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Abstract

Performance in the model refinement category of the 13th round of Critical Assess-

ment of Structure Prediction (CASP13) is assessed, showing that some groups consis-

tently improve most starting models whereas the majority of participants continue to

degrade the starting model on average. Using the ranking formula developed for

CASP12, it is shown that only 7 of 32 groups perform better than a “naïve predictor”

who just submits the starting model. Common features in their approaches include a

dependence on physics-based force fields to judge alternative conformations and the

use of molecular dynamics to relax models to local minima, usually with some restraints

to prevent excessively large movements. In addition to the traditional CASP metrics

that focus largely on the quality of the overall fold, alternative metrics are evaluated,

including comparisons of the main-chain and side-chain torsion angles, and the utility

of the models for solving crystal structures by the molecular replacement method. It is

proposed that the introduction of these metrics, as well as consideration of the accu-

racy of coordinate error estimates, would improve the discrimination between good

and very good models.
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1 | INTRODUCTION

The refinement category was introduced in CASP8 to assess potential

strategies for further improving the quality of some of the best

models produced by existing structure prediction pipelines. Although

these strategies could in principle be introduced into the pipelines

that they follow on from, having a separate refinement category

allows focus on the endgame when models are already reasonably

accurate. It also allows the exploration of what becomes possible

when significantly greater computing resources can be devoted to a

smaller number of starting models.

Over the years, there have been signs of progress but there have

also been recurring themes in the assessments of this category.1-5 It

has always been true that, considering all submissions in total, more of

the refined models become worse than the starting model rather than

better. This reflects considerations that there are many degrees of free-

dom in the space of incorrect models, so that there are more ways to

degrade a model than to improve it; the search space has many local

minima with a relatively narrow convergence radius around the true

structure; and many groups use this category (as well as other catego-

ries in CASP) as a way to experiment with novel ideas. As early as

CASP8,1 it was recognized that it is much easier to improve the agree-

ment of a model with physics (geometric criteria including torsion

angles and clashes, as measured for instance by MolProbity6) than the

overall fidelity of the fold, and that for distant models the two mea-

sures do not tend to be correlated. Because of problems with the
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dimensionality of the search, relatively conservative strategies that

restrain shifts from at least the better parts of the starting model tend

to be more successful because they avoid serious degradation of the

model; as a result, the refined structures are almost always closer to

the starting model than to the experimental structure.

Nonetheless, there has been real progress in this category. In CASP8,1

only one group (Lee) succeeded in improving the average global distance

test total score (GDT_TS)7 from the starting models, whereas by the time

of CASP12 8 of 39 groups succeeded in improving the more stringent

high-accuracy GDT_HA score.5

2 | MATERIALS AND METHODS

2.1 | Target classification

A total of 31 refinement targets were chosen, with two exceptions,

from among the best server models for evaluation units from the vari-

ous structure prediction categories, comprising the easy and hard ver-

sions of template based modeling (TBM), free modeling (FM) and the

intermediate TBM/FM. The exceptions were the refinement models

for the two subunits of target T0986, that is, R0986s1 and R0986s2;

both of these models were submitted by group A7D and were sub-

stantially better than the best server models. Two targets were subse-

quently canceled because of unexpectedly early publication of the

experimental structures, leaving 29 for evaluation (Table 1). Feedback

from CASP12 suggested that refinement targets larger than about

200 residues were too demanding of computational resources, so tar-

gets were restricted to domains ranging from 59 to 204 residues.

Visual inspection was used to confirm that the starting models were

of reasonable quality in at least some regions of the structure, but also

that there was room for improvement by refinement of aspects such

as sequence register, choices of conformer, or relative orientations of

subdomains or secondary structure elements.

Continuing a trend first seen in CASP12,5 a substantial number of

refinement targets came from modeling targets initially categorized as

TBM/FM (5 targets) or even FM (6 targets), with 13 from TBM-easy

and 5 from TBM-hard (Table 1). Figure 1 shows that there is a correla-

tion between original target category and the quality of the starting

model judged by GDT_HA, but with substantial overlap between cate-

gories. In particular, the best TBM/FM starting model has a higher

GDT_HA than the average TBM-easy starting model. Although there

was an attempt to choose starting models from a variety of servers to

avoid bias in the initial structure prediction methods, ultimately more

than half of starting models derived from just two labs. Seven starting

models each were derived from models submitted by groups

324 (RaptorX-DeepModeller) and 368 (Baker-RosettaServer), while

two more came from other Xu lab groups: one each from groups

221 (RaptorX-TBM) and 498 (RaptorX-Contact) (Table 1).

For each starting model, predictors were given the GDT_HA score as

an indication of difficulty. They were also given some information about

which residues were not visible in the experimental structure and occa-

sionally other hints listed in Table 1, such as the presence of a Cu metal

ion in R0949, which portion of the model deviates most from the

experimental structure (R0981-D5 and R0989-D1) and what was the

oligomeric state of the experimental structure (R0977-D2, R0979, R0981

domains 3-5, R0989-D1, and R0999-D3). In a first, target R0979 was an

oligomeric refinement target, in which an initial trimer model was

provided.

The 29 starting models covered a significant range of difficulty, as

measured for instance by the GDT_HA score. This ranged from 32 to

69 (mean: 53.2, median: 53, SD: 10.2). By comparison, the 42 starting

models for the refinement assessment of CASP12 had a somewhat

wider range of difficulty, with GDT_HA values ranging from 24 to

78 (mean: 49.7, median: 48.7, SD: 15.0).

2.2 | Evaluation measures

Many of the evaluation measures, particularly the utility of models for

use in molecular replacement (MR) calculations, are discussed in another

contribution on the topic of template-based modeling (Croll et al., this

volume). For consistency with the previous round, our primary ranking

score was taken from the CASP12 refinement assessment, where rela-

tive weights of several metrics were determined by a machine-learning

algorithm trained to reproduce manual rankings.5 We also checked

whether the ranking would have been affected by choosing the TBM

ranking score used in CASP129 and in CASP13 (Croll et al., this volume).

Both ranking scores can readily be computed with results and tools on

the Prediction Center website (http://predictioncenter.org).10

The refinement ranking score from CASP12 is given by the following:

SCASP12 = 0:46 zRMS_CA + 0:17 zGDT_HA +0:2 zSG + 0:15 zQCS + 0:02ZMP,

where the z-scores (SD above the mean from all predictions) for each

model are computed according to the usual CASP conventions, as

described in more detail in the TBM assessment (Croll et al., this vol-

ume). RMS_CA is the sequence-dependent Cα root-mean-square devia-

tion between the superposed model and target computed with local-

global alignment (LGA),7 GDT_HA is the high-accuracy version of the

GDT score,7 SG is the SphereGrinder score that measures conservation

of local environment,11 quality control score (QCS) combines measures

of the relative length, position, and orientations of secondary structure

elements with Cα-Cα distances,12 and MP is the MolProbity score

reflecting the stereochemical quality of the model.6

The TBM ranking score from CASP12 is the following:

STBM =
1
3
zGDT_HA +

1
9

zlDDT + zCADaa + zSGð Þ+ 1
3
zASE,

where lDDT is the local distance difference test,13 a measure based

on comparing all-atom distance maps, and contact area difference, all

atoms (CADaa) is a measure comparing residue contact surface

areas.14 The accuracy self-assessment (ASE) measure differs qualita-

tively in measuring not the accuracy of the model but rather the accu-

racy of the modelers' estimates of local coordinate error.10

Presumably because the accuracy of error estimates has not been

evaluated for refinement models in previous rounds of CASP some

predictors did not provide them, even though they are defined as
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TABLE 1 Source of refinement targets and information given to predictors

Target
Residues
included Nres

Initial
category Start model

Start
GDT_HA Additional information for predictors

R0949 43-95, 106-181 129 TBM/FM TS221_1 49 Residues 1-42, 96-105, and 182-183 are not ordered in the

crystal structure and deleted from the starting model. The

structure contains a bound Cu ion

R0957s2 7-164 158 FM TS498_1 39 Residues 1-6 are absent from the target structure and deleted

from the starting model

R0959 1-189 189 TBM-hard TS368_1 45

R0962 2-178 177 TBM-easy TS246_1 63 Residues 1 and 179-220 are absent from the target and deleted

from the starting model

R0968s1 6-123 118 FM TS368_1 45 Residues 1-5 and 124-126 are absent from the target structure

and deleted from the starting model

R0968s2 1-116 116 FM TS368_3 50

R0974s1 2-70 69 TBM-easy TS488_1 66 Residues 1 and 71-72 are absent from the target structure and

deleted from the starting model

R0976-D1 9-128 120 TBM-easy TS337_1 69 This refinement target corresponds to domain 1 (residues

9–128) of T0976

R0976-D2 129-252 124 TBM-easy TS337_1 65 This refinement target corresponds to domain 2 (residues

129–252) of T0976

R0977-D2 360-563 204 TBM-easy TS402_3 68 This refinement target corresponds to domain 2 (residues

360–563) of T0977. Remember that the original target is a

homotrimer. The interface in the starting model is modeled

reasonably accurate

R0979 6-97 92 TBM-hard TS470_1o 55 This is the first oligomeric refinement target in CASP. Being a

trimer, it is somewhat longer than other refinement targets in

CASP13: 276 residues total. GDT_HA of the starting model's

monomeric unit is 55 (on 92 residues; residues 1–5 and

98 are absent from the experimental structure). LDDT score

of the oligomeric starting model is 0.81; the interchain

contact accuracy score F1 = 43%. All rules pertaining to

submission of regular homooligomeric targets apply here

R0981-D3 191-393 203 TBM/FM TS261_1 32 This refinement target corresponds to domain 3 (residues

191–393) of T0981. Remember that the original target is a

homotrimer. The interface in the starting model is modeled

reasonably accurate

R0981-D4 403-513 111 TBM-hard TS368_1 45 This refinement target corresponds to domain 4 (residues

403-513) of T0981. Remember that the original target is a

homotrimer. The interface in the starting model is modeled

reasonably accurate

R0981-D5 514-640 127 TBM-hard TS116_1 42 This refinement target corresponds to domain 5 (residues

514-640) of T0981. Remember that the original target is a

homotrimer. Residues 605-623 are a part of a homotrimer

interface and modeling of this segment can be improved the

most

R0982-D2 146-277 132 TBM-hard TS324_1 50 This refinement target corresponds to domain 2 (residues

146-277) of T0982

R0986s1 5-92 88 TBM/FM TS043_4 59 Residues 1–4 are absent from the target structure and deleted

from the starting model

R0986s2 1-155 155 FM TS043_4 49

R0989-D1 1-134 134 FM TS432_2 34 This refinement target corresponds to domain 1 (residues

1-134) of T0989. Remember that the original target is a

homotrimer. There is a lot of room for improvement,

especially in the N-terminus

R0992 4-110 107 TBM/FM TS368_1 65 Residues 1–3, 111-126 are absent from the target and deleted

from the starting model

(Continues)
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parameters that should be included in any submitted model. To assess

the impact of the ASE measure within the TBM ranking score, we also

ranked models by a modified score that did not include it.

STBM0 =
1
2
zGDT_HA +

1
6

zlDDT + zCADaa + zSGð Þ:

In assessing the high-accuracy TBM category in CASP7, we intro-

duced a MR score15 measuring the utility of models for solving X-ray

crystal structures by MR16 using our program Phaser,17 which uses

likelihood-based methods to determine the rotation and translation that

places a model in the correct position in the unit cell to provide an initial

atomic model for an unknown-related molecule. The score produced by

comparing the model to the experimental diffraction data, referred to as

the log-likelihood gain (LLG), can be used to assess the quality of differ-

ent possible alternative models. For TBM evaluation, we computed a z-

score based on the LLG values found for each target for which there

were experimental diffraction data. Utility for MR was tested in the

evaluation of the refinement category in CASP8 through CASP10,1-3

though it has not been used subsequently. In CASP8 and CASP9, the

translation function z-score was used instead of the LLG; this is the z-

score (number of SD above the mean) measuring the strength of the

biggest peak in a translation search with an oriented model. In CASP10,

as well as in this work, a script developed by Gábor Bunkóczi was used

to carry out rigid-body refinement of a model superimposed on the

experimental structure, in order to yield an LLG score without carrying

out the full six-dimensional MR search for each of the models. We are

happy to provide this script, and guidance on complications that can

arise in running it, on request. Further details are given in connection

with the TBM assessment (Croll et al., this volume), where we also

discuss plans to replace the LLG calculations with an approach that will

evaluate the same model features without requiring experimental dif-

fraction data, making it more robust and easier to use.

3 | RESULTS

3.1 | Group rankings

A total of 32 groups participated in the refinement category. In the

group rankings, we compared their results with those that would have

been achieved by a “naïve predictor,” defined as a group that simply

resubmits the starting model. Figure 2 shows that, on average, predic-

tors are still degrading the quality of the starting model by the ranking

TABLE 1 (Continued)

Target
Residues
included Nres

Initial
category Start model

Start
GDT_HA Additional information for predictors

R0993s2 12-109 98 TBM-easy TS246_1 51 This refinement target corresponds to second subunit of H0993

complex. The His-tag was not observed in density, so that the

chain should start with residue 12

R0996-D4 351-483 133 TBM-easy TS324_1 53 This refinement target corresponds to domain 4 (residues

351–483) of T0996

R0996-D5 484-604 121 TBM-easy TS324_1 56 This refinement target corresponds to domain 5 (residues

484–604) of T0996

R0996-D7 709-848 140 TBM-easy TS324_1 55 This refinement target corresponds to domain 7 (residues

709–848) of T0996

R0997 44-228 185 TBM/FM TS324_1 42 Residues 1-43 are deleted from the starting model

R0999-D3 866-1045 180 TBM-easy TS324_1 54 This refinement target corresponds to domain 3 (residues

866–1045) of T0999. The original target is a homodimer

R1001 2-140 139 FM TS368_1 53 Residue 1 is absent from the target and deleted from the

starting model

R1002-D2 60-118 59 TBM-easy TS023_1 66 This refinement target corresponds to domain 2 (residues

60–118) of T1002

R1004-D2 152-228 77 TBM-easy TS324_1 60 This refinement target corresponds to domain 2 (residues

152–228) of T1004

R1016 1-203 203 TBM-easy TS368_1 63 This refinement target corresponds to T1016

Abbreviation: Nres, number of residues.

30

40

50

60

70

TBM-easy TBM-hard FM/TBM FM

G
D
T
_H

A

F IGURE 1 Box plot, prepared with BoxPlotR,8 showing the
distribution of GDT_HA values seen in starting models for refinement
derived from different initial modeling categories
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score, as the majority of groups (25 of 32) score below the naïve pre-

dictor overall while 24 of 32 degrade more models than they improve.

A number of the seven groups that ranked above the naïve predic-

tor also did well in CASP12. The Baker group (as Baker and also as

Baker-Autorefine) were in first and third positions, having been in

third position for CASP12. Feiglab, ranked second, was ranked sixth in

CASP12. The Seok group (as Seok-server and also as Seok) were

ranked fourth and fifth, having ranked second (Seok) and fourth

(Seok-server) in CASP12. Jones-UCL and MUFold_server, groups that

did not appear in the top 10 ranking from CASP12, were in positions

6 and 7, respectively. Notably, two server groups were among the top

seven: Seok-server at position 4 and MUFold_server at position 6.

For a more direct comparison with the TBM assessment, it is useful

to see how the refinement groups would fare when judged by the STBM

score as well. Figure 3 presents the groups in this order, showing in

addition the STBM0 score (from which the ASE metric is omitted) and

the SCASP12 score. The ordering is changed significantly, although the

same groups occupy the top five places (with Feiglab moving up to first

place and the Baker groups down the ranking). A comparison with the

STBM0 scores shows that this difference in ranking arises primarily from

the inclusion of the ASE metric, with the top five groups appearing in

the same order as for SCASP12. The overall correlation between SCASP12

and STBM0 is very high (.974), whereas the correlation between SCASP12

and STBM is somewhat lower (.944). However, it must be noted that

this difference arises primarily because some groups did not actually

provide coordinate error estimates in this category and therefore score

below average for the ASE component of STBM. Inspection of submit-

ted coordinates shows that Baker, Baker-Autorefine, and Zhang-

Refinement provided constant error estimates of zero or one.

MUFold_server, on the other hand, provided numbers on a scale of

tens to hundreds; these numbers were carried over from a step in the

pipeline that used MODELLER18 (Junlin Wang, personal communica-

tion), which uses the B-factor column to store violations of the target

function (https://salilab.org/modeller/9.21/manual/node256.html). It

F IGURE 2 Performance of refinement groups according to default ranking score, SCASP12. A. Sum of positive z-scores for all “model 1”
submissions. The red bar indicates the score that would be achieved by a “naïve predictor” resubmitting each starting model. B. Fraction of times the
submitted model 1 was better than the starting model for each group. It is notable that the two leading groups by this metric are automated servers
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seems reasonable to believe that some groups did not provide error

estimates because they have not been used traditionally to assess the

refinement category.

The dependence of the detailed ranking order on the choice of

ranking target suggests that there is little to separate the performance

of the top few groups by these criteria.

3.2 | Assessment of progress

The assessment of progress in the refinement category is particularly

difficult because refinement is a rapidly moving target. The servers

generating the starting models themselves are continually improving

their methods, effectively leaving refinement with fewer ways to

improve a given model and just as many ways to degrade it. The

improvement in server prediction methods can come, at least in prin-

ciple, from lessons learned in earlier rounds of the refinement cate-

gory. Furthermore, each CASP round attracts a different cohort of

new groups and novel methods, not all of which will be successful.

Finally, with each round the set of targets is of course completely dif-

ferent, inevitably introducing a large amount of noise in this measure.

One class of measure typically used to assess progress is the frac-

tion of all submitted refinement models that improve on the GDT_HA

and Cα RMSD metrics.1-3,5 Histograms of the overall change in these

metrics are shown in Figure 4A,B, suggesting that the progress has

stalled or even reversed. However, any measure that looks at all sub-

mitted models will be particularly sensitive to which new groups

F IGURE 3 Alternative ranking
ordered by the sum of STBM, showing
also the scores for STBM’ (omitting the
ASE contribution to the TBM ranking
score) and SCASP12

F IGURE 4 A,B. The fraction of
models improved by refinement
according to (A) GDT_HA or
(B) RMS_CA is comparable to results
in the last two CASP rounds. Each
panel shows the histogram of
differences from the starting model
for all submitted refinement models.
C-E. Violin plots indicate that the top
three human groups in CASP13
(Baker, Feig, and Seok) have achieved
quite consistent improvements in
GDT_HA over the last four CASP

rounds, with the exception of Baker
in CASP10. For the Baker and Feig
groups the median improvement was
higher in CASP13 than in the
previous three rounds
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choose to participate. In addition, it seems reasonable to consider that

improved initial modeling algorithms will leave more subtle errors in

the starting models, so that just continuing to improve them could be

viewed as progress in itself. Looking at the top three human groups

(Figure 4C-E), we indeed see that performance according to GDT_HA

has held steady or slightly increased over the last few CASP rounds.

Progress can also be assessed by looking at the performance of the

top-ranked groups as judged by the SCASP12 score. From Figure 2B, we

see that 8 of 32 groups have succeeded in improving the majority of

starting models. Three groups (Baker-Autorefine, Seok-server, and

Feiglab) are able to yield better models for more than 70% of refinement

targets.

3.3 | Improvement over starting and TBM models

The improvement that can be achieved through refinement can also be

evaluated by comparing scores for the best model 1 submission with

those from the starting model. This is illustrated for the GDT_TS score

in Figure 5, which shows that every starting model has been improved.

This improvement in scores from the starting model could be taken as

an indication that the more computer-intensive algorithms used in the

refinement category truly yield better models than the algorithms used

in the TBM and FM categories. Given that almost all starting models

have been produced by servers, it is also possible that the involvement

of human predictors is the key factor in improvement. This can be

assessed by comparing the best initial model 1 from any predictor with

the starting and best refined models, also shown in Figure 5. For most

cases, the best refined model is better than the best initial TBM or FM

model, indicating that the refinement algorithms are indeed capable of

going further. However, there are a few exceptions, where a TBM or

FM group could have performed best simply by submitting their model

unchanged into the refinement category.

F IGURE 5 Scatter plot comparing
GDT_TS scores for the best models
submitted in the refinement category
(TR) and in the initial models (TS) with
the starting models for refinement.
Orange points on the diagonal line
represent cases where the starting
model for refinement was the best
initial model overall for that target.
The single orange point below the
diagonal line arises from refinement
target R0986s1, where the starting
model was model 4 from group A7D

F IGURE 6 Improvements to distance-based metrics have
surprisingly low correlation with improvements to local conformation.
The best results (significantly improving most models in both Cartesian
and torsion space) came from the conformational search-based
methods of the Baker lab. Interestingly, the molecular dynamics-based
methods of the Feig lab led to improvements in the CASP12 rankings
comparable to those of the Baker lab, while making no appreciable
improvement in torsion space. The methods of the Seok lab combining
knowledge-based rebuilding with restrained molecular dynamics led to
intermediate improvements by both metrics

READ ET AL. 1255



3.4 | Geometric model quality

In this CASP round, alongside the standard distance-based metrics,

we explored the use of scoring in torsion space, that is, how well

the local conformation of each model matches its equivalent in the

target. In keeping with our observations of the TBM results, plotting

SCASP12 against Storsion (a weighted combination of backbone and

sidechain torsion deviations as described in Croll et al., in this vol-

ume) revealed that the two measures are only poorly correlated

(Figure 6). This is not surprising for models that reproduce the fold

poorly, in which case the structural context required to choose the

correct conformer is lacking. It was more surprising to see that the

restrained molecular dynamics methods of the Feig lab led to sub-

stantial improvements in SCASP12 (enough to place them second

overall by this measure)—yet, their aggregate score according to

Storsion was essentially identical to that of the naïve predictor (possi-

ble explanations for this observation are discussed below). On the

other hand, the Baker-Autorefine method that includes more

aggressive conformational searching led to substantial improvements

in both metrics.23 The Seok and Seok-server groups (which com-

bined molecular dynamics approaches similar to Feig with local

rebuilding) yielded a somewhat more modest improvement. Overall

rankings according to this metric are shown in Figure 7.

Changes made to the starting models and their differences from

the targets for the top five groups (by SCASP12) are explored in more

detail in Figure 8. We performed separate analyses for “good” regions

where the starting model essentially agreed with the target (defined

as residues with average backbone torsion angle differences <30�)

and the remainder where conformation differed substantially. Impor-

tantly, all five groups made only small changes to the backbone con-

formation in the “good” regions, suggesting that recognition and

preservation of correct folds are quite robust. Changes to backbone

conformation in the remaining residues were much higher, and all five

groups did in fact improve overall agreement with the target by this

metric. All five groups made significant changes (and improvements)

to sidechain conformations. The Feig group was much more

F IGURE 7 Performance of refinement groups by torsion-based metrics. While the DC_refine, Bhattacharya, YASARA, and Bhattacharya-Server
groups do not improve the model correlation to the target in Cartesian space, each shows clear evidence of improvement in local torsional geometry
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conservative in restraining Cα positions compared to the other

groups. This was the only group that consistently improved the

RMS_CA compared to the naïve predictor but, in agreement with the

results from the Storsion ranking, there was less improvement overall in

side-chain torsions than from the other top five groups.

3.5 | Notable successes

Two of the more impressive successes (and one less successful case

study) we saw in this round are pictured in Figure 9. In each of these

cases, the majority of the domain was correctly folded in the starting

model (allowing for some flexibility in loops and tail regions), with a

single helix shifted 5-10 Å from its true position and partially

unfolded. In the case of R0974s1, the final models from Baker and

Feiglab were essentially correct in core structure (including correctly

modeled rotamers), differing only from the target model in the dispo-

sition of loops. On the other hand, Baker-Autorefine made some

improvement over the starting model but did not quite reach the tar-

get conformation. For R0981-D4 the Baker and Baker-Autorefine

results were essentially indistinguishable from each other and very

close to the target conformation, whereas the Feiglab result fell short

(albeit closer to the target than the remaining groups). It appears likely

that in this case the scale of movement in the helix triggered the

Feiglab's secondary protocol for “unstable” models, using weak har-

monic restraints to bias the Cα atoms to their starting positions. Inter-

estingly, for the seemingly quite similar case of R0997 neither group

was able to substantially improve upon the starting model, and the

Baker group in fact significantly degraded it by refolding the first two

helices into incorrect configurations.

3.6 | Common causes of failure

Figure 10 is an example of perhaps the most common cause of signifi-

cant failures in refinement (where all teams made the model worse):

refinement targets that lack the necessary structural context. As is

perhaps inevitable given the trend in experimental structural biology

toward tackling larger and larger complexes, very few of the refine-

ment targets this year exist in nature as isolated single domains. Many

in fact form symmetric homomultimers; others are involved in specific

protein:protein interactions; still others (such as this example) form

part of a larger multidomain protein. In such cases, it is common for

some portion of the target to simply not make sense in isolation: an

extended strand or hairpin which is only stabilized by interactions

with an adjacent domain; large, solvent-exposed hydrophobic patches;

or (as here) a tryptophan and tyrosine apparently fully solvent

exposed on an unstructured loop. The challenge in interpreting this is

F IGURE 8 Detailed comparison of the top five groups by torsion and Cartesian metrics. Group names are abbreviated as follows: B-A, Baker-
Autorefine; B, Baker; F, Feiglab; S, Seok; S-S, Seok-Server; NP, Naïve predictor. For each plot, dark blue bars are for residues where the mean

backbone torsion angle error in the starting model was less than 30�, while red bars are for the remaining residues. A-C. Average change from the
starting model for (A) backbone torsions, (B) sidechain torsions, or (C) Cα positions. D-F. Average residual error compared to the target for
(D) backbone torsions, (E) sidechain torsions, or (F) Cα positions. Dashed lines indicate the thresholds for improvement over the naïve predictor.
RMS_CA values were calculated after alignment of all Cα atoms in the models
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further compounded by the fact that in the starting model the imme-

diately preceding β-strand is out of register by two residues (the

remainder of the model is essentially correct). Baker-Autorefine cor-

rectly identified that this strand required rebuilding, in the course of

which the sequence register was changed—but in what would nor-

mally be a quite sensible move it incorrectly opted to bury the “sol-

vent-exposed” Tyr63 and Trp65. This led to a one-residue shift rather

than two-residue shift in the offending β-strand, while the introduc-

tion of two bulky sidechains into the hydrophobic core significantly

disrupted the packing of the domain, resulting in an arguably worse

model than those from other groups that did not change the sequence

register in this region.

3.7 | MR model quality

Diffraction data were available for 11 of the 31 refinement targets.

LLG scores were computed using Phaser19 both with and without

error weighting, as discussed above. To put the results from differ-

ent targets on the same scale, z-scores were computed, carrying out

the calculation separately for LLG values obtained with and without

F IGURE 9 Comparison of Baker and Feig group results for three interesting cases. A-C. Refinement target R0974s1 was a globular domain of
five α-helices, the first four of which were correct in the starting model. A. Starting model (gray) compared to target. The C-terminal helix is tilted
and shifted from its true position, with Ile62 packed into the core in place of Phe66. Equivalent Cβ atoms are connected by dashed yellow lines.
The remainder of the target is shown in surface representation. B. The Baker (tan) and Feiglab (white) models matched the target essentially
perfectly. C. The Baker-Autorefine result improved upon the starting model, but did not quite reach the target conformation. D-F. Refinement
target R0981-D4 was a particularly notable success for the Baker group. D. While the starting model (white) closely matched the main β-sheet in
the target, the helix spanning residues 434 (Cα shown in blue) to 441 (Cα in red) was shifted about 7.5 Å from its true position. E. The Baker
method shifted this helix to within 2 Å of its true position, and correctly predicted the conformations of the entering and exiting turns. F. The
next best result (from the Feig group) brought the helix to within 5 Å of the target, but added a spurious extra turn to the N-terminus. The first
17 residues of this domain were not correctly predicted by any group, and are not shown. G-I. The N-terminus of R0997, in contrast, highlights a
potential pitfall of the use of fragment-based sampling methods in refinement. G. In the starting model the first helix was essentially correctly
folded, but turned almost 45� from its true configuration. Additionally, the somewhat large loops flanking the second helix were poorly modeled.
H. the Baker group unfolded the N-terminal helix, added two spurious extra turns to the N-terminus of the second helix, and partially unwrapped
the C-terminal turn of the second helix in order to fold the following loop into a helix—a significant degradation of the model quality. On the
other hand, the more conservative Feig method kept the secondary structure elements correctly folded and slightly improved the disposition of
the N-terminal helix and flanking loop geometry. Cα atoms equivalent to those constituting the N-terminus and C-terminus of the first two
helices in the target are shown, colored in blue, cyan, pink, and red in order of residue number
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error weighting. Computing the z-scores separately for each target

helps to correct for differences among the targets in quality of dif-

fraction data, the number of copies of a target in the asymmetric

unit of the crystal, and the presence of unmodeled components, as

discussed in more detail in the paper on TBM assessment (Croll

et al., this volume). Groups were ranked, as shown in Figure 11, by

mean z-score. There is considerable overlap between the top groups

by this ranking and SCASP12, with Baker, Feiglab, Baker-Autorefine,

and Seok-server all appearing in the top five of both lists. However,

the group AWSEM, which is in position 17 by SCASP12, appears in

third place by the MR ranking, but only when the LLG score com-

puted by using error weighting is considered. This is a very striking

example of how much value can be added to the MR calculation

when good estimates of coordinate error can be provided. Feiglab

moves into first place when error weighting is considered but Baker,

which failed to provide error estimates, drops from first to third in

the ranking.

In every case, at least one model gives an improved LLG score

compared to the starting model (Figure 12). Figure 13 shows that the

top groups improve on the starting model in most, but not all, cases.

F IGURE 10 Many refinement failures arise from a lack of context. Like many targets, R1002-D2 was a single domain excised from a larger
multidomain protein. Here the target and models are shown in ribbon/stick format (with foreground loop 84-90 hidden for clarity), while the
remainder of the experimental model is shown in surface representation. A. In the experimental model (green) Trp65 and Tyr63 are buried in the
interface with an adjoining domain, but shorn of this context appear to be entirely solvent-exposed. In the starting model for refinement (white)
the N-terminal β-strand spanning residues 59-63 was shifted by two residues N-terminal to its true position. B. The result from Baker-Autorefine
suggests that they correctly identified the presence of a register error here—but attempted to correct it by (sensibly, given the information
available) burying these two bulky residues in the hydrophobic core, shifting the register by a single position rather than the needed two

F IGURE 11 MR LLG z-scores for top groups, sorted by the
maximum z-score obtained either with error-weighted or unweighted
models. Note that, although the LLG values will be unchanged when
groups provide constant coordinate error estimates, the z-scores
become lower because of improved performance from other groups

F IGURE 12 Scatter plot comparing the increase in LLG obtained
by adding the starting model to a background comprising the rest of

the crystal structure with that obtained using the best refined model
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4 | DISCUSSION

Broadly speaking, the most successful refinement groups by both the

traditional and proposed new measures (ie, the Baker and Seok

groups, which achieved significant improvements in both gross and

local conformational match to the target) combined physics-based

force fields with some level of directed conformational search, relying

on MD primarily to “relax” selected conformations to their local min-

ima over short timeframes. On the other hand, the more MD heavy

methods of the Feiglab, while achieving significant improvements

according to the primary SCASP12 target, yielded little to no improve-

ment in local torsional geometry. At first sight, this result seems sur-

prising, and it is worth exploring possible explanations.

The beginning and end of the Feig protocol involves the use of

LocPREFMD20 to regularize model geometry. In brief, this involves

the following key steps: (a) add missing atoms; (b) rebuild nonproline

cis peptide bonds to trans; (c) rebuild badly clashing ring sidechains

into nonclashing conformations; (d) minimize with gradually increas-

ing Cα position restraints; (e) rebuild rotamer outliers; (f ) equilibrate

at gradually increasing temperatures; (g) minimize selected snap-

shots from equilibrium ensemble; and (h) choose final model based

on MolProbity score and Cα RMSD to original model. While these

steps (in particular, the active rebuilding of problematic sidechains

and cis peptide bonds) in general appear sensible, a potentially seri-

ous problem arises from the use of artificially strengthened CMAP

potentials in the MD force field. CMAP potentials are designed to

adjust the potential energy of the peptide backbone as a function of

φ and ψ to more closely recapitulate observed conformations (ie,

the distribution of residues on the Ramachandran plot).21 Strength-

ening these terms has the effect of pushing residues in marginal or

disallowed conformations toward the nearest “favored” region of

Ramachandran space. As has been learned in the field of experimen-

tal model building, such “Ramachandran restraints” are often coun-

terproductive.22 The problem in essence is that in any physically

realistic force field, the nearest favored conformation to a stable

outlier is rarely the correct conformation. The more common sce-

nario is that the offending residue's backbone is sterically trapped in

a conformation where one or both of its flanking peptide bonds is

flipped close to 180� from its true low-energy state. In such situa-

tions, the net effect of Ramachandran restraints is to push the con-

formation “uphill” into a high-energy state which, while achieving a

lower MolProbity score, is not necessarily any more correct than

the original. Because of the connected nature of the polypeptide

backbone, this further tends to push errors into the neighboring res-

idues. A possibly more successful strategy might be to use the

appearance of Ramachandran outliers in the same manner as

rotamer outliers: as cues indicating the likely need for more aggres-

sive local rebuilding.

The question of how to handle refinement of single domains

culled from their context in larger complexes is a challenging one with

no easy answers. Even if not critical to the stability of the domain's

fold per se, interdomain contacts often stabilize specific conforma-

tions of otherwise-flexible loops and/or involve bulky/hydrophobic

residues (eg, Figure 10). Removing the context causes such residues

to appear solvent exposed, leading to large conformational changes in

MD simulations and confusing conformational search algorithms. Pro-

viding the true (experimental) context is not a satisfying solution—not

only is this unrealistic in terms of most real-world uses, but this would

also allow most targets to yield only a single domain for refinement.

One possible solution would be to provide the entire server model as

starting coordinates, with instructions specifying which portion is to

be focused on for refinement.

5 | CONCLUSIONS

Progress in the model refinement task is difficult to measure: it inevitably

becomes more difficult from one round of CASP to the next, as the

F IGURE 13 Scatter plot comparing
the increase in LLG obtained by adding
the starting model to a background
comprising the rest of the crystal
structure with that obtained using the
best refined model from each of the three
top-ranked groups
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predictors providing the starting models become increasingly sophisti-

cated and leave only more subtle errors that are more difficult to

address. By one of the measures that had shown improvements in past

rounds of CASP (the fraction of all submitted models that improve on

the starting model), progress in the general refinement community might

appear to have stalled or even reversed. We feel that this conclusion

would be too pessimistic: the fact that some of the refinement groups

are still consistently able to improve on the best of the models provided

in the initial predictions shows that the best refinement methods are

matching the more easily measured improvements in the initial modeling

methods.

For consistency, we used the score developed for CASP12 as our

primary ranking score. However, we believe that in the future this

should incorporate metrics that make greater demands, including

agreement with main-chain and side-chain torsion angles. Even

though the TBM and FM predictors are now largely providing coordi-

nate error estimates, it seems that many participants in the refinement

category fail to do so because this has not typically been used in

assessment. Because good error estimates are, in fact, an essential

part of a useful model, we find it unfortunate that they have been

neglected traditionally in this category and strongly believe that they

should be required here as well. It might also be interesting to evalu-

ate, along with the refined model, some annotation of which parts of

the model the predictor believes have been improved.

By convention, the starting models for refinement come with hints

about the target. Some of these (such as the oligomeric state of the

molecule or the presence of a ligand or bound metal ion) are facts that

would frequently be known in a real-life modeling scenario. On the

other hand, one would be unlikely to know the GDT_HA score of an

intermediate model, yet this can be (and is) used to decide between

more and less conservative approaches. The starting model is almost

always the best server model provided in the initial modeling round. In

principle, the knowledge of which server models were not chosen could

be exploited, though it is difficult to know if it is. Perhaps a more ran-

dom choice from among the better server models should be used.

Finally, the nature of available targets in this round of CASP reflected

the move in structural biology toward larger assemblies, assisted in part

by recent dramatic improvements in the capabilities of cryo-EM. A num-

ber of the targets were, in fact, components from very large assemblies

determined by cryo-EM. As a result, many of the evaluation units for

TBM and refinement targets chosen from them are small components

divorced from their structural context. In a number of cases, knowledge

of the context would be essential to making an accurate prediction. Some

consideration should be given to how refinement targets can be chosen

and presented to provide a better indication of their context.
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