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Genetics of HbA1c: a case study
 in clinical translation

Aaron Leong1,2,4 and Eleanor Wheeler3,4
Glycated hemoglobin (HbA1c) measures the amount of glucose

in the blood in the previous 2–3 months and is used to test

whether an individual has diabetes (HbA1c � 6.5%), or how

well they are managing their diabetes. Genome-wide

association studies have successfully identified multiple

genomic loci influencing HbA1c, through both glycemic

(factors that affect the amount blood glucose levels) and

erythrocytic (factors that affect the red blood cell) pathways.

Inaccuracies in HbA1c, due to non-glycemic variants, could

lead to suboptimal care or adverse health consequences. A

recently published example is the erythrocytic variant

(rs1050828) in G6PD, which leads to the artificial lowering of

HbA1c and missed diagnosis of diabetes using current

thresholds. In this reviewwewill discuss recent insights into the

genetic etiology of HbA1c, and how these can translate to the

clinic.
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Introduction
Type 2 diabetes mellitus (T2D) is a complex, heritable

disease, characterized by defects in insulin secretion and/

or insulin action leading to increased blood glucose levels.

Diabetes prevalence is rising dramatically in both devel-

oped and developing countries, in 2014 there were

422 million adults with diabetes and this number is

expected to reach 700 million by 2025 [1]. There are

numerous complications associated with diabetes, includ-

ing long-term microvascular and macrovascular complica-

tions (such as nephropathy, retinopathy, neuropathy,

coronary artery disease, and stroke) and it is estimated

that 1.6 million people die as a result of diabetes and its
www.sciencedirect.com
complications every year [2]. Despite the serious health

complications, only half of prevalent T2D worldwide has

been clinically diagnosed [3].

Glycated hemoglobin (HbA1c) is a convenient measure of

long-term blood glucose concentrations. This test mea-

sures the proportion of glycated hemoglobin, an irrevers-

ible chemical modification of the hemoglobin molecule

by blood glucose, which reflects average ambient glyce-

mia over the previous 2–3 months, the life of a red blood

cell [4]. Following a World Health Organisation (WHO)

consultation which concluded that HbA1c could be used

to diagnose diabetes [5], HbA1c is now an accepted

diagnostic test for T2D and used for monitoring glycemic

control in patients with diabetes [6]. Unlike direct mea-

sures of blood glucose, such as fasting glucose, which were

historically used to diagnose diabetes, HbA1c is a conve-

nient, and stable indicator of glycemic status, and a good

predictor of T2D-related complications even in individ-

uals without diabetes [7].

Heritability studies have shown that HbA1c is, in part,

genetically determined in individuals with T2D, type

1 diabetes, and those without diabetes [8–10]. In this

review, we present recent insights into the genetic etiol-

ogy of HbA1c and important considerations for the use of

HbA1c in clinical practice.

The genetic etiology of HbA1c
The advent of genome-wide association studies (GWAS),

and combining multiple such studies through large inter-

national consortia such as the Meta-Analysis of Glucose

and Insulin related traits Consortium (MAGIC), have

successfully identified 61 loci influencing HbA1c [11–

15,16�� [1_TD$DIFF],17]. These studies suggest that some genetic var-

iants influence HbA1c through glycemic pathways,

whereas others influence HbA1c through nonglycemic

pathways (Figure 1). Interestingly, although HbA1c and

fasting glucose are both used to diagnose diabetes, the

genetic correlation of these traits is only moderate

(rg = 0.412) [18,19], implying that the genetic determinants

of HbA1c do not completely overlap those of glycemia.

Most recently, the MAGIC investigators performed the

largest to date GWAS of HbA1c in up to 159 940 individ-

uals without diabetes of European, African, East Asian,

and South Asian ancestry [16��]. They identified

60 genetic variants, explaining 4%–14% of the trait vari-

ance, of which 19 were classified as influencing HbA1c

through glycemic pathways, 22 through erythrocytic path-

ways, and 19 remained unclassified (Figure 2).
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Overview of mechanisms through which genetic variants can influence HbA1c.
Nonglycemic pathways influencing HbA1c include fac-

tors affecting erythrocyte biology. Hereditary hemolytic

anemia is associated with reduced erythrocyte lifespan

and therefore likely to cause falsely lower HbA1c relative

to average glycemia [20]. On the other hand, iron defi-

ciency is known to raise HbA1c [21]. Further, thalasse-

mias, other hemoglobin variants (e.g. HbS, HbC, HbD,

HbE), and elevated fetal hemoglobin have been reported

to interfere with some HbA1c laboratory assay methods

[22,23]. As HbA1c is a diagnostic test for diabetes, genetic

variation acting through nonglycemic pathways that

falsely lower HbA1c result in missed T2D cases

[23,24]. Conversely, falsely raised HbA1c can result in

overdiagnoses.

The role of unclassified genetic variants is unclear. It is

possible that some of them may still act through glycemic

or erythrocytic pathways, but studies to date may have

been insufficiently powered to demonstrate any modest

associations with glycemic or erythrocytic measures.

Alternatively, they may be acting through mechanisms

that are neither mediated through between-person varia-

tion in erythrocytic lifespan, erythrocytic biology or gly-

cemia. For instance, the FN3K locus has been identified

through GWAS to be associated to HbA1c but neither

glycemic measures nor erythrocytic indices, and has

therefore remained unclassified [16��]. The FN3K gene

encodes fructosamine-3-kinase, an enzyme involved in

deglycation of glycated proteins, a nonglycemic none-

rythrocytic mechanism that likely influences HbA1c.

Implications of G6PD deficiency and sickle
cell trait on the use of HbA1c in people from
different genetic backgrounds
Wheeler et al. [16��] found that the genetic architecture of

HbA1c in Europeans and Asians comprised multiple

genetic variants with modest effect sizes. By contrast,

the genetic architecture of HbA1c in African Americans

was dominated by a single missense variant on the X-
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chromosome in the gene G6PD, rs1050828 (G202A,

alleles C/T, p.Val68Met). G6PD codes for the erythrocyte

enzyme glucose-6-phosphate dehydrogenase, and muta-

tions in this gene can lead to G6PD deficiency, and

hemolytic anemia [25,26] including favism [27]. The

geographic distribution of G6PD deficiency is strongly

correlated with the distribution of malaria, and G6PD
allelic-variants have been found in malarial endemic

regions around the world, specifically parts of the Middle

East, Asia, South America, and most of Africa [28]. Thus,

G6PD deficiency has implications on the diagnostic accu-

racy of HbA1c worldwide, including cosmopolitan areas

where minority groups with recent non-European ances-

try are more likely to carry the G6PD variant. The

particular variant identified by Wheeler and colleagues

was monomorphic in European and Asian populations,

but had minor allele (T) frequency 10%–15% in African

American individuals. The minor allele was associated

with lower HbA1c; an absolute decrease of 0.81%-units

(95% CI 0.66–0.96) for men carrying the T allele, and

0.68%-units (95% CI 0.38–0.97) in women with two

copies (Figure 3). Importantly, to achieve certification

for accurate laboratory reporting of HbA1c values, mea-

sured HbA1c ought to be within 6% of the standard

reference laboratory mean values (i.e., 6.5 � 0.4%-units)

[29]. The effect of the G6PD variant on HbA1c exceeds

these limits.

The findings of the study have direct clinical implica-

tions. If only a single measure of HbA1c were used to

diagnose T2D, then 650 000 African Americans

(430 000 men and 180 000 women) in the US (approxi-

mately 2% of out of an estimated 29.93 million) with T2D

would remain undiagnosed due to the G6PD variant using

the current threshold of 6.5%-units (Figure 4). Given

individuals with G6PD deficiency are often asymptom-

atic and universal screening is not currently recom-

mended worldwide [25,30], the study suggested investi-

gating the benefits of screening for the G6PD genotype
www.sciencedirect.com
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Figure 2

SYF2

0

1
2

3
4

5
6

7
8

C
hrom

osom
e

9
19

11
12

13
14

15
16

17
18

19
20

21
22

X

40

Log10BF

60 8020

CERS2
TMEM79
SPTA1
ATAD2B
FOXN2

SCRN3
SYN2
USP4

FNDC3B

SOX30

G6PC2*
G6PC2

ADCY5
SLC2A2

FREM3

CDKAL1
HFE
HFE*
C6orf183
MYB
CITED2
DGKB
GCK
GCK*
ANK1*
ANK1
SLC20A2

C9orf47

HK1

KLF4

HK1*

BET1L

SLC30A8
MTAP

ABO

TCF7L2

KCNQ1
FADS2
ARAP1
MTNR1B

PDX1
KL
ATP11A
GAS6

FTO

TMC6
FN3KRP
MYO9B*

CNTN5

SENP1
ATXN2

ITFG3

CDH3
CDT1
ERAL1

MYO9B
TMPRSS6
G6PD

PHB2

Current Opinion in Genetics & Development

Manhattan plot illustrating the 60 HbA1c-associated signals identified in Wheeler et al. [16��], colored by classification as erythrocytic (red),

glycemic (green) or unclassified (blue). *Distinct secondary signal at the locus.
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Figure 3
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Mean glycated hemoglobin by genotype for chromosome X

rs1050828.
when using HbA1c to diagnose diabetes in populations of

African ancestry, or where G6PD deficiency is common.

In those with G6PD deficiency, direct glucose measure-

ments or adjusted diagnostic thresholds should be used to

diagnose T2D, and it will be important to characterize the

effect of other G6PD variants at this locus.

In an accompanying perspective [31�], Paterson noted

that G6PD is subject to X-inactivation a process by which

one of the copies of the X chromosome in females is

inactivated. Depending on which X chromosome is inac-

tive in red cell precursors, the artificial lowering of HbA1c

may differ across heterozygous females (leading to a

larger variance in HbA1c levels in heterozygous (CT)

compared to homozygous (CC) females) despite having

the same genotype at this variant [16��].

Similarly, another study examined whether sickle cell

trait (SCT), defined as the presence of one abnormal

allele for HbS at rs334, a variant on chromosome 11, was

associated with differences in HbA1c among African

Americans. Investigators found that, for a given fasting

glucose level, HbA1c values were lower in those with

SCT compared to those without (mean HbA1c differ-

ence, �0.29% (95%CI �0.35, �0.23). The prevalence of

prediabetes and diabetes defined by HbA1c (5.7 to

<6.5%-units, and �6.5%-units, respectively) in African

Americans without a prior diagnosis of diabetes was found

to be over 40% lower among those with SCT compared to

those without. Conversely, they found no difference in

the prevalence of prediabetes or diabetes when defined

by fasting glucose or 2-hour glucose values. These find-

ings suggest that HbA1c may systematically underesti-

mate past glycemia in people with SCT, resulting in

underdiagnosis of T2D in African Americans [32�].
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In the era of precision care, it has become increasingly

important to progress beyond race-based medical prac-

tices to genotype-based medical practices [33]. Genetic

investigations across different ancestral groups may allow

us to eventually isolate the clinical implications of ances-

try-specific HbA1c-related genetic variants from the

social determinants of health that correlate with race/

ethnic groupings. For instance, the mean HbA1c among

Blacks is consistently slightly higher than among Whites

[34,35]. Yet, HbA1c has similar predictive ability for

longitudinal prediction of incident T2D in both races

even after adjusting for fasting glucose and other clinical

variables [36].

Nevertheless, these racial differences in mean HbA1c

continue to spark debate over the extent to which these

differences are genetically determined, and whether

these differences can be explained by differences in

glycemia, social factors, or the quality or access to health-

care. Further, it is unclear whether such differences are

meaningful when using HbA1c in clinical practice [37].

Although the American Diabetes Association acknowl-

edges in clinical practice guidelines that race/ethnicity

can be taken into consideration when using HbA1c to

diagnose diabetes [38], an individual’s unique genotype,

in addition to the socially defined concept of race/ethnic-

ity, needs to be considered when usingHbA1c in diabetes

diagnosis and patient care. Applying a different diagnostic

threshold to all individuals who self-identify as African

American as an attempt to address diagnostic inaccuracy

caused by genetics, such as the G6PD deficiency variant

or sickle cell variant which only affect carriers, would be

inappropriate, and could ironically create greater dispar-

ities in care. Similarly, completely avoiding the use of

HbA1c in clinical practice is probably inappropriate as

HbA1c is a convenient and valid test for the majority of

people. Therefore, a detailed examination of genetic

effects on HbA1c and the frequency by which these

genetic variants differ across ancestrally diverse popula-

tions is a critical next step in elucidating the clinical

implications of HbA1c genetics. Whether HbA1c genet-

ics would be able to explain racial difference in mean

HbA1c remains to be answered.

Implications of HbA1c genetics to HbA1c-
glycemia discordance and precision medicine
Apart from its use as a diagnostic test, HbA1c is also used

to assess overall glycemic control, disease progression,

and response to therapy in people with diabetes [39].

Current management of T2D involves regular measure-

ments of HbA1c and subsequent adjustment of treatment

to lower the HbA1c towards a normal or near-normal

level. As treatment decisions are based on HbA1c,

patients with genetically raised HbA1c through nongly-

cemic mechanisms may overuse medical services, be

over-treated, and have increased rates of side-effects;

whereas patients with genetically lowered HbA1c
www.sciencedirect.com
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Figure 4
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Estimated number of African Americans with type 2 diabetes (T2D) in the US whose diagnoses would be missed due to the glycose-6-phosphate

dehydrogenase (G6PD) variant if screened with glycated hemoglobin (HbA1c). Using NHANES, a representative sample of US in 2013–2014,

investigators estimated that 0.65 million African Americans with type 2 diabetes (T2D) in the US would remain undiagnosed if screened with

glycated hemoglobin (HbA1c) �6.5%-units due to the glycose-6-phosphate dehydrogenase (G6PD) variant. The frequency of the HbA1c-lowering

allele, T, was assumed to be 11% and well-distributed in the population. Total number of African Americans in the US in 2013 was 29.93 million;

mean age was 41; 54% were women. Median HbA1c in this population was 5.5%-units and mean HbA1c was 5.7%-units (SD 0.6). Adjusted T2D

diagnosis threshold for men with the T allele is 5.7%-units, 5.8%-units for women with the TT genotype, and 6.2% for women with the TC

genotype.
through nonglycemic mechanisms may have delayed

diagnoses, inadequate treatment, persistent hyperglyce-

mia, and increased rates of T2D-related complications. It

remains uncertain whether genetically induced discor-

dance between HbA1c and glycemia leads to suboptimal

care and adverse health consequences in ways that could

be remedied by use of genetic knowledge.

Measures of the discordance between reported HbA1c

levels and the expected HbA1c level estimated by gly-

cemia include the hemoglobin glycation index and the

glycation gap. The hemoglobin glycation index is calcu-

lated from the difference between the measured HbA1c

level and the HbA1c level predicted from its regression

on mean glucose levels. The glycation gap is calculated

from its regression on fructosamine levels, a glycemic

measure unrelated to erythrocytes. It has been shown that

these measures of HbA1c-glycemia discordance are
www.sciencedirect.com
associated with important health outcomes, including

mortality, microvascular disease, macrovascular disease

and treatment-related hypoglycemia [40–42].

It is possible that genetic variants that influence HbA1c

through nonglycemic pathways are determinants of these

measures of HbA1c-glycemia discordance. Supporting

this hypothesis is a previous study that showed that the

glycation gap may be partly genetically determined and

account for one third of the heritability of HbA1c [43].

Similar to how the sickle cell and G6PD deficiency

variants artificially lower HbA1c through shortening of

the erythrocytic lifespan, some common HbA1c-related

genetic variants may contribute to individual differences

in erythrocytic age. A previous study has shown that

between-person variation in mean erythrocytic age

explains nonglycemic variation in HbA1c and accounting

for this variation likely reduces errors in its estimation of
Current Opinion in Genetics & Development 2018, 50:79–85
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average glycemia [44�]. Certain unclassified HbA1c-

related variants that may not influence erythrocytic life-

span or glycemia may also contribute to this discordance.

For instance, differences in fructosamine-3-kinase activ-

ity, which could be caused by variation in the FN3K gene,

have been shown to be associated with the glycation gap

in people with diabetes [45].

Determining which alleles at these HbA1c-related var-

iants raise or lower the hemoglobin glycation index or

glycation gap is necessary to accurately recalibrate HbA1c

values for these genetic effects or derive genotype-

specific diagnostic thresholds for HbA1c, and improve

the diagnostic value and ability of HbA1c to evaluate

glycemic control in patients with T2D regardless of their

genetic background. Importantly, while the majority of

these genetic variants are common in the populations

studied, they have modest effects on HbA1c individually.

Only people carrying multiple of these variants would

have clinically significant discordance between HbA1c

and overall glycemia.

Future directions and conclusions
Large-scale genetic discovery efforts on common human

variation with the potential for direct clinical practice or

public health translation are few and far between. Inves-

tigating how the application of HbA1c genetics can

improve the clinical utility of this valuable biomarker

that is central to T2D diagnosis, risk stratification, pre-

diction, and patient care is an important next step. As

illustrated by the discovery of the G6PD variant in African

Americans, genetic analyses of ethnically diverse popula-

tions offer the possibility of uncovering novel genetic

variants that impact the clinical utility of HbA1c in ethnic

minorities. Similarly, studies focusing on low-frequency

and rare variants, using newer genotyping arrays or denser

imputation panels such as the 1000 Genomes Project [46],

the Haplotype Reference Consortium [47], deep-cover-

age whole genome sequence data from The Trans-Omics

for Precision Medicine (TOPMed) Program (https://

www.nhlbiwgs.org/), or the African Genome Resources

(AGR) panel (https://www.apcdr.org/), may identify addi-

tional variants with clinically meaningful effects on

HbA1c. Findings have the potential to challenge the

manner in which HbA1c is currently used as a diagnostic

tool, inform the individualization of HbA1c-defined

thresholds for screening, and HbA1c-defined goals to

guide treatment decisions, while promoting health equity

for people of different genetic backgrounds, and encour-

aging the practice of precision medicine [48], precision

screening and precision public health.
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