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Abstract

The self-assembly of proteins into protein quaternary structures is of fundamental impor-

tance to many biological processes, and protein misassembly is responsible for a wide

range of proteopathic diseases. In recent years, abstract lattice models of protein self-

assembly have been used to simulate the evolution and assembly of protein quaternary

structure, and to provide a tractable way to study the genotype-phenotype map of such sys-

tems. Here we generalize these models by representing the interfaces as mutable binary

strings. This simple change enables us to model the evolution of interface strengths, inter-

face symmetry, and deterministic assembly pathways. Using the generalized model we are

able to reproduce two important results established for real protein complexes: The first is

that protein assembly pathways are under evolutionary selection to minimize misassembly.

The second is that the assembly pathway of a complex mirrors its evolutionary history, and

that both can be derived from the relative strengths of interfaces. These results demonstrate

that the generalized lattice model offers a powerful new idealized framework to facilitate the

study of protein self-assembly processes and their evolution.

Author summary

Protein complexes assemble by joining individual proteins together through interacting

binding sites. Because of the long time scales of biological evolution, it can be difficult to

reconstruct how these interactions change over time. We use simplified representations of

proteins to simulate the evolution of these complexes on a computer. In some cases the

order in which the complex assembles is crucial. We show that biological evolution

increases the strength of interactions that must occur earlier, and decreases the strength of

later interactions. Similar knowledge of interactions being preferred to be stronger or

weaker can also help to predict the evolutionary ancestry of a complex. While these simu-

lations are too idealized to make exact predictions, this general link between ordered path-

ways in assembly and evolution matches well-established observations that have been

made in real protein complexes. This means that our model provides a powerful frame-

work to help study protein complex assembly and evolution.
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Introduction

Many proteins self-assemble into protein quaternary structures, which fulfill a multitude of

functions across a wide range of biological processes [1]. A general class of polyomino tile self-

assembly models have strong analytic potential while maintaining semblance to protein qua-

tenary structure and retaining qualitative realism.

The polyomino self-assembly model [2] combines lattice tile self-assembly with a quantifi-

cation of biological complexity, examining the relationship between genetic description length

and phenotypic complexity. The same model was developed and expanded with evolutionary

dynamics by Johnston et al. [3], and used to probe general properties of genotype-phenotype

maps by Greenbury et al. [4].

Here we develop a generalization of interactions using binary strings in these polyomino

assembly models, in particular introducing variable binding strengths and relaxing the rejec-

tion of misassembly.

Binding affinity is difficult to assess experimentally but central to making predictions on

assembly [5]. A dominant cause in altering the affinity is mutations to polar or charged groups

[6]. While our binary interface polyomino self-assembly model does not account for the vari-

ety of amino acids and their particular properties, it provides a reasonable coarse-grained

approach. Similar models of protein interactions using binary subunit interfaces have linked

protein-protein interaction properties to experimental observations on protein family evolu-

tion [7, 8].

Adding these features into polyomino models enables preliminary explorations into the

evolution of binding strengths and the implications binding strengths can have on preferred

evolutionary pathways.

Several recent studies have revealed the deep relationship between evolutionary pathways

and assembly properties like stoichiometry [9], symmetry [10], interaction topology [1], and

binding strengths [11]. We aim to reproduce several of these observations in the framework of

our generalized polyomino model in order to highlight its potential as a tool for the study of

protein assembly and its evolution.

Although almost all proteins have geometric complexity beyond this model’s reach, the

topology of interactions, and thus the assembly dynamics, can still be well approximated.

Questions focusing on the general properties of shape evolution, interface strengthening, path-

way preferences, etc. are hence within the model’s remit. Examining situations where the

geometry, not just the topology, of interaction matter is much more limiting. Cooperative

bindings, where one interaction may influence the affinity of another, and multi-site bindings

are not presently in the model, and the model is not relevant to intrinsically disordered pro-

teins or fuzzy complexes [12]. As such, this model is best applied to analyzing “structured” pro-

tein complexes consisting of one or more independent interactions between subunits.

Self-assembly algorithm

Any self-assembling system requires two ingredients: assembly subunits with binding sites,

and a method for determining the strength of an interaction between two such sites. The

arrangement of the sites and their interactions can be described in the form of an assembly
graph [13]. From these simple components, structures can be formed through the following

stochastic assembly process:

• The process starts with a randomly chosen initial subunit.

• The structure grows by placing a randomly chosen subunit with random orientation in a

random adjacent position to the existing structure.

Evolution of interface strengths in model of protein quaternary structure

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006886 June 3, 2019 2 / 15

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006886


• If the interaction interface between adjacent binding sites is sufficiently strong, the placed

subunit binds irreversibly to the existing structure.

• The growth process repeats until no further bindings are possible. At this stage, assembly ter-

minates and the final structure forms a single connected set of one or more subunits.

If the subunits are square tiles on a lattice, connected sets of tiles are called polyominoes

[14].

Genotypes and phenotypes

We can define a genotype that encodes a set of subunit interactions as a sequence, in which

each sequence position represents the type of a particular binding site on a subunit. The assem-

bly process maps a given genotype to a single polyomino (in the case of a deterministic geno-

type) or a statistical distribution of several different polyominoes (for a nondeterministic

genotype). In either case these polyominoes can be thought of as abstract biological

phenotypes.
The assembly process is independent of the order in which the subunits are represented in

the genotype, and translations, rotations, or reflections of a given polyomino are not consid-

ered unique. The implementation of this invariance is outlined in S1 Text.

An example of the mapping from genotype to phenotype is shown in Fig 1, using the inte-

ger binding site conventions of existing polyomino models. Certain binding sites are noninter-

acting (labeled 0) while interactions of equal strength occur between fixed pairs of positive

integers. The interacting pairs are 1$ 2, 3$ 4, etc.

Fig 1. Assembly sequence from genotype to phenotype in the standard polyomino self-assembly model. The full

sequence of generating a phenotype from a genotype for deterministic (left) and nondeterministic (right) assemblies.

The binding sites on the subunits are transcribed from the genotype in a clockwise fashion. The assembly graph

encodes all possible interactions (0s noninteracting, 1s and 2s interact with each other, 3s and 4s interact with each

other, etc.) among the subunits, indicated by solid lines. In the case of nondeterministic genotypes, different

polyominoes may emerge as the outcomes of the stochastic assembly process. Here we perform 10 repeated assemblies,

and define the phenotype of a genotype as the polyomino that appears most often. Other definitions of a phenotype

from the distribution of polyominoes are also possible.

https://doi.org/10.1371/journal.pcbi.1006886.g001
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Nondeterminism

Repeated assemblies of the same genotype do not necessarily produce the same polyomino, a

property referred to as nondeterminism. There are many sources of nondeterminism, ranging

from unbound aggregations of subunits to branching pathways in the course of the assembly

process. A more general insight into nondeterminism in polyomino self-assembly is given by

Tesoro, Ahnert, and Leonard [13].

Deterministic genotypes are significantly outnumbered by nondeterministic ones, and the

addition of interactions typically increases the fraction of nondeterministic genotypes. In a

biological context nondeterministic genotypes can be viewed as less desirable than determin-

istic ones, as the functions of many proteins strongly rely on the accuracy and reproducibility

of their structures. We can therefore use nondeterminism in the polyomino self-assembly

model to represent protein misassembly and thereby study the conditions under which pro-

teins may evolve towards more stable and reliable assemblies.

Generalized model framework

In this paper we generalize the standard polyomino self-assembly model as outlined above by

introducing interfaces that take the form of binary strings rather than integers. This definition

of interfaces gives rise to further definitions of interface strength and symmetry. It also allows

for non-transitive interactions between interfaces.

The assembly process outlined earlier is unchanged, with only the sites and thus how to

determine interactions between them being redefined, as seen in Fig 2.

The number of bits per binding site is given by LI, providing 2LI unique binding site config-

urations. Since the subunits are always encoded in a genotype following a common convention

(e.g. clockwise around a tile), two adjoined sites have a “head to tail” alignment (see Fig 2).

The interaction strength between two sites relates to the Hamming distance dH between

one site and the reversed alignment of the other, normalized by LI. As such, the interaction

strength Ŝ 2 ½0; 1�, and binding can occur if the strength is above some chosen critical strength

Ŝ � Ŝc. The stochastic assembly process as outlined earlier is now extended to include a bind-

ing probability as a function of interaction strengths. Interacting subunits are no longer

guaranteed to bind, but binding that does occur remains irreversible.

Binding probability can be linked to interaction strength via an abstract temperature T 2
[0,1). More complex forms may have more physical justification, but a useful form of bind-

ing probability is

Prbinding ¼ HðŜ � ŜcÞŜT

where H is the Heaviside function, taking H(0) = 1. The average number of attempts an

Fig 2. Generalized binding sites. (a) Explicit subsite interactions (dotted lines) between two binding sites, showing

the “head to tail” alignment. The Hamming distance between the counter-aligned sites is 4, and so the interaction

strength is Ŝ ¼ :5. (b) Taking the critical strength Ŝc ¼ :75, these two subunits encode two interactions in the assembly

graph. The interactions have different strengths (indicated by line thickness), with the upper interaction stronger

(Ŝ ¼ :875) than the lower (Ŝ ¼ :75).

https://doi.org/10.1371/journal.pcbi.1006886.g002
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interaction will take, effectively the binding time, is the reciprocal of the binding probability.

With the choice T> 0, stronger bonds are expected to assemble more quickly than weaker

bonds.

Results

Using this model, even a small number of subunits can give rise to a large array of potential

polyomino structures. We focused our attention on a subset of six assembly graphs that con-

tained both deterministic and nondeterministic phenotypes and transitions, and in which

each of the four more complex assembly graphs are in principle accessible from two other

members of the set via point mutations. The assembly graphs and phenotypes are shown in

Fig 3.

Within the vertical groupings of Fig 3, most phenotypes have comparable abundances, with

the exception of the dimer being twice as common as the homotetramer. The abundances

could be sampled directly from random sequences, or approximated through combinatorial

arguments of permuting edges and noninteracting binding sites. Regardless, our focus centers

on the likelihood of successful phenotype transitions, which is independent of abundance, and

so is not explicitly treated here.

Evolution was modeled with a fixed-size haploid population undergoing discrete genera-

tions of selection and mutation. Reproduction was asexual, and mutations occurred with a

fixed probability to flip each bit in a genotype. Non-negative fitnesses were assigned to every

individual according to their phenotype properties, with more fit members proportionally

more likely to reproduce into the next generation. Nondeterminism was punished by an indi-

vidual only receiving a fraction of its potential fitness equal to the frequency of correct assem-

bly exponentiated by a parameter γ 2 [1,1).

Fig 3. Example system of six assembly graphs. The interactionless initial condition and an example system of six

assembly graphs with associated polyominoes. The assembly graphs (and polyominoes) are grouped into vertical

columns that are ordered by the number of interactions (from left to right: one, two, and three interactions). Three

assemblies are nondeterministic, and are marked with a �. In the nondeterministic cases we only show the most

common polyomino structure, which also corresponds to our formal definition of the phenotype.

https://doi.org/10.1371/journal.pcbi.1006886.g003
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Binding strength dynamics

Accessing information on the evolution of real protein binding strengths over sufficiently long

time scales is effectively impossible. There are potential proxies, like looking at homologous

proteins across an evolutionary tree [15]. Experimental work has suggested a link between

ordered assembly pathways and the constraints they place on evolution [11], but focused on

subunits fusing together rather than individual strengths evolving.

Here we show how the generalized polyomino model can simulate evolutionary selection

for assembly order, such as observed in [11] for real protein complexes. The possibility of non-

determinism in our generalized model, combined with variable binding strengths, give rise to

a space in which evolution can optimize binding strengths in order to maximize the probabil-

ity that critical assembly steps occur in the right order for a desirable phenotype.

Baseline strength prediction. As mutations accumulate over the course of evolution,

interaction binding strengths are unlikely to remain static. Predicting how binding strengths

will evolve over time in a simplistic limit provides a comparative reference when examining

evolution simulations. Several assumptions help reduce the mathematical complexity of the

prediction, including

• no direct fitness advantage for stronger interactions

• falling below the critical strength is fatal

• infinite population

• only single mutations

Since selection can only operate on phenotypes, it is “blind” to the underlying genotypic

details. Hence bonds present in the phenotype can be considered equal, justifying the lack of

direct fitness advantage for interaction strengths. The remaining assumptions are fairly weak

and satisfied by any reasonable choice of simulation parameters. These assumptions and the

mutation-selection dynamics can be framed as a Markov process, giving both transient and

steady-state expectations for the evolving interaction strengths. Details on this Markov process

and calculating its expectations are in S2 Text.

Simulated evolution. Interactions can be categorized on two distinct levels: phenotype

and interaction topology. Selection acts on phenotypes, and so evolutionary dynamics may dif-

fer between phenotypes. Interaction topology can be characterized using two properties: The

first is whether an interaction is inter- or intra-subunit, while the second is if either binding

site in the interaction are involved in other interactions or if they are unique. Classifying inter-

actions in this way allows different dynamics to be isolated, revealing the underlying causes.

Fig 4 displays the evolution of interaction strengths for the six specified assembly graphs.

The three deterministic phenotypes (top left, bottom left, bottom middle) have similar behav-

iour, all approximately following the transient expectations of the Markov process (dotted

black line), regardless of ancestral phenotype or interaction topology. Conversely, the three

nondeterministic phenotypes (top middle, top right, bottom right) diverge from the expecta-

tions of the Markov process, with long-term interaction strengths being driven both above and

below the Markov values. Notably, one interaction in the nondeterministic 16-mer does follow

the Markov prediction, because it does not matter whether this particular assembly step occurs

first or last.

Selective ordering. In all three nondeterministic phenotypes the nondeterminism origi-

nates from the multiple possible orderings of individual assembly steps. Greater determinism

can therefore be achieved by making sure that certain assembly steps occur earlier than others,

by increasing the strength of the corresponding interactions. This is precisely what the

Evolution of interface strengths in model of protein quaternary structure
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evolutionary algorithm achieved through selection, with interactions strengthening or weak-

ening across evolution to optimize determinism.

Such an effect is only observed in cases with steric nondeterminism, where for example the

heterotetramer can be assembled with near 100% determinism if inter-subunit interaction

binds much sooner than the intra-subunit interaction. Similar selective pressure for determin-

ism drives the interaction strengths for the other nondeterministic assemblies.

Universality. The choice of parameters, like nondeterminism punishment γ and “temper-

ature” T, only have qualitative significance. Provided there is some fitness benefit to being

more deterministic (γ> 1) and stronger interactions bind preferentially (T> 0), then the

same patterns of behaviour are observed across a range of parameters. Exact values of the

steady states vary intuitively with the choice of parameters, but the behaviour is near universal

(see S1 Fig for more details).

Evolutionary pathways

In the steady-state limit of the evolutionary simulations, mutation and selection effectively

eliminate any trace of ancestry in the interface strengths. The steady state properties of interac-

tion strengths depend only on the current phenotype. However, shortly after a new shape has

evolved, it is possible to deduce ancestry from interface strengths. In the case of the 12-mer

and the 16-mer, where we have one nondeterministic ancestor and one deterministic one, this

is obvious as the interface strength distributions of the two ancestors differ considerably. As a

result the two alternative ancestries for each of these two polyominoes can be clearly distin-

guished by bond strengths up to about 50 generations.

But even where we have deterministic ancestors, namely for the octomer and the heterote-

tramer, we notice that at the earliest time points the interface that is also present in the ances-

tor is stronger than the interface that is absent in the ancestor. This latter observation mirrors

Fig 4. Binding strength evolutions. Each box corresponds to a different phenotype, with marker styles indicating

interaction topology. Line colours (online) match the box colour of the direct ancestor, with “open” markers (print)

indicating the ancestor is from an upper panel. Because phenotypes can transition at markedly different times (with 4%

of simulations never discovering the rightmost phenotypes), the dynamics were aligned by counting the generations

after that phenotype was discovered. Individual simulations are noisy due to their stochastic nature, but averaging over

10,000 simulations yielded the stable trends shown here. Values for Ŝ within individual simulations typically fluctuated

within ±0.01 of the mean. Mean trends stabilized quickly, so results were truncated after 250 generations. Black dashed

lines in the panels are from the Markov prediction. The � again indicates the three nondeterministic assemblies.

Interface strengths in deterministic assemblies evolve predictably, while nondeterministic assemblies diverge rapidly.

https://doi.org/10.1371/journal.pcbi.1006886.g004
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results found in real protein complexes, where the ordering of interface strengths often reflects

the order of evolution, with the strongest interface as the oldest [10].

Phenotype phase space. Deterministic assemblies, by definition, always produce the same

polyominoes. On the other hand, nondeterministic assemblies can produce polyominoes with

different frequencies due to the inherent stochasticity of the assembly process. In the limit of

infinite repeated assemblies, these polyomino frequencies become deterministic and can be

calculated a priori. The frequencies can be represented in a “phase space” for a set of nondeter-

ministic interaction topologies. The ratio of interaction strengths provide the coordinates for

the phase space.

These phase spaces can be calculated through a decision tree of assembly steps. Each branch

in the decision tree is new binding step during assembly, and is weighted by the strength of

that step’s interaction normalized by all possible step strengths. So the the final result does not

depend on absolute values of interaction strengths, but rather ratios of the competing interac-

tion strengths. The dimensionality of the phase space depends on how many competing inter-

actions there are.

These trees quickly reach unusable levels of complexity due to exponential branching. Heu-

ristics can eliminate many terms in the final expressions, identifying steps which are indistin-

guishable or deterministic. The decision tree calculation for a heterotetramer can be found in

Fig 5.

Simulated pathways. Phenotype transitions in a population are difficult to define pre-

cisely, so two general forms, fixations and failures, are introduced. Fixating transitions are

those contained in any evolution history spanning the duration of the simulation, indicating

they were beneficial transitions. Failures on the other hand, are transitions that quickly go

extinct despite having higher fitness potential. Not all transitions fall within these two groups,

but the remainder are artifacts of finite population size and can be explicitly ignored.

The success rate of transitions does not only depend on the properties of the descendant,

but also depend on immediate ancestry, as shown in Fig 6(a). Transitions to the heterotetra-

mer for example, have exceptionally different success rates coming from the dimer or homote-

tramer, despite their qualitative similarity. The resolution to this apparent discrepancy is

understanding the connection between a transition’s success rate and its location in the

descendant’s phase space. Critically, the average location in this phase space can be predicted

based on the ancestor’s steady state behaviour. The location in phase space in turn provides

the level of nondeterminism and thus estimations on success rate, seen in Fig 6(b) and 6(c).

There are 3 pairs of transitions that are interesting to examine: those to the heterotetramer,

16-mer, and 12-mer. For the heterotetramer, as can be seen from its phase space in Fig 6(b),

Fig 5. Decision tree for heterotetramer. The assembly graph has interaction strengths A and B. Each seed is a starting

point for the decision tree, incrementally progressing until assembly terminates. In this situation, once a gray subunit

is placed, assembly deterministically ends with the heterotetramer, rendering further branching unnecessary. The

lower branchings have an extra weighting factor of two, due to two indistinguishable assembly steps.

https://doi.org/10.1371/journal.pcbi.1006886.g005
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the assembly is most deterministic if the inter-subunit interaction is significantly stronger than

the intra-subunit interaction. The average transition from the dimer is much closer to this con-

straint than the average transition from the homotetramer, and this is reflected in the success

rates (80% compared to 30% respectively).

As noted earlier, one interaction in the 16-mer does not compete in assembly order, and

the 16-mer actually shares the same decision tree as the heterotetramer. Trivially the heterote-

tramer will evolve to its own optimal interface strength ratio, and thus transition in the optimal

location for the 16-mer. This is reflected with its effectively deterministic success rate (95%).

The octomer is effectively the dimer once discounting the non-competing interaction, and

transitions in the same region with similar successes of about 80%.

Fig 6. Phenotype transition success and ancestry. (a) Transitions to deterministic assemblies have high success,

tending to perfect in an infinite population. Conversely, transitions to nondeterministic assemblies (marked with �)

typically have less success. Transition rates between nondeterministic assemblies vary considerably, due to the varying

overlap between the interfaces of an ancestor and the stronger interfaces of the descendant. Interaction strength is

indicated by line thickness. The transition locations in phase space of ancestors are shown for the heterotetramer and

12-mer in (b) and (c) respectively. (b) For transitions from both the dimer and homotetramer, one bond has been

strengthened through evolution (black) and one is new and at the critical interaction strength Ŝc (gray). Compared to

the evolutionary equilibrium of the heterotetramer, the dimer has a much more favorable ratio of strengths than the

homotetramer, as indicated by its closer position in phase space. Likewise in (c), the evolutionary equilibrium of the

octomer has much more similar ratios of interaction strength to the 12-mer than the heterotetramer has. In addition to

the heterotetramer being further down the determinism gradient, it more frequently misassembles the phenotype,

lowering its transition success even further.

https://doi.org/10.1371/journal.pcbi.1006886.g006
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The 12-mer phase space is more complicated, with three competing interactions and three

possible polyominoes, although only the 12-mer and “misassmbled” states are of interest here.

Analogous to before, the octomer transitions higher on the determinism gradient and thus is

more successful than the heterotetramer. However, these assembly graphs can misassemble

more often than they assemble the 12-mer, and thus produce an unfit phenotype. The average

transition for the heterotetramer is fatal, because it occurs in the misassembly region, seen in

Fig 6(c). Stochastic fluctuations can shift the individual transition locations, but such an event

is a “second-order probability”. As such, the heterotetramer to 12-mer is strongly constrained,

and has a meager 3% success rate.

More exact calculations can be done to predict transition success rates from phase space

locations, but these depend explicitly on the nondeterminism parameter γ and how much

more fit each descendant is. However, as before, the behaviour is qualitatively near-universal.

These transitions are taken directly from the simulations displayed before, again with parame-

ters chosen to highlight these dynamics clearly.

Discussion

Ordered assembly

The time ordering of assembly steps in proteins is integral to the correct assembly of the pro-

tein structure. This holds true on many length scales of assembly, with cotranslational protein

folding able to induce misassembly [16] all the way up to final quaternary structure as exam-

ined here. Experimental methods for devising binding strengths are still being developed [17],

with an in silico approach recently introduced focusing on multimeric complexes [18].

One notable result was that given an equal rate of mutation, deterministic and nondeter-

ministic assemblies adapted at different rates. The peak observed rate of binding strength

increase in the 12-mer was approximately triple the rate in deterministic assemblies. Such an

observation is fairly intuitive, as mutations which alter binding strength correctly or incor-

rectly are more strongly selected or purified respectively in the nondeterministic assemblies.

This is in good agreement with the observation that unstable proteins adapt more quickly [19].

Binding strengths that deviate from neutral expectations do so to optimize determinism,

assembling a core of the final structure as quickly as possible before adding further, peripheral

elements. This evolutionary selection for a particular assembly pathway parallels real protein

complexes, in which gene fusions are a way of cementing particular assembly order under evo-

lutionary selection pressure in order to minimize the risk of misassembly [11].

Model implications

Generalizing the binding sites from integers to binary strings provides a range of benefits. The

number of binding site configurations is now fixed by a physically meaningful parameter and

is exponentially large. Previous models frequently had identical binding sites at multiple loca-

tions, which is not observed in real proteins, whereas now repeated binding sites are vanish-

ingly rare. Additionally, interaction rules in the integer model have trivial transitivity relations:

Maintaining the notation of$ for interactions, that is to say for sites A, B, C that

ðA$ BÞ ^ ðB$ CÞ ! ðA ¼ CÞ

However, the generalized model does not require the above relation to be true, with knowl-

edge of one interaction having little bearing on other interactions sharing a binding site. That

it is to say for sites D, E, F, G that

ðD$ EÞ ^ ðE$ FÞ ^ ðF $ GÞ↛ðD ¼ FÞ _ ðD$ GÞ

Evolution of interface strengths in model of protein quaternary structure
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This allows more complex interaction patterns to form, but also allows different binding sites

to produce the same interaction behaviour, as seen in Fig 7. In addition, sites can self-interact,

interact with another binding site, or both, like sites D and E supporting the interactions

D$ E and E$ E.

Usefully, the generalized interactions are a superset of the integer model, and so any previ-

ous results could be trivially recovered by choosing Ŝc ¼ 1 (up to relabeling binding sites).

While the generalized model is still a strikingly abstract representation of biological self-assem-

bly, the binary interfaces add physical realism and layered complexity to an already promising

model.

Extensions

Phenotype plasticity is another feature that is naturally introduced by the generalized model.

By incorporating a dynamic fitness landscape, one that alternatively favors two (or more) phe-

notypes, the interaction strengths can continuously adapt to remain optimal, shown in Fig 8.

The ability to modify a phenotype in a controllable manner, minimizing nondeterminism, is a

huge advantage to survival. If a conformational change of a protein, in response to an environ-

mental change or other external conditions, altered its binding strengths, it could quickly shift

phenotypes.

Since changing interaction strengths can occur much quicker than creating new interac-

tions, this plasticity allows adaptions that would otherwise be potentially too slow to survive.

The relationship between conformational changes and their impact on evolution is uncertain,

but it has been suggested that this behaviour can impose strong constraints on sequence evolu-

tion [20, 21]. Moreover, adding and removing interactions, rather than just reprioritizing

them, exposes the assemblies to intermediate states and greater risk of negative outcomes [22].

Conclusion

Polyomino self-assembly models using integers as binding sites have demonstrated the value

of abstract self-assembly models for the study of self-assembly phenomena and genotype-phe-

notype maps [2–4]. Generalizing the binding interfaces using binary subsites as outlined in

this paper retains tractability while expanding applicability to more complex biological

research questions. In particular, modeling the evolution of interaction strengths provides

qualitative insights beyond the reach of previous polyomino studies.

With a few justifiable assumptions, analytic predictions of the interaction strengths in the

absence of selection pressures can be found, which show strong agreement with simulations.

Significant divergences from this prediction are observed in nondeterministic assemblies

where time-ordering is important, and the interaction strengths are therefore under selection.

This selection pressure drives these interactions to strengthen or weaken, and thus bind earlier

Fig 7. Generalized interactions are not always transitive. In the generalized model, knowledge of one interaction

does not fix the binding sites of another related interaction. Earlier in the nondeterministic case in Fig 1, this assembly

graph had A = 1, B = 2 fixing ? = 1. Here, choosing binding sites A and B still leaves 5 possibilities for ‘?’, taking Sc = .75.

The possibilities marked with † self-interact, and so would technically add an interaction to the assembly graph.

https://doi.org/10.1371/journal.pcbi.1006886.g007
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or later in the assemble, to optimize the determinism. Certain interaction strength orderings

are more suitable for transitioning to descendant phenotypes, and so can be used to statistically

reconstruct evolutionary pathways.

Several observations from experimental studies have been recovered by this model, as well

as suggesting that nondeterminism in the polyomino model provides an interesting frame-

work for the study of protein misassembly. Many further avenues are imaginable that build on

such investigations of nondeterminism, including gene duplication, phenotype plasticity, and

more complex genotype-phenotype mappings.

Methods

A full implementation of the self-assembly algorithms, evolutionary dynamics, and phyloge-

netic analysis written by the authors can be found online through the Data Availability

Statement.

Almost all of the parameters and function forms were chosen such that simulations

remained within reasonable computation timescales and offered evident trends, but were oth-

erwise arbitrary. The same observations were made while examining different binding site

lengths, critical interaction strengths, fitness functions, etc.

Evolution

As outlined earlier, evolution was modeled with asexual reproduction of haploids encoding

two subunits (total of 8 binding sites per genotype). Binding site lengths were LI = 64 and the

Fig 8. Interaction strengths can adapt to changing fitness landscapes. Periodically alternating the fitness landscape

produces cyclic behaviour in interface strengths. Despite starting from a range of initial conditions, all simulations

eventually converge to the optimal path to transition between the 10-mer and 12-mer and back. The change in fitness

landscape is indicated by the red or blue colours, with arrows indicating the direction of flow. Both phenotypes are

produced with the same three interactions; it is only the relative ordering of interaction strength that matters. A

breakdown of each fitness landscape and local gradients can be seen in S2 Fig.

https://doi.org/10.1371/journal.pcbi.1006886.g008
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critical strength was taken as Ŝc ¼ :671875. Genotypes were initialized randomly, with the

constraint that there were no interactions. Assembly could begin with either subunit as the

seed, although monomers were ignored due to their trivial contribution.

A population of 250 individuals evolved for 1000 generations, with each genotype being

assembled 25 times. Each binary subsite had a fixed probability to flip, such that the entire

genotype had mutations that were binomially distributed with mean μ = 1. The temperature

was set to T = 25, while the nondeterminism punishment was γ = 5.

An individuals fitness was calculated as ðFÞNI � �g, where F is the fitness jump between

higher order assembly graphs, NI is the number of interactions in an assembly graph, and ϕ is

the fraction of assemblies that built the correct phenotype. The fitness jump was F = 5 to bal-

ance the strong nondeterminism punishment. So, for example, the fitness for a heterotetramer

correctly assembled 20 times out of 25 would be 52 � .85.

We restricted fitness allocation to the six stated phenotypes in Fig 3, assigning fitness 0 to all

other phenotypes. The majority of transitions between these other phenotypes did not display

any novel dynamics, and so were minimized to present the most concise results. The results

presented here were initially observed in a full system, and this restriction was introduced to

improve significantly improve the simulation fidelity and computation time required.

Phylogenetic tracking. With asexual reproduction, new interactions or new phenotypes

can be traced directly to unique mutation events. The descendants of these individuals can be

tracked for separate evolutionary histories. By recording the assembly graphs, phenotypes, and

reproducing individuals at every generation, the ancestral information can be entirely

reconstructed.

Dynamic landscapes. The bulk of the results were attained with static fitnesses, but Fig 8

had two distinct fitness landscapes alternating periodically. Here, an individuals fitness was

taken as the ℓ1 norm of fitnesses in both the 10-mer and 12-mer landscapes at that generation.

The rate at which the landscapes varied smoothly was only of qualitative importance, provided

that timescale was significantly greater than the mutation timescale.

Supporting information

S1 Fig. Binding strength evolutions are qualitatively universal. For all values of temperature

T> 0 and nondeterminism punishment γ> 1 (in dashed box), where the parameter space

enables stronger bonds to optimize determinism, the same qualitative observations hold as

seen in the top right panel of Fig 4. The equilibrium values of interaction strength do depend

on the selective pressure and temperature, but vary intuitively.

(PDF)

S2 Fig. Interaction strength adaptation follows determinism gradients. After switching the

rewarded phenotype in the fitness landscape, average trajectories closely follow the determin-

ism gradient of the relevant phenotype. Some trajectories switching from the 10-mer to the

12-mer (red) follow local gradients, increasing the C/B ratio first, as opposed to the more

global optimum of lowering the A/C ratio. However, both paths tend to the same steady-state

region of phase space.

(PDF)

S1 Text. Extended details on representing polyominoes as invariant phenotypes.

(PDF)

S2 Text. Extended details on predicting baseline strength evolution with a Markov process.

(PDF)
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