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Abstract—In automatic speech recognition, performance gains
can often be obtained by combining an ensemble of multiple
models. However, this can be computationally expensive when
performing recognition. Teacher-student learning alleviates this
cost by training a single student model to emulate the combined
ensemble behaviour. Only this student needs to be used for
recognition. Previously investigated teacher-student criteria often
limit the forms of diversity allowed in the ensemble, and only
propagate information from the teachers to the student at the
frame level. This paper addresses both of these issues by examin-
ing teacher-student learning within a sequence-level framework,
and assessing the flexibility that these approaches offer. Various
sequence-level teacher-student criteria are examined in this work,
to propagate sequence posterior information. A training criterion
based on the KL-divergence between context-dependent state
sequence posteriors is proposed that allows for a diversity of state
cluster sets to be present in the ensemble. This criterion is shown
to be an upper bound to a more general KL-divergence between
word sequence posteriors, which places even fewer restrictions
on the ensemble diversity, but whose gradient can be expensive
to compute. These methods are evaluated on the AMI meeting
transcription and MGB-3 television broadcast audio tasks.

Index Terms—Automatic speech recognition, ensemble, lattice-
free, random forest, teacher-student

I. INTRODUCTION

Teacher-student learning [1] is a framework that can be used
to transfer knowledge between models. In Automatic Speech
Recognition (ASR), this has found application in compressing
a large model [2] or an ensemble of models [1], and in domain
adaptation [3]. The standard teacher-student learning method
trains a student by minimising the KL-divergence between per-
frame state cluster posteriors [2], [4]. However, frame-level
training does not consider the sequential nature of speech data
and constrains all models to use the same set of state clusters.
This paper proposes a generalisation of the teacher-student
learning framework to overcome both of these limitations.

One common application of teacher-student learning is
ensemble compression. In ASR, performance gains can often
be obtained by combining an ensemble of multiple models
together, over using just a single model [5], [6]. A review of
ensemble methods is presented in Section II. The ensemble
performance depends on both the accuracy of the constituent
models and the diversity between the model behaviours [7].
A rich ensemble can be generated by allowing for diversity in
the acoustic model, sub-word units, context-dependency, and
state clusters, to name a few. It may be possible to use these
different forms of diversity together to obtain a more diverse
ensemble. In previous investigations of ensemble methods, it
has been common to only capture diversity within the acoustic
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model, either in the parameters [8] or the topology [9], while
constraining the sets of sub-word units and state clusters to
be the same across all members of the ensemble. This may
limit the diversity that can be captured within the ensemble,
and therefore also limit the combination gains. Work in [10]
has introduced a new degree of diversity, by allowing the sets
of state clusters to differ between models. Work in [11] has
investigated using different sets of sub-word units.

Although an ensemble may perform well, it can be com-
putationally expensive to use for recognition. Teacher-student
learning [1] is one method that aims to alleviate this com-
putational demand, by training a single student model to
emulate the combined ensemble. During recognition, only this
student needs to be used. A commonly used method to train
the student is to minimize the KL-divergence between the
teachers’ and student’s frame-level state cluster posteriors [2].
This method is discussed in Section III. However, this criterion
limits the forms of diversity that the ensemble is allowed
to have, by constraining all models to use the same set of
state clusters. This in turn forces all models to also use the
same set of sub-word units, context-dependency, and Hidden
Markov Model (HMM) topology. Teacher-student learning can
be generalised to allow for different sets of state clusters
between models, by instead minimising the KL-divergence
between logical context-dependent state posteriors [12]. This
allows the ensemble to have a diversity of state cluster sets.

However, the per-frame posteriors from the teachers may
not fully capture the sequential nature of speech data. For
standard ASR training, sequence training has often been found
to yield a better performance than frame-level training [13].
As is discussed in Section IV, teacher-student learning can be
extended to the sequence level [8], allowing information about
the sequence-level behaviours of the teachers to be propagated
to the student. This paper considers minimising the KL-
divergence between word sequence posteriors as one possible
criterion. This criterion places few constraints on the allowed
forms of diversity in the ensemble. However, it is shown that
the gradient of this criterion can be expensive to compute.
To address this, the student can be trained by minimising
the KL-divergence between lattice arc sequence posteriors.
Previous work has investigated using such a criterion, where
the arcs are marked with state clusters [8]. The gradient of
this criterion can be computed efficiently, but again constrains
all models to use the same set of state clusters, and thereby
limits the ensemble diversity. It is also possible to implement
this criterion in a lattice-free framework [14].

This paper proposes a generalisation of teacher-student
learning that allows different state cluster sets between models,
while using a sequence-level criterion. This extends the work
in [12] to the sequence-level and generalises the work in [8]
to allow for different state cluster sets. To enable this, lattice
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arcs are marked with logical context-dependent states instead
of state clusters, and the student can be trained by minimising
the KL-divergence between logical context-dependent state
sequence posteriors. The proposed training method can be
implemented in both lattice-based and lattice-free frameworks.
In this paper, a relationship is also drawn between the lattice
arc sequence and word sequence posterior KL-divergences,
showing the former to be an upper bound to the latter.

II. ENSEMBLE METHODS

Performance gains can often be obtained by combining
together an ensemble of multiple models [5]. The combined
ensemble performance depends on both the individual model
performances and the diversity between the model behaviours
[7]. There are many ways that models can be made to behave
differently, such as by using different sets of model parameters
and topologies, feature representations, sub-word units, and
state clusters. Using more forms of diversity may allow for a
richer ensemble. This paper considers using diverse acoustic
models parameters and state cluster sets.

A. Parameter diversity

Often, when generating an ensemble of models, only limited
forms of diversity are introduced. One simple approach is
to use different sets of acoustic model parameters, while
constraining the acoustic model topology and set of state
clusters to be the same. One method of generating this form
of ensemble is to train multiple models, each beginning from
a different random parameter initialisation [8]. However, this
can be computationally expensive to train. A cheaper method
of obtaining a diversity of model parameters is to use the
intermediate model iterations from within a single run of
training as members of the ensemble [15].

However, ensembles of these forms may be limited in their
diversity. To allow for added diversity, previous works have
explored combining different acoustic model topologies [9],
sets of state clusters [10], and sets of sub-word [11].

B. State cluster diversity

This paper considers ensembles where the set of state
clusters is allowed to vary between models. In ASR it has
been found that the acoustic realisations of phones are strongly
influenced by their surrounding contexts, leading to the use
of context-dependent phones [16]. However, there are often
too many context-dependent states to individually model ro-
bustly. As such, similar logical context-dependent states can
be clustered together into state clusters, with their observation
likelihoods tied. One commonly used method to perform state
clustering is through a phonetic decision tree [16], T ,

sc = T (c) , (1)

which maps from a logical context-dependent state, c, to a state
cluster, s. It is computationally intractable to find a globally
optimal decision tree [17]. Trees are therefore often built by
choosing the “greedy” split, with the largest local increase in
likelihood, at each training iteration from a set of phonetically

motivated questions [16]. However, this is not guaranteed to
produce a result that is optimal over the whole tree.

When using hybrid Neural Network (NN)-HMM models,
the set of state clusters defines the classes that the NN
acoustic model discriminates between. An ensemble can be
constructed by associating a different set of state clusters
with each model [18]. Each member of the ensemble then
learns to discriminate between different sets of state clusters.
This may encourage diverse behaviours between the ensemble
members. This form of ensemble diversity has been found
to be particularly effective, especially when the quantity of
training data is limited [12].

Multiple sets of state clusters can be obtained by using the
random forest method [19]. In this method, multiple decision
trees are generated by uniformly sampling from the n-best
splits at each training iteration, instead of choosing the greedy
split. Although there are other methods that explicitly train
multiple decision trees to be different [20], the simple random
forest method is used in this paper.

C. Ensemble combination

An ensemble can be combined at the hypothesis level
[5], [6]. One such method is Minimum Bayes’ Risk (MBR)
combination decoding [6],

ω∗ = argmin
ω′

∑
ω

L (ω,ω′)P
(
ω
∣∣∣O, Φ̂) , (2)

where ω are the word sequence hypotheses, O is the ob-
servation sequence, Φ̂ represents the ensemble, and L is the
word-level minimum edit distance. The combined hypothesis
posteriors can be computed as

P
(
ω
∣∣∣O, Φ̂) =

M∑
m=1

λmP (ω|O,Φm) , (3)

where Φm are the parameters of the mth model, M is
the ensemble size, and λm are the interpolation weights
that satisfy 0 ≤ λm ≤ 1 and

∑
m λm = 1. However,

this requires a separate decoding run for each model, and
therefore has a computational cost that scales linearly with
the ensemble size when performing recognition. This cost can
be reduced by performing frame-level combination [21], as
only one decoding run is required for the whole ensemble.
However, data still needs to be fed through each separate
acoustic model. One possible method to further reduce the
computational cost is to instead perform combination over the
model parameters, resulting in a single “smoothed” model, Φ.
One such combination method is to linearly interpolate the
model parameters [22],

Φ =

M∑
m=1

ηmΦm, (4)

where ηm are the interpolation weights. Only the smoothed
model needs to be used during recognition. However, this form
of parameter-level combination can only be applied when all
models in the ensemble use the same topology and whose
hidden representations are ordered similarly. These constraints
may limit the diversity in an ensemble that can be used with
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this combination method. Generating an ensemble out of the
intermediate models from within a single run of training is
one method that abides by these constraints [23].

III. TEACHER-STUDENT LEARNING

Teacher-student learning is a more general framework that
can reduce the computational cost of using an ensemble for
recognition, with fewer constraints on the allowed forms of
ensemble diversity than parameter-level combination. Here, a
single student model is trained to emulate the behaviour of the
combined ensemble [1]. Only this single student then needs
to be used for recognition.

In ASR, the student should ideally produce similar hypothe-
ses to the combined ensemble. The standard approach trains
the student by minimising the KL-divergence between the
frame-level state cluster posteriors of the combined ensemble
and the student [2],

F state
TS (Θ) = −

T∑
t=1

∑
s∈T

P
(
s
∣∣∣ot, Φ̂) logP (s|ot,Θ) , (5)

where t is the frame index, T is the number of frames
in an utterance, ot are the observations, Θ are the student
model parameters, and T represents the set of state clusters
defined by the decision tree. An implied summation over
utterances is omitted in the criteria presented in this paper
for brevity. This criterion propagates per-frame state cluster
posterior information from the teachers to the student. The
targets are the combined frame-level state cluster posteriors of
the ensemble,

P
(
s
∣∣∣ot, Φ̂) =

M∑
m=1

λmP (s|ot,Φm) . (6)

Although a sum combination is considered here, there are
also other possible ways of combining the teacher posteriors
[21]. A limitation of F state

TS is that all models are constrained
to use the same set of state clusters, as the KL-divergence
requires all distributions to have the same support. Since a
diversity of state cluster sets is not permitted, diverse sub-
word units, context-dependencies, and HMM topologies are
also not allowed. Limiting the forms of diversity allowed in
the ensemble may also limit the potential combination gains.

A. State cluster diversity

Frame-level teacher-student learning can be generalised to
allow for a diversity of state cluster sets, by instead minimis-
ing the KL-divergence between frame-level logical context-
dependent state posteriors [12],

FCD
TS (Θ) = −

T∑
t=1

∑
c∈C

P
(
c
∣∣∣ot, Φ̂) logP (c|ot,Θ) , (7)

where C represents the full set of all logical context-dependent
states. However, this criterion still restricts all models to have
the same HMM topology and set of sub-word units, as the set
of logical context-dependent states needs to be the same across
all models. The logical context-dependent state posteriors are

P (c|ot,Θ) = P
(
c
∣∣sΘc ,ot)P (sΘc ∣∣ot,Θ) , (8)

where sΘc is the student’s state cluster in which logical context-
dependent state c belongs. Substituting (8) into (7) gives

FCD
TS (Θ) = −

T∑
t=1

∑
c∈C

P
(
c
∣∣∣ot, Φ̂) [logP (sΘc ∣∣ot,Θ) (9)

+ logP
(
c
∣∣sΘc ,ot)] .

If it is assumed that P
(
c
∣∣sΘc ,ot) is independent of the

student’s acoustic model, then it has no influence on the
student’s gradient, and the criterion can be simplified to

FCD
TS (Θ) = −

T∑
t=1

∑
c∈C

P
(
c
∣∣∣ot, Φ̂) logP (sΘc ∣∣ot,Θ) . (10)

This can be expressed as a sum over the student’s state clusters,

FCD
TS (Θ)=−

T∑
t=1

∑
sΘ∈T Θ

P
(
sΘ
∣∣∣ot, Φ̂) logP (sΘ∣∣ot,Θ), (11)

where sΘ ∈ T Θ are all of the state clusters at the leaves of
the student’s decision tree.

Using a sum combination, (11) is obtained from (10) by
expressing the targets as

P
(
sΘ
∣∣∣ot, Φ̂)=M∑

m=1

λm
∑

sm∈Tm
P
(
sΘ
∣∣sm,ot)P (sm|ot,Φm), (12)

where sm ∈ T m are the state clusters at the leaves of
the teachers’ decision trees, and the posteriors are mapped
between decision trees using

P
(
sΘ
∣∣sm,ot) = ∑

c:T Θ(c)=sΘ

P (c|sm,ot) . (13)

Here, c : T Θ (c) = sΘ are all of the logical context-dependent
states that are mapped to state cluster sΘ. However, the stan-
dard hybrid NN-HMM model does not capture P (c|sm,ot).
Capturing this distribution is equivalent to separately mod-
elling the observation likelihoods of each logical context-
dependent state. To address this, an approximation can be
made that the map is independent of the observations, ot,

P
(
sΘ
∣∣sm,ot) ≈ P (sΘ∣∣sm) . (14)

This can be computed as a discounted maximum likelihood
estimate from forced alignments. However, this map is effec-
tively a fixed linear transformation of the posteriors, which
may result in a smoothing of the posteriors.

Applying this approximation to the targets in (12) gives

P̃
(
sΘ
∣∣∣ot, Φ̂)= M∑

m=1

λm
∑

sm∈Tm
P
(
sΘ
∣∣sm)P (sm|ot,Φm). (15)

These approximate targets have been shown to allow a student
to learn from teachers with different sets of state clusters, over
a range of different datasets [12]. Using these approximate
targets, the criterion of FCD

TS in (11) can now in fact be used
together with not only diverse state cluster sets and context-
dependencies, but also diverse HMM topologies and sets
of sub-word units, as long as parallel state-level alignments
exist to estimate the map, P

(
sΘ
∣∣sm). These latter forms of

diversity shall be left for exploration in future work.
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IV. SEQUENCE TEACHER-STUDENT LEARNING

The methods described in Section III train the student with
frame-level criteria. As previously discussed, these impose
restrictions on the forms of diversity allowed in the teacher
ensemble. They also only propagate frame-level state posterior
information, which does not take into account the language and
alignment models, and the sequential nature of the data during
training. Furthermore, previous work [13] has shown that
sequence-level training often outperforms frame-level training.
To overcome these limitations, teacher-student learning can be
generalised to use sequence-level criteria [8].

One possible sequence-level criterion is to minimise the KL-
divergence between word sequence posteriors,

Fword
seq-TS (Θ) = −

∑
ω

P
(
ω
∣∣∣O, Φ̂) logP (ω|O,Θ) . (16)

This criterion propagates sequence posterior information,
which may capture the interactions between the acoustic,
alignment, and languages models. A hybrid NN-HMM model
is often able to produce good ASR performance [24]. This
paper considers how a NN-HMM student may be trained with
sequence-level teacher-student learning, where the student’s
hypothesis posteriors can be computed as

P (ω|O,Θ)=

P γ (ω)
∑

sΘ∈Gω

T∏
t=1

P γ
(
sΘt
∣∣sΘt−1) Pκ(sΘt |ot,Θ)

Pκ(sΘt )∑
ω′
P γ(ω′)

∑
sΘ′∈Gω′

T∏
t=1
P γ
(
sΘ′t
∣∣sΘ′t−1)Pκ(sΘ′

t |ot,Θ)
Pκ(sΘ′

t )

.

(17)
Here, γ and κ are language and acoustic scaling factors
that are often incorporated to tune the balance between the
contributions of the language and acoustic models, and Gω is
the set of all state cluster sequences, sΘ, that correspond to
the word sequence ω. Using Fword

seq-TS, the student’s gradient is
shown in Appendix A to be

∂Fword
seq-TS

∂ logP
(
sΘt
∣∣ot,Θ) =κ

[
P
(
sΘt
∣∣O,Θ) (18)

−
∑
ω

P
(
sΘt
∣∣ω,O,Θ)P (ω∣∣∣O, Φ̂)].

By propagating information from the ensemble to the student
in the form of word sequence posteriors, this criterion allows
significant flexibility in the forms of ensemble diversity. The
only requirement is that hypothesis posteriors must be obtain-
able from the models. This allows, for example, NN end-to-
end models [25] to be used.

The first gradient term, P
(
sΘt
∣∣O,Θ), can be computed

in a similar fashion to the Maximum Mutual Information,
FMMI, gradient denominator term, using a forward-backward
operation over the student’s denominator lattice [13]. The
second term in the gradient requires the calculation of
P
(
sΘt
∣∣ω,O,Θ) and P

(
ω
∣∣∣O, Φ̂) for every possible hypothe-

sis, ω. These can be computed using forward-backward opera-
tions over lattices representing either the student’s or teachers’
hypotheses. The lattices may be pruned in a lattice-based
implementation, or unpruned in a lattice-free implementation

[26]. However, computing and storing these probabilities for
every possible hypothesis can be computationally expensive.
This cost can be limited by restricting the sum in (18) to only
consider a finite n-best list of hypotheses, or by taking a Monte
Carlo approximation to the gradient, similar to [27]. To the
authors’ knowledge, an efficient forward-backward algorithm
to jointly compute

∑
ω P

(
sΘt
∣∣ω,O,Θ)P (ω∣∣∣O, Φ̂) has not

yet been proposed, and may be an interesting direction for
future research.

Rather than only considering a subset of the hypotheses
in the sum, an alternative solution may be to approximate
the criterion, to eliminate the need to sum over sequences.
One approximation is to minimise the KL-divergence between
posteriors of lattice arc sequences instead of word sequences,

F arc
seq-TS(Θ)=−

∑
ω

∑
a∈Gω

P
(
a,ω

∣∣∣O, Φ̂)logP (a,ω|O,Θ), (19)

where Gω is the set of all arc sequences, a, that correspond to
the word sequence ω. This criterion requires P

(
a,ω

∣∣∣O, Φ̂)
and P (a,ω|O,Θ) to have the same support, in that the
posteriors from both the teachers and student must be defined
over the same set of arc sequences. The word and arc sequence
posteriors are related as

P (ω|O,Θ) =
∑

a∈Gω

P (a,ω|O,Θ) . (20)

The difference between ω and a is that arcs have defined
start and end times. In addition to these times, the arcs can
be marked, by incorporating in additional information about
the word, sub-word unit, or state identities. However, this
criterion does place constraints on the ensemble and student.
Marking the arcs with sub-word units requires all models to
use the same set of sub-word units. Marking the arcs with
states further requires all models to use the same set of states,
context-dependency, and HMM topology. The joint posterior
between arc and word sequences is considered in F arc

seq-TS, since
for certain choices of arc markings, such as state clusters or
phones, the arc sequence may not uniquely determine the
word sequence, because of the possibility of homophonic
words. With homophonic words, the same arc sequence with
different word sequences may have different language model
probabilities. Since arcs have defined start and end times, the
gradient of F arc

seq-TS can be written as

∂F arc
seq-TS

∂ logP
(
sΘt
∣∣ot,Θ) =κ

[
P
(
sΘt
∣∣O,Θ) (21)

−
∑
at

P
(
sΘt
∣∣at,O,Θ)P (at∣∣∣O, Φ̂)].

Unlike (18), the second term in (21) does not have a sum over
sequences. This gradient can again be computed using two
levels of forward-backward operations, one for P

(
at

∣∣∣O, Φ̂)
and another for P

(
sΘt
∣∣at,O,Θ). These need to be computed

and stored for every arc in the lattice. The number of arcs
is often significantly fewer than the number of hypotheses.
This gradient can again be computed within a lattice-based or
lattice-free framework. However, lattice-free implementations
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often only compose graphs up to the sub-word unit level
to reduce the computational cost of training [26], and can
therefore only be used with arcs marked with sub-word units
or states.

The criterion of F arc
seq-TS is in fact an upper bound to Fword

seq-TS.
To prove this, (20) can be used to express Fword

seq-TS in (16) as

Fword
seq-TS = −

∑
ω

∑
a∈Gω

P
(
a,ω

∣∣∣O, Φ̂) log∑
a′∈Gω

P (a′,ω|O,Θ).

(22)
The student’s posteriors in (22) are valid probability distribu-
tions, satisfying 0 ≤ P (a,ω|O,Θ) ≤ 1. From this, it can be
seen that ∀a ∈ Gω ,∑

a′∈Gω

P (a′,ω|O,Θ) ≥ P (a,ω|O,Θ) , (23)

and therefore

− log
∑

a′∈Gω

P (a′,ω|O,Θ) ≤ − logP (a,ω|O,Θ) . (24)

Substituting (24) into (22) leads to the relationship of

Fword
seq-TS ≤ −

∑
ω

∑
a∈Gω

P
(
a,ω

∣∣∣O, Φ̂) logP (a,ω|O,Θ)

≤ F arc
seq-TS. (25)

Thus, minimising F arc
seq-TS minimises an upper bound to Fword

seq-TS.
However, this bound may be loose, as the student’s probability
mass for each word sequence, ω, may be distributed among
many possible arc sequences, a, representing different arc
transition times. Perhaps a tighter bound can be achieved by
replacing the sum in (23) with a max, and this may be an
interesting direction to explore for future research.

A. State cluster sequence posteriors

The lattice arcs can be marked with a variety of acoustic
units. Previous work has investigated marking the arcs with
state clusters [8]. This leads to a criterion of minimising the
KL-divergence between state cluster sequence posteriors,

F state
seq-TS(Θ)=−

∑
ω

∑
s∈Gω

P
(
s,ω

∣∣∣O, Φ̂)logP (s,ω|O,Θ). (26)

This criterion has a gradient of

∂F state
seq-TS

∂ logP (st|ot,Θ)
= κ

[
P (st|O,Θ)− P

(
st

∣∣∣O, Φ̂)]. (27)

The P
(
st

∣∣∣O, Φ̂) term can be computed using just a single
level of forward-backward operations. In contrast to this, the
equivalent term in the gradient of F arc

seq-TS in (21) requires two-
levels of forward-backward operations for arc markings that
do not deterministically dictate the student’s state cluster at
each frame. This is analogous to the difference between the
state cluster marked state-level MBR, FsMBR, criterion [28],
[29], and the more general minimum phone or word error
criteria [30]. However, using this criterion foregoes much of
the freedom in the forms of ensemble diversity that are allowed
by Fword

seq-TS. In particular, all models are here restricted to use
the same set of state clusters, which therefore requires identical
sub-word units, HMM topologies, and context-dependencies.

B. Logical context-dependent state sequence posteriors

One possible approach to allow for more forms of diversity
in the ensemble is to use the criterion of F arc

seq-TS with arcs
marked with words or sub-word units. However, this requires
two levels of forward-backward operations for the gradient
computation in (21). Furthermore, lattice-free implementations
often only compose graphs up to the sub-word unit level to
limit the computational cost during training [26], and thus can-
not use arcs marked with words. At the frame-level, teacher-
student learning can be generalised to allow for a diversity of
state cluster sets, by using a criterion of minimising the KL-
divergence between logical context-dependent state posteriors
in FCD

TS [12]. However, this requires the approximation that the
map between state clusters is independent of the observation
using (14), which may smooth the posteriors.

This paper proposes to generalise sequence-level teacher-
student learning to allow for a diversity of state cluster sets,
while still having a simple and efficient gradient computation
of only a single level of forward-backward operations. Anal-
ogously to frame-level training, arcs in F arc

seq-TS can be marked
with logical context-dependent states, instead of state clusters.
This is simpler to implement than arcs marked with words or
sub-word units, and can use the lattice-free framework. The
set of logical context-dependent states is common across all
models, irrespective of the set of state clusters. The student can
be trained by minimising the KL-divergence between logical
context-dependent state sequence posteriors,

FCD
seq-TS(Θ)=−

∑
ω

∑
c∈Gω

P
(
c,ω

∣∣∣O, Φ̂)logP (c,ω|O,Θ). (28)

If the same set of state clusters is used across all models,
it can be shown using a similar argument to (22-25) that
Fword

seq-TS ≤ F state
seq-TS ≤ FCD

seq-TS. Equality of F state
seq-TS = FCD

seq-TS is
obtained if each state cluster sequence is uniquely described
by a single logical context-dependent state sequence. This can
be achieved, for example, by having a different root in the
decision trees for each different centre phone.

The gradient of FCD
seq-TS can be expressed as

∂FCD
seq-TS

∂ logP
(
sΘt
∣∣ot,Θ)=κ

P (sΘt ∣∣O,Θ)−∑
ŝt∈GsΘt

P
(
ŝt

∣∣∣O, Φ̂)
,

(29)
where the “intersect states”, ŝt, define the set of state clusters
formed by the Cartesian product of all decision trees of the
teachers and student [31]. Here, GsΘt represents the set of inter-
sect states whose constituent logical context-dependent states
are tied to the student’s state cluster sΘt . The P

(
ŝt

∣∣∣O, Φ̂)
term can be computed efficiently using a single level of
forward-backward operations. As opposed to this, the equiv-
alent term in (21) requires two levels of forward-backward
operations to compute. It is thus simpler to implement and
possibly more efficient to mark the arcs with logical context-
dependent states, rather than words or sub-word units, when
allowing for a diversity of state cluster sets. The arcs in fact
need not be marked with logical context-dependent states. It is
more efficient to mark them with intersect states. When using
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pruned lattices in a lattice-based implementation, it again has
to be ensured that the same intersect state sequences exist in
the lattices used for all of the models.

In the frame-level targets of (12), the map, P
(
sΘ
∣∣sm,ot),

is approximated using (14). This approximation may smooth
the target posteriors. At the sequence level, marking the arcs
with logical context-dependent states allows the targets of
P
(
c,ω

∣∣∣O, Φ̂) in the FCD
seq-TS criterion to be computed exactly,

without the need for any approximations. The surrounding
context of a phone is known when given the state cluster
sequence. This avoids any performance degradation of the
student that may result from any approximations.

The criterion proposed in this paper generalises teacher-
student learning to allow for sequence-level training when the
ensemble has a diversity of state cluster sets, while preserving
the simplicity and efficiency of only requiring a single level
of forward-backward operations when computing the gradient.
However, this method still constrains all models to use the
same set of sub-word units and HMM topology.

C. Sequence posterior targets
In these sequence-level teacher-student criteria, there are

several possible methods of combining the posteriors from the
teachers in the ensemble to obtain the targets. For F state

seq-TS, a
sum combination of the sequence posteriors can be used [8],

P
(
s,ω

∣∣∣O, Φ̂) =

M∑
m=1

λmP (s,ω|O,Φm) . (30)

With this form of target combination, the P
(
st

∣∣∣O, Φ̂) term
in the gradient of (27) can be computed as a sum over the
contributions of the denominator lattices from each teacher,

P
(
st

∣∣∣O, Φ̂) =

M∑
m=1

λmP (st|O,Φm) . (31)

It is also possible to take a product of the sequence posteri-
ors [14], which for hybrid NN-HMM models, is equivalent to
taking a frame-level product of the teachers’ acoustic scores,

P
(
s,ω

∣∣∣O, Φ̂) =
1

Z

M∏
m=1

Pλm (s,ω|O,Φm) (32)

=
1

Z
P (ω)P (s)

T∏
t=1

M∏
m=1

pκλm (ot|st,Φm) ,

assuming that
∑
m λm = 1, and both the language and align-

ment models are the same across all teachers. Here, Z ensures
that the combination results in a normalised distribution. With
this form of target combination, only a single denominator
lattice needs to be processed for all of the teachers to compute
P
(
st

∣∣∣O, Φ̂) in the gradient. This denominator lattice is gen-
erated with a frame-level combination of the teachers’ acoustic
scores. During training, it is therefore less computationally
expensive to use a product combination to obtain the targets,
rather than a hypothesis-level sum combination.

This paper compares a range of frame and sequence-level
criteria for teacher-student learning that operate on different
levels of acoustic units. A summary of the notation used for
these approaches is shown in Table I.

TABLE I
SUMMARY OF FRAME AND SEQUENCE-LEVEL TEACHER-STUDENT

LEARNING CRITERIA, COMPUTED OVER DIFFERENT ACOUSTIC UNITS

Acoustic unit
Criterion word arc state cluster logical state
frame-level - - F state

TS FCD
TS

sequence-level Fword
seq-TS F arc

seq-TS F state
seq-TS FCD

seq-TS

V. EXPERIMENTS

The experiments are divided into four sections. Section V-A
first assesses the proposed sequence-level teacher-student cri-
terion of FCD

seq-TS, which allows for different sets of state clus-
ters between the teachers, comparing its performance to frame-
level training and sequence-level teacher-student learning with
the same set of state clusters. Next, Section V-B consid-
ers a lattice-free implementation of teacher-student learning.
Section V-C then investigates the possibility of incorporating
additional model parameter diversity from within each training
run. Finally, Section V-D assesses the effectiveness of different
schemes for compressing such an ensemble.

The experiments were performed using the Kaldi speech
recognition toolkit [32]. Two datasets were used. The AMI
meeting transcription task [33] comprises spontaneous speech
from multiple speakers in role-play meeting scenarios. The
full corpus ASR partition was used, consisting of an 81 hours
training set and a 9 hours eval set. The Individual Headset
Microphone (IHM) audio recordings were used. The 2017
Multi-Genre Broadcast (MGB-3) English task [34] comprises
audio recordings from television programs of a variety of
genres. Lightly supervised decoding and selection [35] was
used to extract a training set with 275 hours of data, out of the
full 375 hours of available audio data. The 5.5 hours dev17b
test set was used, and was divided into segments using a DNN-
based segmenter [36] that was trained on the MGB-3 data.

For both datasets, 40-dimensional Mel-scale filterbank fea-
tures were extracted. Experiments used models trained with
both lattice-based and lattice-free implementations of sequence
training. For the lattice-free models, biphone decision trees
were built with approximately 2000 and 3600 leaves for AMH-
IHM and MGB-3 respectively. A lattice-free implementation
of the FMMI criterion was used to train models with interleaved
Time Delay NN (TDNN) and Long Short-Term Memory
(LSTM) layers [11], referred to as TDNN-LSTM. The TDNN
layers had 600 nodes with rectified linear unit activations,
and the LSTM layers had 512 cells with 128 recurrent and
non-recurrent projections. The topology can be described
as {−2,−1, 0, 1, 2} {−1, 0, 1} L {−3, 0, 3} {−3, 0, 3} L
{−3, 0, 3} {−3, 0, 3} L, where L represent a LSTM layer.
These models were trained using an exponential learning rate
schedule, where the learning rates and number of epochs were
selected using hyper-parameter sweeps. Models trained in a
lattice-based framework were also used for the experiments
in Section V-A for AMI-IHM. For these, alignments were
first obtained from a Gaussian Mixture Model (GMM)-HMM
following the Kaldi s5 recipe, and triphone decision trees
were built with 4000 leaves. These were used to train feed-
forward sigmoid Deep NNs (DNN) with 6 layers of 2048
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nodes. First and second temporal derivatives were appended to
the input features of these DNNs, with an 11 frame context.
The DNNs were first initialised with layer-wise supervised
pretraining, followed by Cross-Entropy, FCE, training, then
lattice-based sequence training using the FsMBR criterion.
Evaluation was done using MBR decoding, and hypothesis-
level MBR combination decoding, defined in (2), was used
for ensemble combination [6]. In MGB-3, decoding was done
using a trigram language model, trained on the MGB-3 subtitle
data. In AMI-IHM, decoding lattices were first generated
using a trigram language model, then rescored using a 4-gram
language model, both trained on a combination of the AMI
training set and Fisher English training part 1 (LDC2004T19)
transcriptions. Equal interpolation weights, λm = 1

M and
ηm = 1

M , were used for MBR combination decoding, teacher-
student learning, and parameter-level combination. Preliminary
experiments suggested that training these weights to optimise
the FMMI criterion in parameter-level combination did not
result in any significant gains over using equal weights.

A. Frame and sequence-level teacher-student learning

TABLE II
LATTICE-BASED SMBR DNN ENSEMBLES, IN AMI-IHM

Single WER (%) Combined
Diversity mean std dev WER (%) cross-WER (%)
parameter 25.7 0.10 24.9 11.8
state cluster 26.0 0.13 24.5 15.2

The sequence-level FCD
seq-TS criterion proposed in this paper

to allows a student to learn from an ensemble with a diver-
sity of state cluster sets. The first experiment compares the
performances of ensembles generated with either this form
of diversity or a diversity of model parameters. An ensemble
with model parameter diversity was generated by training 4
DNNs with the same greedy decision tree, separately toward
a lattice-based implementation of the FsMBR criterion, each
starting from a different random parameter initialisation. An
ensemble with a diversity of state cluster sets was generated
by training 4 DNNs separately toward the FsMBR criterion,
each with a different decision tree. Multiple decision trees
were obtained using the random forest method, by sampling
splits from the 5-best at each iteration. The performances
of these ensembles are shown in Table II. The results show
that diversity and performance gains can be obtained in both
ensembles. The diversity between the models was estimated
using the cross-WER [37]. This measures the word-level
minimum edit distance between the 1-best hypotheses of
each model within an ensemble, averaged across all pairs
of models. A larger cross-WER indicates greater diversity
between the model predictions. The ensemble with a diversity
of state cluster sets exhibits a wider diversity and has a
better combined performance than the ensemble with model
parameter diversity, with a null hypothesis probability less than
0.001, using the matched pairs sentence segment word error
test [38]. The single model performance of this ensemble may
be worse because the random forest decision trees may be less
optimal.

TABLE III
FRAME AND LATTICE-BASED SEQUENCE-LEVEL TEACHER-STUDENT

LEARNING, IN AMI-IHM

Ensemble Training Student WER (%)
- FCE + FsMBR 25.7

parameter F state
TS 25.1
F state

seq-TS 24.7

state cluster FCD
TS 25.5
FCD

seq-TS 24.6

However, these ensembles require multiple decoding runs
and are therefore computationally expensive to use for recog-
nition. To reduce this cost, students were trained toward the
ensemble with model parameter diversity using the frame-
level F state

TS and sequence-level F state
seq-TS criteria, and toward

the ensemble with state cluster diversity using the frame-
level FCD

TS [12] and proposed sequence-level FCD
seq-TS criteria.

These teacher-student methods are compared in Table III. The
student models used the same DNN topology as each teacher
in the ensemble, but with a decision tree that had been trained
using greedy splits. The sequence-level students here were
trained using lattice-based implementations of the gradient
computations, and used the frame-level students as parameter
initialisations. To ensure the same support for the sequence
posterior distributions of the teachers and student, the de-
nominator lattices for the teachers were obtained by rescoring
the student’s denominator lattice paths separately with each
of the teachers’ acoustic scores. Obtaining the denominator
lattice paths from the initial frame-level students allowed for
a reasonable match of these paths with all of the teachers’
and student’s acoustic models. The arcs in the denominator
lattices for FCD

seq-TS were marked with intersect states, to allow
for the different sets of state clusters. The results show that all
criteria are able to bring the student performance closer to that
of the combined ensemble in Table II, than when using FsMBR
training. The sequence-level students are able to come closer
to the ensemble performances than the frame-level students.
As such, the sequence posterior information propagated over
by the proposed FCD

seq-TS criterion may allow the student to
learn more effectively from teachers with different sets of state
clusters, than propagating only frame posterior information.

Although the ensemble with different state cluster sets
has a better combined performance, in Table II, its frame-
level student does not perform as well as that of the ensem-
ble with model parameter diversity. Sequence-level teacher-
student learning reduces the difference between the student
performances. However, the sequence-level student of the
ensemble with state cluster diversity is not significantly better
than that of the ensemble with model parameter diversity,
with a null hypothesis probability of 0.144. Work in [12]
proposes to improve the student performance by using a larger
decision tree, and this method is demonstrated for the lattice-
free experiments in Section V-B.

As is shown in [8], it is also possible to use standard
sequence training to further improve upon the frame-level stu-
dent performance. Further FsMBR training of the FCD

TS student
yields a WER of 24.6%, which is similar to the sequence-level
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student performance. This also outperforms an FsMBR model
trained from FCE initialisation, suggesting that the frame-level
student may be a better initialisation for sequence training.

B. Lattice-free sequence-level teacher-student learning

TABLE IV
LATTICE-FREE MMI TDNN-LSTM ENSEMBLES WITH DIFFERENT SETS

OF STATE CLUSTERS

Single WER (%) Combined
Dataset mean std dev WER (%) cross-WER (%)
AMI-IHM 25.6 0.06 22.3 21.3
MGB-3 23.5 0.18 20.6 18.2

The experiments in Section V-A show that an ensemble
with different sets of state clusters can exhibit significant
combination gains, and that a lattice-based implementation
of the proposed sequence-level method can allow a student
to learn from such an ensemble. This section examines a
lattice-free implementation of the proposed sequence-level
teacher-student learning criterion. The lattice-free framework
[26] allows for sequence training without needing to prune
lattices. This removes the need of an initial frame-level model
to provide acoustic scores for lattice pruning, and therefore
allows sequence training to begin from a random parameter
initialisation. Ensembles of 4 models were trained toward a
lattice-free implementation of the FMMI criterion, again with
a different set of state clusters for each model. The TDNN-
LSTM topology was used for the lattice-free models, as this
was found to outperform the feed-forward DNN topology.
Table IV shows the performances of these lattice-free ensem-
bles. Comparing this with Table II, the results suggest that
the lattice-free ensemble is able to exhibit a greater diversity
than the lattice-based ensemble. As a reference, a lattice-
based FsMBR ensemble of TDNN-LSTMs has a combined
WER of 22.2% and a cross-WER of 18.6% in AMI-IHM.
Training the ensemble using a lattice-based implementation
of the FMMI criterion, instead of FsMBR, does not yield any
significant increase in the diversity. As such, the increase in
the lattice-free ensemble diversity in Table IV does not appear
to be solely due to the different model topology or training
criterion used. In lattice-based training, the FCE initialisation
may strongly bias the models toward the forced alignments. On
the other hand, lattice-free training can begin from a random
parameter initialisation. Although alignment information is
still used to split the utterances into shorter segments for
training and to compute the numerator lattice, this information
is weakened by allowing for state transitions within a window
around the alignments. This may reduce the bias that the
lattice-free models have toward the forced alignments, and
allow them to develop more diverse behaviours. However,
the lattice-free ensemble with a combined WER of 22.3%
does not outperform a lattice-based TDNN-LSTM ensemble
with a combined WER of 22.2%, in AMI-IHM. Despite this,
it is still advantageous to use lattice-free training, as it is
computationally cheaper during both training and recognition.
This is because lattice-free training can begin from random
parameter initialisation and a lower frame rate is used.

TABLE V
LATTICE-FREE SEQUENCE-LEVEL TEACHER-STUDENT LEARNING ACROSS

DIFFERENT SETS OF STATE CLUSTERS

Dataset Training WER (%)

AMI-IHM FMMI 25.3
FCD

seq-TS 23.2

MGB-3 FMMI 23.6
FCD

seq-TS 21.8

Using a lattice-free implementation of FCD
seq-TS, students were

trained toward these lattice-free ensembles. The students used
the same TDNN-LSTM topology as each of the teachers in
the ensembles, but with decision trees that were trained with
greedy splits. These students were trained, beginning from
random parameter initialisations. The results in Table V show
that the students are able to come closer to the ensemble
performances than when using lattice-free FMMI training.

The targets used to train the students have thus far been
combined using a sum combination of (30). It is also possible
to use a product combination of (32) [14]. A student trained
using a product combination has a WER of 23.5% in AMI-
IHM. The student using a sum combination with a WER of
23.2% in Table V appears to perform slightly better. However,
this may not be statistically significant, with a null hypothesis
probability of 0.010. It is cheaper to compute the gradient
using a product combination, as only a single denominator
lattice needs to be processed for the whole ensemble. The
remaining experiments use a sum combination.

Although the students’ performances approach those of
the ensembles, they are still significantly different. A similar
degradation of the student is observed when performing frame-
level teacher-student learning using the FCD

TS criterion in [12].
In [12], it is proposed that two possible sources of performance
degradation are the approximation used to map the frame-
level posterior targets across different sets of state clusters,
and the limited phonetic resolution of the student. The student
can produce separate acoustic scores for each state cluster
within its decision tree, while the combined teachers can
effectively produce separate acoustic scores for each intersect
state within the Cartesian product of all of their decision trees.
When training the student using FCD

seq-TS, no approximations
are needed to obtain the targets. Therefore, the performance
degradation of the students here may be primarily due to
their limited phonetic resolutions, as they used standard-sized
decision trees. In AMI-IHM, a FCD

seq-TS student that used the
intersect states has a WER of 22.5%. These intersect states
were obtained from a Cartesian product of the 4 decision trees
of the teachers, and therefore has the same phonetic resolution
as the ensemble. This student comes closer to the combined
ensemble performance of 22.3%. However, the intersect stu-
dent with 11581 state clusters, has 12.1 × 106 parameters,
which is many more than the 9.6×106 parameters in a student
using a standard-sized decision tree with 2000 state clusters.
This may increase the computational cost when performing
recognition. It may be possible to use the multi-task topology
proposed in [37] to retain the ensemble’s phonetic resolution,
while reducing the number of model parameters.
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C. Ensembles with smoothed models

The ensembles used in the previous experiments have a
diversity of state cluster sets. It may be possible to further
improve the ensemble performance by incorporating additional
forms of diversity, such as a diversity of model parameter
sets. One possible method for obtaining model parameter
diversity is to construct an ensemble from the intermediate
model iterations within a single run of training [15]. This does
not require any additional computation during training, and
can be seamlessly integrated with an ensemble that already
has a diversity of state cluster sets. The next experiment
assesses ensembles that were generated using these diversity
methods. Ensembles were generated from within a single
run of lattice-free FMMI training, using a greedy decision
tree. To limit the computational cost, every 3rd and 12th
model from the last training epoch was used in AMI-IHM
and MGB-3 respectively, leading to ensembles of 20 and
22 models. These will be referred to as Single Run (SR)
ensembles. The lattice-free ensembles in Table IV that used
the last model iterations of multiple training runs with different
sets of state clusters will be referred to as Random Forest (RF)
ensembles. One method of using model parameter and state
cluster diversity together, referred to as RFsmooth, is to first
perform parameter-level combination over each training run,
then combine the smoothed models over the multiple training
runs. This is computationally cheaper than directly combining
the intermediate models across the multiple training runs. Such
parameter-level combination within a training run has been
shown to yield significant performance gains over using just
the last model iteration [11].

TABLE VI
RANDOM FOREST AND SINGLE RUN ENSEMBLE METHODS

Ensemble Single WER (%) Combined cross-
Dataset Method mean std dev WER (%) WER (%)

AMI-IHM
SR 25.6 0.34 23.5 15.6
RF 25.6 0.06 22.3 21.3
RFsmooth 24.2 0.06 21.6 18.2

MGB-3
SR 24.0 0.34 20.8 16.9
RF 23.5 0.18 20.6 18.2
RFsmooth 21.3 0.08 19.7 12.8

Table VI compares these ensembles. Again, hypothesis-level
MBR combination decoding was used. The results show that
significant diversity and combination gains can be obtained by
generating an ensemble from the intermediate model iterations
within a single run of training, in the SR ensemble, though
less than when using a diversity of state cluster sets. The
last model iterations in the SR training runs have WERs of
25.3 and 23.6% for AMI-IHM and MGB-3 respectively, from
Table V. Performing parameter-level combination within each
training run leads to improved single model performances
in the RFsmooth ensembles, compared to the RF ensembles.
This in turn yields a better combined performance, with null
hypothesis probabilities less than 0.001 for both datasets.
However, this also leads to a reduction in the diversity between
the smoothed models across the separate training runs.

The hypothesis-level combined performances of the SR
ensembles, of 23.5 and 20.8% for AMI-IHM and MGB-3

respectively, are better than the mean performances of the
separate smoothed models in the RFsmooth ensembles of 24.2
and 21.3%. This may be partly attributed to the random
forest decision trees in RFsmooth, compared to the greedy
decision trees in SR. These results also suggest that it may
be interesting to compare different methods of combining
the intermediate models of a single training run. The SR
ensemble in AMI-IHM has WERs of 23.8% for parameter-
level combination and 22.6% for a student using sequence-
level teacher-student learning with F state

seq-TS. The WERs for
MGB-3 are 21.3% for parameter-level combination and 21.3%
for a student. These results, compared with Table VI, suggest
that hypothesis-level combination of the SR ensemble sig-
nificantly outperforms parameter-level combination, with null
hypothesis probabilities less than 0.001 for both datasets. In
AMI-IHM, the student gives the best performance of all of the
combination methods, but this is not replicated in MGB-3.

D. Multi-stage compression
The previous experiment shows how additional parameter

diversity can be incorporated into an ensemble together with a
diversity of state cluster sets, simply by using the intermediate
models within each training run. However, the resulting en-
semble can be large, leading to a high computational cost when
performing recognition. The RFsmooth ensemble in Table VI is
an example of using a 2-stage combination scheme to reduce
this cost, by first performing parameter-level combination over
each training run, followed by hypothesis-level combination
over the smoothed models from the separate training runs.
This section compares this with various other schemes for
compressing the ensemble into a single student model.

A naive compression scheme is to train a student directly
toward all of the intermediate models across all training runs.
It is interesting to compare this with a 2-stage approach, that
first compresses within each training run, then compresses
across the multiple training runs. In a 2-stage scheme, multiple
models from a single training run can be first compressed into
a single model, by using either parameter-level combination
or teacher-student learning. The results in Section V-C suggest
that in both cases, the resulting single model outperforms the
models that make up the ensemble. Teacher-student learning
can then be used to compress these single models across the
multiple training runs into a final student model.

An ensemble was generated from 4 training runs, each with
a different decision tree. Intermediate model iterations within
the last epoch of each training run were incorporated into
the ensemble. Table VII compares training a student toward
all of the intermediate model iterations across all training
runs, against a 2-stage compression scheme of first combining
within each training run using parameter-level combination
or sequence-level teacher-student learning with F state

seq-TS, then
training a final student toward the smoothed or student models
across the separate training runs using FCD

seq-TS. The left three
columns report the mean WER, standard deviation, and cross-
WER diversity across the different training runs, after the
first stage of compression within each training run. The right
two columns report the performance after the second stage of
compression across the multiple training runs.
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TABLE VII
MULTI-STAGE COMPRESSION METHODS

Stage 1 Stage 1 WER (%) Stage 1 Stage 2 WER (%)
combination mean std dev cross-WER (%) hypothesis student
AMI-IHM
− 25.9 0.34 20.6 21.8 22.9
parameter 24.2 0.06 18.2 21.6 22.7
student 22.8 0.10 14.1 21.3 23.1
MGB-3
− 24.0 0.41 18.6 20.0 21.5
parameter 21.3 0.08 12.8 19.7 21.2
student 21.3 0.06 10.0 20.1 21.9

The results suggest that the best final student can be ob-
tained by first performing parameter-level combination within
each training run, then performing teacher-student learning to-
ward these smoothed models across the multiple training runs.
However, these students may not be significantly better than
students trained directly toward all of the intermediate model
iterations across the multiple training runs, without a stage 1
compression, with null hypothesis probabilities of 0.204 and
0.016 for AMI-IHM and MGB-3 respectively. Despite this,
there is a consistent improvement across both datasets. The
2-stage compression is also less computationally expensive,
as this trains a student toward fewer teachers. Parameter-
level combination has negligible computational cost, as the
interpolation weights were not trained.

Comparing the stage 1 compression methods, performing
teacher-student learning within each training run yields a better
performance than parameter-level combination in AHI-IHM,
but this trend is not replicated in MGB-3. A stage 1 compres-
sion using teacher-student learning yields less diversity be-
tween the students of the different training runs, than between
the smoothed models with parameter-level combination. This
lack of diversity may be a reason why a final student trained
toward the stage 1 students does not perform as well as one
trained toward the stage 1 parameter-level combinations.

Although the stage 2 hypothesis-level combinations are able
to gain from both forms of diversity, the best stage 2 students
are not able to significantly outperform the stage 1 students.
The stage 1 students used the same sets of state clusters as
their teachers, while the stage 2 students were trained toward
teachers with different sets of state clusters. The stage 2
students may again be limited by their phonetic resolutions, as
these students used the same-sized decision trees as each of
the teachers. Using the intersect states for the stage 2 students
after a stage 1 parameter-level combination yields WERs
of 22.1 and 20.8% for AMI-IHM and MGB-3 respectively.
This suggests that the students can benefit from the diversity
provided by having different sets of state clusters and different
sets of model parameters from intermediate training iterations.

VI. CONCLUSION

This paper has presented a generalisation of the teacher-
student learning framework, that allows for different sets of
state clusters to be used between the teacher and student
models, while using a sequence-level criterion. The experi-
mental results have shown that using the proposed method,

the student can be trained to effectively emulate the combined
performance of an ensemble with a diversity of state cluster
sets. Also, sequence-level teacher-student learning can yield a
better student performance than using frame-level criteria. Ad-
ditional model parameter diversity can be incorporated into an
ensemble by using intermediate model iterations within each
training run. Such an ensemble can be effectively compressed
using a multi-stage scheme.

The proposed sequence-level teacher-student learning cri-
terion allows the ensemble to capture a diversity of state
cluster sets. This has been shown to be an upper bound to an
even more general criterion of minimising the KL-divergence
between word sequence posteriors, which allows for more
forms of diversity within the ensemble. Investigating efficient
methods to compute the gradient of this criterion may be an
interesting direction for future research.

APPENDIX A
SEQUENCE TEACHER-STUDENT CRITERION GRADIENT

A simple way to derive the gradient of the Fword
seq-TS criterion

in (16) is to relate it to the standard FMMI criterion as

Fword
seq-TS (Θ) =

∑
ω

P
(
ω
∣∣∣O, Φ̂)FMMI (Θ,ω) , (33)

where
FMMI (Θ,ω) = − logP (ω|O,Θ) . (34)

The standard FMMI gradient is [13]

∂FMMI (Θ,ω)

∂ log p
(
sΘt
∣∣ot,Θ) = κ

[
P
(
sΘt
∣∣O,Θ)− P (sΘt ∣∣ω,O,Θ)] .

(35)
Using the chain rule, the gradient of Fword

seq-TS is

∂Fword
seq-TS

∂ log p
(
sΘt
∣∣ot,Θ)=∑ω

∂Fword
seq-TS

∂FMMI (Θ,ω)

∂FMMI (Θ,ω)

∂ log p
(
sΘt
∣∣ot,Θ)

=κ

[
P
(
sΘt
∣∣O,Θ) (36)

−
∑
ω

P
(
sΘt
∣∣ω,O,Θ)P (ω∣∣∣O, Φ̂)].
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