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Abstract

Crystal Cartography:
Mapping Nanostructure with Scanning Electron Diffraction

Duncan Neil Johnstone

Nanostructure describes the network of defective and distorted atomic structure existing
on the nanoscale within materials. This nanostructure bridges the gap between idealised crys-
talline structure and real materials, playing a deterministic role in tailoring physico-chemical
properties, as well as providing a basis for mechanistic understanding of complex processes
such as mechanical deformation and phase transformation. Characterising nanostructure, to
develop understanding of materials, requires experimental techniques capable of probing the
structure with spatial resolution on the order of nanometres and across regions of interest
up to micrometres. Recent developments in electron microscopy, enabling the acquisition
of numerous diffraction patterns in a spatially resolved manner, combined with modern
computational power, provides a route to meet this need as developed in this work.

Scanning electron diffraction (SED) involves the acquisition of a two-dimensional elec-
tron diffraction pattern at each probe position in a two-dimensional scan of a specimen. An
information rich 4-dimensional (4D-SED) dataset is obtained that can be analysed extensively
post-facto using a wide-range of computational methods. The acquisition of such 4D-SED
data from the specimen at numerous orientations may also enable the reconstruction of
nanostructure in three-dimensions via tomographic methods. In this work, methods for the
acquisition and analysis of 4D-SED data are developed and applied to reveal nanostructure in
two and three-dimensions. These methods are applied to various prototypical characterisation
challenges in materials science, particularly: strain mapping in two and three dimensions,
revealing inter-phase crystallographic relationships, mapping grains in two-dimensional
materials, and probing nanostructure in polyethylene.
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Chapter 1

Material Structure & Characterisation

Understanding materials behaviour involves relating physical properties, processing pa-
rameters, and in-situ transformations, to structure from the atomic scale (10−10 m) to the
component scale (10−9 −10 m). The structure may then be manipulated in order to obtain
properties suitable for technological applications. This requires materials characterisation
and modelling across length scales, using numerous techniques, as shown in Figure 1.1.
On the nanoscale (1 nm - 1 µm), atomistic modelling is relevant but reaches contempo-
rary limits of scale [29, 30] and there is is no routine, robust and quantitative experimental
method for directly determining local atomic structure [31]. Consequently, there is a pressing
need to develop nanostructural descriptors and characterisation techniques that may enable
nanostructured materials to be engineered [32, 33].

Complete description of material structure would, in principle, require specification of the
nature, location, bonding, and dynamics of all atoms comprising it. However, performing that
analysis on an atom-by-atom basis is unfeasible due to the sheer number of atoms involved.
Instead, parts of the material, with similar atomic structure, are identified that may be ap-
proximated by relatively simple idealized atomic arrangements either in the limit of complete
order or disorder. More complexity is then introduced as deviations away from these ideals
using few parameters. Atomistic description may sometimes be necessary for a complete
picture but, where possible, more compact representations of essential features are favourable.
Descriptors for idealized atomic structures and microstructural deviations are reviewed in
Sections 1.1 & 1.2 leading to a more specific definition of the nanostructure problem in
Section 1.3. Experimental techniques capable of revealing elements of nanostructure, are
then reviewed in Section 1.4 to make the case for developing scanning electron diffraction
(SED) microscopy as a direct nanoscale structural probe, which is the aim of this work.



2 Material Structure & Characterisation

Fig. 1.1 Multiscale materials modelling and characterisation. Various techniques appli-
cable across a range of length and time scales. Reproduced from Kochmann [1].

1.1 Atomic Structure

Atoms arrange into energetically stable polyatomic species (e.g. molecules and crystals),
subject to kinetic limitations, as a result of interactions defining chemical bonding [34].
This bonding is due to the redistribution of electron density, primarily the most weakly
bound (valence) electrons, throughout the structure [35, 36] and is often discussed using an
extensive taxonomy of ’bonds’ including: ’strong’ covalent, ionic and metallic bonds; and
’weak’ inter-molecular bonds such as hydrogen bonds, halogen bonds, van der Waals bonds,
and π −π interactions. These bonds, and particularly covalent bonds, may be identified
as linkages between structural units [21, 37] although there may also be significant non-
directional contributions [38, 35]. The atomic arrangement resulting from these interactions
is typically described in terms of atomic coordinates, which is the atomic structure.

The atomic structure may be approximated either as a crystal possessing long-range
atomic order or as a non-crystal without long-range atomic order. Crystalline atomic structure
can be described by a small atomic unit and a rule for continuing the ordered structure
provided by the language of crystallography (see Section 1.1.1), but non-crystalline atomic
structure is typically described on a case-by-case basis, without a generalized framework
(see Section 1.1.2). In both cases, the identification of linkages between structural groups
enables topological analysis (see Section 1.1.3) that may reveal structural similarities.
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1.1.1 Crystals

Crystals give essentially sharp diffraction [39], which is the primary means of probing
crystalline structure, such that the diffracted intensity is concentrated in peaks at positions:

g =
n

∑
i=1

hia∗i (n ≥ 3) (1.1)

where a∗i are reciprocal basis vectors and n is the minimum dimensionality for which all
g can be described with hi as integer coefficients. Conventional periodic crystals, possessing
translational symmetry, correspond to n = 3, and aperiodic crystals, e.g. incommensurately
modulated structures and quasicrystals [40, 41], correspond to n > 3.

Periodic crystals comprise an atomic motif repeated at an infinite periodic array of points
connected by lattice vectors, rlat = ua1 + va2 +wa3, where u,v,w are integers and ai are
direct space basis vectors, which is a set closed under addition and subtraction. The 14
Bravais lattices fill three-dimensional space perfectly and this translational symmetry implies
that the atomic arrangement can be described by repetition of a unit cell, within which
atoms may be related by symmetry operations that leave at least one point unmoved, i.e.
rotation, reflection, and inversion. This point symmetry must map the lattice onto itself to
be compatible with translational symmetry and must therefore correspond to one of the 32
crystallographic point groups, which combined with the Bravais lattices lead to 230 unique
space groups defining the crystal symmetry. Crystalline atomic structure thus comprises an
asymmetric unit of atomic structure and appropriate symmetry operators, as illustrated in
Figure 1.2.

Fig. 1.2 Symmetry in crystals. (a) A metal-organic polyhedral (MOP) structure [2], MOP-
14, reduced to a unit cell containing 854 atoms by translational symmetry and an asymmetric
unit comprising only 15 atoms by point symmetry. (b) Symmetry operators of the Im3m
space group of MOP-14 as shown in the International Tables for Crystallography [3].
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Crystal symmetry is physically significant since Neumann’s principle [42] states that the
crystal point group must be a subgroup of the symmetry of any physical property. Some
physical properties are therefore only possible in non-centrosymmetric crystals, typically
those represented by polar tensors of odd rank (piezo/pyro electricity) or axial second rank
tensors (optical activity) [42]. Defects in crystals may also be described in terms of the
symmetry operations that they break as discussed in Section 1.2.4.

1.1.2 Non-crystals

Non-crystalline atomic structures do not possess the long-range order of crystals, but atoms
also do not arrange randomly due to interactions between them, which, at a minimum,
prevent very small interatomic separations. Indeed, the taxonomy of crystallography fails on
introducing simple local distortions to crystalline structures [4]. But, order in non-crystals
has signatures in both the diffraction pattern and the pair distribution function (PDF), which
is the probability density of interatomic pair separation as a function of distance obtained
as the Fourier transform of the total scattering structure factor [43], as in Figure 1.3. These
characteristics enable atomic models to be constructed from data, often using reverse Monte
Carlo methods [44–46], and ab initio using molecular dynamics [46, 47].

Fig. 1.3 Atomic order and disorder. A crystal structure (a) may be made non-crystalline
by introducing correlated (b) or random (c) rotations. (d-e) Disorder introduces diffuse
scattering, which is structured if the disorder is correlated (e). (g-i) Correlated disorder also
leaves signatures in the PDF. Reproduced from reference [4].
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Short-range order (SRO) in nearest neighbours occurs due to interactions between atoms
and is reflected in the three classical models of amorphous solids [48]: (1) the continuous ran-
dom network model [49] for covalent network glasses, e.g. a-Si, a-SiO2 [50] and amorphous
metal organic frameworks [51, 52]; (2) the dense random packing model [53] for metallic
glasses, which has been modified to introduce local stereochemistry [54] and atomic clusters
[55]; and (3) the random coil model [56] for amorphous polymers. Medium-range order
(MRO), between approximately third nearest neighbours, is less understood because peaks in
the PDF are broad due to the large number of pair correlations at moderate distances [57],
but evidence for MRO is growing [58]. Intermediate degrees of order, such as the correlated
disorder [4] described above and the various mesophases of molecular solids [59], such as
liquid crystals that possess orientational order but not positional order [60], also exist.

1.1.3 Topology of Chemical Graphs

An atomic structure may be considered as a graph with vertices corresponding to structural
groups (e.g. atoms, molecules) and edges to linkages (e.g. chemical bonds) between them
[21, 61]. Topological descriptors characterize the set of linkages to assess the connectivity of
structural space. For example, a cycle is a loop of linkages without crossings and a ring is a
cycle that is not a sum of two smaller cycles. Important numerical properties include: the
vertex symbol describing the number of ways a ring may be constructed, and the transitivity,
which is a measure of complexity described by the number of vertices, linkages, faces and
tiles formed when rings are used to construct space filling polyhedra. A topology is invariant
to structural distortions provided that linkages are not broken and can be particularly useful
in: (1) describing flexible systems [61], (2) identifying structural classes, as in Table 1.1, and
similarities between them [21], and (3) identifying the emergence of crystal-like regions in
non-crystalline atomistic models e.g. based on persistent homology [62, 63], which accounts
for both connectivity and geometry.

Table 1.1 Classification of crystals based on structural units and bond types. 1H-bonds,
van der Waals, or specific secondary interactions e.g. S—S, I—I. From Blatov et al [21]

Category Structural Groups Intra-bonds Inter-bonds
Inorganic Ionic Compounds metal ions, complex ions covalent ionic
Intermetallic Compounds metal ions, metal clusters metallic metallic
Porous Structures cages covalent covalent
Coordination Compounds (I) metal atoms, ligands covalent covalent
Coordination Compounds (II) complex groups covalent H-bond
Organic Crystals organic molecules covalent intermolecular
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1.2 Microstructure

Real materials, whether bulk materials or nanomaterials, typically possess heterogeneous
atomic structure. This heterogeneity defines microstructure and may be manifest in various
ways. Many materials are aggregates of grains and precipitates defining regions within
which the atomic arrangement is well approximated by a particular, crystalline or non-
crystalline, atomic structure and composition - referred to as a phase. Size, morphology and
spatial distribution characterize this grain structure (see Section 1.2.1). In polycrystalline
materials, grains are crystals with different orientations (see Section 1.2.2) that are sometimes
crystallographically related (see Section 1.2.3) and may contain defects (see Section 1.2.4)
and/or be distorted continuously (see Section 1.2.5). Bulk amorphous materials may appear
more homogeneous but heterogeneity is common in the form of variations in local atomic
density or the presence of nanocrystals [64–67]. Here, the focus is on the multiscale network
of phases, orientations, defects and distortions, defining microstructure in polycrystalline
materials, as illustrated in Figure 1.4.

Fig. 1.4 Microstructure in polycrystalline materials. Heterogeneities in the atomic struc-
ture from the atomic to the macroscopic scale defining microstructure, from [5].
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1.2.1 Morphological Parameters

Grain structure is often characterized in terms of grain size and the spatial distribution of
phases/precipitates using scalar quantities derived from two-dimensional measurements of
cross-sections [68]. Grain sizes may be reported as the equivalent diameter of circles with
areas equal to measured grains or spatial distributions in terms of mean distances between
points on lines intercepting features of interest [68]. Such characteristic distances may be
correlated with physical properties, for example, the Hall-Petch dependence of yield strength
[69], but are a simplistic representation of irregular shapes arranged in three-dimensions. A
more complete representation could consider grain volume, shape, morphological orienta-
tion, number of contiguous nearest neighbour grains, as well as correlations between these
parameters [70, 71] but irregular shapes remain a particular challenge [72].

1.2.2 Crystal Orientations & Texture

Crystallographic orientation maps specify the orientation of crystal basis vectors as a function
of position, as shown in Figure 1.5a. Coordinate systems are introduced to specify directions
in a specimen reference frame, r, and crystal reference frames, hi, and the local orientation
may then be described as a transformation between coordinate systems. Conventionally,
the reference frames introduced are orthonormal, right-handed, and share the same origin.
Orientations are defined as passive rotations (i.e. tensor quantities are not rotated) that
transfer coordinates with respect to a crystal reference system into coordinates with respect
to a specimen reference system. The rotation angle is taken to be positive for a rotation that
is counterclockwise when viewed along the corresponding rotation axis towards the origin.
An orientation, gi, therefore satisfies

r = gihi, (1.2)

where r = (x, y, z) denotes specimen coordinates, hi = (e1, e2, e3) crystal coordinates,
and the orientation is an element of the rotation group, gi ∈ SO(3). These rotations form a
non-commutative group [73] implying inverses exist and rotations are combined associatively.

Representations of orientations comprise 3 independent parameters most commonly
expressed as Euler angles, an axis and angle of rotation, a quaternion, or a rotation matrix
[73]. The distribution of crystal orientations may be quantitatively assessed in terms of the
orientation distribution function (ODF), which is the continuous probability density function
describing the likelihood of observing each orientation within the specimen [74]. There may
be a prevalence of some crystal orientations within a material, known as texture, which may
result in polycrystalline material retaining anisotropy in tensor properties [75].
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Fig. 1.5 Crystallographic orientation maps. (a) Local orientations gi of crystallographic
axes with respect to an external reference frame. (b) Orientations, gi, as transformations from
the crystal reference frames, hi, into the specimen reference frame, r, and a misorientation, m,
describing transformation between crystal reference frames across a boundary element (*).

1.2.3 Interfaces & Crystallographic Relationships

Two crystals (grains or precipitates) may meet at an interface and are related by the nature of
the interface and the relative orientation of the crystal lattices. The interface may be coherent,
with continuous lattice planes across it, semi-coherent if lattice defects (see Section 1.2.4)
are present, or incoherent without any lattice continuity. characterisation of the interface
generally requires three-dimensional characterisation and atomistic simulation [76, 77] but
may be geometrically classified in terms of five parameters defining the interface plane
and the relative lattice orientation [73, 78]. Only the relative lattice orientation, which is
accessible from two-dimensional crystallographic orientation maps, is considered below.

Misorientations, mi j, describe coordinate transformations between crystal reference
frames and, like orientations, are passive rotations described by three-parameters. For two
crystals with orientations g1 and g2, as shown in Figure 1.5b, the misorientation mi j between
them is defined and transforms crystal coordinates h1 into crystal coordinates h2, as follows:

m12 = g−1
2 g1 (1.3)

m12h1 = g−1
2 g1h1 = g−1

2 r = h2 (1.4)
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The misorientation distribution function (MDF) is the continuous probability density
function for observing misorientations [73] and may indicate special orientation relation-
ships if misorientations are more prevalent than a random distribution [79, 80]. Orientation
relationships are sometimes well approximated by parallelisms between low-index crystal-
lographic planes and directions [28] or as (near) coincident site lattices in which a fraction
of lattice sites associated with each crystal (nearly) coincide if the lattices are interleaved
[81] but this does not imply lattice continuity, or the existence of a low energy interface
[76]. Shear transformations, i.e. deformation twinning and martensitic transformation, must
lead to orientation relationships [82–84]. Those produced by twinning may be described as
rotations of 180◦ about an axis parallel or perpendicular to the plane unaffected by the shear
(twin plane) [75], whereas those produced by martensitic transformation may be close to
low-index parallelisms but the phase transformation necessitates irrational indices [75].

1.2.4 Defects in Atomic Structure

Defects describe ways in which atoms may be located away from expected positions that are
not just a small distortion (see Section 1.2.5) of the ideal structure. For example, an atom (or
molecule) may be missing from the structure, leaving a vacancy, or replaced by substitution
with another species. Similarly, additional atoms (or molecules) may be present in interstitial
positions between ideal atomic sites. Such defects are (0D) point defects and intuitively both
(1D) line defects and (2D) surface defects may also exist in three-dimensional materials,
as illustrated in Figure 1.4. Surface defects are interfaces, as above, in the special case of
like atomic structure and are typically either trivial, with the two materials being structurally
separate, or else may be described in terms of multiple line defects, which are the most
structurally compelling defects in three-dimensional solids [85].

Line defects may be considered in the theoretical framework of the Volterra process and
in terms of topology [6], as shown in Figure 1.6. In the Volterra process, the medium is cut
along a surface bound by the line defect and the unbound edges are displaced by a translation
b and a rotation Ω, which, if they are symmetries of the medium, lead to perfect quantized
defects [6]. Matter is then removed or added to avoid overlap or voids and the system
is relaxed elastically. Topological classification [85, 6] is based on considering an order
parameter that varies continuously through the medium, except at defects. For a crystalline
solid the order parameter space, V, is the coset space G/H where G is the proper part of the
full Euclidean group and H is the proper part of the crystallographic space group [85]. In this
case, topologically stable line defects in crystals are characterized by Bravais lattice vectors
and proper point group rotations observed on encircling the line, which is consistent with the
quantized defects of the Volterra process.



10 Material Structure & Characterisation

Fig. 1.6 Line defects in crystals. (a,b) The Volterra process for: (a) screw and edge
dislocations, (b) wedge and twist disclinations. (c) Topological classification of a dislocation
with both edge and screw character. Adapted from reference [6].

Classification of line defects as dislocations, disclinations, or dispirations which are
associated with translation, rotation, or both, follows from both theories. Dislocations are
most significant in three-dimensional crystals [86] and are associated with plastic deformation
[87], low-angle grain boundaries [87], and chemical properties [88]. Disclinations are not
observed in isolation in three-dimensional crystals due to large stresses, but are important in
liquid crystals [6] and two-dimensional materials [89]. Both theories may be applied to any
medium with a defined order parameter, which includes non-crystalline solids [6], but the
atomic arrangement at the defect line can only be revealed by atomistic simulation.

1.2.5 Continuous Lattice Distortions

Crystal basis vectors may change continuously through a grain due to microstructural
strain and rotations associated with defects [69]. This may be formalized by considering
the transformation of a vector in an unstrained reference, dx, to a vector in the strained
configuration, dx = dX + du, where du is the differential total displacement vector. These
vectors are then related, as illustrated in Figure 1.7, by the deformation gradient tensor, F:

dx = FdX =
∂x
∂X

dX = (I+∇u)dX (1.5)

where I is the second rank identity and ∇u is the displacement gradient tensor, which
describes both local distortion and rotation of the material.
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Fig. 1.7 Deformation of a solid. The transformation that maps an undeformed configura-
tion onto a deformed configuration is and inhomogeneous displacement field that may be
described by the deformation gradient tensor, defined as in Equation 1.5.

The deformation gradient tensor can be decomposed, F = RU = VR, using polar de-
composition, into the product of an orthogonal rotation tensor, R, and a positive definite
symmetric (right or left) stretch tensor, U or V. In the Lagrangian convention, i.e. in material
coordinates, the strain, ε , is defined,

ε =
1
2
(FT F− I)≈ 1

2
(F+FT )− I =

1
2
(∇u+∇uT )≈ U− I (1.6)

where the small strain approximation was used for approximate equalities. Deviatoric
strain changes the shape of an object whilst preserving volume and hydrostatic stain changes
volume. The strain field is related to physical properties such as charge carrier mobility
[90] and rotation fields may be interpreted in terms of a distribution of unpaired dislocations
known as geometrically necessary dislocations (GND) or Nye’s tensor [91].

1.3 Nanoscale Structure & Characterisation

Nanoscale structural heterogeneity may include all microstructure as well as the smallest
regions of order in non-crystals and nanomaterials. Characterizing this nanostructure is
challenging in two regards. Firstly, there is no obvious general framework for structural
description that improves upon an atomistic description, although there are many useful
descriptors for specific cases, as set out above. Secondly, the numerous possible structures
make the construction of models from bulk experimental data inherently ambiguous, although
statistical measures such as X-ray pole figures [74] and pair distribution function analysis
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[43] have been fruitful. This ambiguity in structure determination, as compared with the
perceived certainty of crystallography, is the nanostructure problem [31]. One route to
address this problem may be to consider nanostructure solution based on spatially resolved
measurements rather than the long-range averages that are helpful for crystallography.

Structural investigation with nanoscale (<100 nm) spatial resolution is typically achieved
using X-rays or electrons, which are penetrating, produce a plethora of physical signals and
may form nanoscale probes [92, 7, 93]. Imaging techniques may be applied to characterize
structure with the necessary spatial resolution and there have been important recent advances
in: diffraction contrast imaging and tomography for grain reconstruction in polycrystalline
specimens using both X-rays [94, 95] and electrons [96]; X-ray coherent diffractive imaging
[97], particularly for three-dimensional strain reconstruction in single crystals smaller than the
coherence length [98–100]; and atomic resolution electron microscopy [101] and tomography
of robust nanocrystals [102–105]. However, these techniques are only appropriate for limited
specimens and each reveal rather particular aspects of nanostructure. A more versatile
approach may be to obtain spatial resolution through the use of a nanoscale probe, allowing
various analytical signals to be recorded from each volume addressed [92, 7, 93]. The
acquisition of numerous local signals then enables nanoscale analytical mapping, which may
provide a route to solve the nanostructure problem on a more routine basis.

1.4 Nanoscale Analytical Mapping

Analytical mapping techniques involve the acquisition of numerous analytical (spectroscopic
or diffraction) signals in a spatially resolved manner, typically by moving the probe across
the specimen, or the specimen through the probe [92, 7, 93]. Two-dimensional maps are then
obtained that may be used to perform three-dimensional reconstructions with an analytical
signal associated with every pixel or voxel, leading to multi-dimensional data, as illustrated
in Figure 1.8. Spectroscopic mapping, based on the absorption and emission of radiation by
matter as a function of energy, provides powerful means to investigate local composition and
bonding. X-ray absorption spectroscopy, X-ray fluorescence spectroscopy, electron energy
loss spectroscopy and energy dispersive X-ray spectroscopy are all important in this regard.
Diffraction mapping typically involves the acquisition of two-dimensional diffraction patterns
which may be analysed to reveal local atomic structure as is the focus here. In both cases,
post-facto computational analysis enables structural heterogeneity to be elucidated in various
ways. Most current analyses assume homogeneity within the sampling or reconstruction
volume, which is reasonable only if that size is significantly smaller than the characteristic
size of nanostructure present.
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Fig. 1.8 Multi-dimensional analytical mapping. (a) 2D and 3D imaging with a single value
associated with each pixel or voxel; (b) spectroscopic mapping, in which at each pixel/voxel
is associated with a spectrum in the energy domain; (c) diffraction mapping, in which at each
pixel/voxel is associated with a 2D or 3D diffraction pattern. Adapted from [7].

Diffraction mapping may be applied to local changes in non-crystalline structure, via
calculation of the PDF at each probe position [106], but diffraction mapping to reveal local
crystal phase, orientation and strain is much more developed using X-ray diffraction (see
Section 1.4.1), electron backscatter diffraction (see Section 1.4.2), transmission Kikuchi
diffraction (see Section 1.4.3) and transmission electron diffraction (see Section 1.4.4). These
scanning diffraction microscopy techniques are all provide insights in both real and reciprocal
space and are in this sense hybrid diffraction/microscopy techniques with many common
features although interestingly different aspects have been developed in each case.

1.4.1 Scanning X-ray Diffraction Microscopy

Scanning X-ray diffraction microsocpy (SXDM) involves scanning the specimen through a
collimated, monochromatic or polychromatic, X-ray probe and recording an XRD pattern, on
an area detector, at each probe position [107–109]. SXDM performed with monochromatic
X-rays typically records a single Bragg reflection per scan and can map strain averaged along
the beam path, in approximately single lattice specimens, for a particular set of lattice planes
with very high (∼ 10−5) precision [110]. Larger detectors may enable more reflections to be
recorded simultaneously and the use of monochromatic X-rays is advantageous for simul-
taneous spectroscopic mapping. However, structural mapping is more generally developed
using polychromatic X-rays to record Laue patterns.
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Laue microdiffraction is capable of mapping both strain (∼ 10−4 precision [23]) and
orientation (∼ 0.01◦ precision [23]) in polycrystalline and highly deformed samples in two
and three dimensions. Achromatic focusing optics, typically Kirkpatrick–Baez mirrors, are
used to focus the polychromatic beam to a lateral size 20−200 nm [23] and the superposition
of Laue patterns from along the beam path, at the detector, can be avoided by using a
differential aperture geometry [22], as shown in Figure 1.9. X-ray Laue patterns contain
numerous non-coplanar reflections and four such reflections are sufficient to determine
the unit cell shape: a/c,b/c;α,β ,γ and its orientation, without knowledge of the X-ray
wavelength [23]. These parameters are sufficient to determine the deviatoric components of
the strain tensor but to determine all components of the strain tensor the unit cell parameters
are required, which is possible if the the wavelength associated with one reflection is found
by inserting a monochromator into the beam path and performing an additional scan.

Fig. 1.9 Scanning X-ray Diffraction Microscopy. Laue microdiffraction geometry with
detectors positioned near to 90◦ scattering angles and differential aperture microscopy
performed using a wire near to the specimen surface to separate scattering from along the
beam path. A monochromator may be moved in and out of the beam path, from [8].

1.4.2 Electron Backscatter Diffraction

Electron backscatter diffraction (EBSD), performed in a scanning electron microscope
(SEM), involves recording, at each probe position, the Kikuchi pattern formed by incoherent
quasi-elastic scattering of incident electrons followed by coherent elastic scattering of those
electrons as they exit the specimen surface [111]. Spatial resolution in EBSD is dictated
by the interaction volume of the electron beam with the sample, which has dimensions
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in the range 20-80 nm [112], defining both lateral and depth resolution. Kikuchi patterns
comprise numerous bands that are direct projections of the crystal lattice planes onto the
detector. Orientation analysis is based on relating the macroscopic sample axes to three
crystallographic axes identified in the pattern, at Kikuchi band intersections, typically using
the Hough transform [113–115]. Indexation is then achieved by comparing measured inter-
zonal/inter-planar angles to a table of known structures and the angular resolution of such
analysis is ∼ 0.5−1◦. Pattern matching approaches, based on comparing measured patterns
to a library of pre-calculated simulations, have been recently reported [116–120] offering
similar angular resolution. Incorporating dynamical simulation of intensities [121] into the
matching has also enabled polar domain structures to be mapped [122].

Fig. 1.10 Electron Backscatter Diffraction.(a) A typical Kikuchi pattern recorded in EBSD
and (b) schematic drawing of a typical experimental set up. (c) Indexation of a Kikuchi
pattern based on band intersection. Reproduced from Zaefferer [9].

High-sensitivity (∼ 10−4 precision) EBSD is based on measuring small band shifts in
multiple regions of the Kikuchi patterns using cross-correlation [123, 124] to determine shifts
of ∼ 0.05 pixels [123]. This may be enhanced by pattern binning and averaging, suggesting a
resolution limit of 4×10−7 [125]. Shifts in 4 non-coplanar regions of the Kikuchi pattern are
required to determine 8 components of the deformation gradient tensor [123], although more
regions are typically used [126]. The remaining degree of freedom is pure hydrostatic strain,
which may be determined by assuming that the local stress state must satisfy equilibrium
conditions with no stress normal to the free. Three-dimensional reconstruction may be
achieved using a dual-beam focused ion beam (FIB) SEM, in which slices of the material are
sequentially mapped as successive layers are removed via FIB milling [127].
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1.4.3 Transmission Kikuchi Diffraction

Transmission Kikuchi Diffraction (TKD) uses the Kikuchi pattern formed by electrons
passing through a thin film specimen, and may be performed in a scanning transmission
electron microscope (STEM) [128–131] and an SEM modified with a transmission detector
[25, 26]. In STEM-TKD an accelerating voltage of 60-300 keV and a collection angle of
∼ 10◦ is typical, as compared with 5-30 keV and ∼ 50◦ for SEM-TKD. These differences
impact the appropriate specimen thickness (5-100 nm vs. 50-250 nm), spatial resolution (1
nm vs. 10 nm) and analysis. SEM-TKD data may be analysed in the same way as EBSD data
using Hough transform based indexation to achieve ∼ 0.5−1◦) angular precision [25, 26].
STEM-TKD data is not usually suitable for such analysis since 3 zone axes are not typically
recorded. This leads to ambiguity in some indexations, but tracking shifts in band positions
has enabled small rotations to be mapped with ∼ 0.01◦ angular resolution [132, 133]. TKD
is typically limited by pattern clarity, which requires a specimen thickness in a range where
there is sufficient incoherent scattering to form a Kikuchi pattern but not so much as to create
excessive background. Further, the Kikuchi pattern is degraded by the presence of lattice
defects and distortions that are common in regions of interesting deformation.

1.4.4 Scanning Electron Diffraction Microscopy

Scanning electron diffraction (SED) microscopy involves recording a two-dimensional
electron diffraction pattern at every probe position as a focused electron probe is scanned
across the specimen in an STEM. The probe typically has a convergence angle in the range
0.5-5 mrad usch that the recorded diffraction patterns comprise separated small discs where
the Bragg condition is satisfied, as shown in Figure 1.11. This is in contrast to related 4D-
STEM experiments in which large convergence angles are used to obtain overlapping discs
suitable for analyses such as ptychographic reconstruction [134, 135]. SED data analysis
varies considerably depending on whether the contrast within diffraction discs is considered,
i.e. the patterns are analysed as convergent beam electron diffraction (CBED) patterns, or
else the pattern of discs is considered, i.e. the patterns are analysed as spot patterns. CBED
analysis enables higher order Laue zone (HOLZ) lines to be tracked [136–144] to map small
strains and rotations at high precision (∼ 10−4), with sensitivity to all 9 components of the
deformation gradient tensor [145]. Dynamical contrast within discs may also be used to
map polar domain structures [146, 147]. Such analysis is however limited to rather perfect
specimens by the high sensitivity of CBED contrast. For example, HOLZ lines are often
only visible away from major zone axes, in moderately thick specimens, with little lattice
distortion [148]. More general progress has been made based on spot pattern analysis.
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Fig. 1.11 Scanning Electron Diffraction. Two-dimensional electron diffraction patterns
are recorded at each probe position in a two-dimensional scan to obtain a four-dimensional
(4D-SED) dataset that may be analysed computationally in various ways.

Analysis of SED data as a series of spot diffraction patterns is based on associating
diffraction disc positions with reciprocal lattice vectors to determine lattice orientation [149,
150] and strain [27]. SED data for such analysis is typically recorded with a convergence
angle in the range 0.5-1.5 mrad leading to diffraction limited probe sizes in the range 1.5−5
nm. Orientation mapping based on such data has been achieved by indexation of individual
scattering vectors [149] as well as by pattern matching based on comparing each measured
diffraction pattern with a library of pre-calculated templates [150]. Both of these methods are
based primarily on the diffraction geometry, i.e. they do not consider the diffracted intensity
fully, giving an angular precision of ∼ 1◦ [151]. The method also struggles near to zone
axes where data is recorded from a single Laue zone and, for example, patterns rotated 180◦

about the beam direction are geometrically identical. Strain mapping has been achieved
by mapping variation in the scattering (reciprocal lattice) vectors to obtain 3 components
of strain perpendicular to the beam direction and 1 component of rotation about the beam
direction [152–159]. This approach has been enhanced by the use of dynamical double-
conical-rocking illumination to achieve a precision of ∼ 10−4 and with a spatial resolution of
2 nm [27, 160–163]. Three-dimensional reconstruction, based on SED microscopy, has been
performed only for grain-wise orientation mapping based essentially on diffraction contrast
tomography [164, 165]. These spot pattern methods are the basis of work presented in this
thesis and are explained and developed in greater detail in Chapters 4 & 5.

1.5 Summary & Motivation

Nanostructure characterisation is limited both by the lack of a pragmatic general framework
for structure description and the need to develop versatile structurally sensitive characterisa-
tion techniques that achieve nanoscale spatial resolution. Perhaps the most tractable challenge
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is to map crystal phase, orientation and strain fields and a number of scanning diffraction mi-
croscopy techniques have been developed using X-rays and electrons to achieve these goals.
These techniques differ in terms of the sensitivity and resolution that they achieve, as well as
the means by which three-dimensional reconstruction is achieved, as summarized in Table
1.2. SED microscopy offers the highest spatial resolution of these techniques but the least
sensitive measurements, although the sensitivity is sufficient to be useful. Three-dimensional
reconstruction differs significantly between scanning microscopies owing to instrumental
constraints and SED tomography seems set to be based on tomographic reconstruction [166]
from numerous two-dimensional measurements made in projection as has been the case for
annular dark-field STEM imaging [167] and analytical electron spectroscopies [168, 169].
SED tomography has only been achieved grain-wise based essentially on diffraction contrast
tomography [164, 165] and developing the method to reconstruct continuous changes is a par-
ticular challenge (see Chapter 5). Further development of two-dimensional SED microscopy,
particularly as regards establishing robust analysis routines and workflows is also required in
order to establish it as an applicable technique in materials science.

Table 1.2 Comparison of diffraction mapping techniques. Comparison of XRD [22, 23],
EBSD [24], TKD [25, 26] and SPED [27] based on spatial resolution, d, strain precision,
∆ε , number of strain and orientation components measured, #F, orientation precision, ∆ω ,
typical region of interest size, ROI, and method for three-dimensional reconstruction.

d (nm) ∆ε #F ∆ω (◦) ROI (µm) 3D
XRD 20-500 10−4 - 10−5 9 0.01 2000×2000 differential aperture
EBSD 20-100 10−4 8 0.01 - 1 10×10 slice & view
TKD 10-50 - - 1 2×2 -
SED 1-10 10−3 - 10−4 4 1 2×2 diffraction contrast

Research presented in this thesis develops and applies SED microscopy for practical
elucidation of nanostructure. The technique has been progressed by: establishing a method
for aligning a double-conical-rocking electron probe that enables routine scanning preces-
sion electron diffraction with nanometre resolution (Chapter 3); developing a robust code
framework for reproducible analysis of SED data (Chapter 4); and taking steps towards
nanoscale strain tomography (Chapter 5). SED microscopy was also applied to prototypical
materials characterisation challenges, namely: identification of orientation relationships in a
nickel based super alloy (Chapter 6); grain and multi-layer mapping in graphene (Chapter 7),
and characterisation of semi-crystalline polyethylene nanostructure (Chapter 8). This work
establishes the broad applicability of SED microscopy across materials science as well as
looking towards less ordered and more sensitive systems than previously addressed.



Chapter 2

Scanning Electron Diffraction Theory

Scanning (precession) electron diffraction (S(P)ED) microscopy involves the acquisition of a
two-dimensional electron diffraction pattern at every probe position, as a focused electron
probe is scanned across the specimen, as shown in Figure 2.1. To glean insight from such
4D-S(P)ED data, both via analysis of the diffraction patterns and through post-facto image
formation, it is necessary to develop a theoretical understanding of electron diffraction (see
Section 2.1), the focused probe conditions used to obtain electron diffraction from nanoscale
volumes (see Section 2.2), and diffraction contrast imaging (see Section 2.3). This treatment
shows how 4D-S(P)ED data can be interpreted, at least to a reasonable first approximation,
by analogy to more conventional electron microscopy.

Fig. 2.1 Electron diffraction of a focused electron probe. (a) Diffraction of a focused
electron probe, which may be scanned across the specimen. (b) Illustrative example of a
focused probe electron diffraction pattern. Adapted from [10].
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Electrons may be scattered elastically, without energy transfer or inelastically with energy
transfer. There may be coherent contributions to the total wave function, preserving the phase
relationship between scattered and unscattered waves, as well as incoherent contributions
where the phase relationship is lost. Electron diffraction is modelled as coherent elastic
scattering in Sections 2.1.1-2.1.5 and inelastic scattering is considered only briefly in Section
2.1.6. Numerous texts [11, 170–172, 13, 173, 12, 174, 15, 175] provide more comprehensive
coverage and the treatment presented follows particularly those by Zuo [11], Kirkland [170],
and Humphreys [176].

2.1 Electron Diffraction Theory

Coherent elastic scattering of fast electrons, may be treated as the scattering of electrons by the
static crystal Coulomb potential, V (r), and relativistic effects may be adequately accounted
for by correction to the electron mass, i.e. m = m0(1− v2

c2 )
1/2, where v is the electron velocity,

m0 is the rest mass, and c is the speed of light [176]. The electron wavefunction, ψ(r), is
then the the solution of the time-independent Schrödinger equation:

∇
2
ψ(r)+4π[k2 +U(r)]ψ(r) = 0 (2.1)

where k2 = 2mE
h2 , U(r) = 2meV (r)

h2 , E is the electron accelerating potential, e = |e|, and
V (r) is the electrostatic scattering potential. Rigorous solutions only exist for well defined
specimen geometries (see Section 2.1.5) and various approximate solutions are thus essential
to interpret electron diffraction from general three-dimensional potentials [11].

2.1.1 First-Order Born Approximation

The Schrödinger equation (Equation 2.1) may be transformed [11, 12], for scattering of an
incident plane wave, ψ0 = exp(2πik0 · r), into the integral form:

ψ(r) = exp(2πik0 · r)+π

∫ exp(2πik|r− r′|)
|r− r′|

U(r′)ψ(r′)d3r′ (2.2)

where the first term represents the incident plane wave and the integral represents the
scattering of the wave by the potential U(r′). In the first-order Born approximation, the
scattering is assumed to be weak so that the wave function inside the integral is approximately
equal to the incident wave, i.e. ψ(r′) = exp(2πik0 ·r). This implies that only direct scattering
from the incident wave contributes to the scattered wave, which is the kinematical, or single
scattering, approximation.
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Within the first-order Born approximation and assuming (see Figure 2.2) the point of
observation, r, is distant with respect to the dimensions of the scattering potential, i.e.
|r| ≫ |r′|, the total wave function is the sum of the incident wave and the scattered wave:

ψ(r)≈ exp(2πik0 · r)+φ(k′)
exp(2πik · r)

|r|
(2.3)

where k′ = k−k0, and;

φ(k′) =
2πme

h2

∫
∞

−∞

V (r′)exp(2πik · r′)d3r′ (2.4)

where φ(k′) is the probability amplitude for electron scattering from the potential, V (r′).
The integral in Equation 2.4 is the Fourier transform of the Coulomb potential, V (r′), which
is thus proportional to the scattered wave amplitude. Similar equations may be obtained
for X-ray and neutron diffraction, making the Fourier transform the unifying concept in
diffraction theory [174]. The intensity measured in diffraction experiments, I(k′) = |φ(k′)|2.

2.1.2 Electron Atomic Scattering Factor

The scattering amplitude from an atom, within the first-order Born approximation, i.e. the
atomic scattering factor, f (k′), can be found by substituting the electrostatic potential of the
atom, Va(r′), into Equation 2.4. This potential may be related to the charge density of the
atom through Poisson’s equation [176] to obtain the Mott-Bethe formula relating the electron
atomic scattering factor, f (k′), to the X-ray atomic scattering factor, f X(k′), as:

f (k′) =
2πme2

h2k′2

∫
∞

−∞

[
Zδ (r′)−ρe(r′)

]
exp(2πik′ · r′)d3r′

=
2πme2

h2k′2
[
Z − f X(k′)

] (2.5)

where ρn(r′) = Zδ (r) is the nuclear charge density, ρe(r′) is the electron charge density,
Z is the atomic number, and the X-ray atomic scattering factor, f X(k′), has been identified as
the Fourier transform of the electron charge density.

The atomic scattering factor is parameterized, e.g. due to Doyle and Turner [177]. Typical
values for electrons are 1-10 Å as compared with equivalent quantities of ∼ 10−4 Å for
neutrons and X-rays [176], i.e. electron scattering is much stronger. The electron and
X-ray atomic scattering factors decrease with angle due to phase differences between waves
scattered from different parts of the atom, as shown in Figure 2.2.
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Fig. 2.2 Electron scattering from a potential (a) Electron scattering geometry and coordi-
nate system. Adapted from [11]. (b) Comparison of atomic scattering amplitudes for X-rays,
neutrons and electrons. Reproduced from [12].

2.1.3 Kinematical Electron Diffraction

Kinematical electron diffraction can be developed in terms of Fourier transforms, following
Equation 2.4 and the treatment presented by Zuo [11]. The potential, V (r), of an arbitrary
arrangement of atoms may be written, dropping primes on position vectors, as a convolution
between atomic potentials, V a(r), and delta functions describing their positions:

V (r) = ∑
i

V a
i (r)∗∑

j
δ (r−Ri, j) (2.6)

where Ri, j is the atomic position, and the subscripts i and j denote atomic species and all
positions of a given species, respectively.

The scattered wave amplitude for scattering vector k’ = k - k0 is found by taking the
Fourier transform of this potential, as:

φ(k′) = ∑
i

fi(k′)∑
j

exp(−2πik′ ·Ri, j) (2.7)

which is the sum of atomic scattering factors, fi(k′), with a phase factor due to position.

Diffraction from perfect crystals

Atoms in crystalline materials are located at positions that may be expressed in terms of a
lattice vector, rlat , and a position vector, ri, j, within the unit cell:

Ri, j = ua+ vb+wc+ ri, j = rlat + ri, j (2.8)

where a, b and c are lattice basis vectors in direct space.
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The potential of a crystal, V c(r) may then be expressed:

V c(r) = ∑
i

V a
i (r)∗∑

j
δ (r− ri, j)∗ ∑

u,v,w
δ (r−ua− vb−wc) (2.9)

where the first convolution defines the potential within the unit cell and the second
convolution describes the periodic repetition of the unit cell over a lattice.

The scattered wave amplitude from a perfect crystal, φ c(k′), is then given by:

φ
c(k′) =

[
∑

i
fi(k′)∑

j
exp(−2πik′ · ri, j)

]
·
[

∑
h,k,l

δ (k′−ha∗− kb∗− lc∗)
]

(2.10)

which could have been obtained by substituting Equation 1.8 into Equation 1.7. The first
term is a summation of atomic scattering over the unit cell, which is the structure factor,

F(k′) = ∑
i

fi(k′)∑
j

exp(−2πik′ · ri, j) (2.11)

that determines the kinematical intensity of the diffracted beam. The second term is the
Fourier transform of the lattice, which is the reciprocal lattice, and defines the geometry of
diffraction according to the Laue diffraction condition:

k′ = g = ha∗+ kb∗+ lc∗ (2.12)

where a∗, b∗ and c∗ are lattice basis vectors in reciprocal space.

Diffraction from nanocrystals

The potential of a nanocrystal may be expressed as the product of the potential of an infinite
crystal, V c(r) and a shape function, s(r), i.e. V (r) = s(r) ·V c(r). The total scattered wave
amplitude from the truncated nanocrystal, φ nc(k′), is therefore the convolution of the Fourier
transformed shape function and the scattered wave amplitude of the perfect crystal, i.e.
φ nc(k′) = FT [s(r)]∗φ c(k′). The implication is that the scattered wave amplitude is peaked
near to the Laue condition but there is appreciable scattered amplitude away from the exact
Laue condition. To explore this, it can be convenient to express k′ as,

k′ = g+ sg (2.13)

where g is a reciprocal lattice vector and sg is the excitation error describing the deviation
of the scattering vector from the Laue condition.
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The scattered wave amplitude from a finite nanocrystal, near to a particular Laue condition,
φ nc

g (k′), can then be written similarly to Equation 2.10 but with a finite sum, as:

φ
nc
g (k′) = F(k′) ·FT

[ N

∑
u,v,w

δ (r− rlat)

]
= ∑

i
fi(g+ sg)∑

j
exp(−2πi(g+ sg) · ri, j)

N

∑
u,v,w

exp(−2πi(g+ sg) · rlat)

(2.14)

which can be simplified by noting that |sg| ≪ |g| such that the sg · ri, j term may be
neglected, and that g · rlat = integer, to give:

φ
nc
g (k′) = ∑

i
fi(g)∑

j
exp(−2πig · ri, j)

N

∑
u,v,w

exp(−2πisg · rlat) (2.15)

i.e. φ nc
g = F(g) ·S(sg), where F(g) is the structure factor at the Laue condition and S(sg)

is the shape factor, which depends only on sg and is related to the Fourier transform of the
nanocrystal shape function.

Diffraction from distorted crystals

Atoms in distorted crystals are displaced from their ideal atomic sites by a vector, u(rlat),
that depends on which unit cell the atom is located within, i.e.,

Ri, j = rlat + ri, j +u(rlat) (2.16)

The scattered wave amplitude from a distorted crystal of finite dimensions, near to a
particular Laue condition, φg(k′), may be expressed, following similar manipulations as in
Equations 1.14 an 1.15 and neglecting the sg ·u(rlat) term, as:

φg(k′) = F(k′) ·FT
[ N

∑
u,v,w

δ (r− rlat −u(rlat))

]
= F(g)

N

∑
u,v,w

exp(−2πisg · rlat)exp(−2πig ·u(rlat))

(2.17)

Atomic displacements thus introduce an additional geometric phase term, α =−2πg ·u,
to the scattered wave amplitude if g ·u ̸= 0, i.e. if the displacement is not parallel to g. This
also implies the displacement field leads to diffuse scattering away from the Laue condition.
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2.1.4 Diffraction Geometry

Diffraction from a crystal is geometrically described by the Laue condition (Equation 2.12),
which may be visualized in the Ewald sphere construction, as shown in Figure 2.3. The
Ewald sphere construction is made in reciprocal space with the incident wavevector, k0,
drawn towards the origin of a reciprocal lattice representing the crystal. The start point of the
incident wavevector defines the centre of the sphere, which has a radius equal to |k0|, so that
the surface of the sphere represents all possible elastically scattered wavevectors, k. When
the surface of the sphere intercepts a reciprocal lattice point, the Laue condition is met.

Fig. 2.3 The Ewald sphere construction. Geometric construction of diffraction from a
perfect crystal, showing the equivalence of the Laue condition and Bragg’s law.

Noting that |k0|= 1
λ

and |ghkl|= 1
dhkl

, where dhkl is the interplanar spacing in real space,
trigonometry yields the equivalence between the Laue condition and Bragg’s law:

λ = 2dhkl sin(θ) (2.18)

where θ is the scattering angle. The essential physical insight of Bragg’s approach is that
a scattered wave corresponds to scattering from particular atomic planes the normal of which
is represented by the g vector in reciprocal space.
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In electron diffraction, |k0| ≫ |g| and the intersection between the Ewald sphere and
the reciprocal lattice approaches a plane for paraxial scattering. Further, thin (< 200 nm)
specimens required for electron transmission, allow significant deviation parameters, sg, as
shown in Figure 2.4. A zone-axis diffraction pattern is obtained with the incident wave vector
normal to a dense plane of reciprocal lattice points. The central part of the zone-axis pattern
samples diffraction conditions perpendicular to the incident beam direction, known as the
zero-order Laue zone (ZOLZ), and diffraction conditions related by passing through the
origin, i.e. ±g, have equal deviation parameters. At higher scattering angles, the Ewald sphere
intercepts the layer of diffraction conditions in the reciprocal lattice planes above the ZOLZ,
which leads to rings of reflections associated with each higher-order Laue zone (HOLZ).
When the incident wavevector is not in a zone-axis direction, the intersection between the
Ewald sphere and the lattice leads to Laue circles with a point on the circumference of the
zeroth order circle passing through the origin.

Fig. 2.4 Ewald sphere construction for electron diffraction. (a) In zone-axis geometry
with ±g equally excited. (b) Away from zone-axis with strong diffraction on Laue circles.

Planar detectors are typically used to record electron diffraction patterns and the measured
scattering vector coordinates on the detector should be related back to three-dimensional
coordinates, accounting for the Ewald sphere geometry as,

k′ =

(
kdx,kdy,

1
2|k0|

(k2
dx + k2

dy)

)
(2.19)

where kdx and kdy are coordinates in the detector plane, perpendicular to k0. Since
|k0| ≫ |k′| in the paraxial geometry typical of electron diffraction, this correction is small.



2.1 Electron Diffraction Theory 27

2.1.5 Dynamical Electron Diffraction

Electrons typically undergo multiple scattering due to the strength of the Coulomb interaction
between incident electrons and the electrostatic potential of the specimen [176]. An approach
beyond the first-order Born approximation is thus needed to develop a dynamical electron
diffraction theory incorporating multiple scattering [170]. Analytical and numerical solutions
may be obtained using the wave mechanical Bloch wave method, which is rigorous and the
expressions obtained provide valuable insight into the scattering process [11]. However, this
approach is limited to quite ideal systems. More general numerical solutions are possible
using the multislice method to obtain a finite difference solution.

The Schrödinger equation (Equation 2.1) may be rewritten (see Kirkland [170]), for fast
electrons, by assuming the wave function may be represented as a modulated plane wave,

ψ(r) = ϕ(r)exp(2πik · r) (2.20)

travelling predominantly in the z direction such that ∂ 2ψ(r)
∂ z2 ≪ k ∂ψ(r)

∂ z and the second
derivative with respect to z may be neglected to give:

∇
2
x,yϕ(r)+4π

[
ik

∂

∂ z
+U(r)

]
ϕ(r) = 0 (2.21)

This forward scattering approximation is also known as the paraxial approximation or
the high-energy approximation and will be the starting point for solutions developed here.

The Bloch Wave Method

The Bloch wave method [178] solves the Schrödinger equation (i.e. Equation 2.1 or 2.21) in
a periodic potential, such as a crystal with translational symmetry. A periodic potential may
be expanded as a Fourier series,

U(r) = ∑
g

Ug exp(2πig · r) (2.22)

where the spatial frequencies, g, correspond to reciprocal lattice vectors of the crystal.
Bloch wave solutions are then sought with the same periodicity,

ϕ(r) = ∑
g

ϕg(z)exp(2πig · r) (2.23)

where the Fourier coefficients, ϕg, vary in z because the scattered amplitude changes as
the electrons propagate through the specimen.
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Substituting Equations 2.22 and 2.23 into Equation 2.1 or 2.21 and equating coefficients
yields Bloch wave solutions in the general case or the forward scattering approximation
respectively. Here, the latter case (see Kirkland [170]) is considered, which yields:

∂ϕg(z)
∂ z

= 2πisgϕg(z)+ iπ ∑
g′

Ug′ϕg′(z) (2.24)

which is a set of coupled first order linear differential equations known as the Howie-
Whelan equations. The number of Bloch wave solutions is equal to the number of Fourier
coefficients included in the expansion of the potential and the wave function inside the poten-
tial is the linear superposition of these Bloch waves. Coefficients in this superposition are
determined by boundary conditions and this is typically only possible for simple geometries,
for example a parallel sided specimen with electrons incident normal to the surface [11].
Analytical solutions may be obtained for a small number of coefficients (i.e. 2 or 3) whereas
many beam solutions require computational methods.

Distorted crystals may be considered similarly, by expressing the potential of the distorted
crystal in the deformable ion approximation:

U(r) = ∑
g

Ug exp(2πig · r)exp(2πig ·u) (2.25)

where Ug are Fourier coefficients of the crystal potential. Substituting Equations 2.25
and 2.23 into Equation 2.21, within the forward scattering approximation, yields the Howie-
Basinski equations (see Zuo [11]), which become Howie-Whelan equations for a defective
crystal if the displacement field varies only in z and the column approximation (see Section
2.3.1) holds.

∂ϕg(z)
∂ z

= 2πisu
gϕg(z)+

iπ
(g+ sg)z

∑
g′

Ug′ϕg′(z) (2.26)

where,

su
g = sg +g · ∂u(r)

∂ z
(2.27)

and thus it is the derivative of the displacement field not parallel to g that produces contrast.
This is similar to the insight obtained within the kinematical framework via Equation 2.17.
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The Multislice Method

The multislice method is to solve the Schrödinger equation by numerical integration and
was first developed from a physical optics perspective by Cowley and Moodie [179]. Here,
the multislice method is framed, following Kirkland [170], as a finite difference solution to
Equation 2.21, which may be written as a first order differential equation in z:

∂ψ(r)
∂ z

=

[
i

4πk
∇

2
x,y + iU(r)

]
ψ(r) (2.28)

Numerical solution of such a differential equation, given an initial value, is typically
based on Taylor expansion of the dependent variable in powers of ∆z, i.e.,

ψ(x,y,z+∆z) = ψ(r)+∆z
∂ψ(r)

∂ z
+O(∆z2) (2.29)

Substituting Equation 2.28 into Equation 2.29 and identifying the lowest order terms of
the Taylor expansion of an exponential within the resulting expression yields,

ψ(x,y,z+∆z) =

[
1+∆z

[
i

4πk
∇

2
x,y + iU(r)

]]
ψ(r)+O(∆z2)

= exp
[

i∆z
4πk

∇
2
x,y + i∆zU(r)

]
ψ(r)+O(∆z2)

= exp
( i∆z

4πk
∇

2
x,y

)
exp
(

i∆zU(r)
)

ψ(r)+O(∆z2)

(2.30)

With some manipulations (see Kirkland [170]), and dropping terms of order ∆z2, this
equation may be rewritten as a product between a transmission function, t(x,y,z), and the
wave function convolved with a propagator function, p(x,y,∆z), as:

ψ(x,y,z+∆z) = p(x,y,∆z)∗ [t(x,y,z)ψ(x,y,z)] (2.31)

where the propagator function, p(x,y,∆z) = exp
(

i∆z
4πk ∇2

x,y

)
, may be identified as describ-

ing Fresnel propagation over a distance ∆z and the transmission function may be interpreted
as the phase grating due to the projected potential in the interval between z and z+∆z,

t(x,y,z) = exp
[

i
∫ z+∆z

z
U(r)dz′)

]
(2.32)

which approximates the object as a quasi-two-dimensional phase object that introduces
a position dependent phase change in the electron wave function exiting the object. The
application of this transmission function to an incident electron wave function can be seen
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as a near-field kinematical scattering solution, which can be propagated to the far-field
diffraction pattern and in the paraxial approximation this is equivalent to the first-order Born
approximation [11]. The separation of near-field and far-field solutions is very helpful for
image simulation [173] and it is the near field solution that is needed at intermediate steps in
the finite difference solution for multiple scattering.

The electron wave function at depth z inside the specimen may be calculated by repeated
evaluation of Equation 2.31 beginning with an incident wave function. This requires dividing
the specimen into thin slices of thickness ∆z, each with a transmission function and a propa-
gation function. Efficient computation is achieved by making much use of the fast Fourier
transform (FFT) so that transmission and propagation may be achieved as multiplications in
real and reciprocal space with FFT and inverse FFT transformations between, i.e.:

ψn+1(x,y) = FT−1{Pn(kx,ky,∆zn)FT [tn(x,y)ψn(x,y)]} (2.33)

where Pn = FT [p(x,y,∆z)]. This multislice solution is formally equivalent to solution of
the Howie-Whelan equations in the limit where ∆z goes to zero [170]. Since each slice is
independent, the transmission function may vary from one slice to the next and simulations
may thus be performed for non-periodic potentials.

2.1.6 Inelastic Electron Scattering

Inelastic scattering involves transfer of energy between the incident electrons and the speci-
men. Contributions to inelastic scattering are predominantly due to core electron excitation,
plasmons and phonons. These inelastic effects may be introduced into the theory developed
above through an imaginary contribution to the interaction potential [11],

U(r) =Uc(r)+ iU ′(r) (2.34)

where U(r) is the total optical potential, Uc(r) is the real crystal potential, and U ′(r)
is a potential accounting for the depletion of the elastic wave due to inelastic scattering.
This depletion is often referred to as "absorption". Calculation of the appropriate absorption
coefficients including all scattering contributions is challenging and often, as here, inelastic
contributions are neglected. Experimentally, it may be possible to reduce inelastic contribu-
tions by energy filtering [180]. Further, energy transfer during inelastic scattering enables
electron energy loss spectroscopy [181] and plays a significant role in beam damage under
electron irradiation [182–185].
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2.2 Electron Diffraction of Focused Probes

S(P)ED experiments are typically performed using a focused probe to obtain spatial resolution
by illuminating a small volume at each probe position. In the "critical illumination" condition
[13], shown in Figure 2.5a, the electron source is imaged onto the specimen plane by the
probe forming lenses and the illumination aperture, which is usually circular, subtends an
angle, α , at the specimen. The convergence semi-angle, α , defines a range of incidence
angles for each of which an Ewald sphere may be drawn representing the section of scattering
power distribution sampled, as shown in Figure 2.5b. The illumination aperture is imaged
onto the diffraction plane as a circular disc within which the intensity distribution is a
two-dimensional rocking curve over the range of incidence angles, as in Figure 2.5c.

Fig. 2.5 Convergent beam electron diffraction. (a) Critical illumination the source is
imaged in the specimen plane and the illumination aperture subtends an angle, α to the optic
axis. Adapted from [13]. (b) Ewald sphere geometry for convergent beam illumination with
a range of incidence angles. (c) Schematic CBED pattern for condition in (b).

S(P)ED experiments are typically performed with convergence angles of 1-3 mrad such
that the diffraction discs of different orders do not overlap. This is in contrast to so-called
4D-STEM experiments in which the different orders must overlap to enable phase contrast
atomic resolution imaging [173]. If SED is performed with a convergence angle of 2-3
mrad the intensity distribution within diffraction discs may be analysed e.g. using HOLZ
lines to map strain [140], or using the symmetry of dynamical intensity distribution to map
polar domains [146, 147]. In this work, the analysis is primarily based on the geometry of
diffraction patterns and imaging using diffracted intensities using data acquired in nanobeam
(see Section 2.2.1) and precession (see Section 2.2.2) electron diffraction modes.
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2.2.1 Nanobeam Electron Diffraction

Nanobeam electron diffraction (NBED) is typically performed with a ∼ 1 mrad convergence
angle, using a small diameter (e.g. da = 10 µm) illumination aperture. Coherent illumination
is obtained [13] if the transverse coherence length of the electron beam, Xa =

Dλ

πds
, see Figure

2.5a, is larger than the diameter of the aperture, i.e. Xa > da. This is typically the case when
a field-emission gun and a small illumination aperture are used. Under coherent conditions
and assuming a point source, the probe wave function may be written [175]:

ψp(r) =
∫

∞

−∞

A(kt)exp(iχ(kt))exp(2πikt · r)dkt

= FT
[
A(kt)exp(iχ(kt))

] (2.35)

where A(kt) describes the illumination aperture as a Heaviside function Θ(|kt |−α|k0|),
which is 1 for |kt |< α|k0| and 0 for |kt |> α|k0|; χ(kt) is the wave aberration function of
the probe forming lenses (see Chapter 3) and kt is the component of k0 perpendicular to the
optic axis. In NBED the use of a small illumination aperture gives χ(kt)∼ 0 and the probe
function is the Fourier transform of the Heaviside function, which is the Airy function [175].

The electron wave function exiting the specimen may be written in the weak phase object
approximation (see Equations 2.28-2.30), for a probe focused at position, rp, as:

ψe(r) = ψp(r− rp)exp(iU(r))

≈ ψp(r− rp)
[
1+ iU(r)

] (2.36)

where U(r) is the projected potential in the beam direction. The diffracted wave amplitude
is the Fourier transform of the exit wave and the diffracted intensity is therefore:

I(k′,rp) =

∣∣∣∣FT
[
ψp(r− rp)exp(2πik′ · rp)

]
∗FT

[
1+ iU(r)

]∣∣∣∣2 (2.37)

which is a convolution between the Fourier transform of the projected potential, which
describes kinematical scattering (including the shape factor and elastic diffuse scattering) and
the aperture function. To incorporate the effects of multiple scattering Equation 2.35 may be
used as the initial value for a multislice simulation (see Section 2.1.5) or incorporated into
the Bloch wave formalism [186]. If the crystal is perfect, all points within the diffraction disc
are independent but elastic diffuse scattering from nearby source wave vectors will interfere
coherently within the diffraction disc.
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2.2.2 Precession Electron Diffraction

Precession electron diffraction (PED) patterns are recorded using a double conical beam
rocking geometry in which the electron probe is rocked through a hollow cone at an angle,
ρ , to the optic axis above the specimen and de-rocked below the specimen to obtain a
static diffraction pattern, as shown in Figure 2.6. The PED patterns obtained by rocking
a convergent probe comprise diffraction discs of integrated intensity, which have proven
more amenable to structure solution and refinement using both kinematical and dynamical
models [187]. More reflections are typically recorded in PED patterns than the corresponding
static beam diffraction patterns due to the large range of reciprocal space integration, which
may yield more patterns that contain sufficient data to be indexed in automated orientation
mapping [188]. Further, the homogeneous intensity distribution within diffraction discs may
facilitate disc position determination and improve the precision of strain mapping [162, 189].

Fig. 2.6 Precession electron diffraction (PED). (a) Schematic ray diagram for PED illus-
trating rocking and de-rocking of the electron beam before and after the specimen. (b-e)
Representative diffraction patterns from the [001] zone-axis of Er2Ge2O7 (b) without pre-
cession, (c) with 20 mrad precession, (d) with 47 mrad precession, (e) simulated in the
kinematical framework. Reproduced from [14].
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Integration of intensity, Ip(k′) in PED occurs on the detector and is therefore, for plane
wave illumination, an incoherent azimuthal integration at the precession angle, ρ , i.e.

Ip(k′) ∝

∫ 2π

0
I(k′)dρ (2.38)

where I(k′) is an expression for the diffracted intensity obtained within one of the
theoretical frameworks described in Section 2.1.

PED may yield diffraction patterns with zone-axis geometry but with the beam having
been rocked around that zone-axis to record many diffraction discs integrated twice through
the Bragg condition [18], as shown in Figure 2.6 for example. In this zone-axis geometry, the
integration of Equation 2.37 may be written as an integration over the deviation parameter,
sg, for convergent probe [190], as:

∫ 2π

0
Ig(sg)dsg ∝

[
1−
( g

2R0

)2]
Iprec.
g (2.39)

where g is the magnitude of the reciprocal lattice vector and R0 is the radius of the
zero-order Laue circle (see Section 2.1.4). The integration over deviation parameters makes
the zone axis PED pattern less sensitive to small orientation changes and non-systematic
dynamical effects are reduced because the beam is never parallel to the zone axis [18]. PED
patterns are "more-kinematical" insofar as the integrated intensities are less sensitive to the
phase terms in structure factors [191] and the relative ranking of intensities remains fairly
constant and consistent with the kinematic ranking [192, 193]. This leads to visual similarity
between PED patterns and kinematical simulations, as in Figure 2.6. However, individual
intensities deviate significantly from kinematical values [193] and dynamical simulations are
required to obtain a good fit, for example in structure refinement [187, 194]. Nevertheless,
PED patterns are considered practically advantageous for structure refinement because the
intensities are less sensitive to thickness variations and small misorientations [187].

In crystallographic mapping, zone-axis PED patterns are typically recorded for strain
mapping [27, 162] whereas mapping polycrystalline materials typically yields many off-axis
diffraction patterns [195]. In strain mapping, precession may improve the precision of mea-
surements by yielding patterns that appear closer to zone axis and with homogeneously filled
diffraction discs that are more amenable to automated tracking [162, 189]. In orientation map-
ping, typically based on template matching with kinematical simulations [150], precession
may improve the correlation between simulations and measurements because recording more
reflections are typically recorded which reduces the impact of some indexation ambiguities
[196]. Precession may therefore improve the accuracy of orientation mapping experiments
but the integration through orientations places a limit on precision.
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2.3 Diffraction Contrast Imaging Theory

Imaging based on S(P)ED data is most simply performed by plotting the integrated intensity
within a subset of pixels in the detector, positioned in the back focal plane, as a function
of probe position. This is similar to STEM imaging [175, 173] except that the whole two-
dimensional pattern is recorded and the integration window is selected post-facto. The image
intensity in the pixel corresponding to the probe at position, rp, may be written:

I(rp) =
∫

D(k′)I(k′,rp)dk′ (2.40)

where D(k′) is a function describing the integration window in the diffraction plane and
detector sensitivity, and I(k′,rp) is the diffracted intensity as a function of scattering vector,
k′ for the probe positioned at rp, which is given by Equation 2.37 & 2.38 for SED and SPED
experiments, respectively, within the kinematical approximation.

Simulating S(P)ED diffraction contrast microscopy images by evaluating Equation 2.40,
does not generally yield convenient analytical forms, and it is often necessary to simulate a
two-dimensional electron diffraction pattern for every probe position followed by numerical
integration over D(k′). However, if the integration is complete over a particular Bragg
diffraction disc, and the convergence angle is small (i.e. ∼ 1 mrad), an analogy can be made
with diffraction contrast imaging in conventional TEM (CTEM), as illustrated in Figure
2.7. In this case, contrast may be interpreted, to a reasonable first approximation, based on
modulation of the intensity of the diffracted beam, Ig, evaluated under plane wave illumination
conditions. When SPED is performed, the integration over illumination conditions must be
considered, which generally reduces the contrast due to structural distortions [197].

Fig. 2.7 Diffraction contrast imaging in CTEM and SED. (a,b) In CTEM (a) the direct
beam or (b) a diffracted beam is selected using an aperture to form a bright-field or dark-field
image. (c) In SED, diffraction contrast images are formed by integrating post-facto within a
window (virtual aperture) in the diffraction pattern as a function of probe position.
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2.3.1 The Column Approximation

An extensive theory for diffraction contrast imaging of defects has been established [15]
for conventional TEM imaging based on the column approximation in which the specimen
is considered as comprising numerous narrow columns, with their length parallel to the
diffracting planes, such that any displacement field varies only along the column length, i.e.
u(z). The column approximation is reasonable if columns may be chosen to be sufficiently
narrow that any change in displacement across the column is negligible but also sufficiently
wide so that an electron entering the column is not scattered out of the column whilst passing
through the specimen. Considering the geometry of a column along a diffracted beam shown
in Figure 2.8 with a specimen of thickness t = 200 nm, an electron wavelength λ = 2 pm
and an interplanar spacing d = 2Å the width of a column is ∼ 2 nm. This is similar to, or
smaller than, the step size used in typical S(P)ED experiments and in this context it may be
assumed that each pixel in the S(P)ED microscopy image corresponds to a probe positioned
in a separate column.

Fig. 2.8 The column approximation. Geometrical parameters for a column along a
diffracted beam. Adapted from [15].

Within the column approximation and in the kinematical framework the amplitude of a
diffracted beam φg can be related to a displacement field u(r), by:

φg =
iπ
ξg

∫ t

0
e−2πig·ue−2πisgzdz (2.41)

where g is the diffracted beam used for imaging, ξg is the extinction length, sg is the
component of the excitation error in the z-direction, and z is the position along the incident
beam direction. This equation may be considered as an integral form of Equation 2.17 or as
the single scattering form of Equation 2.26.
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2.4 Modelling S(P)ED Data

Theory of electron diffraction has been set out here in the context of understanding S(P)ED
experiments and as a platform for interpreting S(P)ED data. S(P)ED is modelled as the
coherent elastic scattering of a focused probe (Section 2.2) located at numerous positions,
which may be simulated within the single-scattering kinematical framework (Section 2.1.3)
or in the multiple-scattering dynamical framework (Section 2.1.5). Key features of electron
diffraction patterns were highlighted by this theoretical treatment, primarily within the
kinematical framework, and include: (1) diffraction from (defective) crystals is strong near
to Laue conditions defined by the average reciprocal lattice, (2) the shape of reflections is
determined by the shape of the object, atomic displacements and the illumination condition,
and (3) the intensity scattered to a given wave vector is modulated by displacement fields
and further by multiple scattering effects.

Various elements of the theory presented here are drawn upon in subsequent chapters.
In Chapter 4, dynamical multislice simulations (Section 2.1.5) of SPED experiments, with
precession modelled by integrating simulations for numerous tilted illuminations, are used
to validate the application of unsupervised machine learning approaches to S(P)ED data.
Further, simple kinematical simulations and the geometry of electron diffraction are used
as a basis for orientation and strain mapping. In Chapter 5, the theoretical considerations
set out here form the basis of a discussion regarding possible strain tomography. Finally, in
Chapters 7 and 8 kinematical simulations and the column approximation are used to interpret
SED microscopy images.





Chapter 3

Scanning (Precession) Electron
Diffraction

The modern (scanning) transmission electron microscope ((S)TEM) is a versatile instrument
capable of acquiring numerous signals spanning dimensions of real space, reciprocal space,
energy, and time [93, 7]. Acquisition of data across these dimensions, as illustrated in
Figure 3.1a, defines a paradigm of multi-dimensional electron microscopy of which scanning
(precession) electron diffraction (S(P)ED) is a part [93, 7]. S(P)ED involves scanning a
convergent, nanobeam or double-rocking probe across the specimen and acquiring a two-
dimensional electron diffraction pattern at each position. Here, the focus is on optimizing
S(P)ED experiments based on an understanding of the hardware involved.

Fig. 3.1 The (scanning) transmission electron microscope. (a) A tool for acquiring numer-
ous analytical signals. (b) Outlined as an electron optical system. Adapted from [16]
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A typical (S)TEM comprises various lenses, apertures, deflectors and detectors in a
complex electron optical arrangement that is typically considered in the following parts: the
gun, the pre-specimen condenser lens system, the post-specimen image lens system and the
detectors, as illustrated in Figure 3.1b. The gun controls the extraction of electrons from
a source and determines brightness and coherence of the probe [11, 198]. Most modern
(S)TEMs are fitted with a field emission gun (FEG) comprising a sharp W tip acting as a
cathode above two metal plates acting as anodes [11]. The first anode extracts electrons from
the tip and the second accelerates the electrons to the desired energy. The electric field of the
anodes acts as an electrostatic lens, producing the first cross-over of the optical system. The
condenser lens system is responsible for probe formation and controls the range of electron
incidence angles (i.e. the convergence angle) and the probe size in the specimen plane. The
deflectors responsible for scanning the electron probe across the specimen and rocking the
beam away from the optic axis are also located within the condenser system, between the
condenser lenses and the specimen. Aligning the probe-forming lens system optimally is the
most important practical element of performing S(P)ED experiments and is considered in
detail in Sections 3.2 & 3.3. Post-specimen optics collect the scattered electrons and, when
configured for a S(P)ED acquisition, focus the diffraction pattern on to the electron detector.
Deflectors are also situated in the post-specimen optics to direct the diffraction pattern onto
the detector. Alignment of the post-specimen optics is important to avoid distortions to the
recorded diffraction pattern and the performance of the electron detector affects the analysis
that can be achieved, as discussed in Section 3.4. The particular system used in this work is
described in Section 3.5 and prospects for further improvement of the S(P)ED method are set
out in Section 3.6.

3.1 Electron Optics

Electrons are lensed and deflected in the (S)TEM using magnetic fields produced using
electromagnets [171]. A charged electron moving with velocity, v, in a magnetic field, B,
experiences a Lorentz force, F =−ev×B, and the strength of the magnetic field produced
by an electromagnet depends on the current flow through the electromagnetic coil [171].
This electrical control of the electron optics is central to the operation of modern digitally
controlled electron microscopes, enabling numerous optical alignments to be obtained [171].
In such instruments the electromagnetic coils are typically actuated via reference voltages
fed to pre-amplifiers and current amplifiers [171]. Key properties are discussed below.
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3.1.1 Electron Deflection

Electrons are deflected in the (S)TEM using electromagnetic dipoles [17, 11]. These deflector
coils are extended over a large arc (saddle yoke configuration) [11] producing a homogeneous
magnetic field between them, as illustrated in Figure 3.2a. A pair of such deflector coils can
be used both to shift the electron beam along an axis in the specimen plane and to tilt the
beam with respect to the optic axis, as shown in Figure 3.2b,c. The component of tilt/shift
imparted by a pair of deflector coils depends on the ratio of currents through the coils, which
controls the pivot point. These ratios are adjusted in standard alignment procedures to achieve
pure tilt or shift as required. Introducing a second pair of deflector coils, typically orthogonal
to the first pair, enables arbitrary beam tilt and shift in two dimensions.

Fig. 3.2 Electron deflection by a dipole. (a) Electromagnetic dipole and corresponding field
lines resulting in a force on an electron beam travelling into the page. Adapted from [17]. (b,
c) Ray diagrams showing the action of a pair of deflector coils used to produce (b) shift and
(c) tilt of the beam depending on the ratio of deflection magnitudes in the dipole pair.

S(P)ED experiments involve scanning the electron beam across the specimen and, when
a dynamic double-rocking probe geometry is used in SPED, rocking the beam around a cone.
This is achieved by driving the deflector coils with a scan generator, as shown in Figure 3.3.
The scan of the beam across the specimen is achieved using two saw-tooth signals for the
x/y-scan respectively [11]. Double-rocking is achieved by driving the pre- and post-specimen
deflector coils synchronously using an oscillating sine wave [11, 18, 199]. Ensuring that
accurate shift and tilt is achieved is therefore very important for these experiments. Both
scanning and dynamic rocking of the electron beam require the deflector coils to be driven
at high-frequency so that data may be acquired in a reasonable time. This directs attention
towards the high-frequency performance of the deflector coils.
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Fig. 3.3 Block diagram of deflector coil electronics. (a) A single frame raster scan using
a digital saw-tooth waveform to drive the x (fast) and y (slow) scan. The flyback time
corresponds to the drop time. Adapted from [11]. (b) The conical double-rocking system for
coils above and below the specimen. Adapted from [18].

Deflector Response Frequency

The most demanding high-frequency electron deflection arises in SPED experiments when
the probe is setup in a dynamic double-rocking geometry as well as being scanned across the
specimen. In early implementations of the double-rocking optical alignment, the frequency
was capped at 30-35 Hz [18] due to deflector bandwidth limitations. Frequencies of ∼ 100
Hz are now typical and contemporary hardware is capable of reaching 1 kHz [200]. At such
high frequencies there is a phase lag between the voltage applied to actuate the deflector and
the current flowing, which controls the deflection. This is because each deflector coil acts
as an inductor, Lcoil , with internal resistance, Rcoil , connected in series with a foot resistor,
R f oot , and therefore acts as an LCR circuit, with a phase lag of:

arctan

(
ωLcoil

(Rcoil +R f oot)

)
(3.1)

This assumes that there is negligible stray capacitance and for very high double-rocking
and scan speeds, e.g. kHz, the stray capacitance would need to be accounted for. Practically
this phase lag has two effects. Firstly, the double-rocking angle becomes frequency dependent
so alignment must be performed at the same frequency as the experiment. Secondly, the
deflector coils are all independent and their phase lags cause discrepancies that must be
corrected during alignment. Accounting for these factors are significant advantages of the
double-rocking probe alignment procedures set out in Section 3.3.
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3.1.2 Electron Lenses

Electron lenses are round (cylindrically symmetrical) magnetic lenses, which act to cause
electrons at an angle to the optic axis to spiral around the optic axis, as shown in Figure 3.4a.
This focusing effect arises due to variation of the radial component of the magnetic field, B,
which rises and falls in the direction parallel to the optic axis. The spiral trajectory further
means that the electron lens will invert and rotate the object in addition to magnifying it. An
ideal round lens would cause a ray passing through it to be deviated by an angle proportional
to its distance to the optic axis (Figure 3.4b). However, in a round magnetic lens high-angle
rays are focused too strongly [17] and the requirement for Laplace’s equation to be obeyed
means that aberrations will be significant [17].

Fig. 3.4 Electron lensing. (a) Trajectory through a round magnetic lens and corresponding
B-field lines. Variation of the radial component, Br, causes focusing. (b) Geometric ray
diagram for an ideal electromagnetic lens that deviates rays by an angle θi proportional to
their distance to the optic axis ri. Reproduced from Brydson et al. [17].

Correction of lens aberrations up to angles of ∼ 50 mrad from the optic axis [201, 202],
has now been achieved by incorporating non-round (e.g. quadrapoles, hexapoles) magnetic
lens elements [203, 204]. However, such aberration correction is often not implemented in
instruments with which S(P)ED currently performed. SED is a STEM experiment performed
with a small convergence angle where the effects of aberrations are least significant but
when SPED is performed with an electron probe rocked to high angles, the effects of lens
aberrations are significant. Although aberration corrected PED has been discussed and
demonstrated [199, 205] this has not yet been translated into practical solutions for high-
resolution SPED. Detailed consideration of lens aberrations therefore remains important.



44 Scanning (Precession) Electron Diffraction

Lens Aberrations

An ideal lens would take a plane wave of wavevector, k, and produce a spherical wave coming
to a point focus in the Gaussian image plane of the lens. Geometric aberrations distort the
wavefront but retain coherence and are considered here, neglecting chromatic aberrations
[17, 11]. The wave aberration function, χ(k) = 2π

λ
W (k), is defined as the phase difference

between the ideal spherical wavefront and the actual wavefront. This phase difference is
the error in the wavefront measured as a distance, W (k), multiplied by 2π

λ
, where λ is the

electron wavelength. It is useful to note that a ray passing through a point in the lens, k,
passes through a point in the conjugate Gaussian imaging plane, r, according to:

r ∝ ∇W (k) (3.2)

That is to say that the Gaussian image plane coordinates are gradient mappings, with
respect to k, of the aberration function [17], as shown in Figure 3.5.

Fig. 3.5 Wave aberration and ray aberration. The wave aberration W measures the
distance by which an aberrated wavefront deviates from the ideal spherical case. The
corresponding phase difference is called the aberration function, χ . The shift of the Gaussian
image point due to the aberrations is called the ray aberration. The ray aberration r is
proportional to the gradient of the wave aberration W. Reproduced from Brydson et al. [17].
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The two-dimensional surface describing the aberration function is typically expressed as
a function of angle to the optic axis, ρ , and the azimuthal angle around the optic axis, θ , and
may be expanded to third order as1:

χ(ρ,θ) = const.+ρ(C01a cos(θ)+C01b sin(θ))

+
ρ2

2
(C10 +C12a cos(2θ)+C12b sin(2θ))

+
ρ3

3
(C23a cos(3θ)+C23b sin(3θ)+C21a cos(θ)+C21b sin(θ))

+
ρ4

4
(C30 +C34a cos(4θ)+C34b sin(4θ)+C32a cos(2θ)+C32b sin(2θ))

(3.3)

where the numerical coefficients, Ci j are the aberration coeeficients in the Krivanek
convention [204]. The index, i, denotes the radial, ρ , dependence of the induced phase
shift and is referred to as the order of the aberration. The index, j, denotes the symmetry
of the azimuthal, θ , dependence. The effect of each contribution to the aberration function
is perhaps most easily visualized by considering the distortions they introduce to an ideal
spherical wavefront, as shown in Figure 3.6. It is also convenient to name the aberrations for
discussion, as set out in Table 3.1.

Table 3.1 Naming of the most important aberration coefficients.

Name
C10 Defocus
C12 Two-fold Astigmatism
C21 Coma
C23 Three-fold Astigmatism
C30 Spherical Aberration

Routine alignment of a "non-corrected" (S)TEM includes correction of two-fold astig-
matism, using a weak quadrupole magnetic field, and minimization of coma by aligning
the beam tilt through the lens. The aberration function is then dominated by defocus and
spherical aberration and may be approximated as:

χ(ρ,θ) =
ρ2

2
C10 +

ρ4

4
C30 (3.4)

which implies only radial variation to this first approximation. The effect of rocking the
beam in a lens with such an aberration function is now considered.

1This angular description is related to the plane wave vector, k = 1
λ
(ρ cos(θ)+ρ sin(θ))



46 Scanning (Precession) Electron Diffraction

Fig. 3.6 Graphical glossary of aberration coefficients. Three-dimensional rendering of the
distortions introduced in a spherical wavefront by all aberrations up to fifth order. Note the
similarity between aberrations with the same azimuthal symmetry. Reproduced from [17].
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Beam Rocking & Lens Aberrations

In S(P)ED the electron probe is formed with a small convergence angle (i.e. 1-3 mrad).
Tilting this electron beam away from the optic axis of an aberrated lens has a number of
effects on the probe. Firstly, the center of the probe is displaced by a vector proportional
to the gradient of the aberration function, evaluated at the value of k corresponding to the
tilt, according to Equation 3.2. Secondly, the curvature of the aberration function results
in second order effects being induced [17], which affect the probe shape and convergence.
These second order effects are found by evaluating the eigenvalues of the curvature tensor of
the aberration function, which is written:

∇
2
kχ =

 ∂ 2χ

∂k2
x

∂ 2χ

∂kx∂ky
∂ 2χ

∂kx∂ky

∂ 2χ

∂k2
y

 (3.5)

and, to first order, has the eigenvalues [206]:

1
2
(C10(ρ,θ)±|C12(ρ,θ)|) (3.6)

That is to say that the tilt of the probe away from the optic axis induces defocus away
from the Gaussian imaging plane and two-fold astigmatism extending the shape of the probe.
Minimising the probe displacement and the influence of second order effects, when the probe
is rocked, is therefore essential in order to perform SPED experiments with a double-rocking
probe and nanometre spatial resolution, as set out in Section 3.3.

The Ronchigram

The Ronchigram is a projection image of a specimen formed on the diffraction plane with a
convergent incident electron beam focused near the specimen plane [207]. It is an in-line
hologram of the specimen [208] and the sensitivity to phase distribution as well as the
simultaneous access to real space and reciprocal space information has made it one of the
most important signals for STEM alignment both with and without aberration correction
[207, 209]. Since the deviation of a ray at the Gaussian focal plane is proportional to the
gradient of the aberration function (Equation 3.2) the Ronchigram is a map of the gradient
of the aberration function [17]. For example, defocus gives a linear ray deviation uniformly
magnifying the image in the Ronchigram. The Ronchigram is therefore an ideal way to
visualize the movement of the probe on the specimen as a result of tilt and therefore to correct
it, as utilized in Section 3.3.
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3.2 Nanobeam Electron Probes

Electron probes for SED experiments are typically nanometre sized and formed with a small
convergence angle (i.e. 1-3 mrad). Alignment of such a nanobeam electron probe typically
involves the use of a small illumination aperture and the adjustment of a pair of condenser
lenses. The particular optical arrangement depends on the condenser lens system, which can
vary significantly between instruments, as shown in Figure 3.7. The most important factor is
whether or not there are three or more condenser lenses. When only two condenser lenses
(CLs) are present, the first lens (CL1) controls the demagnification of the source and the
second lens (CL2) controls the focusing of the probe onto the specimen [11, 198]. The only
means by which to control the convergence angle is via the CL2 aperture. When three or
more condenser lenses are present the convergence angle may also be affected by adjusting
the excitation of any pair of lenses below CL1 (e.g. CL2 & CL3) that have a cross-over
between them [11]. If an aberration corrector is incorporated in the condenser system then
its optics should also be considered to avoid inducing parasitic aberrations.

Fig. 3.7 Probe forming optics. (a) Two condenser lens (CL) system. CL1 controls demagni-
fication of the source. CL2 controls the focusing of the probe onto the specimen. (b) Three
condenser lens system. CL2 and CL3 can be adjusted as a pair to affect the convergence angle
whilst maintaining focus. (c) A condenser lens system containing an aberration corrector
which in this (CEOS) case contains additional transfer lenses and hexapoles.
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3.2.1 Alignment of a Nanobeam Probe

Alignment of a nanobeam probe should begin with the microscope well aligned in STEM
mode following standard alignment procedures. The specimen should be positioned at
eucentric height and particular attention should be paid to the alignment of the pivot points
(tilt/shift purity), rotation center, and astigmatism. Regardless of the complexity of the
condenser lens system, the nanobeam configuration involves the use of a small condenser
aperture of ∼ 5−10 µm, which is typically the smallest available. When this aperture is
inserted it must be centered carefully on the optic axis by expanding the illumination in
imaging mode and re-centering the illumination by adjusting the aperture. If the condenser
lens system comprises only two condenser lenses then, having aligned the smallest CL2
aperture and converged the probe on the specimen, nanobeam alignment is complete.

Fig. 3.8 Ray diagrams showing the reduction of the convergence angle with three con-
denser lenses. (a) Typical alignment of a convergent beam with a large condenser aperture.
(b) Reducing the excitation of CL2 moves the subsequent cross overs towards CL3 and below
the specimen plane. (c) Increasing the excitation of CL3 re-focuses the probe in the specimen
plane. A small condenser aperture is also required for a small convergence angle.
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Condenser lens systems comprising three or more lenses offer greater optical flexibility
and the ability to adjust the convergence semi-angle continuously [210] using a pair of
lenses below CL1 with a cross-over between them. To reduce the convergence angle, the
excitation of the first lens (e.g. CL2) is reduced to move cross over towards the second lens
(e.g. CL3). Increasing the excitation of the second lens (CL3) refocuses the probe in the
specimen plane so that both a small convergence angle and a small probe can be obtained
simultaneously, as illustrated in Figure 3.8. The smallest convergence angle that can be
obtained is dictated by the allowed range of lens excitations, the physical arrangement of
lenses and the condenser aperture. Typically a small condenser aperture (i.e. ∼ 5−10 µm)
will still be required to obtain a convergence angle of 1-3 mrad. These adjustments can
induce aberrations, particularly coma and two-fold astigmatism, that are corrected as usual.

Probe corrected instruments typically have at least three condenser lenses prior to the
corrector [210]. A nanobeam alignment is best obtained using these lenses, via the method
described above, as this would have the least effect on aberrations. However, since some
aberration corrected STEM instruments are optimized for large convergence angles, which
improve spatial resolution in high-resolution STEM, the excitation range available with
these lenses may be insufficient to reduce the convergence angle to the 1-3 mrad regime of
SED. In this case a pair of transfer lenses within the corrector can be used to reduce the
convergence angle further. This requires that the corrector hexapoles are manually turned
off, the quadrupoles are used to correct two-fold astigmatism and coma is corrected using
beam tilt. The hexapoles can then be used to correct three-fold astigmatism. Reduction of
the convergence angle then follows a similar procedure to the three-condenser lens case.

3.2.2 Probe Size

Alignment of the microscope following the procedure described above is intended to minimize
the effects of the lowest order lens aberrations (i.e. defocus, two-fold astigmatism and coma).
Assuming that the alignment is performed well, the probe size will be limited by spherical
aberration balanced with the Rayleigh diffraction limit. The probe size, d, is is typically
[17, 11, 171] expressed as:

d =C3,0α
3 +

0.61λ

α
(3.7)

where C3,0 is the spherical aberration coefficient, α is the convergence semi-angle and λ

is the electron wavelength.
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3.3 Double-Rocking Electron Probes

Rocking the electron probe to multiple tilts away from the optic axis in order to sample
numerous diffracting conditions has been implemented in numerous contexts including:
hollow cone dark-field imaging [197, 211], large angle rocking beam electron diffraction [212,
213], and precession electron diffraction (PED) [18]. Only PED involves double rocking of
the electron beam back to the optic axis below the specimen in order to measure integrated
diffraction intensities [18], as illustrated in Figure 3.9. The key optical requirements of the
setup are: (1) rock the beam around a circular cone, (2) de-rock the diffracted beams back to
uniform disks in the diffraction plane, and (3) align the conical rocking fulcrum to intersect
the specimen precisely. Various configurations have been implemented and a detailed design
approach was reported by Own et al. [200] incorporating geometric distortion corrections.

Fig. 3.9 Schematic of the focused double-rocking probe geometry. Two points on the
azimuth are depicted for the direct beam, 0, with one diffracted beam, g, illustrating the
diffraction condition being met at a particular azimuth. The pre and post specimen deflector
coils that rock and de-rock the electron beams are depicted along with key lenses.
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SPED is performed in an (S)TEM fitted with signal generators on the pre and post
specimen deflector coils to produce the necessary double-rocking (tilt and rotation) and
scanning of the beam [18, 200]. The set-up used in this work comprises a scan generator
(Digistar P1000) produced by NanoMEGAS retro-fitted to a Philips CM300-FEG microscope,
which has a two condenser lens system. The precession frequency used in this work was
nominally 100 Hz although the hardware can achieve frequencies in the range 1-1000 Hz.

3.3.1 Alignment of a Double-Rocking Probe

Double-rocking probe alignment must bring the beam pivot point into the specimen plane
to minimize displacement with tilt. Minimization of probe wander on the viewing screen,
with the sample in focus, is only sufficient to achieve this if the instrument is fitted with an
image lens aberration corrector so that the image of the probe is an accurate representation
of the probe at the sample [27, 162, 163]. For non-image-corrected instruments, spherical
aberration in the imaging lens and small misalignments between the pre-field and post-field
objective lens pole pieces lead to a misrepresentation of the probe position and shape on
the viewing screen [214]. Aligning the pivot point in imaging mode can be successful if the
probe movement relative to the sample is minimized [212]. However, the shadow image in
the bright-field (BF) CBED disk, is a more appropriate representation for aligning the pivot
point accurately [212] and a method based on this is developed here2.

Alignment of a double-rocking probe should begin with the microscope well aligned for
convergent or nanobeam experiments as described in Section 3.2. The principles of aligning
a double-rocking probe using the shadow image are illustrated in Figure 3.10. The most
general condition occurs when the probe focal plane, C, pivot point plane, P, and the specimen
plane, S, are at different heights, as shown in Figure 3.10(a). As the probe moves around
the sample, during double-rocking, the shadow image of the specimen describes a circular
path within the BF-CBED disk. As the double-rocking pivot point alignment is improved,
the pivot point, P, moves closer to the specimen plane, S, and the circular movement of
the shadow image within the BF-CBED disk is reduced at the same angular magnification
(Figure 3.10(b)). Only when the pivot point plane, P, coincides with the specimen plane, S,
does the shadow image of the specimen no longer move within the bright-field disk (Figure
3.10(c)). The incident angle continues to change so, if the sample diffracts, the static image
will twinkle. Finally, when the probe focal plane, C, is moved into coincidence with the pivot
point, P, and the specimen plane, S, the bright-field disk becomes featureless and any change
in intensity is due to the diffraction condition alone (Figure 3.10(d)).

2This method was developed together with Jon Barnard and was reported in Barnard et al. [215]
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Fig. 3.10 Ray diagrams and schematic shadow images within the bright-field disk at
two points on the double-rocking cone at different stages of alignment. The probe
crossover (C), pivot point (P) and specimen (S), planes must be brought into coincidence. (a,
b) The shadow image follows a circular path, when S and P are not coincident. (c) Alignment
of P and S results in a static shadow image magnified depending on the distance between C
and S. (d) The bright-field disk appears featureless when C, S and P are aligned.

In practice, alignment (see Figure 3.11) involves defocusing the condenser lens to obtain
a high contrast shadow image, over a sufficiently wide field of view, within the BF disk
(step 1). Successful pivot-point alignment of the double-rocking probe (step 2) requires that
the de-rocking, below the specimen, is also aligned to keep the BF disk stationary. Since
the de-rocking is contingent on the position of the pivot point plane, iterative refinement
of the pivot-point and de-rocking is necessary (steps 3 and 4). The spatial accuracy of the
pivot point alignment is only as good as the angular resolution and the angular magnification
within the BF disk. Therefore, the defocus is reduced, typically by a factor of two (step 5),
several times, to increase the angular magnification and reduce the pivot point error. When
no further improvement in the pivot point can be accomplished by the pivot point adjustment
alone, dynamic compensation is applied (step 6). Dynamic compensation modulates the
beam deflector coils, over the double-rocking cycle, to null probe shifts caused by non-round
aberrations in the probe forming lens [200]. Like the pivot point adjustment, the dynamic
compensation is refined by reducing motion of the shadow image within the BF disk during
precession. The non-precessed shadow image is depicted for comparison in Figure 3.11 and
any blur must be related to residual pivot point error or electronic noise in the scan coils. The
alignment is terminated when no further sharpening is seen. The probe is then refocused
using the condenser lens and a smaller illumination aperture is inserted (step 7).
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Fig. 3.11 Steps involved in aligning a double-rocking probe. Illustrated through time
averaged images of the BF-CBED disk, with an integration time longer than one precession
cycle, such that motion of the BF disk or of the shadow image within the BF disk appears
as a blurring. The alignment begins by focusing the probe onto the sample and switching
to diffraction mode. Overfocusing the probe with the condenser lens widens the BF CBED
disk to give a large field of view (step 1). With precession on (step 2), de-rocking is adjusted
first (Image Upper and Image Lower deflectors, Fig. 1) to sharpen the BF disk (step 3).
Next, the pivot point is adjusted (Beam Upper and Beam Lower deflectors, Fig. 1) to give a
sharp sample image within the BF-disk (step 4). As the overfocus is reduced (step 5), the
de-rocking and pivot points are refined (steps 3 & 4, repeated). When no further improvement
can be achieved by pivot-point adjustment, the dynamic compensation is adjusted (step 6).
The alignment terminates by refocusing and reducing the illumination aperture (step 7). The
inset (*) shows the non-precessed shadow image at step 6 for comparison.
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In summary, the alignment (Figure 3.11) is described by the following steps:

1. Insert a large illumination aperture and over-focus the electron probe.

2. Find a region with highly visible features and activate precession at both the precession
angle, φ , and precession frequency to be used.

3. Obtain a static BF-CBED disk by adjusting the phase and amplitude of the signals
applied to the post-specimen deflector coils.

4. Minimize motion of the shadow image within the BF disk by adjusting the phase and
amplitude of signals applied to the pre-specimen deflector coils.

5. Reduce the defocus by a factor of two and repeat steps 3 and 4 until no further
improvement is seen.

6. Apply dynamic compensation to further reduce motion of the shadow image within
the BF-CBED disk.

7. Refocus the probe using the condenser lens and insert a smaller illumination aperture.

Three further points are worth making. First, the initial gross errors in both the pivot
point and de-rocking for precession angles beyond ca. 20 mrad (> 1◦), make correction
with steps 2, 3 and 4 difficult. By starting with a lower precession angle and finding the
correct pivot point and de-rocking settings there and then increasing , in a stepwise fashion,
the correct pivot point and de-rocking settings can be found, i.e. steps 2, 3 and 4, can be
iteratively refined with an increasing precession angle. Second, when moving the sample
from the alignment region to the region of interest (ROI), the height of the new region has to
be set carefully, as a height deviation of ∆z from the pivot point plane will resultant in conic
blur of approximately φ∆z. To achieve this, having set the pivot point plane at the alignment
region, precession can be switched off and the probe focused to Gaussian focus, the specimen
is then moved to the ROI and the height adjusted to give the same Gaussian focus conditions
as before. Precession can be turned back on and the condenser lens underfocused by 2C30φ 2,
where C30 is the spherical aberration coefficient of the probe forming lens, (see Discussion
& Figure 6) before starting the SPED scan over the ROI. Finally, it is noteworthy that the
specimen height is typically not changed significantly in this procedure allowing a position
close to eucentric height to be maintained, which is advantageous for scanning precession
electron tomography [164] experiments.
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Why align with positive defocus (overfocus)?

The Gaussian image plane coordinates are gradient mappings of the aberration function
in Fraunhofer diffraction, as given by Equation 3.2. For an aberration free probe-forming
lens, only the defocus term, χ(k) = πC10λk2, contributes to the aberration function. When
the probe is underfocused (C10 < 0) or overfocused (C10 > 0) there is a linear, one-to-one
correspondence between a point in the diffraction disk and a point on the sample within the
illuminated area of the probe. Either condition works for aligning a precessing probe.

For a microscope with positive spherical aberration (C30) in the probe forming lens, the
one-to-one relationship is maintained only with a positive defocus (overfocus). If underfocus
is used, the one-to-one correspondence is lost over a range of defocus, resulting in strong
warping within the shadow image due to natural focusing as the curvature of the aberration
function disappears at certain regions within the illuminated cone [216, 175]. This makes
pivot point correction difficult. An additional, practical, benefit of using the overfocus
condition is the slight widening of the illumination aperture, rendering a wider field of view.

Why change to a smaller illumination aperture?

Together with the lattice parameter of the material under examination, the illumination
aperture determines the extent of reflection overlap in the PED pattern. Automated reflection
identification generally requires non-overlapping CBED disks, i.e. smaller illumination
apertures. The size of the precessing probe is also determined by the aperture size (see
Section 3.3.3) and smaller apertures generally improve spatial resolution of SPED data sets.
In practical terms, the illumination aperture is typically changed in imaging mode. However,
it is advantageous to operate only in diffraction mode to avoid any effects of hysteresis in the
intermediate lenses. To maintain this advantage, the illumination aperture can be changed
in diffraction mode and positioned with reasonable accuracy by marking the position of the
BF-CBED disk center with the larger illumination aperture aligned and then inserting the
smaller aperture and adjusting its position to return the BF-CBED disk to the same position.

3.3.2 Limitations of the Proposed Alignment Method

Aligning the double-rocking probe using the shadow image offers significant advantages in
terms of visualizing the effects of misalignment with high fidelity. However, the approach is
not without limitations. First, a large illumination aperture is necessary for the alignment,
which has to be changed to a smaller aperture for the experiment. This has two consequences:
(1) If one, or both apertures are dirty, the rocking probe acquires an additional aberration that
stays constant throughout the precession cycle. As with regular STEM, this can be corrected
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by adjusting the condenser stigmators; (2) If the small aperture is not centered precisely on
the rocking cone, the probe acquires a sinusoidal probe displacement and aberration. This
is perhaps the biggest weakness of the proposed method. Secondly, a prominent feature
is required for alignment, especially with the relatively large (ca. 100 µm) defocus used
at the start of the alignment process. Small (ca. 10 nm) features work well for modest
precession angles, up to about 20 mrad (ca. 1◦) with larger (ca. 100 nm) features necessary
for precession angles above this. Corners of specimens work well too – two sharp edges
provide reliable information about the probe wander in the orthogonal directions – especially
for the dynamic compensation at the end of the alignment procedure. However, the need to
find appropriate features for alignment is a common part of much electron microscopy and
typically a suitable feature can be found or contrived. Thirdly, shadow image contrast in the
CBED disk is low for microscopes with W-filament and LaB6 thermionic emitters, because
the overall shadow image is an incoherent superposition of individual shadow images from
points within the (extended) crossover sitting above the sample. Visibility is improved by
reducing the spot size, but at the expense of probe current. In contrast small, coherent sources
such as a Schottky thermionic emitter or cold field emitter afford significantly greater probe
currents ( > 1 pA). Users of SPED systems fitted to older microscopes may, therefore, find
the shadow image alignment challenging.

3.3.3 Probe Size & Spatial Resolution

The probe size in double-conical-rocking beam experiments and the was initially estimated
by Vincent & Midgley [18] based on the disk of least confusion in the specimen plane, as:

d = 4C3,0φ
2
α (3.8)

which shows that the probe size increases as the square of the precession angle and
proportional to the convergence angle. This simple estimate is however slightly pessimistic
as can be seen using a more complete wave-optical assessment. The full wave-optical
structure of the inclined probe at one instantaneous azimuth in the precession cycle, for two
different illumination aperture sizes, is shown in Figure 3.12. For the α = 3 mrad aperture,
the probe is an ellipse at the Gaussian imaging plane (z = 0) with a small amount of coma
(magnitude, Ce f f

2,1 = 6C3,0φ ), which makes the probe slightly brighter on one side. Above the
Gaussian imaging plane, i.e. the overfocusing condition, two line foci are seen and separated
in height by a distance equal to the tilt-induced two-fold stigmatism, Ce f f

1,2 = 2C3,0φ 2 (this
is the definition of 2-fold stigmatism). Detail of the probe at height, z = 2C3,0φ 2, i.e.
midway between the line foci, shows that the 3 mrad probe is composed of four fold caustics
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Fig. 3.12 Geometric rays and wave-optical simulations of the electron probe. For a
convergent probe, tilted by a precession angle of φ = 35 mrad, in the presence of spherical
aberration coefficient (C3,0 = 1.2 mm) relative to the optic axis (—). The principal (central)
ray crosses the optic axis at C3,0φ 2 and rays about this (φ ±α) in the radial direction cross at
C3,0(φ ±α)2, creating two caustic folds in the probe – a radial caustic (line focus, X-direction)
at C3,0φ 2 and an azimuthal caustic (Y-direction) at 3C3,0φ 2 (Note: Lateral displacements
between the wave-optical probe simulations have been removed for convenience). Halfway
between these two folds, at a height of C3,0φ 2, the probe is most compact. The Vincent-
Midgley disk-of least-confusion diameters are 5.9 and 17.6 nm for α = 1 and α = 3 mrad
respectively.
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decorated with Airy fringes. The top-bottom pair are azimuthal fold caustics that coalesce
at height,z =C3,0φ 2, to form one line-focus. The left-right pair are radial fold caustics that
coalesce at height, z = 3C3,0φ 2, to form the other (orthogonal) line focus. Between the
two, the probe is underfocused in one direction (azimuthally) and overfocused in the other
(radially). The probe is also at its most compact size, having a size 2C3,0φ 2α according to
the geometric ray model, i.e. half that of the Vincent-Midgley expression.

Considering the intensity distribution in the full wave-optical assessment shows that
the probe is slightly smaller still, r80 = 0.89C3,0φ 2α (80% probe intensity). This value
was obtained by evaluating the probe size midway between line foci was measured using
simulated wave-optical calculations calculated in IDL using a fast Fourier transform (FFT)
[46]. The defocused probe was calculated using a defocus term equal to C1,0 =−2C3,0φ 2

(the precession angle, φ , was fixed at 35 mrad) in the aberration function and various circular
illumination apertures applied to low-pass the spatial frequencies, 0.1 ≤ α ≤ 4.1 mrad, in
the probe wave-function, ψprobe(k), prior to the FFT. The results of the probe intensity
|ψprobe(r)2 are depicted in Fig. 3.13(a) for one instantaneous precession azimuth. Because
the probe rotates around the optic axis (assuming the probe is centred on the optic axis) the
radially averaged probe is pertinent to the spatial resolution of the SPED experiment. The
integrated radial probe profile is depicted in Fig. A1(b) with two lines, corresponding to the
50% (red) and 80% (green) probe intensity thresholds.

Fig. 3.13 Simulated probe sizes. (a) Four simulated probes for one (instantaneous) azimuth
with a precession angle of 35 mrad with illumination angles below, at, above and many times
greater than the optimum illumination angle. (b) The cumulative radially averaged electron
probe as a function of shows the linear increase in probe size with illumination angle with
50% (red) and 80% (green) asymptotes illustrated.
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The optimal convergence semi-angle can be evaluated [205] by balancing the tilt-induced
two-fold astigmatism against the difraction limit to give:

αopt(φ) = 0.55

√
λ

C3,0
φ 2 (3.9)

For a given precession angle and wavelength this yields an optimum probe size of:

dopt(φ) = 2.19
√

λC3,0φ 2 (3.10)

This means that there is an optimized illumination aperture for each precession angle,
which could be selected to minimize precession-induced blur.

Measuring SPED spatial resolution

STEM probe sizes are typically measured using a grating or nanostructure with a well-
defined lateral size [217]. In SPED, the same approach is desirable, but the need to maintain
non-overlapping disks in the SPED diffraction patterns means lattice fringes will not be
visible. Instead, virtual bright-field images (VBFs) (see Chapter 4) were formed using an
integration disk slightly larger (1.2 mrad) than the convergence semi-angle, as shown in Figure
3.14 along with corresponding power spectra. The SPED data for this assessment of spatial
resolution were acquired from an Agar Scientific combined test specimen, comprising a holey
carbon film (thickness, t = 20 nm) decorated with a uniform distribution of gold particles
approximately 10 nm in diameter. Diffraction patterns were recorded with 144×144 pixels
and 8 bits per pixel over 256×256 probe positions with a spatial sampling of 1.9 nm/pixel.
Precession angles between 1.4 mrad and 41 mrad (calibrated in-situ using polycrystalline gold
ring patterns) were used at a precession frequency of 100 Hz. Other important parameters
include: illumination semi-angle,α = 0.9 mrad; probe current = 0.5 pA; camera length = 850
mm; exposure time = 10 ms, such that recorded diffraction patterns were not saturated.

The sharpest images were obtained without precession (“φ = 0 mrad”) and the gold
particles were easy to discern. Darker-than-average contrast amongst some particles sug-
gested they were diffracting strongly. Indeed, their corresponding diffraction patterns showed
several CBED disks excited. As the precession angle was increased, the blur in the VBF
was modest, e.g. 3.4 and 13.5 mrad, and faint blurring could be seen at the edge of the gold
islands. No stretching of the islands was apparent, suggesting that contrast transfer by the
SPED probe was isotropic. Increasing the precession angle beyond approximately 20 mrad
led to a rapid increase in the VBF blur. During the alignment it was more difficult to keep the
islands sharp within the shadow image and significantly larger features, such as holes in the
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Fig. 3.14 Virtual bright-field images of the gold-on-carbon test sample. The virtual
collection angle was β = 1.2 mrad and their log-power spectra, ρ(k|φ). Each VBF has 2562

pixels, with width 1.9 nm. Nyquist frequency is 0.26 nm−1.

carbon film and clusters of gold particles, were needed to find the correct pivot point. Above
30 mrad precession angle the VBF images demonstrated some streakiness, which could be
discerned in the power spectra as lines of zero-visibility (Figure 3.14); this suggested some
anisotropy in the transfer of contrast.

Precession-induced blur, i.e. spatial resolution loss, was determined by measuring the
effective damping envelope, in the Fourier domain, of the rotationally averaged VBF power
spectra at low spatial frequencies (k < 0.2 nm−1). If the effect of precession-induced blur can
be modelled as a Gaussian blur (width, d) of an unprecessed VBF image, then, in the Fourier
domain, the power spectrum of the precessed VBF, ρ(k|φ) , is equal to the unprecessed
VBF power spectrum, ρ(k|0), multiplied by a Gaussian damping envelope, exp(−4π2d2k2).
Therefore, taking the logarithm of the ratio of the power spectra, ρ(k|φ)/ρ(k|0), should
yield a parabolic variation in the low-k domain3. A least-squares fitting algorithm was used
to find the parabolae that matched the log-power-spectra-ratio (LPSR),

L(k) = log10(
ρ(k|φ)
ρ(k|0)

(3.11)

in the low-k domain, using one or two parameter fits. In the one-parameter fit, L(k) =
4π2d2k2 log10 e , i.e. proportional to the square of the Gaussian blur, d. The single-parameter
fit implicitly assumed that the total intensity in precessed and unprecessed VBFs were the

3This argument holds even if the precessed and unprecessed images are not of the same area. The only
requirement is that the statistical properties of the gold-on-carbon films are the same, i.e. island size, spatial
homogeneity. All indications were that this was indeed the case.
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same. In the two-parameter fit, i.e. L(k) = A−4π2d2k2 log10 e, where A is a (fitting) constant,
considers the possibility that total VBF intensity is different. The blur coefficients, d, were
used as a proxy for precession probe size.

Figure 3.15 (a) shows the LPSRs for low, medium and high precession angles, with their
respective parabolic fits to the low domain. The domain over which the parabolic fit was
appropriate became narrower with increasing precession angle. The prominent rise in the
LPSR for the 13.5 (33.7) mrad curves in the domains k > 0.15 (k > 0.10) nm−1, was due to
algebraic nature of the LPSR. Rewriting the LPSR,

L(k) = log10 ρ(k|φ)− log10 ρ(k|0) (3.12)

shows that the high-k domain of L(k) is dominated by the large (negative) values of the
unprecessed VBF image, i.e. there is more high-k structure in the unprecessed VBF power
spectrum. This creates a strong negative dip in the LPSR. However, as k → ∞, the power
spectra of both VBFs tends to the same frequency-independent noise floor, so that their ratio,
the LPSR, tends to log10 1 = 0. Simply interpreted, the rise is due to the precessed VBF
power spectrum hitting the frequency-independent noise floor before the unprecessed VBF
power spectrum. Thus, the spatial-frequency domain over which the parabolic approximation
is valid continues to shrink for increasing precession angle.

Figure 3.15 (b) shows the Gaussian blur measured for each precession angle LPSR
function, against the measured precession angle, for both the 1-parameter and 2-parameter
parabolic fitting functions. Both 1-parameter and 2-parameter models show the same slow
increase in the blur, which, with a least squares fit, scales as for precession angles below 15
mrad. Above 15 mrad (ca. 1◦), the resolution worsens faster, scaling as φ 1.7 and φ 1.6 for
the 1-parameter and 2-parameter fits respectively. Asymptotically, both curves appear to
approach the Vincent-Midgley expression (Equation 1.8), which is shown for comparison,
in the high-φ limit. Both the 1-parameter and 2-parameter blur curves show that the VBF
images for a precessed electron probe can be equated to an unprecessed VBF with Gaussian
blur of ∼ 2 nm for precession angles less than about 15 mrad (ca. 1◦).

Measurement of the probe size by estimating the damping envelope of the power spectra
associated with VBF images appears to give reasonable results. The precession angle
dependence of resolution degradation can be explained as follows. At low precession angles,
the φ 0.4 dependence is close to

√
φ , which suggests resolution is limited by noise in the

scan electronics rather than aberrations. This argument is predicated on two suppositions.
First the angular displacement of the electron beam by a deflector coil is proportional to the
current flowing through it. Second, noise in the deflector coil is primarily shot noise, which
increases in proportion to the square root of total current flowing through it [218]. Therefore,
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Fig. 3.15 Log-power-spectrum-ratios for small, medium and large precession angles.
(a) The dotted lines are the 2-parameter fits to the low-k domain assuming a parabolic
variation. The rises in the LSPRs for k > 0.1 nm−1 (φ = 33.7 mrad), k > 0.15 nm−1 (φ
= 13.5 mrad) and k > 0.2 nm−1 (φ = 1.4 mrad) correspond to the differeng extents of the
frequency-independent noise floors in each case. The precession-induced blur is shown in
(b). The low-φ domain shows a φ 0.4 variation for both 1- and 2-parameter fits; the high-φ
domain shows φ 1.6 (2-parameter) and φ 1.7 (1-parameter) variation. The probe size predicted
by Vincent & Midgley [18] is shown as a dotted line. α = 0.9 mrad.

the (shot) noise in each deflector coil, even when the probe is stationary at a pixel point, is
related to the total current, Itilt(t)+ Ishi f t , not just the shift signal. Effectively, the probe shift
signal is superposed on the same noisy electronic channel that the (double-rocking) tilt signal
passes. One possible method to mitigate this would be to have separate deflector coils for the
(probe) shift and (double-rocking) tilt actions. It has to be noted that, since the CM series of
instruments used in this work, considerable improvement in the electronic noise in the scan
system of subsequent microscope platforms has been achieved.

At high precession angles the φ 1.7 dependence seen (Fig. 3.15) is close to the φ 2

dependence expected theoretically. If we had pushed the precession angle higher, then the
curve in Fig. 3.15(b) would almost certainly have steepened. Thus, by using the shadow
image alignment method, we appear to be reaching the limit in spatial resolution dictated by
spherical aberration of the probe forming lens (C3,0 = 1.2 mm) and the tilt-induced two-fold
astigmatism, Ce f f

1,2 2C3,0φ 2, of the precessing probe.
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3.4 Electron Detection

Accurate measurement of an electron diffraction pattern, in terms of incident electron
intensity and geometry, depends on the detector characteristics and the optics that project
the diffraction pattern onto the detector. Detectors for S(P)ED experiments must be able
to acquire frames with an exposure times in the range 1-100 ms, so that scans of a useful
size (e.g. 256×256) pixels may be acquired in a reasonable time considering microscope
stability. This precludes the use of traditional recording media such as photographic film,
imaging plates, electron diffractometers and slow scan charge coupled devices (CCDs) and
has been the dominant constraint on detector systems installed for S(P)ED experiments. This
speed requirement led to the most common commercial implementation of S(P)ED using
a fast optical camera to image the phosphor viewing screen [219, 150] although this does
not address the speed of the phosphor properly. Fast high-efficiency detectors have also
been required for recent developments in low-dose imaging particularly in the field of cryo
electron microscopy and this has driven the development of numerous new direct electron
detectors [220, 221]. These new detectors operate with the electrons incident directly on the
imaging electronics i.e. there is no intermediate scintillator as in traditional CCDs used in
electron imaging [220, 221].

3.4.1 Detector Characteristics

Detector characteristics are measurable quantities describing the relationship between the
incident electron intensity on the detector and the recorded intensity [222, 172]. The most im-
portant detector characteristics are the modulation transfer function (MTF) and the detective
quantum efficiency (DQE). The MTF is the ratio of output to input modulation as a function
of spatial frequency and describes how the detection system attenuates the amplitudes of a
sinusoidal series. The DQE is the ratio of the square of the output to the square of the input
signal-to-noise-ratio measured as a function of spatial frequency and measures combined
effects of the signal and noise performance of the imaging system [222]. These quantities
are however a direct result of the detector design and configuration and are essentially fixed
at the point when the experiment is performed. From the perspective of experimental data
acquisition and analysis it is more immediately important to consider the gain of the detector
and the response linearity. The gain, g, is defined:

g =
I −b
Ne

(3.13)
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where I is the average counts measured, b is the background and Ne is the average
electron dose per pixel. Practically, the gain is measured and then corrected by exposing
the detector with a uniform illumination and averaging over pixels and the background is
measured by recording an image without electron illumination using the same exposure time
for recording the image. The response linearity describes the increase in measured intensity
for equal increments of electron dose. Often it is sufficient to assume linearity over the range
of incident electron intensities encountered but this can fall down for very intense diffraction
disks. Linearity is assessed by increasing the dose by known increments and measuring the
response this is often achieved by increasing exposure times. If the response is non-linear a
curve is obtained, which may be fitted and used to correct measured intensities [222].

3.4.2 Projection Distortions

Recorded electron diffraction patterns may be distorted due to the projector optics [223]
or due to the use of an off-axis camera [150, 188]. Distortions due to the projection lens
system are a result of lens aberrations and can be minimized by good alignment of the
microscope, particularly considering coma and optimization of an image side aberration
corrector if present. Off-axis cameras lead to an approximately rectangular distortion of the
diffraction pattern, which can be calibrated using a reference specimen and corrected by
affine transformation of the data, as discussed in Chapter 4.

3.5 Experimental Setup

S(P)ED data presented throughout this work was acquired using a Phillips CM300 FEG-TEM
retrofitted with a Nanomegas Digistar scan system and a Schottky FEG providing a small,
bright and reasonably coherent electron source. The condenser lens system comprises two
lenses meaning that a nanoprobe alignment only involves inserting and aligning the smallest
condenser aperture available, which is 5µm on this instrument. The Nanomegas Digistar
system comprises a scan generator that drives the scan deflector coils to achieve simultaneous
double-rocking and spatial scanning of the electron beam, as required for SPED experiments.
The Nanomegas system also enables the acquisition of an electron diffraction pattern at each
probe position using an external optical CCD coupled to the small phosphor viewing screen
of the microscope, which suffers from the rectangular distortion described in Section 3.4.2.
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Fig. 3.16 Experimental setup. Schematic representation of the retrofitted Nanomegas
system that enables S(P)ED to be performed under computer control. The system comprises
a signal generator that drives the deflector coils and an external optical camera to record the
diffraction pattern on the phosphor viewing screen.

3.6 Summary & Prospects

Experimental aspects of S(P)ED have been set out in detail, providing a comprehensive
guide to performing such experiments. Particular attention has been paid to the electron
optical arrangement and practical methods for alignment, which were essential for obtaining
high quality S(P)ED data with nanoscale spatial resolution. Most notably, the use of the
Ronchigram to align a double-rocking probe at the experimental rocking frequency was
suggested and demonstrated for the first time. Without this approach it had not been possible
to obtain SPED data at high-resolution in a routine and reliable manner. Further improvements
in the electron optical configuration for SPED are likely to be possible with the incorporation
of aberration correction. Although there has been some exploration of aberration correction
in the context of single point PED [199, 206] experiments and SPED has been performed on
aberration corrected instruments [27, 163], it remains the case that little has been done to
optimize the corrector setup for hollow cone illumination. The Ronchigram method set out
here for pivot point alignment will remain applicable in aberration corrected SPED.

Electron detection systems have developed significantly in the past 5 years since direct
electron detectors have become available in various guises. Many of these detectors have
been optimized in the context of fast imaging experiments and it remains the case that
further exploration of their performance and optimization for fast and quantitative diffraction
experiments is required. Preliminary results using such detectors have been reported in the
literature and here in Chapter 8 and appear promising but demonstration of quantitative use
of diffracted intensities will be the ultimate goal. Finally, in the context of using diffracted
intensities quantitatively in S(P)ED experiments it is likely that energy filtering will prove
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beneficial [206]. This is because electron diffraction theory, as discussed in Chapter 2,
typically only describes elastic scattering of electrons and therefore removing inelastic
contributions to the measured intensity improves quantification. The benefits of such filtering
are most significant when the elastic/inelastic scattering ratio is low, which is typically the
case in light element materials. Finally, it would be interesting to combine S(P)ED with
the acquisition of spectroscopic signals (e.g. energy dispersive X-ray spectra (EDX) [224]
and electron energy loss spectra (EELS) [225]) to provide complementary physico-chemical
insights. Overall, a general framework for S(P)ED experiments is now established and
there remains a number of avenues for further improvement of the experimental method
particularly towards quantitative use of diffracted intensities.





Chapter 4

pyXem - Pythonic Crystallographic
Electron Microscopy

Analysis of 4D-S(P)ED datasets, comprising many thousands of electron diffraction patterns,
requires robust and reproducible data-analysis workflows. To facilitate this analysis a Python
package was developed as a library of functions for common 4D-S(P)ED data analysis tasks
and defining classes for important objects arising through the analysis1. The package was
named pyxem as a library for Pythonic Crys(X-)tallographic Electron Microscopy [226]. This
code development underpins a philosophy of data-analysis in which the methods applied
to each dataset are written as a script, describing a workflow that may be modified and
repeated, yielding reproducible results from an analysis perspective. To ensure the necessary
robustness, hard coded unit tests were written for every function [227].

A python framework was chosen because it is increasingly recognized as the lingua
franca of open-source scientific computing [228–230]. This wide usage and open-source
philosophy has made many libraries available that can be built on. Pyxem depends primarily
on: hyperspy for multi-dimensional data structures [231], diffpy for manipulation of atomic
structures [232], scikit-learn for machine learning methods [233], scikit-image for image
processing tools [234], numpy for array manipulations [235], scipy for common scientific
operations such as fitting algorithms [236], and matplotlib for plotting [237]. Further, python
is an object-oriented programming language [228–230], meaning that the code is organized
around objects and methods that may be applied to those objects. This is conducive to
developing adaptable analysis workflows in which objects are defined at various stages of
processing and different paths may be followed from acquired data to final result.

1The code development was undertaken with Phillip Crout & Ben Martineau and all contributors to the
project, can be viewed at: www.github.com/pyxem/pyxem/graphs/contributions. The overall architecture of the
package as a framework for 4D-S(P)ED analysis and much of the code was due to the author.
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Pyxem is a specialized extension of the hyperspy library [231] for multi-dimensional
hyperspectral data analysis [231]. The pythonic object central to hyperspy is the Signal
class, which provides a convenient way to address entries in a data array. If the data array
is imagined as a tensor, D, of rank n then entries are addressed by n subscripts, Di, j,...,n.
Addressing entries using subscripts is central to array based manipulations, which is the
function of the numpy library [235]. If the data array is made a hyperspy Signal then instead
of all indices being equivalent we can designate two kinds of subscript or equivalently two
kinds of axis, which we refer to as either navigation axes or signal axes. In the context of a
4D-S(P)ED experiment the two axes corresponding to the real-space scan dimensions (i, j)
are set as navigation axes and the two axes corresponding to the diffraction pattern plane
(α,β ) are set as signal axes, which can be written:

< i, j|α,β > (4.1)

The separation of axes in hyperspy enables functions to be written to apply to the signal
axes and for these functions to then be iterated over the navigation axes efficiently. This
iteration is achieved using the hyperspy map() function, which has the special features that:
(1) navigation axes are preserved, (2) signal axes to be iterated may have arbitrary shape
(including unequal lengths), (3) iteration may be performed in parallel. This function is used
extensively within pyxem methods. Further, hyperspy offers access to unsupervised machine
learning algorithms [233] and advanced model fitting routines [238].

4.1 Code Architecture

Specialized classes are implemented in pyxem for analysis of 4D-S(P)ED data and correspond
to four kinds of object:

1. Signals contain raw or processed experimental data and define methods that may be
applied to these data directly.

2. Generators establish conditions for performing simulations, comparing simulations
with experimental data, or combining the results of two different analyses.

3. Components are computed objects that are fit in models to experimental data.

4. Libraries contain simulation results for later comparison with experimental data.

Objects in these classes can be combined to construct a wide range of 4D-S(P)ED data
analysis workflows, as illustrated in Figure 4.1, creating a versatile analysis framework.
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Fig. 4.1 Analysis workflows in pyxem. Flow diagram illustrating the architecture of pyxem
and key steps involved in analysing 4D-S(P)ED data to extract physical insight.

Processing experimental data to glean physical insight is the primary objective when using
pyxem. Many important data pre-processing steps are therefore defined as methods within the
data containing Signal classes, which are the ElectronDiffraction class (see Section 4.2) and
the DiffractionVectors class (see Section 4.3) for two-dimensional electron diffraction data.
Physical insight is then obtained by incorporating Generators, Components and Libraries
into workflows, which are described in detail for: post-facto diffraction contrast imaging
(see Section 4.4), unsupervised machine learning (see Section 4.5), phase and orientation
mapping (see Section 4.6), and strain mapping (see Section 4.7). The aim here is to illustrate
the most important workflows, enabled by pyxem, that are used throughout this work.
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4.1.1 Illustrative Data

Data analysis with pyxem is illustrated with data from a GaAs nanowire2 grown by molecular
beam epitaxy [239] and containing type I twin boundaries, as shown in Figure 4.2. Such
twins can be described as a rotation of 180◦ about an axis normal to the {111} twin plane
[75], which is a ⟨111⟩ direction parallel to the long axis of the nanowire in this system. The
twin boundaries provide a sharp interface when projected along a ⟨110⟩ direction, enabling
analyses to be demonstrated clearly. The nanowire is several micrometres long and the
cross-section is approximately hexagonal with a vertex-to-vertex distance of ∼ 150 nm.

Fig. 4.2 4D-SPED data from a GaAs nanowire. (a) GaAs crystal structure. (b) Twinned
nanowire geometry. (c) 4D-SPED data (35 mrad precession) navigated in pyxem by dragging
the position marker. Diffraction patterns from two twinned crystals are shown with an image
formed by integrating the intensity in each diffraction pattern.

4D-S(P)ED data were acquired using a Philips CM300 FEGTEM fitted with Nanomegas
hardware and operated at 300 kV with a step size of ∼ 10 nm and an exposure time of 60 ms.
The illumination convergence angle was ∼ 0.5 mrad and data were acquired with precession
angles of 0 mrad, 9 mrad and 35 mrad so that the effect of precession on analysis could be
explored. The scan was performed with 30×100 probe positions and electron diffraction
patterns were recorded with 144× 144 pixels. Noise and geometric distortion due to the
off-axis camera geometry were significant, as shown in Figure 4.2c.

2Nanowire specimens were provided by Prof. Ton van Helvoort, NTNU, Norway.
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4.2 ElectronDiffraction Signal Class

The ElectronDiffraction class defines an object for numerous two-dimensional electron
diffraction patterns. Methods are defined to apply various processing steps prior to other
analyses and to directly reveal structure, e.g. by post-facto imaging or unsupervised machine
learning. The ElectronDiffraction class inherits from the hyperspy Signal2D class and
typically has one or two navigation axes (real space) and two signal (reciprocal space) axes.

4.2.1 Data Corrections & Calibration

Common artifacts in 4D-S(P)ED data include: recorded intensities that depend on detector
characteristics, geometric distortions due to non-ideal projector optics, and shifts in the
direct beam position. Intensities may be most simply corrected by gain normalization using
the apply_gain_normalization() method and geometric distortions may be corrected using
the apply_affine_transformation() method, provided calibration data has been recorded.
Alignment and centring of the diffraction patterns is essential for many subsequent analyses.
The center_direct_beam() method achieves this by performing cross-correlations with circular
elements of multiple sizes to determine the direct beam position, which is the maximum in
the cross-correlation, with sub-pixel (∼ 0.5 pixel) accuracy and shifting this position to the
centre of the data array. The region within which the maximum cross-correlation is sought
may be restricted to mitigate the effect of very strong Bragg reflections. In some cases the
shift in the direct beam position is physically significant and the get_direct_beam_position()
method returns these shifts for further analysis. The effects of geometric distortion correction
and pattern centring are shown in Figure 4.3.

Fig. 4.3 4D-S(P)ED data corrections & calibration. (a) Navigation window showing
diffraction pattern location. (b) Distortion corrected and centred diffraction pattern. (c)
Cross-correlation with a disc element used for centring.



74 pyXem - Pythonic Crystallographic Electron Microscopy

Axis calibration, following alignment and correction of the data, can be performed using
the set_scan_calibration() and set_diffraction_calibration() methods enabling further opera-
tions to be performed in calibrated units. Values must first be determined using a reference
sample and the reciprocal space calibration should be set in Å−1/pixel to match simulations.
Further, experimental metadata may be set using the set_experimental_parameters() method.

4.2.2 ElectronDiffractionProfile Analysis

Azimuthal integration of a two-dimensional electron diffraction pattern about its centre yields
a one-dimensional ElectronDiffractionProfile signal of diffracted intensity as a function of
scattering vector magnitude, as shown in Figure 4.4. This integration is performed using the
get_radial_profile() method of an ElectronDiffraction object and significantly reduces the
size of the data, sometimes without loss of information (e.g. polycrystalline ring patterns).
Peaks may be found in the diffraction profile using the find_peaks_ohaver() method inherited
from hyperspy, which is often useful for calibrating the diffraction plane or for performing
phase identification by indexation of the scattering magnitudes, as shown in Figure 4.4b.
Further possible analysis of radial profiles includes total scattering and powder diffraction
methods, e.g. calculation of the one-dimensional pair distribution function [43].

Fig. 4.4 ElectronDiffractionProfile map. (a) Navigation window showing diffraction pattern
location. (b) Distortion corrected and centred diffraction pattern. (c) Radial profile obtained
by azimuthal integration.
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4.2.3 Background Subtraction

Background subtraction is typically applied to enable accurate diffracted intensities to be
extracted or to achieve more reliable peak finding and pattern matching. If the aim is to
extract intensities then the fidelity of the background subtracted intensities is critical, but
applied as a pre-processing step for determination of pattern geometry, as is the case for
most analysis presented here, factors such as computational efficiency and applicability to a
wide range of data may be more important. A number of background subtraction methods,
illustrated in Figure 4.5, are therefore made available through the remove_background()
method, as follows:

• h-dome: A ’seed’ image is formed by subtracting a constant offset from the raw image,
which is then morphologically dilated to replace high values with nearby low values
and this image is then subtracted from the raw diffraction pattern.

• gaussian_difference: Takes the difference between two Gaussian convolutions to
determine peak positions and sets all other pixel values to zero.

• median_filter: Blurs each diffraction pattern with a median filter of manually specified
size, which should be larger than the diameter of diffraction discs, and subtracts this
from the raw pattern.

• reference_pattern: Subtracts a specified reference pattern, for example the average
pattern from a region in the scan containing to specimen, from all recorded patterns.

Fig. 4.5 Background subtraction methods. Background subtraction from (a) raw diffrac-
tion pattern shown in Figure 4.3b using various methods: (b) h-dome, (c) gaussian_difference,
(d) median_filter, (e) reference_pattern. All shown on the same 0-100 scale.
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4.2.4 Peak Finding

Determining the position of Bragg diffraction peaks in measured diffraction patterns enables
scattering vectors to be associated with reciprocal lattice vectors of crystals and is the basis
for much crystallographic analysis as defined for the DiffractionVectors class described in
Section 4.3. Peak (or disc) positions can be found using various approaches, e.g. Figure 4.6,
implemented in the find_peaks() method, as follows:

• zaeferrer: Uses a gradient threshold followed by a local maximum search within a
square window, which is moved until it is centred on the brightest point and accepted
as a peak if it is within a certain distance of the starting point [149].

• stat: Finds points with a statistically higher values than surrounding areas and iterates
between smoothing and binarising until the number of peaks has converged [240].

• laplacian_of_gaussians: Computes the Laplacian of Gaussian images with succes-
sively increasing standard deviation and stacks them in a cube in which maxima are
the peaks sought. This is a wrapper for scikit-image [234] functionality.

• difference_of_gaussians: The image is blurred with increasing standard deviations
and the difference between two successively blurred images are stacked up in a cube
in which maxima are the peaks. This is a wrapper for scikit-image [234] functionality.

These methods require parameters to be set manually, which may be done interactively
using the utility function find_peaks_interactive(). The number of parameters and speed of
these methods varies considerably. The ’stat’ method requires the fewest parameters and but
requires slow iterations and the Zaeferrer method is simple but not very robust. The matrix
based, Laplacian of Gaussian and difference of Gaussian, methods are much faster and,
although they have many manually determined parameters, the results are often relatively
insensitive to changing parameters for data containing sharp diffraction peaks.

4.3 DiffractionVectors Signal Class

The DiffractionVectors class is a signal class for experimentally measured diffraction vectors
in two-dimensions, as obtained by finding peaks in an ElectronDiffraction signal. These
vectors are two-dimensional position vectors in calibrated units and may be manipulated in
various ways prior to use for orientation or strain mapping (see Sections 4.6 & 4.7). The
DiffractionVectors class inherits from the hyperspy BaseSignal class and typically has one or
two navigation axes (real space) and ragged (varying number of peaks) signal axes.
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A DiffractionVectors object can be reduced to contain each measured vector only once
using the get_unique_vectors() method, based on a distance threshold with respect to vec-
tors already included. The unique DiffractionVectors are useful for: phase identification,
assessing the sampling of reciprocal space, and forming diffraction contrast images with
all relevant conditions (see Section 4.4). The measured diffraction vectors may also be
summarized by plotting a histogram of their magnitudes, as shown in Figure 4.6b, using the
get_magnitude_histogram() method. The magnitude histogram may be indexed to assess
crystal phases present, similar to peak finding in an ElectronDiffractionProfile with the ad-
vantage of an improved signal-to-noise ratio as compared with azimuthal integration. Further,
the pixels in which diffraction vectors were recorded can be mapped, as shown in Figure 4.6c,
using the get_diffracting_pixels_map() method, which may return the number of vectors per
pixel or a binary map that reveals the location of crystals within a scanned region.

Fig. 4.6 Diffraction vector analysis. (a) Peaks found in the diffraction pattern averaged
over the scan region. (b) Histogram of diffraction vector magnitudes indexed with respect to
the GaAs structure. (c) Map of the number of diffraction vectors at each probe position.

4.4 Virtual Diffraction Contrast Imaging

Diffraction contrast images can be formed from 4D-S(P)ED data by plotting the intensity
within a subset of pixels in the diffraction pattern as a function of probe position. Such
images are referred to as "virtual dark-field" (VDF) images (see Chapter 2). Typically,
integration windows are specified as discs around particular diffracting conditions or as annuli
covering a particular scattering range, as shown in Figure 4.7. VDF images may be obtained
interactively using the plot_interactive_virtual_image() method of an ElectronDiffraction
signal or using a VDFGenerator class to form the VDF image associated with all vectors
in a DiffractionVectors object for a particular ElectronDiffraction signal. In both cases, a
VDFImage object is returned.
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Fig. 4.7 Virtual diffraction contrast imaging. (a) Average diffraction pattern from the scan
region with integration windows for image formation. (b) Annular VDF image showing the
nanowire and carbon support film. (c) VDF image using reflection common to both twins.
(d,e) VDF images using reflections unique to each twin.

Contrast in VDF images may be interpreted by analogy to diffraction contrast imaging
in conventional TEM and to STEM performed with annular detectors, which have received
extensive consideration in literature, as discussed in Chapter 2. Indeed VDF imaging is a form
of 4D-STEM imaging with the primary difference being that the camera length is selected to
maximise the visible diffraction pattern, which typically restricts the annular integration range
to ∼ 30 mrad. This range falls within the medium angle annular dark-field regime in which
diffraction contrast dominates. The analogy with diffraction contrast imaging performed in a
conventional TEM for VDF images formed with discs around diffracted beams is perhaps
less obvious since the illumination is a focused probe in SED as compared with parallel
illumination in conventional TEM. However, typically the convergence angle in SED is
sufficiently small (i.e. ∼ 1 mrad) that the range of incidence angles is similar to conventional
TEM. The theory of diffraction contrast imaging based on the column approximation (see
Chapter 2) is developed fully in terms of the intensity of diffracted beams (i.e. with phase
information already lost), which means that the theory should apply exactly to SED data
provided that the column size is considered as the volume sampled at each probe position. If a
SPED experiment is performed, with double-conical-rocking illumination, then the situation
is analogous to conical dark-field imaging.
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4.5 Unsupervised Machine Learning

Unsupervised learning is a descriptive form of machine learning, which aims to find patterns
in data given only the data and minimal constraints [241]. 4D-S(P)ED data typically com-
prises many more diffraction patterns than significantly distinct microstructural elements (e.g.
crystal phases or orientations) in the region sampled. A dimensionality reduction, ideally
to one representative diffraction pattern per microstructural element, may then be possible.
Further, some diffraction patterns will contain contributions from multiple microstructural
elements sampled along the beam path. Unmixing these mixed diffraction patterns is im-
portant (e.g. for crystallographic tomography [164, 165]) and may be possible due to the
experimental oversampling. Unsupervised learning may enable both dimensionality reduc-
tion and signal unmixing by learning component patterns that make up the data, together
with their associated loadings at each scan pixel, as illustrated in Figure 4.8.

Fig. 4.8 Unsupervised learning principle for 4D-S(P)ED data. Electron diffraction pat-
terns are acquired from many positions in each distinct microstructural element, enabling
component patterns and spatial loadings to be learned even in overlapping regions.

In analytical electron microscopy, the oversampling and signal mixing described above
are common and unsupervised learning techniques [242, 243] have been applied to electron
energy loss [244] and energy dispersive X-ray [245] spectral data as well as 4D-S(P)ED data
[164]. The methods applied so far, in electron microscopy, have been latent linear models
and important such methods are made available through pyxem. As linear models, there is
an implicit assumption that signal mixing is linear, which does not, in general, reflect the
physics of electron scattering. Therefore a validation and assessment of the limitations of
these methods, as applied to 4D-S(P)ED data, is presented.
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4.5.1 Learning with Linear Latent Variable Models

Latent linear models describe data by linear combination of latent variables (or basis vectors)
that are learned from the data rather than measured. If the data lie close to a manifold of
lower dimensionality than the original data space, then the data can be well approximated
using a smaller number of variables, revealing intrinsic dimensionality in the data. With
appropriate constraints, learned basis vectors may also be physically interpretable.

A linear model of a data matrix, X, can be expressed as a matrix of linear basis vectors,
W, and corresponding loadings, Z. The reconstruction error may be expressed as an objective
function to be minimized in a least squares scheme:

||X−WZ||2F (4.2)

where ||A||F is the Frobenius norm3 of matrix A. Alternative objective functions may
be defined, for example incorporating sparsity promoting weighting factors [241], but only
objectives of the form in Equation 4.2 were used here. The decomposition is not necessarily
performed by error minimization but this expression is useful for comparison.

4D-S(P)ED data is manipulated into a data matrix, X, by transforming each m×m
diffraction pattern into a one dimensional vector and flattening the p×q scan dimensions to
produce a m2× pq data matrix. The data matrix is then decomposed, as in Figure 4.9, into an
m2× j factor matrix, W and a j× pq loading matrix, Z. Constraining the decomposition may
lead to rows of Z that are interpretable as the spatial distribution of component diffraction
patterns, which are the columns of W. Choosing the number of latent dimensions, j in which
to describe the data is challenging because as a decomposition, rather than a generative model
of the data, any metric based on accurate representation of the data will always improve if
more latent dimensions are included. This problem is typically addressed by plotting the
reconstruction error for increasing latent dimensions, i.e. a "scree plot" as Figure 4.10, and
identifying a transition from relatively large errors to relatively small errors [241, 246].

Three linear decompositions were explored, namely: principal component analysis (PCA)
[241], independent component analysis (ICA) [247], and non-negative matrix factorisation
(NMF) [248, 249]. The implementations used were those available through HyperSpy [231],
which draws on scikit-learn [233]. PCA corresponds to W being orthonormal. The optimal
solution to rank L is then obtained when W is estimated by eigenvectors corresponding to
the L largest eigenvalues of the empirical covariance matrix4. These eigenvectors are known
as principal components. The optimal low-dimensional encoding of the data is given by

3The Frobenius norm is defined as; ||A||F =
√

∑
m
i=1 ∑

n
j=1 a2

i j =
√

tr(AT A)
4The empirical covariance matrix, Σ = 1

N ∑
N
i=1 xixT

i
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Fig. 4.9 Learning by linear decomposition. Visual representation of the linear decompo-
sition of data matrix, X, into a component matrix, W, and a loading matrix, Z, to obtain a
rank-L approximation to the data.

zi = WT xi, which is an orthogonal projection of the data on to the corresponding principal
subspace and maximises the statistical variance of the projected data. Further, this optimal
reconstruction may be obtained via truncated singular value decomposition (SVD) of the data
matrix [241], which enables efficient computation. PCA is therefore a statistical and well
posed decomposition that can be computed efficiently to determine intrinsic dimensionality
but, as will become clear, it is not ideal for learning physical signals.

Determining source signals from mixed measurements, without knowledge of the sources,
is known as blind source separation (BSS) [241]. PCA is not effective for BSS, i.e. principal
components do not typically correspond well with the original sources, because the constraints
discussed above correspond to the assumption that each source has a Gaussian distribution.
The symmetry of this provides no way to determine the appropriate rotation in the principal
subspace to uniquely recover source signals. ICA identifies this rotation by allowing non-
Gaussian distributions and maximizing non-Gaussianity, which is equivalent to maximising
mutual independence or information entropy [250]. Data previously projected using PCA
can be treated with ICA using the widespread FastICA algorithm [247].

NMF [248, 249] imposes W ≥ 0,Z ≥ 0 and is typically achieved by numerical min-
imisation of Equation 4.2. As a minimisation, there is no guarantee of convergence to a
global minimum and the results may be sensitive to initialization. The implementation used
here initializes the optimization using a non-negative double singular value decomposition
(NNDSVD), which is based on two SVD processes, one approximating the data matrix, the
other approximating positive sections of the resulting partial SVD factors. This algorithm
gives a well defined non-negative starting point suitable for obtaining a sparse factorization
by subsequent coordinate descent minimisation. It should be noted that the product WZ is
invariant under the transformation W → WΛ, Z → Λ−1Z, where Λ is a diagonal matrix, so
components and loads may linearly be rescaled.
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4.5.2 Unsupervised Learning of 4D-S(P)ED Data

Linear decomposition was applied to 4D-S(P)ED data acquired from the GaAs nanowire 5,
with and without precession, as shown in Figure 4.10. Bending of the nanowire is evident in
the data acquired without precession since at position iii the it is near zone axis, whereas at
position i a Laue circle is visible. The radius of the Laue circle estimates the bending angle
as ∼24 mrad. When a precession angle of 35 mrad (i.e. larger than the bending angle) was
used all measured patterns appear close to zone axis due to the reciprocal space integration
achieved by precession. This integration also affects VDF image contrast, which shows bend
contours without precession and more homogeneous intensity with precession. Precession
therefore leads to the data better approximating one diffraction pattern per microstructural
element, i.e. two twinned crystals and vacuum surrounding the sample. The region of interest
also contains a small portion of carbon support film, which is just visible in the virtual
dark-field images as a subtle change in image intensity.

Fig. 4.10 4D-S(P)ED data for unsupervised learning. (a) Without and (b) with 35 mrad
precession leading to (c,d) smoother 111 VDF images (3 pixel integration) and (e) a fewer
significant principal components.

Scree plots showing the fraction of total variance in the data explained by each principal
component pattern, obtained following SVD, are shown in Figure 4.10e. A regime change,
from relatively high variance components to relatively low variance components, may be
identified [241, 246] after 3 components for the data acquired with 35 mrad precession, after 4
components with 9 mrad precession, and cannot clearly be identified without precession. The
use of precession therefore reduces the the number of components required to describe the

5This work was reported in collaboration with Ben Martineau in [251]
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data, consistent with the intuitive understanding of the effect of reciprocal space integration
on SPED data. The 4th component, in the 9 mrad data, arises because the top and bottom of
the nanowire are sufficiently misoriented to be distinguished by the decomposition. Further
analysis was therefore focused data acquired with larger precession angles.

Component patterns and corresponding loading maps obtained by SVD, ICA and NMF of
35 mrad SPED data are shown in Figure 4.11. In all these analyses the first component pattern
corresponds to the vacuum surrounding the nanowire. The second and third component
patterns correspond to the two twinned crystal orientations of the nanowire. However,
in results obtained by SVD and ICA the learned component patterns contain significant
negative intensities and so do not correspond well with the source diffraction signals. The
description of the data is mathematically sensible and physical insight can be obtained from
the differences between diffraction patterns that are highlighted by negative values in the
SVD and ICA component patterns. NMF performed with 3 components, guided by the
intrinsic dimensionality indicated by the SVD analysis, yielded learned component patterns
that more closely resemble physical diffraction patterns. In the NMF component patterns,
white spots are visible, representing intensity lower than background level. We describe these
as a pseudo-subtractive contribution of intensity from those locations.

Fig. 4.11 SVD, ICA and NMF analysis of SPED data. First 3 (a) SVD components, (b)
ICA components and (c) NMF components. Red indicates positive values and blue indicates
negative values. Scale bars measure 1 Å

−1
and 150 nm.
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The unmixing of diffraction signals from overlapping crystals was investigated. SPED
data with a precession angle of 18 mrad was acquired from a nanowire tilted away from the
[110] zone axis by ∼30°, such that two twins overlapped in projection. The overlap of the
two crystals was assessed using VDF imaging and NMF loading maps, as shown in Figure
4.12, which give good agreement. The VDF result can be considered a reference and is
obtained with minimal processing but requires manual specification of appropriate diffract-
ing conditions for image formation. The NMF loading corresponding to the background
component decreases along the profile, which may be related to the underlying carbon film
and the direct beam intensity is much lower in the NMF component patterns than in the true
source signals. NMF therefore achieves a successful decomposition of the SPED data, but
some unintuitive and potentially misleading features are present in the learning results, which
directs attention towards potential limitations.

Fig. 4.12 SPED data overlapping twins in a GaAs nanowire. (a) Virtual dark-field images
formed, using a virtual aperture 4 pixels in diameter, from the circled diffraction spots. (b)
NMF decomposition results. In (b) the profile is taken from the line scans indicated, and the
blue profile represents the intensity of the background component.

4.5.3 Limitations of Machine Learning 4D-S(P)ED Data

NMF was demonstrated above to yield a small number of component patterns that resemble
physical electron diffraction patterns. Artifacts in the learning results were however identified,
particularly when applied to achieve signal unmixing, and these are explored further. To
illustrate potential artifacts, model SPED datasets were constructed based on line scans across
inclined boundaries in hypothetical bicrystals, as shown in Figure 4.13. These models were
intended to reflect features of two-dimensional diffraction-like signals rather than the physics
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of diffraction and were constructed with the strength of the signal directly proportional to
thickness of the hypothetical crystal at each point, with no noise, and Gaussian peak profiles.

Two model SPED datasets are shown in Figure 4.13. The first comprises the linear
summation of two square arrays of Gaussian peaks with no overlap between the two patterns.
NMF decomposition exactly recovers the signal profile in this simple case. The second is
composed of two source signals that contain coincident peaks from distinct microstructural
elements. This is similar to the physical case where a crystallographic orientation relationship
exists between crystals. In this case, the NMF decomposition yields a factor containing all
of the common reflections and a factor containing the reflections unique to only one end
member. Whilst this is interpretable, it is not physical, although it should be noted that this
is an extreme example where there is no unique information in one of the source patterns.
Nevertheless, it should be expected that the intensity of shared peaks is likely to be unreliable
in the learned factors and this was the case for the direct beam in learned component patterns
shown in Figure 4.12. As a result, components learned through NMF should not be analysed
quantitatively. This problem may be mitigated by enforcing a sum-to-one constraint on the
loadings learned through NMF during optimization. See for example [252].

Fig. 4.13 Non-independent components. (a) Expected result for an artificial dataset with
two ‘phases’ with overlapping peaks. (b) NMF decomposition.

Precession was found empirically to improve machine learning decomposition and this
was attributed primarily to integration through bending of the nanowire. Precession may also
result in a more monotonic variation of diffracted intensity with thickness [253] as a result
of integration through the Bragg condition. It was therefore suggested that precession may
improve the approximation that signals from two overlapping crystals may be considered to
be combined linearly. To explore this a multislice simulation was performed6 for a twinned

6This simulation was performed by Dr. Alex Eggeman.
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Fig. 4.14 Unsupervised learning applied to dynamically simulated data. (a) Original
data with a 20 mrad precession angle. (b) NMF decomposition, in which the loadings have
been re-scaled as in Figure 4.13. Without precession, NMF cannot reproduce the original
data structure.

bi-crystal model constructed with the normal to the [111] twin boundary inclined at an angle
of 55° to the incident beam direction so that the two crystals overlapped in projection. In this
geometry both crystals are oriented close to ⟨511⟩ zone axes with coherent matching of the
{06̄6} and {28̄2} planes in these zones. Three precession angles were simulated using the
TurboSlice package [205]: 0, 10 and 20 mrad, with 200 distinct azimuthal positions about
the optic axis to ensure appropriate integration in the resultant simulated patterns [187]. The
crystal model used in the simulation comprised 9 unique layers each 0.404 nm thick. 15
layers were used leading to a total thickness of 54.6 nm. These 512×512-pixel patterns with
16-bit dynamic range were convolved with a 4-pixel Gaussian kernel.

Decomposition of the dynamically simulated SPED data showed that without precession
NMF loadings do not increase monotonically with thickness but rather vary significantly in
a manner reminiscent of diffracted intensity modulation with thickness due to dynamical
scattering. A subsidiary minimum is reached when the corresponding component is just
thicker than half the thickness of the simulation, which corresponds to a thickness of approx-
imately 100 nm. This is similar to the 22̄0 extinction length for GaAs of 114 nm, which is
the dominant scattering vector. With 10 or 20 mrad precession this intensity modulation is
suppressed and the loading maps obtained show a monotonic increase across the inclined
boundary. Precession is therefore beneficial for the application of unsupervised learning
algorithms both in reducing the impact of bending, which is a common artifact of specimen
preparation, and of dynamical signal mixing.
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Noise and background are both significant in determining the performance of unsuper-
vised learning algorithms. Extensive exploration of these parameters is beyond the scope
of this work but it is noted that the various direct electron detectors that have recently been
developed and that are likely to play a significant role in future SPED studies have very
different noise properties and understanding the optimal noise performance for unsupervised
learning may become an important consideration. The pseudo-subtractive features of NMF
decomposition may become more significant with a higher background level.

4.5.4 Prospects for Machine Learning SPED Data

Unsupervised machine learning methods, particularly NMF, have been demonstrated to be
capable of learning the significant microstructural features within SPED data in cases where
the region of interest comprises a finite number of significantly different microstructrual
elements, i.e. crystals of particular phase and/or orientation. SVD and ICA provide effective
dimensionality reduction but the components are not readily interpreted using analogous
methods to conventional electron diffraction analysis, owing to the presence of many negative
values. The SVD and ICA results do nevertheless tend to highlight physically important
differences in the diffraction signal across the region of interest. The massive data reduction
is very useful, as is the unmixing achieved. None of these approaches are well suited to
mapping continuous changes in crystal structure and in this case it is more appropriate to use
phase, orientation and strain mapping methods described in Sections 4.6 and 4.7.

4.6 Phase & Orientation Mapping

Phase and orientation mapping based on spot diffraction pattern analysis is typically achieved
in two ways: (1) by automated indexation of measured diffraction vectors [9], based on
comparing vector magnitudes and inter vector angles with given structures (see Section 4.6.1);
and (2) by pattern matching [150], based on comparing each measured diffraction pattern
against a library of simulated templates (see Section 4.6.2). Both approaches are implemented
in pyxem and have complementary features, as discussed in Section 4.6.3. Both methods
involve two primary steps: (1) generation of a DiffractionLibrary or VectorLibrary for all
expected crystal structures, which must be specified at least in terms of unit cell parameters,
in a StructureLibrary7 and (2) comparison between the theoretical and experimental data.

7Restricting the StructureLibrary to the minimal number of phases and orientations required to describe the
microstructure, based on prior characterisation, can increase the speed of the matching step significantly.
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4.6.1 Vector Indexation

Vector based indexation for phase and orientation determination has been implemented by a
number of authors, in the context of crystallographic mapping [149, 165]. The Diffraction-
Library constructed for such indexation comprises a lookup table of all reciprocal lattice
vector magnitudes up to a specified threshold and a lookup table of all pairs of reciprocal
lattice vectors and the corresponding inter-vector angles, which is thus purely based on lattice
geometry. These theoretical vector magnitudes and inter-vector angles are then compared,
within given tolerances, with the corresponding quantities for the measured DifractionVectors
in the data. Possible indexations for each pair of measured vectors are thus obtained and
corresponding orientations may be calculated [149] by solving:

go
(hkl),1 · r

o
[uvw] = dhkl,1 cos(α1)

go
(hkl),2 · r

o
[uvw] = dhkl,2 cos(α2)

|ro
[uvw]|= 1

(4.3)

where; go is a reciprocal lattice vector in the orthonormalized crystal coordinate system,
r[uvw] is the beam direction or the goniometer axis to be found and α is the angle between
the indexed diffraction vector and the direction sought as measured from the experiment
[149]. Having calculated the crystal orientation corresponding to each possible indexation a
self-consistent explanation, up to a defined tolerance is sought for all vectors in each recorded
diffraction pattern [149]. If necessary, some vectors may be excluded to obtain a match.

4.6.2 Pattern Matching

Pattern matching for phase and orientation mapping was introduced by Rauch & Dupuy8

[150] and is illustrated in Figure 4.15. Both library generation and data comparison steps are
more involved than for vector indexation, but also offer more opportunity for development.
Library generation for pattern matching requires specification of the full crystal structure, in
order to correctly simulate diffracted intensities, and the expected orientations of the crystal
structure for which to perform the simulation. Orientations may be uniformly sampled from
the symmetry reduced region of orientation space9 or may be restricted to an angular range
away from a reference, as appropriate for the specimen. The generation of a DiffractionLi-

8The Rauch & Dupuy implementation formed the basis of a commercial phase and orientation mapping
package, called ASTAR, which was used for much of the work presented in Chapter 6.

9The ASTAR package uses an equal number of steps between the vertices of the symmetry reduced pole
figure segment, which is a somewhat inhomogeneous sampling of orientation space.
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brary then requires an electron diffraction simulation to be performed for each structure and
orientation. So far, only the simplest kinematical simulations are used to generate point like
geometric templates with associated intensities both using the DiffractionLibraryGenerator()
of pyxem and in commercial solutions.

Fig. 4.15 Phase and orientation mapping by template matching. Each experimental
diffraction pattern in the 4D-SED dataset is compared against a library of simulated templates
by evaluating a matching metric. The phase and orientation mapping results obtained may be
analysed in numerous ways e.g. Chapter 6.

Comparison between theoretical templates and experimental S(P)ED data is achieved
using an IndexationGenerator, which is initialized with an ElectronDiffraction object contain-
ing experimental data and a DiffractionLibrary containing simulated templates, to perform
comparison between theoretical templates and experimental data by maximizing a normalized
correlation index, Qi, which Rauch & Dupuy [150] defined as:

Qi =
∑x,y P(x,y)Ti(x,y)√

∑x,y P2(x,y)
√

∑x,y T 2
i (x,y)

(4.4)

where P(x,y) is the intensity of the pixel with coordinates (x,y) in the experimental
diffraction pattern and Ti(x,y) is the intensity of template i at (x,y). Efficient evaluation of
Equation 4.4 is achieved by only considering pixels corresponding to non-zero values in the
geometric templates. In pyxem, Qi is normalized only by T to avoid the computationally
costly product over the experimental pattern.
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This metric has two primary limitations: (1) the range of values is not normalized between
different phases meaning that some phases will typically give higher scores than others, and
(2) the presence of additional diffraction peaks in the experimental diffraction pattern with
respect to the template is not penalized but the opposite is. It should also be noted that this
matching is typically performed after various preprocessing steps have been applied to the
electron diffraction data to mitigate issues with matching diffuse background.

4.6.3 Vector Indexation vs. Pattern Matching

Pattern matching is computationally attractive, achieving both indexation and orientation
determination in a single step. It has yielded sensible results in a number of cases and has
become widely adopted in comparison with vector based approaches owing to both speed
and commercialization. However, as implemented, pattern matching may produce apparently
reasonable results from specimens where it is unclear that a single phase and orientation can
sensibly be assigned to each pixel in two-dimensions [254] due to multiple crystals being
sampled along the beam path. Care must therefore be taken. Vector indexation highlights
such issues and the identification of nonassignable vectors may be helpful, but will never
go beyond geometry. Pattern matching may become a route to more physical insight if
simulations and matching metrics are developed further.

4.7 Strain Mapping

A crystal oriented near to a major zone axis will produce an electron diffraction pattern
that can be approximated as a two-dimensional lattice of DiffractionVectors with two basis
g-vectors. When the crystal is strained, with components perpendicular to the beam direction,
the basis g-vectors recorded are transformed by a two-dimensional affine transformation, H,
associated with the distortion, as illustrated in Figure 4.16.

The affine transformation, H, obtained from diffraction data is in the reciprocal basis but
can be readily related to an affine transformation in direct space, F = HT [145]. This direct
space affine transformation can then be separated into a rotation matrix, R, and a distortion
matrix, U, by polar decomposition and related to strain, ε , as:

F = RU

ε = U− I
(4.5)
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Fig. 4.16 Strain mapping as a two-dimensional affine transformation. Near to a major
zone axis the diffraction pattern is approximately a two-dimensional lattice that is distorted
by lattice strain, which it is the aim to map.

Mapping the two-dimensional transformation of basis vectors to determine local strain
and rotation has become an important application of 4D-S(P)ED [163]. Typically vectors
are assigned to peaks/discs found in the data and compared with a reference region (see
Section 4.7.1). A novel method was implemented in this work, based on selecting a reference
diffraction pattern within the data and calculating the image affine transform between it and
all others (see Section 4.7.2). The relative merits of these methods are discussed in Section
4.7.3 and only the image affine transform approach is used throughout this work.

4.7.1 Vector Transformation

Determining two basis g-vectors, g1 and g2, enables a local "diffraction matrix" G to be
constructed [255, 157] for each probe position as:

G =

(
gx1 gx2

gy1 gy2

)
(4.6)

If G0 is the reference diffraction matrix then a distortion matrix can be defined:

F = (G0G−1)T (4.7)

which is easily related to strain by Equation 4.5. The sensitivity of this approach depends
primarily on how precisely g-vectors can be measured, which has been found to be easier
when larger, but not overlapping, discs are recorded [10] and when precession is used [189].
Often only two diffraction discs are used to determine basis vectors [27], but more recent
work has sought to refine the whole lattice [157, 160, 256].
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4.7.2 Image Transformation

The image affine transformation approach implemented in pyxem casts the strain mapping
problem as a model fitting problem. A model is constructed comprising ScalableReferen-
cePattern component, which is a pattern, P(x0,y0), identified as an unstrained reference
within the data10, transformed by a two-dimensional affine transformation, H using the
transformation implemented in scikit-image [234], to model the other diffraction patterns:

P(x,y) = HP(x0,y0) (4.8)

This two-dimensional affine transformation has 3 independent parameters that are refined
by model fitting, typically using a least squares cost function. Model fitting involves two
major steps: (1) initialization of the problem with a starting model, and (2) fitting the model
by refining parameters to minimize an appropriate cost function. These problems are coupled
when fitting numerous signals from material that is connected, because having successfully
fitted one signal it is a good guess to attempt to fit signals from neighbouring probe positions
using the result of the first fitting as initialization. This strategy is adopted in the "Smart
and Adaptive Model Fitting" (SAMFire) capability of hyperspy [238] and numerous initial
fits may be made at the outset if there is known heterogeneity e.g. grain structure. It was
found to be essential to use this approach, or else initialize every fit from the identity matrix,
which is much slower, to avoid local minima or divergence. A demonstration of this image
transformation approach is reported in Chapter 5 along with a practical estimation of errors.
In practice (see Chapters 5 & 7) it was necessary to apply image pre-processing steps in
order to obtain reasonable maps.

4.7.3 Vector Transformation vs. Image Transformation

Vector transformation is perhaps the most obvious way to assess changes in the crystal lattice.
The method has appealing features in being able to provide measures of precision with which
a particular g-vectors are determined from a pattern, by considering the fit to the whole
lattice (although this metric does not appear to have been reported in literature). The image
transformation approach is rather a computationally attractive way to use all of the data and
obtains the transformation in one step that automatically obtains sub-pixel accuracy through
the implementation of the image transformation. Pre-processing can be required if the signal
is weak, but this is comparable to steps involved in peak finding. A more esoteric advantage

10The reference pattern may be averaged over an unstrained region to reduce noise in the pattern.



4.8 Summary & Prospects 93

of the image transformation approach is that casting the problem as a model fitting problem
may be a platform for further development, as discussed in Chapter 5.

4.8 Summary & Prospects

A framework for crystallographic electron microscopy has been established in a flexible
python code structure named pyxem. The code is modular, comprising four types of pythonic
object (signals, generators, components, and libraries) for which specialized classes are
implemented and that may be used together to define a wide range of workflows for 4D-
S(P)ED data analysis. These workflows have been illustrated here in application to a GaAs
nanowire. The application of unsupervised machine learning algorithms, most notably non-
negative matrix factorization (NMF) to 4D-S(P)ED data has been explored. It has been
demonstrated that NMF can be successfully applied to reveal the location and characteristic
diffraction associated with different crystals including cases where crystals are overlapping
in projection but that there are some limitations when information is shared between two
constituent diffraction patterns. It was also found that the use of precession can facilitate the
successful application of linear decomposition methods.

Model fitting was used as a novel approach to strain mapping using 4D-S(P)ED data,
which is perhaps most significant in establishing a code framework for model fitting that could
be extended to compare full physical simulations with experimental observations. A simple
ElectronDiffractionForwardModel, based on kinematical simulation, was implemented as a
step in this direction and had some utility, but to realize the full potential it will be necessary
to implement more physical, but fast, simulators and to develop a fuller characterisation of
the noise properties of detectors used for 4D-S(P)ED. Other areas for development include
extending the analysis of one-dimensional ElectronDiffractionProfile signals for example
towards spatially resolved total-scattering measurements. Overall, the establishment of this
robust, modular and extensible code framework paves the way for a broad range of technique
developments base on 4D-S(P)ED as well as potentially the various other forms of scanning
diffraction microscopy (see Chapter 1).





Chapter 5

Towards Tensor Tomography

Nanoscale strain fields have become increasingly important in materials science as mi-
crostructural strain engineering has been developed as a means to tailor physical properties
in areas from microelectronic devices [257] to engineering alloys [258]. This microstructural
strain is often the result of lattice continuity between dissimilar phases on the nanoscale.
High spatial resolution strain measurements are therefore required, which has motivated the
development of (scanning) transmission electron microscopy (S)TEM techniques [148]. It
should be noted that the need for electron transparent specimens presents the challenge of
stress relaxation on producing thin films from the bulk [259–262], which will alter the strain
distribution. However, such thinning is not required when considering strain in nanomaterials
and may be overcome by refining a finite element model, for example [262]. Strain is fre-
quently measured in the (S)TEM by assessing the geometric phase, αg =−2πg ·u, imparted
in a scattered beam, g, by atomic displacements, u, (see Chapter 2) using either electron
holography [263, 162] or Fourier analysis of atomic resolution images [264, 265]. Atomic
resolution images may also be analysed in terms of peak positions to assess changes in the
local inter-atomic separation [266] due to strain. Recently, scanning (precession) electron
diffraction (S(P)ED) has proved advantageous for mapping strain over regions on the order
of microns with nanometre resolution [27, 163].

Strain mapping based on S(P)ED typically produces two-dimensional strain maps of 3
strain components, perpendicular to the incident beam direction, and 1 rotation parameter,
about the beam direction. Four (of nine) components of the deformation gradient tensor
are therefore obtained, based on affine transformation of the reciprocal lattice, as described
in Chapter 4. Two-dimensional strain maps obtained in this way reveal the distortion
of the projected lattice compared to a selected reference, which includes changes in the
lattice due to composition variations. There are two major limitations: (1) only 4 of the 9
components of the displacement gradient tensor are measured, and (2) strain measurements
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in projection depend on the strain distribution along the beam path. The latter projection
problem is important when the strain field varies significantly within the sampling volume,
as illustrated in Figure 5.1, and is compounded by the intricacies of dynamical electron
diffraction discussed in Chapter 2. The "grand challenges" of nanoscale strain mapping with
electrons are therefore to measure all components of the displacement gradient tensor and
reconstruct the three-dimensional distribution of these components. Here, the focus is on
reconstruction of the strain distribution in three-dimensions and the steps required to move
towards three-dimensional reconstruction of the full strain tensor.

Fig. 5.1 Schematic beam paths through a strained specimen. In low strain regions the
lattice is strained homogeneously within the sampling volume. In high strain regions the
lattice is strained inhomogeneously within the sampling volume and the strain varies along
the beam path. The aim is to reconstruct this variation along the beam path.

Three-dimensional strain reconstruction has been achieved using X-ray coherent Bragg
diffractive imaging for strain reconstruction within single crystals smaller than the X-ray
probe [98–100], micro-Laue mapping experiments using a differential aperture [22], and
tomographic back-projection methods applied to transmission X-ray diffraction data acquired
from polycrystalline specimens [267, 268]. Achieving three-dimensional strain reconstruc-
tion based on S(P)ED experiments could enable reconstruction of strain in a wider range
of specimens and/or at higher spatial resolution than any of these X-ray methods alone.
Since S(P)ED data is acquired in projection, three-dimensional reconstruction based on
tomographic back-projection is the natural starting point and the work presented here builds
on the X-ray work by Korsunsky et al. [267, 268] and recent mathematical treatments of
the tensor tomography problem [269, 270] suggest a route forward. To illustrate the strain
mapping performed here an axially heterostructured III-V nanowire was considered.
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5.1 Materials & Methods

5.1.1 Material Background

An axially heterostructured GaAs nanowire containing a GaAs1−xSbx insert was taken as a
test specimen. This nanowire was grown1 by molecular beam epitaxy involving a vapour-
liquid-solid mechanism catalysed by gold as described by Kauko et al. [271]. The growth
process produces a gradual compositional variation at the insert interfaces [271]. Such axial
heterostructures are often produced in optoelectronic III-V semiconductor nanowires in order
to tune the electronic bandstructure for particular wavelengths [272–274] but there have been
relatively few attempts to measure strain in such samples [275, 276]. Crystallographically,
the GaAs grows in both the zinc blende (ZB) and wurtzite (WZ) polymorphs in a ⟨111⟩ZB

direction and with an hexagonal cross-sectional geometry. Specimens were prepared for
transmission electron microscopy by scraping them from the silicon substrate on which they
were grown onto holey carbon coated copper grids.

5.1.2 SED Acquisition

S(P)ED was performed using a Philips CM300 FEGTEM operated at 300 kV and controlled
using a Nanomegas Digistar system, as described in Chapter 3. The diffraction patterns were
recorded with 144×144 pixels per pattern, an exposure time of 60 ms and a nominal camera
length of 21 cm. The step size in the scan was ∼ 10 nm and the convergence semi-angle was
∼1.5 mrad. Data was acquired without precession and with precession angles of 18 mrad or
27 mrad, as indicated below. Tilt series were performed using a combination of a Fischione
tilt-rotate holder and an FEI double tilt holder, as described in Section 5.3.1.

5.1.3 Data Processing

Analysis of the 4D-SED data was performed using methods described in Chapter 4. A
distortion correction corresponding to a vertical compression by a factor of 0.69 was applied
to correct for the off-axis camera geometry and the data was aligned with respect to translation
of the direct beam. Pre-processing using the h-dome (h=0.5) method (see Chapter 4) was
performed to improve the performance of the image affine transform strain mapping algorithm.
Optimization of the image affine transformation was achieved using the smart adaptive model
fitting procedures [238] implemented through the HyperSpy python library [231] and this
was found to be very important in avoiding divergence of the fitting procedure.

1The nanowire sample was provided by Prof. Ton van Helvoort, NTNU, Norway.
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5.1.4 Electron Tomography

Electron tomography [277, 19] uses tomographic reconstruction methods [278] to reconstruct
a three-dimensional object from a series of two-dimensional projection images. The specimen
is tilted in the microscope, typically about a single axis, and a projection image is recorded at
each tilt. Usually the tilt axis does not pass exactly through the centre of the specimen and
the projections must be aligned to a common tilt axis. The three-dimensional object is then
reconstructed in consecutive two-dimensional slices, typically using a back-projection algo-
rithm. Raw back-projection results often require further processing prior to visualization and
analysis of the reconstruction. These general steps in electron tomography are summarized
in Figure 5.2. Iterative reconstruction techniques, based on the premise that reprojecting the
reconstruction ought to reproduce the experimental projection images, such as the algebraic
reconstruction technique (ART) [279] and the simultaneous iterative reconstruction technique
(SIRT) [280] are commonly used in electron tomography to improve reconstructions from
undersampled data [277] and there have also been significant recent advances in the use
of compressive sensing [281] and model based reconstruction techniques [169, 282]. Here,
alignment was achieved using the phase correlation method implemented in the HyperSpy
python library [231] and tomographic reconstruction was achieved using SIRT (with 20
iterations) as implemented in the TomoPy python library [283].

Fig. 5.2 Steps involved in electron tomography. (a) A tilt series comprising 2D projection
images of a 3D object recorded as a function of tilt is (b) back-projected to reconstruct the 3D
volume. (c) Steps involved in an electron tomography experiment from sample preparation
to 3D visualization and quantification. Reproduced from [19].
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5.2 Strain Mapping in 2 Dimensions

4D-S(P)ED data acquired from a nanowire oriented near to a [110]ZB zone axis both without
precession and with a precession angle of 27 mrad, as shown in Figure 5.3. The nanowire
initially forms with GaAs in the zinc blende polymorph and retains this structure within the
antimony doped insert. Within the insert, the atomic structure is expanded because antimony
is larger than arsenic, which can be seen as a contraction of the reciprocal lattice. When the
antimony is removed during growth, GaAs continues to grow in the wurtzite structure. The
gold droplet that catalyzed growth remains at the tip and is non-crystalline. Comparing data
acquired with and without precession in Figure 5.3, PED patterns appear closer to zone axis
and contain more intense higher order reflections.

Fig. 5.3 4D-S(P)ED data from a GaAs nanowire axial heterostructure. (a,b) Virtual
bright-field images (a) without precession (b) with 27 mrad precession. (c) Structurally
distinct regions of the nanowire. (d) Diffraction patterns from each region of the nanowire as
indicated in (a/b).

Qualitative insight into the nanowire strain state may be obtained from virtual dark-field
(VDF) images formed using SED data acquired without precession, as shown in Figure 5.4,
based on interpretation within the column approximation, as discussed in Chapter 2. VDF
images associated with reflections corresponding to atomic planes perpendicular (i.e {111})
and parallel (i.e {224}) to the long axis of the nanowire both show significant changes in
intensity in ∼ 75 nm regions adjacent to the interfaces with the GaAs1−xSbx insert. This
contrast is dominated by the bending of atomic planes near the interfaces to produce a stress
free surface [259, 260] and a schematic model of plane bending may be constructed, as shown
in Figure 5.4e. VDF images may also be formed with the integration window positioned
between Bragg reflections to form an image based on diffuse scattering, which is increased
in the regions where the atomic structure deviates most from an ideal crystal (see Chapter 2),
which is in the strained region and the non-crystalline gold tip, as shown in Figure 5.4d.
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Fig. 5.4 Virtual dark-field imaging of strain. (a) Diffraction pattern, integration windows
marked. (b) Nanowire cross section and crystallography. (c) VDF images corresponding to
111, 224 and diffuse scattering conditions. (d) Schematic of atomic plane bending.

5.2.1 Two-dimensional Strain Maps

Two-dimensional strain maps are shown in Figure 5.5 for both the zinc blende and wurtzite
phases. SPED data acquired with 27 mrad precession were used to obtain these maps using
reference patterns at either end of the scan region, far from the insert and in the appropriate
phase. The projected zinc blende lattice is approximately homogeneously expanded in the
insert as a result of antimony incorporation. Measurement error can be approximated from the
spread of values in unstrained regions, which is on the order of ±5 millistrain. As an estimate
of precision this is about an order of magnitude larger than some literature reports [162],
which is partly because the estimation here is based on the absolute spread in values rather
than a root mean square value. It is also likely that the raw diffraction patterns being smaller
and noisier than those typically reported has contributed to this relatively poor precision.

The maximum lattice expansion measured is +2.5±0.5% which corresponds [284] to
an antimony concentration of ∼ 35±5%, consistent with expectations based on the growth
conditions. Interestingly, the εxx strain component in the wurtzite phase, i.e. the normal
strain component along the short axis of the nanowire, is small immediately adjacent to
the interface with the antimony doped insert. This is consistent with previous reports [285]
that showed that the wurtzite GaAs is expanded ∼ 1% in the close packed {0001} plane
compared to the close-packed {111} plane of zinc blende GaAs. The wurtzite phase may
thus have improved epitaxy with an expanded zinc blende structure and this may explain why
the wurtzite polymorph forms after the antimony doped insert has been grown. The rotation
maps highlight the plane bending is localized near the interfaces, consistent with the model
inferred from VDF image contrast.
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Fig. 5.5 Nanowire strain mapped in two-dimensions. Column averaged strain components
in zinc blende (left) and wurtzite (right) GaAs. Positive rotations are anticlockwise about z.

5.3 Single Component Strain Tomography

Tomographic reconstruction of a single normal strain component may be reduced to a scalar
tomography problem for a component of strain parallel to an axis about which a tilt series
is performed [267, 268]. Reconstruction may then be achieved by standard tomographic
methods based on back-projection, as described in Section 5.1.4. A proof-of-principle
demonstration of such a reconstruction using 4D-SPED data is described here, highlighting
important practical aspects of experimental design and data analysis that must be considered
to move towards tensor tomography. In practice, the primary challenges are to determine
most appropriate data acquisition scheme and reconstruction method.

5.3.1 Data Acquisition Design & Implementation

Reconstruction of the normal strain parallel to the tilt axis requires the projected strain
parallel to that axis to be measurable throughout a tilt series. This condition is easily met
for polycrystalline specimens illuminated with a probe larger than the grain size [267, 268]
because a ring pattern is recorded in all orientations and the component of elliptical distortion
parallel to the tilt axis can be measured. However, when a single crystal is probed, projected
strain can only be measured in directions where the diffraction condition is met. It is therefore
necessary to satisfy a particular diffraction condition throughout the tilt series, which requires
the tilt series to be performed about an axis parallel to the corresponding reciprocal lattice
vector. This requires the selected reciprocal lattice vector to be aligned parallel to the tilt axis
of the microscope. Here, such a tilt series was performed about the long axis of the nanowire,
i.e. the [111]∗ axis, so that the 111 systematic row of reflections was recorded at every tilt.
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A tilt series was performed over ±30◦ from the [110] zone axis in steps of ∼ 5◦, i.e. 12
projections and the data was replicated 6 times, based on assumed 6-fold symmetry about the
wire axis (neglecting polarity), to obtain a more complete dataset. In order to perform this tilt
series about the [111] crystallographic axis two different holders were used to align the long
axis of a nanowire with the tilt axis. First a tilt-rotate holder was used to identify a nanowire
lying near to the [110] zone axis and rotate it so that the long axis was approximately parallel
to the goniometer (α-tilt) axis. The specimen was then transferred to a double-tilt holder,
maintaining the in-plane rotation found, and the tilt series was performed manually using
primarily the α-tilt with the β -tilt adjusted to maintain excitation of the 111 systematic row.
4D-S(P)ED data was acquired at each tilt with a precession angle of 18 mrad.

5.3.2 Analysis & Reconstruction Method

Two-dimensional strain maps were obtained from the 4D-SPED data recorded at each tilt,
as described in Section 5.2.1. Components of strain in these two-dimensional maps were
assumed to be column averaged strain, ε , components. In every map in the tilt series the εyy

component was the component of strain along the nanowire axis, εyy = ε111, which can be
written explicitly as a column average,

ε111 =

∫
s ε111ds∫

s ds
(5.1)

where the integral is over the beam path. Tomographic reconstruction based on Fourier
back-projection requires a projected quantity, i.e. a quantity that increases monotonically
with an increase in the quantity of interest, as input. A projected strain, Jε111, may be
obtained by multiplying the average strain by the specimen thickness,

Jε111 =
∫

s
ε111ds = ε111 ·

∫
s
ds (5.2)

The appropriate thickness by which to multiply at each pixel in the strain map, i.e.
∫

s ds,
was determined by performing a tomographic reconstruction of the specimen morphology
using virtual annular dark-field images obtained from the 4D-SPED data, with and inner
radius of 20 pixels and an outer radius of 50 pixels, via the methods described in Section 5.1.4.
This morphological tomogram was then segmented (by thresholding) and reprojected to
obtain thickness maps. The projected strain maps obtained by performing the multiplication
described by Equation 5.2, following alignment of the column averaged strain maps, were
then used as input to a SIRT reconstruction. The steps involved in this single component
strain tomography workflow are summarized in Figure 5.6.
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Fig. 5.6 Steps involved in single component strain tomography. Virtual images and strain
maps are obtained from the SPED data acquired at each tilt in a range ±30◦ from a [110] zone
axis and 6-fold symmetry is imposed to yield a more complete dataset for demonstration. A
tomographic reconstruction is performed using the nanowire morphology to obtain the local
thickness and convert the strain maps into projected strain maps.

5.3.3 Proof-of-principle Strain Tomogram

The three-dimensional axial strain distribution reconstructed following the steps described
above is shown in Figure 5.7, both as a volume reconstruction and as orthosections through
the centre of the nanowire on (112), (110) and (111) planes respectively. The hexagonal
morphology can be discerned but is suppressed by the spatial resolution. Close inspection
of the orthosections reveals that the strain in the antimony doped insert is larger near to the
surfaces as compared with the centre of the nanowire. This increase in values near to the
surfaces is not seen in regions away from the insert suggesting that it is a true effect and
not an artefact of the reconstruction. This observation indicates that the projected (111)
interplanar spacing is larger near to the surfaces than at the centre of the nanowire. Further
the lower strain region has a dog bone shape near the centre of the nanowire.
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Fig. 5.7 Axial strain tomogram. (a) Strain tomogram of the axial strain component. (b)
Ortho-slices through the reconstruction showing variations in the strain between the centre
(lighter blue) and surface (darker blue) of the nanowire.

To interpret the strain distribution revealed by tomographic reconstruction it is necessary
to recall that what has been mapped as strain is the change in the projected lattice compared
to pure GaAs. The lattice expansion observed within the GaAs1−xSbx insert is therefore the
result of both the composition change and epitaxial strain between the insert and the adjoining
nanowire. Since we do not know the composition precisely these two contributions cannot
be decoupled and it is not possible to be sure whether the expanded outer region is in tension
or the inner region is in compression with respect to unstrained bulk GaAs1−xSbx of the
correct composition. In either case the strain distribution would be somewhat counterintuitive
but may be consistent with recent finite element modelling [20], as shown in Figure 5.8.
These simulations were performed for GaN nanowires in the wurtzite polymorph with the
[0001] axis parallel to the long axis of the nanowire. However, the results were anticipated
to also be valid for zinc blende structured nanowires with the long axis parallel to a ⟨111⟩
crystallographic direction [20], as is the case here. The simulations predict a similar axial
strain distribution with the strain in the insert (relative to the unstrained bulk structure)
becoming compressive for inserts with a length comparable to the diameter of the nanowire.
When the length of the insert is slightly longer than the nanowire diameter, as is the case here,
the compressive strain region has a dog bone shape similar to the experimental observation.
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Fig. 5.8 Finite element modelling of axial heterostructured nanowires. ε0001 for slices
through GaN nanowires containing In0.3Ga0.7N inserts with lengths from 2 to 40 nm. As the
length of the insert increases the strain decreases and eventually turns negative in a toroidal
region (i) that expands until the axial strain reaches a minimum of about ∼ −0.8% in the
centre of the insert (ii). A further increase in length results in complete elastic relaxation in
the middle of the insert (iii). Reproduced from [20].

5.4 Towards Tensor Tomography

Tensor tomography based on S(P)ED data will require a reconstruction framework and a
practical data acquisition scheme as was highlighted above in performing proof-of-principle
strain tomography. Recent mathematical work [269] has shown that tomographic reconstruc-
tion of a rank two symmetric tensor field (e.g. a strain field) is possible from diffraction data
if the diffraction experiment can be related to the transverse ray transform, J,

J f (x,ξ ) =
∫

∞

∞

Pξ f (x,sξ )ds (5.3)

where ξ is a unit vector in the direction of the illumination and

Pξ =
(

I− 1
|ξ |2

ξ ξ
T
)

f
(

I− 1
|ξ |2

ξ ξ
T
)

(5.4)

is the projection of the tensor field, represented as matrices, onto the plane perpendicular
to ξ , with I the identity matrix. If the experiment can be related to this transverse ray
transform then it has been shown that the strain tensor field could be reconstructed from
complete data acquired with tilt series about six axes [269] or tilt series performed about
three orthogonal axes [270] using a filtered back-projection reconstruction algorithm. The
questions to address then are (1) can the S(P)ED experiment be related to the transverse ray
transform, and (2) what kind of data acquisition scheme is feasible.
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It seems intuitive that it should be possible to relate electron diffraction from a strained
single crystal to the transverse ray transform, at least approximately, because the geometry
of electron diffraction means that reciprocal lattice vectors approximately perpendicular
incident beam direction are measured (see Chapter 2) and a change in the interplanar spacing
through the specimen produces a shift in the diffraction spot position as expected. Indeed,
these were precisely the features of the diffraction pattern used to perform two-dimensional
strain mapping in Section 5.2. However, in addition to the rescaling of the diffraction pattern
geometry, the application of a deformation to the crystal potential introduces a phase term
and an amplitude scaling2, which means that linearizing the problem, i.e. assuming that
the measured diffraction pattern is the sum of the diffraction patterns from voxels along
the beam path, is an approximation that requires validation. This is essentially saying that
care is required to think about the implication of the excitation error being different for each
voxel along the beam path. Indeed this effect was essentially what was used to obtain VDF
image contrast in Section 5.2. Further potential non-linearity should be expected owing to
the dynamical nature of electron diffraction. It may be imagined that PED patterns would be
more appropriate in integrating through the excitation error and reducing dynamical effects,
but this introduces an insensitivity to distortions that move the diffraction condition out of the
plane perpendicular to the electron incidence direction and therefore this too requires care.
An additional consideration is that the electron diffraction pattern is clearly sensitive to all 9
components of the displacement gradient tensor, i.e. 3 rotation components in addition to
the 6 symmetric strain tensor components. The mathematical formalisms recently presented
[269, 270] therefore need to be reconsidered for the more general case, although it seems
[286] a reconstruction will still be formally possible in this case. Overall, it is highly likely
that the experiment is reasonably well approximated by the transverse ray transform but this
requires formal verification.

Assuming that the validity of representing electron diffraction as a transverse ray trans-
form is sufficient for useful reconstruction, it is necessary to consider the data acquisition
that may be performed. Performing three tilt series about orthogonal axes would provide
sufficient data for general reconstruction [270] in the symmetric second rank tensor case
but whilst dual-axis electron tomography about two orthogonal axes is feasible [287] tilt
about a third orthogonal axis would be very challenging given the geometry of electron
microscopy specimens. Whilst it has been shown that two-axis data is insufficient for general
reconstruction of a symmetric second rank tensor field it is possible to reconstruct the special

2If u is the crystal potential and it is deformed u(x) 7→ u(Ax+b) by an affine transform A and a translation b,
the Fourier transform gives FT [u(Ax+b)](z) = exp(ib·A−T z)

|A| FT [u](A−T z), which is equal to the scattered wave
amplitude in the kinematical approximation (see Chapter 2).
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case (the potential case) where the tensor field is of the form of the linear strain tensor [270].
This is because some of the terms are related in this special case by what is physically referred
to as strain compatibility. This must also be validated for the 9 component reconstruction
case and it seems likely that the small strain limit will again provide simplification. In any
case there will be missing data as is typical in electron tomography [277, 19] and it may
prove useful, as it has in other analytical tomographies [169], to recast the reconstruction
problem as a model fitting problem. It may also be possible to tilt to specific orientations
containing maximal information [288] in order to reduce the data required.

5.5 Summary

S(P)ED has recently emerged as a leading candidate for nanoscale strain mapping [163] and
the work presented in this chapter continues in this vein. A novel method for two-dimensional
strain mapping based on optimization of the image transform has been demonstrated, which
has the methodological advantage of recasting the strain mapping problem as a model fitting
problem, which may prove useful for future tomographic developments. The two-dimensional
strain maps obtained from an axially heterostructured GaAs nanowire suggest that GaAs
may adopt the wurtzite phase after the growth of a GaAs1−xSbx insert as a result of improved
epitaxy. Virtual dark-field imaging also provided interesting qualitative insights into the
nanowire strain state but is rarely reported in literature studies. The prospect of forming
diffraction contrast images using diffuse scattering, which here highlighted regions where
crystallinity is disrupted, is particularly compelling.

Tomographic reconstruction of the normal strain component along the nanowire axis was
performed as a proof-of-principle. The results suggest higher strain at the surfaces compared
to the interior, which may be consistent with recent theoretical results [20], and illustrate
that probing the three-dimensional strain distribution is likely to provide useful insight. This
study served primarily to highlight challenges that must be addressed in order to achieve
quantitative tensor tomography in future, both in terms of theoretical understanding and
experimental design. Initial considerations suggesting a route that may be followed towards
this end have been set out.





Chapter 6

Inter-phase Relationships in Alloys

Engineering alloys are typically multi-phase polycrystalline materials containing numerous
crystals with different crystal structures and compositions. These microstructural features are
tailored on ever smaller scales [289] and, in this context STEM has become a valuable tool,
enabling characterisation of microstructural elements on the nanoscale. Here, the emphasis
is on nanoscale crystallographic insights obtained using SPED based orientation mapping to
reveal inter-phase crystallographic relationships. The application of unsupervised machine
learning algorithms to multi-dimensional electron microscopy data, to obtain phase specific
characterisation in terms of both crystallography and composition, is also explored.

6.1 Inter-phase Orientation Relationships

Crystal orientations [74, 290] and the relationships between neighbouring crystals [76, 291]
are important for understanding macroscopic materials properties [76, 75, 292, 293] and
microstructural transformation pathways [294–297]. SPED data can be used to obtain phase
and orientation maps (e.g. via pattern matching, see Chapter 4), which must be further
analysed to obtain physical insight. Numerous software packages facilitate this analysis
such as the open-source MTEX matlab toolbox [298] used here. Here, approaches based on
3-vector, or neo-Eulerian [299], representations of crystal (mis)orientations are developed
to reveal inter-phase crystallographic relationships1. The premise of this approach is that
a preferred crystallographic orientation relationship will result in numerous misorientation
vectors near to a particular point within the symmetry reduced region of the misorientation
space. To use this idea to assess inter-phase orientation relationships it is necessary to
carefully define the symmetry reduced region of the misorientation space.

1This work was part of a collaboration primarily with Robert Krakow and was reported in [300].
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6.1.1 Representations of Orientations & Misorientations

Orientations and misorientations are described as rotations in 3D space, which can be
represented in numerous ways [301, 74, 290, 73, 302]. Most common in crystallographic
texture analysis is the Euler angle representation, which describes the rotation as three
successive rotations about independent coordinate axes through angles φ1, Φ, φ2, in the
Bunge (ZXZ) convention [74, 290]. This is convenient for series expansion of orientation
distribution functions [74] but does not convey efficient computation or intuitive plotting2.

Rotations may be described by special orthogonal matrices SO(3), which are useful for
transforming tensor quantities but are not the most computationally efficient representations
nor are they convenient for representing orientation distributions. More computationally
efficient, is the quaternion representation [73], which is a four-parameter description of a
rotation reflecting the mathematically natural description of rotations in 4D. Quaternions
are useful because of an interpretation as forming a four-dimensional algebra with efficient
computations. The unit quaternions have a two-to-one relationship with SO(3) and define
points on the 3-sphere, S3, in four-dimensional Euclidean space. The unit quaternion q = (q0,
q1, q2, q3) can also be related to the axis of rotation, described by a unit vector, ξ via qi = sin
ω

2 ξ i for i=1,2,3 and the angle of rotation ω via q0 = cos ω

2 .
Rotations may also be represented by the axis and angle of rotation. (Mis)orientation

distributions can be expanded in these terms [307, 308] and the representation is intuitive. A
series of so-called neo-Eulerian mappings have been defined, based on this notion, as 3D
vectors formed by scaling a unit vector, ξ , parallel to the axis of rotation by a function of the
rotation angle, ω , about that axis, f (ω). The choice of the scaling function, f (ω), conveys
particular properties on the resulting vector space. Frank [299, 309] made five suggestions:

Axis-Angle, v = ωξ : Simple and the angular units ease direct interpretation.

Rodrigues-Frank, r = tan ω

2 ξ : Rectilinear - rotation about an axis is a straight line through
any point. Some domains are unbounded as the scaling function tends to infinity.

Conformal, c = 2tan ω

4 ξ : Equal angle projection of S3 onto Euclidean space. The configu-
ration in any small region of the map is geometrically similar to that which it would
have transferred to any other point in the map.

Homochoric , z= {3
4(ω−sinω)}1/3ξ : Equal volume projection of S3 onto Euclidean space.

The metric tensor determinant is preserved and a random distribution of orientations
will have equal probabilities of being found within equal volume elements [299].

2The primary issue with plotting Euler angles are: non-singularity of orientations, especially the identity,
distorted volume and no direct reference with specimen axes [303–306].
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Quaternion Vector, q = sin ω

2 ξ : Enclosed within a sphere of unit radius and easily related
to the quaternion representation, described above.

The neo-Eulerian mappings each offer certain advantages. In particular, the rectilinearity
of the Rodrigues-Frank representation has made it popular although the unbounded nature of
fundamental zones containing rotations of 180◦ is a practical issue for low symmetry systems.
The homochoric representation is attractive for visualization owing to the equal distribution
of randomly distributed points [80]. Here, the axis-angle parametrization is used because
it is simple to interpret and can be used in low symmetry systems. The analysis principles
developed in the following sections apply equally well to all neo-Eulerian mapping and all
are available in the MTEX toolbox [298].

6.1.2 Fundamental Zones & Crystal Symmetry

Crystal symmetry implies that some (mis)orientations are physically indistinguishable. How-
ever, equivalent (mis)orientations will be represented by different points in the 3D vector
space when expressed as neo-Eulerian vectors. It is only necessary to use a region of the
vector space containing each physically distinct (mis)orientation precisely once. Such a
region is known as a fundamental zone [299, 76, 310] or an asymmetric domain [311]. In
this section, a consistent definition for the fundamental zone is set out and fundamental zones
are tabulated for all crystal symmetries.

Fig. 6.1 Neo-Eulerian mappings. (a) The scaling function for five mappings. (b) Sectioned
fundamental zone for 222 symmetry in each of the five neo-Eulerian mappings, illustrating
differences in geometry qualitatively. The maximum angle is 2π/3 radians in the [111]
direction (indicated by the black arrow).
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Fundamental zones have previously been specified by a number of authors based on
Rodrigues-Frank parameters [76, 311, 310]. Here, the calculation was instead achieved
following a construction based on quaternion geometry and Voronoi tessellation, as described
in Krakow et al. [300]. The fundamental zone may then be transformed into any of the
neo-Eulerian representations. These representations differ geometrically, due to the different
scaling functions used in each case. The scaling functions, f (ω), shown in Figure 6.1a, are
all approximately linear up to ∼1 radian and then diverge. The bounding surfaces of the
fundamental zone are curved in all cases except Rodrigues-Frank, see Figure 6.1b, reflecting
the aforementioned rectilinearity.

The particular fundamental zone obtained depends on the alignment of axes and the order
in which symmetry operators are combined for misorientations. Standard conventions were
set out in Krakow et al [300], where the authors suggested taking the highest symmetry
system as the reference system and aligning crystallographic axes to orthonormal reference
axes following,

e1 = a/a,e2 = z×x,e3 = c∗/c∗ (6.1)

where e1, e2, e3 are orthonormal basis vectors of the crystal reference frame h and a,b,c are
crystallographic basis vectors.

Symmetry Equivalence of (Mis)orientations

Calculation of the fundamental zone is based on selecting, from symmetry equivalent points,
the point closest to the origin (smallest angle of rotation) and rejecting more remote points.
When multiple equivalent points have the same distance to the origin a constraint is placed
on the direction of the axis of rotation. To express this mathematically, it is noted that
crystal coordinates are subject to symmetry described by the group of symmetry operators,
s, comprising the crystallographic point group S. A symmetry operation applied to the
crystal coordinates produces a physically identical configuration and therefore the crystal
coordinates h can be identified with a set sh (s ∈ S) of symmetrically equivalent crystal
coordinates3. Considering Equation 2.1 yields the following expression for symmetrically
equivalent orientations.

gi = gis, s ∈ S (6.2)

3Some authors [303] have suggested applying symmetry to the specimen coordinate system but this can be
confusing with respect to misorientations and is avoided in this work.
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Misorientations are subject to the symmetry operations of crystallographic point groups,
S1 and S2, associated with the crystal coordinate systems, h1 and h2, which are related by the
misorientation, m12. Considering the effect of symmetry on each crystal coordinate system,
as described above, and using Equation 2.3 the following expression for symmetrically
equivalent misorientations is obtained.

m12 = s2m12s1,s1 ∈ S1,s2 ∈ S2 (6.3)

Unique selection of a misorientation (referred to as the disorientation) to represent all
symmetrically equivalent misorientations4 requires a constraint on both the angle of rotation
and axis of rotation because several symmetrically equivalent misorientations may have the
same rotational angle5. Here, the misorientation with the smallest angle of rotation (known
as the disorientation angle) and an axis of rotation within the inverse pole figure (IPF) sector
corresponding to the point group of common symmetries, SC = S1 ∩S2, is chosen.

Relating Symmetry to Fundamental Zones

Construction of the fundamental zone may be understood by considering that the symmetry
operators map the reference (mis)orientation or identity, which is at the origin of the 3D
vector space, to a set of identity equivalent points throughout the vector space following
Equations 6.2 & 6.3. The fundamental zone then comprises the set of points that are closer
to the identity at the origin than any of the other identity equivalent points. Indeed this is
precisely the notion used by Morawiec [311] and in this work to compute the fundamental
zone. This is similar to the construction of the Brillouin Zone in reciprocal space and helps
to rationalize the observed fundamental zone geometries.

Fundamental zones for orientations involve only one set of symmetry operators according
to Equation 6.2. This is also equivalent to the formation of a misorientation fundamental
zone when S2 = 1. A two-fold symmetry axis produces an identity equivalent point at a
position 180◦ from the origin along the symmetry axis. Points up to 90◦ from the origin
along this axis are clearly closer to the identity at the origin than to the identity equivalent
point and therefore the boundary of the fundamental zone is at 90◦ along this axis. This idea
extends easily to other rotational symmetry operators with triads, tetrads and hexads each
producing identity equivalent points at 120◦, 90◦ and 60◦ along the respective symmetry

4If the crystallographic point groups S1, S2 comprise N1 and N2 symmetry elements, then each misorientation
generally has N1 ×N2 symmetry equivalents.

5Specifically, if we denote SC = S1 ∩S2 the group of common symmetries of S1 and S2. Then for any mis-
orientation m with rotational angle ω(m) and rotational axis ξ (m) the symmetrically equivalent misorientations
sms−1, s ∈ Sc have the same rotational angle ω(sms−1) = ω(m) but different rotational axis ξ (sms−1) = sξ (m).
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axis. Visualizing the curvature of the bounding surfaces of the fundamental zone is more
difficult and depends on the particular representation chosen. The principle is to construct the
surface corresponding to rotation about axes orthogonal to each symmetry axis and passing
through the easily defined bounding point on that symmetry axis. The inner envelope of
these surfaces will then define the fundamental zone.

Considering, as an example, the 222 point group, the diad operators constrain the domain
to ±90◦ along the coordinate axes producing a convex cube as shown in Figure 6.2b. For
the 622 point group the hexad operator constrains the domain to ±30◦ along e3 and the diad
operators constrain the domain to ±90◦ along each of the corresponding axes, as shown
in Figure 6.2d. It is therefore reasonably intuitive to deduce the qualitative shape of the
fundamental zone for orientations.
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Fig. 6.2 Symmetry elements and fundamental zones for orientations. Symmetry and
fundamental zones in axis-angle space for: (a,b) crystals with point group 222 (c,d) crystals
with point group 622.
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Fundamental zones for misorientations are formed in different ways depending on whether
the symmetry groups contain common elements [311]. When the symmetry groups do
not contain common elements, all symmetry equivalent misorientations have a unique
misorientation angle and the fundamental zone is constructed by selecting the misorientation
closest to the origin. This is the case for the 432 - 3 fundamental zone shown in Figure
6.3a,b. If the symmetry groups do contain common elements then some symmetry equivalent
misorientations will have the same angle of rotation and the restriction on the misorientation
axis discussed above is required. This is the case for the 622 - 222 fundamental zone shown
in Figure 6.3c,d. All symmetrically equivalent misorientations with the same misorientation
angle lie within the higher symmetry 622 fundamental zone. Each diad from the 222 point
group then effectively excludes half of the space. However, a pair of diads implies the third
and therefore the fundamental zone is 1/4 the original domain rather than 1/8. The particular
segments defining the fundamental zone correspond to the defined IPF segment.
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fundamental zones in axis-angle space for: (a,b) crystals with point group (PG) 432 and
combination of PGs 432-3 (c,d) crystals with PG 622 and combination of 622-222.
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The segmentation seen in Figure 6.3d leads to a notion of domain geometries where the
fundamental zone is either (i) one of the domain geometries (as in Figure 6.2 or Figure 6.3b)
or (ii) a segment of it, produced by cutting with planes often parallel to e1, e2 or e3, as in
Figure 6.3d. This notion makes it tractable to discuss the appropriate fundamental zones for
all crystal combinations.

Fundamental Zones for all Crystals

Crystals possess point group symmetry described by one of the 32 crystallographic point
groups. 11 of these point groups are proper point groups and only contain symmetry
operations that are proper rotations. The remaining crystallographic point groups contain
improper symmetry operations that involve inversion. Treatment of improper operations has
varied between authors. Here, we adopt the convention in which the crystals may only be
related by a proper rotation operation and therefore only the proper point groups must be
considered. Fundamental zones for all proper point group combinations were computed and
it was found that 15 distinct domain geometries occur, as shown in Figure 6.4, which we
label a-o in order of increasing maximum angle of rotation. The correspondence between
fundamental zones for misorientations and these domain geometries is given in Table 6.1.

Table 6.1 Fundamental zones for all combinations of proper point groups. Expressed as
sections of the domain geometries shown in Figure 6.4. The self-symmetry combinations do
not include so-called grain exchange symmetry, which is an additional effective symmetry
arising when the two crystals cannot be distinguished [28] and would halve the domain space.

432 23 622 6 32 3 422 4 222 2 1
1 c d f k h m g l i n o
2 c/2 d/2 f/2 f f h g/2 g i/2 n/2

222 c/4 d/4 f/4 f/2 f/2 f g/4 g/2 i/4
4 c/4 c/2 e/2 j/2 e j g/4 l/4

422 c/8 c/4 e/4 e/2 e/2 e g/8
3 a b f/3 k/3 h/3 m/3

32 a/2 b/2 f/6 f/3 h/6
6 a/2 b/2 f/6 k/6

622 a/4 b/4 f/12
23 c/12 d/12

432 c/24

Of the 15 domain geometries, 11 (all excluding a, b, e, and j) are the fundamental zones
for orientations and, equivalently, misorientations with S2 = 1. The effect of rotational
symmetry operators in truncating the orientation space perpendicular to the axis of rotation
can be seen in each case. This is particularly clear for the lenticular fundamental zones o,
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Fig. 6.4 Domain geometries in axis-angle space. Combinations of point group symmetries
leading to fundamental zones that are one of these domain geometries or a section of it are
provided in Table 6.1. The origin is marked with a point.
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n, m, l and k, which are formed with the application of: no symmetry, a diad axis, a triad
axis, a tetrad axis, and a hexad axis parallel to the short axis of the fundamental zone. The
maximum misorientation angle (from the centre) along the axis parallel to this symmetry axis
is then limited to 180◦, 90◦, 60◦, 45◦, and 30◦ respectively. Conventional crystallographic
settings, with the monoclinic diad parallel to e2 result in domain n being truncated along the
e2 axis whereas others are truncated along e3.

Fundamental zones for misorientations combining proper point groups without common
symmetry elements define new domain geometries centred around the origin, as described
above. These are the domain geometries a, b, e and j in Figure 6.4. In all other cases, the
fundamental zone is a segment of one of these 15 domain geometries with a volume indicated
by the associated fraction in Table 6.1. The fundamental zones calculated in this work agree
with those reported for some proper point group combinations by various authors [311–314].

An additional point applies to grain boundary misorientations where the two crystals are
of the same phase, i.e., S1 = S2. In this case, it is not possible to distinguish misorientation m
between grain A and grain B from the inverse misorientation m−1 between grain B and grain
A. This effectively introduces an additional symmetry, known as grain exchange symmetry
[315] which halves the fundamental zone.

Boundaries of the Fundamental Zone

The fundamental zone contains each symmetrically equivalent misorientation once. In the
interior of the fundamental zone the vector space behaves approximately like the ordinary
three-dimensional Euclidean space. In particular, misorientations clustering randomly around
a fixed orientation relationship appear as one cloud. However, when plotting the fundamental
zone as a bounded domain in 3D space it is important to consider a misorientation lying on
the boundary and the appearance when a cluster of misorientations crosses the boundary.

A misorientation on the boundary of the fundamental zone is equivalent to another
misorientation elsewhere on the boundary [299]. A cluster crossing the boundary will
therefore reappear at a symmetry equivalent point, similar to crossing the boundary of a
Brillouin zone in reciprocal space. However, the topology of the space is more complicated
for orientations and rotations are also involved. The most common situation is that a cluster
reappears just at the opposite face but rotated about the face centre, as shown in Figure 6.5a
for the 432-3 fundamental zone. A cluster crossing the fundamental zone boundary at a
corner typically reappears at a different corner, as shown in Figure 6.5b. At some edges
(and corners in other fundamental zones) the cluster may re-enter at an immediately adjacent
point, as shown in Figure 6.5c. Finally, less intuitive splitting can occur including: re-entry
through a nearby face and splitting into more than two clusters, as shown in Figure 6.5d.
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Fig. 6.5 Misorientation clusters at (m3̄m)-(3̄) fundamental zone boundaries. (a) Clusters
may reappear at an opposite boundary face, either directly opposite or opposite and rotated;
(b) Clusters at a corner may reappear at another corner; (c) Clusters may not reappear in a
different position; (d) Clusters at edges and triple points can split into more than two clusters.

When clusters cross fundamental zone boundaries, visualization may be aided by colour-
ing symmetry related clusters based on misorientation from a given orientation relationship
or a cluster centre, as shown in Figure 6.5. It can also be helpful to inspect the symmetrized
dataset prior to reducing the data to the fundamental zone as it is the application of symmetry
that results in the splitting. Finally, it may be advantageous to move away from ’standard’
conventions for the fundamental zone definition to better reflect the data.

Alternative Axis Alignments

Adopting ’standard’ conventions for the alignment of coordinate and symmetry axes has the
advantage of familiarity with a misorientation space and enables direct comparison between
datasets. However, alternative axis alignments may simplify the interpretation of data by
reflecting underlying crystallographic symmetry [311]. For example, the cubic-trigonal
fundamental zone for misorientations has the trigonal triad axis and the cubic tetrad axis
aligned following the standard conventions, as shown in Figure 6.3a,b. Crystallographically,
it may make sense to align the triad axes of the trigonal and cubic systems, as illustrated
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in Figure 6.6a,b. This alternative alignment leads to a fundamental zone of geometry
c/3 whereas the standard alignment leads to geometry a. The alignment of triad axes is
particularly advantageous if these symmetry axes are aligned in important crystallographic
orientation relationships. In this alternative alignment, misorientations about the triad axis
are situated along the e3 axis rather than at vertices in the standard fundamental zone, as
shown in Figure 6.6c,d.
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Fig. 6.6 Symmetry aligned fundamental zones. (a) Stereographic projection of symmetry
elements for cubic (m3̄m) and trigonal (3̄) point groups with triad axes parallel to e3. (b)
corresponding symmetry reduced fundamental zones (c) Clusters at vertices; (d) Clusters
along the triad axis (e3-axis).

6.1.3 Misorientation Distributions & Orientation Relationships

Orientation mapping experiments typically yield numerous misorientation measurements
describing a discrete distribution of points in the misorientation space. The existence
of preferred crystallographic orientation relationships will result in a higher density of
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points, compared to a random distribution, at characteristic positions in the misorientation
space. Quantitative assessment of this distribution is typically made using a misorientation
distribution function (MDF), which is a continuous probability density function describing
the likelihood of observing each particular misorientation in the specimen [79]. To obtain
a continuous MDF from a distribution of discrete measurements it is necessary to fit an
appropriate model function to the data. If the distribution is unimodal then it may be described
by a Bingham quarternion distribution (or equivalently the von Mises-Fisher distribution on
SO(3)) and more general MDFs are then obtained by series expansion of various possible
functions [73]. This could enable a statistically grounded assessment of the significance
of an apparent cluster of measured misorientations within the fundamental zone. However,
inspection of the discrete distribution may be sufficient to obtain physical insight although
this is inherently qualitative. This is the path followed in the case study below primarily
because the number of independent boundaries measured is insufficient to determine the
MDF across the whole misorientation space.

6.2 Case Study: TCP Phases in ATI718Plus

ATI718Plus (hereafter 718Plus) is a recently developed alloy, produced with a view to replace
the current workhorse alloy in the gas turbine industry, Inconel 718. This new alloy offers an
operating temperature increase of about 37 K whilst maintaining workability and weldability
[316], which is achieved through changes in the alloy composition. Most importantly, the
Al:Ti ratio is increased and W is added, leading to a change in the precipitation behaviour
within the γ-Ni (Ni/Al, Fm3m) matrix. In particular, the primary strengthening phase
responsible for increased dislocation drag in 718Plus is coherent γ’ (Ni3Al/Ti, Pm3m),
rather than γ” (Ni3Nb, I4/mmm) in 718 [317]. This is important because γ’ is stable to
higher temperatures. The grain boundary precipitates are also affected and, in 718Plus,
are predominantly η (Ni3Nb0.5(Al/Ti)0.5, P63/mmc) rather than δ (Ni3Nb, Pmmn) in 718.
The morphology of η-phase precipitates depends on the thermo-mechanical treatment to
which the alloy has been subjected. Often it occurs in colonies with a Blackburn orientation
relationship {111}γ ||{001}η with respect to one of the adjacent grains [318]. The η phase
precipitates then grow in a disc-like morphology on the {111} matrix planes [319]. After
prolonged annealing, η precipitates can grow significantly in size, spanning entire grains,
as well as growing in aspect ratio to form "blocky" precipitates with distinct facets [320].
Since η and γ’ compete for the same alloying elements this growth typically results in γ’
precipitate free zones [321].
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Topologically close-packed (TCP) phases form in most nickel-based superalloys [322,
323] when exposed to high temperature for long periods of time or during solidification and
welding [324–326]. Compositionally, TCP phases typically are composed principally of
Ni, Cr, Co, Mo, and W. Crystallographically, TCP phases are relatively complex [327–329]
but at the simplest level consist of pseudo-hexagonal layers of atoms stacked to form sites
with coordination numbers as high as 16, accommodating atoms of very different sizes
with packing efficiencies comparable to those of ideal close-packed structures [328]. TCP
phase precipitates are potentially detrimental to mechanical performance if they occur in
significant volume fractions. This is because they deplete the matrix of solute atoms which
otherwise aid solid solution strengthening [329] and they cannot be used as strengthening
phases themselves due to low number density[330]. Prior to this work the occurrence of
TCP phases in 718Plus had been relatively little studied and those studies that reported
TCP phases in 718Plus [331, 324, 326, 332] largely neglected their crystallography. The
observation of TCP phases in 718Plus had also mostly been attributed to solidification of the
alloy after casting [331] or to welding [324, 326, 332]. Interestingly, no TCP phases were
reported in a previous study on long term stability of 718Plus (732◦C, 2500 hrs) by Radavich
et al. [333]. Here, the occurrence of TCP phases in 718Plus was investigated in detail6.
SPED was applied in combination with analysis in three-dimensional misorientation spaces
to reveal inter-phase crystallographic relationships between TCP precipitates and surrounding
microstructure. Machine learning techniques were then applied to obtain phase-specific
characterisation in terms of both crystallography and composition.

6.2.1 Materials & Methods

718Plus samples were provided by Rolls-Royce Deutschland Ltd. & Co KG. The initial
ingot material was triple vacuum melted by Allegheny Technologies Inc. for high cleanliness
and forged into billet product. This was followed by subsolvus forging and heat treatment at
T=843-871◦C for 16 hr, T=954-982◦C for 1 hr, 788◦C for 8 hr followed by furnace cooling
and 704◦C for 8 hr. These heat treatments were performed by Otto Fuchs KG. A further
annealing at 788◦C for 500 hr was performed in house. Samples were extracted from the
mid-radius of the heat-treated forgings using electric discharge machining (EDM). Slices of
300-500 µm were cut using a saw and 3 mm diameter discs were produced using EDM. These
discs were ground to approximately 200 µm thickness and further thinned by electrolytic
twin-jet polishing using a Tenupol and 10 vol.% perchloric acid solution at −5◦ C.

6The work presented here was part of a collaboration with Robert Krakow, who performed: heat treatments,
specimen preparation, EDX data acquisition, and conventional TEM characterisation. The complete work was
reported in Krakow et al. [334].
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SPED was performed using a Philips CM300 FEGTEM operated at 300 kV and controlled
using a NanoMegas Digistar system. The probe was aligned with a convergence semi-angle
of ∼ 5 mrad and a precession angle of 9 mrad. Scans were acquired with a step size of 10 or
20 nm depending on the region of interest and the dwell time was 40-60 ms. STEM-EDX
mapping was performed using an FEI Tecnai Osiris operated at 200 kV with a step size of
3 nm. The gun lens was adjusted to produce a large probe current of 0.7 nA for increased
X-ray generation, which allowed a dwell time of 200-250 ms per pixel.

6.2.2 TCP phase occurrence & identification

Characterisation via bright-field TEM imaging and small angle CBED was used to assess
the occurrence of TCP phase precipitates in 718Plus, as reported in full in Krakow et al.
[334]. This characterisation revealed that TCP precipitates were present in the material even
without additional annealing. Small angle CBED patterns, as shown in Figure 6.7, were
recorded near major zone axes of eight TCP precipitates and used to identify consistent
crystallographic phases [334]. It was found that the data recorded from these TCP particles
was consistent with either hexagonal C14 Laves phase (P63/mmc) or tetragonal sigma (σ )
phase (P42/mnm). The lattice parameters were measured to be a = 4.9±0.1 Å, c = 7.8±0.1
Å and a = 8.8±0.1 Å, c = 4.5±0.1 Åfor C14 Laves and σ phases respectively. The unit

Fig. 6.7 Conventional TEM of TCP phase particles. (a) Bright-field TEM image of a
representative C14 Laves phase particle. (b-d) Small-angle CBED patterns near major zone
axes of the hexagonal C14 Laves phase. (e) Bright-field TEM image of a representative σ

phase particle. (b-d) Small-angle CBED patterns near major zone axes of the σ phase.
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cells of the η phase and identified TCP phases are shown in Figure 6.8. The particles are
typically blocky in morphology and exhibit internal faulting, which is in contrast to other Ni
based superalloys in which the TCP particles are plate-like [327]. 80 TCP precipitates were
observed and 96% of these occurred at γ−η phase boundaries, often along particular facets of
the η phase precipitates. TCP particles were also observed at some grain boundaries although
it remains possible that these formed at γ −η phase boundaries that were removed during
TEM sample preparation. This observation of C14 Laves and σ -phase precipitates primarily
at distinct facets of η-phase precipitates directed attention towards the crystallographic
relationships between TCP phase precipitates and the surrounding microstructure.

Fig. 6.8 Unit cells of the phases studied. (a) η phase, (b) C14 Laves phase, and (c) σ phase.

6.2.3 Crystallographic Orientation Relationships

Phase and orientation maps were obtained by applying the template matching method
of Rauch et al., see Chapter 4, to 4D-SPED data acquired from 10 TCP particles. A
representative phase map, produced using this approach, from a region containing a σ -phase
precipitate is shown in Figure 6.9a. Crystallographic relationships between the phases may
be illustrated by plotting pole figures for poles coincident between phases, as shown in Figure
6.9b-d. In this particular example an apparent crystallographic relationship between η and σ

can be identified as:

[100]η ||[110]σ ,(001)η ||(001)σ (6.4)

An apparent crystallographic relationship between the σ -phase and the γ-phase, that has
previously been reported in other Ni alloys [], may also be identified as:

[011]γ ||[140]σ ,(111)γ ||(001)σ (6.5)
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Fig. 6.9 Phase and orientation mapping of sigma phase particle. (a) Phase map showing
a σ phase precipitate and surrounding microstructure. (b-d) Pole figures showing important
crystallographic poles. Note that in the η phase {110}η poles are parallel to the ⟨100⟩η

directions. * marks common poles.

Fig. 6.10 Sigma phase disorientations in fundamental zone. (a) γ-σ disorientations. (b)
η-σ disorientations.
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Whilst this pole figure based analysis is insightful it requires numerous poles for each
phase to be plotted until a coincident pair is found and it is not ideal for comparing numerous
particles with different orientations since it is referred to the specimen reference frame. Since
numerous particles must be assessed in order to make any statement about crystallographic
relationships the pole figure approach is not ideal. The misorientation space approach set out
above has the advantage that it is in the crystal reference basis so data from particles with
different orientations can be plotted in the same figure. Further, the disorientation is a uniquely
defined vector quantity so does not require numerous plots to be made. Crystallographic
relationships between five σ -phase particles and their surrounding microstructure were
compared by plotting the disorientation between phases in the appropriate fundamental zone
of axis-angle space, as shown in Figure 6.10. For each phase combination, 50 disorientations
were calculated from the orientations associated with 50 randomly selected pixels in each
phase. The orientation relationships described above are marked with bounded yellow circles.

It was found that the η −σ orientation relationship identified in the initial region of
interest occurred in two of five instances and in the remaining three cases, the η − σ

relationship did not indicate a strong crystallographic preference. On the other hand, in
every region of interest a σ − γ boundary with disorientations near to the proposed OR was
observed. Four regions of interest fulfil the relationship closely and one cluster is situated
about 5◦ away from the relationship.

A phase map and corresponding pole figures from a region containing two C14 Laves
phase precipitates are shown in Figure 6.11. In this region the misorientation between the C14
Laves precipitates and the adjacent η-phase precipitate can be well described by relatively
low index parallelisms as:

[210]η ||[631]C14,(121)η ||(106)C14 (6.6)

Crystallographic relationships between four C14 Laves phase precipitates and their
surrounding microstructure were compared in axis-angle space, as shown in Figure 6.12.
In this case, no preferential crystallographic relationship between the C14 Laves phase
precipitates and either the η-laths or γ matrix was observed and the misorientation clusters
associated with each region of interest are situated across the fundamental zones.
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Fig. 6.11 Phase and orientation mapping of Laves phase particle. (a) Phase map showing
two C14 precipitates and surrounding microstructure (b-d) pole figures showing important
crystallographic poles. *indicates common poles.

Fig. 6.12 Laves phase disorientations in fundamental zone. (a) γ-C14 Laves disorienta-
tions. (b) η-C14 Laves disorientations.

.
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6.2.4 Learning Phase Specific Signals

Complete characterisation of a multi-phase, polycrystalline microstructure requires specifi-
cation of the composition, crystallographic structure and crystal orientation at each volume
element. Typically the microstructure is such that the composition, crystallography and
orientation is similar locally within given crystals i.e. a grain or a precipitate and the number
of diffraction patterns acquired in a S(P)ED experiment or spectra in a STEM-EDX exper-
iment is much larger than the number of significantly different microstructural elements.
In such cases, unsupervised machine learning methods may be applied to learn unique,
phase-specific, signals corresponding to each microstructural element, as discussed in more
detail in Chapter 4. Here, the potential of such methods to obtain phase specific signals
is explored in application to two regions of interest in the 718Plus alloy containing TCP
precipitates. The two regions included one C14 Laves phase particle (ROI1) and one sigma
phase particle (ROI2) situated in surrounding microstructure comprising one or two γ grains
and an η phase precipitate, as shown in Figure 6.13. The specimen was not aligned to any
particular crystallographic orientation.

Fig. 6.13 ADF-STEM images and elemental maps of TCP particles. EDX spectrum
images from two regions of interest to which unsupervised machine learning techniques were
applied. (a) C14 Laves phase, and (b) σ phase.
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Application of unsupervised learning methods to obtain phase specific signals involved
the application of two linear decompositions, which are described in more detail in Chap-
ter 4. Firstly, principal component analysis (PCA) was performed to determine intrinsic
dimensionality of the data based on inspection of plots of the fraction of variance explained
by each principal component. The aim is to identify a regime change from relatively high-
variance to relatively low-variance components, indicating a low intrinsic dimensionality
when only high-variance components are retained. Secondly non-negative matrix factoriza-
tion (NMF) was applied to obtain more physical component signals. The results of both
of these steps applied to ROI1 and ROI2 are shown in Figures 6.14 & 6.15 respectively.
The PCA decomposition of both the EDX and SPED data from ROI1 shows a clear regime
change, after 4 components are included in the model (Figure 6.14a,b) enabling the intrinsic
dimensionality to be determined (one component corresponds to surrounding vacuum). A
regime change is also seen, after 3 components, for PCA decomposition of EDX data from
ROI2 (Figure 6.15a). However, there is only a gradual decrease in the variance described
by PCA components of the SPED data from this region, without a clear regime change. In
this case, the physically significant components to be included could only be determined by
inspection of the components and in this case it was found that beyond 4 components the
additional components began to represent small orientation variations within microstructural
elements most likely due to bending in the thin film specimen. Ultimately, a low intrinsic
dimensionality of 3 or 4 component signals could be identified to describe the microstructural
elements present in all of the EDX and SPED datasets.

Component signals and corresponding loading maps obtained by NMF, taking the number
of components corresponding to the number of microstructural elements as identified by
inspection of the raw data, are shown in Figures 6.14 & 6.15. The loading maps reveal
microstructural regions with characteristic composition or crystallography and therefore
highlight regions with particular composition and crystallography respectively. These load-
ing maps indicate that the corresponding component signals correspond to unique signals
associated with the TCP precipitate, η phase precipitate, and γ phase respectively (from top
to bottom in Figures 6.14 & 6.15). In ROI1 (Figure 6.14) there is one crystal of each phase
and therefore the loading maps associated with SPED and EDX data can be related directly.
In ROI2, (Figure 6.14) there are two γ grains with different orientations and therefore two
SPED components corresponding to these two grains which have approximately the same
composition and are therefore associated with only one EDX component. Taking account
of this, the loading maps resulting from decomposition of SPED and EDX data can be seen
to be well correlated spatially, both with each other and with the observations from more
conventional analyses presented in Figure 6.13.



130 Inter-phase Relationships in Alloys

Fig. 6.14 Unsupervised learning results from ROI1 containing a C14 laves phase parti-
cle. (a,b) PCA scree plots for decomposition of EDX and SPED data respectively. The 10−3

level is indicated to highlight different scales. (c,d) Learnt component signals (spectra or
diffraction patterns) and corresponding loading maps obtained using NMF.
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Fig. 6.15 Unsupervised learning results from ROI2 containing a sigma phase particle.
(a,b) PCA scree plots for decomposition of EDX and SPED data respectively. The 10−3

level is indicated to highlight different scales. (c,d) Learnt component signals (spectra or
diffraction patterns) and corresponding loading maps obtained using NMF.
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NMF component signals highlight differences between microstructural elements and
resemble physical X-ray spectra and diffraction patterns. However, these component signals
contain pseudo-subtractive features where the non-zero background of the experimental
data allows the algorithm to apportion signal that is strong in more than one phase to only
one or other component signal in an unphysical way. Nevertheless, the learnt component
diffraction patterns could be indexed and used to recover the orientation relationship between
the phases in reasonable agreement with the more conventional pattern matching analysis.
Quantification of the learnt component EDX spectra was not however reliable, most likely
due to the presence of mostly the same elements, and therefore X-ray peaks, in all of the
phases but with different ratios, which makes pseudo-subtractive effects more significant.
Instead the loading maps were used to define masks on the raw data within which the spectra
were summed. Quantification of these spatially averaged spectra was was performed via the
HyperSpy Python library [231] using the Cliff-Lorimer method [198] with X-ray intensities
extracted using a model fitting procedure in which a Gaussian function is fitted to each X-ray
line. The compositions obtained following this procedure are reported in Table 6.2 and are
comparable to the values reported in the literature for TCP precipitates in alloy 718 to within
a few atomic %, which is a reasonable estimate of the experimental error [335–337, 334].

Table 6.2 Phase compositions of the TCP phases particles. As determined from a spec-
trum obtained by summation over pixels within the particle using masks based on loading
maps obtained by NMF. = Low energy peak (1.48 keV) - subject to absorption, ** = peak
approaching noise limit.

at.% Al Ti Cr Fe Co Nb Ni Mo W
TCP2 (C14) 0.7 0.0** 26.0 11.2 14.9 5.2 29.1 8.7 4.3

TCP3 (σ ) 0.6 0.1** 52.2 10.1 11.2 0.3 19.9 4.2 1.6

6.2.5 Discussion & Conclusions

TCP precipitates were observed in 718Plus after significantly shorter annealing times (ca.
30 hr) than previous studies [333]. Of the TCP precipitates studied, approximately half,
were C14 Laves phase and half were σ phase although in one instance a C36 Laves phase
precipitate was observed. These precipitates often occur at the γ −η interface on facets of
η particles, which may be expected due to chemical segregation associated with these η

particles and also suggested that crystallographic relationships with the η phase particles
may play a significant role. The composition of the TCP phases observed and the absence of
α-Cr, the predominant co-precipitate of δ in 718 [335, 338], suggests that the TCP phases
observed may be dominated by the local availability of specific elements. The σ phase, for
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example, rejects Nb and Ni more so than the C14 Laves phase. It is therefore more likely for
nucleation to occur at η-γ phase boundaries, in line with our observations here showing all
TCPs found at the grain boundary were C14 Laves phase.

The orientation relationship between η and σ seems to be a consequence of the γ −
η orientation relationship which has likely been formed during forging and pre-solution
treatment and therefore before any σ formation. If a precipitate grows on any of the four
equivalent {111} planes in γ , then there is a 25% chance that it will also be in an OR with
η , which is comparable to the ratio found in this study. In line with the above, in both
occurrences of the orientation relationship, the η basal plane facet was the one occupied by
σ . This suggests that certain η facets promote certain disorientations, but that the stronger
stabilizing effect comes from the γ matrix, which is also intuitive as σ grows into the γ grain.
Coherency, or the lack thereof, might also explain why no strong orientation relationship
was found between C14 Laves phase precipitates and their surrounding microstructure. The
lattice mismatch of ca. 6% is likely too large for epitaxy between C14 Laves and η phase
crystallographic planes. The same would apply to C14 Laves and the close-packed γ matrix
planes as the mismatch between η and γ is very small.

It is also assumed that stable nuclei will be sensitive to the degree of coherency at the
interface, especially σ phase, which has been shown to grow in γ according to a distinct
orientation relationship (OR), matching up the close-packed planes. This preference was
found for all sites of interest studied. As has been pointed out before by Rae et al. [327] the
lattice mismatch has a strong effect on the morphology of TCP precipitates in the γ matrix.
They show that the phase forms sheets in the matrix to establish a good match, thicker
particles for increased mismatch and conclude that alloys with a good match between and
γ are particularly prone to early precipitation. In the light of these considerations, it seems
plausible to assume that, in 718Plus, the phase has a greater mismatch with γ as particles
have a blocky morphology. This might also explain why the OR is not fulfilled closely, with
deviations of about 3◦.

6.3 Summary & Prospects

The results presented in this chapter demonstrate that 4D-SPED can be leveraged as a power-
ful tool for investigating inter-phase relationships in engineering alloys, when combined with
advanced data analysis methods including unsupervised machine learning and misorientation
analysis in three-dimensional misorientation spaces. The use of three-dimensional misori-
entation spaces provides an intuitive and visual way to identify and assess crystallographic
orientation relationships as demonstrated in the case study presented. This analysis could
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equally be applied to orientation mapping data acquired using electron backscatter diffraction
data or X-ray mapping techniques. The application of unsupervised learning methods to both
SPED and EDX data to learn phase specific signals is an attractive way to reduce very large
datasets to the microstructurally essential features. The results shown here suggest that this
approach is feasible and already useful in a pragmatic sense, although the development of
more specialised algorithms, perhaps incorporating alternative regularisation schemes, to en-
able physical component signals to be learnt routinely would be of major benefit. In the short
term the use of learnt loading maps to mask the original data provides a good compromise.
Overall this combination of a new experimental approach to acquire data providing nanoscale
crystallographic insight, in SPED, and advanced data processing methods opens the way to
many empirical polycrystalline nanostructure studies. The goal of such studies would be to
acquire maximum experimental constraint on the relationship between two crystals to enable
calculation of the relevant interface structures in complex modern engineering alloys. An
example of this idea is presented in the following chapter using polycrystalline graphene as a
structurally simple test case.



Chapter 7

Graphene Structure & Topography

Graphene and related two-dimensional materials have attracted intense recent interest driven
by extraordinary physical and chemical behaviour [339, 340] and the prospect of disruptive
technological change [341]. Many potential applications (e.g. transparent flexible electrodes)
require large area graphene films, and chemical vapour deposition (CVD) has emerged as
a promising synthesis method to meet this need [342–344]. As is typical of crystalline
matter, CVD graphene films contain structural defects (e.g. vacancies, dislocations, and
grain boundaries) causing deviation from the idealized picture of a single layer of carbon
atoms arranged on a planar hexagonal lattice. The same is true of other two-dimensional
(2D) materials, and these defects may be deleterious for performance [345], or may enhance
specific properties [346] and tunability through defect control [347]. Characterisation of
defect structures is therefore a key element in developing structure-property relationships in
graphene and related 2D materials.

Many studies have probed defects in graphene using various techniques such as: Raman
spectroscopy, atomic force microscopy, scanning tunneling microscopy, and (S)TEM, which
is the focus here. A key feature of 2D materials is that they are free to buckle as membranes in
three-dimensional space unless constrained by bonding to a substrate. Indeed, such buckling
is a necessity for freestanding two-dimensional crystals [348, 349] and also stabilities defect
structures by screening in-plane elastic strain fields [350–352]. Extreme buckling, either
intentional, or due to growth or sample transfer, may result in the graphene film being
wrinkled, folded or crumpled [353–355]. Few-layer islands may also occur on predominantly
monolayer material [356] and these layers may be mis-stacked [357–362]. These features
combine to produce diverse topographic landscapes. Films produced by CVD are also
typically polycrystalline [89, 363] and therefore contain grain boundaries at the convergence
of single-crystalline grains with different lattice orientations. Such grain boundaries have been
characterised primarily using electron diffraction and dark-field TEM imaging [364, 365], to
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determine misorientation across grain boundaries, and atomic resolution (S)TEM imaging
to reveal boundary structures [364, 366]. Finally, point defects such as disclinations and
dislocations occur and mediate structural transformations in the graphene film. These point
defects and grain boundaries may be described generally as topological defects because
they require that the regular connectivity of 6-membered hexagonal rings is broken with
the presence of smaller or larger rings, typically 5 or 7 membered (but occasionally 4 or
8 membered). Despite this extensive investigation, there remains a need for quantitative
assessment of defect structures on length scales from 10 nm to 1µm. This length scale bridges
a key gap between the atomic scale and the device scale and is the scale on which features
such as sub-grain orientation variations and various forms of film buckling are expected to
occur. There is also a need to develop an efficient quantitative and direct characterisation
framework that may be applied to reveal structural features on these length scales in 2D
materials in general. Here, 4D-SED is combined with advanced post-facto data analysis to
characterise the structure and topography of CVD graphene across these length scales. The
methods developed define a robust characterisation framework that may be applied to other
2D materials.

7.1 Materials & Methods

7.1.1 Material Condition

CVD graphene was synthesised1 on 35 mm thick commercial copper (Cu) foils. The Cu
substrates were annealed for 30 min in a hot-wall reactor at 1000◦C in a H2 atmosphere
(20 sccm at ∼ 200 mTorr). The graphene growth started at the same temperature with the
injection of 5 sccm of CH4 at a pressure of ∼ 300 mTorr for 30 min. The system was then
cooled in vacuum. Samples of CVD graphene were prepared for electron microscopy by
transfer to a gold quantifoil TEM grid (1.2/1.3 quantifoil, Agar Scientific). The transfer
procedure involved depositing PMMA on the graphene/Cu sample and wet-etching the copper
substrate in an aqueous solution of ammonium persulfate (0.1 M). The PMMA/graphene
film was then rinsed and transferred to the TEM grid. After drying, the PMMA layer was
removed in acetone.

1Synthesis and specimen preparation were performed by Ugo Sassi, Domenico De Fazio and Stephen Hodge
working under Prof. Andrea Ferrari at the Cambridge Graphene Centre.
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7.1.2 SED Acquisition

SED was performed using a Philips CM300 FEGTEM operated at 50 kV with a Nanomegas
Digistar system, as described in Chapter 3. The use of an incident electron energy < 60 keV
makes knock-on damage, the dominant damage mechanism in graphene, negligible. The
diffraction patterns were recorded with 144×144 binned pixels per pattern (2×2 binning),
an exposure time of 60 ms and a nominal camera length of 11 cm. The step size in the scan
was 10.6±0.2 nm based on calibration performed at the experimental conditions and the
convergence semi-angle was ∼1.5 mrad. The scan region was 120×120 probe positions,
resulting in 4D-SED datasets comprising 14 400 electron diffraction patterns.

7.1.3 Data Analysis

Analysis of the 4D-SED data was performed using methods described in Chapter 4. Prior to
detailed analysis a number of pre-processing steps were applied to the raw data. First, an
affine transformation corresponding to a stretch in the x-direction by a factor of 1.45 was
applied to correct for the off-axis camera geometry. Second, the data was aligned with respect
to translation of the direct beam. Third, a background subtraction was applied to correct
for a complex structured background arising due to low level light in the microscope room
being detected by the optical camera and the inhomogeneous response of the phosphor screen
to electrons. To subtract this background efficiently, from all recorded diffraction patterns,
the mean diffraction pattern from the region of interest was calculated and a morphological
erosion operation applied to remove bright spots corresponding to diffracted beams. This
eroded average image was then taken to be the background and subtracted from all recorded
diffraction patterns, with values falling below zero being set to zero. The effects of these
pre-processing steps on the data are illustrated in Figure 7.1.

Fig. 7.1 Pre-processing SED data. (a) Raw diffraction pattern. (b) Morphologically eroded
average diffraction pattern. (c) Background subtracted diffraction pattern.
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7.2 Results & Discussion

7.2.1 Imaging & Learning Grain Structure

Polycrystalline graphene films are most simply characterised by identifying grains within
which the lattice orientation is similar, often to within a range of ±10◦. This is the aim of
conventional TEM analysis of polycrystalline graphene films using selected area electron
diffraction (SAED) and dark-field imaging[364, 365]. Similar characterisation can be per-
formed using 4D-SED data and determining the grain structure at this coarse level is an
important initial step in directing more detailed local analyses of the 4D-SED data within
individual grains. Grain structure was assessed initially by considering the spatially averaged
diffraction pattern from across four regions of interest and by forming diffraction contrast
images with selected diffracted beams, as shown in Figure 7.2 and described in detail below.

Fig. 7.2 SED data from CVD graphene. (a-d) Average diffraction patterns from 4 regions
of interest with integration windows used to form virtual dark-field (VDF) images marked.
(e-h) Colour composite images formed using VDFs corresponding to the integration windows
marked in (a-d). Arrows indicate possible folds in the graphene film and stars indicate
possible bilayer islands.

Spatially-averaged diffraction patterns were obtained by summing all diffraction data
from each mapped region, as shown in Figure 7.2a. Multiple sets of reflections with hexagonal
geometry can be seen indicating the number of grains within each scanned region, which
here appears to be 2 or 3 in each case. Diffraction contrast images were formed by plotting
the intensity within selected subsets of pixels (disc radius 2px) as a function of probe position
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to form virtual dark-field (VDF) images [195, 367]. Multiple VDF images were combined
as false colour maps to reveal the morphology of the grain structure, as shown in Figure
7.2b. The orientation resolution of these VDF images is set by the size of the integration
window used to form the image and here is ∼ ±3◦, which is approximately a factor of 2
improvement on conventional dark-field images where a physical aperture plays a similar
role [364]. The contrast in these VDF images also hints at greater structural complexity
and features likely to correspond to folds and bilayer islands were identified, as indicated
in Figure 7.2b. Although this simple analysis provides a useful overview of the data, more
sophisticated analysis is required to reveal the full structural complexity and to make best
use of the wealth of information in the 4D-SED data. Analysis methods are developed in the
following to obtain maximum information from this data using the most structurally diverse
region mapped (leftmost in Figure 7.2) as an illustrative example.

4D-SED data retains a 2D diffraction pattern at each probe position, oversampling the
grain structure and enabling the application of unsupervised machine learning methods to
determine significant contributions to the data. Non-negative matrix factorization (NMF)
[249] was applied to perform this task by factorizing the data matrix into two non-negative
matrices via least squares optimization, as described in Chapter 4, to obtain component
patterns and their associated loading at each position. The number of component patterns
must be specified and the statistical variance described by increasingly many principal
components obtained by an initial singular value decomposition (SVD), as shown in Figure
7.3a, can guide this choice. The SVD results did not produce a clear regime change between
"high-variance" and "low-variance" principal components so NMF decompositions were
therefore performed with 6, 10, 20, 30, 40, and 50 components and the results were inspected
to identify physical components. Beyond 40 components no additional physical components
were obtained and only 10 of these 40 components contained physically interesting signals
with respect to structural defects in the graphene film. The other NMF components account
for variations in the data due to acquisition artifacts, which play a significant role in this case
because the diffraction signal is relatively weak. Fortunately, these additional components
could be easily identified as corresponding to artifacts rather than physically interesting
signal, as shown for example in Figure 7.3b. Most are either long wavelength sinusoidal
contributions expected when noisy smooth background is decomposed (e.g. top right) or
fine oscillations (e.g. bottom) likely associated with electrical interference. NMF therefore
reduces the data to a relatively small number of component patterns, even accounting for the
iterative testing required here.
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Fig. 7.3 Singular value decomposition of graphene SED data. (a) Scree plot for SVD
results. (b) The four most significant NMF components that were considered to be phys-
ically uninteresting. Corresponding to (top) decomposition of background and (bottom)
decomposition of scan noise.

NMF components containing physically interesting information and their spatial loadings
are shown in Figure 7.4. Six component patterns (Figure 7.4a-f) correspond to grains
with different orientations, identifying six grains rather than the three evident from naively
summing the diffraction data, which is an important advantage of automated analysis. The
automated machine learning approach, performed post-facto therefore reduces the chance of
missing significant details compared to conventional TEM methods. In two cases the loading
of the component is strong away from the primary grain (* in Figure 7.4d,e), overlapping
with the region where component (b) has significant loading. These three components differ
in orientation and this result indicates that a second rotated layer is present at the starred
locations. Given the morphology of the overlap features, this is most likely due to the
graphene film being folded under itself. Three component patterns were obtained with strong
second order reflections (Figure 7.4g-i) and are primarily associated with regions identified
as potential bilayer islands. Two of these components exhibited spatial undulation in the
loading (Figure 7.4g,h). This indicates spatial variation in the diffracted intensities across this
region but direct interpretation of the ensemble effect is challenging. Finally, a component
pattern with an apparently split reflection near to other loadings was obtained, as shown in
Figure 7.4j. Unsupervised machine learning therefore focuses attention on salient structural
features providing a roadmap for further data analysis using more detailed and direct methods
that may be applied to selected subsets of the 4D-SED data.
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Fig. 7.4 Component patterns and loading maps obtained by NMF. (a-f) Six monolayer
grains are learnt. Overlap between loading maps (b,d,e) indicates small orientation variations
in the grain. (g-i) Learnt bilayer islands. Ripple in loading maps and missing reflections (*)
in component patterns (g,h) suggest mis-stacking. (j) Broad second order reflections suggest
a fold in the film. (k) Model indicating the layer number, orientation in degrees and facet
indexation based on the NMF learning results. Positive rotations are anticlockwise.

Physical insight into the graphene grain structure can be obtained intuitively from the
reduced data representation obtained by unsupervised learning, which retains the link between
real and reciprocal space. The grains are ∼ 1µm in diameter and typically elongated with
aspect ratios ∼ 2−3, reliable size estimates are however difficult here because the dimensions
are similar to the scan size and to the holes in the grid. A lattice orientation can be assigned
to each region where the loading of a given component pattern is significant, with respect to
anti-clockwise rotation from the selected reference orientation indicated in Figure 7.4a. The
grain boundaries and the edges of bilayer islands appear faceted and by identifying facets
perpendicular to reciprocal lattice vectors a number of low-index facets can be identified,
as shown in Figure 7.4k. Considering the lattice relationships illustrated in Figure 7.5,
most facets are {100} lattice planes, which are "zig-zag" edges. This is consistent with this
termination being lower energy than "armchair" edges. Unsupervised learning of 4D-SED
data therefore provides both a roadmap for further analysis and simple physical insight.
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7.2.2 Diffracted Intensities: Layer Number & Mis-stacking

Diffracted intensity modulation across bilayer islands were identified by unsupervised ma-
chine learning and quantitative analysis of this variation, is developed here. Diffracted
intensities are sensitive to the crystal potential projected in the beam direction, which may
vary in graphene due to: (1) the local number of layers in the graphene film [349], (2) the
angle between the incident beam direction and the local graphene plane normal [349], and
(3) displacements between layers in multi-layer regions [357]. The effect on the diffracted
intensity was modelled using the kinematical framework, which is sufficient to describe
diffraction from graphene since carbon is a weak electron scatterer, i.e. low atomic number,
and the material is atomically thin. Two symmetry inequivalent diffracted beams are typically

Fig. 7.5 Simulated diffraction from graphene. (a) Real space graphene lattice and direction
vectors. (b) Indexed diffraction pattern corresponding to a graphene lattice oriented as in (a).
(c) Kinematical simulation of scattering intensity from monolayer material in the a*-b* and
a*-c* planes respectively. (d) Kinematical simulation of scattering intensity from bilayer
material in the a*-b* and a*-c* planes respectively. (e) Bilayer intensity variation of three
first order and three second order reflections for displacements (in cartesian coordinates) of
one layer away from Bernal stacking.
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recorded at normal incidence, and are referred to as first-order {100} and second order {110}
reflections respectively, as shown in Figure 7.5b. Within the kinematical approximation, the
intensity of a diffracted beam, I, at normal electron incidence is proportional to the structure
factor squared, |Fhkl|2, and can be evaluated analytically to obtain I100 = f (s)2, I110 = 4 f (s)2

for monolayer material, and I100 = f (s)2, I110 = 16 f (s)2 for bilayer material; where f (s) is
the atomic scattering factor evaluated at the scattering vector magnitude, s. The difference in
scattering vector magnitude for first and second order diffracted beams results in intensity
ratios, I100/I110 = 1.12,0.28 for monolayer and bilayer material respectively [348]. This led
Meyer et al. [348, 349] to establish that the ratio I100/I110 may be used assess the number of
layers in a graphene film in cases where it is reasonable to assume: Bernal stacking, normal
electron incidence, and near pristine atomic structure2.

Intensity variation with tilt and inter-layer displacement away from Bernal stacking
can also be evaluated in the kinematic framework, here using the full scattering simulation
approach described in Chapter 2. The effect of tilt is significantly different for monolayer and
bilayer material and is most simply understood by considering the a*-c* plane of the three-
dimensional scattered intensity (reciprocal space), as shown in Figure 7.5c,d. The measured
diffraction pattern is the intersection of the Ewald sphere, which may be approximated as
a plane perpendicular to the incident beam direction, with this three dimensional scattered
intensity, as indicated for normal incidence. In the a*-c* plane, strong diffracted intensity is
along rods parallel to c* due to the small number of scattering layers perpendicular to that
direction. In the monolayer case, the rods of strong intensity are peaked in the c*=0 plane
and because the material is so thin the intensity variation is weak for tilts in the range ±10◦.
In the bilayer case, interference between electrons scattered from each layer breaks up the
rods of strong intensity and, in particular, the symmetry about c*=0 is broken in the first
order reflections. In bilayer material at normal incidence, the Ewald sphere intersection is in
the tail of an intensity spike and therefore tilt in opposite directions results in an increase or
decrease in the scattered intensity for a given reflection. For second order reflections, the
intensity spike is symmetric about c*=0 but varies more quickly than for the monolayer,
with a minimum reached at ∼ 10◦ tilt. The effect of inter-layer translation is essentially to
produce no intensity variation when the translation is perpendicular to the g-vector and an
approximately sinusoidal variation when in other directions, as shown in Figure 7.5e. Tilt
and inter-layer displacement therefore break the 6-fold symmetry of bilayer diffraction.

Spatially averaged diffraction patterns from monolayer and bilayer regions are shown
in Figure 7.6a,b for a tilt series performed over a range of ±15◦ in steps of 5◦. This can

2Atomic disorder modifies the intensity ratio since I110, which corresponds to higher spatial frequencies,
will be more strongly reduced than I100.
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Fig. 7.6 SED tilt series for monolayer/bilayer identification. (a) a selected monolayer
region and (b) a selected bilayer region recorded through a tilt series over a range of ±15◦.
(c,d) Measured I10, I11 as a function of tilt for monolayer (red) and bilayer (blue) (e) Apparent
"strain" due to change in the diffraction geometry with tilt. (f-j) Simulated equivalents of the
aforementioned measured quantities.
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be compared with diffraction patterns simulated for the same tilt series, as shown in Figure
7.6c,d. At nominally normal electron incidence the experimental bilayer diffraction pattern
does not have 6-fold symmetry, implying either tilt or inter-layer displacement. The intensity
ratio metric described above will not apply precisely in such a case although the condition
I100 < I110 should remain for at least some reflection pairs in the bilayer case, as this can be
seen and used to differentiate monolayer and bilayer material. A more robust differentiation
between monolayer and bilayer material is obtained by considering I100 and I110 as a function
of tilt angle, as shown in Figure 7.6e,f. Minimal variation in the monolayer diffracted intensity
was observed over this tilt range whereas significant variations were observed in the bilayer
diffracted intensities, verifying the assignment of the number of layers unambiguously. One
of the I110 values does not vary significantly with tilt indicating that the tilt axis happens to
be approximately parallel to this g-vector, which is approximately vertical in the diffraction
pattern plane and enabled a comparable simulation to be performed. The spread in intensity
between Friedel paired reflections and all monolayer intensities gives an indication of the
random error in the experiment and analysis, which can be seen to be on the order ±20%.
Although this is a significant error it is not surprising given the detector arrangment and will
improve with more advanced detectors.

Geometric changes in the diffraction pattern occur as a result of tilt in addition to the
intensity variations discussed above. As the Ewald sphere intersection moves along the spike
of strong diffracted intensity, due to tilt, the measured scattering vector in projection varies
approximately as 1/cos(α) where α is the angle of tilt about an axis perpendicular to the
beam direction and the reciprocal lattice vector. Since strong diffracted intensity occurs in
long streaks for graphene, due to the very small dimensions of the material, a tilt of the lattice
can induce a significant change in the magnitude of the measured diffraction vector as can be
seen clearly in the simulated tilt series shown in Figure 7.6c,d. This suggests that apparent
strain in the diffraction pattern may be used as a quantitative proxy for local lattice tilt. To
validate this approach, the affine image transformation approach, described in Chapter 4, was
used to map apparent "strain" as a function of tilt of the graphene film for both theoretical
and experimental data, as shown in Figure 7.6. Since the tilt is about an axis parallel to [100]
the only component of apparent "strain" should be ε210, which was found to be the case. The
comparison between theoretical and experimental apparent "strain" values, particularly the
components that should be zero, gives an indication of error in the experimental analysis,
which can be estimated as ±0.5% for monolayer material. This is somewhat larger than can
ideally be achieved with 4D-SED based strain mapping approaches due to the weak signal in
this case but is sufficient to glean useful insight. For bilayer material, the strong variation of
intensity with tilt makes this strain mapping approach unreliable in bilayer regions.
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Bilayer islands can be assessed in detail following the above understanding of the
effects of tilt and interlayer displacement. VDF images (integration disc radius 2px) of
the two bilayer islands, formed using all corresponding first and second order reflections,
are shown in Figures 7.7 & 7.8. This formation of numerous images from a single dataset
is advantageous compared to conventional alternatives, where each image would have to
be acquired separately, both in terms of acquisition efficiency and because all images are
formed with the specimen having received identical electron dose. Since the VDF images
are formed using background subtracted 4D-SED data it should be possible to interpret VDF
image contrast quantitatively, as follows. VDF images and a spatially averaged diffraction
pattern from the smaller bilayer island are shown in Figure 7.7. The 6-fold symmetry of
the spatially averaged diffraction pattern is broken with a first-order reflection being almost
absent, as shown in Figure 7.7c, implying either tilt or inter-layer displacement. The variation
in diffracted intensities as a function of probe position can be assessed via inspection of the
VDF images and plots of diffracted intensity as a function of position along a line across the
region, as in Figure 7.7a,b,d,e. There is only a little spatial variation in diffracted intensities
across this bilayer island implying that the tilt or inter-layer displacement is approximately

Fig. 7.7 VDF images of bilayer island. (a) using first order diffracted beams, and (b) using
second order diffracted beams. (c) Spatially averaged diffraction pattern from this region.
Line traces (4px width) showing (d) I100 and (e) I110 as a function of position across the
bilayer island.
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constant across the island. The intensity of all second order reflections is approximately
similar, whereas the intensity of the first order reflections is split to approximately three levels.
This intensity splitting suggests that compared to the ideal case one first order reflection
becomes stronger, another becomes weaker and the third is relatively little affected. This is
not consistent with a tilted bilayer, which would result in two of three first order reflections
being affected similarly but is consistent with a fixed offset between layers in a direction
parallel to the g-vector where the diffracted intensity is reduced.

VDF images and a spatially averaged diffraction pattern from the larger bilayer island are
shown in Figure 7.8. Again the 6-fold symmetry of the diffraction pattern is broken and in
this case significant spatial variation in the diffracted intensity is observed for all reflections,
resulting in contrast of light/dark fringes in the VDF images. This spatial intensity variation
indicates that any tilt or inter-layer displacement must also be changing in space. In the
case of inter-layer displacement, a spatial variation in the projected layer sites implies that
one or both of the layers is buckled so that the projected inter-atomic vectors in each layer
are not identical. Without such buckling only constant offset would be possible. Combined
buckling and displacement between layers in bilayer graphene has been previously explained
in terms of dislocations between the graphene layers [357]. This is appealing because such
dislocations would be described fully by a line vector and a Burgers vector, b.

Fig. 7.8 VDF images of bilayer island showing ripples. (a) using first order diffracted
beams, and (b) using second order diffracted beams. (c) Spatially averaged diffraction pattern
from this region. Line traces (4px width) showing (d) I100 and (e) I110 as a function of
position across the bilayer island.
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Determination of the Burgers vector has a long history in electron microscopy [15] based
on the fact that when a diffraction contrast image is formed with a diffraction vector, g,
parallel to the Burgers vector, b, no contrast is observed associated with the defect. This
condition will only be met exactly for perfect edge dislocations and multiple images can be
formed to find this condition, which is known as g ·b analysis. Considering the diffracted
intensity variation across the bilayer, using the line traces shown in Figure 7.8d,e, it can be
seen that two of the three I100 values show significant variation changing by a factor of ∼ 2,
whereas the third shows minimal variation, although not none. This analysis suggests that
the offset between layers may be approximated by an inter-layer dislocation with b = ⟨110⟩
although this is not perfectly constrained. This is perhaps unsurprising given the relatively
small dimensions of the bilayer islands and the absence of restraining material in the inter-
layer direction. Indeed the mis-stacking is perhaps better imagined as the combined effect of
topographic buckling in both of the graphene layers and the importance of such buckling has
been noted in studies of bilayer mis-stacking [357].

Repeated measurement of the region was found to result in the strong diffracted intensity
variations in the larger bilayer region disappearing, as shown in Figure 7.9. This indicates
that the energy transferred from the electron beam to the specimen during observation is
sufficient to anneal the mis-stacking and cause the bilayer region to become ideally stacked
over time. This can be rationalized by the electron beam inducing a dynamic ripple in the
graphene film, like moving a dislocation out from between the layers, which then tends to
settle closer to ideal stacking. The fact that the defect can be removed relatively easily further
supports the suggestion that these defects are not tightly constrained as in the case of true
dislocations surrounded by restraining material. This supports the suggestion that the contrast
is predominantly due to inter-layer dislocations and that the lack of a perfect invisibility
criterion may, at least in part, be because the ideal structure has been disrupted by dose
imparted during alignment prior to the first measurement. Overall this analysis highlights the

Fig. 7.9 VDF images of bilayer island through tilt series. The same g100 reflection was
used for each image and all first order reflections were identical at the end of the tilt series.
The first and last images are both formed with the beam at normal incidence to the graphene
film and show that the spatial variation in diffracted intensity seen initially was no longer
present at the end of the experiment.
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versatility of post-facto diffraction contrast imaging using 4D-SED data to forming images
with numerous diffraction conditions. The dose consistency of such post-facto analysis is
also clearly important here because imparting more dose destroys the feature of interest. The
results presented demonstrate the feasibility of quantitative diffraction contrast imaging in
the 4D-SED scheme.

7.2.3 Quantitative Grain & Topographic Mapping

Quantitative spatially resolved structural insights can be obtained from the 4D-SED using
automated analysis. The orientation of the graphene lattice was mapped with respect to
rotation about the beam direction, which was assumed to be approximately perpendicular to
an idealized hexagonal lattice. This orientation mapping was achieved using the template
matching approach implemented in the pyxem library, as described in Chapter 4. The angular
resolution of this approach is ∼ 0.5−1◦ which is approximately an order of magnitude better
than is possible with dark-field TEM imaging [364, 365], as discussed above, and is similar
to previously reported line diffraction profiles [365]. The orientation of the lattice at every
position in the scan was plotted as the absolute angle of anti-clockwise rotation away from
the reference configuration shown in Figure 7.10. This spatially resolved orientation map
reveals both the grain structure and sub-grain orientation variations in a quantitative manner
and was analysed using the MTEX Matlab toolbox [298]. Grain boundaries were identified
automatically based on applying a threshold to the misorientation between adjacent pixels at
a level of 10◦, which is a typical value in crystallographic texture analysis. This threshold was
selected to avoid an excessive number of spurious grain boundaries being identified around
misindexed single pixels and identifies high-angle grain boundaries. Sub-grain orientation
variations are therefore implicitly defined as those that are less sharp than this condition and
this includes relatively low-angle grain boundaries.

The grain boundary misorientation, θm, across each high-angle grain boundary was
obtained based on the orientation of pixels on either side of the boundary. This local
measurement is in contrast to the relatively coarse grain orientation averaging performed
in more traditional analyses [364]. The orientation of the boundary line, θl , was then
extracted using ImageJ. The specification of θm and θl fully characterises the crystallographic
character of a grain boundary in 2D materials [366] and this can be used to constrain
simulations of atomic structure in the boundary3, which is not directly probed in 4D-SED.
The experimentally obtained values of θm and θl were transformed into corresponding
Miller indices describing each interface, using a look up table and a tolerance of ∆ tan(θ) =

3Grain boundary simulations described here were performed by Leonie Woodland working as a summer
student under supervision of the author.
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Fig. 7.10 Grain boundaries modelled based on experimental measurements. (a) Orien-
tation map in degrees. (b) Grain boundaries determined with a 10◦ threshold, coloured by
misorientation angle across the boundary in degrees. (c) Misorientation with respect to the
grain mean at each probe position. (d) Simulated grain boundary structures obtained by
centroidal Voronoi tessellation and conjugate gradient energy minimization for measured θm
and θl values. Pentagons and heptagons are highlighted in red and green, respectively.

0.05. These Miller index descriptions were used to generate grain boundary structures via
the centroidal Voronoi tessellation (CVT) algorithm described by Ophus et al.[366]. The
CVT algorithm provides a computationally-attractive method for annealing graphene grain
boundaries by treating the carbon atoms as vertices of Voronoi cells, and relaxing the lattice
using Lloyd’s algorithm. The tessellation tends towards regular hexagons in two dimensions,
and, when a perfect tessellation is impossible, form pentagons and heptagons in a manner
similar to known topological defects in graphene. The annealed structures were relaxed by
conjugate gradient energy minimisation [368, 369] using the ReaxFF C-C bond potential
[370–372]. An additional free parameter is the offset along the interface line, which was
found to be important for obtaining physical results. To account for this, 50 evenly spaced
offsets along the interface line were tested for each Miller index pair and the lowest energy
structure taken. Illustrative examples of the grain boundary structures obtained following this
procedure are shown in Figure 7.10d. All of these simulated structures comprise numerous
pentagonal and heptagonal rings, which are predominantly aggregated as pairs forming b1,0
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type dislocations. A similar structure estimate maybe obtained based on a regular array of
such dislocations, with the misorientation angle then being given by:

θm = 2arcsin
(
|b1,0|
2d1,0

)
(7.1)

where, d1,0 is the distance between dislocations. However, this simpler model only
properly applies to symmetric tilt grain boundaries, whereas a number of those observed
are asymmetric tilt boundaries, which is only captured through the CVT based approach.
This workflow therefore provides a route to construct empirically grounded models of grain
structure across relatively large regions of graphene film.

Sub-grain orientation variations are visualised by plotting the misorientation with respect
to the mean orientation within each grain. It can be seen that the misorientation within a
grain can be as high as 3◦ and such sub-grain orientation variations have not previously
been mapped quantitatively in graphene. Such sub-grain orientation variations were present
to some degree in all mapped grains and imply the existence of other defect structures
such as: small angle grain boundaries, comprising an array of dislocations, or folds, which
allow such rotations whilst maintaining a continuous hexagonally coordinated membrane.
These two possibilities may be distinguished if the local tilt of the surface normal to an
approximated hexagonal lattice at each pixel can also be mapped since folds will imply much

Fig. 7.11 Maps of apparent "strain" and rotation (a) Measured "strain" components.
Folds (F) and small-angle grain boundaries (S) are indicated. (b) This apparent strain is in
fact due to local buckling of the graphene lattice
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more significant tilts. "Strain" maps therefore provide a proxy for mapping buckling of the
membrane and the apparent "strain" due to buckling should always be compressive.

Apparent "strain" in the 4D-SED data, arising primarily due to lattice tilt, as detailed
above, was mapped using the affine image transformation approach to produce strain maps,
as shown in Figure 7.11. The measured "strain" is small near to high-angle grain boundaries
validating their treatment as two-dimensional grain boundaries. A small-angle grain boundary
is also evident with a misorientation of around 30 mrad and no measurable strain in the
4D-SED data. Such small angle grain boundary structures were also simulated using the
CVT approach described above. The largest apparent "strains" are ∼ 3% which corresponds
to a local tilt of the lattice of ∼ 15◦ (see Figure 7.6j) and indicate the presence of a significant
buckling in the graphene membrane. Two buckled regions can be identified with a slight
rotation of the graphene lattice between them and indicates the membrane is folded to allow
this rotation. This is the same fold that was identified initially based on overlap in the results
of unsupervised machine learning, as shown in Figure 7.4j. Further confirmation that the film
is indeed folded is given by direct inspection of the data, where the splitting of diffracted spots
from the upper and lower parts of the fold, as shown in Figure 7.11b. This folding is almost
certainly a result of transferring the specimen on to a TEM grid. Such transfer is however
involved in most current device production using CVD graphene and such topography may
affect performance.

7.3 Summary & Conclusions

Scanning electron diffraction combined with versatile post-facto analysis has been demon-
strated to enable rigorous assessment of layer number, grain-structure, mis-stacking and
topography of chemical vapour deposited graphene, enabling comprehensive ‘crystal cartog-
raphy’ at the mesoscale. In addition to highly versatile computational imaging approaches
(analogous to conventional TEM but which offer significant adaptability of analysis), appli-
cation of advanced analytical methods enabled novel, intricate and quantitative mapping of
mesoscale structure and topography. Use of unsupervised machine learning to interrogate
the rich 4D-SED data sets achieved more objective assessment of variations in the diffraction
signal and provided a roadmap for more quantitative analysis. This approach requires very
little prior knowledge and revealed some features easily missed in the more conventional
approaches, as well as yielding a very efficient representation of the key features in the data.
Orientation mapping revealed sub-grain orientation variations, and combining real and recip-
rocal space information to extract the grain boundary line orientation and the misorientation
across the boundary enabled self-consistent models for the grain boundary structures to be
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simulated. This provides a framework to construct empirically grounded large area atomic
structural models that may be used to simulate key properties (e.g. transport properties or
mechanical properties) in the presence of defects on length scales relevant to devices. Finally,
the topography of the graphene membrane was mapped quantitatively, revealing the nature
of folds and buckling in bilayer islands. The demonstrated methods are readily applicable
to other two-dimensional materials, and by providing comprehensive, elucidation of their
mesoscale structure and topography should play a significant role in better understanding
their processing-structure-property relationships.





Chapter 8

Nanostructure in Polyethylene

Polymers are ubiquitous in modern technology but inherent structural complexity and char-
acterisation challenges have limited detailed nanostructural understanding. Polymer crystals
comprise molecular chains packed as identical helices with aligned axes [373–375], but com-
plete crystallization is rare due to slow kinetics exacerbated by long-chains, entanglement,
and side-groups [374]. Semi-crystalline structures containing crystals extending ∼ 10−50
nm along the chain axis, i.e. much less than the chain length, are typical [376, 377], implying
the crystals must be chain-folded lamellae, with individual molecules folding into single
crystals [378, 379], or fringed micelles, in which multiple molecules align within one or more
crystals [374]. Chain-folded crystals can be inferred when grown from dilute solution and
are widely considered significant in melt-grown material where fringing and inter-lamellar
linkages are also likely, due to entanglement, which physically couples phases, e.g. leading
to a rigid amorphous fraction at the amorphous-crystalline interface [374]. Polymers may
also form mesophases with intermediate degrees of order [380, 381].

Structural characterisation of polymers typically relies on bulk scattering and spectro-
scopic studies that provide insights into the average structure but require corroboration with
local microscopic observations to determine nanostructure [382]. Transmission electron
microscopy and diffraction are natural choices for such local measurement but have been
limited by beam sensitivity [182, 184, 185] and low contrast [383]. TEM of polymers has
thus typically provided only morphological insight [384, 385] when applied to material pro-
duced under melt processing conditions. Representative polymer crystallites and important
defects have been well characterised but it has rarely been possible to directly measure these
features within nanostructure. Recently, scanning diffraction experiments using X-rays [386]
and electrons [387, 388] have been suggested to meet this need. Here, scanning electron
diffraction (SED) is developed as a direct local probe of polymer nanostructure in application
to a fibre spun sample of ultra-high molecular weight polyethylene (UHMWPE).
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Polyethylene is the most industrially significant polymer and is the prototypical semi-
crystalline polymer, forming crystal structures analogous to the n-alkanes [382, 380]. Polyethy-
lene chains adopt a low-energy all trans conformation in a planar zig-zag that may be consid-
ered a helix with a 180◦ rotation between CH2- units [374]. The stable crystal structure at
room temperature and pressure is orthorhombic (Pnam, a=7.39Å, b=4.93Å, c=2.54Å) with
the chain axis aligned along the c-axis and the planar zig-zag of the two chains in the unit
cell approximately perpendicular to one another [389] (like longer n-alkanes). A monoclinic
polymorph (C2/m, a=8.09Å, b=2.54Å, c=4.79Å), with the chain axis aligned along the
b-axis and the planar zig-zag of the chains parallel to one another (like shorter n-alkanes), is
frequently found in drawn polyethylene [390] as a result of martensitic shear transformation
from the orthorhombic phase [391, 392]. Shear transformation of the orthorhombic phase
can also lead to deformation twinning in orthorhombic polyethylene on {110} and {310}
planes [391, 83]. Growth twins also occur [376]. This polymorphism is related to both the
orthorhombic and the monoclinic structures being only slightly distorted from a close-packed
hexagonal arrangement, as shown in Figure 8.1.

Fig. 8.1 Crystal phases of polyethylene. (a) Orthorhombic structure with herringbone chain
packing. (b) Monoclinic structure with parallel chain packing. (c) Orthorhombic, monoclinic
and hexagonal unit cells on a hexagonal lattice, illustrating pseudo-hexagonality.

Disorder in polyethylene spans a range from idealized crystal structures with all trans
C-C bonds to randomly coiled molecules [56] containing numerous gauche bonds. The
fold surface in chain-folded lamellae must also contain gauche bonds [393], as does the
conformationally disordered (condis) hexagonal (a=4.85Å, c=2.39Å) mesophase [394, 395].
Gauche bonds are therefore a fundamental characteristic of disorder in polyethylene and
deviation from exact conformational angles is typical. The hexagonal condis phase is stable at



8.1 Materials & Methods 157

elevated temperature and pressure [394] but has also been reported to form under irradiation
[396–398] and in fibre samples [399–401]. Further, the condis phase may play an important
role in crystallization from the melt [401–403] and all known extended-chain crystals are
believed to have passed through this mesophase [380]. Gauche bonds in the hexagonal
mesophase are present in a density corresponding to separation by ca. five trans CH2 units
and spectral signatures have suggested the presence of both -GTG’- ’kink’ defects and -GG-
’double-gauche’ defects [395], with the former being predominant, these gauche bonds are
mobile and allow the chains, which inter-penetrate their neighbours at any instant, to occupy
average positions of hexagonal symmetry despite lower molecular symmetry [380].

Morphologically, polyethylene macrostructure is typically characterised as lamellar,
fibrillar or nodular [377]. Lamellar crystals are known to display a range of features such as
splaying, curvature and multilayer structures become significant in 3D morphology [377].
Under shear flow processing conditions the chain alignment behaviour is rather different
with molecules tending to be aligned with the flow direction leading to the formation of
fibrils [404]. These extended chain fibrils can act as heterogeneous nucleation sites for the
nucleation of crystalline lamellae with chain axes aligned with the fibrils. This crystallization
sequence can lead to a crystal morphology known as a shish-kebab structure comprising
chain extended fibrils and chain folded lamellar crystals [404]. However, direct measurement
of the local structure in such polyethylene macrostructures has not generally been possible
and here the shish-kebab macrostructure in a fibre-spun UHMWPE sample is investigated by
developing 4D-SED as a hybrid diffraction-imaging microscopy technique.

8.1 Materials & Methods

8.1.1 Material Condition

Ultra-high molecular weight linear polyethylene (UHMWPE) was purchased from Mitsui
Chemicals (Hizex 240M) and processed under shear-flow conditions [405] to produce thin
fibres that were sectioned for SED investigation1. The UHMWPE had a weight-average
molecular weight Mw = 2.0×106 amu and heterogeneity index Mw

Mn
= 12, where Mn is the

number-average molecular weight. A polymer solution was prepared in decalin (C10H18) at
210 ◦C using a twin screw extruder with a polymer concentration, c = 10.0 wt% corresponding
to a concentration ratio, c/c* = 20, where c* is the overlap concentration. An antioxidant
(2,6-ditert- butyl-p-cresol) was also added with a concentration of 1 wt% of the total solution
and insoluble impurities were filtered off using a mesh filter (400 lines/inch). Fibres were

1UHMWPE samples were prepared by Prof. Hiroshi Jinnai and Dr. Takeshi Higuchi (Tohoku University).
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produced by fibre spinning [405] using a spinneret attached to the twin-screw extruder, which
was operated at a temperature of 170 ◦C, with a throughput of 1 g/min and an orifice diameter
of 0.8 mm. Extrudates were drawn into fibres with a take-up velocity of 60 m/min whilst
being cooled by nitrogen gas at room temperature. This processing has been previously
demonstrated to produce material with the shish-kebab macrostructure [405].

Electron transparent thin-film specimens were prepared from the UHMWPE fibres,
which were first cut into pieces ∼ 2 mm long. One such piece was then cut into thin sections,
∼ 70 nm thick, at room temperature using a diamond blade mounted on an ultramicrotome
(Ultratome V, LKB Co., Ltd.) so that the sections were oriented with the plane of the
specimen containing the velocity gradient and flow directions. These sections were then
mounted on carbon-coated poly(vinyl formal) film on copper grids.

8.1.2 SED Acquisition

SED was performed using a Philips CM300 FEGTEM controlled using a Nanomegas Digistar
system2, as described in Chapter 3. The instrument was operated at 300 kV, with illumination
parameters: spot size = 4, C2 aperture = 10 µm and gun lens = 3. The probe current under
these conditions was measured to be ∼ 5 pA using a Faraday cup situated beneath the column
and the specimen was cooled to a temperature of ∼ 100 K using a Gatan liquid nitrogen
cooling holder. It should be noted that the orthorhombic polyethylene unit cell contracts
by ∼ 3% in a and ∼ 1% in b on cooling from room temperature to ∼ 100 K [406], which
makes the material more orthorhombic. Electron diffraction patterns were acquired over
a 512× 512 pixel array of the optical CCD camera, which imaged the diffraction pattern
on the phosphor viewing screen of the microscope with a dwell time of 10 ms per probe
position. SED data was acquired with a nominal camera length of 40 cm and the reciprocal
space pixel size was calibrated to be 0.01 Å−1/pixel based on data acquired from a GaAs
specimen under similar conditions. Scans were performed with a spatial resolution of ∼ 4.75
nm (regions 1/2) or ∼ 9.5 nm (region 3) and the convergence semi-angle was ∼1 mrad. Scan
regions comprised 160×160 probe positions.

8.1.3 Electron Dose & Beam Damage

Electron dose was estimated by evaluating the average electron fluence through a disc with
diameter equal to the full-width half maximum of the theoretical diffraction limited probe for
the measured convergence semi-angle. Taking a measured convergence semi-angle of 1 mrad,
the diffraction limited probe size is 2.5 nm for 300 keV electrons. Taking a probe current

2The data presented here was acquired by Dr. Sung-Jin Kang (University of Cambridge).
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of 5 pA, a probe diameter of 2.5 nm, and a dwell time of 10 ms; gives an electron dose of
∼ 600 e/Å2 and is similar to previous reports of SED applied to semi-crystalline polymers
[387]. However, this dose is about an order of magnitude greater than the reported critical
dose values for polyethylene illuminated with 100 keV electrons [182] at room temperature.
It may be reasonable to expect [182] cooling the specimen to 100 K to raise the critical dose
by a factor of ∼ 4 and the increase in electron energy from 100 keV to 300 keV to raise this
by a further factor of ∼ 2, perhaps suggesting that significant damage could be avoided.

Empirically, repeated scanning of the specimen showed that the crystallinity had been
degraded almost completely following a single SED acquisition. Nevertheless, high-quality
electron diffraction data was obtained in the initial scan. This may suggest that the time taken
for structural degradation is slower than the 10 ms exposure time at each probe position, or
that the integrated signal over that time is dominated by the initial structure. This may be
feasible if the important degradation mechanism requires significant molecular motion [407].
It is also noteworthy that neighbouring pixels in the slow scan direction generally diffracted
similarly, imply that any immediate damage was highly localized.

8.1.4 Data Analysis

Analysis of the 4D-SED data involved peak finding, vector indexation and post-facto imaging
using methods described in Chapter 4. Pre-processing of the data included: (1) binning the
data from the 512×512 pixels acquired to 256×256 pixels in order to make the analysis of
multiple SED datasets more computationally manageable, (2) applying an affine transforma-
tion corresponding to a compression in the vertical direction by a factor of 0.69 to correct
for the off-axis camera geometry, (3) centring the diffraction patterns in the 256×256 array
by cross-correlation with a disc element, and (4) subtracting an average diffraction pattern
from a manually selected amorphous region within the scan region from all other patterns,
followed by intensity thresholding, to remove background. Peak finding was performed using
the difference of Gaussians method (see Chapter 4) with parameters tuned manually.

Indexation of the data presented various challenges: (1) fewer than 3 Bragg reflections
were often recorded per pattern, (2) multiple crystals were frequently sampled along the
beam path, (3) all polymorphs needed to be considered and appropriate lattice parameters
were uncertain, and (4) errors in peak finding and pattern centring were estimated to give an
error of ±0.02 Å−1 meaning that considering only vector magnitude was often ambiguous.
The first challenge was addressed by considering summed diffraction patterns over bent
regions of the specimen to improve the sampling of reciprocal space and the others required
much trial and error. Indices were discounted if they were divisible by a common integer if
lower index reflections were not present.
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8.2 Results & Discussion

8.2.1 Nanostructure Overview

4D-SED data was acquired from three regions of the UHMWPE specimen, as shown in
Figure 8.2. Summed diffraction patterns reveal that high-quality electron diffraction data,
with structural information to >1 Å−1 resolution, was obtained from multiple crystals in each
region. Virtual bright-field and annular dark-field images provide limited insight, as is typical
of (S)TEM imaging of unstained polymers [383], although some features are suggestive of
crystalline nanostructure (arrowed in Figure 8.2).

Fig. 8.2 4D-SED data from polyethylene. (a) Average diffraction pattern. (b) Virtual bright-
field image using disc, radius = 4 pixels (∼ 1 mrad), and (c) using an annular integration
window, inner radius = 20 pixels (∼ 5 mrad) and outer radius = 60 pixels (∼ 15 mrad).
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Crystals in the polymer nanostructure may be assessed based on the diffraction peaks and
corresponding diffraction vectors measured in the 4D-SED data. Inspection of the spatially
averaged diffraction patterns, shown in Figure 8.2, suggests that ROI2 & 3 contain only one or
two crystals oriented with the electron beam near parallel to the molecular chain axis, which
yields a pseudo-hexagonal diffraction pattern in all of the polyethylene crystal structures,
whereas ROI1 likely contains more crystals. Measuring the diffraction vectors at each probe
position can yield further insight. The distribution of diffraction vector magnitudes provides
a structural fingerprint for phase identification, which can be visualized in a histogram, as
shown in Figure 8.3a. This one-dimensional scattering profile can be assessed similarly to
a powder diffraction pattern, noting that the sampling over different orientations is limited.
Peaks in the histogram may be indexed and the first peak at ∼ 0.24 Å−1 is consistent with
either the orthorhombic 110o or the hexagonal 1100h reflection. No peak corresponding to
the 200o reflection (∼ 0.27 Å−1) was observed and neither were equivalent higher order
reflections. This suggests that the material in ROI2/3, where the orientation is known by
inspection, is in a hexagonal phase, whereas in ROI1 the absence appears to be due to
incomplete sampling of orientations and orthorhombic material is present.

Fig. 8.3 Polyethylene diffraction vectors. (a) Histograms of measured diffraction vector
magnitudes (bin size is 0.01 Å−1, i.e. the pixel size). (b) Crystallinity maps with intensity
equal to the number of peaks recorded from 0 (black) to 20 (white).
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Crystalline regions within the semi-crystalline polymer microstructure may be mapped,
as shown in Figure 8.3b, by plotting the number of diffraction peaks recorded as a function of
probe position. These crystallinity maps provide clear contrast without staining, overcoming
a key limitation in quantitative microscopy of polymers [383]. The contrast derives not from
the diffracted intensity but from the number of peaks found at each probe position so that
bright pixels may correspond to single crystals oriented near to major crystallographic zone
axes or multiple crystals being sampled. This contrast can be readily segmented by binarizing
the image to obtain crystalline area fractions of 37%, 87% and 27% respectively.

Faceting of the crystalline domain mapped in ROI3 could also be explored based on
crystallinity map contrast, as shown in Figure 8.4. Edge detection algorithms are readily
applied to the binarized crystallinity map and line segments can be extracted, using a Hough
transform, and compared3 with reciprocal lattice vectors in the corresponding diffraction
data to index the facets as {1100} planes in the hexagonal structure. This is reminiscent of
much larger truncated lozenges of orthorhombic polyethylene, produced from dilute solution,
in which longer facets are {110} type, shorter facets are {100} type, and sectorization is
common [376]. It is intriguing that some VDF contrast appears to follow internal faceting,
similar to sectorization, despite the hexagonal nature of the material. It is also notable that
the corners of the lozenge are rounded, perhaps indicating a loss of crystallinity.

Fig. 8.4 Crystalline polyethylene lozenge. (a) Crystallinity map with facets indexed as
{1100} planes via colours corresponding to (b) the indexation of the average diffraction
pattern. (c,d) VDF images formed using the integration windows marked in (b) with dotted
lines indicating the trace of {1100} planes, which may be associated with steps in contrast.

3An anti-clockwise rotation of 5◦ was applied to the recorded images to account for the rotation between
diffraction and imaging planes.
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8.2.2 Shish-Kebab Polyethylene

The "shish-kebab" macrostructure of melt-drawn UHMWPE comprises a fibrous and partially
crystalline extended chain shish on which chain folded lamellae nucleate and grow into
smaller micro-kebabs and larger macro-kebabs [404]. These macrostructural features can
be imaged in stained specimens (Figure 8.5a,b) and comparing such an image with the
crystallinity map obtained from ROI1 (Figure 8.3) enabled a triangular crystalline region
to be identified as a macro-kebab (starred in Figure 8.3). Crystalline regions with non-
faceted morphologies were also observed in the crystallinity map. Some of these were small
crystalline patches consistent with the chain extended shish structure (arrowed in Figure 8.3)
whilst others were not readily related to the shish-kebab model. Here, attention is focused on
the structure of the lamellar macro-kebab crystal and the interface with the shish.

Fig. 8.5 4D-SED of shish-kebab macrostructure. (a,b) Conventional TEM images of a
RuO4 stained UHMWPE with shish-kebab macrostructure. Box indicates 4D-SED scan size.
(c) Composite VDF image for all reflections associated with the lamella and shish. (d-f) Raw
diffraction patterns from (d,e) different positions on the lamella and (f) the shish.

Diffraction patterns from the lamella crystal (Figure 8.5d,e) showed that the diffraction
condition varied predominantly along the long axis of the lamella. Individual diffraction
patterns typically contained fewer than four reflections and some patterns (e.g. Figure 8.5e)
could not be consistently indexed using a single crystal model. A polycrystal model for
the lamella was thus required. Diffraction patterns from the crystalline segments of the
shish contained two weak reflections (Figure 8.5f), corresponding to an inter-chain spacing
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similar to the hexagonal polyethylene structure. Forming a composite VDF image, from
VDFs associated with all reflections in the lamella and the shish, reveals the shish-kebab
macrostructure - without staining, as shown in Figure 8.5c. The intensity of the diffraction
peak associated with the shish is strong in ∼ 100 nm segments along a fibril, with a diameter
of ∼ 50 nm and a total length on the order of micrometres. This suggests that the chain
extended shish may contain domains of aligned chains, where the diffraction peak is intense,
separated by regions where entanglement may have precluded alignment [404].

Indexation of the diffraction data was achieved4 based on the magnitude of diffraction
vectors and inter-vector angles (see Section 8.1.4) measured in individual diffraction patterns
and the summed diffraction pattern from the lamella. Although some individual patterns
could not be indexed using one crystal, and therefore a polycrystal model is expected, the
summed pattern contains a highly regular arrangement of reflections. This regularity suggests
the crystals present may be related by special crystallographic relationships, such as twin
relationships [391, 392]. Interestingly, the rows of reflections present in the summed pattern
are separated approximately by a common vector of magnitude ∼ 2.1 Å−1 but this does not
correspond to any reciprocal lattice vector of the polyethylene crystal structures. A model
was therefore constructed comprising four orthorhombic crystals that yielded diffraction
patterns that, when superimposed, matched the summed diffraction pattern from the lamella,
as shown in Figure 8.6. The four crystal orientations are approximately related by twinning
orientation relationships although the deviation from exact twinning relationships was as
much as 5-10◦. This deviation may be rationalized based on the soft nature of the material
and the highly metastable microstructural state. It should also be noted that the orientation
within each crystal varies by a few degrees across it, so the orientation relationship may be
more closely met at the interface, although the limited data makes it hard to be quantitative.

VDF images of the region marked in Figure 8.5c are shown in Figure 8.6d. VDF
images are bright where a diffraction condition is met and thus reveal how the diffraction
condition changes in space. Most VDF images associated with diffraction from the lamella
crystal contain bright bands perpendicular to the long axis of the lamella, indicating that
the corresponding diffraction condition is met over a short distance along the long axis of
the lamella. This may be explained by the lamella being bent about its short axis and/or
twisted about its long axis. Some VDF images contain more complex contrast, particularly
in the upper part of the lamella, with split bands indicating that the corresponding diffraction
condition is met more than once along the long lamella axis. A structural model can therefore
be built up using both the diffraction and imaging data.

4This indexation was largely due to Dr. Sung-Jin Kang in discussion with the author and Prof. Paul Midgley.
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Fig. 8.6 Hybrid diffraction-imaging of lamella crystal. (a) Summed diffraction pattern.
(b) Indexation of diffraction from lamella crystal. (c) Four orthorhombic crystal orientations
included in the model. (d) VDF images associated with each diffracting condition.
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A single crystal is located at the tip of the lamella, labelled in red in Figure 8.6. Reflections
are excited sequentially along the 120 systematic row, with the 641 type reflections excited
separately at the top and bottom extremes of this region. Since the [120]∗ reciprocal lattice
vector is approximately aligned with the long axis of the lamella, this indicates that there is
only a very small twist about the lamella axis, which primarily affects the excitation of the
641 reflections, whereas there is significant bending about the short axis of the lamella, which
causes the sequential excitation of the 120 systematic row. Considering the distance between
maximal excitation of the 240 and 240 reflections in both real space and reciprocal space,
the curvature of the crystal about the short axis of the lamella is approximated as ∼ 0.6◦

over ∼ 250 nm. The VDF images for 120 systematic row reflections contain bright bands
with a series of bright fringes either side, which is the rocking curve through the diffracting
condition as the crystal is bent into and out of the exact Bragg condition.

Multiple approximately twinned crystals are located in the upper part of the lamella
and their location must be considered in order to interpret the VDF image contrast, as
shown in Figure 8.7. Twin boundaries in polyethylene are {110} or {310} planes and,
since the c-axis is oriented ∼ 25◦ away from the incident beam direction in the upper part
of the lamella, there are regions where overlap between crystals along the beam path is
significant. This is consistent with the earlier observation that some individual patterns must
be indexed with multiple crystals. In this region the excitation of reflections away from the
120 systematic row changes, suggesting a twist about the long axis of the lamella. This axis

Fig. 8.7 Twinning in a macro-kebab. (a) Schematic representation of crystals present. (b)
Orthorhombic unit cells in each region, rotated to be viewed along the chain axis, to illustrate
twin relationships. (c) VDF images in which the bright band is not split, i.e. 230 and where
it is split, i.e. 520, with the twin boundary indicated. (d) Reciprocal lattice points in the
hk0 plane showing that reflections giving continuous bands are near perpendicular to [310]∗,
whereas those giving split bands are not.
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is approximately parallel to the crystallographic b-axis in the (red) crystal at the tip of the
lamella. Twisting of polyethylene lamellae about this b-axis is widely reported in spherulites
[408] perhaps as a result of unbalanced surface stresses associated with chain folding [409].
In the twinned (blue, green, yellow) crystals present in the upper part of the lamella a ⟨110⟩
crystallographic direction becomes approximately parallel to the long axis of the lamella.
These ⟨110⟩ directions, like the b-axis direction, are approximately close packed directions
in the pseudo-hexagonal close packed orthorhombic polyethylene structure and it appears
that the twist continues about this axis. Further, the lamella bends away from the vertical
axis of the image in a way that may be consistent with aligning the ⟨110⟩ directions in the
twinned crystals more closely with the b-axis of the initial condition to preserve a common
close-packed direction. Most of the VDF images comprise bright bands perpendicular to
the long axis of the lamella but those associated with 521, 520 and 131 reflections are split,
indicating that the diffraction condition is met more than once. Whilst the short extent along
the long axis of the lamella may be explained by twisting about that axis, it is necessary to
consider why some bands are split and others are not and why the bands extend across the
{310} twin boundaries.

Crossing a {310} twin boundary, the change in lattice orientation may be described as
a rotation of 180◦ about the [310]∗ axis. Diffraction conditions that do not produce split
bands are associated with reciprocal lattice vectors (e.g. [230]∗ and [341]∗) that lie very
close to the plane in reciprocal space perpendicular to [310]∗ and the twin therefore maps the
reciprocal lattice point to a position very close to an equivalent reciprocal lattice point. The
twin has very little effect on the locus of Bragg reflection. In real space, these diffraction
conditions corresponds to two sets of equivalent atomic planes that are approximately
coherent and parallel across the twin boundary. Diffraction conditions that produce split
bands are associated with reciprocal lattice vectors (e.g. [520]∗) that are not close to the plane
perpendicular to [310]∗. In this case, the twinning operation does not map an equivalent
reciprocal lattice point to a similar location. However, the twin does map a different reciprocal
lattice vector of similar magnitude to a nearby point such that it is still integrated to give VDF
image contrast but corresponds to a different set of atomic planes. In the case of the [520]∗

vector, twinning maps a [140]∗ vector to a similar location, which leads to a 2% difference
in magnitude of the measured diffraction vector and a rotation of ∼ 3◦. This geometry is
illustrated in Figure 8.7d.

Reflections measured between the tip of the lamella crystal and the shish are shown in
Figure 8.8. The magnitude of the diffraction vectors was consistent with the monoclinic
structure with three reflections indexed as 210m reflections one reflection indexed as 200m.
The angle between one of the 210m reflections and the 120o systematic row was measured as
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23.8◦ which is close to the 21◦ angle that would be expected if the material were related by a
T11 type martensitic transformation [392]. Further, the ∼ 90◦ angle between two different
210m reflections is consistent with monoclinic twinning. VDF images associated with
reflections observed between the macro-kebab lamella and the shish reveal small crystalline
domains apparently linking the tip of the macro-kebab to the shish. It might be expected that
these structures would be micro-kebab lamella crystals but these would be observed along
the length of the shish, which is not the case. These small crystalline domains may instead be
associated specifically with the nucleation of the macro-kebab lamella and it may therefore
be suggested that distorted monoclinic material plays a part in this process.

Fig. 8.8 Structure between lamella and shish. (a) VDF images associated with reflections
marked in (b) a summed diffraction pattern from between the lamella and the shish. The
bright band marked (*) is associated with a Kikuchi band associated with the orthorhombic
polyethylene crystals passing through the integration window. (c,d) Schematic orientation
relationships (c) between monoclinic and orthorhombic polyethylene resulting from type T11
martensitic transformation and (d) between twinned monoclinic polyethylene crystals.

8.2.3 Condis Phase of Polyethylene

Electron diffraction patterns with strong diffraction to scattering vectors corresponding to a
common hexagonal lattice were observed across ROI2, as shown in Figure 8.9. The measured
lattice parameter, a = 4.85± 0.02 Å is in agreement with the reported hexagonal condis
phase unit cell [394] but the diffracted intensities in this region typically follow the trend
I3300 > I1100 > I2200. In some places, the first and second order reflections were almost
entirely absent whilst the third order reflections were strong (e.g. Figure 8.9c). Often 2110
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reflections were not observed and it was not uncommon to observe I4220 > I2110. Further, the
intensity distribution in individual diffraction patterns is typically less than 6-fold symmetric,
even when the geometry suggests the diffraction pattern is recorded near to zone axis (i.e.
the pattern corresponded to a 2D symmetric lattice). In many regions multiple crystals were
sampled along the beam path leading to split reflections, as may be observed in Figure
8.9c,d. These observations suggest that the atoms are arranged, in projection, across positions
that approximate a unit cell close to, but not exactly, one third the size of the close-packed
hexagonal unit cell. The molecular arrangement breaks the hexagonal symmetry of this
hypothetical lattice leading to the reduced symmetry of the diffracted intensities. This
symmetry breaking is related to the degree of averaging over conformational disorder along
the beam path and would be implicit if the chains were in the all trans conformation. Here,
the local measurement of diffraction data from volumes in which the averaging over disorder
is incomplete makes it possible to reveal local variations in the conformational disorder.

Fig. 8.9 Diffraction from hexagonal condis phase. (a) VADF image with integration
windows from which (b-e) summed diffraction patterns were obtained.

The simplest model that can explain many of the experimental observations treats the
polyethylene chains as cylindrically symmetric in projection and considers their arrangement
on an hexagonal projected lattice, as shown in Figure 8.10. Sites indicated in black in
Figure 8.10 correspond to the hexagonal lattice sites in the reported mesophase structure and
correspond approximately to close packing of the molecular chains. Sites in this projected
model can be closer than this because the chains may be offset at different heights. The sites
indicated in red in Figure 8.10 correspond to interstices between hexagonally close-packed
rods in a single layer and those indicated in blue to the remaining positions that reduce the
projected unit cell to one third of the close-packed unit cell size. These blue sites correspond
to translations of a

3⟨1100⟩ from the close-packed sites. If all of these projected sites were
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occupied equally then the projected unit cell would be reduced to one third of the close-
packed unit cell and 3300 reflections would be the lowest order observed, as shown in Figure
8.10a. Occupancy of any fraction of the projected sites causes lower order reflections to be
observed, as shown in Figure 8.10b-f. If only the red interstitial sites are occupied, as in
Figure 8.10b, then 1100 reflections remain absent whereas if only the blue sites are occupied
I3300 > I1100 as is observed in the experimental data. The intensity distribution depends on
the relative occupancy of the sites and the 6-fold lattice symmetry can be broken, e.g. Figure
8.10d. This simple model can therefore reproduce key features of the experimentally observed
diffraction patterns. The intensity distribution is also affected by small displacements from
the ideal projected sites and by the orientation of asymmetric, i.e. all trans, segments of the
polyethylene chains, which are not included in this simple model, but have a similar effect
on the diffracted intensity distribution to the effects illustrated by this model.

Fig. 8.10 Condis diffraction model. Hexagonal close-packed (black) sites, interstitial (red)
sites between close-packed rods and intermediate (blue) sites at a

3⟨1100⟩ from other sites.
Grey sites are unoccupied. (a-f) Varying the occupancy of sites changes the relative intensity
of first and third order reflections and can break 6-fold symmetry in the diffraction pattern.

Structural insight based on the simple projected site occupancy model requires consid-
eration of how conformationally disordered molecular chains may occupy projected sites.
Interstices between hexagonally close-packed rods in a single layer (red sites) may be occu-
pied by stacking multiple layers of rods in an -ABC- stacking sequence (Figure 8.11b) as in
the RII rotator phase of the n-alkanes [410–412]. An analogous structure in condis polyethy-
lene could involve stacking of chain folded lamellae although it is unclear why such stacking
might arise. Translation by a

3⟨1100⟩ to move between projected sites may be considered
in terms of the -GTG’- kinks that are established from spectroscopic studies [395, 381] to
be the predominant conformational disorder in the condis phase. Such a kink translates the
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chain axis, as shown in Figure 8.11, displacing the projected scattering potential in the plane
perpendicular to the chain axis, as required. The translation due to a -GTG’- kink, with the
conformational angles strictly fixed to the ideal trans or gauche conformations, is larger than
required but there is significant experimental [413] and theoretical [393, 414, 415] evidence
that the conformational angles span a range in practice. It may therefore be reasonable to
suggest that -GTG’- kinks, as well as other gauche bonds spanning a range of conformational
angles in condis polyethylene, on average, produce translations sufficiently close to a

3⟨1100⟩
to explain the redistribution of scattering potential across sites in the simple projected site
model. The intensity of experimentally measured reflections at a given probe position will
thus be related to the local distribution of kinks in the molecular chains.

Fig. 8.11 Conformational disorder and kinks. Sections through (a) hexagonal close-
packed molecular chains, (b) -ABC- interstitially stacked hexagonal close-packed layers, and
(c) repeatedly kinked molecular chains. (d-f) Ideal -GTG’- kink defect illustrating associated
a 0.44a translation perpendicular to the chain axis. Relaxing the conformational angles to
span a range can modify the magnitude of the translation towards 0.3a.

VDF images formed by integrating intensity in a disc of radius 3 pixels positioned around
first order reflections are shown in Figure 8.12. Intensity modulation with a pitch of ∼30-40
nm is observed in all of these VDF images with the modulation approximately perpendicular
to the corresponding diffraction vector and contrast in images associated with Friedel paired
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reflections very similar. This contrast suggests a preponderance of kinks in a direction
perpendicular to the diffraction vector in the region where the stripy contrast is observed
although it is difficult to construct an atomistic model that would account for the intensity
modulation being in the same direction as the kinks. Nevertheless, the fact that different
diffraction vectors produce similar contrast in different regions suggests that there may be
some domain structure to the kink arrangement with particular kinks tending to be localized
together. This suggestion gains support from molecular dynamics simulations [416] that have
shown that the energy of similar kinks located near to one another is reduced as compared to
the separated kinks, which is intuitive given the disruption to the chain positions.

Fig. 8.12 Virtual dark-field imaging of kink ordering in condis polyethylene. Summed
diffraction pattern from hexagonal condis PE with first-order reflections used to form VDF
images (with a 3 pixel radius integration window) i-vi indicated.

VDF images formed by integrating intensity in a disc of radius 3 pixels positioned around
second and third order reflections are shown in Figure 8.13. It might be expected that these
images would reveal similar contrast to those obtained using first order reflections but with
the pitch of the intensity modulated by a factor of 2 or 3 respectively, but this is not the case.
In the VDFs associated with second order reflections similar intensity modulations may be
discerned but the pitch is similar to first order reflections whereas in the VDFs associated
with third order reflections the no such modulation is evident. It seems that the contrast
associated with the stronger third order reflection in particular is dominated by other contrast,
that may be associated with distortions more akin to strain, whereas the first order reflections
are particularly sensitive to kink density.
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Fig. 8.13 Virtual dark-field imaging of condis polyethylene. Summed diffraction pattern
from hexagonal condis PE with second and third order reflections used to form VDF images
(with a 3 pixel radius integration window) i-vi indicated.

8.3 Summary & Conclusions

Hybrid diffraction-imaging, based on 4D-SED, has been demonstrated here as a powerful
probe of polymer nanostructure in application to an melt spun UHMWPE specimen. SED has
been shown to enable high-resolution nanostructural data to be obtained from beam sensitive
polymer specimens, such as polyethylene, in both real space (5 nm) and reciprocal space
(>1 Å−1). To obtain this SED data it was necessary to cool the specimen to liquid nitrogen
temperatures and to acquire the diffraction data from each probe position within a short time
(10 ms). The electron dose imparted during this acquisition (∼ 600 e / Å2) was significantly
higher than reported values for the critical dose in polyethylene and the acquisition did cause
crystallinity to be destroyed in repeated acquisitions. The fact that high-resolution structural
data could nevertheless be obtained suggests that the speed of acquisition may allow the
data to be acquired prior to significant atomic rearrangement. Of course many processes
associated with beam damage will occur much faster than the millisecond time scale but
it is perhaps reasonable that significant molecular motion takes this long [407], especially
at cryogenic temperatures. It is anticipated that the recent development of direct electron
detectors will enable the dose to be reduced significantly5 expanding the scope of future
studies. It was also demonstrated that interpretable contrast could be obtained in various
ways, without staining, by harnessing versatile post-facto analysis of the 4D-SED data. Two
of the primary factors limiting polymer microscopy [383], beam damage and low contrast,
have therefore been overcome using this approach.

5A reduction in dose of two-orders of magnitude with respect to the work presented here has in fact been
recently achieved by the author, in work not presented in this thesis, using one such detector.
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Nanostructural features that have eluded other characterisation techniques have been
revealed in this work and placed in local structural context. A macro-kebab lamella of
orthorhombic PE was studied and found to be structurally twisted, twinned and, where it
meets the shish, transformed. The occurrence of monoclinic PE between the lamella and the
shish may provide new insight into the nucleation process. Further, hexagonal condis PE was
found to adopt an arrangement in which the chains projected along their axis approximate a
unit cell of one third the size of the close-packed unit cell due to conformational disorder
producing kinks that translate chains perpendicular to their axis. The diffracted intensities
are a measure of averaging over conformational disorder and modulation in first order
reflection intensity over space suggests that kinks in the chains may align to some degree in
nanoscale domains within the material. 4D-SED therefore provides an unprecedented level
of nanostructural characterisation in polymer systems. The methods developed are widely
applicable to soft materials in general and provide a platform for a new level of nanostructural
understanding in polymers.



Chapter 9

Summary & Prospects

SED microscopy has been developed in a number of ways and the utility of the the technique
in materials science has been demonstrated by example through the research presented in this
thesis. The overarching achievement of this work has therefore been to establish a framework
for characterising nanostructure based on the acquisition and computational analysis of
SED microscopy data. This work may be separated into four technique oriented strands
where developments have been made and where there are significant prospects for further
development towards solving the nanostructure problem set out in Chapter 1.

9.1 Platform for SED Microscopy

SED microscopy requires both experimental and computational methods combined with
theoretical understanding in order to acquire, analyse and interpret 4D-SED data. These
topics were addressed in Chapters 2, 3 and 4 respectively. Theoretically, SED is typically
performed as a coherent STEM experiment with non-overlapping diffraction orders and often
a nearly parallel illumination condition. The technique therefore provides a route to utilize the
wide range of applications of electron nanodiffraction [417] in a spatially resolved diffraction
microscopy approach. Experimentally, a method for aligning a double-conical-rocking
electron probe for high-resolution scanning precession electron diffraction was established
(Chapter 3) and benefits obtained by using precession in the context of strain mapping
and machine learning were discussed (Chapters 4/5). A number of authors have recently
published on applications using SPED but exploring the full benefits and limitations of using
precession remains an area for more investigation. In particular, a detailed understanding of
the implications of using precession on precision and accuracy is required as is true more
generally for SED based orientation and strain mapping analyses (Chapter 4). Perhaps the
most immediate area for experimental development stems from the use of direct electron
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detectors that may enable quantitative use of diffracted intensities that may be used to map
local order parameters, for example, if appropriate analysis is also developed.

A robust computational framework for crystallographic microscopy was established
through this work in a flexible python code structure named pyxem (Chapter 4). This
framework is intended to be extensible so that more functionality may be readily added to
explore the wider potential of 4D-SED data. Particular areas currently under development
include techniques to reveal structure in non-crystalline materials such as fluctuation electron
microscopy and scanning pair-distribution function analysis. It would also be of significant
benefit to develop the code, which is currently an offline data processing package, in such a
way as to provide on-the-fly analysis during experiments. Unsupervised machine learning
algorithms were demonstrated to learn significant features within 4D-SED data and the nexus
of this idea and the aim of on-the-fly analysis would be true machine learning in which the
experiment is automatically adjusted based on data recorded. Considering the ultimate goal
of solving the nanostructure problem however the development of robust methodologies that
may be applied on a routine basis is essential.

9.2 Three-dimensional SED Microscopy

Three-dimensional nanostructure requires three-dimensional characterisation and a particular
challenge is to reconstruct continuous changes in the atomic structure resulting from strain
and orientation gradients. Steps towards strain tomography based on SED microscopy
were reported in Chapter 5 with a proof-of-principle single strain component reconstruction.
Further progress towards reconstruction of the full strain tensor from data that is feasible to
obtain in the electron microscope requires theoretical and algorithmic developments that are
being actively explored. Aside from strain tomography there are a number of other insights
that could be obtained from three-dimensional SED microscopy. Grain-wise reconstruction
of polycrystalline specimens has been demonstrated using SED data [164, 165] and this
provides a route to characterise interfaces in terms of the contact surface as well as the
orientation relationship between microstructural elements, developing analysis of inter-phase
relationships (e.g. Chapter 6).

9.3 Empirical Bicrystallography

Inter-phase crystallographic relationships may be elucidated using orientation mapping data
obtained by SED or any other diffraction mapping technique, most typically EBSD. In
Chapter 6, analysis of orientation relationships by visualizing orientation mapping data in
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three-dimensional misorientation space was set out. To further rationalize the procedure
developed there an automated method for determining the presence and location of clus-
ters in the data [418] should be developed and this could enable quantitative comparison
between experimental data and the misorientation distribution function for randomly oriented
crystallites. This could be used to provide initial conditions for interface simulations, as
demonstrated for the simple two-dimensional case of graphene (Chapter 7), which would be
further enhanced by three-dimensional characterisation described above.

9.4 Probing Soft Nanostructure

Investigating nanostructure in polyethylene (Chapter 8) demonstrated that SED microscopy
is a versatile hybrid diffraction-imaging technique for probing nanostructure in soft materials.
SED microscopy was shown to overcome traditional challenges associated with electron
microscopy of soft materials, namely sensitivity to electron irradiation and low contrast.
Since comparable local structural measurements have not previously been possible in such
systems this area holds particular promise for providing characterisation useful for materials
science. A wide-range of important materials also fall in to this category, not only polymers
but other organic solids such as pharmaceutical materials.
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