
Genome-wide analyses identify 68 new loci associated with 
intraocular pressure and improve risk prediction for primary 
open-angle glaucoma

Anthony P Khawaja#1,2, Jessica N Cooke Bailey#3, Nicholas J. Wareham4, Robert A. Scott4, 
Mark Simcoe5,6, Robert P. Igo Jr.3, Yeunjoo E. Song3, Robert Wojciechowski7,8, Ching-Yu 
Cheng9,10,11, Peng T Khaw1, UK Biobank Eye & Vision Consortium, NEIGHBORHOOD 
Consortium, Louis R Pasquale12, Jonathan L. Haines3, Paul J Foster1,13, Janey L 
Wiggs12,†, Chris J Hammond5,†, and Pirro G Hysi5,6,†

1NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL 
Institute of Ophthalmology, London, United Kingdom

2Department of Public Health and Primary Care, Institute of Public Health, University of 
Cambridge School of Clinical Medicine, Cambridge, United Kingdom

3Department of Population and Quantitative Health Sciences, Institute for Computational Biology, 
Case Western Reserve University School of Medicine, Cleveland, Ohio, USA

4MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of 
Metabolic Science, Cambridge Biomedical Campus, Cambridge, UK

5Department of Ophthalmology, King's College London, St. Thomas' Hospital, London, United 
Kingdom

6Department of Twin Research & Genetic Epidemiology, King's College London, St. Thomas' 
Hospital, London, United Kingdom

7Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA

8Johns Hopkins Wilmer Eye Institute, Baltimore, Maryland, USA

9Singapore Eye Research Institute, Singapore National Eye Centre, Singapore

10Department of Ophthalmology, National University of Singapore and National University Health 
System, Singapore

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Corresponding authors’ email addresses: Pirro G Hysi: pirro.hysi@kcl.ac.uk, Chris J Hammond: chris.hammond@kcl.ac.uk, Janey 
L Wiggs: janey_Wiggs@meei.harvard.edu.
†These authors jointly directed this work and are joint corresponding authors

Author Contributions
A.P.K., J.N.C.B., M.S., R.P.I., Y.E.S. and P.G.H. conducted the analyses. A.P.K., J.N.C.B., P.J.F., J.L.W., C.J.H. and P.G.H. jointly 
wrote the manuscript. P.T.K. and P.J.F. designed the ophthalmic component of the UK Biobank study. N.J.W. and R.A.S. led 
genotyping of the EPIC-Norfolk study. R.W., C.Y.C., L.R.P. and J.L.H. critically appraised the analyses and critically reviewed the 
manuscript.

Competing Financial Interests
A.P.K. has received a lecturing honorarium from Grafton Optical.
P.J.F. reports personal fees from Allergan, Carl Zeiss, Google/DeepMind and Santen, a grant from Alcon, outside the submitted work

Europe PMC Funders Group
Author Manuscript
Nat Genet. Author manuscript; available in PMC 2018 November 21.

Published in final edited form as:
Nat Genet. 2018 June ; 50(6): 778–782. doi:10.1038/s41588-018-0126-8.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/226941175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.nature.com/authors/editorial_policies/license.html#terms


11The Ophthalmology & Visual Sciences Academic Clinical Program (Eye-ACP), Duke-NUS 
Medical School, Singapore

12Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 
Boston, Massachusetts, USA

13Division of Genetics and Epidemiology, UCL Institute of Ophthalmology, London, United 
Kingdom

# These authors contributed equally to this work.

Abstract

Glaucoma is the leading cause of irreversible blindness globally.1 Despite its gravity, the disease is 

frequently undiagnosed in the community.2 Raised intraocular pressure (IOP) is the most 

important risk factor for primary open-angle glaucoma (POAG).3,4 Here we present a meta-

analysis of 139,555 European participants that identified 112 genomic loci associated with IOP, 68 

of which are novel. These loci suggest a strong role for angiopoietin-receptor tyrosine kinase 

signaling, lipid metabolism, mitochondrial function and developmental processes underlying risk 

for elevated IOP. In addition, 48 of these loci were associated with glaucoma in an independent 

cohort, 14 of which at a Bonferroni-corrected threshold. Regression-based glaucoma prediction 

models had an area under Receiving Operator Characteristic curve (AUROC) of 0.76 in USA 

NEIGHBORHOOD study participants and 0.74 in independent glaucoma cases from UK Biobank. 

Genetic prediction models for POAG offer an opportunity to target screening and timely therapy to 

individuals most at risk.

IOP is strongly associated with POAG, and population-based studies have suggested an 

increased risk of 16% for every mmHg increase in IOP.3 Lowering of IOP remains the only 

proven therapy to slow the progression of vision loss in POAG.5 IOP heritability is 

estimated at 55%6 and, to date, genome-wide association study (GWAS) meta-analyses have 

identified several loci associated with IOP7–9 and POAG10–12 which explain a minor 

proportion of disease heritability7 and provide only limited insight into its biological 

mechanisms. This relative lack of knowledge is partially due to insufficient statistical power 

of previous association works.

Here we present the largest genome-wide association study (GWAS) of IOP to date, in 

139,555 participants of three cohorts: UK Biobank,13 EPIC-Norfolk 14 and the previously 

reported combined results from 14 European studies in the International Glaucoma Genetics 

Consortium (IGGC).8 Additionally, we examined associations of 120 significant IOP loci 

with glaucoma among independent UK Biobank participants (not included in the IOP 

discovery GWAS) and with clinically diagnosed POAG among participants of a large 

multicenter case-control study (NEIGHBORHOOD).10

First, a linear mixed model GWAS for IOP was carried out in UK Biobank participants 

(n=103,382). Results were replicated in and then meta-analyzed with results from EPIC-

Norfolk (n=6,595) and the IGGC meta-analysis8 (n=29,578). Cohort summary details are 

presented in Supplementary Table 1. All participants were of European descent 

(Supplementary Fig. 1 and 2). The meta-analysis results had a genomic inflation factor of 
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1.28 (Supplementary Fig. 3), but an LD score regression intercept15 of 1.06 (SE=0.011) 

along with a (intercept-1)/(mean(χ2)-1)=0.12, consistent with IOP polygenicity rather than 

population structure.

The UK Biobank analysis alone identified 74 unique autosomal genomic regions meeting 

genome-wide significance (P<5x10-8), of which 45 were novel (not previously associated 

with IOP, glaucoma, or related endophenotypes). Results across the three studies were 

directionally consistent (Supplementary Table 2); 49 loci replicated in IGGC with a false 

discovery rate (FDR) of <0.05, and 27 loci replicated in either of the replication cohorts 

(IGGC or EPIC-Norfolk) at a Bonferroni-corrected threshold (P<6.8x10-4).

Combining the three separate study results into a meta-analysis of 139,555 participants 

revealed genome-wide significant associations for 112 unique autosomal genomic regions 

(Supplementary Fig. 4, Supplementary Table 2), of which 68 are novel (Table 1). A 

conditional analysis traced the origin of association signals to 133 SNP loci; when included 

together in a linear regression model, these SNPs collectively explain 17% of IOP variance 

in the EPIC-Norfolk cohort and 9% in UK Biobank. The difference in variance explained 

between the studies may be in part be due to less measurement error in EPIC-Norfolk where 

three measurements were taken per eye compared to just one measurement per eye in UK 

Biobank. Among the significant regions, there are previously reported IOP-associated loci,

7,8 including TMCO1 (rs10918274, P=2.4x10-87), GAS7 (rs9913911, P=4.0x10-68), 

ABCA1 (rs2472493, P=6.2x10-59), and CAV1/CAV2 (P=2.5x10-56 for rs10281637). 

Additionally, 4 of the 10 previously reported POAG-associated loci not known to also be 

associated with IOP were among the significant regions: AFAP1 (rs28649910, P=8.9x10-41), 

FOXC1 (rs2745572, P=1.8x10-28), TXNRD2/GNB1L (rs17534001, P=5.2x10-12), and 

ATXN2/SH2B3 (rs10774624, P=3.4x10-10).10–12 These results strongly suggest these 

genes mediate POAG risk via raised IOP.

Interestingly, four loci previously associated with primary angle-closure glaucoma, a form of 

glaucoma distinct from POAG, were also among the significant regions for IOP, namely 

HGF (rs327716, P= 6.1x10-13),16 PLEKHA7 (rs4141194, P=7.2x10-21), FERMT2 
(rs8009633, P= 7.1x10-13) and GLIS3 (rs6476827, P= 1.2x10-10),17 suggesting that 

mechanisms underlying angle-closure also contribute to variation in IOP within the normal 

range. Three IOP-significant loci were in genes previously associated with optic disc cup 

area (a structural quantitative trait associated with glaucoma), but not with IOP or POAG, 

namely BCAS3 (rs3785855, P= 4.0x10-16), EFEMP1 (rs4672075, P= 1.9x10-11) and RARB 
(rs1286771, P= 4.7x10-9);8 this suggests that a proportion of optic disc structural variability 

in a population may be IOP-mediated.

Among the significant IOP loci, a strong association was observed for rs9853115 (P= 

8.9x10-52), a SNP located in an ENCODE DNaseI hypersensitivity cluster region, 51kb 

upstream from the Diacylglycerol Kinase Gamma (DGKG) gene. Diacylglycerol is involved 

in adenosine receptor signaling, which is important in IOP regulation and a potential target 

for IOP-lowering therapy.18 More broadly, DGKG is involved in lipid metabolism, a 

function shared with other IOP-influencing genes.19 Very recently, DGKG has also been 

associated with IOP in a multi-ethnic study of individuals residing in the United States.9
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Also, significantly associated were two loci harboring angiopoietin genes (ANGPT1, 

P=2.7x10-18 for rs4496939 and ANGPT2, P=1.7x10-13 for rs76020419); both are primary 

TEK (Receptor Tyrosine Kinase) ligands, mutations of which cause primary congenital 

glaucoma.20 In addition, significant association was also found for LRIG1 (rs6781336, P= 

2.7x10-18), an endogenous feedback regulator of receptor tyrosine kinases, and FER 
Tyrosine Kinase (rs73220177, P=1.6x10-11). This suggests a critical role for angiopoietin-

receptor tyrosine kinase (ANG-TEK) signaling in IOP regulation. ANG-TEK signaling is 

established as a key mediator of blood and lymphatic vessel development,21 and gene-set 

enrichment analysis of our meta-analysis results suggests a strong role for angiogenesis 

(Supplementary Table 3). TEK receptors are highly expressed in Schlemm’s canal 

endothelial cells,22 and disruption of ANG-TEK signaling in mice causes lack of 

Schlemm’s canal development.23 A locus near VEGFC was also strongly associated with 

IOP in our study (rs437376, P=5.8x10-9). VEGF-C stimulates VEGFR-3 tyrosine kinase 

signaling in lymphatic endothelial cells and a single injection of recombinant VEGF-C in the 

eyes of adult mice induced Schlemm’s canal growth with sustained reduction in IOP;24 this 

supports the hypothesis that Schlemm’s canal is a form of lymphatic vessel and that 

regulators of lymphangiogenesis are potential targets for glaucoma therapy.24

Some SNPs significantly associated with IOP in our healthy populations annotate near 

transcription factor-coding genes whose rare mutations cause congenital or childhood 

glaucoma (LMX1B,25 LTBP226). Several others are implicated in ocular development 

(MEIS127, SIX328, ADAMTS1829), axial length of the eye (RSPO130) and iris 

architecture (TRAF3IP131). Moreover, gene-enrichment analysis identified a key role for 

developmental processes (Supplementary Table 3). These results suggest that ocular 

developmental or anatomical variations insufficient to cause childhood glaucoma may 

manifest in later life with raised IOP and potentially POAG.

Supporting a mitochondrial contribution to POAG pathogenesis are four significant IOP loci 

at genes important for mitochondrial function. ME3 (rs2433414, P=6.9x10-16) has 

previously been implicated in POAG through a mitochondrial gene set analysis.32 VPS13C 
(rs4775427, P=4.1x10-18) is necessary for mitochondrial transmembrane potential, GCAT 
(rs6000889, P=2.2x10-12) regulates mitochondrial glycine production, and PTCD2 
(rs10036789, P=7.7x10-10) is involved in mitochondrial RNA maturation.

Many of the IOP-associated SNPs we report have previously been associated with other 

ocular and systemic phenotypes (Supplementary Table 4). A subsequent systematic 

comparison of all significantly associated SNPs from the current IOP meta-analysis with all 

the previously published and currently public domain GWAS data33 revealed that IOP 

significantly shares genetic risk factors with other traits; the most significant correlations are 

with traits that have been previously linked epidemiologically to IOP or glaucoma such as 

heart rate,13 sleep duration,34 and cholesterol level34 (Supplementary Table 5).

Two of the IOP-associated SNPs are missense coding (rs12923138, ELMO3 and 

rs61755579, SOS2); the rest are outside gene-coding regions. Querying of eQTL effects on 

the GTEx database confirmed that many of these SNPs alter efficiency of transcription of 

genes in their immediate vicinity (Supplementary Table 6). Genes in the vicinity of the IOP-
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associated SNPs are highly expressed in human trabecular meshwork and ciliary body 

(Supplementary Table 7), tissues important in IOP homeostasis.35 Furthermore, S-

PrediXcan analyses support a role for the IOP-associated SNPs in regulation of gene 

expression, especially for GAS7 (P=1.7x10-35) and AFAP1 (P=6.1x10-22) (Supplementary 

Table 8).

To evaluate the disease-relevance of the IOP-significant SNPs, we tested for association with 

clinically diagnosed POAG in participants of the NEIGHBORHOOD study10 (3,853 cases 

and 33,480 controls). In total, 48 SNPs were nominally associated with POAG (P<0.05), of 

which 14 SNPs were significant at a Bonferroni-corrected threshold of P<4.2x10-4. For all 

SNPs, we observed a remarkable correlation between the effect sizes for IOP and POAG 

(Fig. 1). Analysis of the high-tension (HTG) and normal-tension glaucoma (NTG) 

subgroups suggests that while the association is stronger in HTG, it is still evident in NTG 

despite IOP being within normal limits (Supplementary Table 9). Additionally, we identified 

similar associations between the IOP-significant SNPs and glaucoma (ascertained by self-

report and hospital episode statistics data) among UK Biobank participants without IOP data 

available and therefore not part of the IOP GWAS (1,500 cases and 331,078 controls; 

Supplementary Table 10). There was no evidence of association between IOP-significant 

SNPs and age at glaucoma diagnosis in either cohort (Supplementary Tables 11 and 12).

Using 120 significant variants from the conditional analysis (Supplementary Table 2) for 

which genotypes were available in NEIGHBORHOOD participants and three known POAG-

associated polymorphisms showing no evidence of association with IOP in our meta-

analysis (rs74315329 within MYOC, rs2157719 near SIX6, and rs8015152 within 

CDKN2B-As1), we built and evaluated the performance of a regression-based POAG 

prediction model that, in addition to the associated alleles’ predisposing or protective effects 

on glaucoma, also included age and sex. Despite being limited to a smaller number of 

significant SNPs, the prediction model performed well in a subset of the NEIGHBORHOOD 

study with individual-level genotype data available, in particular for HTG (AUROC=0.76) 

(Fig. 2). This model also performed well for predicting glaucoma in UK Biobank 

participants not previously included in the IOP GWAS, with an AUROC=0.74 

(Supplementary Fig. 5).

In summary, our analysis has identified 112 loci, 68 of which are novel, associated with IOP 

and the development of POAG. Several loci support an important role for ANG-TEK 

signaling in IOP regulation that may be a therapeutic target. Together with other genetic 

factors previously known to affect POAG risk, the loci explain and predict a substantial 

portion of POAG cases in two independent cohorts. Given there is currently no adequate 

population screening test for glaucoma,36 and half of glaucoma cases in the community are 

undiagnosed,2 genetic prediction models offer opportunity for improved case detection, 

earlier treatment, and preventing morbidity from the leading cause of irreparable blindness. 

The genetic loci identified in this study not only increase our understanding of the pathways 

involved in IOP and glaucoma, but also open up the possibility of using genetic markers to 

improve disease screening or even prediction of the natural history of disease in people at 

risk of glaucoma.
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Online Methods

Study Methods

UK Biobank—The UK Biobank is a very large multisite cohort study established by the 

Medical Research Council, Department of Health, Wellcome Trust medical charity, Scottish 

Government and Northwest Regional Development Agency. Detailed study protocols are 

available online (see URLs section). A baseline questionnaire, measurements, and biological 

samples were undertaken in 22 assessment centres across the UK between 2006 and 2010. 

All UK residents aged 40 to 69 years who were registered with the National Health Service 

(NHS) and living up to 25 miles from a study centre were invited to participate. The study 

was conducted with the approval of the North-West Research Ethics Committee (ref 06/

MRE08/65), in accordance with the principles of the Declaration of Helsinki, and all 

participants gave written informed consent.

Ophthalmic assessment was not part of the original baseline assessment and was introduced 

as an enhancement in 2009 for 6 assessment centres which are spread across the UK 

(Liverpool and Sheffield in North England, Birmingham in the Midlands, Swansea in Wales, 

and Croydon and Hounslow in Greater London). Participants completed a touch-screen self-

administered questionnaire. The response options for ethnicity included White (English/Irish 

or other white background), Asian or British Asian (Indian/Pakistani/Bangladeshi or other 

Asian background), Black or Black British (Caribbean, African, or other black background), 

Chinese, mixed (White and Black Caribbean or African, White and Asian, or other mixed 

background), or other ethnic group (not defined). Self-reported glaucoma status was 

ascertained as participants who selected “glaucoma” from a list of eye disorders to the 

question, “Has a doctor told you that you have any of the following problems with your 

eyes?”

Participant IOP was measured once for each eye using the Ocular Response Analyzer (ORA; 

Reichert, Corp., Buffalo, NY). Participants who reported eye surgery within the previous 4 

weeks or participants reporting an eye infection were precluded from having IOP measured. 

The ORA is a non-contact tonometer that measures the force required to flatten the cornea 

using a jet of air. Unlike conventional non-contact tonometry, the ORA measures two 

pressures; firstly, when the cornea flattens on inward motion, and secondly when the cornea 

is flattened on outward motion. The average of these two pressures has been calibrated to 

derive a Goldmann-correlated IOP (IOPg) and the difference between these two pressures 

has been shown to be related to the biomechanical properties of the cornea.37 A linear 

combination of these two pressures has been developed to derive a corneal-compensated IOP 

(IOPcc).38 We used IOPcc in analyses as it is thought to provide the most accurate 

assessment of true IOP and least affected by corneal properties.13

We excluded participants with a history of laser or surgery for glaucoma, eye injury, corneal 

graft surgery, or refractive laser surgery as these participants are likely to have IOP altered 

from physiological levels due to non-genetic causes. To handle extreme values of IOP, we 

excluded IOP measurements in the top and bottom 0.5 percentiles.
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A significant proportion of participants with the highest IOPs in the cohort will have been 

diagnosed and treated with IOP-lowering medication in the community before entering the 

current study. Data for pre-treatment IOP were not available and excluding these participants 

would have truncated the study IOP distribution, thereby reducing statistical power for 

detecting associations with IOP. We therefore imputed pre-treatment IOP: in study 

participants reporting current IOP-lowering medication (n = 1,151), the measured IOP was 

divided by 0.7 based on the mean IOP reduction achieved by medication.39 This method has 

been used in previously published genome-wide association studies for IOP.7,40 Participant 

IOP was calculated as the mean of right and left eye values for each participant with data 

available for both eyes. If data were only available for one eye, we considered that value to 

be the participant’s IOP. Figures presenting the cleaning and derivation flow for IOP and 

glaucoma status are in the Supplementary Note.

Details for DNA extraction and genotyping of UK Biobank participants are given in the 

Supplementary Note.

The basic model tested was the average of IOP measured in the left and right eye as an 

outcome of a regression model whose predictor is the allele dosage at a given polymorphic 

locus, adjusted for age, sex and the first five principal components (see Supplementary Note 

for further details). Since there was, at the time of writing, evidence of cryptic relatedness 

among the UK Biobank participants, a linear mixed model that controls for population 

structure was used41 as implemented in the program BOLT-LMM (see URLs section).

International Glaucoma Genetics Consortium (IGGC)—The IGCC study was a 

meta-analysis of 37,930 participants from 19 studies of European (14 studies) and Asian (5 

studies) descent.8 Similarly, to our study, mean IOP of right and left eyes was considered 

and pre-treatment IOP was imputed for participants using IOP-lowering medication. A 

variety of genotyping arrays were used across the different studies and genotypes were 

imputed using 1000 Genomes Phase 1 reference samples. SNPs with MAF<0.01 and 

imputation quality scores <0.3 were excluded. Linear regression analyses were adjusted for 

age, sex and the first five principal components for population-based studies, or family 

structure for family-based studies. For the purposes of the current study, we used publicly 

available summary results for the European subset of the IGGC study (n=29,578).

EPIC-Norfolk—The European Prospective Investigation into Cancer (EPIC) study is a pan-

European prospective cohort study designed to investigate the aetiology of major chronic 

diseases.42 EPIC-Norfolk, one of the UK arms of EPIC, recruited and examined 25,639 

participants between 1993 and 1997 for the baseline examination.43 Recruitment was via 

general practices in the city of Norwich and the surrounding small towns and rural areas, and 

methods have been described in detail previously.44 Since virtually all residents in the UK 

are registered with a general practitioner through the National Health Service, general 

practice lists serve as population registers. Ophthalmic assessment formed part of the third 

health examination and this has been termed the EPIC-Norfolk Eye Study.14

In total, 8,623 participants were seen for the Eye Study between 2004 and 2011, and IOP 

was measured using the ORA. Three measurements were taken per eye and the best signal 
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value used. Mean IOPcc of right and left eyes was calculated and used in analyses. 99.7% of 

EPIC-Norfolk are of European descent and we excluded non-White participants. The EPIC-

Norfolk Eye Study was carried out following the principles of the Declaration of Helsinki 

and the Research Governance Framework for Health and Social Care. The study was 

approved by the Norfolk Local Research Ethics Committee (05/Q0101/191) and East 

Norfolk & Waveney NHS Research Governance Committee (2005EC07L). All participants 

gave written, informed consent.

Details for genotyping and imputation of EPIC-Norfolk participants are given in the 

Supplementary Note.

Similarly to the UK Biobank GWAS, we examined the relationship between allele dosage 

and mean IOPcc using linear regression adjusted for age, sex and the first 5 principal 

components. Analyses were carried out using SNPTEST version 2.5.1.

NEIGHBORHOOD Study—All cases and controls met the clinical criteria used 

previously by the NEIGHBOR and GLAUGEN studies previously described.10,45,46 This 

study Subjects were enrolled using a protocol was approved by the Massachusetts Eye and 

Ear Infirmary institutional review board and all subjects signed consent forms approved by 

the local IRB prior to enrolling in the study.

Briefly, POAG cases were defined as individuals for whom reliable visual field (VF) tests 

showed characteristic VF defects consistent with glaucomatous optic neuropathy. 

Individuals were classified as affected if the VF defects were reproduced on a subsequent 

test or if a single qualifying VF was accompanied by a cup-disc ratio (CDR) of 0.7 or more 

in at least one eye. The majority of cases (over 90%) met this definition, including 96% of 

the NEIGHBOR cases;45 and all of the Massachusetts Eye and Ear Infirmary (MEEI), 

Nurses’ Health Study (NHS), Health Professionals Follow-up Study (HPFS), and Women’s 

Genomes Health Study (WGHS) cases. A small percentage (less than 10%) of the 

NEIGHBOR, Mayo, Marshfield and Iowa cases were defined by cup-to-disc ratio only 

because visual field data was not available, in some cases because of advanced disease (poor 

visual acuity) or other medical condition. The CDR definition was > 0.7 in both eyes or 

CDR asymmetry between the two eyes of 0.2 (Supplementary Table 2). In the OHTS study 

an alternative case definition based on progression of optic nerve degeneration was also 

used47 (see below). Patients with signs of secondary causes for elevated IOP such as 

exfoliation syndrome or pigment dispersion syndrome or critically narrow filtration 

structures were excluded. Elevation of IOP was not a criterion for inclusion of cases or 

controls; however, 1,868 cases did have a history of elevated IOP (≥22 mm Hg) measured in 

a clinical setting (typically between the hours of 8AM and 5PM) and were classified as high-

tension glaucoma (HTG), while 725 cases did not have elevated IOP and were classified as 

normal-tension glaucoma (NTG). For 1,260, cases peak IOP data was not available. The 

controls were selected to be representative of the age range and gender of the cases. While 

the average age of cases and controls was not statistically different for any dataset included 

in the NEIGHBORHOOD, some datasets included cases and controls younger than age 55 

which could reduce the power of the study. Controls had IOP < 21 mmHg, as measured in a 

clinical setting, CDR of less than 0.6 and did not have a family history of glaucoma.
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Participants in the NEIGHBORHOOD used different genotyping chips and imputation 

methods as specified elsewhere.10

Imputed genotypes (1000 Genomes panel, March 2012, INFO score >0.9) for 3,853 cases 

and 33,480 controls from 8 independent datasets were used as the discovery cohort for the 

NEIGHBORHOOD genome-wide association study for POAG.10 Quality-control was 

performed for each data set as described in Bailey et al.10 Overall sample and genotype call 

rates were ≥ 95% for each site. Samples with Log R ratio (LRR) and B allele frequency 

(BAF) values suggestive of copy number variants were removed prior to analysis. Principal 

components (eigenvectors) were computed for all participants using EIGENSTRAT.48 For 

each dataset, logistic regression was performed in ProbABEL49 for all analyses (POAG 

overall, HTG, NTG), controlling for age, sex, and study-specific covariates including study-

specific eigenvectors. Each analysis was evaluated separately for overall genomic inflation 

(implementing the R package GenABEL) (λ-value ≤ 1.05 for each dataset). Results were 

meta-analyzed in METAL50 implementing the inverse variance weighted method and 

applying genomic control correction.

For the prediction models and assessment of their performance, a balanced dataset of cases 

and controls (Ncases=Ncontrols=2,606) used were from only two subcohorts: NEIGHBOR and 

MEEI. The choice of the two largest subcohorts within NEIGBORHOOD assured that the 

prediction dataset was fully balanced and, as the genotyping and imputation pipelines 

followed for them were largely compatible, minimized the risk of stratification among the 

samples.

Statistical Analyses

Details of our statistical analyses are below and in the accompanying Life Sciences 

Reporting Summary.

Meta-analysis—Summary statistics from each strata (UK Biobank, the International 

Glaucoma Genetics Consortium meta-analysis8 and from the participants in the EPIC study 

that were not included in the IGGC meta-analysis) were combined using fixed-effects 

inverse variance weighted meta-analysis, using METAL.50 Random-effects meta-analyses 

results were also obtained using GWAMA,51 but results from this did not differ significantly 

from the fixed-effect model and the results shown are just from the latter. No genomic 

control adjustment was applied during the meta-analysis.

Conditional and explained heritability analyses—The program GCTA52 was used 

for the conditional analyses53 to identify independent effects within associated loci as well 

as the calculation of the phenotypic variance explained54 by all polymorphisms, genotyped 

or imputed, associated with the trait after the conditional analyses. The threshold of 

significance was set at 5x10-8 and the collinearity threshold was set at r2=0.9. The LD 

estimates were derived from the UKBB cohort.

Calculation of genomic inflation factor—To assess the potential inflation of 

association probabilities, genomic inflation factors55 were calculated and Q-Q plots were 

drawn using the package ‘gap’ in R (see URLs section).
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Multiple testing correction—Two methods of correcting for multiple testing were used. 

The first was a classic Bonferroni, in which the threshold of significance (0.05) was divided 

by the number of experiments (n):

αBonferroni = 0.05/n

Given the large number of loci for which replication was needed, we additionally calculated 

the False Discovery Rates, using the Benjamini-Hochberg method.56

LD Score analyses—Inter-trait genetic correlation

Bivariate genetic correlations between IOP and other complex traits whose summary 

statistics are publicly available were assessed following previously described methodologies,

57 using the program LD Score (see URLs section).

Regression intercept

To distinguish between the effect of polygenicity and those arising from sample stratification 

or uncontrolled population admixture, we followed previously suggested approaches15 to 

calculate the LD Score regression intercepts using the program LD Score (see URLs 

section).

Prediction analyses—To assess the potential value of the loci associated with IOP to 

predict POAG, regression-based models were deliberately trained and tested separately in 

two different groups. The first, is the set of UK Biobank participants for whom IOP 

measurements were not available (which made them ineligible to participate in the meta-

analysis of the IOP regression analysis; see Supplementary Note). Since this information 

was questionnaire-derived, for these patients it was impossible to stratify the diagnosis of 

glaucoma into normal or high-tension glaucoma subgroups (NTG and HTG, respectively). 

This dataset was not balanced, since it included 1,500 cases of glaucoma and 331,078 

individuals with no self-reported diagnosis of glaucoma. The second group was formed by 

the clinical cases and controls from two of the NEIGHBORHOOD subcohorts (NEIGHBOR 

AND MEEI). Patients and controls in this group were clinically characterized. They were a 

mixture of NTG and HTG cases (n=561 and n=1,298 respectively), a further 747 subjects of 

uncertain POAG type, and 2,606 controls).

We built the same model in all cases, which included age, sex, and the major genetic variants 

associated with IOP after the conditional analysis. We additionally included three known 

POAG-associated polymorphisms showing no evidence of association with IOP in our meta-

analysis (rs74315329 within MYOC, rs2157719 near SIX6, and rs8015152 within 

CDKN2B-As1). To minimize bias, we did not use effect sizes observed for IOP to weigh the 

effects in other cohorts. Instead, in each group separately, logistic regressions were trained 

using a random subset of 80% of cases and controls. The ability of these trained models to 

correctly predict the presence of POAG (whether self-reported or doctor diagnosed, 

depending on the group), was assessed in the remaining 20% of the subjects. A Receiver 

Operating Characteristic (ROC) curve was drawn for each case and an Area Under the Curve 
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(AUC) was calculated. R programming language and software environment for statistical 

computing (see URLs section) was used for both the logistic regression models (‘glm’) and 

to evaluate the performance of the model (‘ROCR’).

SNP and gene annotations—Polymorphisms associated at a GWAS level (P<5x10-8) 

were clustered within an “associated genomic region”, defined as a contiguous genomic 

region where GWAS-significant markers were within 1 million base pairs from each other. 

Significant polymorphisms were annotated with the gene inside whose transcript-coding 

region they are located, or alternatively, if located between two genes, with the gene nearest 

to it. The associated genomic regions were collectively annotated with the gene overlapping, 

or nearest the most significantly associated variant within that region. In addition, the 

polymorphic sites were functionally annotated using SNPnexus.58

GTEx—Due to unavailability of tissues extracted from human eyes, the influence of our 

significant SNPs on transcription of adjacent genes was assessed in all other tissues available 

to the GTEx Project59 and queried in the GTEx Portal (see URLs section).

Ocular gene expression—Gene expression in human trabecular meshwork and ciliary 

body tissue of genes at loci significant in the IOP GWAS were examined using results from 

a published RNA sequencing study.35 The expression level for each gene (adjusted for gene 

length and number of sequencing reads in a given sample) was presented in fragments per 

kilobase of transcript per million mapped reads (FPKM). Based on the overall gene 

expression distribution, genes with an FPKM≥1, an FPKM≥4.7 (33rd percentile) and an 

FPKM≥15.9 (67th percentile) were classified as lowly, moderately, or highly expressed, 

respectively.

S-PrediXcan—We used S-PrediXcan60 to estimate genetically regulated gene expression 

using whole-genome tissue-dependent prediction models trained with GTEx reference 

transcriptome data and then correlate this with IOP to identify genes involved in IOP 

regulation. S-PrediXcan is related to PrediXcan61 but uses GWAS summary statistics as 

input. Based on the GTEx analysis described above, we examined correlations using the 

following reference tissues: whole blood, adipose-omentum, brain-cortex, artery-aorta and 

artery-coronary. Results are presented in Supplementary Table 8 for all genes significant 

after Bonferroni correction for all genes tested in all tissues.

Gene-set enrichment—To identify pathways or other gene sets that were over or under-

represented among our results, we used a Gene-Set Enrichment Analysis (GSEA) as 

implemented in the Meta-Analysis Gene Set Enrichment of Variant (MAGENTA) software.

62 This program assigns scores to each gene based on the strength of association with IOP, 

adjusting for potential confounders such as gene length and linkage disequilibrium. 

Enrichment for any gene set was assessed within genes above the cut-off of the highest 75th 

centile of significant gene scores. For the current study, the most recent versions of Gene 

Ontology (GO), Panther, KGG, Biocarta and MSigDB databases were used. A permutational 

procedure and false-discovery rates were used to calculate significance of enrichment and 

control for multiple testing.
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Data Availability Statement

UK Biobank data are available through the UK Biobank Access Management System (see 

URLs section).

The data sharing and preservation strategy in EPIC-Norfolk and full details about the study 

including contact information are on the study website (see URLs section). Investigators 

wishing to work with EPIC data should contact the EPIC management group through the 

website, letter, phone or fax, and proposals have to fulfil a number of criteria including that 

the work is within the bounds of consent given by participants and has been ethically 

reviewed and approved; there is no serious risk to the viability of continuing the cohort study 

e.g. through offence to the participants from use of the data supplied; the science of the 

proposal has been satisfactorily peer reviewed and the proposal does not duplicate work 

already being done.

URLs

UK Biobank protocols:

http://www.ukbiobank.ac.uk/resources/

http://biobank.ctsu.ox.ac.uk/crystal/docs.cgi

BOLT-LMM:

http://data.broadinstitute.org/alkesgroup/BOLT-LMM/downloads/

LD Score:

https://github.com/bulik/ldsc

R programming language and software environment for statistical computing:

https://cran.r-project.org/

GTEx Portal:

https://www.gtexportal.org/home/

EPIC-Norfolk:

http://www.epic-norfolk.org.uk/

UK Biobank Access Management System:

http://www.ukbiobank.ac.uk/register-apply/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scatter plot demonstrating the correlation of effect estimates for SNP associations with IOP 

in our GWAS meta-analysis with effect estimates for SNP associations with POAG in the 

NEIGHBORHOOD study. Each point represents one SNP from the 120 independent IOP-

associated SNPs (derived from the conditional analysis of our IOP GWAS meta-analysis; 13 

of 133 SNPs were not available in NEIGHBORHOOD). The color of each point represents 

the statistical significance of the SNP association with IOP (see key). Effect estimates are 

per risk allele.
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Figure 2. 
ROC curves for performance of the POAG-predictive model in HTG (left; n=1,298) and 

NTG (right; n=561) subsets versus controls (n = 2,606) from a subset of the 

NEIGHBORHOOD study with individual level genotype data available.

Khawaja et al. Page 18

Nat Genet. Author manuscript; available in PMC 2018 November 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Khawaja et al. Page 19

Ta
b

le
 1

L
is

t o
f 

no
ve

l S
N

Ps
 m

os
t s

ig
ni

fi
ca

nt
ly

 a
ss

oc
ia

te
d 

w
ith

 I
O

P 
or

 P
O

A
G

 in
 o

ur
 s

tu
dy

. R
es

ul
ts

 a
re

 p
re

se
nt

ed
 f

or
 th

e 
IO

P 
G

W
A

S 
m

et
a-

an
al

ys
is

 (
U

K
 B

io
ba

nk
, 

IG
G

C
 a

nd
 E

PI
C

-N
or

fo
lk

; n
=

13
9,

55
5)

 a
nd

 f
or

 th
e 

as
so

ci
at

io
n 

w
ith

 P
O

A
G

 in
 th

e 
N

E
IG

H
B

O
R

H
O

O
D

 s
tu

dy
 (

3,
85

3 
ca

se
s 

an
d 

33
,4

80
 c

on
tr

ol
s)

. A
ll 

IO
P 

as
so

ci
at

io
n 

P-
va

lu
es

 a
re

 g
en

om
e-

w
id

e 
si

gn
if

ic
an

t (
P<

5x
10

-8
) 

an
d 

in
 b

ol
d 

if
 n

ot
 p

re
vi

ou
sl

y 
re

po
rt

ed
 a

s 
as

so
ci

at
ed

 w
ith

 I
O

P.
 P

O
A

G
 a

ss
oc

ia
tio

n 
P-

va
lu

es
 

ar
e 

in
 b

ol
d 

if
 n

ov
el

 a
nd

 s
ig

ni
fi

ca
nt

 a
t a

 B
on

fe
rr

on
i-

co
rr

ec
te

d 
th

re
sh

ol
d 

of
 P

<
4.

2x
10

-4
. A

 f
ul

l l
is

t o
f 

al
l g

en
om

e-
w

id
e 

si
gn

if
ic

an
t l

oc
i f

ro
m

 th
e 

IO
P 

G
W

A
S 

is
 g

iv
en

 in
 S

up
pl

em
en

ta
ry

 T
ab

le
 2

 (
in

cl
ud

in
g 

68
 n

ov
el

 lo
ci

) 
an

d 
th

ei
r 

as
so

ci
at

io
ns

 w
ith

 P
O

A
G

 in
 N

E
IG

H
B

O
R

H
O

O
D

 a
re

 s
ho

w
n 

in
 f

ul
l i

n 
Su

pp
le

m
en

ta
ry

 

Ta
bl

e 
9.

SN
P

 I
D

C
hr

P
os

it
io

n
N

ea
re

st
 g

en
e

E
ff

ec
t 

al
le

le
E

ff
ec

t 
al

le
le

 f
re

qu
en

cy
IO

P
 G

W
A

S 
m

et
a-

an
al

ys
is

N
E

IG
H

B
O

R
H

O
O

D
 P

O
A

G
 a

ss
oc

ia
ti

on

β
(9

5%
 C

I)
P

-v
al

ue
O

R
(9

5%
 C

I)
P

-v
al

ue

rs
40

74
96

1
1

38
,0

92
,7

23
R

SP
O

1
C

0.
56

-0
.0

9
(-

0.
11

, -
0.

06
)

4.
4x

10
-1

2
0.

86
(0

.8
0,

 0
.9

2)
8.

9x
10

-6

rs
67

81
33

6
3

66
,8

58
,0

50
K

B
T

B
D

8,
 L

R
IG

1
A

0.
70

0.
12

(0
.0

9,
 0

.1
5)

2.
7x

10
-1

8
1.

06
(0

.9
8,

 1
.1

4)
0.

13

rs
98

53
11

5
3

18
6,

13
1,

60
0

D
G

K
G

T
0.

50
0.

20
(0

.1
7,

 0
.2

2)
8.

9x
10

-5
2

1.
17

(1
.0

9,
 1

.2
5)

1.
4x

10
-5

rs
36

85
03

5
14

,8
20

,4
17

A
N

K
H

A
0.

72
0.

11
(0

.0
8,

 0
.1

4)
5.

1x
10

-1
5

1.
04

(0
.9

7,
 1

.1
2)

0.
30

rs
11

39
85

65
7

6
59

7,
20

3
E

X
O

C
2

C
0.

85
-0

.1
5

(-
0.

18
, -

0.
11

)
1.

2x
10

-1
5

0.
83

(0
.7

5,
 0

.9
1)

1.
8x

10
-4

rs
17

75
21

99
6

51
,4

06
,8

48
PK

H
D

1
A

0.
90

0.
16

(0
.1

2,
 0

.2
0)

2.
2x

10
-1

4
1.

34
(1

.2
0,

 1
.5

0)
2.

7x
10

-7

rs
94

94
45

7
6

13
6,

47
4,

79
4

PD
E

7B
A

0.
62

-0
.1

2
(-

0.
14

, -
0.

09
)

3.
7x

10
-1

9
0.

91
(0

.8
4,

 0
.9

7)
0.

00
63

rs
10

23
09

41
7

11
7,

63
6,

11
1

C
T

T
N

B
P2

C
0.

64
-0

.0
9

(-
0.

11
, -

0.
06

)
4.

6x
10

-1
1

0.
88

(0
.8

2,
 0

.9
4)

2.
5x

10
-4

rs
62

52
09

13
8

12
4,

61
4,

32
2

FB
X

O
32

T
0.

93
0.

22
(0

.1
7,

 0
.2

7)
3.

6x
10

-1
7

1.
13

(0
.9

8,
 1

.2
9)

0.
08

rs
12

37
76

24
9

12
9,

37
3,

11
0

L
M

X
1B

G
0.

63
0.

15
(0

.1
3,

 0
.1

8)
1.

3x
10

-3
1

1.
17

(1
.0

9,
 1

.2
5)

2.
4x

10
-5

rs
24

33
41

4
11

86
,4

10
,2

41
M

E
3

T
0.

80
0.

13
(0

.1
0,

 0
.1

6)
6.

9x
10

-1
6

1.
14

(1
.0

5,
 1

.2
4)

0.
00

28

rs
79

24
52

2
11

12
8,

38
0,

74
2

E
T

S1
A

0.
34

0.
11

(0
.0

8,
 0

.1
4)

3.
1x

10
-1

6
1.

13
(1

.0
5,

 1
.2

1)
7.

4x
10

-4

rs
47

75
42

7
15

61
,9

51
,2

35
V

PS
13

C
T

0.
43

0.
11

(0
.0

9,
 0

.1
4)

4.
1x

10
-1

8
1.

11
(1

.0
3,

 1
.1

8)
0.

00
32

rs
18

74
45

8
16

65
,0

80
,7

39
C

D
H

11
A

0.
64

-0
.1

0
(-

0.
13

, -
0.

08
)

2.
9x

10
-1

5
0.

87
(0

.8
1,

 0
.9

3)
8.

0x
10

-5

rs
37

43
86

0
16

89
,8

18
,4

91
FA

N
C

A
T

0.
58

0.
10

(0
.0

8,
 0

.1
3)

4.
2x

10
-1

5
1.

03
(0

.9
6,

 1
.1

0)
0.

39

Nat Genet. Author manuscript; available in PMC 2018 November 21.


	Abstract
	Online Methods
	Study Methods
	UK Biobank
	International Glaucoma Genetics Consortium (IGGC)
	EPIC-Norfolk
	NEIGHBORHOOD Study

	Statistical Analyses
	Meta-analysis
	Conditional and explained heritability analyses
	Calculation of genomic inflation factor
	Multiple testing correction
	LD Score analyses
	Prediction analyses
	SNP and gene annotations
	GTEx
	Ocular gene expression
	S-PrediXcan
	Gene-set enrichment


	Data Availability Statement
	URLs
	References
	Figure 1
	Figure 2
	Table 1

