider a coupled setting in which we
evaluate all objectives at the same location in any given iteration. Neverthe-
less, the approach described can be easily extended to the decoupled scenario.

Let D ≡ {xn,yn}N
n=1 be the data (function evaluations) collected up to

step N , where yn is a L-dimensional vector with the values resulting from
the evaluation of all objectives at step n, and xn is a vector in input space
denoting the evaluation location. The next query xN+1 is the one that
maximises the expected reduction in the entropy H(·) of the posterior dis-
tribution over the Pareto set X ⋆, i.e., p(X ⋆|D). The acquisition function of
PESMO is hence:

α(x|D) = H
[
X ⋆|D

]
− Ep(y|D,x)

[
H
[
X ⋆|D ∪ {x,y}

]]
, (4.4)

where y is the output of all the GP models at x and the expectation is taken
with respect to the posterior distribution for y given by, p(y|D,x) = ∏L

l=1 p(yl|D,x).
The GPs are assumed to be independent a priori. This is a fairly strong
assumption given that we expect the objectives we are jointly optimising to
inherently be dependent on one another. In the next chapter, we explore
the idea of explicitly modelling dependencies between objective functions,
but in this work, to keep the math simple, we assume independence. The
acquisition function in (4.4) is known as entropy search [Villemonteix et al.,
2009; Hennig and Schuler, 2012]. Thus, at each iteration we set the location
of the next evaluation to xN+1 = arg maxx∈X α(x).

A practical difficulty, however, is that the exact evaluation of (4.4) is
generally infeasible and the function must be approximated; we follow the
approach described in Hernández-Lobato et al. [2014]; Houlsby et al. [2012].
In particular, (4.4) is the mutual information between X ⋆ and y given D.
The mutual information is symmetric and hence we can exchange the roles
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of the variables X ⋆ and y, leading to an equivalent expression:

α(x|D) = H
[
y|D,x

]
− Ep(X ⋆|D)

[
H
[
y|D,x,X ⋆

]]
, (4.5)

where the expectation is now with respect to the posterior distribution for
the Pareto set X ⋆ given the observed data, and H

[
y|D,x,X ⋆

]
measures the

entropy of p(y|D,x,X ⋆), i.e., the predictive distribution for the objectives
at x given D and conditioned to X ⋆ being the Pareto set of the objective
functions. This alternative formulation is known as predictive entropy search
[Hernández-Lobato et al., 2014] and it significantly simplifies the evaluation
of the acquisition function α(·). In particular, we no longer have to evaluate
or approximate the entropy of the Pareto set, X ⋆, which may be quite diffi-
cult. The new acquisition function obtained in (4.5) favours the evaluation
in the regions of the input space for which X ⋆ is more informative about y.
These are precisely also the regions in which y is more informative about X ⋆.

The first term in the r.h.s. of (4.5) is straight-forward to evaluate; it
is simply the entropy of the predictive distribution p(y|D,x), which is a
factorisable L-dimensional Gaussian distribution. Thus, we have that

H(y|D,x) = L

2 log(2πe) +
L∑

l=1
0.5 log(vPD

l ) , (4.6)

where vPD
l is the predictive variance of fl(·) at x. The difficulty comes from

the evaluation of the second term in the r.h.s. of (4.5), which is intractable
and must be approximated; we follow Hernández-Lobato et al. [2014] and
approximate the expectation using a Monte Carlo estimate of the Pareto set,
X ⋆ given D. This involves sampling several times the objective functions
from their posterior distribution p(f1, . . . , fK |D). This step is done as in
Hernández-Lobato et al. [2014] using random kernel features and linear
models that accurately approximate the samples from p(f1, . . . , fL|D). In
practice, we generate 10 samples from the posterior of each objective fl(·).

Given the samples of the objectives, we must optimise them to obtain
a sample from the Pareto set X ⋆. Note that unlike the true objectives, the
sampled functions can be evaluated without significant cost. Thus, given
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these functions, we use a grid search with d× 1, 000 points to solve the
corresponding multi-objective problem to find X ⋆, where d is the number of
dimensions. Of course, in high dimensional problems such a grid search is
expected to be sub-optimal; in that case, we use the NSGA-II evolutionary
algorithm [Deb et al., 2002]. The Pareto set is then approximated using a
representative subset of 50 points. Given such a sample of X ⋆, the differen-
tial entropy of p(y|D,x,X ⋆) is estimated using the expectation propagation
algorithm Minka [2001], as described in the proceeding section.

4.3 Approximating the Conditional Predic-
tive with Expectation Propagation

To approximate the entropy of the conditional predictive distribution p(y|D,x,X ⋆)
we consider the distribution p(X ⋆|f1, . . . , fL). In particular, X ⋆ is the Pareto
set of f1, . . . , fK if and only if ∀x⋆ ∈ X ⋆,∀x′ ∈ X ,∃ l ∈ {1, . . . , L} such that
fl(x⋆) ≥ fl(x′), assuming maximisation. That is, each point within the
Pareto set has to be better or equal to any other point in the domain of the
functions in at least one of the objectives. Let f be the set {f1, . . . , fL}. The
conditions just described can be translated into the following un-normalised
distribution for X ⋆:

p(X ⋆|f) ∝
∏

x⋆∈X ⋆

∏
x′∈X

[
1−

L∏
l=1

I
(
fl(x⋆) ≤ fl(x′)

)]

=
∏

x⋆∈X ⋆

∏
x′∈X

ψ(x′,x⋆) , (4.7)

where ψ(x′,x⋆) = 1−∏L
l=1 I

(
fl(x⋆) ≤ fl(x′)

)
and I(·) is an indicator function.

Thus, the r.h.s. of (4.7) is non-zero only for a valid Pareto set. Next, we
note that in the noiseless case p(y|x,f) = ∏K

i=1 δ(yl − fl(x)), where δ(·)
is the Dirac delta function; in the noisy case we simply replace the delta
functions with Gaussians. We can hence write the unnormalised version
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of p(y|D,x,X ⋆) as:

p(y|D,x,X ⋆) ∝
∫
p(y|x,f)p(X ⋆|f)p(f |D)df

∝
∫ L∏

l=1
δ(yl − fl(x))

∏
x⋆∈X ⋆

ψ(x,x⋆)

×
∏

x′∈X \{x}
ψ(x′,x⋆) p(f |D) df , (4.8)

where we have separated out the factors ψ that do not depend on x, the
point in which the acquisition function α(·) is going to be evaluated. The
approximation to the r.h.s. of (4.8) is obtained in two stages. First, we
approximate X with the set X̃ = {xn}N

n=1 ∪ X ⋆ ∪ {x}, i.e., the union of the
input locations where the objective functions have been already evaluated,
the current Pareto set and the candidate location x on which α(·) should be
evaluated. Then, we replace each non-Gaussian factor ψ with a corresponding
approximate Gaussian factor ψ̃ whose parameters are found using expectation
propagation (EP) Minka [2001]. That is,

ψ(x′,x⋆) = 1−
L∏

l=1
I
(
fl(x⋆) ≤ fl(x′)

)

≈ ψ̃(x′,x⋆) = Z̃
L∏

l=1
ϕ̃l(x′,x⋆) , (4.9)

where each approximate factor ϕ̃l is a scaled two-dimensional Gaussian
distribution. In particular, we set

ϕ̃l(x′,x⋆) = N (υl; µ̃l, Σ̃l),

where we have defined υl = (fl(x′), fl(x⋆))⊤, and Z̃, µ̃l and Σ̃l are parame-
ters to be adjusted by EP, which refines each ψ̃ until convergence to enforce
that it looks similar to the corresponding exact factor ψ [Minka, 2001]. The
approximate factors ψ̃ that do not depend on the candidate input x are
reused multiple times to evaluate the acquisition function α(·), and they
only have to be computed once. The |X ⋆| factors that depend on x must be
obtained relatively quickly to guarantee that α(·) is not very expensive to
evaluate. Thus, in practice we only update those factors once using EP, i.e.,
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they are not refined until convergence. This condradicts the result of Seeger
[2008] which requires convergence of EP parameters for the gradients with
respect to inputs to not depend on EP parameters, however, in practice this
did not seem to be a problem. More details on the EP algorithm are given
in the next few subsections.

4.3.1 Constructing The Approximate Conditional Pre-
dictive

Suppose we have a sample of the Pareto set given observations X ∗ =
{x∗

1, ...,x
∗
M} of size M , and a set of N locations where we have observed

function values X̂ = {x1, ...,xN} ⊂ D. Let’s assume we have trained the
parameters for the approximate factors ψ̃. Since the fl are independent a
posteriori, we describe how to construct its conditional predictive distribution.
Let fl,+ = [fl(x1), ..., fl(xN), fl(x∗

1), ..., fl(x∗
M)]⊤, and define

w(fl,+) ≡ p(fl,+|D)
∏

x∈X̂ ∪X ∗

∏
x∗∈X ∗\{x}

ϕ̃l(x,x∗), (4.10)

then,
p(fl,+|X ∗,D) ≈ w(fl,+)∫

w(g)dg . (4.11)

Let us enforce an ordering over the factors ϕ̃l such that for 1 ≤ j ≤M , ϕ̃l,i,j

is ϕ̃l(xi,x
∗
j) for 1 ≤ i ≤ N , and is ϕ̃l(x∗

i−N ,x
∗
j) for N + 1 ≤ i ≤ N + M

and i−N ̸= j. Note that p(fl,+|D) is simply a Gaussian process posterior
and is therefore a (N +M)-dimensional multivariate Gaussian with mean,
ml,+ and covariance, Kl,+. Since the product of Gaussian densities is a
scaled Gaussian density, w(fl,+) is a scaled multivariate Gaussian with mean,
µl,+, covariance, Σl,+ and scale Zl. If we set Ci,j to be a matrix of size
2× (N +M), with the ith column of the first row and the jth column of the
second row having entries 1, with all remaining entries 0, then

Σl,+ =
(
K−1

l,+ +
M∑

j=1

N+M∑
i=1,i ̸=j+N

C⊤
i,jΣ̃−1

l,i,jCi,j

)−1

(4.12)

µl,+ = Σl,+

(
K−1

l,+ml,+ +
M∑

j=1

N+M∑
i=1,i ̸=j+N

C⊤
i,jΣ̃−1

l,i,jµ̃l,i,j

)−1

. (4.13)
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Define fl = [fl(x1), ..., fl(xN )]. Since the multivariate Gaussian is consistent
under marginalisation, the posterior distribution p(fl|X ∗,D) is simply mul-
tivariate Gaussian with mean µ and covariance Σ, where µ is made of the
firstN entries of µ+, and Σ is made up of the firstN rows and columns of Σ+.

Finally, to make a prediction of the value of fl at a new input location
x′, we again use the fact that the conditional predictive distribution of a
multivariate Gaussian distribution is also a Gaussian distribution, such that
p(fl(x′)|X ∗,D,x′) is N (x′;mCPD

l , vCPD
l ).

4.3.2 Computing the EP parameters

We now discuss how to update the parameters of ψ̃(xi,x
∗
j). First compute

the cavity distribution by removing all of the relevant factors,

w\i,j(f+) = w(f+)

Z̃i,j

L∏
l=1
N
(
f+;C⊤

i,jµ̃l,i,j,C⊤
i,jΣ̃l,i,jCi,j

) (4.14)

and compute their Gaussian parameters. Since we are dividing a Gaussian
p.d.f. by another Gaussian p.d.f. we have parameter updates given by

Σ\l,i,j =
(

Σ−1
l,+ −C⊤

i,jΣ̃−1
l,i,jCi,j

)−1
(4.15)

µ\l,i,j = Σ\l,i,j

(
Σ−1

l,+µl,+ −C⊤
i,jΣ̃−1

l,i,jµ̃l,i,j

)
. (4.16)

The next step in EP inference is the projection step, where we match moments
between ψ(xi,x

∗
j)w\i,j(f+) and ψ̃(xi,x

∗
j)w\i,j(f+). We use derivatives of the
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logarithm of the zeroth moment [Minka, 2008] to compute the parameters

Ẑi,j =
∫
ψ(xi,x

∗
j)w\i,j(f+)df+

= 1−
L∏

l=1
Φ(βl,i,j), (4.17)

µ̂l,i,j = µ\l,i,j + Σ\l,i,j
∂ log Ẑi,j

∂µ\l,i,j

= µ\l,i,j −
ϕ(βl,i,j)
αl,i,jẐi,j

Σ\l,i,jci,j, (4.18)

Σ̂l,i,j = Σ\l,i,j −Σ\l,i,j

((
∂ log Ẑi,j

∂µ\l,i,j

)(
∂ log Ẑi,j

∂µ\l,i,j

)⊤
− 2∂ log Ẑi,j

∂Σ\l,i,j

)
Σ\l,i,j

= Σ\l,i,j −
(
ϕ(βl,i,j)
αl,i,jẐi,j

)(
ϕ(βl,i,j)
Ẑi,j

− βl,i,j

)(
Σ\l,i,jci,j

)(
Σ\l,i,jci,j

)⊤
,

(4.19)

where αl,i,j =
(
c⊤

i,jΣ\l,i,jci,j

)
, βl,i,j = c⊤

i,jµ\l,i,j√
αl,i,j

, and ci,j is a vector of length
N+M with ith entry −1, jth entry 1 and remaining entries 0. The projection
step is completed by updating the site parameters as follows

Σ̃l,i,j =
(
C⊤

i,j

(
Σ̂−1

l,i,j −Σ−1
\l,i,j

)
Ci,j

)−1
(4.20)

µ̃l,i,j = Σ̃l,i,jC
⊤
i,j

(
Σ̂−1

l,i,jµ̂l,i,j −Σ−1
\l,i,jµ\l,i,j

)
(4.21)

Z̃i,j = Ẑi,j det
(

2πΩi,j

) 1
2

exp
(1

2
(
µ̃l,i,j − µ\l,i,j

)⊤
Ω−1

i,j

(
µ̃l,i,j − µ\l,i,j

))
,

(4.22)

where Ωi,j ≡
L∑

l=1

(
Σ\l,i,j +C⊤

i,jΣ̃l,i,jCi,j

)
. The computation of cavity distri-

butions and projection is repeated until convergence.

4.3.3 Parallel EP Updates and Damping

The EP algorithm was implemented in a way such that the parameters of the
approximate factors ψ̃ are updated in parallel. That is, the cavity distribution
for each factor ψ and corresponding updates of ψ̃ are all computed in parallel.
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The EP parameter updates also were damped, that is, the parameters of
each updated factor are set to a linear combination of the old parameters and
the new parameters. This approach prevents large changes to the parameter
values and therefore helps convergence properties of the algorithm. Damping
does not change the fixed points of EP.

4.3.4 Sampling the Posterior Pareto Set

Until now we have assumed the ability to sample from p(X ∗|D), in this
subsection we discuss how we do this in practice. We follow the method
in Hernández-Lobato et al. [2014] and Shah and Ghahramani [2015] to
approximately sample from p(f1, ..., fl|D) using random kernel features and
linear models. In practice, we generate 10 samples from the posterior of
each objective fl(·).

Given the samples, we optimise them to obtain a sample from p(X ∗|D).
The sampled functions can be evaluated without significant cost. Given the
sampled functions, we use a grid search with d× 1000 points to solve the
corresponding multi-objective problem to find X ∗, where d is the number of
dimensions.

4.3.5 The Resultant Approximation

Suppose we make the Gaussian approximations as in (4.9), we can approxi-
mate (4.5) with

α̂(x) = 1
2

L∑
l=1

(
log vPD

l (x)− 1
S

S∑
s=1

log vCPD
l (x|X ⋆

(s))
)
, (4.23)

where S is the number of Monte Carlo samples, {X ⋆
(s)}S

s=1 are the Pareto sets
sampled to approximate the expectation in (4.5), and vPD

l (x) and vCPD
l (x|X ⋆

(s))
are respectively the variances of the predictive distribution at x, before
and after conditioning on X ⋆

(s). vCPD
l is computed using the EP inference

scheme decsribed in the previous subsections. Last, in the case of noisy
observations around each fl(·), we just increase the predictive variances by
adding the noise variance. The next location to be tested is computed as
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xN+1 = arg maxx∈X α̂(x).

Note that (4.23) is the sum of L functions

α̂l(x) = 1
2

(
log vPD

l (x)− 1
S

S∑
s=1

log vCPD
l (x|X ⋆

(s))
)
, (4.24)

that intuitively measure the contribution of each objective to the total ac-
quisition. In a decoupled evaluation setting, each α̂l(·) can be individually
maximised to identify the location xop

l = arg maxx∈X α̂l(x), on which it
is expected to be most useful to evaluate each of the L objectives. The
objective l with the largest individual acquisition α̂l(xop

l ) can then be chosen
for evaluation in the next iteration. This approach is expected to reduce
the entropy of the posterior over the Pareto set more quickly, i.e., with
a smaller number of evaluations of the objectives, and to lead to better results.

The total computational cost of evaluating the acquisition function α̂(x)
includes the cost of running EP, which is O(Lm3), where m = N + |X ⋆

(s)|, N
is the number of observations made and L is the number of objectives. This
is done once per each sample X ⋆

(s). After this, we can re-use the factors
that are independent of the candidate location x. The cost of computing
the predictive variance at each x is hence O(L|X ⋆

(s)|3). In our experiments,
the size of the Pareto set sample X ⋆

(s) is 50, which means that m is a few
hundred at most.

4.4 Related Work

ParEGO is another method for multi-objective Bayesian optimisation [Knowles,
2006]. ParEGO transforms the multi-objective problem into a single-objective
problem using a scalarisation technique: at each iteration, a vector of L
weights θ = (θ1, . . . , θL)T, with θl ∈ [0, 1] and ∑L

l=1 θl = 1, is sampled at ran-
dom from a uniform distribution. Given θ, a single-objective function is
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built:

fθ(x) = maxL
l=1(θlfl(x)) + ρ

L∑
l=1

θlfl(x), (4.25)

where ρ is set equal to 0.05. The non-linear part of the function guarantees
that points in the non-convex regions of the Pareto front (this is simply
the function space values associated to the Pareto set) can minimise the
function, while the linear part of the function ensures that Pareto points
are preferred over weak-Pareto points (points that are not strictly better
in at least one objective, but better or equal). See Nakayama et al. [2009,
Sec. 1.3.3] for further details. After step N of the optimisation process, and
given θ, a new set of N observations of fθ(·) are obtained by evaluating
this function in the already observed points {xn}N

n=1. Then, a GP model is
fit to the new data and expected improvement [Mockus et al., 1978; Jones
et al., 1998] is used find the location of the next evaluation xN+1. The cost
of evaluating the acquisition function in ParEGO is O(N3), where N is the
number of observations made. This is the cost of fitting the GP to the new
data (only done once). Thus, ParEGO is a simple technique that leads to
a fast acquisition function. Nevertheless, it is often outperformed by more
advanced approaches [Ponweiser et al., 2008].

SMSego is another technique for multi-objective Bayesian optimisation
[Ponweiser et al., 2008]. The first step in SMSego is to find a set of Pareto
points X̃ ⋆, e.g., by optimising the posterior means of the GPs, or by finding
the non-dominated observations. Consider now an optimistic estimate of the
objectives at input location x given by mPD

l (x)− c
√
vPD

l (x), where c is some
constant, and mPD

l (x) and vPD
l (x) are the posterior mean and variance of the

lth objective at location x, respectively. The acquisition value computed at
a candidate location x ∈ X by SMSego is given by the gain in hyper-volume
obtained by the corresponding optimistic estimate, after an ϵ-correction has
been made. The hyper-volume is simply the volume of points in functional
space above the Pareto front (this is the function space values associated to
the Pareto set), with respect to a given reference point [Zitzler and Thiele,
1999a]. Because the hyper-volume is maximised by the actual Pareto set,
it is a natural measure of performance. Thus, SMSego does not reduce the
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problem to a single-objective. However, at each iteration it has to find a set
of Pareto points and to fit a different GP to each one of the objectives. This
gives a computational cost that is O(LN3). Finally, evaluating the gain in
hyper-volume at each candidate location x is also more expensive than the
computation of expected improvement in ParEGO. We discuss the Pareto
hyper-volume in more detail in the next chapter.

A similar method to SMSego is the Pareto active learning (PAL) algo-
rithm [Zuluaga et al., 2013]. At iteration N , PAL uses the GP prediction
for each point x ∈ X to maintain an uncertainty region RN(x) about
the objective values associated with x. This region is defined as the
intersection of RN−1(x), i.e., the uncertainty region in the previous it-
eration, and Qc(x), defined as as the hyper-rectangle with lower-corner
given by mPD

l (x)− c
√
vPD

l (x), for l = 1, . . . , L, and upper-corner given
by mPD

l (x) + c
√
vPD

l (x), for l = 1, . . . , L, for some constant c. Given these
regions, PAL classifies each point x ∈ X as Pareto-optimal, non-Pareto-
optimal or uncertain. A point is classified as Pareto-optimal if the worst
value in RN(x) is not dominated by the best value in RN(x′), for any
other x′ ∈ X , with an ϵ tolerance. A point is classified as non-Pareto-optimal
if the best value in RN(x) is dominated by the worst value in RN(x′) for
any other x′ ∈ X , with an ϵ tolerance. All other points remain uncertain.
After the classification, PAL chooses the uncertain point x with the largest
uncertainty region RN(x). The total computational cost of PAL is hence
similar to that of SMSego.

The expected hyper-volume improvement (EHI) [Emmerich, 2008] is a natu-
ral extension of expected improvement to the multi-objective setting Mockus
et al. [1978]; Jones et al. [1998]. Given the predictive distribution of the GPs
at a candidate input location x, the acquisition is the expected increment of
the hyper-volume of a candidate Pareto set X̃ ⋆. Thus, EHI also needs to
find a Pareto set X̃ ⋆. This set can be obtained as in SMSego. A difficulty is,
however, that computing the expected increment of the hyper-volume is very
expensive. For this, the output space is divided in a series of cells, and the
probability of improvement is simply obtained as the probability that the ob-
servation made at x lies in a non-dominated cell. This involves a sum across
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all non-dominated cells, whose number grows exponentially with the number
of objectives L. In particular, the total number of cells is (|X̃ ⋆|+ 1)L. Thus,
although some methods have been suggested to speed-up its calculation,
e.g., Hupkens et al. [2014], EHI is only feasible for a 2 or 3 objectives at most.

Sequential uncertainty reduction (SUR) is another method proposed for
multi-objective Bayesian optimisation [Picheny, 2015]. The working principle
of SUR is similar to that of EHI. However, SUR considers the probability
of improving the hyper-volume in the whole domain of the objectives X .
Thus, SUR also needs to find a set of Pareto points X̃ ⋆. These can be
obtained as in SMSego. The acquisition computed by SUR is simply the
expected decrease in the area under the probability of improving the hyper-
volume, after evaluating the objectives at a new candidate location x. The
SUR acquisition is computed also by dividing the output space in a total
of (|X̃ ⋆| + 1)L cells, and the area under the probability of improvement
is obtained using a Sobol sequence as the integration points. Although
some grouping of the cells has been suggested [Picheny, 2015], SUR is an
extremely expensive criterion that is only feasible for 2 or 3 objectives at most.

The proposed approach, PESMO, differs from the methods described in this
section in that 1) it does not transform the multi-objective problem into a
single-objective, 2) the acquisition function of PESMO can be decomposed as
the sum of L individual acquisition functions, and this allows for decoupled
evaluations, and 3) the computational cost of PESMO is linear in the total
number of objectives L.

4.5 Experiments

We compare PESMO with the other strategies for multi-objective optimisa-
tion described in Section 4.4: ParEGO, SMSego, EHI and SUR. We do not
compare results with PAL because it is expected to give similar results to
those of SMSego, as both methods are based on a lower confidence bound.
We have coded all these methods in the software for Bayesian optimisation
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Fig. 4.1 Top. Observations of each objective and posterior mean and
standard deviations of each GP model. Note that objectives are evaluated
at the same input locations. Bottom. Estimates of the acquisition function
((4.5)) by PESMO, and by a Monte Carlo method combined with a non-
parametric estimator of the entropy (Exact), which is expected to be more
accurate.

Spearmint 1. In all GP models we use a Matérn covariance function, and all
hyper-parameters (noise, length-scales and amplitude) are approximately
sampled from their posterior distribution (we generate 10 samples from this
distribution). The acquisition function of each method is averaged over these
samples, analogous to PPES from the last chapter. In ParEGO we consider
a different scalarisation (i.e., a different value of θ) for each sample of the
hyper-parameters. In SMSego, EHI and SUR, for each hyper-parameter

1https://github.com/JasperSnoek/spearmint

https://github.com/JasperSnoek/spearmint
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sample we consider a different Pareto set X̃ ⋆, obtained by optimising the
posterior means of the GPs. The resulting Pareto set is extended by includ-
ing all non-dominated observations. Finally, at iteration N , each method
gives a recommendation in the form of a Pareto set obtained by optimising
the posterior means of the GPs (we average the posterior means over the
hyper-parameter samples). The acquisition function of each method is max-
imised using L-BFGS. A grid of size 1, 000 is used to find a good starting
point for the optimisation process. The gradients of the acquisition function
are approximated by differences (except in ParEGO).

4.5.1 Accuracy of the PESMO Approximation

One question to be experimentally addressed is whether the proposed approx-
imations are sufficiently accurate for effective identification of the Pareto set.
We compare in a one-dimensional problem with two objectives the acquisi-
tion function computed by PESMO with a more accurate estimate obtained
via expensive Monte Carlo sampling and a non-parametric estimator of the
entropy [Singh et al., 2003]. Figure 4.1 (top) shows at a given step the
observed data and the posterior mean and the standard deviation of each
of the two objectives. The figure on the bottom shows the corresponding
acquisition function computed by PESMO and by the Monte Carlo method
(Exact). We observe that both functions look very similar, including the
location of the global maximiser. This indicates that (4.23), obtained by
expectation propagation, is potentially a good approximation of (4.5), the
exact acquisition function. The supplementary material has extra results
that show that each of the individual acquisition functions computed by
PESMO, i.e., αl(·), for l = 1, 2, are also accurate.

Next we wish to see whether the proposed approximations for the indi-
vidual acquisition functions αl(·), for l = 1, . . . , L, with L the total number
of objectives are sufficiently accurate in the decoupled case of PESMO. For
this, we compare in a one-dimensional problem with two objectives the acqui-
sition functions α1(·) and α2(·) computed by PESMO, with a more accurate
estimate obtained via expensive Monte Carlo sampling and a non-parametric
estimator of the entropy Singh et al. [2003]. This estimate measures the
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expected decrease in the entropy of the predictive distribution of one of
the objectives, at a given location of the input space, after conditioning to
the Pareto set. Importantly, in the decoupled case, the observations cor-
responding to each objective need not be located at the same input locations.

Figure 4.2 (top) shows at a given step of the optimisation process, the
observed data and the posterior mean and the standard deviation of each
of the two objectives. The figure on the middle shows the corresponding
acquisition function corresponding to the first objective, α1(·), computed
by PESMO and by the Monte Carlo method (Exact). The figure on the
bottom shows the same results for the acquisition function corresponding
to the second objective, α2(·). We observe that both functions look very
similar, including the location of the global maximiser. This indicates that
the approximation obtained by expectation propagation is potentially good
also in the decoupled setting.

4.5.2 Experiments with Synthetic Objectives

To initially compare PESMO with other approaches, we consider a 3-
dimensional problem with 2 objectives obtained by sampling the functions
from the corresponding GP prior. We generate 100 of these problems and
report the average performance of each method, when considering noiseless
observations and when the observations are contaminated with Gaussian
noise with standard deviation equal to 0.1. The performance metric em-
ployed is the hyper-volume indicator, which is maximised by the actual
Pareto set [Zitzler and Thiele, 1999a]. More precisely, at each iteration we
report the logarithm of the relative difference between the hyper-volume
of the actual Pareto set, which is obtained by optimising the actual objec-
tives, and the hyper-volume of the recommendation, which is obtained by
optimising the posterior means of the GPs. Figure 4.3 shows, as a function
of the evaluations made, the average performance of each method with
the corresponding error bars. PESMO obtains the best results, and when
executed in a decoupled scenario slight improvements are observed, although
only in the case of noisy observations.
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Fig. 4.2 Top. Observations of each objective and posterior mean and
standard deviations of each GP model. Middle. Estimates of the acquisition
function corresponding to the first objective, α1()̇, by PESMO, and by a
Monte Carlo method combined with a non-parametric estimator of the
entropy. Bottom. Same results for the acquisition function corresponding
to the second objective α2(·).
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Fig. 4.3 Average log relative difference between the hyper-volume of the
recommendation and the maximum hyper-volume for each number of evalu-
ations made. We consider noiseless and noisy observations. The problem
considered has 2 objectives and 3 dimensions. Similar results for a problem
with 4 objectives and 6 dimensions. We do not compare results with EHI
and SUR because they are infeasible due to their exponential cost with the
number of objectives.
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Table 4.1 Avg. time in seconds doing calculations per iteration.

PESMO PESMOdec ParEGO SMSego EHI SUR

33±1.0 52±2.5 11±0.2 16±1.3 405±115 623±59

Table 4.1 shows the average time in seconds required by each method to
determine the next evaluation. The fastest method is ParEGO followed by
SMSego and PESMO. The decoupled version of PESMO, PESMOdec, takes
more time because it has to optimise α1(·) and α2(·). The slowest methods
are EHI and SUR; most of their cost is in the last iterations, in which the
Pareto set size, |X̃ ⋆|, is large due to non-dominated observations. The cost of
evaluating the acquisition function in EHI and SUR is O((|X̃ ⋆|+1)L), leading
to expensive optimisation via L-BFGS. In PESMO the cost of evaluating α(·)
is O(L|X ⋆

(s)|3) because L linear systems are solved. These computations are
faster because they are performed using the open-BLAS library, which is
optimised for each processor. The acquisition function of EHI and SUR
does not involve solving linear systems and hence these methods cannot use
open-BLAS. Note that we also keep fixed |X ⋆

(s)| = 50 in PESMO.

We have carried out additional synthetic experiments with 4 objectives on a
6-dimensional input space. In this case, EHI and SUR become infeasible,
so we do not compare results with them. Again, we sample the objectives
from the GP prior. Figure 4.3 shows, as a function of the evaluations made,
the average performance of each method. The best method is PESMO,
and in this case, the decoupled evaluation performs significantly better.
This improvement is because in the decoupled setting, PESMO identifies
the most difficult objectives and evaluates them more times. In particular,
because there are 4 objectives it is likely that some objectives are more
difficult than others just by chance. Figure 4.4 illustrates this behaviour
for a representative case in which the first two objectives are non-linear
(difficult) and the last two objectives are linear (easy). We note that the
decoupled version of PESMO evaluates the first two objectives almost three
times more.
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Fig. 4.4 Top. Contour curves of 4 illustrative objectives on 6 dimensions
obtained by changing the first two dimensions in input space while keeping
the other 4 fixed to zero. The first 2 objectives are non-linear while the 2
last objectives are linear. Bottom Number of evaluations of each objective
done by PESMOdecoupled as a function of the iterations performed N . Best
seen in colour.

4.5.3 Finding a Fast and Accurate Neural Network

We consider the MNIST dataset [LeCun et al., 1998] and evaluate each
method on the task of finding a neural network with low prediction er-
ror and small prediction time. These are conflicting objectives because
reducing the prediction error will involve larger networks which will take
longer at test time. We consider feed-forward networks with ReLus at the
hidden layers and a soft-max output layer. The networks are coded in
Keras (http://github.com/fchollet/keras) and they are trained using Adam
[Kingma and Ba, 2014] with a minibatch size of 4, 000 instances during 150
epochs. The adjustable parameters are: the number of hidden units per layer

http://github.com/fchollet/keras
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(between 50 and 300), the number of layers (between 1 and 3), the learning
rate, the amount of dropout, and the level of ℓ1 and ℓ2 regularisation. The
prediction error is measured on a set of 10, 000 instances extracted from
the training set. The rest of the training data, i.e., 50, 000 instances, is
used for training. We consider a logit transformation of the prediction error
because the error rates are very small. The prediction time is measured as
the average time required for doing 10, 000 predictions. We compute the
logarithm of the ratio between the prediction time of the network and the
prediction time of the fastest network, (i.e., a single hidden layer and 50
units). When measuring the prediction time we do not train the network
and consider random weights (in Spearmint the time objective is also set to
ignore irrelevant parameters). Thus, the problem is suited for a decoupled
evaluation because both objectives can be evaluated separately. We run
each method for a total of 200 evaluations of the objectives and report
results after 100 and 200 evaluations. Because there is no ground truth
and the objectives are noisy, we re-evaluate 3 times the values associated
with the recommendations made by each method (in the form of a Pareto
set) and average the results. Then, we compute the Pareto front (i.e., the
function space values of the Pareto set) and its hyper-volume. We repeat
these experiments 50 times and report the average results across repetitions.

Table 4.2 shows the hyper-volumes obtained in the experiments (the higher,
the better). The best results, after 100 evaluations of the objectives, cor-
respond to the decoupled version of PESMO, followed by SUR and by the
coupled version. When 200 evaluations are done, the best method is PESMO
in either setting, i.e., coupled or decoupled. After PESMO, SUR gives the
best results, followed by SMSego and EHI. ParEGO is the worst performing
method in either setting. In summary, PESMO gives the best overall results,
and its decoupled version performs much better than the other methods
when the number of evaluations is small.

Figure 4.5 shows the average Pareto front obtained by each method after 100
and 200 evaluations of the objectives. The results displayed are consistent
with the ones in Table 4.2. In particular, PESMO is able to find networks
that are faster than the ones found by the other methods, for a similar
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Fig. 4.5 Avg. Pareto fronts obtained by each method after 100 (left) and
200 (right) evaluations of the neural network objectives.

prediction error on the validation set. This is especially the case of PESMO
when executed in a decoupled setting, after doing only 100 evaluations of
the objectives. We also note that PESMO finds the most accurate networks,
with almost 1.5% of prediction error in the validation set.

The good results obtained by PESMOdecoupled are explained by Figure 4.6,
which shows the average number of evaluations of each objective. More
precisely, the objective that measures the prediction time is evaluated just a
few times. This makes sense because it depends on only two parameters, i.e.,
the number of layers and the number of hidden units per layer. It is hence
simpler than the prediction error. PESMOdecoupled is able to detect this and
focuses on the evaluation of the prediction error. Of course, evaluating the
prediction error more times is more expensive, since it involves training the
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Table 4.2 Avg. hyper-volume after 100 and 200 evaluations.

# Eval. PESMO PESMOdec ParEGO SMSego EHI SUR

100 66.2±.2 67.6±.1 62.9±1.2 65.0±.3 64.0±.9 66.6±.2

200 67.8±.1 67.8±.1 66.1±.2 67.1±.2 66.6±.2 67.2±.1

Fig. 4.6 Number of evaluations of each objective done by PESMOdecoupled, as
a function of the iteration number N , in the problem of finding good neural
networks.

neural network more times. Nevertheless, this shows that PESMOdecoupled

is able to successfully discriminate between easy and difficult objective
functions.

4.5.4 Finding a Small and Accurate Ensemble of De-
cision Trees

In this section we evaluate each of the methods in the task of finding an
ensemble of decision trees of small size that has low prediction error. We
measure the ensemble size in terms of the sum of the total number of nodes
in each of trees of the ensemble. Note that the objectives considered are
conflicting because it is expected that an ensemble of small size has higher
prediction error than an ensemble of larger size. The dataset considered
is the German Credit dataset, which is extracted from the UCI repository
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Table 4.3 Avg. hyper-volume after 100 and 200 evaluations of the objectives.

# Eval. PESMO PESMOdec ParEGO SMSego EHI SUR

100 8.742±.006 8.755±.009 8.662±.019 8.719±.012 8.731±.009 8.739±.007

200 8.764±.007 8.758±.007 8.705±.008 8.742±.006 8.727±.008 8.756±.006

[Lichman, 2013]. This is a binary classification dataset with 1,000 instances
and 9 attributes. The prediction error is measured using a 10-fold-cross
validation procedure that is repeated 5 times to reduce the variance of the
estimates.

Critically, to get ensembles of decision trees with good prediction properties
one must encourage diversity in the ensemble [Dietterich, 2000]. In particu-
lar, if all the decision trees are equal, there is no gain from aggregating them
in an ensemble. However, too much diversity can also lead to ensembles
of poor prediction performance. For example, if the predictions made are
completely random, one cannot obtain improved results by aggregating the
individual classifiers. In consequence, we consider here several mechanisms
to encourage diversity in the ensemble, and let the amount of diversity be
specified in terms of adjustable parameters.

To build the ensemble we employed decision trees in which the data is
split at each node, and the best split is chosen by considering each time a
random set of attributes —we use the Decision-Tree implementation pro-
vided in the python package scikit-learn for this, and the number of random
attributes is an adjustable parameter. This is the approach followed in Ran-
dom Forest [Breiman, 2001] to generate the ensemble classifiers. Each tree is
trained on a random subset of the training data of a particular size, which is
another adjustable parameter. This approach is known in the literature as
subbagging [Bühlmann and Yu, 2001], and has been shown to lead to classifi-
cation ensembles with good prediction properties. We consider also an extra
method to introduce diversity known as class-switching [Martínez-Muñoz
and Suárez, 2005]. In class-switching, the labels of a random fraction of the
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training data are changed to a different class. The final ensemble prediction
is computed by majority voting.

In summary, the adjustable parameters are: the number of decision trees
built (between 1 and 1, 000), the number of random features considered
at each split in the building process of each tree (between 1 and 9), the
minimum number of samples required to split a node (between 2 and 200),
the fraction of randomly selected training data used to build each tree, and
the fraction of training instances whose labels are changed (after doing the
sub-sampling process).

Finally, we note that this setting is suited to the decoupled version of
PESMO since both objectives can be evaluated separately. In particular, the
total number of nodes is estimated by building only once the ensemble with-
out leaving any data aside for validation, as opposed to the cross-validation
approach used to estimate the ensemble error, which requires to build several
ensembles on subsets of the data, to then estimate the prediction error on
the data left out for validation.

We run each method for a total of 200 evaluations of the objectives and
report results after 100 and 200 evaluations. As in the experiments with
neural networks, we re-estimate three times the objectives associated to
each point in the final recommendation made by each method, and average
results. The goal of this averaging process is to reduce the noise in the final
evaluation of the objectives, which is used to estimate the performance of
each method using the hyper-volume. We repeat these experiments 50 times
and report the average results across repetitions.

Table 4.3 shows the average hyper-volume of the recommendations made
by each method, after 100 and 200 evaluations of the objective functions.
The table also shows the corresponding error bars. In this case the observed
differences among the different methods are smaller than in the experiments
with neural networks. Nevertheless, we observe that the decoupled version of
PESMO obtains the best results after 100 evaluations. After this, PESMO
in the coupled setting performs best, closely followed by SUR. After 200
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Fig. 4.7 Avg. Pareto fronts obtained by each method after 100 (top) and
200 (bottom) evaluations of the decision tree ensemble objectives.

evaluations, the best method is the coupled version of PESMO, closely
followed by its decoupled version and by SUR. SMSego and EHI give worse
results than these methods, in general. Finally, as in the experiments with
neural networks, ParEGO is the worst performing method. In summary,
the best methods are PESMO in either setting (coupled or decoupled) and
SUR. All other methods perform worse. Furthermore, the decoupled version
of PESMO gives slightly better results at the beginning, i.e., after 100
evaluations.

Figure 4.7 shows the average Pareto front (this is simply the values in
functional space associated to the Pareto set) corresponding to the recom-
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Fig. 4.8 Number of evaluations of each objective done by PESMOdecoupled,
as a function of the iteration number N , in the problem of finding a good
ensemble of decision trees.

mendations made by each method after 100 (top) and 200 evaluations of the
objectives (bottom). We observe that PESMO finds ensembles with better
properties than the ones found by EHI, SMSego and ParEGO. Namely,
ensembles of smaller size for a similar or even better prediction error. The
most accurate ensembles are found by SUR. Nevertheless, they have a very
similar error to the most accurate ensembles found by PESMO. Finally, we
note that in some cases, PESMO is able to find ensembles of intermediate
size with better prediction error than the ones found by SUR.

Figure 4.8 shows the average number of times that the decoupled version of
PESMO evaluates each objective. We observe that in this case the objective
that measures the number of nodes in the ensemble is evaluated more times.
However, the difference between the number of evaluations of each objective
is smaller than the difference observed in the case of the experiments with
neural networks. Namely, 135 evaluations of one objective versus 65 evalua-
tions of the other, in this case, compared to 175 evaluations versus 25, in
the case of the experiments with neural networks. This may explain why in
this case the differences between the coupled and the decoupled version of
PESMO are not as big as in the previous experiments.
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4.6 Conclusions

We have described PESMO, a method for multi-objective Bayesian opti-
misation. At each iteration, PESMO evaluates the objective functions at
the input location that is most expected to reduce the entropy of posterior
estimate of the Pareto set. Several synthetic experiments show that PESMO
has better performance than other methods from the literature. That is,
PESMO obtains better recommendations with a smaller number of evalua-
tions, both in the case of noiseless and noisy observations. Furthermore, the
acquisition function of PESMO can be understood as a sum of L individual
acquisition functions, one per each of the L objectives. This allows for
a decoupled evaluation scenario, in which the most promising objective is
identified by maximising the individual acquisition functions. When run
in a decoupled evaluation setting, PESMO is able to identify the most
difficult objectives and, by focusing on their evaluation, it provides better
results. This behaviour of PESMO has been illustrated on a multi-objective
optimisation problem that consists of finding an accurate and fast neural
network. Finally, the computational cost of PESMO is small. In particular,
it scales linearly with the number of objectives L. Other methods have an
exponential cost with respect to L which makes them infeasible for more
than 3 objectives.





Chapter 5

Pareto Frontier Learning with
Correlated Expensive
Objectives

In the previous chapter, we introduced the notion of multi-objective optimi-
sation under a Bayesian theoretic framework, and devised an entropy based
acquisition function with subsequent approximations in order to direct where
the objectives should be evaluated next, to find a Pareto efficient set. A key
choice that must be made in the Bayesian optimisation framework is that of
the prior over objective functions.

All Gaussian process based multi-objective optimisation methods in the
literature until now, to the best of our knowledge, assume independent Gaus-
sian process priors on each of the objectives. However, in practice, it is highly
likely that the various objectives we wish to optimise would in fact be corre-
lated. For example, suppose we are trying to design a car so as to minimise
the total expense whilst maximising the top speed of the car. It is reasonable
to assume that the materials and processes required to maximise the top
speed will also be the ones that lead to the highest build expense, as they
will be in high demand from most car manufacturers. Therefore, it would be
appropriate for our model of the objective functions to be able to capture
the likely positive correlation between car expense and top speed. It would
be reasonable to believe that correct modelling of this correlation should
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lead to more judicious suggestions as to where to evaluate the functions next.

We use correlated Gaussian process priors to model the objectives, and
develop an analytic approximation to the expected increase in hyper-volume
acquisition function. This research was conducted in parallel to the research
in the previous chapter involving predictive entropy search. We hope to
combine the ideas in future work. Results from experiments on several
benchmark and real world multi-objective optimisation tasks suggest that
our approach of incorporating correlations is indeed highly beneficial to
performance. The majority of this research was conducted with Zoubin
Ghahramani and published at ICML [Shah and Ghahramani, 2016]. This
work was carried out in parallel to the multi-objective predictive entropy
search work from the previous chapter, where independent Gaussian process
models are used for each objective, and a different acquisition function is
used to decide where to evaluate the objectives next.

5.1 Pareto Hyper-volume Based Multi-objective
Optimisation

The problem formulation in this chapter is the same as that of the last
chapter, namely that our aim is to jointly maximise L ≥ 2 bounded objectives,
fl : X → R for l = 1, ..., L, and find a set of Pareto efficient points. Recall
that for a set of distinct points Y = {y1, ...,yn}, the subset of Pareto efficient
points, P(Y) ⊆ Y , is defined as P(Y) =

{
yi ∈ Y : yj ⪰̸ yi∀yj ∈ Y\{yi}

}
.

5.1.1 Definition of Pareto Hyper-volume

The Pareto hyper-volume is an appropriate measure of the quality of a set of
Pareto efficient points [Zitzler and Thiele, 1999a]. Define a reference point,
vref ∈ RL, which is dominated by each element of P(Y) i.e. u ⪰ vref for
each u ∈ P(Y). The Pareto hyper-volume of P(Y) with respect to vref is

Volvref

(
P(Y)

)
=
∫
RL

I
[
y′ ⪰ vref

][
1−

∏
u∈P(Y)

I
[
u ⪰̸ y′

]]
dy′ (5.1)
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where I(.) is the indicator function, which outputs 1 if its argument is true and
0 otherwise. Volvref

(
P(Y)

)
measures the volume of points in RL which dom-

inate vref but are dominated by at least one element of the Pareto set, P(Y).
The shaded region of Figure 5.1(a) illustrates this volume. The Pareto hyper-
volume is a monotone function since Volvref

(
P
(
Y ∪ {y}

))
≥ Volvref

(
P(Y)

)
.

The more dominant the set of Pareto points, the larger the Pareto hyper-
volume. Conversely, a marginally dominant set of Pareto points will have a
small Pareto hyper-volume. This makes the Pareto hyper-volume a reason-
able measure of how “good” a proposed set of Pareto efficient points is.

Note that the units of the hyper-volume measure is the product of the
units of each of the objectives, fl. Whilst the scale of units does not affect
performance in most commonly used single objective Bayesian optimisa-
tion algorithms, the relative scales of objectives f1, ..., fL will affect the
hyper-volume measure that we propose here.

5.1.2 Expected Improvement in Pareto Hyper-volume

Analogous to the single objective case, we can formulate a multi objec-
tive Bayesian optimisation problem as maximising a future reward, rT =[
Volvref

(
P(ỸT )

)
− Volvref

(
P(Y∗)

)]
, where Y∗ is the true Pareto frontier and

ỸT is the suggested Pareto frontier after T evaluations of each of the objec-
tives.

Computing the expected effect of a decision made at time step t = 1
on a regret at time T ≫ 1 is computationally infeasible in the Bayesian
optimisation setting [Osborne et al., 2009]. A common greedy, but computa-
tionally feasible alternative is to repeatedly maximise the expected one step
ahead reward, examples of which include expected improvement, probability
of improvement [Kushner, 1964], upper confidence bound [Cox and John,
1992] and entropy search [Hennig and Schuler, 2012].

Emmerich [2005] introduced the idea of expected improvement in Pareto
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(a) Pareto hyper-volume

(b) Increase in Pareto hyper-volume

Fig. 5.1 Two objective example illustrating Pareto optimality, Pareto hyper-
volume and our notation. (a) Observations (f1(xi), f2(xi)) for i = 1, ..., 12
shown by dots, with the dark dots representing the set of Pareto efficient
observations. Grey dots each have at least one dark dot to the top-right of
it i.e. they are dominated. f1 and f2 values are shown on the x-axis and
y-axis respectively. The Pareto efficient points induce a grid cell partitioning
of the relevant region which has bottom left corner, vref , and top right
corner, wref . Cell C(3, 4) defines the cuboid from vC(3,4) ≡

(
b

(3)
1 , b

(4)
2

)
to

wC(3,4) ≡
(
b

(4)
1 , b

(5)
2

)
. The volume of the shaded region represents the Pareto

hyper-volume with respect to reference point vref . (b) Change in Pareto
frontier from a new observation at xnew with value

(
f1(xnew), f2(xnew)

)
=(

ynew
1 , ynew

2

)
. The new observation dominates 2 previously Pareto optimal

points. The increase in Pareto hyper-volume is equal to the volume of the
darker shaded region. The darker shaded region is the sum of cuboidal
volumes over the previously non-dominated cells in Cnd.
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hyper-volume, defined as

EIPV(xt+1|D) = Ep(y(xt+1)|D)

[
Vol

(
P
(
Y ∪ {y(xt+1)}

))
− Vol

(
P
(
Y
))]

where ys = [f1(xs), ..., fL(xs)]⊤, Y = {ys}t
s=1, D = {xs,ys}t

s=1 and vref is
dropped for convenience.

5.1.3 Grid Partitioning of the Output Space

Given that each fl is bounded above, we choose a reference point wref , such
that wref ⪰ [f1(x), ..., fL(x)]⊤ for any x ∈ X (it is possible to set wref,l =∞).
The cuboidal set of interest becomes A ≡ {y ∈ RL : wref ⪰ y ⪰ vref}. Let
the Pareto efficient subset be P(Y) = {u1, ...,uP} for 1 ≤ P ≤ t, and
set u0 = vref and uP +1 = wref . Now let b(0)

j ≤ ... ≤ b
(P +1)
j be the sorted

list of jth coordinates of u0, ...,uP +1. The grid coordinates b(p)
j induce a

cuboidal partitioning of A. Specifically, for each (i1, ..., iL) ∈ {0, ..., P}L, we
define the grid cell C(i1, ..., iL) as the cuboid

(
b

(i1)
1 , b

(i1+1)
1

]
×
(
b

(i2)
2 , b

(i2+1)
2

]
×

... ×
(
b

(iL)
L , b

(iL+1)
L

]
, then grid cells are disjoint and their union equals A.

Analogous to the definitions of vref and wref with respect to A, we define
vC(i1,...,iL) =

(
b

(i1)
1 , ..., b

(iL)
L

)⊤
and wC(i1,...,iL) =

(
b

(i1+1)
1 , ..., b

(iL+1)
L

)⊤
. Hence

for any y ∈ C(i1, ..., iL), wC(i1,...,iL) ⪰ y ⪰ vC(i1,...,iL). The set of grid cells is
defined as C ≡

{
C(i1, ..., iL) : (i1, ..., iL) ∈ {0, ..., P}L

}
. An example of this

grid partitioning with L = 2 objectives is shown in Figure 5.1(a).

Note that there are two key types of grid cells: those whose points are
dominated by at least one member of the Pareto efficient set and those
whose points are not dominated by any member of the Pareto efficient set
(shaded differently in Figure 5.1(b)). Subsequent new observations amongst
the non-dominated cells change the Pareto frontier, whilst observations in
the dominated cells do not. We define the set of non-dominated cells as
Cnd ≡ {C ∈ C : ∀y ∈ C,u ∈ P(Y),u ⪰̸ y}.

With the notation, definitions and illustrations developed, the increase in
Pareto volume from a new observation, ynew, is given by∑C∈Cnd VolvC

(
{ynew}

)
,

because
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Volvref

(
P
(
Y ∪ ynew

))
− Volvref

(
P
(
Y
))

=
∫
RL

I
[
o ⪰ vref

] ∏
u∈P(Y)

I
[
u ⪰̸ o

]
−

∏
u∈P(Y∪ynew)

I
[
u ⪰̸ o

] do
=
∑

C∈C

∫
RL∈C

 ∏
u∈P(Y)

I
[
u ⪰̸ o

]
−

∏
u∈P(Y∪ynew)

I
[
u ⪰̸ o

] do
=

∑
C∈Cnd

∫
RL∈C

 ∏
u∈P(Y)

I
[
u ⪰̸ o

]
−

∏
u∈P(Y∪ynew)

I
[
u ⪰̸ o

] do
=

∑
C∈Cnd

∫
RL∈C

1− I
[
ynew ⪰̸ o

]
do

=
∑

C∈Cnd

VolvC

(
{ynew}

)
. (5.2)

The first equality comes from the definition of the Pareto volume. The
second equality partitions the domain of the integral. The third equality
comes from the fact that the integrand is 0 for every C /∈ Cnd. The fourth
equality comes from the fact that for o ∈ C ∈ Cnd, I

[
u ⪰̸ o

]
= 1 for each

u ∈ P(Y) ∪ P(Y ∪ ynew)\{ynew}, by definition of Cnd. The final equality
comes from the definition of hyper-volume.

This is the volume of points which were previously non-dominated, but
are rendered dominated by ynew. Consequently, the expected increase in
Pareto volume is

EIPV(x|D) =
∑

C∈Cnd

∫
C

VolvC

(
{y}

)
p(y|D) dy

=
∑

C∈Cnd

wC∫
vC

L∏
l=1

(
yl − vC,l

)
p(y|D) dy. (5.3)

We have developed an acquisition function to decide where multiple objectives
should be evaluated next in pursuit of finding a Pareto frontier. Next, we
shall discuss various Gaussian process based measures for p(y|D).
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5.2 Pareto Learning with Gaussian Processes

Our setting is one in which evaluating objectives f1, ..., fL is expensive and
we therefore would like to learn as much as possible per set of evaluations.
Modelling objectives accurately and quantifying uncertainty about predic-
tions are both key to deciding where we should evaluate next. Gaussian
processes are ideal for modelling the objectives, as they are non-parametric,
provide uncertainty estimates about function values and often permit analyt-
ically tractable inference. We review how independent GP models on each
fl lead to an analytic expression for EIPV, and introduce a novel analytic
approximate of EIPV when we model the fl as correlated.

5.2.1 EIPV for Independent Gaussian Process Objec-
tives

Emmerich [2008] show that in the case that f1, ..., fL are independent Gaus-
sian process draws, the expected improvement in Pareto hyper-volume can
be calculated analytically. We denote the EIPV under independent GP
objectives, as IEIPV and compute it below,

IEIPV(x|D) =
∑

C∈Cnd

wC∫
vC

L∏
l=1

(
yl − vC,l

)
p(y|D) dy

=
∑

C∈Cnd

L∏
l=1

wC,l∫
vC,l

(
yl − vC,l

)
ϕ
(
yl − µl

σl

)
dyl

=
∑

C∈Cnd

L∏
l=1

σ2
l

[(
ϕ(βC,l)− ϕ(αC,l)

)
+ βl

(
Φ(βC,l)− Φ(αC,l)

)]
,

where fl(x)|D ∼ N
(
fl(x);µl, σ

2
l

)
, αC,l = (wC,l−µl)/σl, βC,l = (vC,l−µl)/σl,

and ϕ and Φ are the standard Gaussian p.d.f. and c.d.f. respectively. Under
the assumption of independent Gaussian process objectives, not only is the
EIPV analytically computable, its derivative is too. This is achieved by
computing the derivatives of µl and σl with respect to the input location x
and simple applications of the chain and product rule. The assumption of
independence of objectives is crucial in the above derivation as it allows us
to write an integral of a product as a product of univariate simple integrals.
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This is a luxury which is not enjoyed when the objectives are modelled as
being correlated.

5.2.2 Approximate EIPV for Correlated Gaussian Pro-
cess Objectives

Denote the integral over cell, C, in equation 5.3 as

ΨC(x) ≡
wC∫
vC

L∏
l=1

(
yl(x)− vC,l

)
p(y(x)|D)dy. (5.4)

Modelling the objectives fl as correlated Gaussian processes would lead
to a posterior f(x)|D ∼ N

(
f(x);µ,Σ

)
, where Σ is non-diagonal. Whilst

univariate Gaussian integrals are often analytically computable, the opposite
is true for general multivariate Gaussians. Under a correlated GP, the
integral ΨC is no longer tractable. Note that

ΨC(x) =
∞∫

−∞

L∏
l=1

(
yl − vC,l

)
I
[
vC,l < yl ≤ wC,l

]
p(y|D)dy. (5.5)

Define the form of the expression inside the product of equation 5.5 as
h(y) ≡ (y − v)I[v < y ≤ w]. Our approach is to approximate h(y) with a
scaled Gaussian probability density function, h̃(y) = zN (y;λ, τ 2), where we
set z, λ, τ to moment match h(y) as follows

z =
∫ ∞

−∞
h(y)dy =

∫ w

v
(y − v)dy = 1

2(w − v)2 (5.6)

λ = z−1
∫ ∞

−∞
yh(y)dy = z−1

∫ w

v
y(y − v)dy = 1

3(2w + v)

τ 2 = z−1
∫ ∞

−∞
(y − λ)2h(y)dy = z−1

∫ w

v
(y − λ)2(y − v)dy = 1

18(w − v)2.

Note that the approximation parameters z, λ, τ do not depend on the input,
x. See Figure 5.2 for an example of this approximation. The nature of our
approximation is similar to that made in expectation propagation [Minka,
2001]. The important difference is that expectation propagation requires
approximation parameters to be learned in order to well approximate the
entire integral ΨC , whilst our approach simply aims to well approximate
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Fig. 5.2 An example of matching the true integrand factor, h(y), with a
scaled Gaussian, h̃(y), by matching the first 3 moments.

the integrand, h(y). Whilst the expectation propagation approach is more
appropriate for our task statistically speaking, the parameters it would learn
would strongly depend on x, which makes EP computationally too expensive.
EP requires relearning the approximation parameters at each new x location
whilst our approximation does not require this. Incorporating our proposed
approximation strategy results in the following analytic expression for an
approximation to ΨC ,

ΨC ≈ Ψ̃C ≡
∞∫

−∞

L∏
l=1

zC,lN (yl;λC,l, τ
2
C,l)N (y;µ,Σ)dy

=
L∏

l=1
zC,l

∞∫
−∞

N
(
y; diag(λC), diag(τ 2

C)
)
N (y;µ,Σ)dy

=
L∏

l=1
zC,l × exp

− 1
2

(
µ⊤Σ−1µ+ log det(Σ)

)
(5.7)

+ 1
2

(
ν⊤

C Ω−1
C νC + log det(ΩC)

)

− 1
2

L∑
l=1

(
λ2

C,l

τ 2
C,l

+ log
(
2πτ 2

C,l

)),
where Ω−1

C = Σ−1 + diag
(
τ 2

C

)−1
and Ω−1

C νC = Σ−1µ+ diag
(
τ 2

C

)−1
λC . The

final equality comes from the fact that the product of multivariate Gaussian
probability density functions leads to a scaled multivariate Gaussian prob-
ability density function, which can be integrated analytically. We denote
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the approximated expected improvement in Pareto hyper-volume under the
correlated objective case as CEIPV(x|D) = ∑

C∈Cnd Ψ̃C(x).

Since the parameters zC ,λC , τC do not depend on input location, x, we
compute ∂Ψ̃C/∂x by computing ∂µ/∂x and ∂Σ/∂x , repeated applications
of the chain and product rules, and use of matrix derivative rules.

5.2.3 Alternative Approximation Considerations

Recall that ΨC ((5.4)) is the quantity we wish to approximate. An intuitive
approach to approximately compute this quantity would be to use the
Laplace approximation [MacKay, 2003]. We show that our approach leads
to a similar looking method to that of a Laplace approximation; the latter
fails to be useful in the case of correlated objectives. We may write ΨC as

ΨC(x) =
wC∫
vC

L∏
l=1

(
yl − vC,l

)
p(y|D)dy,

and define q(y) ≡ ∏L
l=1

(
yl − vC,l

)
N
(
y;µ,Σ

)
. Suppose there exists a y∗

such that vC ≺ y∗ ≺ wC and

∇y log q(y)
∣∣∣
y=y∗

= (y∗ − vC)−1 −Σ−1(y∗ − µ) = 0,

where u−1 is a vector with ith entry u−1
i . We may use a Taylor expansion

approximation to see that

log q(y) ≈ log q(y∗)− 1
2(y − y∗)⊤Ω(y − y∗), (5.8)

where Ω = −∇y∇y log q(y)
∣∣∣
y=y∗

= diag
(
(y∗−vC)−1

)2
+Σ−1, where diag(u)

is a diagonal matrix with ith diagonal entry ui. Consequently, we can
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approximate ΨC as follows

ΨC(x) ≈
wC∫
vC

q(y∗) exp
(
− 1

2(y − y∗)⊤Ω(y − y∗)
)
dy,

= q(y∗)(2π)L
2 det(Ω)− 1

2

wC∫
vC

N (y;y∗,Ω−1)dy. (5.9)

Notice that this approximation looks similar to the one we actually use from
the previous subsection. The issue with the equation above is that it is not
possible to analytically compute the c.d.f. of a general multivariate Gaussian
distribution. The approach we use in the subsection above avoids this issue
by directly approximating the integrand h(y) with a term that spans the
entire real line, on which we can perform Gaussian integrals.

5.2.4 Correlated Gaussian Process Models

In this subsection we propose two correlated output Gaussian process models
to use in the CEIPV framework.

Multi-task GPs

Bonilla et al. [2008] developed a framework to model correlated functions on
the same input domain, X . The idea involves a Kronecker factorisation of the
covariance between fl(x) and fl′(x′), separating the intra-task covariance
matrix from the inter-task covariance. Specifically, Cov(fl(x), fl′(x′)) =
Kl,l′k(x,x′), where K is a positive semi-definite matrix specifying inter-
task similarities and k is a covariance function over X . Suppose for inputs
x1, ...,xn, G is such that Gi,j = k(xi,xj), then the full covariance matrix
across tasks and data points is K ⊗ G, where ⊗ represents a Kronecker
product. A benefit of this approach, is that matrix inversion costs only
O(L3 +n3) since

[
K⊗G

]−1
= K−1⊗G−1. However, a potential downside is

that each function is marginally identically distributed up to scaling, which
may be a poor assumption for multiple objective Pareto frontier learning.
Swersky et al. [2013] utilise this model for Bayesian optimisation of single
objectives to transfer knowledge from previously solved similar optimisation
problems.
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Semi-parametric Latent Factor GP

In this framework introduced by Teh et al. [2004], the idea is to take
linear combinations of non-parametric models. Specifically, we consider L
independent Gaussian processes and model each objective function to be
optimised as a linear combination of the Gaussian processes. This is related
to factor analysis, where data is modelled as a linear combination of global
features or factors. Suppose

gl ∼ GP
(
0, kl(x,x′)

)
for l = 1, ..., L,

fl(x) =
L∑

l′=1
Al,l′gl′(x), (5.10)

where kl are parametric kernel functions over X and Al,l′ are real numbers.
In fact, we are able to analytically marginalise out the functions gl, and
model the functions fl as jointly Gaussian, with the following covariance
structure

Cov
(
fl(x), fl′(x′)

)
=

L∑
s=1

Al,sAl′,sks(x,x′).

A consequence of marginalising out the gl is that we now perform matrix
inversion on a LN × LN sized matrix, which has complexity O(L3n3). In
typical settings this cost would be prohibitive, but note that under a Bayesian
optimisation framework this would not be a problem. We will be interested
in up to 3 objective functions to optimise, and n is typically small, of the
order of 100.

5.3 Experiments

In this section, we provide empirical comparisons assessing the performance
of the proposed CEIPV method. We denote the CEIPV framework under
the semi-parametric latent factor GPs and multi-task models, as CEIPV-SLF
and CEIPV-MT respectively. Three algorithms are used for comparison:
IEIPV, ParEGO [Knowles, 2006] and Random. ParEGO is a method, which,
at each iteration, defines a single objective function by taking a random
convex combination of the multiple objectives, and maximising the expected
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improvement under the pseudo single objective to decide where to evaluate
all of the objectives next. Random simply picks a point in X to evaluate all
the objectives at next, uniformly at random. Our experiments assume the
input space, X , is a convex subset of RD.

In line with Snoek et al. [2012], we choose to use ARD Matérn 5/2 kernels
over the input space, defined as

kM52(x,x′) = θ2
0

(
1 +
√

5r2 + 5
3r

2
)

exp
(
−
√

5r2
)

r2 =
D∑

d=1
(xd − x′

d)2/θ2
d.

For the CEIPV algorithms, the amplitude hyperparameter, θ0, is set to 1 to
avoid over parametrisation.

In many applications, observed values are corrupted with noise. In this work,
we assume each objective is observed with its own form of Gaussian noise,
such that yl(x) = fl(x) + ϵl(x), where ϵl(x) ∼ N (0, σ2

l ) independently. All
of the previous derivations remain possible with the assumption of additive
Gaussian noise, because a sum of Gaussians is also Gaussian distributed.

To perform a fully Bayesian treatment of the hyperparameters, we place
priors over and sample them from their joint posterior given observed data
using slice sampling [Neal, 2003]. As in the previous chapters, we average
the acquisition functions over hyperparameter samples. Independent log-
Gaussian priors are placed over θ and σ. In the case of CEIPV-MT, we
parametrise the L× L inter-task covariance matrix K as AA⊤, where A is
lower triangular. A lower triangular matrix is also used in CEIPV-SLF. For
both algorithms, we place Gaussian priors on the lower triangular entries of
A.
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(a) Synthetic objectives
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(b) Increase in PV at x ∈ X

Fig. 5.3 An illustration that modelling correlations amongst objectives is
beneficial. (a) Two objectives on X = [0, 1] with observed function values
shown by black squares. (b) Plots of CEIPV, IEIPV and IPV at new input
locations. IPV is the actual increase in Pareto volume. CEIPV better
matches the true IPV, as it is able to model negative correlation between
objectives.

5.3.1 Empirical Illustration of the Benefit of Mod-
elling Correlations

Our first experiment shows the benefit of modelling cross objective corre-
lations, and that the CEIPV method is able to capture these correlations.
For illustrative purposes, we limit the input space to [0, 1], and generate
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two negatively correlated objective functions, f1 and f2 which we jointly
wish to maximise. Given noise free observations of both objectives at 7
input locations, we compared CEIPV-SLF(x|D), IEIPV(x|D) and the ac-
tual increase in Pareto volume from a new evaluation at x given the data
and full knowledge of the objective functions, IPV(x|D, f1, f2). See Figure
5.3. Notice CEIPV does a much better job of modelling IPV than IEIPV
does. Whilst the independent GP method is fooled by the high function
values for x ∈ [0.8, 1], the correlated GP model learns the strong negative
correlation, and uses this to recommend that the next evaluation be in the
interval x ∈ [0.2, 0.3].

5.3.2 Quality of the CEIPV Approximation

Once convinced that modelling correlations amongst objective functions is
beneficial, we wished to assess the quality of the CEIPV approximation to
the true integral, EIPV, under the the SLF model. We again consider 2
objective functions, f1, f2 : [0, 1]2 → R with 10 noiseless function observa-
tions (Figure 5.4(a),(b)). The objectives are constructed non-linearly from
two independently drawn Gaussian processes. Under a SLF GP model, we
compute an estimate of EIPV (equation 5.3) using numerical integration,
and CEIPV-SLF, at new input locations x ∈ [0, 1]2 (Figures 5.4(c),(d)).
Notice that the contours of CEIPV-SLF are on the whole very similar to
those of EIPV, suggesting that the CEIPV approximation is a decent one.
There is a small amount of discrepancy is in the region [0, 0.2] × [0.8, 1],
where CEIPV is slightly more inclined to explore than IEPV, something we
noticed in further experiments. The approximation quality appears best in
regions close to observed input locations.

For the remaining experiments, we report Volvref

(
P(Ỹt)

)
at every iteration, t.

Each experiment is initialised with function evaluations at 5 input locations
sampled independently and uniformly at random over the input space. To
assess performance with different initial samples, we repeat each experiment
50 times with different initial input points. At each iteration, we average
the acquisition function over 10 hyperparameter samples.
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(a) Synthetic objective, f1
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(b) Synthetic objective, f2
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(c) EIPV(x|D)
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(d) CEIPV(x|D)

Fig. 5.4 We empirically assess the quality of the CEIPV approximation to
a numerical integration based estimate of EIPV on a 2 objective problem,
under the Semi-parametric Latent Factor GPs model. (a), (b) Synthetic
objective functions f1, f2 : [0, 1]2 → R. Dark regions correspond to high
function values and faint regions correspond to low function values. Black
squares correspond to input locations of 10 function evaluations, which are
identical for both functions. (c) Ground truth EIPV(x|D), where each ΨC(x)
is computed using numerical integration over R2. (d) Our approximation,
CEIPV(x|D). Dark regions correspond to input locations, x ∈ R, with high
utility, whilst faint regions correspond to inputs with low utility in terms of
where to evaluate the objectives next.



5.3 Experiments 117
0 20 40 60 80 100

4

6

8

10

12

14

16

18

t

P
a
re
to

H
y
p
er
vo
lu
m
e

0 20 40 60 80 100
9

10

11

12

13

14

15

16

17

t

P
a
re
to

H
y
p
er
vo
lu
m
e

CEIPV-SLF
CEIPV-MT

IEIPV
ParEGO
Random

1

(a) ρ = −0.5
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(b) ρ = 0

0 20 40 60 80 100

6

8

10

12

14

t

P
ar
et
o
H
y
p
er
vo
lu
m
e

0 20 40 60 80 100
5

6

7

8

9

10

11

t

P
ar
et
o
H
y
p
er
vo
lu
m
e

1

(c) ρ = +0.25
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(d) ρ = +0.75

Fig. 5.5 Performance of various algorithms in maximising Pareto hypervolume
on 2 objectives on X = [0, 1]3, synthetically generated from the Semi-
parametric Latent Factor GPs with correlations (a) ρ = −0.5, (b) ρ = 0, (c)
ρ = +0.25 and (d) ρ = +0.75. Experiments for each algorithm are repeated
50 times, the mean performances plus-minus one standard deviation are
plotted.

5.3.3 CEIPV Performance for Varying Levels of Ac-
tual Correlation

Next, we assess the performance of various algorithms on problems with
different correlation levels. Setting the input space to [0, 1]3, we generate
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Fig. 5.6 Performance of multi-objective optimisation algorithms on synthetic
and real functions. Experiments for each algorithm are repeated 50 times,
the mean performances plus-minus one standard deviation are plotted.

pairs of objectives, f1, f2, with means 2 and −2 respectively. Objectives
are drawn using the SLF model with two Matérn kernels with lengthscales
θ(1) = [0.7, 0.4, 1] and θ(2) = [0.34, 0.9, 0.5]. The matrix A is set such that
A1,1 = 1,A2,1 = ρ and A2,2 =

√
1− ρ2. We generate pairs of objectives for

(a) ρ = −0.5, (b) ρ = 0, (c) ρ = +0.25 and (d) ρ = +0.75. The various
algorithms are run attempting to find Pareto efficient frontiers, with the
results displayed in Figure 5.5. The higher the absolute value of correlation,
the more the CEIPV methods outperform other methods. For ρ = 0 there
is so statistical difference between between IEIPV and CEIPV models as we
would expect. ParEGO also performs just as well for this level of correlation.
Each of the 4 model based methods outperforms Random. These experiments
provide strong evidence that the CEIPV are able to account for correlations
amongst objectives, and that this can lead to superior performance.
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5.3.4 Performance over Benchmark Multi-objective Op-
timisation Tasks

While Gaussian process based multi-objective optimisation has not been
thoroughly explored, there is a long history of, typically model-free based,
approaches to this problem, including evolutionary and genetic algorithms
[Coello et al., 2002; Zitzler and Thiele, 1999b]. Several benchmark functions
have been constructed for testing the efficacy of optimisation algorithms.
We choose three such functions for experimentation: oka2 [Okabe et al.,
2004], vlmop3 [Veldhuizen and Lamont, 1999] and dtlz1a [Deb et al., 2001].
We define the functions below.

• oka2 is defined for x1 ∈ [−π, π], x2, x3 ∈ [−5, 5] as

f1(x) = −x1,

f2(x) = −1 + 1
4π2 (x1 + π)2 − |x2 − 5 cos(x1)|

1
3 − |x3 − 5 sin(x1)|

1
3 .

• vlmop3 is defined for x ∈ [−3, 3]2 as

f1(x) = −0.5(x1 + x2)2 − sin(x2
1 + x2

2),

f2(x) = −(3x1 − 2x2 + 4)2

8 − (x1 − x2 + 1)2

27 − 15,

f3(x) = − 1
x2

1 + x2
2 + 1 + 1.1 exp(−x2

1 − x2
2).

• dtlz1a is defined for x ∈ [0, 1]6 as

f1(x) = −0.5x1(1 + g(x)),
f2(x) = −0.5(1− x1)(1 + g(x)),

g(x) = 100
[
5 +

6∑
i=2

(xi − 0.5)2 − cos
(
2π(xi − 0.5)

)]
.

Results for the experiments on these functions are shown in Figure 5.6(a),(b),(c).
The objectives being experimented on have complicated correlations between
them, which depend on the location of the input space. Nonetheless, the
CEIPV methods perform consistently strongly in all experiments. IEIPV
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does well on the oka2 task despite a slow start. We believe this was due to
f1 being simple to model, where a correlated multi-task GP may be prone
to consider more complicated explanations than necessary.

5.3.5 Performance on Real World Data and Simula-
tions

Finally we consider three real-world multi objective Pareto frontier optimi-
sation problems. The first problem, boston, involves training a 2 hidden
layer neural network on a random train/test split of the Boston Housing
dataset [Bache and Lichman, 2013], as we did for parallel predictive entropy
search. The function takes as input the weight-decay parameter, number
of training iterations and size of the hidden layers. The outputs are the
negative prediction error on the test set, and the negative product of the
layer size and number of training iterations. The idea is to explore the
trade off between (i) accuracy of prediction, and (ii) a combined measure
of memory consumption and training time of the neural network. Such a
trade off would be useful to explore, for example in the case of storing neural
network models on mobile devices with limited memory and computational
power. A manufacturer of such devices would be interested in knowing the
form of the Pareto curve as this could influence final design choices.

Next we consider rocket, a simulation of a rocket [Hasbun, 2008] being
launched from the Earth’s surface, as we did for parallel predictive entropy
search. The mass of fuel used, launch height and launch angle relative to
the ground are inputs to the simulation. The outputs are the time taken
to return to the Earth’s surface, the angular distance travelled with respect
to the centre of the Earth, and the absolute difference between the launch
angle and the radius at the point of launch. Simulations are often used in
engineering to explore what outcomes of various design choices may be for
example in aerospace and automobile engineering. Nevertheless, running
simulations can take days and require vast computational resources, making
intelligent experiment choice crucial.

Thirdly we consider the problem of optimising compiler settings for the
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LLVM compiler, using the SW-LLVM data set of [Siegmund et al., 2012].
The design space consists of 1023 different compiler settings, determined
by 10 binary flags. The objectives are memory footprint and performance
on a given set of software programs, compiled with the particular compiler
settings. The data was very costly to obtain; evaluating the objectives on a
particular compiler setting takes several hours. We denote the problem llvm,
and set the input space to [0, 1]10, using a rounding function to determine
the binary indicators.

Results on each of the three real world tasks are shown in Figure 5.6(d),(e),(f).
As before, the CEIPV algorithms which incorporate correlations between
objectives tend to perform best, by a statistically significant margin in most
cases. Most interestingly, the IEIPV model performs marginally worse than
random selection on the llvm task, whilst the CEIPV methods do signifi-
cantly better than random. On the boston problem, the CEIPV methods
appear to achieve results in 10 iterations, which takes ParEGO about 100
iterations, suggesting that our approximation and correlation modelling
significantly boosts the rate at which we approach Pareto optimality.

5.4 Discussion

In this paper, we argue that modelling correlations amongst objectives in
multi-objective Pareto optimisation problems is important for success. To
overcome the problem of intractable integrals, we devise a novel approxi-
mation which leads to an analytic and differentiable approximation to the
expected increase in Pareto hypervolume acquisition function. Two forms of
correlated output GP models are implemented on a variety of multi-objective
problems, and seem to consistently outperform competing models which
model objectives as being independent.

Whilst our empirical results suggest that modelling correlations using the
approximation we derive is beneficial, more work may be required to assess
where the approximation breaks down. For example, when the objectives
are truly uncorrelated, CEIPV would not match IEIPV as one would de-
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sire. A possibly simple way to circumvent this issue would be to define
a utility function of the form κ IEIPV(x|D) + (1− κ) CEIPV(x|D), where
κ = det(correl(Σ)) and correl(Σ) is the correlation matrix induced by Σ,
such that correl(Σ)i,j = Σi,j√

Σi,iΣj,j
. The determinant of the correlation matrix

is 1 exactly when the objectives are uncorrelated, and it is 0 exactly when
the objectives are fully correlated. Using a linear combination of the IEIPV
and CEIPV in this way removes the inconsistency of the CEIPV when the
objectives are truly independent.

Another small flaw in the approach we have taken in this work is in the
need to prespecify vref and wref . In theory, setting these quantities to −∞
and +∞ is feasible, however, we found that more sensible initialisations led
to smoother training. In practice, we based vref on the 5 initial randomly
chosen input locations, and fixed it. wref was chosen to dominate all of the
initial function evaluations, and was adapted if an observation was made
which dominated it.

There are several directions in which this work may be extended further.
Further theoretical analysis is required to assess the nature of the approxi-
mation we have made. In order to reduce computational burden under the
SLF model, one may consider implementing a sparse approximation to the
NL×NL covariance matrix which leads to faster computation. Next, we
could work on how to select a batch of points where we can evaluate next
in parallel, in a multi-objective setting. Another interesting avenue would
be to experiment with alternative correlated output models, such as a deep
neural network.



Chapter 6

Conclusions

Optimisation is a fundamental concept to all sorts of engineering problems.
More specifically, Bayesian optimisation provides a powerful framework for
optimisation of objectives which are expensive to evaluate pointwise and do
not provide gradient information. This thesis presents a range of contribu-
tions to Bayesian optimisation research, including studying non-parametric
Bayesian priors for continuous functions, developing acquisition functions
for parallel optimisation and multi-objective optimisation.

Whilst Gaussian processes are the default choice for non-parametric Bayesian
function modelling, in Chapter 2 we explore a more general class of elliptical
processes. Our finding was that a Student-t process is in fact a more general
non-parametric prior than the Gaussian process, and is also as general as is
tractably possible. Theoretically, for a fixed covariance and mean function,
the Gaussian and Student-t processes lead to the same predictive means
given data, however, their predictive covariance is different, as are the higher
order moments. This was evident in the Bayesian optimisation application,
where GPs and TPs exhibited different exploration-exploitation trade offs,
especially in low data settings. Going forward, more research is required to
discover and test different models for the objective function to be optimised.
Random forests and Bayesian neural network models have been explored in
the recent past, but little is known about the pros and cons of various models.

In Chapter 3 we introduce the notion of statistical entropy as a way to
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measure the information content of a random variable. Bayesian optimisa-
tion is concerned with finding the optimiser, x∗, of an unknown function.
Hennig and Schuler [2012] propose the idea of choosing where to evaluate
a function next to maximally reduce the entropy of x∗ given the data. We
extend this idea and those of Hernández-Lobato et al. [2014], to the case
were we are able to query the unknown function at multiple locations at
the same time in parallel. Our approach is the first to our knowledge which
selects the batch of points jointly rather than greedily. A downside of our
approach was that it was often difficult to determine how severely perfor-
mance was being affected by the approximations we were implicitly making
by the constraints we were imposing. In a few instances, the expectation
propagation procedure in the inner loop of the batch Bayesian optimisation
would fail to converge. We found that this was often due to conditioning
on a poor value of optimiser, x∗. Sampling effectively from the posterior
distrbution of the optimised given observations is very difficult, and more
attention should be paid to this problem.

Maintaining the theme of information gain, we discuss as approach to
decide where to probe multiple objectives next in Chapter 4. Here the
task is to find the set of Pareto efficient points with respect to multiple
objectives. We therefore choose to evaluate functions at a point which would
maximally reduce the entropy of the Pareto frontier in expectation. Similar
to the problems with parallel predictive entropy search, it proved difficult
to sample points on the Pareto efficient curve given observations of the
functions. However, the idea of decoupling the acquisition function over the
different objective functions proved fruitful and is a direction which should
be pursued further. However, in both the multi-objective and batch cases, a
slight flaw was in our treatment of hyperparameters, which we discussed in
the corresponding chapters. A more principled way of accounting for how
observations affect your information about the hyperparameters themselves
is necessary.

Finally in Chapter 5, we make the assertion that in most cases where
one would like to jointly optimise multiple objectives, it is likely that the
objectives are inherently correlated in some way. We therefore proceed
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to model objectives as being correlated, and develop an approximation to
volume based acquisition function to decide where to evaluate the multiple
correlated models. Whilst partitioning the output space using grid cells was
a theoretically attractive approach, it led to computational difficulties and
slow algorithmic performance through significant book keeping. Further-
more, the input agnostic Gaussian approximation we made to the factors
in the integrand of the expected increase in Pareto hypervolume was fairly
naive and simple. Despite decent empirical performance, it is necessary to
spend more time testing where such an approximation could break down.
Nevertheless, incoporating dependencies across objective functions in the
model seemed very beneficial to performance.
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