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Magnetocaloric effect (MCE) has drawn much attention because its magnetic cooling property
enables refrigeration without producing noxious gas or using rapidly depleting resources. However,
applications for everyday life are yet distant. In addition, we need to understand more about the
practical aspect of the MCE. Here, we introduce a phenomenological model to explain the quasi-
adiabatic MCE. Correction factors to the equilibrium thermodynamic feature implied by the entropy
landscape are devised in analytic forms. To demonstrate the validity of the model, the MCE from
two different materials is investigated. The recently discovered metallic paramagnet, YbPt2Sn,
shows a linear and reversible MCE which is typical of a paramagnetic system and suitable for
cryogenics without 3He. On the other hand, a complex-phase material, Ce0.5La0.5B6, exhibits a
pronounced irreversible MCE especially across a magnetic phase boundary. A term that describes
the field induced heating near a phase transition turns out to be essential in resolving the irreversible,
non-equilibrium MCE.

I. INTRONDUCTION

Ever since it was first reported by Piccard and Weiss
about hundred years ago, the magnetocaloric effect
(MCE) has been defined as an adiabatic change of ma-
terial’s temperature in response to an external magnetic
field [1, 2]. Debye and Giauque independently proposed
a concept of refrigeration inspired by the property that
the adiabatic temperature of paramagnetic insulators de-
creases with external magnetic field [3–6]. In this way,
the MCE is best known as the working principle of an
adiabatic demagnetization refrigerator (ADR) [7–12]. Al-
though an ideal magnetocaloric material (MCM) for cryo-
genic refrigeration is a robust metallic paramagnet with a
large volumetric entropy capacity [12], the very low base
temperatures of insulating paramagnets have been so ad-
vantageous when building an ADR that it overwhelms
the shortcomings of an insulator. So far, the low thermal
conductivity of an insulating MCM was supplemented
by making a very tight contact between the MCM, the
highly conducting metal parts and the protection canis-
ter [8, 9, 11, 13].

In accordance with surging demands for environmen-
tally friendly devices, the research field searching for
new MCMs has been greatly expanded from the early
2000’s [14]. Until recently, many materials have been
mentioned as candidates to build a demagnetization re-
frigerator at various temperature ranges [14–17].

For the fundamental research, the MCE is often scruti-
nized to determine a magnetic phase transition and phase
diagram [18–22]. When we conduct an experiment, how-
ever, it is not feasible to create perfectly adiabatic con-
ditions. Hence, researchers have mostly relied on heat
capacity and magnetization measurements to estimate
the MCE in the framework of equilibrium thermodynam-
ics. In contrast, results from a direct field-sweep in a
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quasi-adiabatic environment reveal richer traits. For ex-
ample, for a certain complex-phase material in which
many different magnetic order parameters are compet-
ing, non-equilibrium features arising from quasi-particle
scatterings on the brink of a phase transition are pro-
nounced [22]. Therefore, caution has to be paid in be-
lieving that equilibrium thermodynamic characteristics
regarding the MCE can always be approximated even if
a perfectly adiabatic field-sweep is possible.

In this paper, a practical model for the non-equilibrium
MCE is introduced. The equation is developed by adding
quasi-adiabatic, non-equilibrium and irreversible correc-
tions to the equilibrium equation for the MCE. By using
this model, two different MCMs are investigated. One
is YbPt2Sn, which is recently discovered metallic param-
agnet suitable for building an ADR of 0.2 K base tem-
perature [12]. The material shows a linear and reversible
MCE, and additional non-equilibrium correction terms
were not necessary. The other material is Ce1−xLaxB6,
whose quantum mechanical state consists of at most five
different multipolar phases depending on x, temperature
T , and external magnetic field B [22]. The MCE ob-
served in Ce0.5La0.5B6 by a quasi-adiabatic field-sweep is
analyzed in detail because its phase diagram is relatively
simple. In this system, non-equilibrium effects are su-
perposed with an equilibrium, reversible MCE observed
from an entropy landscape.

II. THEORY

A phenomenological model for the quasi-adiabatic

MCE

The magnetocaloric effect is usually defined as an adi-
abatic variation of material temperature with external
magnetic field. In a perfectly adiabatic condition, we do
not expect a change of an entropy S over the T -B plane,
and the following relation between infinitesimal variables
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should be satisfied in the framework of equilibrium ther-
modynamics,
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dS =0 (for an adiabatic process). (1)

By using Maxwell’s relation between S and M (mag-
netization), (∂S/∂B)T = (∂M/∂T )B, and the gen-
eral thermodynamic relation for heat capacity, CB =
(∂Q/∂T )B = T (∂S/∂T )B, Eq. (1) can be reconstructed
to give a rate of change of T with B in an adiabatic (or
isentropic) condition,
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. (2)

Since a material will be inspected under constant pres-
sure, CB is expressed as Cp(T, B). Eq. (2) is a textbook
expression to describe the MCE [19]. As a representative
example, let us solve the problem of an ideal paramagnet
with total angular momentum J [23]. In this case,

Cp(T, B) = kBx2 ∂

∂x
BJ(x) (3)

and

(
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)

B

= −
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B
x2 ∂

∂x
BJ (x), (4)

where kB is the Boltzmann constant, x is equal to
gµBB/kBT , and BJ(x) is the Brillouin function. Sub-
stitution of Eqs. (3) and (4) into Eq. (2) leads us to the
differential equation which can be solved by the separa-
tion of variables,
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Bf,

(5)

with subscripts i and f indicating initial and final val-
ues for the integration range. Now, we have arrived
at the famous result that the demagnetization cooling
curve of an ideal paramagnet is a straight line crashing
to absolute zero over the T -B plane. However, the ideal

solution violates the 3rd law of thermodynamics which
states that a system should have the same entropy as
the temperature approaches to absolute zero even if an
external variable such as B is changed in the adiabatic
state. In a practical paramagnet, ordering of spins occurs
when small exchange interactions dominate thermal en-
ergy at very low temperatures. The similar ordering fea-
ture is often described by presuming a remnant magnetic
field, Brem, remaining inside the non-interacting spin sys-
tem at Bf = 0. In this context, Tf is approximated as
Tf = (Ti/Bi) (Bf + Brem).

As such, solving Eq. (2) might be the best way to pre-
dict the MCE if analytic expressions for Cp(T, B) and
M(T, B) were known. However, there are not many ex-
actly solvable quantum statistical models [24]. Also, cel-
ebrated mathematical techniques (see Eq. (5)) cannot be
applied to all problems, e.g. it is not a general statement
that the variables in the right-hand side (r.h.s.) of Eq. (2)
are always separable. In addition, numerical evaluation
of the r.h.s. of Eq. (2) is not always efficient. First of all,
the procedure is time consuming because we need very
fine measurements for both Cp and M . Then, we need to
estimate ∂M/∂T divided by Cp. It means high sensitivity
of the result to a priori truncation error corresponding to
derivatives and divisions even before integrating Eq. (2).
Thus, a judicious approach might be needed in order to
evaluate the r.h.s. of Eq. (2).

On the other hand, once Cp(T, B) is measured in good
resolution, the entropy, S(T, B) =

∫

(Cp/T )dT , can be
calculated. An isentropic contour extracted from the 2D
function, S(T, B), is simply Tad(B), the adiabatic tem-
perature of a specimen as a function of B. Besides, the di-
rect observation of quasi-adiabatic temperature T ±

qad(B)
reveals richer properties of a magnetic material which
cannot be predicted from the equilibrium thermodynam-
ics: ‘+’(‘−’)-sign in the superscript of a function or a
variable indicates that B is increasing (decreasing). Let
T ±

fit be a theoretical estimation for T ±

qad. It is presumed

that correction factors to T ±

ad, such as dissipation by non-
equilibrium effects originating from irreversible motions
of magnetic domains and from quasi-particle scattering
upon phase transitions, are added up for T ±

fit(B) [22]. The

non-equilibrium, irreversible correction to T ±

ad is denoted
by T ±

neq. A correction factor due to thermal conduction
between the specimen and the thermal reservoir (i. e.
the mixing chamber of a dilution fridge) at a tempera-
ture Tmix should also be considered. Formally, an eddy
current perturbation, Teddy, to T ±

ad is added even if it
is negligible in many systems, unless a pulsed magnet is
used. Finally, the equation for T ±

fit(B) is written as

T ±

fit(B)

dB
=

dT ±

ad

dB
∓

1

|r| Cp(T, B)

∫ T ±

fit

Tmix

dT K(T, B) ±
dT ±

neq

dB
±

dTeddy

dB
, (6)

where K is a thermal conduction coefficient between the
sample and the reservoir, and r is the field sweep-rate. In
Eq. (6), plus-minus signs are in the same order.

The ansatzes for dT ±

ad/dB and dT ±

qad/dB are as follows,

dT ±

ad

dB
=a±sech2{w±

1 (B − B±

c )}

+ b±[tanh{w±

2 (B − B±

c )} + c],

(7)
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dT ±
neq

dB
=

2
∑

l=1

h±

l sech2{δ±

l (B − B±

l )}, (8)

where a±, b±, c±, w±

1 , and w±

2 are adjustable parame-
ters to mimic T ±

ad(B) as read from S(T, B). When inte-
grated over B, the first term of Eq. (7) depicts a step-
wise change of T ±

ad in the vicinity of a critical field, B±
c ,

whose sharpness is controlled by w±

1 . The second term
has been devised to approximate the equilibrium ansatz
in a wider range decribing a rather smooth MCE. The hy-
perbolic functions in Eq. (8) are borrowed to depict non-
equilibrium temperature variations around B±

l , which
are presumed to originate from magnetic domain mo-
tions and/or quasi-particle scatterings at a phase bound-
ary [22]. In this phenomenological model, the magnitude
of heating is controlled by h±

l , and the degree of focus-

ing of the heat is tuned by δ±

l . It has to be emphasized
that Eqs. (7) and (8) are ansatzes i. e. trial functions.
Compared with our previous model [22], Eq. (6) is noth-
ing but a rather sophisticated expression with different
nomenclature and formal inclusion of the eddy current
effect. Eq. (6) is a starting equation to understand prac-
tical magnetocaloric phenomena which can be written by
anyone who agrees to add corrections to Eq. (2).

In Section IV, two examples will be dealt with using
the model developed in this section. For instance, in-
stead of applying Eq. (5), we exhibit solutions to Eq. (6)
by setting a± = 0 and w±

2 = 0 in Eq. (7). Also, h±

l

is set to zero in Eq. (8) because we do not expect non-
equilibrium phenomena related to magnetic domains or
distinct phase boundaries down to very low temperature
in a paramagnet. By doing so, we reduce Eq. (6) to
dT ±

ad(B)/dB = b±c. Then, T ±

ad(B) = b±c(B + Brem),
where b±c × Brem becomes the y-intersection in Fig. 2
below.

Meanwhile, the irreversible MCE observed in
Ce0.5La0.5B6 will be analyzed with nonzero dT ±

neq/dB.
The shape of an isentropic path is rather simple in this
material compared to those found from Ce1−xLaxB6

with different x [22]. For practical calculations, T ±

ad(B)
was found by fitting it to an isentropic contour extracted
from S(T, B). This means that we know a±, b±, c±, w±

1 ,
and w±

2 from the least-square fitting. Once the first term
in Eq. (6), T ±

ad(B), is approximated, the second and the
third terms are added. Then, Eq. (6) was iteratively
integrated by using the 4th-order Runge-Kutta method
with different set of parameters {h±

l , δ±

l , B±

l } until the
final least-square solution was found.

III. MATERIALS AND METHODS

A. Material Preparation

1. YbPt2Sn

To synthesize YbPt2Sn in the form of cylindrical ingot,
both an arc-melting furnace and an RF induction fur-
nace were used. The melting temperature of Yb is about
1100 K, that of Pt is about 2000 K, and that of Sn is

about 500 K. Because of largely different melting points
of constituent elements, a button-shaped YbSn precur-
sor was first synthesized inside the arc-furnace which was
filled with high purity Ar gas. The button and Pt chunks
were put together inside the arc-furnace and forced to re-
act near the melting point of Pt. Through the two-step
reaction process, a few percent loss of Yb was observed
because the boiling temperature of Yb is around 1470 K
while the melting point of Pt is about 2000 K. The Yb
loss was therefore compensated by adding about 10 %
more Yb compared to the stoichiometric amount from
the beginning. For the shaping, the as-grown and rather
irregularly formed bulk YbPt2Sn was placed in an RF
induction furnace and cast into an ingot pillar.

The powder X-ray diffraction pattern was analyzed,
and we have confirmed that the space group of crystalline
YbPt2Sn was P 63/mmc, with lattices parameters a =
4.4862 Å and c = 8.8881 Å. Say, YbPt2Sn crystallizes
with a hexagonal ZrPt2Al type structure. The crystal
structure is reproduced in Fig. 1(a) [25]. Small pieces of
YbPt2Sn were used to investigate electric, magnetic, and
thermodynamic properties. About 95 % of the as-grown
sample was YbPt2Sn, while small islands of Yb2Pt48Sn40

were observed as a result of the energy-dispersive X-ray
analysis (EDXA). More details about the material growth
can be found in reference [26].

2. La substituted CeB6

La substituted CeB6, Ce0.5La0.5B6, was prepared by
using the floating-zone technique [27]. First, the powder
precursor was synthesized by using chemical reactions,
CeO2+8B→CeB6+2BO and La2O3+15B→2LaB6+3BO,
around 1900 K. The powder form of Ce1−xLaxB6 was
pelletized into a 60 mm long cylinder of 8 mm in diameter.
A customized crucible-free inductive floating zone furnace
was used to grow a single crystal after the pellet was
sintered at 2000 K. An optical spectral analysis revealed
that the impurity concentration was below 10−3 mass
%. For the measurement of thermodynamic properties,
moderate size of pieces of single crystals were cut from
the large specimen explained above, which was prepared
for a magnetic neutron scattering experiment.

Single crystals with various La content were charac-
terized by analyzing X-ray and neutron diffraction pat-
terns, and it has been verified that the structure of
Ce1−xLaxB6 belongs to the cubic P m3m space group.
Equivalently, the material crystalizes into the CsCl type
cubic structure. The lattice parameter a, determined by
X-ray or neutron diffraction experiment on Ce0.5La0.5B6,
was about 4.1466 Å. More precisely, it is known that
a = 4.13899 Å for CeB6 and a = 4.15553 Å for LaB6

at 300 K [28–30]. The detailed structure is shown in
Fig. 1(b) [25]. A rare-earth element is surrounded by
eight boron-octahedra.

Although the lattice looks simple, its spin and orbital
structure encoded in the multipolar, pseudospin state is
notoriously complicated [22, 31–35]. Especially, the mag-
netic field dependent anisotropy of multipolar phases is
pronounced, and an alignment of a crystallographic axis
towards a certain direction of magnetic field is impor-
tant. In our work, X-ray Laue backscattering patterns
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FIG. 1. (color) (a) Crystal structure of YbPt2Sn is shown. A conventional unit cell for P 63/mmc space group is denoted by
red lines. Lattice parameters are a = 4.4862 Å and c = 8.8881 Å. Gold-colored spheres mark positions of Sn, spheres with
light-gray color mark Pt atoms, dark-gray spheres mark Yb atoms. Nearest Pt-Sn pairs are indicated by thin black lines. These
pairs consist of Pt-Sn atomic layers spaced by planes of Yb atoms. (b) Crystal structure of La-substituted CeB6 is presented.
A conventional unit cell corresponding to the P m3m cubic structure is drawn by red lines at the center of the figure. The
lattice parameter is a ≈ 4.147 Å. A rare-earth atom is surrounded by boron octahedra placed at the corners of the unit cell.
Crystallographic ĉ-axes in both figures are coincident with the paper normal.

were used to determine crystallographic orientations.

B. Measurements

1. Specific heat capacity and entropy

The heat capacity of YbPt2Sn and Ce0.5La0.5B6 was
measured by using the compensated heat pulse method
in a 3He/4He dilution fridge [12, 22, 36]. For YbPt2Sn, Cp

was investigated in a temperature range from 0.05 to 4 K,
and the external magnetic field was applied up to 7 T.
The heat capacity of Ce0.5La0.5B6 was measured over the
same temperature range with the external magnetic field
up to 4 T. In the figures below, the specific heat capacity
is not shown for the sake of simple data representation.
Instead, the entropy S(T, B) =

∫

(Cp/T )dT , will be dis-
cussed intensively in conjunction with the MCE.

2. Magnetocaloric effect

A custom adiabatic demagnetization refrigerator
(ADR) was built to examine metallic YbPt2Sn as a solid
state cooling agent. The ADR stage was attached below
the 1 K pot of the normal 4He-cryostat. An experimental
stage made out of brass, where we can mount a specimen,
was separated from the 1 K pot (the thermal reservoir)
by a pair of insulating straws. Below the experimental
stage, 10 g of YbPt2Sn ingot was attached through a pair
of long brass rods of 1 mm diameter. A push-pull me-
chanical heat switch was installed whose tip was anchored

to the reservoir. Once the switch was closed, the tip
touched the experimental stage and thermal equilibrium
was achieved between the thermal reservoir, 30 g of brass
structure, and 10 g of YbPt2Sn. Temperatures were esti-
mated by converting the resistances of a RuO2 thick film
into a temperature. The location of the YbPt2Sn pillar
was designed to be at the center of the superconducting
magnet equipped in the liquid 4He Dewar.

At the beginning of the operation, external field was
applied with the heat switch closed to suppress the en-
tropy isothermally. A quasi-adiabatic state was made by
opening the heat switch. Then, the temperature varia-
tion of the YbPt2Sn ingot was monitored as the external
field was removed or applied.

The same apparatus for the compensated heat pulse
method was used to observe the MCE in Ce0.5La0.5B6.
An L-shaped sample platform made out of low-impurity
silver was supported by thin nylon threads at the center of
a silver ring of 3 cm diameter. Because we did not install
a heat switch, it took about 6 hours to thermally equili-
brate the sample and the mixing chamber. Although the
quality of the insulation was not as good as the degree
of the insulation realized in the home-made ADR, it was
good enough to investigate essential features of the MCE
by applying the model developed in Section II.
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IV. RESULTS AND DISCUSSION

A. Reversible MCE: Adiabatic demagnetization

cooling with a novel metallic paramagnet YbPt2Sn

The temperature dependent Cp was investigated for
0.05 K < T < 4 K at different values of B ranging from
0 to 7 T with a 0.5 T interval. For each value of B,
Cp(T ) was measured at roughly two hundred different
temperatures. The nuclear contribution to Cp was sub-
tracted because the MCE is dominated by the 4f elec-
tron wave functions. The eight-fold degenerate energy
levels of free-Yb3+ ions, with total angular momentum
quantum number J = 7/2, split into four Kramers dou-
blets under the influence of the hexagonal crystal electric
field (CEF): refer to Fig. 1(a). With a group-theoretical

consideration [37], it is summarized as, D( 7

2 ) ↓ D6h →
Γ7 ⊕ 2Γ8 ⊕ Γ9. Wave functions corresponding to Γ7 rep-
resentation are

∣

∣± 1
2

〉

, wave functions corresponding to Γ8

representation are α
∣

∣± 7
2

〉

+β
∣

∣∓ 5
2

〉

and β
∣

∣± 7
2

〉

−α
∣

∣∓ 5
2

〉

.
Physical properties such as neutron spectra or magneti-
zation at higher temperatures are additionally needed to
determine α and β. Wave functions

∣

∣± 3
2

〉

are the basis
of the Γ9 representation. The saturated magnetization at
low temperatures was well explained by the Γ7 doublet.
In consequence,

∣

∣± 1
2

〉

is the ground state wave function,
and YbPt2Sn can be regarded as a metallic paramagnet
below approximately 4 K [12].

Fig. 2 presents a colored contour plot of 4f electronic
entropy S4f (T, B) of YbPt2Sn. As discussed in Section II,
only Cp(T, B) was enough to calculate Tad(B)±. Instead
of using the analytic result (Eq. (5)) and its realistic mod-
ification, which assigns a finite temperature at Bf = 0,
Eq. (6) has been solved and experimental results were
fitted to prove the validity of our practical approach.

To conduct an experiment, the normal operating proce-
dure of an ADR was followed. First, we suppress entropy
by applying B = 4 T at T = 1.75 K. Second, we opened
the heat switch to thermally isolate YbPt2Sn. Lastly,
we increased B with r = −0.1 T/min. The data were
captured each second. In the figure, 80 out of 2400 data
points are overlapped on the countour plot (white left-
triangles). After 3 hours, T −

qad(0) increased from 0.23 K
to 0.26 K. From this coordinate in the B-T plane, B
is increased to 2 T with r = 0.05 T/min. The result is
marked by with right-triangles in Fig. 2. In this sweep-up
procedure, 40 out of 4800 data points are shown.

For the model calculation, T ±

ad(B) was numerically esti-
mated from S4f (T, B). Relevant parameters of materials
which connect the reservoir and the ingot were collected
to evaluate K(T, B). The non-equilibrium, irreversible
feature was absent in this paramagnetic system. Subse-
quent magnetic cooling after 1 hour of intermission at
(B, T )=(2 T, 1.26 K) exhibited an almost reversible
T ±

qad(B) [12]. The power dissipation by the eddy current
was discarded from the calculations as it is perturbatively
small (see Appendix). The red solid line behind the white
left-triangles designates T −

fit(B) and well explains the ex-
perimental data. Similarly, the black solid line behind
the white right-triangle designates T +

fit(B) with two times
slower sweep-rate than that of the cooling process.

Obviously, isentropic paths are straight lines imply-

0 2 4 6

1

2

3

 T -qad

 T -fit
 T +qad

 T +fit

B (T)
T 

(K
)

0 1 2 3 4 5
S4f (J/Kmol)

YbPt2Sn

r =
 -0.1 T/min

r =
 +0.0

5 T
/m

in

FIG. 2. (color) The background color plot shows the 4f
electronic entropy of YbPt2Sn. Although it is not shown,
S4f (4 K, 0) ≈ Rln2 which implies the ground state is a dou-
blet as explained in the text. Also note that the scale bar is
stretched up to Rln2. White left-triangles present T −

qad with

r = −0.1 T/min (see the red arrow). The final temperature,
T −

qad(0) was 0.23 K. The red solid line behind the left-triangles

is drawn based on the solution to Eq. (6), T −

fit(B), with the ini-
tial condition (Bi, Ti)=(4 T, 1.75 K). Similarly, white right-
triangles designate T +

qad(B) with r = +0.05 T/min after 3
hours of the first sweep down. Behind the experimental data,
T +

fit(B) which is the solution to Eq. (6) with the initial con-
dition (Bi, Ti) =(0, 0.26 K) is shown by the black solid line.
The same raw data for specific heat capacity in Ref. [12] were
used to create the color-coded plot, while experimental points
for the MCE are original in this article.

ing that this material is a good candidate for a solid
state magnetic cooling material below 4 K. Besides, there
are two more important implications. First, ever since
the discovery of paramagnetic salts and garnets, supple-
menting the low thermal conductivity of these materi-
als in combination with highly conducting metal struc-
tures has been the most difficult task in building an
ADR [8, 9, 11, 13]. The metallic YbPt2Sn is the MCM
which can be installed in an ADR without concerning ma-
terial issues inherent to insulating paramagnet. Second,
the base temperature of our home-made ADR is below
300 mK. This fact strongly suggests that one can build
an alternative to the widespread 3He-cryostat which will
be very rare in the near future because of a serious supply
cutback of 3He [47, 48].

It seemed hard to defy the tendency that magnetic or-
dering temperature, Tm, increases with material density,
d. The black arrow stretching from the group of PM salts
to the group of rare-earth (RE) intermetallic compounds
in Fig. 3 represents such a trend. Since the lowest reach-
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FIG. 3. (color) Magnetic transition temperatures, Tm, of vari-
ous magnetocaloric materials are arranged with their physical
density, d. CPA is the abbreviation for chromium potassium
alum, CrK(SO4)2 · 12(H2O) [6, 13]. FAA is the abbreviation
for ferric ammonium alum, FeNH4(SO4)2 · 12(H2O) [13, 38].
Inside the area bounded by the green dashed line, rep-
resentative PM garnets, gadolinium gallium garnet (GGG,
Gd3Ga5O12) [7, 13, 39] and dysprosium gallium garnet (DGG,
Dy3Ga5O12) [10, 13, 16, 40] are positioned. Inside the area
bounded by the red dashed line are RE intermetallic com-
pounds such as HoAl2 [41], DyAl2 [42], (DyHo)Al2 [43],
GdN [44], ErCo2 [15, 43], DyNi2 [45], and DyN [44]. The
arrow with the black solid line designates a rough historical
direction for the development of MCMs. It reveals a ten-
dency of increasing Tm with d. To note, there are many more
RE intermetallics outside the graph [43, 46]. In contrast to
this seemingly reasonable observation, we note the location of
YbPt2Sn (black ×-mark) largely deviates from the historical
tendency.

able temperature is roughly equal to Tm, it was difficult
to find a metallic MCM with Tm < 0.3 K along the ar-
row. In this sense, YbPt2Sn (×-mark in Fig. 3) is the
first metallic paramagnet suitable for cryogenic cooling
from liquid 4He temperature down to 0.2 K. On the other
hand, the primary reason why the location of YbPt2Sn
largely departs from the historical path is still unknown.
We hope to find a group of materials around the ×-mark
so that we can conduct a comparative study.

Although we have discussed many things implied by
the discovery of YbPt2Sn, it must be reminded that this
material is a metal which shows an almost linear and
reversible MCE [12].

B. Irreversible MCE: Field dependent heating in a

complex-phase material Ce0.5La0.5B6

There are six-fold degenerate wave-functions for a bare
Ce3+ ion with total angular moment quantum number
J = 5/2, and these are split by the cubic CEF pertur-

0 1 2 3 4
0

1

2

B (T)
T 

(K
)

Rln2

Ce0.5La0.5B6

0.1 T/min
phase I

phase IV

phase II

1 2 3 4 5 6 7

S (J/Kmol)

B || [110]

FIG. 4. (color) Black lines indicate T ±

qad(B) from Ce0.5La0.5B6

(|r| = 0.1 T/min). The white dashed line denotes the IV→II
phase boundary and the black hatched area stands for the
broad transition between phase I and phase IV. A contour
at the value Rln2 is denoted by the black dashed line. For
the lowest lying T ±

qad(B), Tmix was 0.2 K. For T ±

qad(B) in

the middle, Tmix was 0.4 K. For T ±

qad(B) at the top, Tmix

was 0.8 K. Approximately below 0.05 K, measurement of the
specific heat capacity was not reliable, and the background
contour plot below 0.08 K is absent. The same specific heat
capacity data in Ref. [22] were used to create the color-coded
plot. On the other hand, phase boundaries are original in this
article.

bation which is apparent from Fig. 1(b). In terms of

group theory, the degeneracy is lifted as D( 5

2 ) ↓ Oh →
Γ7 ⊕ Γ8. Early Raman and neutron scattering experi-
ments confirmed that the Γ8 quartet lies ∆E = 46 meV
(∆E/kB = 534 K) below the Γ7 doublet [49]. There-
fore, low temperature physical properties are manifested
by pseudospin states spanned by the Γ8-quartet. A group
of wave functions for Γ8 representations consists of

∣

∣± 1
2

〉

and
√

5
6

∣

∣± 5
2

〉

+
√

1
6

∣

∣∓ 3
2

〉

Kramers doublets.

There exist dipolar, quadrupolar, and octupolar phases
in Ce1−xLaxB6 depending on x, T , and B. It is cus-
tomary to name the paramagnetic phase as phase I, the
antiferro-quadrupolar (AFQ) phase as phase II [50–52],
and the antiferromagnetic (AFM) phase as phase III [53–
55]. Phase IV is allegedly an antiferro-octupolar (AFO)
phase [56–60]. Phase diagrams are also strongly depen-
dent on the orientation of B relative to the crystal axes
and it is known that the most diverse phases appear when
B ‖ [110]. Precise but complicated phase diagrams of
Ce1−xLaxB6 were obtained by combined analysis of mag-
netic neutron scattering experiments, specific heat capac-
ity, and quasi-adiabatic MCE for B ‖ [110] [22]. In this
article, Ce0.5La0.5B6 is analyzed with additional data and



7

0.1

0.2

0 1 2 3 4
0.0

0.5

T 
(K

)
  T  +qad 
  T  + ad

  T  +fit, Q +neq = 0
  T  +fit, Q +neq = 0.48 mJ
  T  -qad 
  T  - ad 
  T  -qad, Q -neq = 0
  T  -qad, Q -neq = 0.49 mJ
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r = 0.1 T/minphase IV
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(a)
dQ

 ± ne
q /

 d
B

 (m
J/

T)

B (T)

 Qup

 Qdown

Q +neq = 0.48 mJ
Q -neq = 0.49 mJ

(b)

FIG. 5. (color) (a) Quasi-adiabatic, non-equilibrium MCE
from Ce0.5La0.5B6 with Tmix = 0.02 K is analyzed in de-
tail. Black right-triangles show T +

qad(B). T +
ad(B) is ap-

proximated by black dash-dotted line. Black dashed line
denotes a solution to Eq. (6), T +

fit(B), without the cor-
rection term, dT +

neq/dB. Black solid line is the final so-
lution to Eq. (6) with all the non-equilibrium correction
terms. Similarly, red left-triangles show T −

qad(B). Red dash-

dotted line is T −

ad(B). The red dashed line is T −

fit with-
out non-equilibrium corrections. Red solid line represents
the final solution to Eq. (6) with all the correction terms.
Since Cp(T, B) was unavailable roughly below 0.05 K, it
was presumed Cp(T, B) = Cp(0.08 K, 0) below 0.08 K.
(b) Irreversible heating curves which were adjusted to fit
T ±

qad(B) are presented. Sets of parameters {a+ = 0, b+ =

0.032 K/T, c+ = 1.1, w+
2 = 3.75 T−1, h+

1 = 0.146 K/T, h+
2 =

0.087 K/T, δ+
1 = 0.92 T−1, δ+

2 = 2.125 T−1, B+
1 =

2.975 T, B+
2 = 0.57 T, B+

c = 1.75 T} and {a− = 0, b− =
0.0012 K/T, c− = 1, w−

2 = 10 T−1, h−

1 = 0.2012 K/T, h−

2 =
0.068 K/T, δ−

1 = 8.75 T−1, δ−

2 = 1 T−1, B−

1 = 1.72 T, B−

2 =
0.45 T, B−

c = B+
c = 1.75 T} were used.

with much more detail compared to our previous work.
The equilibrium thermodynamic characteristics of

Ce0.5La0.5B6 are well implied by the color-coded con-
tour plot in Fig. 4. Inside phase II, T +

ad(B) increases
because AFM order is induced and the pseudospin state
of phase II is stabilized. On the other hand, phase IV
is almost insensitive to B. These features are properly
captured in the analytic function by adjusting parame-
ters in Eq. (7). The eddy current heating was negligible
(refer to Appendix). The thermal conduction coefficient
K ≈

(

1.2 × 10−7
)

T 1.2 W/K was found below 4 K and

the field dependence of K was negligible up to 4 T.
In Fig. 4, T ±

qad(B) form loops which are indicative of
heat conduction between the specimen and the mixing
chamber at the temperature Tmix. Despite this, we could
see that T +

qad(B) follows T +
ad(B) in a narrow range near

the phase transition. The inflection points were taken as
transition points from phase IV to phase II. The phase
boundary (white dashed line) was interpolated based
on similar inflection points found by conducting more
magnetocaloric sweeps and based on transition tempera-
tures determined by entropy-balancing near specific heat
anomalies [22]. The IV→II transition looks like a disorder
to order transition as T +

qad(B) increases across the tran-
sition. On the contrary, the lowest curve in Fig. 4 shows
a distinct II→IV transition accompanied by a step-like
increase in T −

qad, implying that phase IV is more ordered
than phase II. These are incompatible interpretations re-
garding the question of which phase is more ordered.

All the correction terms except the eddy current term
in Eq. (6) need to be considered to settle the contradic-
tion. Fig. 5(a) exhibits T ±

qad(B) (symbols) with a magni-

fied temperature scale. Dash-dotted lines present T +
ad(B),

which is extracted from S(T, B). Non-equilibrium cor-
rection terms are visualized in Fig. 5(b), dT ±

neq/dB(B) =
1

Cp(T,B) dQ±
neq/dB. With optimized sets of parameters,

T ±

qad is nicely approximated by T ±

fit as described by the
black and red solid lines.

It is generally true that moving AFM domains with
different orientations experience friction at the interfaces
and heat could be released. In phase II, the AFQ order
parameter coexists with the AFM order parameter which
further stabilizes the pseudospin state with increasing B.
Thus the substantial amount of Q+

neq in phase II (above
2 T) is indicative of heat expelled during the AFM do-
main alignment. The fact that Q−

neq is much smaller than

Q+
neq in phase II supports the idea that domains were well

aligned during the first sweep. A similar hysteresis of the
AFM domain configuration around the region where Q+

neq

is substantial was also confirmed by a nuetron scattering
experiment [33]. On the other hand, it is still unresolved
why heat energy is given off from phase IV regardless
of the sweep direction. So far, it has been known that
the AFO order constitutes the primary phase which co-
exists with the secondary AFM order, but it is ambiguous
whether one of these phases stabilizes the other. In a phe-
nomenological aspect, we can only surmise that there will
be too many misaligned magnetic domains to be aligned
in phase IV.

Leaving detailed features behind, it should be empha-
sized that T −

qad(B) cannot be explained without strongly
focused heating at the II→IV boundary. Our hypothesis
is that if the system is driven into a disordered state, field-
induced quasi-particle scattering at the phase boundary
is strong enough to distort the equilibrium figure of the
MCE.

A quasi-adiabatic, non-equilibrium analysis of the
MCE observed from Ce0.5La0.5B6 with Tmix ≈ 0.4 K
is summarized in Fig. 6. In Fig. 6(a), T +

qad(B) (black

right-triangles) and T −

qad(B) (red left-triangles), which

were obtained with |r| = 0.015 T/min, are shown. Ex-
actly the same protocol described in Section II and Fig. 5
was applied to find T ±

ad. At a glance, it looked as if the
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FIG. 6. (color) (a) The quasi-adiabatic, non-equilibrium MCE from Ce0.5La0.5B6 with Tmix ≈ 0.4 K and |r| = 0.015 T/min is
analyzed. Black right-triangles show T +

qad(B). T +
ad(B) is approximated by the black dash-dotted line. T +

fit(B) with zero heating

(black solid line) well approximates T +
qad(B). Red left-triangles show T −

qad(B). The red dash-dotted line is T −

ad(B). The red

dashed line is T −

fit without non-equilibrium correction. The red solid line represents T −

fit with Q−
neq. The hatched area emphasizes

the presence of Q−
neq. (b) The field-dependent irreversible heating curves which are necessary to generate the black and red solid

lines in (a) are displayed. (c) Data from the experiment which was conducted with an increased sweep-rate, |r| = 0.1 T/min,
is presented. T ±

qad with |r| = 0.015 T/min is also shown for comparison. There is discrepancy between T +
qad and T +

fit above

3.5 T (see the text). (d) Field-dependent irreversible heating curves are displayed. Numerical fits in (a) were made by using
the set of parameters {a+ = 0, b+ = 0.087 K/T, c+ = 1.06, w+

2 = 3.5 T−1, a− = 0, b− = 0.087 K/T, c− = 1, w−

2 = 4 T−1, h−

1 =
0.0403 K/T, δ−

1 = 3.5 T−1, B−

1 = 2.32 T, B±
c = 1.98 T}. The set of parameters {a+ = 0, b+ = 0.1075 K/T, c+ = 1.015, w+

2 =
3.75 T−1, a− = 0, b− = 0.0925, c− = 0.865, w−

2 = 3.75 T−1, h−

1 = 0.067 K/T, δ−

1 = 2.9 T−1, B−

1 = 2.35 T, B±
c = 1.98 T} was

used for the best fit to the data in (b).

term dT ±
neq/dB would not be necessary to fit T ±

qad be-
cause r was thought to be slow enough to get rid of non-
equilibrium effects. Although T +

fit(B) (black solid line)

without Q+
neq relatively well approximates T +

qad, T −

fit with-

out Q−
neq (red dashed line) certainly deviates from T −

qad
in the vicinity of the II→IV boundary. The red hatched-
region in Fig. 6(a) stresses the very existence of Q−

neq(B)
as shown in Fig. 6(b). The solution to Eq. (6) with finite
Q−

neq(B) (red solid line in Fig. 6(a)) well reproduces T −

qad.

In Fig. 6(c) and 6(d), the phenomenological analysis
is repeated for the case with |r| = 0.1 T/min. For
comparison, T ±

qad measured with |r| = 0.015 T/min
is superposed. The red hatched area became much
larger than the area shown in Fig. 6(a), implying
that non-equilibrium effects upon entering phase IV of
Ce0.5La0.5B6 are stronger with faster field sweep-rate. To
note, in Fig. 6(c), it seems T +

fit well reproduces T +
qad with

Q+
neq =0, but the calculated function begins to depart

from T +
qad around 3.5 T. It is reasonable to admit that

T +
ad(B) was not the best approximation to the true isen-

tropic curve at high fields.
In consequence, T −

qad(B) from phase II (ordered mag-

netic phase) to phase IV (disordered magnetic phase)

cannot be explained without finite Q−
neq(B) focused on

a phase boundary as depicted in Fig. 5 and Fig. 6.
Since Ce1−xLaxB6 was the first group of materials which
has been scrutinized in the framework of Section II, it
might be premature to generalize the above arguments.
However, we believe further investigations of the non-
equilibrium MCE in various other systems with differ-
ent experimental tools would deliver valuable informa-
tion regarding magnetic phases and phase transitions.
For instance, investigating magnetic relaxation or hys-
teresis loops would provide information regarding the re-
laxation of a non-equilibrium phase towards the equilib-
rium phase. Moreover, it is speculated from our analysis
that there exists a region of phase transition in which or-
der parameters are constantly competing, and scattering
between constituent quasi-particles is easily enhanced by
the time-varying field. Therefore, time-resolved micro-
scopic inspection by using a scanning tunneling micro-
scope, atomic force microscope, or magnetic force micro-
scope etc., would be informative to obtain a deeper under-
standing related to non-equilibrium features of the MCE.
Simultaneously, it will be worthwhile to verify whether
the ansatz (Eq. (8)) is derivable from time-dependent
many-body quantum theory or not.
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V. CONCLUSION

To summarize, the magnetocaloric effect (MCE) from
YbPt2Sn shows a well defined paramagnetic hehavior be-
low 4 K. Because the material is metallic, we are free from
a complicated procedure supplementing a poor thermal
conductivity of previously used insulating paramagnets
when building an adiabatic demagnetization refrigerator.
The MCE in YbPt2Sn is reversible and well described
by equilibrium thermodynamics. On the other hand, the
MCE from Ce0.5La0.5B6 is complicated. It is highly ir-
reversible due to focused field-induced heating on the
brink of a phase transition and antiferromagnetic domain
motions. The practical model which includes analytic
ansatzes of such non-equilibrium effects well described the
observed field-hysteresis. We hope further investigation
of various other magnetocaloric materials would unravel
the correct mechanism behind the non-equilibrium MCE.

VI. APPENDIX

Eddy current perturbation The correction factor
corresponding to the eddy current heating was negligible
for both cases discussed above. Starting from Maxwell’s

equation, ∇ × ~E = − ∂ ~B
∂t

, the eddy current power dis-

sipation was derived as Peddy =
(

V R2

◦

8ρ

)

r2 ≈10−12 W,

where V = 0.85 cm3, R◦ = 3 mm (radius of the pil-

lar), ρ = 250 µΩcm (ref. Jang, Gruner). At 100 mK,
Cp ≈ 1 J/mol · K and heat capacity, C of 10 g of
YbPt2Sn pillar becomes about 0.0147 J/K. Given that
it took ∆t = 40 min for the field sweep down, estimated
Teddy ≈ Peddy × ∆t/C = 0.17 µK.

In the case of the Ce0.5La0.5B6, cylindrical speci-
men with R◦ =1 mm, V = 3.14 × 10−4 cm3 was as-
sumed. From the reported resistivity of Ce0.5La0.5B6,
ρ = 20 µΩcm at 100 mK was extrapolated. At the
same temperature, the heat capacity, C, of 5 mg of
Ce0.5La0.5B6 was 3.22 µJ/K. The roughly estimated in-
crease of temperature for 40 min due to the eddy current
heating is then, Teddy ≈ 4 µK.

For both YbPt2Sn and Ce0.5La0.5B6, Cp and ρ increase
and a more accurate estimation of Teddy will be smaller.
In fields, both Cp and ρ decrease and Teddy(B) will be
similar to its zero field values. Therefore, given that we
have dealt with a change in Tqad(B) of the order of at
least 1 mK, we can discard Teddy as evaluated above.
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G. Güntherodt, M. Loewenhaupt, J. M. Carpenter,
K. Winzer, and Z. Fisk, Phys. Rev. B 30, 4052 (1984).

[50] O. Sakai, R. Shiina, H. Shiba, and P. Thalmeier, J. Phys.
Soc. Jpn. 66, 3005 (1997).

[51] H. Nakao, K. Magishi, Y. Wakabayashi, Y. Murakami,
K. Koyama, K. Hirota, Y. Endoh, , and S. Kunii, J.
Phys. Soc. Jpn. 70, 1857 (2001).

[52] M. Sera, H. Ichikawa, T. Yokoo, J. Akimitsu, M. Nishi,
K. Kakurai, and S. Kunii, Phys. Rev. Lett. 86, 1578
(2001).

[53] M. Takigawa, H. Yasuoka, T. Tanaka, and Y. Ishizawa,
J. Phys. Soc. Jpn. 52, 728 (1983).

[54] J. M. Effantin, J. Rossat-Mignod, P. Burlet, H. Bartholin,
S. Kunii, and T. Kasuya, J. Magn. Magn. Mater. 47 &

48, 145 (1985).
[55] O. Zaharko, P. Fischer, A. Schenck, S. Kunii, P.-J.

Brown, F. Tasset, and T. Hansen, Phys. Rev. B 68,
214401 (2003).

[56] M. Sera and S. Kobayashi, J. Phys. Soc. Jpn. 68, 1664
(1999).

[57] D. Mannix, Y. Tanaka, D. Carbone, N. Bernhoeft, and
S. Kunii, Phys. Rev. Lett. 95, 117206 (2005).

[58] K. Kuwahara, K. Iwasa, M. Kohgi, N. Aso, M. Sera, and
F. Iga, J. Phys. Soc. Jpn. 76, 093702 (2007).

[59] T. Matsumura, T. Yonemura, K. Kunimori, M. Sera,
F. Iga, T. Nagao, and J. Igarashi, Phys. Rev. B 85,
174417 (2012).

[60] T. Matsumura, S. Michimura, T. Inami, T. Otsubo,
H. Tanida, F. Iga, and M. Sera, Phys. Rev. B 89, 014422
(2014).


