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Abstract 
 
 

At the world’s largest physics centre for nuclear research (CERN) under controlled 

laboratory conditions, two high-energy particle beams travel close to the speed of 

light around the most powerful particle accelerator ever built. The accelerator runs 

through a deep network of underground tunnels and caverns. To forefront the 

boundaries of experimental physics, CERN physicists rely on civil engineers to keep 

their systems running efficiently, performing repairs and upgrades when necessary. 

However, due to ageing of CERN underground infrastructure, certain amounts of 

cracking and swelling-induced heave have developed at certain sections along the 

tunnel linings, which could potentially result in structural damage of the existing 

infrastructure with consequent impact on the performance of physical experiments. 

Furthermore, the long-term groundwater seepage has caused the deterioration of 

the drainage system, inducing a change in the flow regime around the tunnel. This 

inevitably introduced a new loading condition to the lining, which may have affected 

the tunnel stability with time.  

This thesis focuses on the long-term investigation of a horseshoe-shaped concrete-

lined tunnel excavated at CERN, in Geneva, in a weak sedimentary rock called the red 

molasse, an irregular and heterogeneous rock mass comprising a sequence of marls 

and sandstones. Such complex ground conditions in addition to a change in 

groundwater and tunnel drainage conditions especially after the large seepage flow 

event in the year 2013 have contributed to additional loading to the tunnel lining and 

consequently led to cracks, water infiltration and other structural distress after 

tunnel construction. 

  To improve the understanding of the long-term tunnel lining performance, a 

detailed analysis of the field data measurements was undertaken. Both conventional 

and innovative monitoring technologies were deployed in order to assess the tunnel 

lining deformation mode with time and also to evaluate the feasibility of different 

monitoring instrumentation in CERN radioactive environments.  
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The observed data show that compressive and tensile strains develop at the tunnel 

crown and tunnel axis respectively, suggesting a vertical tunnel elongation with time 

as the tunnel lining mechanism of deformation. Yet slow development of strains with 

time was observed, albeit over a relatively short monitoring period of three years. 

Additionally, noteworthy peak strain values seem to be localised along the lining 

when the very weak marl units with swelling properties are encountered. 

In order to validate the field data and to assess the ground loading on the tunnel 

lining, a series of soil-fluid coupled 2D finite element analyses has been conducted 

with a particular interest in the effect of change of lining permeability into the lining 

response. The FE findings show that the tunnel lining permeability relative to the 

surrounding rock plays an important role on the tunnel deformation mode during 

the long-term. In particular, the layering divisions in the complex molasse region 

greatly affect the earth pressure distribution on the tunnel lining and hence results 

in critical tunnel damage (e.g. cracks and heaving at the tunnel invert). The 

consolidation-induced structural damage in addition to a reduced capacity of the 

drainage system with time, in turn, creates a new drainage tunnel lining condition 

around the tunnel circumference which exacerbates further tunnel distress with 

time.
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Chapter 1 
 

1 Introduction 
 

1.1  Background of the study 

 
At the European Centre of Nuclear Research (CERN), the well-known deep particle 

accelerator is hosted in a circular underground facility made of shafts, caverns and 

tunnels, excavated in a weak sedimentary rock mass in the Geneva basin. Through a 

long chain of injectors, physical particles are fed into the main Large Hadron Collider 

(LHC) to push the boundaries of physical knowledge.  

Aged concrete tunnels commonly exhibit tunnel lining deterioration with time, 

resulting in a significant increase in maintenance costs and in the meanwhile 

compromising the success of physical experiments. Recent changes in the flow 

regime around the tunnel have brought new challenges to the operation of the 

horseshoe-shaped concrete-lined tunnel. Particularly, due to extreme weather 

conditions, large amounts of groundwater flowed towards the tunnel, resulting in 

long-term hydraulic deterioration of the drainage systems (i.e. clogging of drains). 

This, in turn, increased the magnitude of the external water pressures acting upon 

the lining. As a result, some part of the tunnel is experiencing a vertical elongation as 

a mechanism of deformation, with the development of structural distress.  Therefore, 

it is hypothesised in this research that the influence of groundwater regime change 

on the tunnel lining response plays a crucial role when evaluating the long-term 

behaviour of the tunnels. The current status of the tunnel is assessed by analysing 

the data derived from conventional and novel monitoring systems. A series of 

numerical analyses is conducted to assess the long-term performance of the tunnel 

as it is subjected to an increase in the external water pressure.  
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1.2  Objective of the research 

 
This research aims to investigate the long-term performance of an existing 

concrete-lined tunnel at CERN, called TT10 tunnel, entirely excavated in the molasse 

region, in Geneva. Particularly, the study aims to develop a good understanding of 

the long-term tunnel lining deformation mechanism when its tunnel drainage 

condition changes many years after construction. To this end, field monitoring and 

finite element analyses have been conducted. The present research work pursues the 

following specific objectives: 

 Investigate the mechanism of tunnel lining deformation through a detailed 

observational study of crack development inside the tunnel.  

 Characterize the weak layered sedimentary rock mass at CERN through the 

analysis of geotechnical data obtained from laboratory and field 

explorations.   

 Deploy different monitoring technologies and interpret the data to assess 

the mechanism of tunnel lining deformation. Both conventional and novel 

monitoring systems are evaluated for their feasibility in the CERN 

radioactive environment with limited accessibility.  

 Construct several finite element models of the tunnel and surrounding soil 

and develop a methodology to simulate the changes in the drainage 

conditions of the tunnel as the drainage system deteriorates.  

 Perform a series of finite element analyses to examine the effect of soil 

layering in the molasse region on the lining response.  

The outcome of the research provides a better understanding of the long-term 

performance of a concrete-lined tunnel at CERN when subjected to a change in the 

ground flow and drainage regimes around the tunnel. It is envisaged that this work 

may be referenced to improve the forthcoming underground works at CERN to 

realize the Future Circular Collider (FCC).  

 

1.3  Structure of the thesis  

The thesis is organised into eight chapters, with the first one being the 

introduction.  
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Chapter 2 presents the review of current research associated with the long-term 

behaviour of tunnels in clay. It examines both short and long-term ground 

movements due to tunnelling and the tunnel lining response.  

 

Chapter 3 introduces the investigation carried out for a CERN concrete-lined tunnel 

(the TT10 tunnel) that underwent damage many years after construction. The 

possible causes and, hence, the mechanisms of tunnel lining deformation are 

identified and presented. The conventional total station monitoring instrumentation 

data at the affected tunnel cross-sections are discussed.   

Chapter 4 discusses the instrumentation deployed to assess the lining behaviour 

using advanced distributed fibre optic strain sensing. The radiation effect on optical 

fibres is discussed along with the background of technology. The details of the fibre 

optic installations carried out at the site are given. The pattern of tunnel lining 

deformation derived from the DFOS data is presented.  

Chapter 5 presents the results of the geotechnical investigation of the weak rock 

mass at this site through the analysis of laboratory and field tests. 

 

Chapter 6 describes the results of two-dimensional soil deformation and pore fluid 

flow coupled finite element simulations of a tunnel cross-section that is found to be 

critical at the site. The simulations involve time-dependent changes in the drainage 

conditions of the tunnel lining and the computed results are validated against field 

measurements.  

 
Chapter 7 examines the effect of soil layering observed within the molasse region 

on the tunnel lining behaviour.  

Chapter 8 summaries the main findings and recommendations and future research 

for further studies are also presented. 



 

 



 

 

 

Chapter 2 
 

2 Review of the long-term behaviour of tunnels  
 

2.1  Ground response induced by tunnelling 

 
After tunnel construction, further ground movements occur, primarily due to the 

consolidation of the ground around the tunnel. In fact, the tunnel inevitably 

introduces new drainage boundary conditions, since at the inside face of the lining 

the pressure is by definition atmospheric (Harris, 2002). The pore pressure 

equilibrium immediately after construction is not guaranteed, resulting in water 

flow if the tunnel lining is not impermeable. As a result, pore pressures will reduce 

in the long-term, causing settlements at the ground surface and an increase of 

effective stresses, inducing then consolidation of the soil and, hence, consolidation 

settlements. 

Settlements induced by the excavation of a tunnel can be divided into two 

components: short-term and long-term settlements. The former can be reasonably 

predicted for a given tunnel excavation process and ground conditions (Mair and 

Taylor, 1997). The latter, defined as the incremental settlements taking place after 

the short-term construction settlement, are also called consolidation settlements 

and their magnitude varies significantly according to where the tunnel is situated in 

the ground. Harris (2002) observed that consolidation settlements in the Jubilee 

Extension Line (JLE) tunnels have been considered to be effectively completed when 

movements were less than 2mm/year, which criterion was not met until 5 years. 

Addenbrooke (1996) noticed that for permeable linings settlements become 

negligible after 10-15 years whilst for impermeable lining approximately 20 years 

due to the longer drainage distance. Empirical methods for the prediction of the 

extent and the magnitude of long-term settlements are not available, therefore finite 
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element analysis (FEA) or other numerical methods are the only practical method to 

rely on.

By examining field data from post-construction tunnelling settlements, Mair and 

Taylor (1997) observed that the major factors influencing the development of post-

construction settlements above tunnels are as follows: 

 The magnitude and distribution of excess pore pressure ∆u after the con-

struction of the tunnel; 

 The initial pore pressure distribution in the ground, before the tunnel con-

struction; 

 The permeability and the compressibility of the soil; 

 The relative soil- tunnel lining permeability. 

In order to evaluate the long-term effects, it is important to evaluate how excess 

pore pressures are generated and how they will dissipate with time. 

The magnitude and the distribution of pore pressure play an important role in the 

long-term behaviour and have one of the greatest influences on it. Mair and Taylor 

(1997) noticed that excess pore pressure strongly depends on the construction pro-

cess:  whether the ground is unloaded during the construction of the tunnel or 

whether it is subject to an increase of loading. The former coincides with the open 

face tunnelling procedure, the latter (sometimes in soft clays) with closed face tun-

nelling, using EPB or slurry shields. 

 

2.1.1  Short-term surface settlement  

 

Many authors such as Martos (1958), Peck (1969) and Schmidt (1969) have shown 

that for a single tunnel in greenfield conditions the vertical transverse settlement 

trough immediately following tunnel construction can be well-described by a Gauss-

ian distribution curve (Figure 2.1), as follows:  

                                                      𝑆𝑣 =  𝑆𝑣,𝑚𝑎𝑥 ∙ 𝑒

−𝑦2

2∙𝑖𝑦
2

                                                             (2.1) 

where: 
 𝑆𝑣  is the ground settlement  

 𝑆𝑣,𝑚𝑎𝑥 is the maximum settlement on the tunnel centre-line 

 𝑦 is the horizontal distance from the tunnel centre-line 
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 𝑖𝑦 is the horizontal distance from the tunnel centre-line to the point of inflex-

ion of the settlement trough. 

 
Figure 2.1. Ground settlement above advancing tunnel heading (Attewell et al., 1986).  

 

Depending on the ground conditions, Peck (1969) firstly proposed a relationship 

between the parameter 𝑖𝑦, the tunnel depth and the tunnel diameter. Following the 

suggestion of O’Reilly and New (1982), Mair and Taylor (1997) proposed a linear 

relationship between the parameter i and tunnel depth 𝑧𝑜 through validation against 

field data:   

                                                            𝑖 =  𝐾 ∙ 𝑧𝑜                                                                        (2.2) 

With K being the trough width parameter, found to be equal to 0.5 for a tunnel in 

clays and 0.25 for a tunnel in sand and gravels.  

By integrating Equation 2.1, the volume of the surface settlement trough Vs (per me-

tre length of tunnel) may be expressed as follows:  

                                                        𝑉𝑠 = √2𝜋 𝑖 𝑆𝑣,𝑚𝑎𝑥                                                              (2.3) 

For a circular tunnel, Vs can be expressed as a percentage fraction of the excavated 

area of the tunnel VL, which is designated as the volume loss:   

                                                         𝑉𝑠  
=

𝜋𝐷2

4
 𝑉𝐿                                                                    (2.4) 

From the estimation of VL, the maximum settlement Sv max can be determined.  

Wongsaroj et al. (2013) stated that a noticeable discrepancy was found when vali-

dating field data from the Heathrow Express tunnel and the St. James’s Park tunnel 
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with the Gaussian curve of Eq. 2.1, which is often used to characterize short-term 

surface settlement. A modified Gaussian curve was proposed by Vorster et al. (2005) 

to gain a better fit of long-term transverse settlement profile:    

                                                   𝑆 =  𝑆 𝑚𝑎𝑥

𝑛

(𝑛 − 1) +  𝑒
𝜇

𝑦2

𝑖𝑦
2

 

                                               (2.5) 

                                                             𝑛 =   𝑒𝜇 (
2𝜇 − 1

2𝜇 + 1
) + 1                                                 (2.6) 

Where n is the parameter controlling the width of the settlement profile, and µ is a 

parameter introduced to keep i as the distance from the inflexion point and tunnel 

centreline. The Eq. 2.6 governs the relationship between n and µ. By decreasing the 

value of µ from 0.5 to 0.1, Wongsaroj et al. (2013) noticed a wider settlement profile 

compared to that in the short-term.  

O’Reilly and New (1991) proposed a relation for determining the total settlement 

profile for twin tunnels, assuming them to be identical:  

                                                 𝑆(𝑦) =  𝑆 𝑚𝑎𝑥 [𝑒

−𝑦2

2∙𝑖𝑦
2

+  𝑒

−(𝑦−𝑑`)2

2∙𝑖𝑦
2

]                                         (2.7) 

Where d’ is the distance between tunnel centreline. The long-term investigation of 

twin tunnels will be discussed in the following sections.  

 

2.1.2  Subsurface settlement  
 

From the analysis of subsurface data from tunnels in stiff and soft clays, Mair et al. 

(1993) showed that the shape of subsurface settlement profiles developed during 

tunnel construction can be approximated to the Gaussian distribution, in the same 

approach as surface settlements. Therefore, at a certain depth z below the surface 

the width trough parameter can be evaluated as follows:  

                                                             𝑖 =  𝐾 ∙ (𝑧𝑜 − 𝑧)                                                            (2.8) 

With the parameter K increasing with depth, showing considerably wider subsurface 

settlement profiles. Mair et al. (1993) suggested the following expression for evalu-

ating the parameter K:  
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                                                    𝐾 =  
0.175 + 0.325 (1 − 𝑧/𝑧𝑜)

(1 − 𝑧/𝑧𝑜)
                                        (2.9) 

 

 

2.2  Influence on long-term ground movements: single 
        tunnel 

 
Many studies have been conducted to predict long-term tunnel consolidation de-

formation in soft and clay soils.  

A method to predict long-term surface settlements for single tunnels in London 

clay was devised by Wongsaroj (2005). The results obtained from the FE parametric 

study revealed the importance of the permeability of tunnel lining relative to the one 

of the surrounding soil. It has been observed that in heavily consolidated clay when 

the tunnel lining is fully permeable, the pore water pressure would flow towards the 

tunnel causing the pore pressure around the tunnel to reduce. This reduction in pore 

water pressure causes the soil to consolidate. Hence, further surface settlement is 

expected in the long-term until a steady-state flow condition is reached. When the 

tunnel lining is fully impermeable, the pore pressure around the tunnel tends to re-

cover, causing the soil to swell and the dissipation of negative excess pore water 

pressures. Therefore, heave can be expected in the long-term (Wongsaroj, 2005).  

Whether the tunnel lining is acting as a permeable or an impermeable boundary 

relative to its surrounding depends not only on the permeability of the soil and the 

tunnel lining but also on the thickness of the clay above the tunnel as well as the 

thickness of the tunnel lining. 

Following the work of Wongsaroj et al. (2007) and Wongsaroj et al. (2013), a new 

non-dimensional displacement NSc max parameter was proposed to evaluate the 

consolidation vertical surface settlement, assuming a radial flow hydraulic field 

condition around the tunnel (Laver 2010): 

                                              𝑁𝑆𝑐 𝑚𝑎𝑥 =  
𝐸′𝑑

5𝐷𝑇𝐿𝑐𝛾𝑤
𝑆𝑐 𝑚𝑎𝑥                                                (2.10) 

 
where 𝐸′𝑑 is the equivalent drained 1D elastic modulus,  𝐷𝑇 is the tunnel diameter, 

𝐿𝑐  is the tunnel axis depth below the water table, 𝛾𝑤 is the bulk unit weight of water
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and 𝑆𝑐 𝑚𝑎𝑥 is the maximum consolidation settlement.  The thickness of the consoli-

dation layer is taken at ±2.5 DT from tunnel axis and 𝐸′𝑑  is taken at axis depth. 

Wongsaroj (2005) and Wongsaroj et al. (2013) analysed the consolidation 

settlement characteristics through numerical analyses and field tests for a tunnel 

located in London clay strata, into a parametric study. Long-term ground response 

and tunnel lining behaviour in London clay depend on a combination of several 

factors, which are considered to have a major influence, as reported by Wongsaroj 

(2005): 

 Drainage condition of the tunnel lining  

 Distribution and profile of the soil permeability (kh/kv ratios) 

 Depth and diameter of the tunnel (C/D ratio)  

 Volume loss in the long-term 

It was found that the width and the rate of the consolidation settlement profile 

were much more sensitive to the permeability anisotropy (kh/kv) and soil-lining 

permeability than the volume loss and cover-diameter (C/D) ratio. Wongsaroj 

(2005) also observed small magnitudes of long-term surface settlement with large 

values of volume loss and with a permeable tunnel lining, whilst the magnitude of 

the long-term heave increases with greater values of volume loss. In addition, for 

values of C/D = 5 and C/D = 7 the magnitude of long-term displacement reduces with 

an increase of C/D ratio (Wongsaroj, 2005). 

For a permeable tunnel lining, the magnitude of ground movement in the long-

term becomes greater with larger kh/kv ratio, from kh/kv = 1 to kh/kv = 10. As the 

horizontal permeability increases, the decrease in the pore pressure is larger and the 

decrease extends more laterally from the tunnel, causing then more consolidation 

settlements. For an impermeable lining the extent of consolidation settlements does 

not depend on the ration of kh/kv (Wongsaroj et al., 2013). 

 In addition, for a permeable lining larger ratio of the horizontal permeability to the 

vertical (i.e. kh/kv = 10) will lead to a greater magnitude of change in the horizontal 

diameter and, hence, in the tunnel squatting deformation.   
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The coefficient of earth pressure at rest K0 also plays an important role, as a 

reduction in K0 causes greater settlement, inducing more squatting deformation of 

the tunnel lining in the long-term. This is due to the soil providing less horizontal 

stress upon the lining. 

The applicability of the mentioned method was validated against two case studies: 

St. James’s Park and Heathrow Express Tunnels. The prediction method reproduced 

a realistic trough shape, however, it might be restricted by the knowledge of soil and 

lining in-situ permeability as the prediction can drastically change by varying the 

mentioned parameters. 

Both vertical and horizontal surface displacements distributions were also provided 

by the application of different equations.  

Further studies conducted by Wang et al. (2012) highlighted the influence of soil 

creep and flow boundary condition on the long-term ground settlement behaviour 

above a shallow tunnel in soft ground.  

Shen et al. (2014) also studied the long-term settlement behaviour of Shanghai 

metro tunnels. By examining field observations and employing numerical modelling, 

Shen et al. (2014) observed significant long-term settlement and differential 

settlement, leading to longitudinal deformation.  

The hydraulic performance and the influence of a cross passage in London 

underground tunnels on the ground response were also investigated (Li, 2014). 

From the results of a series of 3D soil-fluid coupled finite element analyses, Li (2014) 

found out that for closely-spaced twin tunnels the effect of a cross passage on the 

long-term surface ground settlement is relatively negligible. Indeed, the soil 

consolidation due to drainage into twin tunnels is much greater than the additional 

drainage effect by the cross passage.  In addition, the hydraulic performance of a 

cross passage behaves more like a bigger tunnel rather than a small single tunnel in 

the middle. 

Recently, Qiu et al. (2018) employed three-dimensional FE analysis to investigate 

the long-term settlement performance of a loess section tunnel in China, using jet 

grouting reinforcement to improve tunnel stability. The results showed that nearly 

90 % of long-term settlement occurred within the first 60 days after tunnel 



12                                                                2. Review of the long-term behaviour of tunnels 

 

construction, with a significantly lower consolidation settlement rate when the 

reinforcement technique is adopted.  

2.2.1  Role of tunnel lining and soil permeability 

 
The effectiveness on how a tunnel acts as a drain depends on the permeability of 

the tunnel lining and the immediately surrounding soil. In the Jubilee Extension Line 

(JLE) Contract 102, data showed that most of the tunnels were visibly wet to varying 

degrees, supporting the concept that tunnels in London clay act as a drain, 

introducing then a new drainage boundary condition and, hence, leading to long-

term reduction in pore pressures with associated consolidation settlements (Shin et 

al., 2002; Wongsaroj et al., 2007; Mair, 2008).  

Recent measurements of pore pressures taken around five bolted cast iron tunnels 

in London clay also confirmed that tunnels act as a drain. A clear trend of decreasing 

pore pressure close to the tunnel was observed (Mair, 2008) (Figure 2.2).  

 

 

Figure 2.2. Tunnel acting as a drain in London clay (Mair, 2008). 

 

As the long-term settlements occur with time, the surface settlement profile 

changes over the period and usually the normal Gaussian curve cannot be used to fit 

the consolidation settlement profile. This is mainly due to the widening of the 

settlement trough; O'Reilly et al. (1991) reported a settlement trough widening by 

two-three times.  Bowers et al. (1996) showed that for the Heathrow Express trial 

tunnel case, over a period of three years after tunnel construction, great differences 

were found between the Gaussian settlement profile and the data. In particular, it 

was observed that in the long-term the Gaussian troughs were three times wider 

than the ones in the short term. Reporting on measurements from St. James’s Park, 
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Nyren (1998) also noted a widening in the post-construction settlement trough. 

Results from numerical analyses conducted by Harris (2002) showed surface 

settlement extended to a wider zone than volume loss movements.   

In the Jubilee Line Extension project Contract 102 in St. James’s park and 

Heathrow Express trial tunnel, Wongsaroj et al. (2013) showed that the rate of 

consolidation settlement is very sensitive to the permeability of the soil. Mair (2008) 

stated that in situ measurements of horizontal permeability from head-tests in the 

piezometers confirmed that the permeability of London clay may vary significantly, 

and its variation can reach two orders of magnitude (from about 5 x 10-11 m/s to 5 x 

10-9 m/s). This may be due to layering within London clay, as the units on the east 

part of London clay basin showed lower permeability than the one in the western 

and central parts (Hight et al., 2007). Significant deepening and widening of the 

settlement trough with the increase of the permeability anisotropy (for values of 

kh/kv from 1 to 4) were also observed by Mair (2008), whereas the value of the 

maximum settlement Smax at tunnel axis doubled. Harris (2002) highlighted that both 

the magnitude and the rate of settlement were greatly influenced by the soil 

permeability profile.  

Wongsaroj (2005) also investigated the influence of soil permeability within the 

layering divisions of London clay on the long-term behaviour, by simulating different 

permeability profiles. This allowed simulating more accurately the long-term ground 

movements. Therefore, choosing appropriate values of kt and ks (lining and soil 

permeability respectively) is very important in order to make better predictions of 

the long-term settlements (Wongsaroj et al., 2013). Specific leakage associated with 

segmental lining joints should also be considered in the FE analysis (Mair, 2008). 

 The initial pore pressure distribution prior to tunnelling also influences the 

magnitude and rate of long-term settlement (Mair, 2008). This was confirmed by 

piezometers measurements taken at two different sites: St. James’s Park and 

Elizabeth House, where a hydrostatic regime and an underdrained profile due to 

deep-level pumping were found respectively in the London clay. From long-term 

settlement monitoring, it has been noted that for St. James’s Park site considerable 

consolidation settlements occurred, reaching 80 mm after 11 years of which only the 

20% were observed at Elizabeth House site. This may be due to differences between 
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the two sites such as relative soil-lining permeability and the initial pore pressure 

distribution in the ground before tunnel construction.  

Results show that long-term surface movements due to the construction of a single 

tunnel in London clay mainly depend on the permeability of the lining relative to the 

one of the surrounding soil (Wongsaroj et al., 2013). 

Upon the effort of Wongsaroj et al. (2013), Laver et al. (2016) extended his work by 

proposing a new definition of relative soil-lining permeability index RP, in order to 

describe the dependence of ground movements upon permeability, which governs 

many aspects of consolidation behaviour.  The new derivation of RP considers a more 

realistic flow regime in the tunnel such as a radial seepage flow, which is assumed to 

be uniform around the tunnel (Figure 2.3b). 

By equating the volumetric flow rate through the soil per unit tunnel length qs with 

the one through the lining qt and by applying Darcy’s law, a new expression of RP 

was derived (Laver et al., 2016):  

                                                       𝑅𝑃 =  
𝐷𝑇𝛾𝑤 𝐾𝑇

2𝑘𝑆
𝑙𝑛 (

2𝐶𝑐𝑙𝑎𝑦

𝐷𝑇
+ 1)                                 (2.11) 

where: 

 𝐷𝑇 is the tunnel diameter  

 𝑘𝑆 is the soil permeability that for anisotropic soil can be evaluated as 𝑘𝑆 =

 √𝑘𝑣𝑘ℎ 

 𝐶𝑐𝑙𝑎𝑦 is the clay cover above the tunnel crown 

 𝐾𝑇 is the lining seepage coefficient (𝑘𝑡/𝛾𝑤𝑡𝑇) 

 𝑡𝑇 is the lining thickness 

 𝑘𝑇 is the lining permeability 

The relative soil-lining permeability index RP aforementioned is plotted against a 

dimensionless surface settlement DS, which equation was firstly developed by 

Wongsaroj (2005) as follows: 

                                                 𝐷𝑆 =  
𝑁𝑆𝑐𝑚𝑎𝑥(𝑆𝑆) − 𝑁𝑆𝑐𝑚𝑎𝑥(𝑆𝑆𝐼)

𝑁𝑆𝑐𝑚𝑎𝑥(𝑆𝑆𝐼) − 𝑁𝑆𝑐𝑚𝑎𝑥(𝑆𝑆𝑃)
                                  (2.12) 
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𝑁𝑆𝑐𝑚𝑎𝑥(𝑆𝑆𝐼) is the normalised long-term maximum surface settlement for the case 

with an impermeable tunnel lining whereas 𝑁𝑆𝑐𝑚𝑎𝑥(𝑆𝑆𝑃) is the normalised long-term 

maximum surface for the case with a fully permeable lining, and 𝑁𝑆𝑐𝑚𝑎𝑥(𝑆𝑆) is the 

normalised long-term maximum surface settlement for a particular case.  

Based on the results of numerical FE analysis on long-term ground settlement due 

to a single tunnel, Laver (2010) developed an empirical equation of 𝐷𝑆 = 1/ (1 +

1.4𝑅𝑃−1) and a distinctive S-shaped curve was observed when plotting RP versus 

DS. Data from numerical FE analysis conducted by Laver (2010) for different values 

of volume loss, lining permeability and cover-diameter ratios (C/D) fall within a thin-

ner band compared to the one noted by Wongsaroj (2005) (Figure 2.4). Mair (2008) 

also conducted a parametric study and the results fall in the same range proposed by 

Wongsaroj (2005). The Figure 2.4 shows that the tunnel lining is defined to be fully 

impermeable for a value of RP less than 0.1 with DS = 0 whereas is said to be perme-

able when the value RP is greater than 100 with DS = 1. Between values of RP that go 

from 0.1 to 100, the tunnel lining is expected to be partially drained. Therefore, these 

ranges allow to determine whether a lining-soil system is likely to act as a permeable 

or an impermeable one.  

 
 

(a) 
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                                                                                                          (b) 
 

Figure 2.3. Mathematical models for deriving relative soil-lining permeability: (a) Wongsaroj (2005) 
and (b) Laver e al. (2016). 

 

 
 

Figure 2.4.  Relative soil-lining permeability (RP) against dimensionless settlements DS (Laver et al., 
2016). 

 

2.3  Twin-tunnel interaction and cross-passage  

 

Frequently tunnels are constructed in pairs. The presence of twin tunnels alters 

the original soil arching generated by a single tunnel, introducing then further 

drainage boundaries during consolidation if the lining is permeable. The long-term 

response of twin tunnels was investigated by Laver (2010), who conducted finite 

element analyses of twin tunnels. Laver (2010) reported that the long-term 
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behaviour of twin tunnels excavated simultaneously side by side is influenced by the 

volume loss, cover-diameter ratio (C/D) and separation to depth ratio (d’/z0). 

Laver (2010) also identified three possible key twin tunnels interaction 

mechanisms during consolidation, listed as follows.  

Mechanism A: strain field interaction.  Twin tunnel interaction causes larger 

strains than those of a single-tunnel. As a result, since soil stiffness behaviour is 

usually non-linear, larger soil strain induced by twin tunnel during tunnel excavation 

and consolidation may lead to softening of the soil, which is due to different causes. 

Hence, three different mechanisms are distinguished: 

 Mechanism Ai: new drainage boundary. The new drainage condition 

introduced by the second tunnel may cause further settlements when the 

lining is permeable and without volume loss. 

 Mechanism Aii: excavation interaction with a permeable lining. The 

interaction due to the excavation of two tunnels generates softening of the 

soil and hence would augment the consolidation strain of Mechanism Ai. 

 Mechanism Aiii: excavation interaction with an impermeable lining.  As 

the lining is impermeable, the interaction during excavation allows further 

swelling in the long-term. 

Mechanism B: flow supply restriction. The ability to supply water flow by the 

soil surrounded two tunnels which are closely-spaced with a permeable lining is 

restricted by the finite permeability of the soil itself. Hence, reduced drainage effects 

result in fewer consolidation effects

Mechanism C: lateral soil compression. As the consolidation takes place, a fully 

permeable lining tends to squat. For two tunnels closely-spaced the soil column in 

between is compressed, inducing a vertical extension of the soil column and reducing 

surface settlement. 

 Results from a parametric study showed that the influence of each interaction 

mechanism depended upon the twin-tunnel geometry and lining permeability. 

Furthermore, the interaction amplifies surface settlements and has different effects 

on horizontal and vertical movements: the former can double whereas the latter can 

increase considerably. Therefore, twin side-by-side tunnels interaction should be 

accounted for in the long-term behaviour.  
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Further study to examine the long-term behaviour of a cross passage between 

closely spaced twin tunnels was carried out by Li (2014). Significant structural 

deformation and groundwater infiltrations were observed near cross passage of 

Shanghai metro (Shen et al., 2014).  

Li et al. (2015) reported minor influence on surface settlement when a cross 

passage is excavated, compared to the magnitude of ground settlement due to twin 

tunnels construction, suggesting that the ground consolidation due to the drainage 

into twin tunnels is much greater than the additional drainage effect by the cross 

passage. Also, results from the hydraulic performance of a cross passage showed that 

the mechanism of a cross passage with twin tunnels may behave like a big circular 

tunnel circumscribing the twin tunnels (Figure 2.5a), providing a curve which well 

fit the equation proposed by Laver (2010) (Figure 2.5b).  

 
 

(a)  

 
 

(b) 

 

Figure 2.5. (a) Equivalent tunnel diameter (Soga et al., 2017) and (b) Dimensionless settlement 
against the relative permeability (Li et al., 2015).  
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2.4  Long-term tunnel lining behaviour 

 

2.4.1  Lining loads for a single tunnel  
 

Many field observations agree that tunnel lining load builds up after tunnel 

excavation until a steady-state drainage condition is reached (Soga et al., 2017).  

Groves (1943) firstly stated that a cast-iron tunnel lining in London clay reached the 

full overburden within two weeks. Ward and Thomas (1965) also observed that for 

cast iron large tunnels, diametric changes were still measured after six years, 

reaching the75 % of full overburden. Peck (1969) observed a logarithmic increase of 

the lining load with time for tunnels in London Clay, reaching larger loads than the 

full overburden. For the Jubilee Line Extension tunnel, Bowers and Redgers (1996) 

reported lining loads of 40 % and 50 % of full overburden after 100 days at tunnel 

spring line and at tunnel crown respectively.  

Most of the tunnels excavated in clays exhibit squatting deformation after 

construction, as the vertical diameter decreases and the horizontal diameter 

increases (Nyren, 1998). Further observations on lining loads were reported by Mair 

(1994), observing larger vertical loads compared to the horizontal loads. 

Additionally, Mair and Taylor (1997) noted that the horizontal load was about 70 % 

of the vertical load at Regent‘s Park. A similar observation was also reported by 

Dimmock (2003), reporting an increase in both vertical and horizontal load as the 

soil consolidates, but recording much larger vertical loads than the horizontal.  

Shen et al. (2014) also observed that most of the shield metro tunnels in the soft 

deposits of Shanghai deform into the shape of a horizontal ellipse in the long-term, 

with the greatest diametrical distortion recorded at the ring adjacent to the cross 

passage.  

Li et al. (2015) reported that after tunnel excavation in stiff London clay, the lining 

develops further squatting as the soil consolidates, and most of the tunnel squatting 

builds up within 2000 days after construction. Less tunnel squatting was instead 

observed for a cross passage opening, as it’s pushed horizontally by soil loading and 

due to a reduction in its stiffness tends to deform back to the original shape (Li, 

2014).  

Wongsaroj (2005) found similar trends of tunnel lining deformation when 

analysing the long-term tunnel lining response in London clay through parametric 
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studies for a combination of the cover-diameter ratio (C/D), tunnel lining 

permeability, volume loss in the long-term and different values of permeability 

anisotropy.  

The variation in the hoop force-bending moment was observed from the end of the 

construction phase until a steady state condition. In particular, for an impermeable 

tunnel lining, a small change in the magnitude of bending moment from the end of 

construction until the long-term steady-state condition was observed.  

The distribution of load in the lining was found to be highly influenced by relative 

tunnel lining permeability, with an impermeable lining bearing load during 

consolidation up to 60 % of full overburden, compared to the 45% of full overburden 

of permeable linings (Shin et al., 2002). As soil consolidates, Wongsaroj (2005) 

detected a larger change in the horizontal diameter for a permeable lining (i.e. KT= 

1e-11) compared to a less permeable lining (i.e. KT= 1e-13), but smaller hoop force 

at both the tunnel crown and the tunnel axis level, leading to more squatting in the 

long-term.  

Mair (2008) stated that permeable linings tend to squat, whereas impermeable 

linings do not exhibit this deformation mode. However, the assumption of a uniform 

permeability at tunnel lining may not predict accurately tunnel lining loads, due to 

the presence of leaks and joints (Mair, 2008). In Shanghai metro tunnels, structural 

deformation has led to significant opening of the joints, resulting in groundwater 

infiltration, especially at the cross passage sections (Shen et al., 2014).  

Leakage from tunnel joints, cracks and grouting holes will lead to an increase of 

ground loading and tunnel lining deformation (Shin et al., 2012). 

To this end, Wongsaroj (2005) endeavoured to replicate a non-uniform tunnel lining 

permeability when simulating the behaviour of St. James’s Park, resulting in a better 

match with field observational data.   

As the tunnel lining becomes more permeable, the bending moment at the tunnel 

crown decreases during consolidation while it increases at the tunnel spring line, 

resulting in a squatting deformation of the tunnel lining in the long-term. There is a 

small reduction in the hoop force at the crown but a significant increase in hoop force 

at the spring line. Additionally, with an increase of permeability anisotropy (kh/kv), 

the change in bending moment and hoop force becomes larger. More significant 

horizontal diameter change and, therefore, a squatting deformation was also 
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observed for a permeable lining, as the permeability anisotropy increases 

(Wongsaroj, 2005).  

However, simulations carried out with smaller values of volume loss gave a larger 

hoop force in tunnel lining, with positive bending moment at the tunnel crown and 

negative at the spring line level. This suggests that the tunnel may elongate in the 

vertical direction. Moreover, Wongsaroj (2005) observed that when the tunnel lining 

is impermeable the hoop force increases more at the tunnel crown than at the spring 

line, which can lead to a further elongation in the long-term. For a permeable tunnel 

lining, instead, tunnel squatting deformation of the tunnel lining is observed, as the 

bending moment decreases at the crown and increases at the tunnel axis level. In 

conclusion, although the magnitude in the hoop force in tunnel lining decreases with 

an increase of volume loss in the long-term, the deformation of tunnel lining is 

greater with also a bigger change in the magnitude of bending moment.  

 

2.4.2  Effect of groundwater condition 
 

Aged tunnels are commonly subjected to tunnel maintenance due to leakage 

problems and specifically long-term hydraulic deterioration of the drainage systems 

(Shin, 2010; Shin et al., 2012). This would develop pore water pressures on tunnel 

lining with time, resulting in further tunnel lining deformations. However, the 

evaluation of pore water pressure behind the lining is often difficult to assess. 

Additionally, there are no well-known tunnel design guidelines for evaluating the 

water pressures behind the lining (Yoon et al., 2014). Analytical solutions for fully 

permeable circular tunnels in homogeneous ground conditions were proposed by 

Shin (2010). Further, numerical investigations were also performed for non-circular 

tunnel shape by Yoo et al. (2005), by proposing characteristics relationship between 

relative permeability of lining and ground (kl/ks) for evaluating the residual water 

pressure pl on the lining from the hydrostatic water pressure p0 (Figure 2.6).  
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Figure 2.6. The characteristic curve of pore pressure distribution (Shin, 2010). 

 
The progress of the hydraulic deterioration of the tunnel drainage system and the 

consequent change in the pore water pressure for segmental linings was also 

investigated using FE analysis (Shin et al., 2012). The results showed that the 

hydraulic deterioration of the tunnel causes a small increase in the ground loading 

and lining deformation of joints, with an increase of tunnel leakage.  

More recent studies include those of Yoon et al. (2014), in which the effect of water 

pressure development on long-term tunnel performance was investigated through 

coupled numerical analysis, and the hydraulic deterioration was modelled by 

decreasing the permeability of solid elements representing the drainage filter.  

Fang et al. (2016) also investigated the effect of external pore pressure on the tunnel 

lining behaviour, on a laboratory scale, due to a reduced drainage capacity with time. 

The external pore pressure was applied behind the liner of large cross-section 

tunnels, through a developed apparatus. The obtained results showed that the 

application of the external pore pressure caused the increase of bending moment 

and hoop thrust along the lining, with the development of cracks which first 

appeared at the tunnel knee, tunnel invert and lastly at the tunnel crown.    

 

2.4.3  Effect of tunnel shape 
 

The tunnel lining deformation and the development of water pressure on the 

lining strongly depend on the tunnel shape and hydraulic boundary conditions (Yoon 
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et al. 2014). Tunnel shape plays an important role when evaluating tunnel structural 

behaviour as the drainage system deteriorates (Yoon et al., 2014).  

Numerical analyses of three different tunnel cross sections (circular, egg and 

horseshoe-shaped) located in one ground layer showed a significant increase in 

lining load when the hydraulic deterioration of drainage system progressed, which 

was simulated by decreasing the lining permeability. The pore water pressure 

distribution on a circular tunnel was observed to change smoothly from the tunnel 

crown to invert for a circular tunnel, whereas for non-circular tunnels the water 

pressure slightly increased at the tunnel corners due to seepage concentrations 

(Yoon et al., 2014).  

Yoon et al. (2014) observed that the maximum ground load for non-circular tunnels 

increased more than double compared to the load on circular tunnels. Additionally, 

horseshoe-shaped tunnels exhibit the largest vertical displacement at tunnel invert 

(i.e. at the middle point) and significant tensile stress around tunnel corners.  

 

2.4.4  Effect of swelling ground  
 

Swelling phenomena are commonly observed in tunnels in central Europe 

crossing anhydrite, marls and clays, swelling rocks and gypsum formations (Gysel, 

1977; Alonso et al., 2013). Tunnelling in swelling ground often leads to structural 

damage and the consequent increase of time and costs (Wittke, 2006).    

The swelling of the rock, which is usually attributed to both physical and chemical 

processes, contributing to strength degradation, is due to the increase in volume of 

some clay minerals (for instance clays like smectite, montmorillonites) and 

anhydrite when in contact with water (Lombardi 1984; Alonso et al., 2013; Ramon 

et al., 2017). This can result in the development of tremendous swelling pressures if 

not prevented (Wittke, 2006). Particularly, the swelling was found to occur in the 

tunnel floor area, which is associated with tunnel heave during tunnel construction 

(Lombardi, 1984; Kovari et al., 1988; Einstein, 1996; Alonso et al., 2013), as shown 

in Figure 2.7.  
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Figure 2.7. Effect of swelling in tunnelling (Kovari et al., 1988). 

 
Lombardi (1984) stated that the horseshoe cross-section tunnels at CERN 

experienced tunnel floor heave due to the swelling potential of certain marl bands, 

whereas circular tunnels do not. The tunnel floor started to heave during the 

construction of the Pfaender tunnel in Austria (Kovari et al., 1988). Wittke (2006) 

reported the behaviour of various tunnels for the construction of a project in the area 

of Stuttgart (Germany), located in the swelling Gypsum Keuper. No tunnel heave due 

to swelling was encountered during tunnel excavation. Yet, many years after 

construction levelling measures showed heaving of tunnel invert.  

Alonso et al. (2013) also observed swelling-induced tunnel damage associated with 

the precipitation of the gypsum crystals from clayey rock in presence of water for 

the Lilla tunnel, in Tarragona (Spain).  

 

2.5  Summary  

 
This chapter presents the review of the long-term investigation of the mechanisms 

observed on ground surface and the tunnel lining performance after tunnel 

excavation in clayey soil.  

Particularly, the review has shown the importance of relative soil-lining 

permeability on the long-term tunnel performance. In fact, whether the lining is fully 

permeable or impermeable, different mechanisms occur after tunnel construction. 

In the case of tunnel being fully permeable, analyses show that significant tunnel 

squatting is observed whereas the tunnel develops minor lining forces compared to 

the impermeable lining, which causes heave on ground surface and the development 

of more important lining forces.  
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However, in aged tunnels long-term effects such as the change in the groundwater 

condition behind tunnel lining due to the deterioration of the tunnel drainage system 

are of paramount importance, as water pressure may develop on the tunnel lining, 

resulting in further tunnel loading in the long-term. To this end, also the tunnel 

geometry (i.e. circular, horseshoe and egg shape) was found to have an influence on 

the tunnel performance, leading to the development of lining load when analyzing 

the long-term behaviour.  
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Chapter 3 
 

3 CERN TT10 tunnel: investigation and 
instrumentation  

 

3.1  Introduction  

 
The large and world-famous underground particle accelerators network of the 

Large Hadron Collider (LHC) is housed at the European Centre for Nuclear Research 

(CERN) through miles of deep tunnels at around 50 to 175 m below ground. In this 

large underground framework, the TT10 tunnel, which is the subject of interest in 

this dissertation, is an inclined beam tunnel located at the French-Swiss border, on 

the outskirts of Geneva (Figure 3.1).  

 

Figure 3.1. CERN underground network plan view: location of the TT10 tunnel (Photo credit: CERN 
GIS Portal). 

 

This transfer tunnel connects the beam accelerator of the Proton Synchrotron (PS) 

circular tunnel to the 7 kilometres in circumference of the Super Synchrotron 

Protons (SPS), the second-largest machine in CERN’s accelerator complex (Figure 

3.2).  
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Figure 3.2. PS and SPS plan view: the TT10 transfer tunnel (Photo Credit: CERN). 

 

3.2  Tunnel background  

 
The main injection beamline TT10 tunnel was constructed in the 1970s in a 

horseshoe shape. Figure 3.3 shows the TT10 tunnel cross-section. In particular, the 

horseshoe cross-section consists of four parts: one circular arc in the top roof with a 

radius of 2.25 m, two side circular arcs of a radius of 1.25 m and a flat bottom of a 

length of 4 m. The tunnel presents a diameter of 4.5 m at the intrados and 5.1 m at 

the extrados.  

 

 

 

Figure 3.3. TT10 tunnel cross-section.  

5.1 m 

4 m 0.25      0.25 

     0.3      0.3 
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The tunnel excavation started in December 1972 and was performed by means of 

mechanical excavation method. Figure 3.4 presents each excavation stage 

accomplished in the multiple construction steps. The tunnel was constructed using 

an alpine road-header machine, with excavation span of around 1.2 m length as 

shown in Figure 3.4a. The initial tunnel excavation face stability immediately after 

the excavation was supported with the installation of a thin layer of sprayed 

shotcrete. Further lining support was then installed as early as required, to stabilize 

the excavation and prevent eventually excessive deformation with steel beam (IPN 

120) and steel mesh, when the very weak rock was encountered (Figure 3.4b).   

The waterproofing of the excavated tunnel was done by installing a PVC sheet 

membrane between the primary temporary support and the secondary permanent 

inner lining, avoiding possible water infiltrating from the moraine levels. The 

secondary lining was then poured in-situ with a thickness of 180 mm. In the floor 

section, a concrete slab of 370 mm in depth was placed after installing a drainage 

complex made of two small drainage pipes of 50 mm diameter at both sides of tunnel 

invert, which collects the groundwater and convey it to the main drainage pipe (ϕ= 

300 mm) located below tunnel floor, 1.10 m away from tunnel axis. Therefore, the 

drainage conditions of the tunnel can be considered to be fully drained.  

 
 

 

(a) 
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                                (b)                                                                                      (c) 

Figure 3.4. Excavation of TT10 tunnel: (a) tunnel excavation stage using an alpine road-header 
machine, (b) installation of the primary lining with steel I beams and steel mesh (c) Installation of 
sprayed concrete (Photo credit: CERN). 

 

Table 3.1 shows a summary of TT10 tunnel lining properties, such as its materials 

and size. The tunnel lining of a total thickness of 300 mm is composed of: (i) the 

primary lining, which consists of steel beams of IPN profile sections of 120 mm 

height embedded in a layer of sprayed concrete of 120 mm of thickness, (ii) a cast in-

situ concrete layer of 180 mm thickness and (iii) a flat bottom floor of a total 

thickness of 370 mm, composed of a top layer of screed concrete of 50 mm thickness, 

an unreinforced slab of 220 thickness and a final thin layer of 100 mm thickness 

made of plain concrete, after the installation of the tunnel main drainage system.  

Table 3.1. Tunnel lining properties. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5 shows the longitudinal section of the TT10 tunnel. The tunnel for the 

first 50 m runs with a flat gradient, after which it inclines at around 6 % (Figure 3.5).   

Member Support Property     Size[mm] 

Crown- Axis 
Primary Lining 

(sprayed) 
t= 120 

Crown-Axis Steel Beam IPN 120      h= 120 

Crown-Axis 
Secondary Lining 

(cast in-situ) 
t= 180 

Floor Screed Concrete      t= 50 

Floor 
Unreinforced 

Basement 
 t= 220 

Floor Plain concrete t= 100 

Sprayed concrete        

Steel I beam        
Steel mesh        
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The tunnel was entirely excavated in the molasse region, the so-called red molasse, 

an extremely heterogeneous sedimentary rock which consists of an alternate 

sequence of interbedded rock layers characterized by different mechanical 

proprieties (i.e. stiffness, strength etc). The geotechnical characterization of the 

molasse region will be presented in more detail in Chapter 5.   

 

Figure 3.5. Longitudinal section of TT10 tunnel.  

 
 

3.3  Tunnel lining issue: development of cracks  

3.3.1  Introduction  

 
With the aim and the need of protecting the integrity of CERN accelerator’s 

beamline, the bulk of site investigations takes place during “long shutdown” periods, 

for inspecting the underground facilities and installing any potential mitigation 

measure.  

At the beginning of the 2-year “Long shutdown 1” called LS1 that started in 

February 2013, strong evidence of ongoing movement was observed in several areas 

of the TT10 tunnel, in addition to water leakage through tunnel lining cracking. 

 To understand the fissures pattern, their origins and consequences on the tunnel 

stability, a detailed survey of the crack development was held in June 2013, with the 

help of a specialized team from ARUP firm.  

Based on the resulting observations, the TT10 tunnel was divided into different 

zones as shown in Figure 3.6: the work zone (green area), assessed to be the least 

critical area, the critical zone (orange area), where the majority of the tunnel lining 
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damage occurred and the secondary zone (blue area), a less damaged area but to be 

monitored in the longer term. The magnet ID numbers (QID) placed with an interval 

of around 30 m between each other, were used as a reference, with the work zones 

located between QID 10100 – QID 101200 and QID 101500- QID 101700, the critical 

zone assessed to be between QID 101200 – QID 101500 and the secondary zone 

between QID 100700 and QID 100900. Figure 3.6 also shows the zoning divisions 

along the TT10 tunnel.  

The resulting survey of the observed cracks showed that the most significant area of 

tunnel lining damage occurred between the magnets QID 101300 – QID 101500, with 

cracks between 1-5 mm of thickness, covering a horizontal tunnel distance of around 

60m. Therefore, the area of interest for tunnel investigation in this study runs from 

the location of the ventilation shaft (QID 100700) where the tunnel cover is about 

25.7 m from the ground surface, in the North-East direction (downstream direction) 

for about 241 m (QID 101500), as shown in Figure 3.7. 
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Figure 3.6.  TT10 tunnel plan view with the location of the three zones: the secondary blue zone, the work green zone and the critical orange zone. 

 

QID 101500 QID 101200 QID 101300 QID 101400 

90 m 

QID 100700 QID 100900 

QID 101100 QID 101000 

QID 100800 

QID 101700 

QID 100300 
Upstream area 

QID 100835 
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Figure 3.7. Longitudinal and plan view section of TT10 tunnel of the interested area.  
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3.3.2  Geology  
 

The geology surrounding the tunnel has an impact on the above-mentioned 

development of cracks on the tunnel lining.  

The formation in the area of the TT10 tunnel consists of highly weathered and 

extremely heterogeneous sedimentary rock called the red molasse.  

The geomechanical characteristics of the sub-horizontal interbedded rocks vary 

significantly, going from relatively very stiff sandstones to weak marls with 

considerable swelling potential of the very weak lumpy marl layers (Parkin et al. 

2002).  

Figure 3.8 illustrates the tunnel face loggings recorded during the tunnel 

excavation, providing a geotechnical cross-section every 15 m along the tunnel. 

Variable sequences of weak marls, medium marls and sandstones are observed. 

The dominant rock strata intersected within the geological section at the location 

of major cracks (QID 101400) are mainly weak-medium marl and very weak marl. 

This type of marl, called “lie-de-vin” grumeleuse marl or lumpy marl (highlighted in 

green in Figure 3.8), alters quickly in presence of air and humidity, causing a loss of 

strength and lastly complete disintegration (Parkin et al. 2002). These marls may 

show a reddish colour due to oxidation of ferric minerals caused by the increase of 

permeability. These lumpy marl beds have proved to be the most active movement 

horizons during the excavation works of the LHC underground (Parkin et al. 2002). 
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Figure 3.8. Archive records of the tunnel face loggings and tunnel floor cracking after tunnel construction (CERN). 

Grey blue  
calcareous marl 
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A series of boreholes was drilled from ground surface in great depth to determine 

the nature of the rock strata during the SPS project. A plan view of the boreholes is 

provided in Figure 3.9. Yet, only one main investigation (borehole F9) was 

performed in the area surrounding the TT10 tunnel, carried out in 1970 (CERN, 

1972).  

 

Figure 3.9. Layout of the boreholes made for the SPS project (CERN, 1972).  

 

The topography of the top of the molasse bedrock of varying depth (Figure 3.10) 

is mainly the signature of glacial erosion in the molasse during the Quaternary 
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period. Additionally, the stratigraphy encountered is shown in Figure 3.11a, with the 

moraine layer (from altitude 445.20 m to 423.5 m) and the molasse region from an 

altitude of 423.50 m to 390 m.  

 

 
 

Figure 3.10. Cross-section: detection of the first layer of molasse and position of TT10 tunnel (CERN, 
1972). 

 
By knowing the geometry of the tunnel, its position within the molasse region and 

the geology found during tunnel excavation, the stratigraphy of the ground was 

traced, as shown in Figure 3.11b. In order to determine the ground stratigraphy 

which could represent both the ground conditions encountered during tunnel 

construction and during site investigation, an accurate comparison was made as 

shown in Figure 3.11. It is noted that the geological conditions met during the 

excavation phase slightly differed from those assessed from site investigation, 

especially in the molasse layer. For example, a layer of 6 m thickness of hard and 

compact grey sandstones with some weak marl is found from the borehole F9 from 

the altitude of 416 m to 410 m, which was not detected during the excavation 

progress, where red-brown and grey-blue marls are instead observed. However, 

compatibility in the findings of the subsequent layers of marls was found, principally 

for the weak problematic layer of lumpy marl. Particularly, from the borehole F9 a 

layer of grey-blue marl a bit lumpy is located between altitudes 400.70 m – 399.60 m 
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and 398.60 m – 397.10 m, which is also observed from the tunnel face logs survey 

between the altitudes 402.2 m – 399.5 m and 398.5 – 397 m.   

Finally, the assumption of the existence of horizontally bedded layers of 

sandstones, weak and strong marls, in addition to some engineering judgement, will 

lead to the final geotechnical strata division used in this study.   
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                                                  (a)                                                                                  (b) 

Figure 3.11. (a) Survey F9: geological section (CERN, 1972); (b) Stratigraphy carried out from tunnel 
face loggings. 
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The large differences in the rock strata can lead to problems for the stability of 

the infrastructure (Laughton 1988). The molasse is overlain by glacial moraine 

deposits, which comprise essentially sands and gravel with varying amounts of clay 

and silt. In addition, due to its compact structure, the molasse shows a really low 

permeability. The molasse encountered during the excavation of the SPS ring and the 

transfer tunnel was found to be dry, and the permeability values measured are 

extremely low, of the order of 10-10 to 10-11 m/s, sometimes less than 10-11 m/s, after 

which they become impossible to measure (CERN, 1972). Little water ingress was 

also noted during the excavation of the LEP tunnel (Laughton 1988).  

In the frame of the LHC Project and future underground constructions, Lugeon 

tests were carried out. The tests were conducted in a portion of a borehole where 

the water was injected and put under pressure and the volume of water absorbed 

was measured. The test results suggest a low permeability of the rock mass of 0.01 

Lugeon (10-8 ÷ 10-9 m/s), based upon a very low water loss (GADZ 1996a, GADZ 

1996b).  

Immediately after completing tunnel construction in 1972, records show the 

development of tunnel floor cracking along the tunnel due to heave of the flat slab 

(Figure 3.8), particularly from the starting of the blue zone (magnet QID 100700) to 

the end of the critical zone (magnet QID 101500), indicating that both ground 

consolidation and presence of swelling rock layers may have induced the detected 

damage. The abovementioned cracking pattern identified along the TT10 tunnel 

floor after tunnel excavation is shown in Figure 3.8.  

Lombardi (1984) also noted that the CERN inclined transfer tunnels (TT10, TT20 

and TT60) with a horseshoe shape section experienced a lifting of the flat tunnel 

floor where the swelling marl layers were crossed. Furthermore, during the 

excavation of the 2.5 km TI8 tunnel in 2001, the tunnel invert heaving reaction of 

certain bands was observed when in contact with the water introduced by the 

excavation process. The invert heave recorded was as large as 300 mm (CERN 

Tunneltalk, 2001).  

Severe heave of the slab was also recorded for the high-speed railway Lilla tunnel 

in Spain, built with a horseshoe cross-section and excavated in the anhydrite 

formations of the Keuper rocks, a frequent geological rock mass in central Europe 

known to induce swelling strains as a result of gypsum crystal growth (Ramon et al.  

2017). The mentioned phenomena are well documented in the literature, especially 
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for tunnels excavated through the Jura Mountains (Switzerland) and the GipsKeuper 

in Germany (Alonso & Ramon, 2013).  

Conversely, no problems have arisen during the construction of the main SPS ring 

tunnel, with a circular cross-section and whose lining seems to be stiff enough to 

support any possible swelling pressure (Lombardi, 1984).   

 

3.3.3  Tunnel lining issues 
 

One of the damage patterns detected in the secondary lining of the tunnel was a 

compression failure at the tunnel crown and additional longitudinal tensile cracking 

on the shoulders (Figure 3.12). The mentioned crack development was identified in 

the critical zone, between the magnets QID 101300 - QID 101400 and the magnets 

QID 101400 - QID 101500, highlighted in Figure 3.6.  

 
 

Figure 3.12. Compression failure at tunnel crown and tension cracks on shoulders (between magnets 
QID 101400 and QID 101500). 

 
Due to the compression spalling at the tunnel crown section, pieces of concrete 

were flaking on the floor of the critical zone, between the magnets QID 101400 and 

QID 101500, approximately 11 m away from QID 101500, towards the upstream 

tunnel area (Figure 3.13).  

 

Compression failure 

Tension cracks 
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Figure 3.13. Concrete flaking from tunnel crown. 

 
Additionally, a compression failure at the tunnel foot was also detected, which 

might have occurred due to a concentration of compression stress at the tunnel 

intrados exceeding the compression strength of concrete (Figure 3.14a). Further, 

some concrete panels were found to move transversally, weakening the whole 

structure (Figure 3.14b).  

                           

                                            (a)                                                                          (b)  
 

Figure 3.14. Observed cracks: (a) compression failure at tunnel foot (invert) and (b) radial 
movement.   

 
Moreover, a detailed survey showed the development of cracks on the floor. The 

movement observed on the tunnel floor is due to heave (Figure 3.15a), which can 

occur when the heaving pressure caused by the swelling of the rock mass in presence 

of water exceeds the structural capacity of the invert. The swelling-induced cracking 

consisted of fine crazing of the concrete (Figure 3.15c) and a distinct longitudinal 

crack that follows some features, such as the central drain or bolt holes (Figure 

3.15b). 
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                             (a)                                                  (b)                                                    (c) 

Figure 3.15. Cracking on the tunnel floor: (a) heave at the tunnel floor, (b) longitudinal crack and (c) 
crazy patterns crack. 

 

To assess the tunnel invert thickness in the critical area, some concrete samples 

were drilled from the tunnel floor by the company Gruppo Dimensione based in Turin, 

Italy (Figure 3.16). From the taken samples, the invert slab was found to be thinner 

than the designed value and unreinforced, suggesting that there is a small resistance 

to the swelling potential of certain bands. The concrete strength of the floor was 

found to be class C30.  

          

Figure 3.16. Concrete samples taken at tunnel invert: a) screed concrete, b) unreinforced concrete, 
c) Plain concrete (Gruppo Dimensione).   

 

Further tunnel lining inspection was commissioned by CERN to gain more 

information on the tunnel lining geometry and materials. This included the 

performance of ground-penetrating radar (GPR) investigation along the TT10 tunnel 

floor, for mapping eventual cavities and for detecting any reinforcement mesh 

and/or steel components in the concrete slab. In fact, at any distinct abrupt material 

change, the pulses propagated by the GPR system returns differently. The radar data 

were taken and processed by the Suisse Company GeoTest, in November 2013.  

  45mm   175mm   100mm           

  a             b           c         
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 Figure 3.17 displays the GPR measurements recorded, where the horizontal x-axis 

corresponds to the distance along the tunnel invert and the y-axis relates to the 

tunnel invert depth. Particularly, the presence of eight metallic objects in the 

surveyed materials was observed, with dimensions of 40 cm x 40 cm between the 

magnet QID 101100 and QID 101200, in the green area, with the last metallic profile 

being almost 10 m away from the magnet QID 101200. A number of nine metallic 

objects were also found beside the magnet QID 101300 of the critical area, by 

covering a distance of approximately 12 m along the tunnel, suggesting the existence 

of potential steel reinforcement (Figure 3.17). Although the construction record is 

not available, the observed steel element profiles imply that, due to the weak ground 

conditions met during tunnel excavation, it was decided to reinforce the concrete 

slab to counter-act swelling pressures at these sections. The type of weak rock 

encountered at the mentioned locations was analysed from the geological face 

loggings taken along the tunnel during the excavation, shown in Figure 3.8.  This 

highlighted the presence of the “lie-de-vin” (lumpy) calcareous red lumpy marl with 

swelling properties between the magnets QID 101100 – QID 101200, whereas grey-

blue and calcareous green marls were found in the formations around the magnet 

QID 100300 (Figure 3.8).   

The weak ground conditions associated with the very weak marl layers were also 

noted during the excavation of both the UX15 cavern and the USA15 cavern at Point 

1 adjacent to this site (Parkin et al. 2002). A certain amount of cracking of the 

shotcrete was noticed along the vault, with the majority of displacements localised 

on the very weak marl. Although the overall stability of the cavern was not 

compromised, steel mesh was installed for safety purposes. 
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Figure 3.17. Ground-penetrating radar (GPR) investigation along the TT10 tunnel floor (GeoTest). 
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In the secondary blue zone between the magnets QID 100700 – QID 100800, 

significantly less damage was caused by the longitudinal tensile cracking observed 

at the tunnel axis level and usually interrupted by construction joints (Figure 3.18a, 

Figure 3.19b and c), in addition to circumferential cracking (Figure 3.18b, Figure 

3.19a). The possible causes behind the observed radial lining cracks may be related 

to the shrinkage of the cast concrete after tunnel construction, as the concrete 

hardens with time. Also, the unreinforced secondary lining of 18 cm may have 

developed longitudinal cracking at tunnel axis level due to the high horizontal load 

applied on the lining, exceeding the tensile strength of concrete, which is known to 

be very small. The tunnel floor in this area was also found damaged, with a 

remarkable longitudinal crack developed around the magnet QID 100835 (Figure 

3.19d) and less significant floor cracks between the magnets QID 100835 and QID 

100900, around 9 m away from the magnet QID 100835, towards the downstream 

area of the tunnel (Figure 3.19e, f). However, no compression failure was observed 

at the tunnel crown in this zone.  

     

(a)                                                     (b) 

Figure 3.18. (a) Longitudinal cracking observed at tunnel axis level (QID 100700) and (b)  radial 
crack.  

                     

                                       (a)                                                         (b)                                                  (c) 
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                                                                (d)                                                        (e) 

Figure 3.19. (a) Circumferential cracks (QID 100800), (b) Longitudinal cracking on the left side and 
(c) on the right side of tunnel axis level (QID 100800), (d) Longitudinal floor cracking around magnet 
QID 100835 (CERN), (e) Longitudinal floor cracking between magnets QID 100835 and QID 100900.  

 

3.3.4  Cause and mechanism of tunnel deformation  

 
In 2008, in the upstream area of the TT10 tunnel, close to the magnet QID 100300 

(Figure 3.6), at the interface between the molasse region and the moraine deposits, 

a first sign of groundwater ingress with calcite deposits was detected during one of 

the maintenance technical stops. To prevent the water infiltration through the crack 

openings, a short-term attempt was made by a Swiss company called Vacca Résines 

& Batiment S.A. based in Meyrin, Switzerland. The adopted method involved the 

injection of a polyurethane resin into boreholes previously drilled into the crack. By 

reacting with the water, the system then results in a waterproof repair (Morton, R., 

2018, personal communication). However, the implemented approach seemed to be 

successful only for a short period of time (between 12-18 months), after which the 

material was washed off by water leaks, suggesting the presence of an active pore 

pressure behind the tunnel lining, at the interface with the permeable moraine layer.   

Some years later, a tunnel inspection occurred during the beginning of the LS1 has 

identified water leakage with calcite deposits on the TT10 tunnel floor, at the 

location of the magnet QID 101100 of the green zone (Figure 3.20).  

  



54                                               3. CERN TT10 tunnel: investigation and instrumentation 

 

      
 

Figure 3.20. Water leakage with calcite deposits (close to magnet QID 101100).  

 
Since the moraine layer is found to be a more permeable deposit compared to the 

molasse unit, the water table tends to oscillate due to the change of groundwater 

conditions. In particular, extreme weather conditions with heavy rainfall may cause 

large amounts of groundwater to flow towards the tunnel, exceeding the tunnel 

drainage system capacity (Figure 3.21a).  This water ingress, in addition to the 

transported calcite deposits, may lead to calcification and may reduce the tunnel 

drainage capacity, resulting in a build-up of water pressure on the outer edge of the 

tunnel lining (Figure 3.21b).  

The accumulated pressure, acting as a tunnel boundary load, in combination with 

poor concrete integrity is expected to lead to a reduced lining capacity, especially in 

the areas of weaker ground conditions. Moreover, the groundwater collected by the 

two small drainage pipes located at both tunnel invert sides flows into the main 

drainage system through white PVC pipes (Figure 3.22b), whose connection is placed 

every 60.38 m along the tunnel (horizontal distance) with a visible drainage grid in 

the tunnel floor (Figure 3.22c). A camera inspection revealed that the drainage pipes 

were found to be damaged (Figure 3.22b). As a result, it is possible that the tunnel 

was not in fully drained conditions and, therefore, the water pressure was 

accumulating around the tunnel. This can potentially lead to the swelling-induced 

damage at the location of weaker ground conditions and resulting in a heave of the 

tunnel floor.  
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                                        (a)                                                                  (b) 

 

Figure 3.21. (a) Longitudinal section of the TT10 tunnel, (b) cross-section with the application of the 
external water pressure u on the outer edge of tunnel lining. 

 

      

                                             (a)                                                               (b) 

 

 

(c) 

Figure 3.22. Tunnel drainage system: (a) calcite deposits and (b) PVC drainage pipes converging into 
the main drainage system and (c) drainage grid placed on the tunnel floor.  

 

PVC drainage 
pipes converging 
into the main 
drainage system 

Drainage grid 
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With this in mind, two potential tunnel lining mechanisms of deformation have 

been identified in this study: mechanism A and mechanism B.  The former shows the 

development of compressive stress and tensile stress at the tunnel crown and tunnel 

shoulder respectively (Figure 3.23a), which might have generated due to high 

horizontal in-situ load pattern and aggravated by an unreinforced tunnel invert. Two 

hypothetical scenarios may be drawn for mechanism A: 

 The compression failure at the tunnel crown may be caused by the failure 

of both primary and secondary lining, due to a possible void above the 

lining or due to the presence of weak ground conditions (Figure 3.23b).    

 The secondary lining may fail due to potential poor concrete conditions at 

the tunnel crown.  

The latter mechanism B implies the swelling-induced damage resulted in severe 

heave of the floor slab, which was triggered by a change in hydrologic conditions 

(Figure 3.23c).  

 

 

 

 

 

 

(a)                                                                                     (b) 

 

(c) 

Figure 3.23. Potential tunnel lining deformation mechanisms: (a) Compressive stress at tunnel crown 
and tension stress on tunnel shoulder; (b) Failure mechanism of both primary and secondary lining 
at tunnel crown due to possible void or weak ground conditions behind the lining; (c) Heave at tunnel 
floor.  

 

 

Primary lining 

Possible void of weak ground 
conditions behind lining 

Secondary lining 
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In summary, the observed behaviour would suggest that the combination of the 

swelling properties of the very weak marl and the deterioration of the concrete lining 

may have compromised the mechanical strength of the lining, resulting in the above-

mentioned mechanism of deformation. Therefore, a remedial short-term solution 

was suggested by consulting engineers contracted by CERN.  

The mitigation measure involved the deployment of a number of steel I-beams, in 

order to absorb the horizontal load and the design was carried out by ARUP 

engineers. The mentioned installation took place in the critical area along the TT10 

tunnel, by placing eight I-beams between the magnets QID 101400 - QID 101500 and 

fifteen I-beams in the area between the magnets QID 101300 - QID 101400 (Figure 

3.24). Simultaneously, in order to assess the tunnel lining performance in the long-

term, it was decided to monitor not only the critical area but also the secondary zone, 

where the cracks start to develop (blue area of Figure 3.8). For this purpose, both 

conventional and advanced monitoring technologies were adopted.  

 

 

Figure 3.24. Installation of steel I beams in the critical area along the TT10 tunnel between magnets 
QID 101300 and QID 101400.  

 

3.3.5  Conventional monitoring 
 

The development of cracks along the TT10 tunnel has triggered the need for a 

monitoring plan in order to understand the tunnel lining behaviour and control its 

deformation with time. The primary monitoring technology adopted in 2013 for 

capturing lining displacements involved conventional automatic total stations 
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within the affected area. The two-year CERN shutdown occurring in 2013 enabled 

access to all CERN underground facilities and, therefore, allowed the implementation 

of geodetic surveying in order to measure structural movements in the long-term. 

Six geodetic cross-sections were installed on the tunnel lining of the critical zone.  

Each monitoring section comprised a total of six reference targets bolted on the 

tunnel lining and positioned at tunnel axis, tunnel invert and tunnel shoulder as 

shown in Figure 3.25, with the optical targets 1, 2 and 3 installed on the right side of 

the tunnel lining whereas the targets 6, 7 and 8 are positioned on the left side, looking 

from the downstream tunnel area.  Figure 3.26 shows a detail of the geodetic target 

installed on the TT10 tunnel lining.  

 

 

Figure 3.25. Schematic tunnel cross-section: six geodetic targets.   

 

Figure 3.26. Geodetic bolt installed on tunnel lining.  

 
The overall layout of the monitoring sections is shown in Figure 3.27. The 

measurement of the targets inside the tunnel was obtained by placing the total 

station on predefined brackets and successively moving the instrument forward to 

cover all the profiles by measuring the coordinates of each target for all the 

instrumented cross-sections. The installation and the data collection were carried 

Target 

Right side of tunnel 
from downstream 
area  
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out by CERN surveyors, working with the SMM group (Survey, Mechatronics and 

Measurements) of the Engineering department (CERN EN/SMM).  

    

 

Figure 3.27. Layout of targets and the measuring total station (Courtesy of CERN EN/SMM). 

 

 

The amount of geodetic data gathered enables the estimation of the 3D 

displacements of the targets and the final deformation profile for the different 

sections along the TT10 tunnel.     

A reference measurement was taken in March 2013 for profiles P1, P2, P3, P4, P5, P6 

and further measurements were gathered periodically during the first year of 

monitoring (2013), by collecting around one measurement per month. However, in 

the subsequent three years of monitoring (2014-2017), three measurements were 

taken, one per year. Only in 2015, an additional geodetic profile P0 was installed, yet 

only two monitoring measurements were taken as the CERN accelerator’s shutdown 

drew to a close in February 2015.  

The location of the geodetic profiles along the TT10 tunnel is shown in Figure 3.28. 

The profiles were numbered by starting from the cross-section P1 located in the 

critical zone (orange zone) of the upstream area of the tunnel and proceeding to the 

downstream side of the TT10 tunnel, as shown in Figure 3.28.  

P1 
 

P2 
 

P3 
 P4 

 P5 
 P6 

 

Target 

Total Station  

From upstream 
area  
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Figure 3.28. Location of the geodetic profiles along the TT0 tunnel: P0, P1, P2, P3, P4, P5 and P6.  

From upstream side of the tunnel to downstream 
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Table 3.2 shows a summary of the geodetic measurements collected.  

Table 3.2. Geodetic measurements taken for the monitored profiles. 

Geodetic Profile Measurements 

P1 

P2 

P3 

P4 

P5 

P6 

March 2013 

April 2013 

May 2013 

June 2013 

August 2013 

September 2013 

December 2013 

August 2014 

January 2015 

January 2016 

February 2017 

P0 
January 2016 

February 2017 

 

 

Figure 3.29 shows the change in the vertical, horizontal and diagonal distances 

between the optical targets between 2013 and 2017 for the monitored cross-

sections.  

During the first year of monitoring, minor changes in tunnel distances were 

recorded. However, since August 2014 the horizontal distance between targets 

seems to rise with time at both tunnel axis level and tunnel shoulder for all the 

measured cross-sections, throughout the monitoring period. Therefore, this 

decrease in the horizontal tunnel distances suggests that the tunnel lining is 

horizontally moving inwards.  

Conversely, the vertical change in distances on both the left and right side of the 

tunnel lining seems to develop with a smaller rate, by increasing with time. Profile 

P4 is identified as exhibiting the maximum convergence of approximately -0.88 mm 

and -1.05 mm at the tunnel shoulder and tunnel axis level respectively, as shown in 

Figure 3.29d. This deformation profile seems to be in agreement with the cracking 

pattern observed at this tunnel cross-section, placed in the critical area where the 

deformation mechanism A was identified.  Additionally, the change in the horizontal 

diameter of both profile P5 and profile P6 increased to about -0.87 mm and -0.77 mm 

respectively within the three monitoring years (Figure 3.29e and Figure 3.29f).  

Moreover, no measurements were taken in August 2014 for profile P6 (Figure 3.29f).  
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Figure 3.29g shows the results for profile P0, which was installed in the secondary 

area, in 2015, hence only two measurements are available (2016 and 2017). The 

horizontal change in distance decreases more at tunnel axis level than tunnel 

shoulder and tunnel invert. The vertical geodetic targets seem to experience a small 

decrease as well. However, only two measurements were taken, and therefore it 

might be difficult at this stage to outline a deformation mode for this cross-section 

(Figure 3.29g).  

Overall, the tunnel lining deformation mode observed for the monitored geodetic 

profiles suggests that the tunnel is experiencing a vertical ovalisation, as the 

horizontal distance between targets is decreasing with time whereas the vertical 

distance seems to increase. Nevertheless, the change in tunnel diameter seems to 

develop slowly with time, reaching maximum values of 1 mm within the monitoring 

period of 4 years.   
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                                                                                  (f) 
 

 
 
 
 
 

 
                                                                                        (g) 

 
Figure 3.29. Change in tunnel distance for the geodetic profiles: (a) Profile P1, (b) Profile P2, (c) 
Profile P3, (d) Profile P4, (e) Profile P5, (f) Profile P6 and (g) Profile P0 (Credit: CERN EN/SMM).  
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3.4  Summary of key findings 

 
This chapter presented the investigation of a CERN concrete-lined tunnel that 

underwent displacements and lining damage many years after construction. An 

extensive suite of site investigations, geological characterization and a successful 

total station monitoring instrumentation have contributed to the identification of 

tunnel lining deformation mode and, therefore, to gain a better understanding of 

lining response.  

Two main tunnel lining deformation mechanisms were identified: the first one 

implies a compressive failure at the tunnel crown with tension cracks on the tunnel 

shoulder whereas the second one involves heave at the tunnel floor.  

The key observations are as follows: 

 The tunnel lining investigation highlighted the presence of a very thin floor 

slab without any reinforcement. However, some GPR tests detected 

anomalous reflectance along the tunnel floor at certain locations, 

suggesting that the tunnel invert was reinforced due to the swelling 

potential of certain marl layers met during tunnel construction.   

 Further geological investigation revealed the most critical tunnel lining 

damage to be localised in the tunnel area where the very weak marl bands 

are localised, suggesting that the geology surrounding the tunnel has a 

great impact on the observed lining behaviour.  

 Conventional monitoring targets have successfully measured the 

displacements of seven cross-sections. Data results were taken for a 

monitoring period that goes from 2013 to 2017. Data was collected only 

during daily tunnel shut-downs, providing a limited dataset to look at in the 

context of the long-term monitoring.  

 The tunnel lining converges horizontally by a maximum of -1.05 mm and -

0.88 mm at the tunnel shoulder and tunnel axis level respectively for the 

Profile P4, installed in the damage affected area. Conversely, the lining is 

experiencing an increase in the vertical tunnel diameter, with peak values 

of approximately +0.44 mm on the right side of the tunnel and +0.19 mm at 

the left tunnel side.  
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To conduct the long-term monitoring strategy due to restricted tunnel access 

(limited to daily technical stops), a remote and radiation resistant monitoring 

technique is required. Ideally, it should provide continuous measurements, 

regardless of underground accessibility. In this study, the tunnel lining mechanism 

of deformation was further explored by adopting advanced monitoring instruments 

(i.e. DFOS, distributed fibre optic sensors) in Chapter 4, and through two-

dimensional FE modelling in Chapter 6 and Chapter 7.  
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Chapter 4 
 

4 Distributed Fibre Optic Sensing (DFOS) 
instrumentation  

 

4.1  Introduction  

 
For assessing the structural performance and the deformation mechanism of 

CERN TT10 tunnel, innovative distributed fibre optic strain sensors (DFOS) based on 

Brillouin Optical Time-domain Analysis (BOTDA) were also deployed, as they are 

found to be one of the most promising monitoring tools in the civil engineering field 

(Soga and Luo, 2018). The purpose of supplementary monitoring instrumentation is 

that fibre optic strain sensors can operate remotely, overcoming the limitations of 

conventional technologies, whose information is restricted to short CERN 

operational shutdowns, and hence a better understanding of the lining behaviour can 

be assessed.  

 Despite the radiative environment and the limited accessibility to CERN 

facilities, optical fibres provide data continuously over the entire structure. 

Therefore, the use of a robust and reliable technology to monitor CERN 

infrastructure provides continuous strain measurements of several tunnel cross-

sections, enabling to understand the tunnel lining deformation mechanism in the 

context of a long-term monitoring plan. The DFOS instrumentation included multiple 

installations along the tunnel and was successfully conducted under the guidance of 

Cambridge Centre for Smart Infrastructure and Construction (CSIC).  

This Chapter provides a review of the DFOS applications in the engineering field 

and a brief description of the distributed strain sensing technology. The field 

monitoring instrumentation carried out in the TT10 tunnel are presented in detail 

followed by an overview of the basic steps taken in the data analysis. The monitoring 

results obtained are also shown and discussed. 



70                                           4. Distributed Fibre Optic Sensing (DFOS) instrumentation  

 

4.2  Review of the DFOS applications 

 
Distributed fibre optic sensors are widely known to be excellent tools in different 

fields such as geotechnical and civil engineering, hydropower, oil & gas etc., as they 

enable continuous strain and temperature measurements, thus providing data over 

a long distance.  Recent improvements in the area of smart technology have 

significantly contributed to the deployment of a number of recent field trials for 

health monitoring purposes using Distributed fibre optic sensors (DFOS), 

demonstrating the suitability and the measurement capability of this technology for 

a wide range of geotechnical applications.  Conventional measurements, which 

usually involve the use of tape extensometers for diameter changes, strain gauges, 

total stations and visual inspections, present the limit of providing discrete values of 

measurement at the sensor location. Therefore, the overall performance of a certain 

structure cannot be easily detected.  

A variety of DFOS sensor applications has been implemented for measuring the 

deformations in structures. The concrete-lined tunnel in an existing London 

Underground tunnel was monitored by adopting Brillouin optical time domain 

reflectometry (BOTDR) technology (Cheung et al., 2010), showing a flexural tunnel 

behaviour comparable with the one obtained by conventional measurements. 

Another use of DFOS has included the implementation of BOTDR system to monitor 

the performance of a masonry tunnel during the construction of a new one at King’s 

Cross in London (Mohamad et al., 2010). By attaching the optical fibres at five 

circumferential sections along the intrados of the tunnel lining, the brick-lined tunnel 

deformation was examined, and the results were compared with conventional total 

station data. The performance of a circular pre-cast concrete segmental lining while 

an adjacent second bored tunnel was constructed was investigated by deploying a 

number of optical fibre sensors, showing an ellipsoidal tunnel lining distortion 

(Mohamad et al., 2012).  

To assess the performance of the existing Royal Mail tunnel due to the construction 

very close beneath of the Crossrail tunnel in London, several cross-sections were 

recently instrumented with fibre optic sensors (Gue et al. 2015; 2017). The FO data 

results showed the development of tensile and compressive strains at tunnel spring 

line and tunnel crown respectively, indicating a vertical tunnel ovalisation as a 

mechanism of deformation.  
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Fibre optic sensors were also installed for the monitoring of a deep circular shaft 

in London for capturing continuous hoop and bending strain profiles using the 

BOTDR system (Schwamb et al., 2014). The capability of optical sensors to measure 

the strain regime was also demonstrated by monitoring and instrumenting piles 

(Klar et al., 2006; Mohamad et al., 2007; Pelecanos et al. 2017; 2018) and masonry 

arches (Acikgoz et al., 2017) and many other geotechnical infrastructure.  

Overall, optical fibres have shown the advantage of being small in size and, hence, 

not invasive as well as being corrosion-resistant, essentially explosion-proof and 

immune to electromagnetic influence, therefore suitable for many severe 

environments in civil applications.   

 

4.2.1  Radiation effect on optical fibres  
 

Unlike remote monitoring electronic devices, which would require not only 

maintenance but also measurements limited to short shutdowns of CERN 

underground infrastructure, DFOS sensors offer the remarkable advantage of being 

immune to the electromagnetic field associated with the high energy of the facilities 

of the Large Hadron Collider (LHC). In fact, fibre optic (FO) sensors are a promising 

technology adopted also by the nuclear industry for monitoring purpose. Despite 

many advantages, the properties of optical fibres change when exposed to radiation 

(Alasia et al., 2006; Girard et al., 2013). Although the fibre response is not fully 

predictable and it depends strictly on the specific environment, radiation absorption 

in silica optical fibre has been investigated in great detail over the last decade 

(Wijnands et al., 2008; Girard et al., 2013).  

A change in the Brillouin characteristic parameters with the radiation dose was 

noticed by Alasia et al. (2006). In silica-based glasses, radiation mainly leads to a 

phenomenon called Radiation-Induced Attenuation (RIA), which is a wavelength 

dependent effect and causes a reduction of the Brillouin amplitude (Girard et al., 

2013). The RIA mechanism strongly affects the sensor’s distance range (Phéron et 

al., 2012). Under radiation, a change in the refractive index RI is observed, which is 

related to a variation in the silica density (Girard et al., 2013).  

During the irradiation, a change in the silica density occurs and the density is 

correlated to the acoustic velocity (Alasia et al., 2006). Since the Brillouin 
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frequency  𝑣𝑏 is related to the acoustic velocity V by the following relation, a 

variation of the density induces a variation of the Brillouin frequency 𝑣𝑏: 

                                                            𝑣𝑏 =  
2 ∙ 𝑛 ∙ 𝑉 

𝜆
                                                            (4.1) 

where n is the refractive index of fibre, V is the acoustic velocity and λ is the light 

wavelength. 

The effects of ionising radiations on the characteristics of the Brillouin gain 

spectrum in standard Ge-doped telecom single-mode fibres have been widely 

investigated up to very high gamma dose by Alasia et al. (2006). The samples were 

gamma-irradiated at the Brigitte facility of SCK-CEN in Belgium at room temperature 

up to 10 MGy. The results show a clear dependence of the Brillouin scattering on the 

ionising radiation due to a silica compaction phenomenon, modifying the Brillouin 

scattering properties.   

The results also show that the frequency variation is about 5 MHz for the most 

irradiated fibre sample, which would correspond to around 5 °C error in the 

temperature measurement. Therefore, the radiation-induced shift of the Brillouin 

frequency can be essentially negligible. 

Phéron et al. (2012) also investigated the performance of strain in Brillouin-

scattering based optical fibre sensors by irradiating various fibre types. Their results 

show that the amplitudes and kinetics of the RIA response strongly depend on the 

composition of fibre core and cladding. After 10 MGy dose, the He-doped fibre 

presented the largest levels of RIA (400 dB/km), whereas a single mode fibre 

(SMF28) exhibited a strong RIA of about 230 dB/km. Limited losses were instead 

induced in F-doped fibres (50 dB/km).   Their results also show that under radiation 

conditions some compositions have to be avoided, implying the use of radiation-

hardened optical fibres (e.g. fluorine-doped fibres) in radiation environments. A 

single mode fibre (SM28) exhibited a shift of 4 MHz under 10 MGy radiation dose, an 

acceptable response for the radiation levels.  

At the Large Hadron Collider (LHC) project, CERN is hosting one of the largest 

existing optical fibre installation exposed to ionising radiations for the transmission 

of large amounts of data, with maximum dose rate registered of 10 kGy/year (Girard 

et al., 2013). Several fibre samples from different manufacturers were exposed to 

gamma rays at the radiation test facility of the SPS tunnel at CERN, up to a total dose 
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of 10 kGy. The results show that pure silica fibres exhibit significantly lower losses 

than the Ge-doped fibre at the same dose (Wijnands et al., 2008). 

The vulnerability of optical fibres to the radiative environment of the TT10 tunnel 

has been analysed to evaluate their response to the measured radiation dose and, 

hence, to adopt potential radiation hardening. In fact, the radiation tolerance of the 

fibre and its response during gamma-ray exposition in the TT10 tunnel were 

considered to ensure that the radiation dose remains consistently well below the 

radiation acceptance level (Di Murro et al. 2019).  

Appropriate remote radiation monitoring systems were installed for measuring 

the gamma-ray dose in the TT10 tunnel. Figure 4.1 shows the radiation dosimeters 

attached at the tunnel crown. Two gamma-ray dose measurements were collected 

by the Radiation Tolerant and Measurements Electronics Section of CERN Survey, 

Mechatronics and Measurements Group (CERN EN-SMM-RME): the first one in June 

2015 and the second one in July 2017. Both readings show minor gamma-ray dose 

(Table 4.1), reaching a maximum radiation dose of 30 Gy in 2017, confirming that 

the value is well below the tolerance radiation level of 100 kGy for a single mode 

fibre (Alasia et al., 2006).  

Yet, radiation testing remains necessary as the optical fibre composition should be 

carefully chosen in order to minimize its vulnerability to the specific environment.   

 

 

Figure 4.1. Radiation dosimeters installed on the TT10 tunnel crown (Di Murro et al. 2019). 

Table 4.1.Gamma-ray dose measurements taken in the TT10 tunnel (Credit: CERN EN-SMM-RME). 

 
Date of  

measurement 
Gamma-ray 
dose [Gy] 

15/06/2015 1.5 - 3.3 

15/06/2017            25- 30 
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4.3  Principles of Brillouin Optical Time-Domain Analysis 

 
The Brillouin optical time domain analysis (BOTDA) technology provides spatially 

continuous distributed strain measurements over long distances using standard 

optical fibre. As a light is launched in the optical fibre from a fibre optic interrogator 

with a pulse of around 1550 nm, a small amount is backscattered at every point 

toward the launch due to local impurities. A spectrum of the backscattered light 

generated along the fibre is shown in Figure 4.2. The backscattering process, which 

allows the light to propagate back to where it was originally sent, initiates from 

material impurities and its light signal appears in three frequency spectra (Figure 

4.2). Conversely from the Rayleigh and Raman scattering, originated from material 

impurities and thermal excited acoustic waves respectively, the Brillouin scattering 

is generated from fluctuations of density induced by the propagation of acoustic 

waves. It is considered to be a diffusion of light radiation induced by acoustic 

phonons (Kechavarzi et al. 2016). 

The peak of the Brillouin frequency of the fibre is proportional to the acoustic 

velocity (Eq. 4.1), which is strictly affected by the strain and temperature applied to 

the fibre (Horiguchi et al. 1995). The Brillouin frequency shift is in the range of 9-13 

GHz for a light wavelength of 1300 – 1600 nm in standard single mode fibres.  

 

    
 

Figure 4.2. Launched light propagation and backscattered light components (Soga, 2014). 

 
By measuring the time required for the backscattered light to return to the FO 

interrogator and by knowing that the speed of light is constant, the distance at which 
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the Brillouin frequency shift occurs can be precisely evaluated, as shown in Figure 

4.3.  

 

Figure 4.3. Distributed Fibre Optic Sensors: principles. 

 
Due to any change in temperature or strain of the fibre, the acoustic velocity V of 

the light will change and the frequency of backscattered light obtained from the 

analyser is shifted by an amount that is linearly proportional to the applied strain 

∆𝜀𝑚(𝑡,𝑧)
 and temperature ∆𝑇(𝑡,𝑧)   , as shown below: 

                                       ∆𝜈𝑏(𝑡,𝑧)
=  𝐶𝜀∆𝜀𝑚(𝑡,𝑧)

+  𝐶𝑇∆𝑇(𝑡,𝑧)                                                (4.2) 

where  ∆𝜈𝑏(𝑡,𝑧)
is the change in frequency and Cε and CT are the coefficients for strain 

and temperature change respectively. Therefore, both strain and temperature 

profiles can be detected by the Brillouin scattering along the whole fibre length 

(Mohamad, 2008).  

For the purpose of the monitoring of the TT10 tunnel, stimulated Brillouin 

scattering was adopted (Omnisens 2008), which enhances scattering in a Brillouin 

optical time domain analysis (BOTDA) with a better spatial resolution compared to 

the Brillouin Optical time domain reflectometry BOTDR (Bao and Chen, 2011). In 

fact, the BOTDA system provides a strain resolution of ±4 με compared to ±30 με of 

the BOTDR system, but it requires a closed continuous loop. Therefore, if any fibre 

breakage occurs, no data can be obtained if the environment is not reachable.  
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The BOTDA interrogator used in this study provides a minimal spatial resolution 

of 0.5 m and a readout resolution of 0.1 m (Table 2). The former is determined by the 

velocity of incident light v and the pulse width τ, according to the Eq. 4.3:  

                                                                   𝑆 =
𝑣 ∙ 𝜏

2
                                                               (4.3)  

The sampling or readout resolution is determined by the distance between two 

measured data points.  

 

 
 

 
 
 
 
 
 

Figure 4.4. Omnisens DiTest STA-R BOTDA analyzer (Omnisens 2008).  

 
Table 4.2. Characteristics of Omnisens BOTDA interrogator. 

 
 
 
 
 
 
 
 
 

4.4  Fibre Optic instrumentation of TT10 tunnel  

 

4.4.1  Introduction to the monitoring area  
 

Recent tunnel inspections highlighted the development of a number of cracks in 

different sections of the TT10 tunnel lining (Di Murro et al. 2016; 2018; 2019). In 

order to gain a better understanding of the tunnel lining mechanism of deformation 

as part of a long-term monitoring strategy, innovative instrumentation which makes 

use of optical sensors was adopted.   

Two different zones of the TT10 tunnel were involved in the FO installations: 1) 

the orange zone, assessed to be the most critical area in terms of stability, as it 

appeared to be involved by the majority of the cracks on the tunnel lining and 2) the 

Parameters BOTDA 

Strain accuracy [µε] 4 

Temperature accuracy [°C] 0.2 

Minimal spatial resolution [m] 0.5 

Readout resolution [m] 0.1 
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blue zone, where cracks started to develop. A plan view of the zones involved in the 

FO installations is provided in Figure 4.5. To cover the cracked zones, several cross-

sections along the tunnel were instrumented with both novel FO sensors and 

conventional geodetic profiles, mounted almost at the same locations in order to 

compare different technologies in the assessment of the tunnel lining response.   

The limited tunnel access to CERN underground facilities gave the possibility to 

complete the first FO installation, named CERN 1, which took place in early 2014 and 

involved the deployment of eight circumferential FO loops in the blue area, as shown 

in Figure 4.5. The successful completion of CERN 1 installation enabled the plan of a 

second installation, named CERN 2, commenced in May 2014, with the placement of 

six FO tunnel loops in the orange area shown in Figure 4.5. Between the first FO 

tunnel loop (Loop 1) of CERN 2 installation and the last tunnel loop of CERN 1 (Loop 

8), there is a section of 138 m length which is unmonitored.    
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Figure 4.5. TT10 tunnel plan view: location of the blue, green and orange area; location of the FO loops for CERN 1 and CERN 2 installations; location of the geodetic 
profiles.  

 

From upstream side of the tunnel to downstream  
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Due to tunnel access restrictions, the long-term monitoring was planned to be 

carried out from outside of the tunnel, using an Omnisens BOTDA analyser 

(Omnisens 2008), where both ends of the FO cables are connected. The installation 

of the FO sensors took place in March 2014 and was completed in May 2014. As in 

the deep CERN underground infrastructure the temperature was assessed to remain 

constant, no fibre optic temperature cable was needed, requiring then only the 

installation of a strain sensing cable. The FO strain cable runs in both the longitudinal 

and cross-section directions of the tunnel, forming several circumferential loops and 

one straight cable section in the longitudinal direction, with the cable sections of 

interest pre-strained, as shown in Figure 4.6, where the solid line refers to the pre-

strained cable section whereas the dashed line refers to loose/slack cable section.  

The application of a tension strain allows for accommodation of any compressive 

strain, read as a relaxation of the tensile strains without cable buckling. As the 

primary interest is to measure the relative change in strain, it was not essential to 

record the exact value of strain applied. The slack FO cable sections (i.e. zero 

mechanical strain) placed between consecutive strained sections served as a thermal 

strain reference during data analysis.  

At the end of the monitored circuit, the two ends of the cable were joined together 

in a connection box (Figure 4.7a), located in the upstream area of the tunnel beside 

a red access door (Figure 4.7b). The optical fibre was then spliced to a standard 

extension cable and then routed out of the tunnel section via a 50 m vertical shaft 

into a secure monitoring area where the BOTDA unit was located (Figure 4.7c). No 

further access in the tunnel section was then required, as long as there was no cable 

breakage and resulting required cable fixing. Consequently, the monitoring and the 

data collection were planned to be carried out in a controlled area (Building 806), a 

strategic point as it is located very closely to the CERN SMB-SE-FAS Group’s office 

building (Figure 4.7d).   

To minimize any risk of the equipment damage due to potential tunnel inspection, 

appropriate warning signs were placed in a number of different places close to the 

instruments. Since no major construction activity was taking place nearby and the 

aim was the long-term structural health monitoring of the tunnel, the BOTDA 

analyser was not required to stay on site on a permanent basis and thus it was rented 

monthly.  
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Figure 4.6. Fibre optic installation layout in TT10 tunnel (Kechavarzi et al. 2016, Di Murro et al. 
2019). 

 

 
       (a) 

 

        
(b)                                                                           (c) 

Schematic 
cross-section of 

FO loop 

 Connection box 
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       (d) 
Figure 4.7. (a) View of TT10 tunnel from the upstream part with highlighted the instrumented cross-
section FO loop, (b) Access door to the 50 m vertical shaft, (c) BOTDA analyser placed in the 
monitoring control room on the surface (CERN Building 806), (d) Top view of the location of CERN 
SMB-SE-FAS Group’s Office and the controlled monitoring building 806 (Photo credit: CERN GIS 
Portal). 

 

4.4.1.1 Type of optical fibres 
 

Two types of standard optical fibre were used in the TT10 tunnel monitoring: (i) a 

tight buffered single mode strain sensing cable, manufactured by Nanjing University, 

in China (Figure 4.8a), and (ii) an extension cable (Figure 4.8b), a more robust cable 

used to bring the sensing cable to the monitoring area based on ground surface.  

The FO strain sensing cable is a single mode cable, which consists of a core of 9 µm 

usually made from glass, surrounded with two outer layers: a glass layer of cladding 

of 125 µm diameter and a plastic buffer of 250 µm of diameter, used to protect the 

glass, as shown in Figure 4.8a.  

Unlike the strain sensing cables, the fibres in the standard loose tube 

telecommunication cable are placed loosely inside a plastic or steel tube, filled with 

a water-blocking gel (Kechavarzi et al. 2016). This prevents any external mechanical 

strain to be transferred to the optical fibre located inside. Also, this cable comprises 

an additional polyethylene coating layer (Figure 4.8b).   

 

 

 

 

CERN SMB-SE-FAS 
Group: Office Building 

Monitoring area: 
building 806 
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(a) 

 

(b) 

Figure 4.8. Fibre optic strain cables: (a) single fiber tight buffer strain sensing cable manufactured at 
Nanjing University; (b) extension gel-filled loose cable (Soga and Luo, 2018).  

 

4.4.1.2 Method of attachment of optical fibres 
 
The accuracy and reliability of a fibre optic installation involve an adequate 

method of attachment of fibre to the structure that needs to be monitored. Optical 

fibres can be either embedded or glued within the structure or can be anchored at 

fixed points. In the former case, the optical fibre is fully bonded and the fibre strain 

profile coincides with the one experienced by the structure. In the latter case, the 

strain sensing cable is attached to the structure only at discrete points through a 

gauge length installation (Kechavarzi et al. 2016). In the TT10 tunnel, the latter gauge 

length method was adopted. The cable was attached to the tunnel lining at discrete 

locations by using a serious of hook-and-pulley systems, with the hook screwed into 

the tunnel lining’s surface and the FO cable passing along the pulley (Figure 4.9b). 

The gauge length method requires that strain can only be measured if the optical 

fibre is properly pre-tensioned, without leaving any slack sections. Therefore, each 

strain cable section between two discrete points was tightened before gluing it to 

each pulley wheel. The pretension strain applied to the fibre was induced by pulling 

the optical fibre from both ends of the cable in addition to the application of some 

weights until the glue became dry.  

 



4. Distributed Fibre Optic Sensing (DFOS) instrumentation                                           83 

 

 

 

  

(a)                                                          (b) 

 
Figure 4.9. FO field installations: (a) Cross-section of the circumferential strain cable loop 
(Kechavarzi et al. 2016); (b) Method of attachment of optical fibre: pulley wheels. 

 

4.4.2  Data analysis  
 

The Brillouin frequency peak shift is linearly dependent on the mechanical strain 

experienced by the fibre and temperature. If at any point a strain-sensing fibre is 

experiencing some strain ε0, the value of Brillouin frequency, for which the peak 

amplitude occurs, changes (Δνb).  It is assumed that the change in the Brillouin 

frequency experienced by a strain-sensing cable is linearly dependent not only on 

the mechanical strain that the fibre is experiencing but also on temperature. 

Therefore, the temperature effect needs to be compensated in order to obtain pure 

strain measurements. 

One solution for compensating the temperature is to install a temperature cable 

along with the strain cable, which is only sensitive to temperature change. The 

optical fibre of the temperature cable is surrounded by a gel liquid, therefore 

eventual external strain applied on the tube will not be directly transferred to the 

fibre inside (Figure 4.8b).  

Under isothermal conditions, the linear relationship between the frequency shift 

and the axial strain is as follows: 

                                                         𝜈𝑏 =  𝜈𝑏0 + 𝐶𝜀(𝜀 − 𝜀0)                                                   (4.4) 
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where (𝜈𝑏 −  𝜈𝑏0)  is the change in frequency, and (𝜀 − 𝜀0) is the change in axial 

strain.  

However, under non-isothermal conditions the Brillouin frequency shift varies with 

the longitudinal strain and temperature, according to the Eq.4.5: 

                       ∆𝜈𝑏(𝑡,𝑧)
=  𝐶𝜀∆𝜀𝑚 + 𝐶𝑇∆𝑇   = 𝐶𝜀(∆𝜀𝑠 + ∆𝜀𝑇) +   𝐶𝑇∆𝑇                            (4.5) 

where ∆𝜈𝑏(𝑡,𝑧)
  is the Brillouin change in frequency due to mechanical strain ∆𝜀𝑚(𝑡,𝑧)

  

and temperature ∆𝑇(𝑡,𝑧)   due to a change in the refractive index and acoustic wave 

velocity. The coefficients 𝐶𝜀  and 𝐶𝑇 depend on fibre properties and do not depend on 

the type of fibre cable used. The coefficient 𝐶𝜀  is the value of the rate of change of 

frequency with applied strain in a strain cable and for a given fibre it can be obtained 

from calibrating a strain cable under constant temperature. The value assumed for 

Nanjing’s strain cable is around 493 MHz/με. The coefficient 𝐶𝑇 is the value of the 

rate of change of frequency with applied temperature in a temperature cable and a 

common value is around 1 MHz/°C (Kechavarzi et al. 2016). Both strains ∆𝜀𝑠 and ∆𝜀𝑇 

are caused by the thermal expansion of the structure and the FO cable components 

respectively through a thermal coefficient 𝛼 (Equation 4.6):  

                                        ∆𝜈𝑏(𝑡,𝑧)
= 𝐶𝜀  ∆𝜀𝑠 + (𝐶𝜀  𝛼 + 𝐶𝑇) ∆𝑇                                            (4.6) 

It can be assumed that the thermal coefficient is only due to the structure 

(Mohamad, 2008), which is usually assumed to be around 10 με/°C for concrete.  

The temperature change ΔT can be calculated from the temperature loose cable, 

according to Eq.4.7: 

                                                 𝛥𝑇(𝑡, 𝑧) =
𝛥𝑣𝑡(𝑡, 𝑧)

𝐶𝑇𝑡

                                                             (4.7) 

where 𝐶𝑇𝑡
 is the thermal coefficient calibrated from a temperature cable and its value 

is slightly larger than 𝐶𝑇 .  

The total mechanical strain 𝛥𝜀𝑚𝑒𝑐ℎ can then be evaluated as follows: 

                           𝛥𝜀𝑚𝑒𝑐ℎ(𝑡, 𝑧) = (
𝛥𝑣𝑠(𝑡, 𝑧)

𝐶𝜀
) − (𝐶𝑇

𝛥𝑣𝑡(𝑡, 𝑧)

𝐶𝑇𝑡

)                                    (4.8) 
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4.4.2.1 Basic steps for the FO data analysis 

 
Several basic steps are required to process the primary raw data provided by the 

BOTDA unit into the final engineering information desired. The general steps in 

addition to several unexpected issues taken for analysing the FO data are 

summarized in Figure 4.10.  

Each circumferential fibre optic loop allows the measurement of a strain profile 

along the fibre through a series of steps listed below.  

a. Obtain the raw data (Brillouin frequency values). Repeated automatic 

measurements were taken with at least ten measurements per installation in 

order to minimise the measurement error. The readings were then averaged so 

that each Brillouin frequency profile per dataset is obtained:     

    𝑣𝑟𝑎𝑤(𝑡, 𝑧) 

b. Filtering phase. The Brillouin frequency values obtained from the BOTDA can 

be noisy, determining unrealistic fluctuation of data, which may occur due to 

either potential bend of the cable or fibre splices not completed carefully with 

consequent signal loss. A second-order smoothing of the data was performed 

using a Savitzky-Golay filter. By fitting a polynomial to a frame of data points, the 

filter minimises the least-squares errors (Savitzky and Golay, 1964).  

 

c. Differential Brillouin Frequency response. Each dataset reading was 

subtracted from a baseline reading taken at the end of the FO installation in order 

to obtain the accumulated strain response.   

 

                       𝛥𝑣(𝑡, 𝑥) = 𝑣𝑟𝑎𝑤(𝑡, 𝑥) −  𝑣𝑟𝑎𝑤(𝑡 = 𝑡0, 𝑥)                                       (4.9) 

 

d. Calculation of the mechanical strain profile. As no temperature cable was 

installed, no temperature compensation was needed. According to Equation 

(4.4), the axial strain profile was obtained for all the circumferential loops.  

Moreover, unexpected issues can occur during the data analysis and, therefore, 

further steps may need to be taken. The mentioned issues are listed below.  

 The strain cable may show some unpredicted residual displacements in the 

free/slack sections, which have to be shifted vertically.  
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 The fibre cable length can change throughout the monitoring period due to 

the eventual use of extension cables or splices, resulting in a distance 

difference between different datasets. To overcome this issue, a distance 

(horizontal) shift can be done.  

 

Figure 4.10. Basic steps for FO data analysis. 

  

4.4.2.2 Data collection  

 
The FO data was collected by attaching both ends of each FO installation to the 

BOTDA interrogator. A spatial resolution and a sampling interval of 1 m and 0.10 m 

were adopted respectively for this project. The raw Brillouin frequency profiles were 

subtracted from a baseline measurement to obtain the incremental strain changes. 

The baseline reading, which shows the initial applied strain, confirmed a good signal 

and clear repeatable trends among the instrumented FO cross-sections (Soga et al. 

2017). Progress monitoring readings were initially planned to be taken every two-

three months; however, based on the FO strain results collected, the long-term 

monitoring plan was adapted to the need. As no real movement was observed during 

the first monitoring year, measurements were taken almost every three-four 

months, depending also on the availability of the BOTDA unit, rented directly from 

the manufacturer Omnisens based in Lausanne, Switzerland. A total of twelve 

measurements was collected within a monitoring period of three years (July 2014 – 

October 2017). Table 4.3 shows the FO datasets taken for the installations CERN 1, 

CERN 2 and CERN 3.  
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Table 4.3. FO datasets for CERN 1, CERN 2 and CERN 3 installations: baseline and progress readings. 

Monitoring Section Date Reading 

CERN 1: eight circumferen-
tial loops 

 

July 2014 Baseline 

August 2014  

May 2015  

June 2015  

October 2015  

March 2016 Progress 

April 2016 

July 2016 

November 2016 

February 2017 

April 2017 

July 2017 

October 2017 

 

CERN 2: six circumferential 
loops 

 

July 2014 Baseline 

August 2014  

October 2015  

March 2016  

April 2016 

July 2016 

November 2016 

February 2017 

April 2017 

July 2017 

October 2017 

Progress 

CERN 3: two circumferential 
loops 

 

February 2016 Baseline 

July 2016  

November 2016  

February 2017 Progress 

April 2017  

July 2017  

October 2017  
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4.4.3  FO data results: circumferential sections 

4.4.3.1 CERN 1 

 
The first fibre optic monitoring setup comprised the deployment of eight cross-

sections to measure circumferential strains. Figure 4.11 shows the FO 

instrumentation layout of CERN 1 installation, with the first loop located in the 

upstream tunnel area. The first tunnel loop was placed almost 3 m away from the 

access red door, located in the upstream area of the tunnel. The distance between 

each tunnel loop is shown in Figure 4.11. Overall, the instrumented FO tunnel loops 

cover a monitoring area of around 45 m, with a section in between of 28 m 

unmonitored (Figure 4.11). Both ends of the optical fibre return to the connection 

box, where the fibres are spliced to an extension cable and then brought to the 

surface. 

 

 

Figure 4.11. CERN 1: Fibre optic instrumentation layout of tunnel loops.  

 

The primary data obtained is the measured peak Brillouin frequency shift experi-

enced by the optical fibre caused by the application of a strain along the whole length 

for the instrumented loops. The measurements were taken by considering a spatial 

resolution and a sampling interval of 1 m and 0.1 m respectively. Figure 4.12 shows 

the raw Brillouin frequency FO data obtained from the BOTDA interrogator. Due to 

the applied strain, eight discrete sections and a longitudinal long section exhibit high 

5m 

5.70m 

28m 

1.35m 

1.70m 

To the connection 
box and then to the 
analyser 

1.70m 

2m 

Loop 1-1 

Loop 1-3 

Loop 1-4 

Loop 1-5 

Loop 1-6 

Loop 1-7 

Loop 1-8 

Loop 1-2 
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frequency (Di Murro et al. 2019). As mentioned previously, a baseline reading was 

taken in July 2014, and subsequent monitoring readings were taken with an interval 

of two-three months, providing a total of twelve measurements and a dataset of three 

years of monitoring. By subtracting the baseline reading from the dataset of the pro-

gress readings, the accumulated response in terms of Brillouin frequency was ob-

tained. 

 

Figure 4.12. CERN 1: Brillouin frequency shift along cable distance. 

 

Figure 4.13 displays the cumulative strain increments recorded for the 

circumferential loops: loop 1-1, loop 1-2, loop 1-3, loop 1-4, loop 1-5, loop 1-6, loop 

1-7 and loop 1-8. The computed axial strain was plotted against the optical cable 

distance in Figure 4.13, looking from the upstream tunnel area for all the tunnel 

loops. Positive tensile strains were computed at the lateral sides of the tunnel lining, 

being the start and the end of the horizontal axis. Conversely, negative (compressive) 

strains developed at the crown of the tunnel, represented by the central section of 

the x-axis (Figure 4.13).   

Insignificant strains occurred after one month of monitoring (July 2014 – August 

2014) for all the monitored cross-sections. A big change in the axial strain occurs 

within the first nine months (July 2014 – May 2015) for all the circumferential loops. 

Unlike loop 1-4 and loop 1-8, a consistent development of positive (i.e. tensile) and 

negative (i.e. compressive) strains is recorded at the tunnel axis level and the tunnel 
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crown respectively for the loop 1-1, loop 1-2, loop 1-3, loop 1-5, loop 1-6 and loop 1-

7.  Also, within one loop the peak strain value seems not to occur at the same location 

along the fibre for all the measurements taken throughout the monitoring period.  

The axial strain experienced by the loop 1-1 is shown in Figure 4.13a. A small 

increase in the axial strain with time can be observed. In particular, after the 

measurement taken in April 2016 where peak strain values of around 150 με are 

recorded, the axial strain slightly decreases in July 2016, followed by a further drop 

in the strain in November 2016. A similar trend in the development of the axial strain 

is observed for the loop 1-3, with peak strain values of around 100 με at the tunnel 

crown and almost 200 με at the tunnel axis level (Figure 4.13c).  The axial strains 

developed by the loop 1-4 shown in Figure 4.13d differ from the other loops as a 

distinct shape of positive and negative strains at the tunnel axis and the tunnel crown 

respectively cannot be detected, apart from some measurements (i.e. May 2015, June 

2015, and October 2015). However, strain values smaller than 100 με are observed, 

except for the measurement collected in April 2016, which shows maximum strain 

values of 200 με.  

Figure 4.13f illustrates the axial strain recorded by the loop 1-6, which shows a 

slow development of strain with time, reaching a compressive and tensile peak strain 

value in October 2017. Further, the measurement taken in April 2016 displays large 

strains of almost 200 με at both the tunnel axis and the tunnel crown, more 

significant strain values compared to those detected for the following months (i.e. 

November 2016, February 2017, April 2017), indicating a seasonal fluctuation in the 

data.   The axial strain computed by the loop 1-7 shows a strong change between July 

2014 and May 2015, after which the strain exhibits a slight increase until October 

2017, as shown in Figure 4.13g.   

Similarly to the loop 1-4, the FO axial strain of the loop 1-8 does not show a clear 

strain pattern of tensile and compressive strains, except for some measurements. 

Also, peak strain magnitudes of 100 με are observed at the tunnel crown, whereas 

the tunnel axis level experiences maximum strain values of 300 με at one side (Figure 

4.13h).  

Overall, the tensile strain values occurred at the lateral sides of the tunnel lining 

seem not to exceed 200 με for the loop 1-1, loop 1-2, loop 1-3, loop 1-4, loop 1-5, loop 

1-6 and loop 1-7. However, loop 1-8 shows large tensile strains of approximately 300 

με at one tunnel lateral side in April 2017. The crown shows compressive negative 
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peak strain values of around 120 με for loop 1-2 and loop 1-3, 200 με for loop 1-5 

and loop 1-7 and almost 300 με for loop 1-6.  

 

 

(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 

 

(h) 

Figure 4.13. Fibre optic axial strain for cross-sectional loops of CERN 1: (a) Loop 1-1, (b) Loop 1-2, 
(c) Loop 1-3,  (d) Loop 1-4, (e) Loop 1-5, (f) Loop 1-6, (g) Loop 1-7 and (h) Loop 1-8.   
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 Throughout the monitoring period, the strain profiles recorded for CERN 1 

installation show the development of tensile and compressive strain at the lateral 

sides of the tunnel lining and the crown respectively for most of the tunnel loops. 

This behaviour suggests that the TT10 tunnel lining seems to experience a vertical 

tunnel ovalisation (Di Murro et al. 2016; 2019). It can be concluded that the FO 

cumulative results show a slow small development of strains, within the range of 

±200 με over the considered time periods, which is relatively short and, therefore, it 

may indicate a tunnel deformation development over the longer term.  

 

4.4.3.2 CERN 2 

 
The second fibre optic installation in the TT10 tunnel took place in May 2014. It 

consists of six cross-sections, as shown in Figure 4.14. The FO tunnel loops were 

numbered from the upstream to the downstream side of the tunnel. The first three 

tunnel loops (loop 2-1, loop 2-2 and loop 2-3) were approximately 16.5 m and 13 m 

apart from each other, whereas loop 2-4, loop 2-5 and loop 2-6 were 4 m and 6 m 

away respectively.  

  

 

 

Figure 4.14. CERN 2: Fibre optic instrumentation layout.  
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Due to a fibre breakage occurred in early 2015, no measurements were taken for 

CERN 2 installation between August 2014 and October 2015, as no tunnel access was 

permitted. The earliest daily shutdown of CERN accelerators happened in September 

2015, during which the fibre was fixed.  

Figure 4.15 shows the raw Brillouin frequency FO data along the cable distance for 

the monitored sections since July 2014.  

 

Figure 4.15. CERN 2: Brillouin frequency shift along cable distance. 

 

Figure 4.16 shows the FO results in terms of accumulated axial strain for 6 tunnel 

loops. Minor strain values were observed within the first month of monitoring (July 

2014 – August 2014) for all the instrumented tunnel loops. A small increase of axial 

strains with time is observed for the loop 2-1, which seems not to exceed strain 

magnitudes of 50 µε at the tunnel axis level and around 40 µε at the tunnel crown, as 

shown in Figure 4.16a.  

Slightly larger strain values were recorded for the loop 2-2, as shown in Figure 

4.16b. A sudden increase in the axial strain is observed within the first twelve 

months of monitoring (July 2014 – October 2015), after which the strain further rises 

with time, reaching around 300 µε and 200 µε at the tunnel crown and at the tunnel 

axis level respectively in October 2017.  
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The tensile and compressive strain values seem not to exceed 100 µε at both the 

tunnel crown and the tunnel axis level for the loop 2-3, as shown in Figure 4.16c. The 

axial strains developed by the loop 2-4 also show a small increase with time, reaching 

maximum strain values of around 150 µε and 100 µε at the tunnel axis and the tunnel 

crown respectively (Figure 4.16d).  

Loop 2-6 also experiences minor axial strain with time, recording around 50 µε in 

October 2015, followed by a further small increase of axial strain with time (Figure 

4.16f). Although the strain magnitudes are within the range of 100 µε, the 

measurement of July 2017 shows larger strains than the one collected in October 

2017.  

Noticeably bigger strain values were detected instead for the loop 2-5, which 

seems to develop axial strain continuously with time, reaching peak values of around 

700 µε and 400 µε at the crown and the tunnel sides respectively, as shown in Figure 

4.16e. A significant increase of 400 µε is observed at the tunnel crown between 

August 2014 and October 2015, whereas the tunnel axis level exhibits strain values 

in the range of 200-300 µε. After two further years of monitoring (October 2017), 

the magnitudes of axial strain almost doubled at both the tunnel crown and the 

tunnel axis level.  

The soil profile surrounding the tunnel at the tunnel depth of the loop 2-5 seems 

to have an influence on the recorded tunnel lining strains. An alternate sequence of 

very weak lumpy marl and medium-weak marl layers was found in the geology 

surrounding the tunnel at the location of the FO circumferential loop 2-5, with 

particular attention to the weaker marls, which exhibit swelling behaviour when in 

contact with water, inducing additional loads on the tunnel lining.  The severe strain 

distribution of the loop 2-5 is obviously considered to be the most critical section of 

the TT10 tunnel and its correlation with the soil stratigraphy will be discussed later 

in this chapter.  

 Generally, the FO monitoring results gathered for CERN 2 installation suggest a 

vertical tunnel elongation mechanism of deformation, as well as CERN 1 data results.  
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(e) 

 

(f) 

 
Figure 4.16. Fibre optic axial strain for cross-sectional loops of CERN 2: (a) Loop 2-1, (b) Loop 2-2, 
(c) Loop 2-3, (d) Loop 2-4, (e) Loop 2-5 and (f) Loop 2-6. 
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4.4.3.3 CERN 3 

 
Long-term FO attachments which make use of pulley wheels require the use of the 

glue, showing a creep behaviour with time. An alternative solution is to adopt metal 

clamps, which have been designed and manufactured by CSIC (Kechavarzi et al. 

2016). This technique consists of two metal plates joined by a clamping bolt. Both 

plates are designed to accommodate precisely the temperature as well as the strain 

cable (Figure 4.17).   

A trial FO installation was deployed in the TT10 tunnel by installing two 

circumferential loops besides the existing one (CERN1), by adopting the standard 

hook-pulley-glue attachment system for one loop and metallic clamps for the second 

loop. The two new FO loops were set up next to each other near the shaft access door 

and before the first FO loop of CERN 1 installation (Figure 4.18). This will allow to 

compare the two different systems and to improve future fibre optic installations.  

 

Figure 4.17. Metallic clamps for attaching the FO cable to the tunnel lining. 

 
 
 
 
 
 
 

Figure 4.18. TT10 tunnel plan view: FO tunnel loop attached by using metallic clamps beside the FO 
loop attached with the hook & pulley system. 

FO loop 2: hook & pulley & glue  

FO loop 1: metallic clamps 
 

CERN 1: 8 FO tunnel loops  
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The installation was executed and completed in February 2016. The baseline 

reading showed a successful signal transfer and six measurements were collected 

throughout the monitoring period (Table 4.3). The raw Brillouin Frequency along 

the cable distance for the baseline reading taken in February 2016 is shown in Figure 

4.19a. In particular, the Brillouin frequency within the section of Loop 1 decreases 

and then rises again, which might be due to the pre-tensioning of the optical fibre, 

applied not uniformly between the metallic clamps (Figure 4.19a).   

Figure 4.19b and Figure 4.19c show the axial strain for the two FO circumferential 

loops: loop 1 and loop 2. It was observed that the single mode fibre optic clamped 

gave considerably higher strains than fibres glued on pulley wheels. Clamped fibres 

recorded larger strain values at both lateral sides and the crown of the tunnel lining 

than those developed by the glued fibres. A smooth distribution of axial strain is 

experienced by the loop 2, whereas the loop 1 shows localised peak strain values at 

the location of the clamps, probably due to the design of metallic clamp which 

induces localized strain. For this reason, the method of gluing the optical fibres on 

circular wheels provides more reliable axial strain values and it remains, at this 

moment, the most adopted methodology for the deployment of fibre optic sensors.  

 

 

(a) 
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                                                                            (b) 

 
                                                                            (c) 

 
Figure 4.19. CERN 3 installation: (a) Brillouin Frequency along cable distance, (b) Fibre optic axial 
strain for cross-sectional Loop 1 and (c) Loop 2.  
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4.4.3.4 Tunnel lining mechanism of deformation: CERN 1 and CERN 2 

 
The strain distribution profiles evaluated for the instrumented tunnel cross-

sections of both CERN 1 and CERN 2 installations show the development of a similar 

axial strain pattern of tensile (positive) and compressive (negative) strains at the 

tunnel lateral sides and the tunnel crown respectively.  

Figure 4.20 (a) and (b) provide information on the development of the peak tensile 

and compressive strains at the tunnel lining for the selected FO tunnel loops of CERN 

1 installation, throughout the monitoring period. Both tensile and compressive 

strains seem to slightly increase with time, with notable peaks and troughs values at 

certain periods of the year (Figure 4.20a, b). For all the selected loops, the tensile 

strain values gradually increased between August 2014 and May 2015, after which 

the loops 1-1, 1-2 and 1-5 reached a lower strain value in June 2015, whereas the 

loop 1-3 and the loop 1-7 slightly increased until October 2015.  Interestingly, all the 

loops experienced a tensile peak in the months of October 2015 and November 2016 

and a trough in March 2016 and February 2017.   

The tensile strains recorded for the loop 1-1 and the loop 1-6 sharply increased in 

April 2016, reaching around 200 µε and then suddenly dropped to 30 µε and 80 µε 

in July 2016 for the loop 1-1 and the loop 1-6 respectively.   

At the tunnel crown (Figure 4.20b), an initial rise in the strain pattern is observed 

between August 2014 and May 2015 for all the instrumented loops, followed by a 

remarkable decrease in the strain in June 2015. On the other hand, a sudden decrease 

in the compressive strain is recorded in April 2016 for the loop 1-2, loop 1-3, loop 1-

5 and in April 2017 for the loop 1-1, loop 1-3, loop 1-5 and loop 1-7 (Figure 4.20b). 

While the negative strains at the tunnel crown for the loop 1-1 and the loop 1-7 

levelled off after July 2017, the strains experienced by the loop 1-3 and loop 1-5 

decreased. The strains of the loop 1-2, instead, slightly increased. Also, the largest 

compressive strain is developed by the loop 1-6 in October 2017.  

Overall, the peak tensile and compressive strains rose gradually over the years, 

reaching a maximum strain value in October 2017, without exceeding values of 300 

µε at the tunnel lateral sides and 200 µε at the tunnel crown. 

 

 

 



4. Distributed Fibre Optic Sensing (DFOS) instrumentation                                        105 

 

 

 

 

 
(a) 

 

 
 

(b) 

Figure 4.20. Peak axial strain development with time for CERN 1 installation: (a) Tension and (b) 
Compression development.  
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Figure 4.21 (a) and (b) compare the tensile and compressive axial strain detected 

with time for the monitored loops of CERN 2 installation. It can be seen that since 

July 2014 the axial strain increased gradually with time for the loop 2-1, loop 2-2, 

loop 2-3, loop 2-4 and loop 2-6, while for the loop 2-5 tensile and compressive strains 

steeply reached significant magnitudes. 

Small axial strains were recorded for the loop 2-1, loop 2-3 and loop 2-4 and they 

do not exceed values of 200 µε for both tension and compression sides. Conversely, 

the loop 2-2 and the loop 2-5 develop higher strain, with peak values registered in 

October 2017. Whilst the loop 2-2 shows peak strain values within the range of 300 

µε at both the tunnel crown and the lateral sides, the loop 2-5 experiences by far the 

largest strain magnitudes. In fact, peak tensile and compressive strain values of 534 

µε and 580 µε are observed respectively for the loop 2-5 (Figure 4.21a, b). Moreover, 

all the loops experience a peak compressive strain at the tunnel crown in November 

2016 and a trough in February 2017, after which the strain values remained constant 

until April 2017, for both the tension and compression sides.  
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(b) 

 
Figure 4.21. Peak axial strain development with time for CERN 2 installation: (a) Tension and (b) 
Compression development.  

 

It can be highlighted that, similarly to the CERN 1 installation, the strain 

distribution pattern seems to experience some peaks and troughs at certain months 

of the year (i.e. peak strain values in October-November and a trough in February-

March), suggesting that there might be a seasonal effect on the recorded FO data. To 

this end, records on the amount of rainfall measured by the pluviometers located in 

the French region have been examined for the period that goes from August 2014 to 

October 2017. In particular, the TT10 tunnel is located on the French-Swiss border, 

crossing both St Genis Pouilly and Prevéssin cities in the downstream and upstream 

tunnel area respectively, in the Rhône-Alpes region of eastern France, as shown in 

Figure 4.22. Therefore, the average rainfall amount related to the abovementioned 

locations was inspected (World Weatheronline). However, the records showed 

similar precipitation data for both cities, hence, only the data related to the city of 

Prevéssin will be presented.  

Figure 4.23 provides information about the average amount of rainfall measured 

in Prevéssin between 2015 and 2017. Peak rainfall amounts are observed in August 

2015, June 2016, and June 2017, as shown in Figure 4.23a, Figure 4,23b and Figure 

4.23c respectively, by recording over +75 mm of rainfall. The Figure also shows a 
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notable and consistent trough in the amount of rainfall over the period in the 

following months: April 2015, October 2015, April 2016, April 2017 and October 

2017 (Figure 4.23). Additionally, a decrease in the amount of precipitation is also 

observed in February 2015 (Figure 4.23a) and December 2016 (Figure 4,23b). 

Overall, the analysis of the amount of rainfall measured in the area where the TT10 

tunnel is located allows a better understanding of the seasonal effect on the detected 

cross-sectional FO strains. Some correlations between the peak and trough FO strain 

values and the rainfall amount were found. In particular, for CERN 2 installation, a 

trough in the strain can be observed in April 2016 and April 2017, as shown in Figure 

4.21, which corresponds to a decrease in the amount of rainfall measured (Figure 

4.23b and Figure 4.23c). Also, a peak strain value was detected in November 2016 

for CERN 1 and CERN 2 installations, as shown in Figure 4.20 and Figure 4.21, which 

corresponds to a peak in the amount of rainfall measured (Figure 4.23b).  

 Overall, the peak strain values observed from the FO strain profiles were detected 

during the most rainfall months (i.e. June 2016, November 2016 and June 2017), 

whereas a trough in the strain development can be observed when smaller amounts 

of precipitation are measured (i.e. April 2016 and April 2017). This would suggest 

that during heavy rainfall periods, the more permeable moraine deposits would 

saturate and, in the hypothesis of a reduced capacity of the tunnel drainage system, 

the groundwater pressure would accumulate behind the lining acting as a boundary 

load, resulting in the development of tunnel lining movements with time.   
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Figure 4.22. Location of the TT10 tunnel in the French-Swiss border (Google Map).  
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(b) 

 

 

(c) 

Figure 4.23. Average rainfall amount for Prevéssin city for the years (a) 2015, (b) 2016 and (c) 2017 
(WorldweatherOnline.com).  
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In addition to the innovative fibre optic strain sensors, conventional geodetic 

measurements of optical targets using total stations give further information on the 

long-term tunnel structure response in selected cross-sections.   

As discussed in Chapter 3, six targets were mounted on the tunnel lining in each 

monitoring section, with a total of 6 cross-sections along the tunnel, closely installed 

beside the FO tunnel loops (Figure 4.5). The five geodetic profiles P1, P2, P3, P4 and 

P5 were installed beside the loop 2-1, loop 2-3, loop 2-4, loop 2-5 and the loop 2-6 

respectively, whereas the profile P0 was placed close to loop 1-7.  

Figure 4. 22 displays the change in the horizontal and vertical tunnel distances 

taken for the cross-section P4, close to the loop 2-5. The horizontal distance changes 

between the targets for the sections at tunnel shoulder (3-6), at tunnel axis (2-7) and 

at tunnel invert (8-3) are constantly increasing since 2013, reaching maximum 

values of -1 mm, -0.88 mm and -0.5 mm respectively in May 2017, suggesting that 

the tunnel circumference is converging inwards. The vertical distance change, 

instead, seems to increase for the section on the left side of the tunnel (8-6), whereas 

the right one (1-3) doesn’t seem to change with time (Figure 4.24).  

The vertical change in distances increases with a smaller rate compared to the 

horizontal one throughout the monitoring period, as shown in Figure 4.24.  

  
 
 
 
 
Figure 4.24. Change in the horizontal and vertical tunnel distances for the geodetic profile P4.  
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Very-weak  
lumpy 
marls 

significant area of tunnel lining damage occurred in the critical area, where the 

geological conditions were considerably worse than those observed in the blue area. 

Variable sequences of weak and strong marl are observed in the dominant geological 

conditions encountered, as shown in Figure 4.25a. The geological cross-section 

consists of a layer of a very weak and sensitive type of marl called “lie-de-vin 

grumeleuse” or lumpy marl which can alter quickly when exposed to air and humidity 

(Figure 4.25b). Therefore, the combination of poor ground conditions with the 

external water pressure acting behind the tunnel lining is expected to lead to a 

reduced lining capacity and, hence, facilitate the development of strain with time.  

 

 

 

 

 

(a) 

 

  

                                                          (a)                                                              (b) 

Figure 4.25. (a) Geological plan view of a section of TT10 tunnel at the location of loop 2-5, (b) 
Geological face-log cross-section.  

 
Overall, the fibre optic profiles gathered for both CERN 1 (Figure 4.13) and CERN 

2 (Figure 4.16) show a consistent and illustrative sinusoidal strain response along 

cable distance, with positive (tensile) strains at the tunnel axis level and negative 

(compressive) strains at the tunnel crown.  Yet, the conventional lining 

displacements recorded by total station system as well as the geology correlation, 

showed agreement with the FO data results, meaning that the final tunnel lining 

deformation mode may be confidently associated with a vertical tunnel ovalisation 

at certain tunnel locations, albeit for the circumferential tunnel loops of CERN 2 

installation.  

 

4.5  Summary of key findings 

 
The deployment of distributed fibre optic strain measurement technology was 

presented for the monitoring of a section of CERN TT10 tunnel. The use of a novel 
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monitoring system has enabled the measurement of continuous strain profiles to 

assess the actual tunnel mode of deformation. Three FO installations were carried 

out: 1) Eight tunnel cross-sections in CERN 1 installation; 2) Six tunnel loops in CERN 

2 installation and 3) further two tunnel loops were also installed to compare 

different methodologies for attaching the optical fibre to the structure (CERN 3). The 

first two installations took place in March 2014 and May 2014 respectively, with a 

baseline reading collected in July 2014, whereas CERN 3 installation was carried out 

in February 2016.  

The strain distributions recorded for the examined sections for CERN 1 and CERN 

2 show slow development of strain continuously with time over the monitored 

period of three years. For all the instrumented cross-sections, a sinusoidal-shaped 

strain profile with tension (positive strains) at tunnel spring line and compression 

(negative strains) developed along the tunnel lining, suggesting a vertical tunnel 

ovalisation. Two different approaches of attaching the optical fibre to the structure 

were implemented. The system which makes use of metallic plates showed peak 

axial strains at the location of the attachment, therefore, making the hook & pulley 

system more reliable for evaluating the tunnel strain profile.  

Distinctive peaks and troughs strain values were noticed in the tension and 

compression development in certain periods of the year, indicating that there might 

be a seasonal effect in the FO data. To this end, the analysis on the amount of rainfall 

measured in the region nearby to the TT10 tunnel has enabled the evaluation of the 

potential seasonal fluctuation on the monitored axial strains. This study identified 

some correlations between the peak strain values with the heaviest rainfall months 

of the year (i.e. November 2016, July 2017), whilst a trough strain value was 

observed when a smaller amount of precipitation occurred. The observed behaviour 

suggests that the tunnel lining may experience larger strains with time in the 

occurrence of heavy rainfall periods, due to the groundwater flowing towards the 

tunnel. In the hypothesis of a reduced capacity of the tunnel drainage system many 

years after construction, the water pressure would act as a hydrostatic load behind 

the tunnel lining, leading to tunnel lining distress with time. Severe strain values 

were recorded for the loop 2-5, which seems to experience an increase in axial 

strains over the years at the tunnel lining. The soil profile surrounding the tunnel at 

the location of the loop 2-5 is weak layers of marl, which in contact with water tend 

to swell. The poor ground conditions in addition to the change in the groundwater 
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conditions may have triggered the development of further cracks at both the tunnel 

floor and the tunnel crown in that area and, therefore, caused the development of 

axial strain with time.  

Additionally, the FO strain results and the geodetic convergence measurements 

seem to be in agreement, as both monitoring technologies suggest that the tunnel 

may be deforming with a vertical elongation deformation mode.  On the basis of the 

performed measurements, it is concluded that a slow development of strains has 

been recorded for several instrumented tunnel cross-sections.  
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Chapter 5 

 

5 Geotechnical characterization of the weak rock 
mass 

 

5.1  Introduction  

 
Over the past 70 years, CERN has progressively expanded its underground 

facilities in order to meet nuclear physicists’ demands for increasing the energy 

levels of particle accelerators. In the early ‘80s, CERN launched the construction of 

the Large Electron Positron (LEP) ring, to accommodate the particle accelerators.  

Some years later, additional experimental points with associated structures were 

constructed, forming the actual LHC circular ring. The design of new structures 

required additional site investigations as well as laboratory testing to be carried out. 

More recently, for the High Luminosity project, further geotechnical explorations 

have been implemented, particularly at Point 1 (ATLAS experiment) where the 

largest cavern is housed and Point 5 (CMS experiment).  

This chapter presents some laboratory data results for the molasse region 

collected during the past years, in order to determine the geotechnical parameters 

of the rock mass and to evaluate its mechanical behaviour.  

 

5.2  Geology  

 
CERN laboratory sits across the French-Swiss border, between the Alps and the 

Jura Mountains, in the Molassic Plateau (Figure 5.1). Most of the underground 

tunnels were built in the molasse region, called the red molasse, which comprises 

irregular sub horizontal bedded sequences of marls and sandstones (Parkin et al. 

2002). 
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Figure 5.1. Swiss geology: CERN location (Fern et al. 2018). 

 

5.2.1  Rock divisions  
 

 
Within the molasse region, two types of rock can be distinguished: the marls and 

the sandstones, which can be further divided into three sub-units for each rock type. 

Figure 5.2 shows the mineralogy analysis of the marls, composed of varying amount 

of clay minerals, approximately 50 % of illite, 20-25 % of chlorite and calcite and 

quartz (Fern et al. 2018). Also, the marls alter quickly with air and humidity and tend 

to swell in presence of water.   

The marls can be divided into the following sub-units, according to the international 

rock classification (ISRM, 1981). 

1. Very weak marl: is a type of marl made from the diagenesis of high-plasticity clay 

(Figure 5.2a and Figure 5.2b), characterized by discontinuous and multi-directional 

micro-fissures, with low stiffness and ductile behaviour. This rock unit falls in the R1 

rock classification (ISRM, 1981).  

2. Medium-weak marl: is composed of 20-45% of clay minerals, calcite (20-30%) 

and around 30% of quartz (Figure 5.2a).  From the Atterberg limits, Figure 5.2b 

shows that this rock unit has low-plasticity clays.  

3. Weak marl: is mainly composed of around 50 % of clay, 15-30 % of quartz and 

20-30 % of calcareous minerals (Figure 5.2a), with medium-high plasticity clay, 

mainly illite minerals, whereas smectite and chlorite are present in a lower 
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percentage. As the very-weak unit, the weak marl is also susceptible to swelling and 

slaking. 

The sandstones unit is presented as a homogenous rock mass and consists of well-

cemented silts and sands, with a limited number of widely-spaced joints. The 

sandstones can be divided into three sub-units: 

4. Weak sandstone: is mainly made of poorly-cemented granular materials with 

some clay minerals.  

5. Medium-strong sandstone: presents well-cemented coarse-grained materials 

with good mechanical properties and rare discontinuities.  

6. Strong sandstone: presents very well-cemented grains with few discontinuities. 

Its mineralogy composition is similar to the medium-strong sandstone, with RQD 

values close to 100.  

 

(a)                                    
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(b) 

 
Figure 5.2. (a) Mineralogy of the marls and (b) Plasticity index and Liquid Limit (Fern et al. 2018) 

 

A photograph of a borehole core taken in 2015 at Point 1 shows the transitions 

from sandstones to marls (Figure 5.3). Particularly, it is notable that after 18 months 

of storage, at 90 m depth, a certain weak type of marl identified as very weak marl in 

reddish colour is subjected to slaking (Figure 5.3b).  

 

                  

                                                                (a)                                                                    (b) 

Figure 5.3. Photograph of the borehole at Point 1 at a depth of 85 m to 90 m with the transition from 
sandstones to marls: (a) after extraction in October 2015 (Photo credit: CERN-GADZ), (b) after 18 
months storage in March 2017  (Fern et al. 2018).  

 

5.3  Borehole investigation  
 

This section presents the results of a series of tests implemented for the High-

Luminosity project for borehole C1 at Point 1 (ATLAS). The tests consist of Caliper 
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tests, sonic wave velocity tests, dilatometer tests and γ-ray tests, which were carried 

out by the Contractor Terratec Geophysical Services in October 2015 (GADZ, 2016a) 

and the data interpretation is reported in Fern et al. 2018.  

 

Caliper tests 
 
Through a series of Caliper logs, the 

diameter and the shape of the borehole C1 

(ATLAS) was investigated. Figure 5.4 shows 

an increase of the borehole radius when the 

very weak and weak marls were 

encountered through the borehole, as a 

measure of the borehole wall collapse.  

 

 γ-ray tests 
 
Results from γ-ray tests from borehole C1 

are shown in Figure 5.4. It can be seen that a 

value of API equals to 90 divides the 

sandstones (API < 90) from the marls (API > 

90). Additionally, while the very weak and 

weak marls experience the largest 

magnitudes of API, for the sandstones the 

smallest values are recorded (medium 

strong and strong sandstones). 

Figure 5.4. Borehole tests: Caliper, sonic wave velocity and γ-ray tests (Fern et al. 2018). 

 

Sonic wave velocity tests 
 

The sonic P-wave velocity results shown in Figure 5.4 indicate that higher velocity 

values were recorded for the stronger rock units (i.e. sandstones) with vp = 3000 -

3500 m/s, against those observed for the marls (vp = 2500 -3000 m/s). Yet, a precise 

transition between the rock units is difficult to achieve, as the measurements were 

taken at small depth intervals of around 50 cm.   
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Dilatometer tests 

The calculation of the coefficients of earth pressure for Point 1 and Point 5 was 

carried out from the results of some dilatometer tests carried out at 92 m depth, as 

reported by GADZ (2016a, 2016b). The data confirmed the anisotropic stress field 

(Table 5.1). 

 

 Table 5.1. Earth pressure coefficients reported by GADZ (2016a, 2016b).  

CERN 

Location 
K0 max K0 min 

Point 1 2.0 ± 0.3 1.5 ± 0.1 

Point 5 1.75 ± 0.5 1.29 ±0.1 

 

5.4  Laboratory testing  

 
The extensive laboratory reports gathered from the sampling of borehole cores for 

the various construction works at CERN have enabled the characterization of the 

rock units. The mechanical parameters for the six rock units were obtained by GADZ 

(2016a, 2016b) and are presented in Table 5.2.  

Table 5.2. Mechanical properties for intact rock (GADZ 2016a, b).  

 

Particularly, since the samples were saturated, the void ratio was determined from 

the water content w listed in Table 5.2 and from the specific gravity Gs, assumed 

equal to 2.70 for both marls and sandstones (e = w ∙ Gs). Therefore, the following 
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range of void ratio values was obtained: e = 0.14 – 0.23 for the marls and e = 0.08 – 

0.21 for the sandstones.  

 

Compression tests: confined and unconfined  

 

Figure 5.5 shows the results of some compression tests carried out for the rock 

units: unconfined and confined tests. The results obtained from the unconfined tests 

(UCT) in undrained conditions suggest that the sandstones exhibit a more brittle 

behaviour than the marl units (Figure 5.5a). Additionally, the compression strength 

σci increases from the very weak to the medium weak marl, with the latter rock unit 

behaving stronger than the soft sandstones.  A good correlation between the strength 

and the secant stiffness E50 is shown in Figure 5.5b, where E50 can be evaluated 

through the following Equation (Hoek et al. 2005): 

                                                                       𝐸50 = 𝛼 ∙ 𝜎𝑐𝑖                                                             (5.1) 

where 𝛼 is the stiffness coefficient, which shows a value of 90, 140 and 240 for the 

marls, weak and medium weak sandstones and strong sandstones respectively.  

 Moreover, confined compression tests (CCT) results are presented in Figure 5.5c 

and Figure 5.5d. Both marls and sandstones exhibit a similar mechanical behaviour 

than the one observed in UCT, with the sandstones being stiffer and more brittle than 

the marls. A peak strength state followed by a softening is reached by all rock units, 

with the exception of the very weak marl. The relation between strength and stiffness 

is presented in Figure 5.5d and it is defined as follows:  

                                                                    𝐸50 = 𝛽 ∙ 𝑞𝑓                                                                 (5.2) 

where 𝛽 is the stiffness coefficient in the range of 40 and 100 for the marls and 

sandstones respectively, and 𝑞𝑓 is the deviatoric strength.   

Further, the stiffness is plotted against the initial void ratio (Figure 5.5e). The 

Figure shows an increase in the stiffness as the void ratio decreases. Hoek et al. 

(2005) observed similar mechanical behaviour when characterizing the molasse 

rock in Greece.  
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                                               (c)                                                                                          (d) 



5. Geotechnical characterization of the weak rock mass                                               127 

 

 

                                       
(e) 

Figure 5.5. Compression tests: (a) unconfined tests, (b) strength and stiffness of unconfined tests, (c) 
confined tests, (d)  strength and stiffness of confined tests and (e) void ratio and stiffness of confined 
tests (Fern et al. 2018).  

 

Indirect tensile (Brazilian) tests were also carried out to measure the tensile 

strength of the rock units.  In Figure 5.6 the void ratio is plotted against the tensile 

strength 𝜎𝑡 . Larger values of tensile strength were observed for the sandstones 

compared to those of the marl units, with the exception of the weak sandstones.  

Overall, the tensile strength for the rock units ranges between  𝜎𝑡 = 0 ÷ 3 MPa.  

 

Figure 5.6. Tensile test results: tensile strength and void ratio (Fern et al. 2018).   
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Swelling and Permeability tests 

   Due to the swelling potential of certain layers within the marl units, swelling tests 

were carried out on intact rock: swell pressure tests and Huder-Amberg tests. The 

former tests were carried out in an oedometer cell where the vertical swell of the 

specimen is measured for the very weak and the weak marl as a function of the 

applied pressure (Figure 5.7). Particularly, the magnitude of swelling for the very 

weak marl seems to be larger than that of the weak marl (Fern et al. 2018).  Figure 

5.8 illustrates the results of some Huder-Amberg tests gathered for the marl units, 

through which the swelling pressure can be obtained, with the very weak marl 

exhibiting higher swelling pressures than the weak marl.  

 

 

Figure 5.7. Swelling tests for: (a) very weak marl and (b) weak marl (Fern et al. 2018).  
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Figure 5.8. Huder-Amberg swelling tests: (a) very weak marl, (b) weak marl and (c) medium strong 
marls (Fern et al. 2018). 
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 In the frame of the LHC project, some Lugeon tests were carried out in boreholes 

at Point 1 (Atlas) and Point 5 (CMS). The test consisted of putting the water in the 

borehole under a  pressure of 1 MPa and 0.75 MPa at Point 1 and Point 5 respectively 

and to monitor the loss of water.  GADZ (2016a, 2016b) reports that little water loss 

was found, suggesting a very low permeability of the molasse; also, the loss of water 

was lower than the accuracy of the instruments. Moreover, various water ingresses 

were observed during the 27 km excavation of the LEP/LHC tunnel, with a maximum 

inflow of 120 litres/min (6 l/min/km). These water ingresses were located between 

Point 7 and Point 8 and suggest a permeability as low as 10−9 to 10−10 m/s (0.01 

Lugeon) (GADZ, 2016a). 

 

5.5  Ground condition: material properties  

 
The characterization of the molasse through the analysis of laboratory and in-situ 

data results has enabled the definition of the mechanical properties for all the rock 

units, as shown in the previous Section (Table 5.2). However, the data presented in 

the Table refer to the undrained conditions (i.e. total stress conditions), as no pore 

pressure measurements were recorded. Therefore, with the aim of simulating the 

long-term tunnel lining response during and after the consolidation through a 

coupled fluid-soil analysis following the tunnel excavation, the effective stress 

parameters are required. Since water does not resist any shearing stress, the 

effective shear stiffness modulus G’ is equal to the undrained shearing modulus Gu, 

enabling the evaluation of the effective Young’s modulus E’ through the following 

Equation:      

 

                                                𝐸′ =  𝐸𝑢 

(1 +  𝜈′) ∙ 2

(1 +  𝜈𝑢) ∙ 2
                                                           (5.3) 

 

where Eu is the undrained elasticity modulus, ν’ is the effective Poisson’s ratio and νu 

is the undrained Poisson’s ratio assumed to be equal to 0.49.  

 

Figure 5.9 shows the result of the triaxial compression tests carried out for all the 

rock units, where the confining pressure σ3 is plotted against the deviatoric stress q 

(GADZ 2016a, 2016b).   
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= p’ σ’t  

The graph σ3 – q is presented in total stress. In order to convert it into the q – p’ plane, 

two main assumptions were adhered to: (i) the pore pressure at the beginning of the 

shearing phase is nil (i.e. u= 0) and (ii) the specimen behaves elastically until failure. 

The Figure shows that the very weak marl unit exhibits a shear failure whereas the 

other rock units (i.e. weak marl, medium weak marl, weak sandstone and medium 

strong sandstone) show a tension failure, which can be described by assuming the 

Tresca yield criterion, which states that the maximum shear stress 𝜏 in the material 

equals to the maximum shear stress (σ1 – σ3) at failure, as follows: 

                                                                 (𝜎1 − 𝜎3) = 2 𝑐′                                                      (5.4)  

where (𝜎1 − 𝜎3) is the deviatoric stress and c’ the effective cohesion.  

The tension failure line was traced by fitting the data with a line of inclination 1:3 in 

the q-p’ space, with the tensile strengths values σ’t estimated by extending the 

tension failure line towards the negative x-axis, as shown in Figure 5.9. The value 

obtained from the intersection of the tension failure line and the horizontal axis 

corresponds to the tensile strength of the rock layers.  

 

Figure 5.9. Triaxial compression tests for all the rock units (E.J. Fern, 2018). 
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For the very weak marl unit, instead, the data obtained from the triaxial 

compression test was fitted by assuming a shear failure line, which is described by 

the following Equation: 

 
                                                                   𝑞 = 2 𝑐′ + 𝑀𝑝′                                                        (5.5) 

 
where M is the gradient of the critical state line in the q-p’ space and c’ is the effective 

cohesion, assumed to be equal to 1 and zero respectively (Figure 5.9).  

By considering the parameter M = 1, the effective friction angle ϕ’ for shearing 

resistance can be evaluated from the relation between the gradient M and ϕ’ for a 

compression triaxial test (Eq. 5.6): 

 
 

 
 

 

To simulate the ground response, the following constitutive models will be 

employed: the linear elastic model, the linear elastic-perfectly plastic Mohr-Coulomb 

model and the advanced non-linear elasto-plastic critical state soil model developed 

by Wongsaroj (2005). The latter constitutive model assembles some major 

mechanical features, such as: (i) elastic anisotropy, (ii) small-strain stiffness and its 

non-linearity, (iii) recent stress history and (iv) elasto-plastic behaviour within the 

yield surface. Further details of the proposed model can be found in Wongsaroj 

(2005). 

In particular, the advanced critical state model will be employed for modelling only 

the very weak marl unit, since it exhibits a shear failure and shows a soil-like 

behaviour with high plasticity clay, whereas the other rock units within the molasse 

region will be modelled by adopting the linear-elastic behaviour.  

 
 
 
 
 
 
 
 
 
 
 

   𝑀 =  
6 sin 𝜑′

3 − sin 𝜑′
                                     𝜑′ = arcsin

3𝑀

𝑀 + 6
                         (5.6) 
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Table 5.3. Summary of parameters for the 
very weak marl unit (Wongsaroj 2005).
 

Table 5.3 shows the mechanical 

properties defined for the very weak marl 

unit in the advanced critical state model.  

Among the parameters listed in the Table, 

only the three variables highlighted were 

evaluated from the laboratory tests 

retrieved for very weak rock marl unit: (i) 

the gradient M assumed to be equal to 1, (ii) 

the initial void ratio e0 determined from the 

water content and the gravity density, 

which was assumed equal to 0.2, a value in 

the range of e = 0.14 – 0.23 determined for 

the marls and (iii) the parameter D which 

represents the slope of the unloading 

swelling line in the log10 p’– log of void ratio e plane, where p’ is assumed as σ’v. The 

data suggest that the range of values for D lies between 0.10 – 0.18, as shown in 

Figure 5.10.  

 

Figure 5.10. D parameter evaluation for the very weak marl unit in the log10 p’–log10 of void ratio e. 
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Except the three soil parameters aforementioned, the mechanical properties 

defining the advanced critical state model for the very weak marl layer were 

assumed according to Wongsaroj (2005) for the stiff London Clay due to the lack of 

laboratory and site investigation (Table 5.3). 

A summary of the mechanical properties assumed for the molasse rock (i.e. marls 

and sandstones) and for the moraine deposits is presented in Table 5.4.  

The Table comprises the following values: effective and undrained Young’s modulus, 

effective and undrained Poisson’s ratio, the initial void ratio e0, the parameters 

defining the Mohr-Coulomb constitutive model such as the effective cohesion c’, the 

effective friction angle ϕ', the dilatancy angle ψ assumed equal to a value of 2 and a 

tensile strength σt’. Moreover, the permeability of each rock layer is defined after 

GADZ (2016a, 2016b), by considering the moraine deposits more permeable than 

the molasse region.  The saturated density γsat and the coefficient of earth pressure 

at rest K0 were also defined according to GADZ (2016a, 2016b). 
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Table 5.4.  Mechanical properties for intact rock. 

Variable 
Marls Sandstones 

Moraine 
1. Very weak 2.Weak 3. Med.-weak 4. Weak 5. Med. - strong 6.Strong 

Eu [MPa] 340 690 1960 1230 3420 9417 - 

νu 0.49 0.49 0.49 0.49 0.49 0.49 - 

ν' 0.2 0.2 0.2 0.2 0.2 0.2 0.3 

e 0.2 0.2 0.2 0.2 0.2 0.2 0.6 

E' [MPa] 273.8 555.7 1578.5 990.6 2754.4 7584.2 50 

c' [MPa] 0 3 11 8 15 0 0.1 

ψ [°] 0 2 2 2 2 2 2 

ϕ ' [°] 25 - - - - - 31 

σ't [MPa] 0 2 7.8 5.2 10.1 - 1 

k [m/s] 10e-10 10e-9 10e-9 10e-08 10e-08 10e-08 10e-7 

γsat [kN/m3] 24  24  22.5 

K0            1.2                   1.5                   1.5                                  1.5 1.5 

*where Eu is the undrained stiffness, νu  the undrained Poisson’s ratio, ν' the effective Poisson’s ratio, e the void ratio, E’ the effective Young’s modulus, c’ the effective 
cohesion, ϕ' the critical friction angle for shearing resistance, ψ the dilatancy, σ't the tensile strength, k is the permeability, γsat the saturated density, K0 the coefficient 
of earth pressure at rest.  
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5.6  Summary  

 
This chapter presented the geotechnical investigation of the red molasse through 

laboratory and field tests. This comprised the analysis of a wide data set collected in 

the past years thanks to the various underground constructions taken place at CERN. 

The results show that the weak rock unit is composed of a sequence of sandstones 

and marl layers, with different mechanical properties. Also, the transition between 

the different layers is often difficult to assess. However, a division into 6 sub-units 

for each rock type is proposed. The marls were characterized based on their 

strength, ranging from very weak (R1) to medium weak (R2), whereas the 

sandstones were ranged from weak (R2) to strong (R3). Particularly, one marl unit 

identified as very weak marl was found to have soil-like properties, with high 

plasticity clay and swelling potential. Additionally, the results from laboratory 

compression tests showed that the marls exhibit a more ductile behaviour compared 

to the sandstones. Overall, the molasse mass was found to be quite impermeable.   

It should be noted that all the tests presented were carried out in undrained total 

stress conditions. Yet, in order to simulate the long-term consolidation after tunnel 

excavation through coupled fluid-soil analysis, the evaluation of the effective stress 

parameters for the rock units was also presented and discussed. Moreover, the 

results obtained from the triaxial compression tests carried out for both marls and 

sandstones showed that a shear failure is observed for the very weak marl layer 

whereas the other rock units exhibit a tensile failure. This enabled the calculation of 

the mechanical properties required for defining the constitutive soil models 

implemented in the finite element analysis presented in Chapter 6.   
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Chapter 6 

 

6 Two-dimensional finite element modelling of 

CERN TT10 tunnel 

 

6.1  Introduction  

 
The long-term behaviour of CERN concrete-lined tunnel in the molasse region was 

investigated through a series of soil-fluid coupled finite element (FE) numerical 

analyses in 2D plane strain conditions.   

This chapter describes the FE simulations of tunnel lining performance and 

presents the results obtained during the ground consolidation after the TT10 tunnel 

construction and during the long-term,  for a chosen representative cross-section. 

Particularly, the effect of groundwater changes around the tunnel with consequent 

alteration of the hydraulic regime in the ground is examined on the numerical 

predictions of tunnel lining response. The importance of tunnel lining permeability 

as well as the hydraulic regime in the ground are also highlighted.   

The results in terms of tunnel lining diameter changes and total strains are 

compared against the field measurement data to validate the numerical analyses and 

to assess the status of the tunnel at CERN.  Further, the mechanism of tunnel lining 

deformation is also identified.  

 

6.2  Short-term analysis  

 
The two-dimensional finite element model was constructed based on the in-situ 

conditions, with the tunnel size and its structures (primary lining, secondary lining, 

tunnel drainage conditions etc.) totally referenced to the design drawings.  The anal-

yses were conducted using the software package ABAQUS 6.14 (ABAQUS, 2014).  
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The following sections describe each step involved in the definition of the numer-

ical method, such as the description of the model geometry and boundary conditions, 

discretization of the model and tunnel construction method.   

6.3  Model geometry and ground condition  

 
The soil profile adopted for the FE analysis is presented in Figure 6.1 and is based 

on the face-logs collected during tunnel excavation and the nearest borehole log 

available. The adopted profile comprises a 19 m thick layer of Moraine deposits 

overlaying different lithotypes disposed in interbedded layers rather than 

continuous layers within the Molasse region (73 m). It is obviously difficult to 

identify a single layer between boreholes. Yet, two types of rock were identified, 

marls and sandstones, and were divided into six sub-units, three for each rock type 

(Fern et al. 2018). The following main layers were identified for the presented 

model:  

 Medium-strong sandstones; 

 Medium-weak marl; 

 Very weak marl or called “lumpy marl; 

 Sandy marl. 

 
 
 
 
 

 
 
 
 
 
 
 
  

Figure 6.1. Soil profile and general geometry adopted for the 2D analysis.  

 
The mechanical parameters of the mentioned rock units were determined based 

upon the geotechnical investigation carried out and discussed in Chapter 5.   
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6.3.1  Boundary conditions  
 

Figure 6.2 shows the displacement boundary conditions fixed for the numerical 

model.  No vertical displacements (u2=0) and horizontal displacements (u1= 0) were 

permitted along the bottom boundary and along the lateral vertical sides 

respectively (Figure 6.2). The top boundary was set to be free at ground surface.  

The initial pore water pressure distribution profile was considered to be 

hydrostatic, and the water table sits in the moraine layer, with the moraine depth 

varying between different sites (i.e. Point 1 and Point 5) (Parkin et al. 2002). 

However, in this case study, the water table was located at ground surface (z= 0), as 

shown in Figure 6.3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2. Boundary conditions fixed for the 2D model. 

 

  Figure 6.3. Pore pressure profile for the 2D model.  

u =0 kPa 

u =920 kPa 
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6.3.2  Mesh generation  
 

To complete the numerical analysis by using the software ABAQUS 6.14, the entire 

model has to be discretized into finite elements by meshing the geometry. ABAQUS 

allows the mesh generation process to be automatic by choosing within a range of 

different element geometries. However, a difficult task is placing a mesh around the 

tunnel geometry.    

 Since the generation of unstructured meshes may cause convergence problems 

and/or compromise the accuracy of the results and, therefore, generate numerical 

errors, the approach adopted was to manually discretize the whole model. The 

desired mesh was achieved by adopting the software Altair HyperMesh, a multi-

disciplinary finite element tool capable of supporting complex geometries. Its 

meshing capabilities enabled the development of a 2D customized mesh, with local 

mesh refinement applied at key sections, such as the tunnel opening.  Coarser 

elements were adopted at the far boundaries. The approach required a large amount 

of time by the user, as the desired geometry was initially created in CAD, considering 

the constraints imposed by horizontally bedded layers of different thicknesses.  

Once the desired level of refinement was reached, the geometry was imported into 

HyperMesh and the mesh was then generated. An exported file was then supported 

by ABAQUS, where the meshed model was successfully validated.  

The whole domain was discretized into a set of quadrilateral elements. The soil 

was modelled with eight-node quadratic displacement and linear pore pressure 

elements, with the nodes placed at the corners of the elements with the additional 

four nodes being located at the midpoint of each side. In second-order elements, each 

node has two degrees of freedom, one for each component of displacement (u1, u2), 

whereas the pore pressure degrees of freedom are active only at the corner nodes. 

The tunnel lining was modelled with beam elements defined by three nodes at the 

tunnel boundary, which are shared by the surrounding soil.  

The 2D FE mesh used in the analysis for a tunnel depth of z = 38.75 m from ground 

surface is shown in Figure 6.4. It consists of 14590 quadrilateral solid elements for 

modelling the soil and 45047 nodes. The FE mesh dimensions were carefully 

designated in order to ensure that the boundary sides of the model are sufficiently 

distant for any boundary effect to be insignificant (Franzius and Potts 2005).  For 

this reason, the total length of the 2D model was around 5⋅z (400 m), with z being 
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400 m 

92 m 

200 m 200 m 

the tunnel depth, a reasonable boundary distance for negligible boundary influence, 

as recommended by previous works (Wongsaroj 2005; Laver 2010).  

The meshed model is perfectly symmetric and presents a total width of 400 m and 

a height of 92 m (Figure 6.4).  

   

 
 

 
 

 

Figure 6.4. Finite element mesh for the 2D analysis.  

 

6.3.3  Tunnel excavation modelling  
 

Two basic approaches can be used for excavating a tunnel: the NATM, the New 

Austrian tunnelling method, more commonly referred to as the sprayed concrete 

lining SCL method, and tunnel boring machines (TBM). The former method is 

characterized by a sequence of small excavations before the application of primary 

support, which consists of sprayed concrete (shotcrete) and rock bolting. The latter 

excavation method makes use of open-face or full-face mechanised shields and can 

be grouped into earth pressure balance (EPB) and slurry machines.  

It is widely known that tunnel construction is a three-dimensional process with 

stress redistributions near the tunnel face and ground movements occurring in both 

radial and longitudinal direction. Preferably, a full 3D numerical analysis is desired, 

but it requires enormous computational resources. Additionally, due to the 

complexity of ground conditions, usually, 2D modelling is adopted (Potts and 

Zdravkovic 2001). However, some assumptions have to be made in order to account 

for the 3D effects. Several approaches are available in the literature for 2D analyses. 

For the TT10 tunnel case study, tunnel construction was modelled using the 

convergence-confinement method (Panet and Guenot, 1982). This approach takes 

into account the important feature of installing the tunnel lining support with a time 
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delay behind the excavation face, allowing then a certain amount of deformation in 

the ground. The latter deformation strongly depends on the assumed degree of 

ground stress relief at the time of tunnel lining installation.  This method implies a 

gradual reduction of ground pressure at the periphery of the tunnel lining to allow 

movement into the tunnel.  

Initially, the internal pressure in the tunnel opening is equivalent to the external 

earth pressure (Figure 6.5a). The tunnel is then excavated by removing the soil 

elements inside the opening and by applying the equivalent soil forces at the tunnel 

boundary (Figure 6.5.b). The internal pressure is then decreased with a reduction 

factor of 0.7, corresponding to the 70% stress relief before installing the lining, which 

is bearing the further 30% of pressure (Figure 6.5c).  

 

       

(a)                                                          (b) 

   

 
 
 
 
 
 
 
 
 
 
 
 

(c) 

    
Figure 6.5. Modelling scheme adopted: (a) tunnel before the excavation phase; (b) tunnel excavation 
phase and (c) activation of tunnel lining.  
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The construction stages in the proposed model were assumed to be undrained 

conditions, as the excavation process is considered to be completed within a period 

of 24 hours. 

6.3.4  Tunnel lining model  
 

A continuous concrete tunnel lining was considered for the numerical simulations, 

by adopting an isotropic, homogeneous and linear-elastic material, with the Young’s 

modulus initially of 20 GPa and the Poisson’s ratio of 0.25. The tunnel lining was 

modelled by adopting beam elements. Both tunnel lining and the soil are sharing the 

same nodes at the interface of the tunnel boundary, assuming that there is no 

slippage between the tunnel and the ground. Additionally, the tunnel lining was 

simply activated when the desired unloading stress has been obtained, as described 

previously for the tunnel excavation methodology.   

 

6.4  Long-term tunnel lining response  

6.4.1  Introduction  

The long-term performance of circular tunnels and cross-passage construction in 

stiff London Clay was investigated by previous works (Wongsaroj 2005; Laver 2010; 

Li 2014).  

This section aims to provide the results of a numerical investigation into the effect of 

groundwater flow regime change on the long-term tunnel lining performance of a 

concrete-lined tunnel. Observational data results from both conventional and 

advanced monitoring technologies have shown a similar mechanism of tunnel lining 

deformation. Some compression and tension developments were observed at the 

tunnel crown and tunnel spring lines respectively, indicating that the tunnel lining 

may deform with a vertical elongation mode (Figure 6.6).  
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Figure 6.6. Tunnel lining mechanism of deformation: an undeformed and deformed shape with 
compression and tension development at tunnel crown and tunnel axis respectively.  

 
 
The following main hypotheses have been adhered to in the performed numerical 

analyses:  

 Shortly after the construction period, for sprayed concrete linings, concrete 

properties (i.e. stiffness, strength) may change considerably with time due to 

long-term effects, such as shrinkage and creep (BTS, 2004). This would cause 

damage behaviour and, therefore, initiate the development of cracks in the 

tunnel lining. For this reason, a reduction of the elasticity modulus E of the 

sprayed concrete tunnel lining was implemented.  

 Many years after tunnel construction, the tunnel lining was subjected to an 

external water pressure acting on the tunnel lining due to a change in the 

groundwater condition. This caused a pore pressure build-up in the 

formation around the tunnel.  

In the next section, the calculation phases are presented, and the computed tunnel 

lining behaviour is described for different scenarios on one representative tunnel 

cross-section case, which is considered to be the most critical and is located at a 

tunnel depth of 38.7 m from the ground surface.  

 

Deformed shape 

Undeformed shape 

Compressive strains (-)  

Tunnel axis level  Tensile strains (+)  

Tunnel crown  

Tunnel invert  

Tunnel shoulder  
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6.4.2  Long-term consolidation and modelling of external water 

pressure on the tunnel lining  

A fully coupled soil-fluid analysis was performed to simulate the long-term 

behaviour of the TT10 tunnel induced by tunnel construction in the short-term and 

ground consolidation in the long-term thereafter. Due to the unloading of the 

bedrock and consequent reduction in the initial stresses, the short-term conditions 

were replicated. The long-term ground consolidation considers the dissipation of the 

excess pore pressures generated during tunnel construction with time. 

 After defining a geostatic stress state, the tunnel construction stage was modelled 

by removing excavated soil elements and reducing the nodal forces at the tunnel 

boundary of a certain percentage. The tunnel lining was then put in place by 

activating the beam elements. The consolidation stage was allowed in the following 

step. Since the TT10 tunnel is provided with water drainage pipes, a fully permeable 

lining was assumed during this stage, which represents from the year 1972 to the 

year 2013.  

As mentioned in Chapter 3, extreme weather conditions with heavy rainfall event 

in addition to the calcification deposits may have reduced the tunnel drainage 

system’s capacity, resulting in the build-up of pore pressure behind tunnel lining, as 

shown in Figure 6.7. The accumulated external water pressure acting on the lining 

was simulated by enforcing the equivalent hydrostatic load on the tunnel lining at 

the considered tunnel depth (Figure 6.8). In fully drained conditions, the 

groundwater collected by the drainage pipes located at both sides of tunnel invert 

would be conveyed into the main drainage system. However, as the tunnel drainage 

starts to get clogged, the water pressure on the lining gradually rises and 

accumulates with time. The current water table is assumed at the ground surface. 

However, as the water table level might be drawn down towards the tunnel with time 

due to a change in the groundwater conditions, the magnitude of the hydrostatic load 

was evaluated by fitting the field data available for the monitoring period that goes 

from 2013 to 2017. Therefore, this additional phase of water pressure build-up was 

modelled for a period of four years (from 2013 to 2017).  
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Figure 6.7. Application of the external water pressure on the outer edge of the tunnel lining.  

 

 

 

 

 

 

   

 

Figure 6.8. Longitudinal section of TT10 tunnel.  

   

To summarize, the tunnel construction stages assumed in the FE analysis are 

shown in Table 6.1.   

 

Table 6.1. General construction stages adopted for the FE model.  

       Calculation stage                                          Description of each stage  

1. Geostatic stage                     Equilibrium of soil    

2. Tunnel excavation              Soil elements removal and application of nodal forces  

          drained                      (undrained conditions) 

3. Unload 1                                   Nodal forces reduction of 70 % for ground stress relief   

4. Unload 2                                   Nodal forces reduction of 30 % and activation of tunnel lining     

5. Consolidation 1                     Long-term consolidation (drained conditions)  

6. Consolidation 2                     Application of water pressure behind tunnel lining  

 
 
 

TT10 tunnel 

u = γw z 

Moraine  

Molasse  

z= 38.7m 
m 

u 

Drainage pipe 
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6.5  Tunnel lining response  

 
In this section, the post-construction tunnel lining structural behaviour will be 

analysed.  

To evaluate the tunnel lining performance after tunnel construction and with the 

intent of validating the field measurement data, different scenarios were 

investigated for the most critical tunnel cross-section, located at tunnel depth z = 

38.7 m. Figure 6.9 shows the soil profile defined for the considered tunnel cross-

section, which presents an alternate sequence of horizontal layers of medium marl, 

sandstones, very weak marl and sandy marl, as shown previously in Figure 6.1. A 

zoom in on the soil surrounding the tunnel is also shown in Figure 6.9, with the 

tunnel crown located in the very weak marl layer of a thickness of 4.4 m (defined 

with a red colour), whereas the tunnel invert is located in the medium-weak marl, 

characterized by a depth of 2.8 m (defined with a yellow layer).  

The tunnel lining deformations in terms of change in tunnel diameter as well as 

the tunnel lining stresses (i.e. axial forces, bending moments) are analysed and the 

results for different scenarios are discussed. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Soil profile for tunnel cross-section at 38.7 m from the ground surface.  

 

Very weak marl 

Medium weak marl 
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6.5.1  Scenario 1: tunnel lining stiffness reduction  
 

 

The first scenario involves a reduction of the elasticity modulus E of the beam 

elements, with a consequent decrease of both axial and bending stiffness, EA and EI 

respectively. The stiffness reduction was applied uniformly along the tunnel lining 

and the calculation phases considered for scenario 1 are shown in Table 6.2.  

After tunnel construction, the tunnel lining is fully drained and the pore pressures 

are considered to be zero at the tunnel boundary (Figure 6.10). Also, within the first 

year after tunnel excavation, the stiffness of the concrete lining was initially assumed 

to be 20 GPa. Due to the tunnel lining cracking observed around 1-2 years after the 

construction, the lining stiffness modulus E was then reduced to 15 GPa, whereas the 

tunnel lining drainage condition was kept to be fully permeable. However, due to the 

clogging of the tunnel drainage system occurred in 2013 (after around 41 years after 

tunnel construction), the groundwater pressure increased behind the lining, acting 

as a hydrostatic load. It should be noted that as a first attempt, the external pore 

pressure was applied instantaneously on the tunnel lining, at the beginning of the 

stage (i.e. instantaneous clogging of tunnel drainage pipes). Also, as water infiltration 

was initially observed at the interface of the TT10 tunnel with the moraine layer, the 

hydrostatic load was considered by assuming the water table located at 19 m from 

ground surface. However, due to numerical convergence issues associated with the 

instantaneous imposition of the pressure load, a pore pressure of 160 kPa was 

applied instead for this scenario for a period of 1 year (2013 - 2014), after which the 

tunnel drainage system was assumed to be cleaned, and the pore pressure was 

brought back to the initial drained condition (u= 0 kPa) for a period of four years, as 

shown in Figure 6.10. During the last stage, the tunnel lining stiffness was reduced 

from a value of 15 GPa to 5 GPa, to account for the cracks experienced by the tunnel 

lining.  
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 Table 6.2. Calculation phases for scenario 1.  

    Calculation stage                                           
Time 
Period 

Young’s 
modulus E 

[GPa] 

Pore pressure  
at tunnel lining 

 u [kPa] 

 
Consolidation 1 

Consolidation 2 

Consolidation 3 

Consolidation 4 

     
1 year  

40 years 

1 year 

4 years 

 
E = 20 GPa 

E reduced to 15 GPa                    

E = 15 GPa 

E reduced to 5 GPa 

 
u= 0 kPa  

u= 0 kPa 

u= 160 kPa 

     u= 0 kPa 

 

 
Figure 6.10. Development of pore pressure at tunnel lining boundary with time.   

 

 

Tunnel deformation  
 

 Figure 6.11a and Figure 6.11b show the change in tunnel diameter with time after 

tunnel construction for the chosen cross-section. During the first year of 

consolidation, a value of 20 GPa was assumed for the tunnel lining stiffness E. In the 

subsequent forty years of consolidation, a stiffness reduction factor was adopted, by 

reducing the tunnel lining stiffness from 20 GPa to 15 GPa, for encountering of 

concrete cracking opening developed after the construction, as concrete proprieties 

might change due to long-term effects (i.e. shrinkage) (BTS, 2004).  
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The change in the vertical diameter decreased by 0.24 mm, whereas at the tunnel 

axis the horizontal diameter increased by 0.03 mm as the soil consolidates (Figure 

6.11a), meaning that the tunnel is squatting.   

The squatting deformation has been also observed for tunnels in London Clay, 

which is likely to continue years after tunnel construction (Ward & Thomas, 1965). 

Additionally, a tunnel with permeable lining is observed to squat more in the long-

term compared with an impermeable lining (Wongsaroj, 2005). For a fully 

permeable tunnel lining, pore pressure becomes zero at the tunnel boundary and the 

effective stress of the soil near the tunnel increases as the soil consolidates, until a 

new steady state condition is reached. For the impermeable tunnel lining, the tunnel 

boundary acts as a watertight tunnel, sustaining more lining load than a permeable 

lining due to the recovery of pore pressure in the long-term (Shin et al. 2002).   

  
(a) 

 
(b) 

Figure 6.11. Change in tunnel diameter during consolidation phases: (a) Consolidation stage 1 and 
(b)  Consolidation stage 2.   
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Figure 6.12a presents the change in tunnel diameter while applying a water 

pressure of u= 160 kPa instantaneously, simulating a sudden blockage of the 

drainage. The change in the vertical diameter is 0.14 mm whereas the change in the 

horizontal diameter is 0.15 mm. Both vertical and horizontal changes build up in the 

first 50 days and then remain constant until the end of the stage. The application of 

the external water pressure behind the tunnel lining induced a vertical tunnel 

ovalisation, as the distance of the lateral sides is decreasing, and the crown seems to 

experience some compression (Figure 6.12a). This behaviour is consistent with the 

observational data. However, the change in tunnel diameter develops quickly (i.e. 

within 50 days) and the magnitude is very small (0.2 mm) compared to that detected 

from conventional measurements.  

The further reduction of the tunnel lining stiffness as well as the assumption of the 

tunnel lining being fully permeable induced an inwards convergence of the lining, as 

a reduction of both vertical and horizontal distances is observed, with a greater 

vertical convergence compared to the horizontal one (Figure 6.12b).  
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(b) 

Figure 6.12. Change in tunnel diameter during (a) the application of the external pore pressure 
behind tunnel lining (u= 160 kPa) and (b) reduction of tunnel lining stiffness from 15 GPa to 5 GPa.  

 
 
Tunnel lining stress 
 
From the computed FE results, both bending moments and hoop thrusts along the 

tunnel lining are analysed.   

In order to validate the computed results with the FO strain profile, the adopted 

method is based on calculating the total strains at the intrados of the lining, resulting 

in a sum of axial strains εa and bending strains εb (Eq. 6.1): 

                                                       𝜀𝑡𝑜𝑡𝑎𝑙 = 𝜀𝑎𝑥𝑖𝑎𝑙 +  𝜀𝑏𝑒𝑛𝑑𝑖𝑛𝑔                                               (6.1)   

The axial strains εa can be calculated from the axial forces, directly extracted from 

ABAQUS for each beam element along the lining. However, obtaining the bending 

strains from the FE environment is troublesome, as the results show a zig-zag 

pattern. This might be due to the relatively small magnitudes of computed bending 

strains.  Therefore, the bending strains are evaluated from the theoretical relation 

between the bending moment and the curvature on the basis of the beam theory, as 

expressed in Equation 6.2. To compare with the actual measurement, the resulted 

bending strains on the tunnel intrados are then equal to the distance from neutral 

axis times the curvature (Eq. 6.3).  

                                                                    𝑀 = 𝐸𝐼 ∙ 𝜒                                                           (6.2) 
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                                               𝜀𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
𝑀

𝐸 ∙ 𝐼
𝑦 =  𝜒 ∙  

𝑑

2
                                                  (6.3) 

where: 

 M is the bending moment in the beam; 

  E is the elastic modulus of the beam material; 

  I is the second moment of inertia of the beam; 

  𝜒 is the beam element curvature; 

 y is the distance from the neutral axis of the beam; 

 d is the lining thickness.  

To measure the bending strains experienced by the lining, the procedure implies the 

calculation of the radius of curvature (ROC) along the lining, as the ROC is equal to 

the inverse of the beam curvature (ROC = 1/ 𝜒 ).  The adopted method is commonly 

used by design practice (Wilcock, 2017). The ROC can be determined by fitting a 

circle between three consecutive data points (i.e. beam nodes),  by finding the centre 

of the fitted circle which, hence, enables the calculation of the  ROC (Figure 6.13) 

(Wilcock, 2017; Alhaddad, 2017). By knowing the coordinates of three points 

connected through a chord (Figure 6.13), the centre of a circle can be obtained by 

intersecting perpendicularly the two halved distances between data points along 

lines a and b (Wilcock, 2017). Therefore, the curvature was evaluated for the various 

calculation phases by considering the horizontal and vertical displacements (u1 and 

u2) performed for the lining nodes with time, with a total of 56 tunnel lining nodes 

along the tunnel boundary (from the left invert side to the right invert, without 

considering the tunnel floor).  

 

Figure 6.13. ROC (radius of curvature) calculation (Wilcock, 2017). 
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It is important to clarify that this approach for evaluating the bending strains 

experienced by the tunnel lining is based on various assumptions. Firstly, the lining 

was modelled by using 3-node beam elements, which are sharing nodes with the 

surrounding ground. Secondly, to improve the performed magnitudes of bending 

strains, the distance y (Eq. 6.3) was considered as the sum of the distance from the 

central axis (d/2) plus the thickness of secondary lining, leading to larger bending 

strains along the tunnel lining intrados (Figure 6.14b). Lastly, the computed total 

strains were compared with the strains experienced by the optical fibre, which was 

attached to the lining through discrete drilled hooks (Figure 6.14a), leading to the 

evaluation of a strain within the gauge-length. Hence, the computed results obtained 

from the mentioned method may not be very accurate for assessing the bending 

moments at the tunnel lining, albeit it was the only approach to adopt within the 

framework of FE environment.  Additionally, such endeavour of comparing the strain 

development through FE modelling and the strain profile obtained from DFOS 

sensors was not encountered in previous works that involved the monitoring of 

tunnels using DFOS technologies (Mohamad, 2008; Gue et al., 2015). 

Therefore, further investigations in the evaluation of bending strains along the 

lining may be addressed in future research for more accurate prediction of the 

magnitudes of bending moments.  

 

 
 

(a) 
 
 

 
 
 
 
 
 
 

 
 
 

(b)  

 
Figure 6.14. (a) Schematic of the method of attaching the optical fibre to the tunnel lining through 
discrete hooks (Di Murro et al., 2016) and (b) modelling of tunnel lining.  
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The development of strains around the tunnel lining is plotted against the tunnel 

lining nodes at various calculation stages. Figure 6.15 shows the bending, axial and 

total strains along the tunnel lining, where the horizontal axis corresponds to the 

nodes around the tunnel lining starting from the right bottom invert in the 

anticlockwise direction. Therefore, the two ends of the x-axis refer to the two invert 

sides of the cross-section, whereas the middle section refers to the tunnel crown.  

As the soil consolidates after tunnel construction, the axial strains are larger than 

the bending strains. The bending strains are negative values at both tunnel spring 

lines and positive values at the tunnel crown (i.e. tunnel squatting) as shown in 

Figure 6.15a. Some anomalous fluctuation in the data is observed at both sides of 

tunnel invert.  

The total strains are 80 με and 2 με at the tunnel axis and the tunnel crown 

respectively during the first year of consolidation (Figure 6.15a), whilst values of 50 

με and 12 με are recorded when the tunnel lining stiffness is reduced to 15 GPa for 

the further 40 years of consolidation, with both axial and bending strains exhibiting 

negative strains at the tunnel axis level and positive strains at the tunnel crown, 

indicating a squatting tunnel lining deformation mode (Figure 6.15b). As the external 

water pressure of 160 kPa is applied to model the drainage blockage, the tunnel 

lining deforms with a vertical elongation shape. Positive total strains of 12 με and 

negative total strains of 25 με are recorded at both the tunnel sides and at the tunnel 

crown respectively, with the development of larger axial strains compared with the 

bending strains along tunnel lining, as shown in Figure 6.15c. Moreover, the 

reduction of the tunnel lining stiffness from 15 GPa to 5 GPa caused the development 

of small bending moments and large compressive axial loads, resulting in inwards 

tunnel lining convergence, as shown in Figure 6.15d.  
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(c) 

 
(d) 

 
Figure 6.15. Development of strains at tunnel lining during (a) Consolidation 1 (one year after 
construction), (b) Consolidation 2 (40 years after construction), (c) Consolidation 3 with the 
application of pore pressure u= 160 kPa and (d) Consolidation 4 with the tunnel lining stiffness E 
reduction from 15 GPa to 5 GPa and tunnel lining fully permeable.  

 

6.5.2  Scenario 2: tunnel lining thickness d reduction 

  
This section describes the computed lining performance by changing the lining 

geometry. Therefore, the influence of bending stiffness (EI) of the lining was 

investigated by keeping the elastic modulus E constant and by reducing the thickness 

-30.00

-15.00

0.00

15.00

30.00

0 10 20 30 40 50 60

S
tr

a
in

 [
µ

ε]

Tunnel lining nodes

Development of strain: pore pressure application 

Bending strain

Axial strain

Total strain

-500

-250

0

250

500

0 10 20 30 40 50 60

S
tr

a
in

 [
µ

ε]

Tunnel lining nodes

Development of strain: E reduction 

Bending strain

Axial strain

Total strain



160                         6. Two-dimensional finite element modelling of CERN TT10 tunnel                         

 

d of the beam section, since concrete structural elements may resist axial load but 

not bending when subjected to cracks. For a rectangular beam section of base b and 

height d (lining thickness), the reduction of the Moment of inertia about the x-axis Ix 

(bd3/12) would be larger than the reduction of the cross-sectional area A (b⋅d). 

Therefore, three calculation phases were defined, by assuming a constant value of E 

= 20 GPa and a reduced lining thickness (d= 0.12 m) in the last stage, as shown in 

Table 6.3.  

 

Table 6.3. Calculation phases for scenario 2. 

Calculation stage 
Time 

period 

Young’s 
modulus E 

[GPa] 

Pore pressure 
at tunnel 

lining u [kPa] 

Thickness at 
tunnel lining d 

[m] 

Consolidation 1 41 years E=20 GPa u=0 kPa d=0.3 m 

Consolidation 2 1 year E=20 GPa       u= 160 kPa d=0.3 m 

Consolidation 3 4 years E=20 GPa u=0 kPa   d=0.12 m 

 

The change in the tunnel diameter for scenario 2 is shown in Figure 6.16. During 

the consolidation after tunnel construction (Figure 6.16a), the change in the vertical 

diameter decreases with time, reaching around 1 mm at the end of the consolidation 

time, whereas the horizontal diameter increases to 0.23 mm (Figure 6.16a). The 

application of the external pore pressure of 160 kPa caused a small change in tunnel 

diameter in both horizontal and vertical directions (Figure 6.16b), whereas the 

reduction of lining thickness to 0.12 m induced a convergence inwards movement of 

lining, with large negative horizontal and vertical diameter changes (i.e. -1.4 mm and 

-3.85 mm respectively), as shown in Figure 6.16c.  

However, the change of lining cross-sectional properties (i.e. reduction of 

thickness) simultaneously to the change of lining permeability (i.e. fully permeable) 

resulted in a compressive tunnel lining deformation mode not compatible with that 

observed in the field, which showed a bending mode.  

The development of strain along the tunnel lining at various calculation phases 

confirmed the deformation mechanism described above, as shown in Figure 6.17. 

Negative axial and bending strains develop at the tunnel axis level during the first 

year of consolidation, with the axial strains being more significant than the bending 

ones (almost doubled in magnitude), whereas positive bending strains develop at 



6. Two-dimensional finite element modelling of CERN TT10 tunnel                          161 

 

the tunnel crown (i.e. around 13 µε) compared to the negative axial strains (around 

-14 µε), as shown in Figure 6.17a.      

When the external pore pressure of 160 kPa is applied on the lining, comparable 

magnitudes of positive axial and bending strains develop at tunnel axis level (around 

5 µε), whereas slightly larger axial strains (around 17 µε) are observed at the tunnel 

crown compared to the bending strains (approximately 10 µε), as shown in Figure 

6.17b. The tunnel lining undergoes high strains when its thickness is reduced (Figure 

6.17c). Yet, the development of negative compressive strains is computed, indicating 

that the tunnel may converge inwards in both vertical and horizontal directions 

(Figure 6.17c).   
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(c) 

Figure 6.16. Change in tunnel diameter during (a) Consolidation 1 stage, (b) Consolidation 2 with the 
application of pore pressure u= 160 kPa at tunnel lining and (c) Consolidation 3 with the tunnel lining 
thickness reduction.  
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(c) 

Figure 6.17. Development of strain at tunnel lining during (a) Consolidation 1 (u= 0 kPa), (b) 
Consolidation 2 with the application of pore pressure u= 160 kPa at tunnel lining and (c) 
Consolidation 3 with the tunnel lining thickness reduction and tunnel lining fully permeable.  

 

6.5.3  Discussion 

The different outcomes obtained from the two simulations with the reduced lining 

stiffness (scenario 1) and a reduced tunnel lining thickness (scenario 2) were 

examined in order to get the best match with the field measurement data. The 

discussion made can be explained as follows.  

After simulating the blockage of the tunnel drainage system, both scenarios 

involved the modelling of a calculation phase where the pore pressure at the tunnel 

boundary is brought back to the initial condition (i.e. zero kPa), particularly during 

the consolidation 4 stage and the consolidation 3 stage for scenario 1 and scenario 2 

respectively. This assumption led to the development of compressive strains along 

the lining as a mechanism of deformation, which is not in agreement with the 

bending deformation mode observed on site.      

Also, the assumption of applying a water pressure of u= 160 KPa on the tunnel 

lining to simulate a sudden blockage of the drainage system may not be appropriate, 

as no records of pumping the drainage water were found, and therefore the water 

pressure may be gradually building up. The shape of the total strain profile computed 

when the external water pressure is applied (i.e. compressive strain at the tunnel 

crown and tensile strain at the tunnel axis level) seems to be compatible with field 

measurements. However, the computed magnitudes (e.g. 10 µε at the tunnel axis 
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level and 28 µε at the tunnel crown) are much smaller compared to those recorded 

by the instrumented tunnel targets.  

The hypothesis of a reduced lining thickness in the last step of scenario 2 produced 

the development of larger displacements and, therefore, more significant strains 

were computed along the lining. Nevertheless, the simultaneous intake drainage 

condition in this step (pore pressures equal to 0 kPa at the tunnel perimeter) lead to 

a tunnel lining mechanism of deformation not in agreement with the field data.  

The main findings from these series of simulations suggest that the computed 

magnitudes of strains and displacements were improved by reducing the lining 

thickness, whereas the application of the water pressure on the outer edge of the 

tunnel lining produced a tunnel deformation shape profile similar to that observed 

in the field.  

6.5.4  Scenario 3 

According to the findings aforementioned, the following assumptions have been 

made in order to assess the tunnel behaviour during ground consolidation and long-

term lining conditions:  

i) A reduced and a constant value of elasticity modulus E of the tunnel lining 

was assumed throughout the FE simulation. Due to lack of tunnel as-built 

properties and considering that during tunnel construction concrete 

properties might change due to long-term effects for sprayed concrete 

linings (BTS, 2004), the assumption of reducing the lining stiffness E seems 

to be appropriate.  

ii) The short and long-term loading conditions for the final concrete lining 

involved a reduction of the thickness of lining (d= 0.12 m), as a reduced 

value led to smaller bending stiffness values EI of tunnel beam elements 

due to the reduction of the Moment of Inertia I, which is equal to bd3/12 for 

a rectangular beam section, resulting then in the development of higher 

bending strains of beam elements, as shown previously in the Eq. 6.3. The 

imposed hydrostatic water pressure on the concrete lining simulated the 

long-term build-up external pressure due to the reduced capacity of the 

drains (i.e. clogging of drains).  
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Each simulation assumed the water table located at ground surface, acting 

hydrostatic with depth. Additionally, the water pressure around the tunnel lining 

increased gradually in order to simulate the gradual clogging of the drainage system.   

The effectiveness on how a tunnel acts as a drain depends on the permeability of 

the tunnel lining and the immediately surrounding soil. In the Jubilee Extension Line 

(JLE), data showed that most of the tunnels were visibly wet to varying degrees, 

supporting that tunnels in London Clay act as a drain (Harris 2002). Furthermore, 

Mair (2008) also observed that the pore pressures were almost zero around tunnels 

in London Clay. Further studies highlighted the importance of relative permeability 

between the tunnel lining and the surrounding ground by proposing a coefficient RP 

for determining the tunnel lining drainage condition (Wongsaroj 2005; Laver 2010).  

However, the manifestation of extreme weather circumstances may lead to the 

deterioration of the tunnel drainage system, such as clogging of drain pipes, causing 

a build-up water pressure on the lining acting as an external water load around the 

tunnel. As the drainage system reduces its capacity with time, the numerical 

investigation will consider a gradual increase of water pressure behind tunnel lining 

with time (instead of imposing it instantaneously at the beginning of the phase as 

implemented for scenario 1 and scenario 2). The magnitude of the mentioned pore 

pressure was investigated by fitting the field data measurements taken for a 

monitoring period of four years (2013-2017). Three different hydraulic pore 

pressures were investigated: (a) u= 197 kPa (i.e. water table at the interface with the 

moraine layer), (b) u= 230 kPa and (c) u=250 kPa. The mentioned pore pressures 

were gradually increased with time, by reaching the desired magnitudes (i.e. 197 

kPa, 230 kPa and 250 kPa) within four years (2013 – 2017), as shown in Figure 6.18. 

A summary of the defined calculation phases is shown in Table 6.4.  
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 Table 6.4. Calculation phases for scenario 3.  

Calculation stage 
Time 

period 

Young’s 
modulus E 

[GPa] 

Pore pressure 
at tunnel 

lining u [kPa] 

Thickness at 
tunnel lining 

d [m] 

Consolidation 1 40 years E=10÷5 GPa u=0 kPa d=0.12 m 

Consolidation 2 4 years E=10÷5 GPa u= 197 kPa d=0.12 m 

   Consolidation 3  5 years E= 5 GPa u= 387 kPa d=0.12 m 

 

It should be noted that the maximum hydrostatic load at the considered tunnel 

depth would be equal to 387 kPa, with the water table located at ground surface (u= 

γw⋅ z = 10⋅38.7= 387 kPa), making the tunnel drainage fully clogged and 

impermeable. Therefore, in order to predict the tunnel lining deformation in case of 

occurrence of the maximum hydrostatic load behind the tunnel lining (i.e. u= 387 

kPa), an additional phase was modelled.  By assuming a linear interpolation of the 

computed data, if the hydrostatic load falls within the range of water pressures of 

magnitudes 197 kPa, 230 kPa and 250 kPa, then the maximum pressure load of 387 

kPa would be reached within four years (i.e. year 2021), three years (2020) and two 

years (2019) respectively, as shown in Figure 6.18. Therefore, the uncertainties 

related to the prediction of the lining deformation would fall within the range of pore 

pressure 197÷ 250 kPa.  

 

Figure 6.18. Hydrostatic water pressure behind tunnel lining.  
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The comparison between the computed changes in tunnel distances and field data 

is shown in Figure 6.19. It is noteworthy that the magnitudes of vertical and 

horizontal diameter changes are close to those measured in the field by total stations, 

albeit under a small range of hydrostatic pressures. Particularly, by applying a water 

pressure of 197 kPa behind the lining, the FE results match quite well both the 

change in the horizontal diameter at the tunnel axis level (Figure 6.19b) and the 

change in vertical distances (Figure 6.19a), but they underestimate the change in the 

horizontal distances at the tunnel shoulder location (Figure 6.19c). However, as the 

water pressure increases to 230 kPa and 250 kPa, the changes of horizontal and 

vertical tunnel diameter are overestimated. For this reason, the assumption of a 

hydrostatic pore pressure load on the lining to be as 197 kPa at the end of the 

monitoring period appears to best fit the observed data.  

Further modelling of tunnel lining response under the maximum hydrostatic load 

of 387 kPa are shown in Figure 6.20. The lining at the tunnel axis level exhibits the 

largest horizontal diameter change, increasing of approximately one order of 

magnitude, reaching a value of -2.26 mm for the assumed pressures 197 kPa, 230 

kPa and 250 kPa within 4 years, 3 years and 2 years respectively, as shown in Figure 

6.20b. A similar increase has been predicted for the diameter change at the tunnel 

shoulder (Figure 6.20c), whereas the vertical diameter change has simply risen of 

0.3 mm when subjected to u= 387 kPa (Figure 6.20a).  
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(b) 

 

(c) 

Figure 6.19. Evaluation of the hydrostatic water pressure at tunnel lining by fitting the field data: (a) 
change in vertical tunnel distances, (b) change in the horizontal distances at tunnel axis level and (c) 
change in the horizontal distances at tunnel shoulder level. 
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(c) 

Figure 6.20. Predicted tunnel lining diametric change when the maximum hydrostatic water 
pressure of 387 kPa occurs: (a) vertical diameter change, (b) horizontal diameter change at tunnel 
shoulder level and (c) horizontal change at tunnel axis level.  

 

A broad and accurate prediction of the tunnel lining response should also include 

the assessment of excess pore pressure generation during tunnel excavation and, 

hence, their dissipation with time.   

When the tunnel lining is fully permeable, the pore water pressure would flow 

towards the tunnel causing the pore pressure around the tunnel to reduce. This 

reduction in pore water pressure causes an increase in ground effective stress with 

consequent soil consolidation. Hence, further surface settlement is expected in the 

long-term until a steady-state flow condition is reached.  

The computed pore pressures around the tunnel are shown in Figure 6.21. The 

figure indicates that the FE model seems to compute negative pore pressures at the 

tunnel crown during tunnel construction (i.e. at the end of unloading stage I and 

stage II), as shown in Figure 6.21a and Figure 6.21b.  

A fully permeable tunnel lining drainage condition (u= 0 kPa) is then performed 

during the consolidation stage (Figure 6.21c). Within a time of around 200 days, the 

ground consolidation seems to be completed, as no pore pressure changes are 

detected afterwards, which is related to the very stiff rock of the molasse region (Di 

Murro et al. 2018) (Figure 6.21d and Figure 6.21e). As a matter of fact, survey records 
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carried out in 1976 have shown that the bulk of the tunnel lining movements 

occurred soon after tunnel construction (CERN Survey, 1976). Parkin et al. (2002) 

also assessed that during the excavation of the USA15 cavern in the frame of the LHC 

project, convergence measurements and deformations were observed up to three 

years after construction.  

Due to the change of flow regime around the tunnel (i.e. gradual blockage of the 

drainage), the water pressure on the tunnel lining was gradually imposed, reaching 

the predicted pore pressure of 197 kPa within 4 years (Figure 6.21i). It should also 

be noted that the pore pressures dissipation is noticeably influenced by the layering 

model within the molasse region, as it is characterized by different permeabilities, 

ranging from more permeable moraine layer going to the more impermeable marls 

and sandstones (Figure 6.21f). 

 

(a) end of unloading stage I (1 day) 

 

(b) end of unloading stage II (1 day) 
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(c) t = 0 start of consolidation 

 

(d) 1 day of consolidation 

 

(e) 10 days of consolidation 
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(f) 200 days of consolidation 

 

(g) 1000 days of consolidation 

 

 (h) 100 days after the application of u= 197 kPa 

Medium-weak marl 
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 (i) 4 years (u= 197 kPa) 

Figure 6.21. Pore pressure dissipation during: (a) unloading stage I of nodal forces, (b) unloading 
stage II of nodal forces, (c) ground consolidation at t= 0 (u= 0 kPa at tunnel lining), (d)  consolidation 
at t= 1 day, (e) t= 10 days, (f) t= 200 days and (g) t= 1000 days and during the imposition of the 
hydrostatic water pressure u= 197 kPa at tunnel lining: (h) after 100 days and (i) after 4 years.  

 

Figure 6.22a and Figure 6.22b show the change in tunnel diameter during the initial 

40-year consolidation stage and during the imposition of the water pressure of 197 

kPa on the outer edge of the lining (i.e. the end of the monitoring period), 

respectively. It can be noted that the vertical diameter change decreases with a rapid 

rate during the 40-year consolidation stage, reaching a maximum value of 5 mm, 

while the horizontal diameter increases of 0.76 mm, indicating a squatting 

deformation mode (Figure 6.22a).  Also, when the pore pressure behind the lining 

builds up with time, both the vertical and horizontal diameter change linearly with a 

vertical tunnel elongation mechanism of deformation, as shown in Figure 6.22b. The 

horizontal diameter change increases gradually with time and a magnitude of - 0.63 

mm is reached after one year, whilst the vertical change increases of 0.05 mm.  

 

As mentioned before, the hydrostatic load of 197 kPa corresponds to the equivalent 

hydraulic pressure at tunnel depth z= 38.7 m if the water table is located at the 

interface with the moraine layer. However, the maximum hydrostatic load at tunnel 

occurs when the water table reaches the ground surface (u= 387 kPa). Therefore, 

after the application of  u= 197 kPa, the water pressure at the tunnel lining boundary 

was increased up to the maximum value of 387 kPa, in order to predict the tunnel 
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lining behaviour under this condition as a possible future worst case scenario. Figure 

6.22c shows the horizontal and vertical diameter change under this scenario.  

The horizontal diameter change at tunnel axis level and shoulder increased by about 

40%, reaching a value of around -1.3 mm compared to that computed in the previous 

phase (-0.93 mm), whereas the magnitude of vertical diameter change increased 

from a magnitude of 0.18 mm to 0.48 mm, as shown in Figure 6.22c. 
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(c) 

Figure 6.22. Change in tunnel diameter during (a) Consolidation 1, (b) Application of the external 
pore pressure u= 197 kPa and (c) long-term behaviour under u= 387 kPa at the tunnel lining 
(maximum hydrostatic load).   

 

The development of bending and axial strains along the tunnel lining is presented 

in Figure 6.23. Figure 6.23a shows the strains computed at tunnel lining during 

ground consolidation. Compressive and tensile bending strains are observed at the 

tunnel axis level and the tunnel crown respectively, whereas larger axial strains 

developed along tunnel lining, by recording around -1000 µε at tunnel axis and 

almost -200 µε at the tunnel crown (Figure 6.23a). Large total strains were computed 

at the tunnel crown and tunnel axis when the lining is subjected to an external pore 

pressure of 197 kPa (Figure 6.23b). Comparison between total strains obtained by 

assuming the tunnel lining elasticity modulus E equals to 10 GPa and 5 GPa is 

presented in Figure 6.23b and Figure 6.23c respectively. The plots show a minor 

increase in total strains at the tunnel axis level by assuming E= 5 GPa, whereas 

substantial strains are recorded at the tunnel crown (i.e. 50 % increase) by assuming 

E= 5 GPa compared to the stiffer tunnel lining case (E= 10 GPa). Therefore, the 

assumption of a reduced stiffness value improved the computation of strains at the 

tunnel crown, which is located in the very weak lumpy marl, while the strains 

developed at the tunnel axis seem to experience only a small increase. This behaviour 

may be due to the fact that the tunnel at the crown is entirely placed in the lumpy 

marl layer, whereas the tunnel lining at axis level may be influenced by the stiffer 

medium weak marl layer surrounding the tunnel invert, characterized by a stiffness 
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modulus E’ much larger than that of the very weak marl (almost 5 times larger), 

which may prevent the tunnel lining to deform.  

Despite considering a smaller stiffness value for modelling the lining (Figure 

6.23c), the computed total strains for the considered tunnel depth remain slightly 

smaller than those measured in the field. DFOS has measured noteworthy peak 

strains of magnitudes of around 580 µε and 500 µε at the tunnel crown and the 

tunnel axis respectively for tunnel circumferential loop 2-5, plotted in Chapter 4. 

However, the shape of the computed strain pattern of tensile and compressive 

strains at the tunnel axis and the tunnel crown respectively seems to be in agreement 

with the one observed with the FO sensors, suggesting the same tunnel lining 

mechanism of deformation (i.e. tunnel vertical elongation). It should also be noted 

that the computed horizontal and vertical changes in tunnel diameter match quite 

well with the observational data recorded by the total station measurements of 

Profile 4 shown in Chapter 3. In fact, by assuming a tunnel lining stiffness of 5 GPa, 

the vertical and horizontal diameter changes of -0.93 mm and +0.18 mm are 

computed respectively, compared to the magnitudes of -0.9 mm and +0.18 mm 

measured with the conventional monitoring tunnel bolts.           

The discrepancy between the tunnel strains performed with the FE model and 

observational data may be caused by uncertainties of many factors, such as i) ground 

permeability anisotropy, as the assumption of kh /kv ≠ 1 ratio (horizontal and vertical 

permeability ratio) showed larger squatting deformation during ground 

consolidation (Wongsaroj 2005), ii) the tunnel lining permeability, as the 

assumption of fully permeable or fully impermeable lining may not provide an 

accurate tunnel lining response due to localised seepage into the tunnel through 

cracks and tunnel joints, in addition to iii) the approach adopted for assessing the 

bending strains, as discussed before, which may provide less conservative values. 

The mechanical FO strain results do not account for any temperature change inside 

the tunnel, as no temperature FO cable was installed due to the quite stable 

environment. However, a potential change in the temperature of ∆T= 5 °C would 

generate a strain change of approximately 100 µε. Also, the change in groundwater 

regime due to heavy rainfall periods may induce some seasonal fluctuation in the 

data.  
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(c)  

 
Figure 6.23. Development of strain at tunnel lining during (a) Consolidation, (b) application of pore 
pressure u= 197 kPa ( E tunnel lining of 10 GPa), (c) application of pore pressure u= 197 kPa (E tunnel 
lining of 5 GPa).  

 
Figure 6.24a illustrates the computed lining hoop thrust forces at the tunnel axis 

level, the tunnel crown and the tunnel invert during the short term (start of 

consolidation stage) and the long-term (after 40-year consolidation). After tunnel 

construction (short-term), greater hoop thrust force is computed at the tunnel axis 

level compared to that at the tunnel crown and tunnel invert. The larger hoop force 

at the tunnel axis than that at the tunnel crown is due to the anisotropic load leading 

to distortion of the lining (Wongsaroj, 2005). During the 40-year consolidation stage, 

the hoop thrust at the tunnel axis level builds up with time, reaching a value of 1017 

kN/m at the end of consolidation (i.e. 47.10 % full overburden) compared to the 

hoop thrust of 527 kN/m at the tunnel crown (24.4 % full overburden). The very 

small decrease in the hoop load at the tunnel crown during ground consolidation was 

also observed by Wongsaroj (2005) for a tunnel in London Clay, however, this 

behaviour might be unrealistic since no evidence was found in the literature.   

When the tunnel lining drainage condition changes (i.e. water pressure of 197 kPa 

and 387 kPa behind the lining), the hoop thrust of the tunnel crown increases with a 

faster rate compared to the hoop thrust at the tunnel axis level, as shown in Figure 

6.24. Considerably lower hoop thrust was instead computed at the tunnel invert, 

expected for non-circular tunnel shapes (Yoon et al., 2014). Particularly, due to the 

flat geometry of the tunnel invert, the vertical lining displacement u2 at the centre of 
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tunnel floor increases when the lining is subjected to an external water pressure of 

197 kPa and 387 kPa, as shown in Figure 6.24b. In particular, under the maximum 

hydrostatic load, the vertical movement at the tunnel floor almost doubled (i.e. 

around 3 mm), compared to that computed when a pore pressure of u= 197 kPa is 

applied (1.6 mm).    

  
 

(a) 

 

(b) 
Figure 6.24. (a) Hoop thrust force at tunnel lining: crown, axis and invert (E tunnel lining = 5 GPa) 
and (b) Vertical movement u2 at tunnel floor (middle point) when the external pressure u=197 kPa is 
applied and prediction of vertical movements u2 under the maximum hydrostatic load u=387 kPa.  
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Coefficient of earth pressure at rest K0 

 
 

The influence of the coefficient of earth pressure K0 of the very weak marl layer on 

the tunnel lining response was investigated during the 40-year consolidation stage 

and the subsequent lining drainage condition change. In particular, the K0 coefficient 

was increased to look at the influence of the anisotropic load on the tunnel lining 

response, by taking into account the range of K0 values stated by GADZ (2016a, 

2016b) for Point 1 (ATLAS), where a maximum value of K0 = 2 was reported.  

The computed change in tunnel diameter and the development of strains along the 

lining are presented in Figure 6.25. With a higher value of K0 (equals to 2), a slightly 

smaller change in the horizontal tunnel diameter was computed compared to a value 

of K0 = 1.2, resulting in larger squatting for lower K0 conditions during the 40-year 

consolidation stage, as shown in Figure 6.25a, indicating that lower K0 values result 

in lower horizontal ground pressure on the lining and therefore more squatting is 

observed. When the tunnel lining is subjected to the external water pressure of 197 

kPa, greater horizontal diameter change was performed for higher K0 values, as 

shown in Figure 6.25b. The tunnel crown shows more significant total strains with 

higher K0 magnitudes, due to the larger horizontal ground load of the very weak marl 

layer acting on the lining (Figure 6.25d). 

The increase of the coefficient of earth pressure at rest K0 of the very weak marl layer 

from a value of 1.2 to a value of 2 provides more significant strains at the tunnel 

crown (20 % increase) and comparable strains at the tunnel axis level for both K0 

values during the application of the external pore pressure of 197 kPa. Therefore, 

compared to the influence of the tunnel lining stiffness reduction (from 10 GPa to 5 

GPa) on the tunnel lining response, which gave more significant strains only at the 

tunnel crown (i.e. double magnitudes of total strain, from around 213 µε to 420 µε), 

the effect of K0 on tunnel lining response seems not to be large.  
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(c)  

 
(d) 

 
Figure 6.25. Influence of earth pressure coefficient K0 of the very weak marl unit on tunnel lining 
response: (a) change in tunnel diameter during consolidation, (b) change in tunnel diameter during 
the application of pore pressure on the lining, (c) development of strain along the lining during 
consolidation and (d) development of strain along the lining during the application of u=197 kPa.  

 
Influence of stiffness of medium weak marl unit 

Since at the considered tunnel depth the tunnel is located partially in the very weak 

marl unit (at the tunnel crown and the tunnel axis level) and in the medium weak 

marl layer (at the tunnel invert), further modelling involved the investigation of the 

properties of the latter rock unit.  As discussed before, in order to improve the 
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magnitudes of strains at the tunnel axis level to better match the observational data, 

the influence of the medium weak marl layer on the development of the tunnel lining 

response was investigated.   

Figure 6.26a and 6.26b show the computed strains along the lining by assuming a 

reduced value of effective stiffness modulus E’ of the medium-weak marl layer (half 

the initial value was considered). Therefore, a weak marl rock unit was considered 

instead. Particularly, comparable total strains were computed at the tunnel crown 

during the progress of pore pressure upon the tunnel lining (i.e. around 510 µε), with 

no improvement in the magnitude of the strains at the tunnel axis level, as shown in 

Figure 6.26b. This implies that the attempt of considering a softer marl layer around 

the tunnel invert hasn’t resulted in larger tensile strains at the tunnel axis level, 

suggesting that the elasticity property of the marl has no effect on the tunnel lining 

response.  
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(b)  

Figure 6.26. Influence of effective stiffness E’ of the medium weak marl unit on tunnel lining 
response: (a) development of strain along the lining during consolidation and (b) development of 
strain along the lining during the application of u=197 kPa.  

 

Linear elasto-plastic Mohr-Coulomb model 
 
To investigate the distribution of load in the tunnel lining, a selection of 

appropriate constitutive laws for describing the ground behaviour can be important.  

To this end, this section presents the results of simulations obtained by adopting (a) 

the linear-elastic perfectly plastic model (Mohr-Coulomb) and (b) the advanced 

critical state model. As discussed in Chapter 5, the results of triaxial compression 

tests of the marls and sandstones formations enabled the evaluation of their 

mechanical behaviour. In particular, for the very weak marl layer, which showed a 

soil-like behaviour, a shear failure was observed, whereas a tension failure was 

observed for the other rock units. Therefore, the advanced critical state model was 

used only to model the very weak marl (lumpy marl), whereas the other layers (i.e. 

medium marl, medium sandstones etc.) were modelled by adopting a linear-elastic 

behaviour. The elasto-plastic Mohr-Coulomb model was also implemented for 

modelling the very weak marl unit, in order to compare the tunnel lining response 

by using the two constitutive models.  

Figure 6.27 shows the change in tunnel diameter with time by using Mohr-

Coulomb model, and the prediction was performed with the input mechanical 

parameters (E’, ν’, ϕ’, c’, ψ’) listed in Table 5.3 of Chapter 5. It can be seen that the 
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bulk of diameter change in both vertical and horizontal direction occurs within the 

first year of consolidation, reaching the steady state condition very soon. 

Furthermore, the lining experiences a decrease in the vertical diameter (i.e. -0.91 

mm) and an increase in the horizontal diameter, meaning that the tunnel deforms 

with a squatting deformation mode (Figure 6.27a). During the application of the 

external water pressure on the lining of 197 kPa, the predicted vertical diameter 

change behaves elastically within 750 days, after which it becomes plastic, reaching 

a value of 0.13 mm (Figure 6.27b). However, the plot of the computed change in 

tunnel diameter in Figure 6.27b confirms the deformation mode of the tunnel lining 

previously described (i.e. the tunnel deforms with vertical elliptical mode). Overall, 

smaller magnitudes of diameter changes were recorded for the Mohr-Coulomb 

model compared to the advanced critical state model, during both the consolidation 

stage and the application of the pore pressure u=197 kPa, as shown in Figure 6.27a 

and Figure 6.27b.  
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(b) 

Figure 6.27. Change in tunnel diameter: vertical and horizontal change during (a) Consolidation stage 
and (b) Application of pore pressure (u=197 kPa) at tunnel lining.  

 
Further modelling that included the development of total strain along the lining is 

shown in Figure 6.28. Comparable bending and axial strains were computed during 

the ground consolidation stage, resulting in negative tensile strain at the tunnel 

crown and positive tensile strains at the tunnel axis level, with the former being 

smaller than the latter (i.e. tunnel squatting) (Figure 6.28a).  

A vertical tunnel elongation mechanism is instead observed when a change of flow 

regime around the tunnel occurs (Figure 6.28b), which seems to be in line with the 

one observed from the advanced critical state model.  

Comparison between the lining deformations computed from the advanced critical 

state model and the elastic-perfectly plastic Mohr-Coulomb model presented in 

Figure 6.28c shows that the latter model predicts smaller magnitudes of both tensile 

and compressive strain. The advanced critical state model provides a bigger change 

in the tunnel diameter, compared to that computed by the Mohr-Coulomb model. 

Peak total strains of approximately -238 µε and 422 µε were recorded at the tunnel 

crown for the MC model and the advanced critical state model respectively, whereas 

at the tunnel axis level less significant strains were obtained, as shown in Figure 

6.28c. Overall, smaller strain values were computed with the Mohr-Coulomb model 
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compared to the advanced critical state model at both the tunnel crown and the 

tunnel axis level.    
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 (c)  

Figure 6.28. Strain development along tunnel lining by adopting the Mohr-Coulomb model: (a) 
Consolidation stage, (b) Pore pressure rise at tunnel lining (u=197 kPa) and, (c) Comparison between 
the advanced critical state model and the Mohr-Coulomb model when u=197 kPa is applied.  

 

Figure 6.29 shows the development of plastic strains performed around tunnel 

lining by assuming the Mohr-Coulomb model at the end of the unloading stage II 

(Figure 6.29a), ground consolidation stage (Figure 6.29b) and at the end of the pore 

pressure rising at tunnel lining (Figure 6.29c). The figures show the development of 

some more important plastic strains at the tunnel shoulder and at the tunnel crown 

within the very-weak lumpy marl layer, propagating towards the upper boundary, at 

the interface with the medium-weak marl layer. Additionally, at both tunnel invert 

lateral sides and at the interface between the very-weak and the medium-weak marl 

layers, ground elements reached the plasticity condition.  

The volumetric plastic strains developed around the tunnel are also plotted for the 

soil elements modelled with the advanced critical state model, as shown in Figure 

6.30. In particular, the plastic strains are displayed only for the very weak marl layer. 

Small plastic strains develop around the tunnel at the end of the unloading stage II 

(when the tunnel lining is put in place), in particular at the tunnel shoulder level and 

at the interface between the two different marl layers (Figure 6.30a).  

Figure 6.30b shows that at the end of the 40-year consolidation stage large plastic 

strains develop at the tunnel shoulder level, spreading towards the upper marl layer 
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and towards the lower boundary between the very weak and medium weak marl 

units. Similar behaviour was observed with the Mohr-Coulomb model, albeit the 

latter model computes larger magnitudes of soil plastic strains. The plastic strains of 

the soil around the tunnel shoulder level increased at the end of the application of a 

pore pressure u= 197 kPa on the lining, as shown in Figure 6.30c.  

 

 
(a) End of unloading stage II 

(b) End of 40-year consolidation 

Very weak marl 
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(c) End of pore pressure rise 

 
Figure 6.29. Plastic strains around the tunnel lining by assuming the Mohr-Coulomb model: (a) End 
of unloading stage II, (b) End of consolidation stage and (c) End of the application of pore pressure u= 
197 kPa at tunnel lining.  

 
(a)  End of unloading stage II 

 
(b)  End of 40-year consolidation stage 
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(c) End of pore pressure rise 

Figure 6.30. Plastic strains in the very weak marl layer by assuming the ACSM model: (a) End of 
unloading phase II, (b) End of consolidation stage and (c) End of the application of pore pressure u= 
197 kPa at tunnel lining.  

 

Stress paths around tunnel lining 
 

The stress paths around the tunnel for both constitutive models are plotted in 

Figure 6.31 in the s’–t plane. The results are taken from elements taken at different 

locations as shown in Figure 6.31a, with both elements located in the weak lumpy 

marl, at the tunnel axis level and at the tunnel crown. 

During the tunnel construction (i.e. stage I: unloading phase I) the ground at the 

tunnel crown underwent higher change in deviatoric stress (t), as shown in Figure 

6.31b, reaching the Critical state line (CSL) during the final unloading phase II.  

 Yet, during ground consolidation (stage III), the mean effective stress s’ increases 

as the excess pore pressures dissipate with time, whereas during the application of 

the external water pressure on the lining (stage IV) the s’ decreases as the pore 

pressure increases. Additionally, Figure 6.31b and Figure 6.31c indicate that whilst 

at the tunnel crown the plasticity condition is reached during the unloading phase II 

and the simultaneous installation of the lining, at the tunnel axis level the ground 

does not reach the peak state. This behaviour seems to be compatible with the 

development of some plastic strains at the tunnel crown, shown previously in Figure 

6.29. 

 The stress paths computed with the advanced critical state model in Figure 6.31d 

and Figure 6.31e, show that at the tunnel crown during the unloading stage I the 

predicted shearing stresses are similar to those computed by the MC model.  
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(d) 

 
 

(e) 

Figure 6.31. Computed stress path for soil elements at tunnel crown and tunnel axis: (a) Location of 
elements in the mesh around the tunnel, (b) Soil element at tunnel axis (MC), (c) Soil element at tunnel 
crown (MC), (d) Soil element at tunnel axis (ACSM), and (e) Soil element at tunnel crown (ACSM).  

 

6.5.4.1 Parametric study 
 
In this section, a parametric study was performed to investigate the effect of the 

layering formations on the long-term tunnel lining performance, with particular 

interest on the water pressure rise stage (i.e. u= 197 kPa at tunnel lining).  

The examined tunnel cross-section is located between two layers: the tunnel 

crown and the tunnel axis level are located in the very weak marl unit, whereas the 

tunnel invert is located in the medium weak marl unit.  
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The computed shape of the strain profile seems to match well the tunnel deformation 

mode obtained with the field data, with compressive and tensile strains at the tunnel 

crown and the tunnel axis level respectively. Also, the computed change in tunnel 

diameter is in agreement with the observational measurements, suggesting the same 

tunnel lining mechanism of deformation. Further modelling has been conducted to 

improve the understanding of the tunnel lining behaviour by comparing two 

different cases: (a) the tunnel is entirely located in one homogeneous rock unit (i.e. 

very weak marl) and (b) the tunnel is located in two different rock formations (i.e. 

the tunnel crown in very weak marl layer and the tunnel invert in the medium weak 

marl).   

The lining response was investigated assuming the tunnel entirely located in the 

very weak marl layer. Both constitutive models were adopted (i.e. advanced critical 

state model (ACSM) and Mohr-Coulomb (MC) model).  

Figure 6.32 shows the computed axial, bending and total strains along the lining 

by using the ACSM model and the MC model, as shown in Figure 6.32a and Figure 

6.32c respectively, whereas Figures 6.32b and 6.32d present the comparison 

between the total strains computed for the homogeneous case (a) and for the layered 

case (b), by adopting the ACSM and the MC model respectively.   

When assuming the ACSM model, larger axial strains are observed along the lining 

compared to the bending strains, when the external water pressure of 197 kPa is 

applied on the tunnel lining, resulting in the development of negative total strains at 

both the tunnel crown and the tunnel axis level, as shown in Figure 6.32a. By 

comparing the results obtained from the (a) homogeneous case and (b) the layered 

case, it can be seen that the tunnel lining response is influenced by the layering 

divisions within the molasse region surrounding the tunnel, when its drainage 

condition changes, as shown in Figure 6.32b. While the homogenous model shows 

the development of negative total strains at both the tunnel axis and the tunnel 

crown, the layered model performs negative and positive strains at the tunnel crown 

and axis level respectively, suggesting a tunnel ovalisation as tunnel lining 

deformation mode.  

When modelling the very weak marl layer by using the MC model, slightly larger 

magnitudes of total strains are computed along the tunnel lining compared to the 

ACSM model, as shown in Figure 6.32c. However, both constitutive models have 
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shown a consistent tunnel lining strain pattern, characterized by the development of 

uniform compressive strains along the lining.  

This behaviour suggests that the tunnel lining exhibits the development of tensile 

and compressive strains at the tunnel axis and the tunnel crown respectively (i.e. 

tunnel vertical elongation) when the layered model is considered, whereas the 

homogeneous ground model displays a uniform development of compressive 

strains.  

This implies that in the layered formation the different mechanical behaviour of the 

two rock units surrounding the tunnel (very weak marl and medium weak marl) 

contributes to the development of bending moments in the tunnel lining and, hence, 

to tunnel lining distortions. Conversely, when the whole tunnel cross-section is 

surrounded by a homogeneous rock formation (very weak marl layer), the tunnel 

lining deforms through the development of compressive strains at both the tunnel 

crown and the tunnel axis. This distribution of strains (i.e. tunnel vertical ovalisation) 

along the tunnel boundary was found to be dependent on the relative stiffness of the 

layered formations. Zhang et al. (2015) also observed significant differences on the 

tunnel lining response of a shield tunnel for a homogeneous soil model and multi-

layered formation depending on the relative layers’ thickness and stiffness.  
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(d)   
 

Figure 6.32. Development of strain at tunnel lining during the application of pore pressure u=197 
kPa: (a) Homogeneous case (ACSM), (b) Comparison between the homogeneous and the layered 
model by using the ACSM, (c) Homogeneous case (MC) and (d) Comparison between the 
homogeneous and the layered model by using the MC model.  

 

Figure 6.33 presents the change in tunnel diameter when the tunnel lining is 

experiencing an external pore pressure of 197 kPa, by assuming both the advanced 

critical state model and the Mohr-Coulomb model. The prediction of tunnel diameter 

change when the maximum hydrostatic load of 387 kPa occurs is also shown in the 

figure. Both the horizontal and vertical changes in tunnel diameter decrease with 

time, reaching similar magnitudes of around -1.25 mm when assuming the ACSM, 

suggesting that the tunnel lining is converging inwards when the pore pressure load 

of 197 kPa builds-up on the lining, as shown in Figure 6.33a. A bigger difference 

between the vertical and horizontal diameter change was computed by the Mohr-

Coulomb model at the end of the 4-year period of water pressure rise on the tunnel 

lining (Figure 6.33a).  

Also, the magnitudes of diameter change seem to increase under the maximum water 

pressure acting on the tunnel lining for both constitutive models, as shown in Figure 

6.33b. Overall, larger changes in tunnel diameter were computed when assuming the 

Mohr-Coulomb constitutive model.  
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(a) 

 

(b) 

Figure 6.33. Change in tunnel diameter during (a) the application of the external pore pressure of 
197 kPa and (b) under the maximum hydrostatic load of 387 kPa.  

 

The stress paths of ground elements around the tunnel computed with the 

advanced critical state model are analysed and plotted in Figure 6.34 in the s’–t plane, 

for soil elements located in different locations: above the tunnel crown, at the tunnel 

axis level, at the tunnel invert (side) and below the tunnel invert, as shown in Figure 

6.34a, with all the elements placed within the very weak lumpy marl formation.  

The soil elements at both the tunnel crown and the tunnel axis level exhibit the same 

stress paths shown for the layering model (Figure 6.34), since both elements are 

located in the very weak marl layer as well as the previous case. For the soil element 

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 750 1500

D
ia

m
e

te
r 

ch
a

n
g

e
 [

m
m

]

Time [days]

Diameter change: u= 197 kPa

Horizontal change_ACSM

Vertical change_ACSM

Horizontal change_MC

Vertical change_MC

-3.00

-2.50

-2.00

-1.50

-1.00

-0.50

0.00

0 750 1500

D
ia

m
e

te
r 

ch
a

n
g

e
 [

m
m

]

Time [days]

Diameter change: u= 387 kPa

Vertical change_MC

Horizontal change_MC

Horizontal change_ACSM

Vertical change_ACSM



200                         6. Two-dimensional finite element modelling of CERN TT10 tunnel                         

 

at the bottom of tunnel invert, during the tunnel construction (i.e. unloading phase I 

and II) the ground underwent a change in deviatoric stress (t) as shown in Figure 

6.34c, followed by the ground consolidation (stage III) and the application of the 

external water pressure on the lining (stage IV), where the mean effective stress s’ 

decreases as the pore pressure increases. The ground at the bottom of the tunnel 

invert does not reach the failure envelope, as well as the rock unit placed at the side 

of the tunnel invert (Figure 6.34d). 

Additionally, Figure 6.35 displays the contours of the plastic strains developed in the 

very weak marl unit surrounding the tunnel. At the end of the tunnel construction, 

the soil surrounding the tunnel axis level and tunnel shoulder underwent some 

plastic strains, slightly larger than those at the tunnel crown and the tunnel invert, 

as shown in Figure 6.35a. Similarly to the layered model, larger plastic strains 

develop at the tunnel shoulder level and at the lower interface with the medium 

weak marl layer at the end of the 40-year consolidation phase, as shown in Figure 

6.35b. When the tunnel drainage condition changes (i.e. an external pore pressure of 

197 kPa is applied on the tunnel lining), further plastic strains develop around the 

tunnel shoulder and the tunnel axis level, as shown in Figure 6.35c. 

Figure 6.36 and Figure 6.37 show the stress path and the plastic strains of the 

ground surrounding the tunnel when the Mohr-Coulomb model is assumed. It can be 

seen that the failure envelope is only reached for the soil element located at the 

tunnel crown and at the tunnel invert (bottom) during the unloading stage II, as 

shown in Figure 6.36a and 6.36b. Moreover, Figure 6.37 illustrates the development 

of plastic strains at the tunnel crown and the tunnel invert, which extends towards 

the upper and lower soil boundary respectively, at the end of the tunnel construction 

stage, consolidation stage and the water pressure rise stage.  

 

 
 

(a) 

Tunnel invert side 

Tunnel invert bottom 

Tunnel axis 

Tunnel crown 
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(b) 

 

(c) 

 

 (d)  

Figure 6.34. Computed stress paths for soil elements around the tunnel lining boundary by assuming 
the ACSM: (a) Location of the soil elements, (b) stress path for soil elements at the tunnel crown and 
the tunnel axis, (c) at the tunnel invert bottom and (d) at the tunnel invert side.  
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(a) End of unloading stage II 
 

 

(b) End of consolidation stage 
 

 

(c) End of pore pressure rise 
 

Figure 6.35. Plastic strains development in the very weak marl layer by using the ACSM model: (a) 
end of unloading II stage, (b) end of 40-year consolidation stage and (c) end of application of the 
external pore pressure u=197 kPa on the tunnel lining. 
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(a) 

 

(b)  

 

 (c) 
Figure 6.36. Computed stress paths for soil elements around the tunnel lining boundary by assuming 
the MC model for ground elements at: (a) the tunnel crown and the tunnel axis level, (b) the tunnel 
invert bottom and (c) the tunnel invert side.  

-400

-200

0

200

400

0 200 400 600 800

t 
[k

P
a

] 

s' [kPa]

Tunnel crown and tunnel axis

I

II

III

IV

CSL

-400

-200

0

0 200 400 600 800

t 
[k

P
a

]

s' [kPa]

Tunnel invert bottom

I:   unloading phase 1

II:  unloading phase 2

III: Consolidation stage

IV: Pore pressure rise

CSL

-500

-250

0

250

500

0 200 400 600 800

t 
[k

P
a

] 

s' [kPa]

Tunnel invert side

II
III IV

I:   unloading phase 1

II: unloading phase 2

III: Consolidation stage

IV: Pore pressure rise

CSL

Tunnel axis 

Tunnel crown 

I 



204                         6. Two-dimensional finite element modelling of CERN TT10 tunnel                         

 

 
(a) End of unloading stage II  

 
(b) End of 40-year consolidation stage 

 
(c) End of pore pressure rise u= 197 kPa 

Figure 6.37. Plastic strains development in the very weak marl layer by using the MC model: (a) end 
of unloading stage II, (b) end of 40-year consolidation stage and (c) end of application of the external 
pore pressure u=197 kPa.  
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The observed behaviour puts forward the importance to examine the range of 

layers within the rock mass in order to predict appropriately the tunnel lining 

mechanism of deformation.   

 

6.6  Summary of key findings  

 
A series of two-dimensional finite element analyses was performed to investigate 

the long-term behaviour of CERN tunnel lining. The numerical model is validated 

against field monitoring data (i.e. total station data and DFOS data) by analysing the 

lining response when the hydraulic regime in the ground changes. The simulated FE 

model considers the in-situ features of a concrete-lined tunnel in the CERN 

underground network, simulating both short-term and long-term behaviours for one 

representative tunnel cross-section, considered to be the most critical one. 

Particularly, the model improved the understanding of lining behaviour when its 

permeability condition changes from fully permeable conditions (after tunnel 

construction) to impermeable conditions, as a result of a reduced capacity of the 

drainage system with time, leading to the generation of water pressure acting on the 

tunnel lining. This may have caused significant lining distress with time, resulting in 

a tunnel ovalisation as a deformation mode.  

The computed results highlighted the importance of the groundwater regime and, 

therefore, a change in the lining permeability on the lining performance. The main 

findings derived from the numerical study are summarized below:  

 

 The model shows that the reduction of tunnel lining stiffness with time at 

each calculation phase produces the development of both total strain and 

change in tunnel diameter along the lining, but relatively small magnitudes 

were recorded. Thus, without as-built tunnel lining properties, and by 

considering that in sprayed concrete linings the concrete may change its 

properties due to long-term effects (i.e. shrinkage, creep), the assessment of 

lining stiffness being a reduced value soon after tunnel construction seems to 

be appropriate.  

 The modelling of a reduced tunnel lining thickness improved the tunnel 

deformation response much closer to the field data. This is due to the 

reduction of the Moment of Inertia I of the tunnel lining section, which for a 
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rectangular beam cross-section is greatly influenced by the height of the beam 

(i.e. thickness d, with I= bd3/12). Therefore, the assumption of a reduced 

value of tunnel lining thickness will produce both larger bending and axial 

strains, which are indirectly proportional to the bending and axial stiffness of 

beam elements respectively (EI and EA). 

 The FE model shows that the tunnel lining deforms with a vertical tunnel 

elongation mechanism, resulting in a compression behaviour at the tunnel 

crown and tension at the tunnel axis level, in line with the DFOS data.  

 By assuming the deterioration of the tunnel drainage pipes and, hence, a 

reduced capacity of the drainage system, the resulting magnitude of water 

pressure acting behind the outer edge of lining was back-calculated by fitting 

the result to the field data. The model has shown very good match of the 

change in tunnel diameter (i.e. horizontal and vertical) with the instrumented 

tunnel bolts data when a water pressure of u = 197 kPa (i.e. water table 

located at the interface with the moraine layer) is applied on the tunnel lining. 

Additionally, by comparing the computed total strains along the lining with 

the FO results of the loop 2-5, the tunnel lining at the crown seems to 

experience comparable magnitudes of total strains, whereas less significant 

values were seen at the tunnel axis level compared to those observed in the 

field. This behaviour may be due to the effect of the very stiff medium weak 

marl layer located at tunnel invert level on the development of tensile strains 

at tunnel springline. Moreover, the FE model considers the water pressure 

applied uniformly on the tunnel lining (fully impermeable tunnel lining), 

which may not be realistic due to localized seepage through the cracks.     

Overall, the FE models underestimated the strains obtained on site. This 

discrepancy may be associated with the attempt made for comparing the 

strain measured from the optical fibre attached to the lining through different 

hooks with the bending and axial strains computed from the FE results. 

Particularly, the adopted approach for assessing the bending strains was 

based on the calculation of the beam elements curvature along the tunnel 

lining, which may not provide accurate magnitudes of strains. Therefore, 

further investigations should be carried out for a more precise assessment of 

tunnel lining bending moments.  
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 A parametric study has been carried out in order to understand the effect of 

the layering formations surrounding the tunnel on the tunnel lining response 

during the application of the external pore pressure. Two different cases were 

examined: (a) the tunnel entirely located in a homogeneous layer of very 

weak marl, and (b) the tunnel located in the very weak marl unit at the tunnel 

crown and in the medium weak marl at the tunnel invert (layered model). The 

computed results show that the layering within the molasse region affects the 

tunnel lining deformation mode in the long-term. The distinct strain pattern 

along the tunnel lining of tensile and compressive strains at the tunnel axis 

level and the tunnel crown level respectively is observed when the layered 

model (b) is considered, whereas a compressive strain profile is computed for 

the tunnel located in the homogeneous formation, whose change of both 

horizontal and vertical diameter decreased with time. This behaviour 

suggests that the distribution of strains along the tunnel boundary is 

dependent on the ground formation’s properties, as the layered formations 

contribute to the development of tunnel lining distortions (i.e. tunnel vertical 

ovalisation), whilst the homogeneous case exhibits a uniform compressive 

behaviour. This implies that the relative stiffness of the layered formations 

plays an important role when evaluating the tunnel lining response, due to 

the stiffer behaviour of the medium weak marl layer compared to the very 

weak marl.   

 The increase in the coefficient of earth pressure K0 of the very weak marl layer 

(i.e. K0 = 2) leads to higher development of strains along the lining when the 

lining is subjected to the external water pressure, particularly at the tunnel 

crown, due to larger compressive axial strains computed at the tunnel crown. 

However, the effect of the change of the coefficient of earth pressure on tunnel 

lining response seems to be relatively small compared to the effect of the 

tunnel lining stiffness reduction.   

 The influence of the properties of the medium weak marl layer on tunnel 

lining response was also investigated by reducing its stiffness and, therefore, 

considering a weak marl layer. Yet, this assumption has not improved the 

magnitudes of the computed total strains, especially at the tunnel axis level.   
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 Simulations with the advanced critical state soil model have predicted more 

realistic changes in the vertical and horizontal tunnel diameter, which are in 

agreement with the observational data.  

 Within the model, the tunnel lining may exhibit further development of 

movements with time under the application of the maximum water pore 

pressure load at the considered tunnel depth (u=387 kPa). The computed FE 

results predict an increase in the horizontal and vertical diameter change for 

the potential future worst scenario. Particularly, the magnitude of vertical 

diameter change reached a value of 0.48 mm, whereas the horizontal 

diameter change increased to approximately -1.3 mm.  
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Chapter 7 
 

7 Effect of formation layering on tunnel lining 
response 

 

7.1  Introduction  

 
As described in Chapter 6, the long-term tunnel lining response in the molasse 

depends on the drainage conditions of the tunnel lining and the ground profile. This 

chapter aims to provide a more detailed picture of the concrete-lined tunnel 

behaviour through further 2D modelling. A parametric study is conducted to 

examine the formation layering effect within the molasse on the tunnel lining 

response, by considering the tunnel located at different depths from the ground 

surface. The computed change in tunnel diameter and the total strains along the 

lining are analysed and compared against field measurement data.  

 

7.2  Finite element modelling  

 

As described in Chapter 3, the divisions within the molasse were identified 

through a detailed geotechnical investigation based on the face-loggings recorded 

during tunnel excavation. Results from the previous Chapter highlighted the 

importance of simulating the range of different layers within the molasse in order to 

examine an appropriate tunnel lining mechanism of deformation that can match well 

to the observational data when the tunnel is subjected to a hydrostatic load. In 

particular, the changes in tunnel drainage conditions proved to greatly influence the 

lining deformation mode. To this end, further FE simulations are conducted in this 

study assuming the tunnel located at: 

 Tunnel depth z1 = 35 m from ground surface; 



212                                              7. Effect of formation layering on tunnel lining response 

 

 Tunnel depth z2 = 25.7 m from ground surface.  

For each simulation, the bending and axial strains are obtained when the change 

of flow regime around the tunnel is made, enforcing a water pressure upon the lining. 

Moreover, the results computed during the ground consolidation stage are also 

analysed.  

  

7.2.1  Case 1: tunnel depth z1 
 

This section describes the results obtained considering the horseshoe-shaped 

tunnel placed at 35 m from ground surface, with the tunnel crown located in the 

medium weak marl layer and the tunnel invert in the swelling-potential weak marl 

layer, as shown in Figure 7.1. The same ground properties adopted for the simulation 

documented in Chapter 6 are used in this study.  

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1. Ground profile at tunnel depth z1 = 35 m from ground surface.  

 

7.2.2  Case 2: tunnel depth z2 
 

 

This section presents the computed results obtained for investigating the tunnel 

lining response with the tunnel entirely located in the medium marl layer, at 25.7 m 

from ground surface (Figure 7.2).  

Lumpy marl 

Medium- weak marl 
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Figure 7.2. Ground profile at tunnel depth z2= 25.7 m from ground surface. 

 

7.2.3  Model assumptions 

 
Based on the study carried out for the representative tunnel depth described in 

Chapter 6, the following assumptions are considered when analysing Case 1 and Case 

2:  

 The tunnel lining is modelled as a linear homogenous material, assuming a 

reduced value for Young’s modulus and a reduced lining thickness (i.e. E = 

5 GPa and d= 0.1 m respectively). Considering no as-built tunnel properties 

are known, the concrete of the SCL lining may change its properties due to 

long-term effects during tunnel construction (BTS, 2004). It is assumed that 

a reduced E value to be suitable.  

 It is assumed that the tunnel drainage system reduced its capacity with 

time, causing a change in the flow regime around the tunnel and, hence, 

enforcing a water pressure to build on the lining. The water table level is 

therefore considered to be placed at the interface between the tunnel and 

the moraine layer (i.e. 19 m from surface). This implies that the hydrostatic 

Medium- weak marl 
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load behind the lining is 160 kPa for Case 1 and 67 kPa for Case 2 during a 

period of four years. 

 The mechanical behaviour of the very weak marl layer is modelled by 

adopting both the advanced critical state soil model (ACSM) and the elasto-

plastic Mohr-Coulomb model (MC), whereas that of the medium weak marl 

layer is modelled assuming the linear elastic behaviour.   

As done in the previous chapter, the computed results for both tunnel depths are 

presented for the following three calculation stages: (a) the tunnel construction and 

initial consolidation stage (40 years), (b) water pressure rising stage and (c) a future 

scenario stage by simulating the worst tunnel drainage condition (i.e. the maximum 

pore pressure load).   

 

7.3  Construction and initial consolidation stage 

 

This section presents the results computed during the ground consolidation stage 

for both tunnel depths z1 and z2. Figure 7.3 indicates the changes in the tunnel 

diameter from the end of construction to the steady-state long-term consolidation 

(tunnel lining fully permeable) for the two cases, as shown in Figure 7.3a and Figure 

7.3b. It can be seen that the steady state condition is reached very soon for both cases 

(Figure 7.3a and Figure 7.3b), as the pore pressures dissipate rapidly due to the very 

stiff soil surrounding the tunnel.  

In Case 1, when the tunnel is located between the very weak and the medium weak 

marl layers (z1) (Figure 7.3a), the change in the horizontal tunnel diameter increases 

of around 0.4 mm and 0.5 mm for the ACSM and MC models, respectively. At the 

tunnel crown the lining is converging inwards, reaching values of -2.9 mm with the 

ACSM and -1.2 mm with the MC model. This behaviour corresponds to a squatting 

deformation of the tunnel lining in the long-term, as shown in Figure 7.3a.  

In Case 2, when the tunnel is located entirely in the medium marl layer (Figure 

7.3b), both the vertical and the horizontal tunnel diameters are decreasing, reaching 

values of -0.2 mm and -0.08 mm respectively. Therefore, the tunnel lining is 

converging inwards in both vertical and horizontal directions, with the former 

showing a larger convergence. Yet, small values of displacements are recorded 

because the tunnel is constructed in a stiff elastic model.  
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(a)  

 

 

(b)  

Figure 7.3. Change in tunnel diameter during the consolidation stage: (a) Tunnel depth z1 =35 m and 
(b) Tunnel depth z2 =25.7 m.  
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The computed results of axial, bending and total strains along the tunnel lining are 

plotted in Figure 7.4 for the two cases. In Case 1, larger total strains are computed at 

the tunnel axis level compared to that at the tunnel crown by adopting the ACSM. 

Positive total strains (i.e. tensile) develop at the tunnel crown, whereas negative 

strains (i.e. compressive) develop at the tunnel axis level (Figure 7.4a). The 

development of strains performed by using the MC constitutive model is shown in 

Figure 7.4b. Smaller magnitudes of total strains are computed at both the tunnel 

crown and the tunnel axis level compared to the ACSM (Figure 7.4b). However, both 

constitutive models show a similar trend of strain development along the lining, with 

tensile strains at the tunnel crown and compressive strains at the tunnel axis level, 

indicating a squatting deformation mode of the tunnel lining during the 

consolidation stage.  

Figure 7.4c shows the computed strains in Case 2. Very small positive bending 

strains develop at the tunnel crown (i.e. around 1.5 µε), whereas negative bending 

strains develop at tunnel sides. Negative axial strains develop along the lining, 

resulting in compressive total strains at both the tunnel axis and at the tunnel crown, 

as shown in Figure 7.4c.   
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(b)  

 

  
(c)  

 
Figure 7.4. Development of strain along the lining during the consolidation stage: (a) Case 1 (ACSM), 
(b) Case 1 (MC), and (c) Case 2 using the linear elastic model.  
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In Case 1, the pattern of pore pressure dissipation in the ground surrounding the 

tunnel during the 40-year consolidation stage is shown in Figure 7.5. After tunnel 

construction, negative excess pore pressure develops around the tunnel. The tunnel 

is fully drained (i.e. pore pressure equals to zero at the tunnel boundary) and the 
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ground consolidates due to pore pressure around the tunnel decreasing by seepage 

into the tunnel, until a new steady-state condition is reached. In particular, Figure 

7.5 shows the dissipation of pore pressure after 1 day of ground consolidation 

(Figure 7.5a), after 10 days (Figure 7.5b), after 100 days (Figure 7.5c) and after 500 

days (Figure 7.5d), when the consolidation stage is finished due to the very stiff rock 

units encountered. In fact, the bulk of tunnel diameter change shown previously in 

Figure 7.3 occurs within 200 days during the consolidation stage, after which the 

tunnel lining does not experience further movements.   

The pattern of pore pressure around the tunnel is influenced by the layering 

formations within the molasse, which are characterized by different permeabilities, 

ranging from more permeable moraine layer going to the more impermeable marls.  

Figure 7.5 (e)-(h) show the pore pressure dissipations for Case 2. Analogously to 

Case 1, the steady-state condition is reached after 500 days of ground consolidation 

(Figure 7.5h). But, due to the homogeneity of the soil surrounding the tunnel of Case 

2, which is located in one layer of medium weak marl of 12 m depth, more uniform 

pore pressure contours are observed compared to the layered formations of Case 1. 

 

 
(a) after 1 day – Case 1 
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(b) after 10 days – Case 1 

 

 
(c) after 100 days – Case 1 

 

 
(d) after around 500 days – Case 1 
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(e) after 1 day – Case 2 

 

 
(f) after 10 days – Case 2 

 

 
(g) after 100 days – Case 2 
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(h) after 500 days – Case 2 
 

Figure 7.5. Dissipation of pore pressure during the consolidation stage for Case 1 and Case 2: (a) after 
1 day – Case 1, (b) after 10 days – Case 1, (c) after 100 days – Case 1, (d) after 500 days – Case 1; (e) 
after 1 day – Case 2, (f) after 10 days- Case 2, (g) after 100 days – Case 2, (h) after 500 days - Case 2. 

 
 

Stress paths of ground elements around tunnel lining  
 

 

The computed stress paths in the  s’ – t space of ground elements located right 

above the tunnel crown and beside the tunnel axis level during tunnel construction 

(unloading phase I and unloading phase II), ground consolidation and during the 

change in tunnel lining drainage condition are shown in Figure 7.6.  Figures 7.6a and 

7.6b refer to Case 1 by using the advanced critical state model (ACSM), whereas 

Figures 7.6c and 7.6d refer to Case 1 by using the Mohr-Coulomb model. The Figure 

7.6e presents the stress paths of Case 2, where the Linear elastic model is adopted 

for modelling the homogeneous medium weak marl unit.  

Figure 7.6b illustrates the stress paths for a very-weak lumpy marl element located 

beside the tunnel axis level by adopting the anisotropic model, whereas in Figure 

7.6d the linear elastic perfectly plastic Mohr-Coulomb model was adopted. It can be 

seen that at tunnel axis the failure envelope is reached during the unloading phase II 

(Figure 7.6d). During ground consolidation (stage III), the mean effective stress s’ 

increases as the excess pore pressures dissipate with time. When the lining 

undergoes a pore pressure increase on the tunnel lining (stage IV), the mean effective 

stress s’ decreases as the pore pressure increases. Both constitutive models show 

that significant shearing does occur during tunnel excavation (stage I). However, 
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while the stresses do not reach the failure envelope at tunnel axis when using the 

ACSM (Figure 7.6b), the soil behaviour simulated with the MC model shows that 

during the stage II (unloading phase II with the installation of the tunnel lining) the 

soil reaches the maximum shearing stress condition (Figure 7.6d).  

The stress paths of the ground located in the medium weak marl right above the 

tunnel crown of Case 1 are plotted in Figure 7.6a and 7.6c. Since the medium-weak 

marl rock unit was simulated with the linear elastic model, the failure condition is 

not reached for the mentioned ground elements.  

The stress paths experienced by the ground at the crown and axis levels, located in 

the homogenous layer of medium weak marl of Case 2, are plotted in Figure 7.6e. The 

ground above the tunnel crown and adjacent the tunnel axis experiences similar 

shearing stresses during tunnel excavation.   
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(e)  

where the mean effective stress s’ and the deviatoric stress t are evaluated from the effective vertical 

and horizontal stresses (σ'
v
 and σ'

h
 respectively): 

 
 
 
 

Figure 7.6. Stress paths for Case 1 and Case 2: (a) Tunnel crown with ACSM (Case 1), (b) Tunnel axis 
with the ACSM (Case 1), (c) Tunnel crown with MC model (Case 1), (d) Tunnel axis with the MC model 
(Case 1), (e) Tunnel crown and tunnel axis for Case 2.  
 
 

Figure 7.7 shows the locations of plastic strains developed in the ground 

surrounding the tunnel in Case 1, by using the Mohr-Coulomb model (Figure 7.7a) 

and by using the advanced critical state model (Figure 7.7b).  In Case 1, some plastic 

strains develop at the boundary between the medium weak marl layer (at the top) 

and the very weak marl unit (at tunnel bottom), for both the MC model and the ACSM 

model at the end of the consolidation stage. The pattern of shearing observed when 

adopting the MC model develops at both the tunnel invert corners, moving diagonally 

towards the lower interface with the medium weak marl layer, as shown in Figure 

7.7a.    

The ground around the tunnel crown does not exhibit any plastic strains, as it was 

modelled with the linear elastic model, while at the tunnel floor the ground 

experiences larger plastic strains compared to those around the tunnel axis when 

assuming the ACSM (Figure 7.7a). In fact, the vertical diameter change computed 

during the consolidation stage is more significant than the horizontal diameter 

change when using the ACSM, as shown previously in Figure 7.3a for Case 1.  

Case 2 was modelled using the linear elastic model and, hence, there are no plastic 

strains. 
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However, the input parameters describing the soil behaviour for the ACSM, in 

particular the coefficients used to control the amount of plastic strains within the 

yield surface (u and m defined in Table 5.4 of Chapter 5), were assumed from 

Wongsaroj (2005) and defined for London Clay. Therefore, further investigations 

should be carried out on the molasse rock in order to calibrate more accurately the 

model.  

 

(a) MC model 

 

(b) ACSM model 

Figure 7.7. Development of plastic strains around the tunnel lining at the end of the consolidation 
stage in Case 1 by using: (a) the Mohr-Coulomb model and (b) the advanced critical state model.  
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7.4  Water pressure rising stage  

 
The changes in the tunnel drainage condition due to the clogging of the drainage 

system are simulated by applying a water pressure load on the tunnel lining. 

According to the results computed for the tunnel cross-section located at 38.7 m 

presented in Chapter 6, the hydrostatic load acting on the lining was evaluated by 

considering the water table at the interface with the moraine layer (19 m from 

ground surface). This condition was applied in both Case 1 and Case 2. 

Figure 7.8 shows a comparison between the computed change in tunnel diameter 

and the conventional field measurements for Case 1 when the lining is subjected to 

an external water pressure of 160 kPa during the monitoring period (2013-2017). 

The tunnel lining experiences a gradual decrease in the horizontal tunnel diameter 

at both the tunnel axis level and shoulder and an increase in the vertical tunnel 

diameter. The FE model gives smaller magnitudes of the change in the horizontal 

diameter at the tunnel shoulder throughout the monitoring period when the ACSM 

model is assumed, compared to those observed in the field, as shown in Figure 7.8b.  

Similar behaviour is computed by the Mohr-Coulomb model, as shown in Figure 7.8. 

The vertical change in tunnel distances also shows slightly smaller values when 

assuming the ACSM compared to the field data, whereas the MC model provides 

slightly larger values, as shown in Figure 7.8c. The change in the horizontal tunnel 

diameter at the tunnel axis level shows a slow development of displacements with 

time, reaching approximately -1 mm against -0.81 mm observed on site when 

assuming the ACSM, as shown in Figure 7.8a. The horizontal distances computed 

with the MC model, instead, match well the field data during the first year (2013-

2014), reaching a smaller magnitude at the end of the monitoring period (Figure 

7.8a).  

Overall, the computed FE results seem to underpredict the horizontal tunnel 

distances (at the tunnel shoulder level) and the vertical tunnel distances, compared 

to the slightly larger value computed at the tunnel axis level with the ACSM model. 

This discrepancy may be related to the assumption of considering the water table at 

19 m from the ground surface, which was made for the representative cross-section 

of Chapter 6, as it produced a good fit with field data. This implies the generation of 

a uniform external pore pressure of 160 kPa on the lining for Case 1, which may not 

represent the reality due to the seasonal variability in the water table depth 
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following extreme rainfall events. However, the difference between the computed 

change in tunnel distances and the observational data is relatively small considering 

the uncertainty in the model parameters adopted in this study.  

Additionally, the change in tunnel diameter indicates that the tunnel lining is 

experiencing a decrease in the horizontal tunnel distance (at both the tunnel 

shoulder and the tunnel axis level) and an increase in the vertical tunnel distance. 

This behaviour suggests a vertical tunnel elongation as a mechanism of deformation 

when the tunnel lining is subjected to a water pressure rise due to the drainage 

blockage.  
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(c) 

Figure 7.8. Computed change in tunnel distances and field data measurements for tunnel depth z1: 
(a) horizontal distance at tunnel axis level, (b) horizontal distance at tunnel shoulder and (c) vertical 
distance.  

 

As shown in Figure 7.9a for Case 1, a linear increase in vertical diameter is 

observed with time, whereas the horizontal diameter is decreasing. The magnitudes 

of the change in the vertical and horizontal tunnel diameter computed by ACSM are 

0.83 mm and -0.95 mm respectively. When the Mohr-Coulomb model is used, the 

changes in diameter are around 0.24 mm and -0.46 mm. The observed behaviour for 

the layered model of Case 1 suggests that, when the lining is subjected to an external 

pore pressure of 160 kPa, the horizontal tunnel diameter decreases while the vertical 

one increases. This behaviour indicates a vertical tunnel lining elongation as a 

mechanism of deformation. The ACSM provides larger values of change in tunnel 

diameter compared to the MC model when simulating the tunnel drainage blockage. 

Also, the comparison with the field data has shown that the ACSM slightly 

underestimated the change in tunnel distances compared to the MC model but gives 

values closer to the observational data. The reasons may be related to the fact that 

compared to the MC model, the advanced critical state model takes into account the 

elastic anisotropic stiffness (i.e. the ratio Ghh/Gvh = 1.5 was used in this study and it is 

adopted from Wongsaroj, 2005), the plastic deformation within the yield surface and 

small strain stiffness and its non-linearity with strain response. Wongsaroj (2005) 

stated that for accurate prediction of pore pressure response and ground 

settlements, stiffness anisotropy must be incorporated in the elasto-plastic soil 
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model.  Also, Wongsaroj (2005) noted that the Mohr-Coulomb failure criterion does 

not achieve a good agreement with the observed failure conditions for London Clay, 

compared to the Matsuoka and Nakai’s failure criterion, which is considered in the 

ACSM.  However, due to the lack of in situ and laboratory measurements, the model 

comprises some soil parameters evaluated for London Clay. Therefore, further 

investigations should be carried out in order to adopt more realistic ground 

parameters (i.e. stiffness values), which could reproduce the behaviour of the 

molasse region.  

In Case 2, an external water pressure of 67 kPa (i.e. u= (25.7-19) *10= 67 kPa) is 

applied on the lining. Figure 7.9b shows the change in tunnel diameter computed for 

the homogeneous elastic model of Case 2. Both horizontal and vertical tunnel 

diameters increase with time, and very small values are computed due to the high 

stiffness modulus of the marl unit surrounding the tunnel (i.e. 0.018 mm and 0.04 

mm respectively). The observed behaviour indicates that when the tunnel is located 

in a homogenous competent formation (medium weak marl) and the water pressure 

increases on the tunnel boundary, the tunnel diameter increases in both directions, 

with the vertical tunnel diameter exhibiting a slightly larger value than the 

horizontal one.  

The behaviour in such mode results in a different tunnel lining mechanism of 

deformation compared to the layered model of Case 1 (i.e. vertical elongation). 

Similar behaviour was observed when analysing the layering effect on the tunnel 

lining response in Chapter 6, with the tunnel entirely located in the very weak lumpy 

marl (Section 6.5.4.1). However, in the latter case, the tunnel exhibited a decrease in 

both horizontal and vertical diameter when subjected to the external pore pressure, 

resulting in a tunnel convergence. Conversely, the results for Case 1 (tunnel entirely 

in the medium-weak marl) show a very small increase of tunnel diameter, suggesting 

that the lining is deforming outwards (i.e. expansion) when the water pressure 

builds up behind the lining. 

Overall, the tunnel lining mechanism of deformation as a vertical tunnel elongation 

is computed only when the external pore pressure is applied on the lining, with the 

tunnel located in a layered formation (tunnel depth 38.7m and tunnel depth 35m). 

Conversely, when the tunnel is surrounded by a homogeneous layer (either very-

weak or medium-weak marl) and the pore pressure increases along the lining, the 

lining converges inwards (for the soft marl layer) or deforms outwards (tunnel in 
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the stiff marl layer). This suggests that not only the tunnel lining drainage condition 

matters on the evaluation of tunnel lining response but also the layering formation 

surrounding the tunnel and the lining stiffness relative to the surrounding soil 

influence the lining mechanism of deformation. The different tunnel lining 

mechanisms of deformation will be compared and discussed in more detail in Section 

7.6.  

 

(a) 

 

(b) 

Figure 7.9. Change in tunnel diameter during the water pressure rise stage: (a) Case 1 and (b) Case 
2.  
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In Case 1, as the tunnel drainage system deteriorates with time causing the 

accumulation of the water pressure behind the lining, positive bending strains 

develop at the tunnel axis level, whereas negative bending strains were performed 

at the tunnel crown, as shown in Figure 7.10a. Peak total strains values of around -

55 με and 80 με are computed at the tunnel crown and the tunnel axis, respectively, 

when ACSM is used. When the Mohr-Coulomb model is used, peak total strains of 

around +12 με and 37 με are computed, which are smaller than those for the ACSM 

case.  

Although the FE results suggest a tunnel lining mechanism of deformation in 

agreement with the one observed on the field from the DFOS, smaller values of total 

strains are computed when they are compared to the FO strain data obtained from 

the circumferential loop 2-4 of CERN 2 installation (peak strain values of 150 με at 

the tunnel axis and 120 με and the tunnel crown, See Figure 4.16d in Chapter 4). As 

discussed in the previous chapter, the discrepancy between the FE results and the 

observational data may be due to the assumptions in estimating strains detected by 

the optical fibre and the strains computed through the FEA. In particular, the total 

strains developed at tunnel lining are considered as a sum of axial and bending 

strains, with the latter being computed by calculating the beam element’s curvature 

along the lining from the FE result. Conversely, the strain profile obtained from the 

FO data refers to the strain developed along the optical fibre that is attached to the 

tunnel lining intrados through discrete hooks, and not uniformly. Therefore, the 

attempt of comparing the strains obtained from the FEA and the FO circumferential 

loops may not be realistic. Future investigations should consider different 

approaches when comparing the FE results with the FO strain data.  

Figure 7.10c shows the axial, bending and total strains developed at tunnel lining 

in Case 2, as the tunnel drainage condition changes (i.e. pore pressure of 67 kPa 

applied on the lining). Small negative bending strains are observed at the tunnel 

crown (approximately -1.2 με), whereas small positive bending strains develop at 

the tunnel axis level (around 9 με). However, the changes in axial strains in tension 

are computed along the lining due to the swelling of the surrounding soil. The 

computed strains refer to the accumulated strain response evaluated during the 

water pressure rise stage.   

The strains computed from the FE model underestimate the results from field 

measurements. In particular, the FO axial strains of the loop 1-7 are around 150 με 
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at both the tunnel axis and the tunnel crown. However, due to the more competent 

rock unit surrounding the tunnel, the magnitudes of strain in Case 1 are smaller than 

Case 2. 

The layered formation around the tunnel boundary seems to have a great influence 

on the tunnel lining response. In fact, the mechanism of tunnel lining deformation 

observed for both layered models of tunnel depth 38.7 m (from the previous chapter) 

and tunnel depth of 35 m (Case 1) indicates the development of tensile and 

compressive strains at the tunnel axis and the tunnel crown respectively, resulting 

in tunnel lining elongation as a deformation mode. This was not observed for the 

homogenous soil model of Case 2. Figure 7.10c illustrates the development of axial 

and bending strains for Case 2, where the tunnel is entirely located in the 

homogeneous medium-weak marl layer and it’s subjected to the external pore 

pressure of 67 kPa. Small compressive bending strains are computed at the tunnel 

crown (i.e. around -1 µε), while positive tensile strains are observed at the tunnel 

axis level (i.e. around 10 µε). However, positive axial strains develop along the lining 

at both the tunnel crown and the tunnel axis of magnitudes of around 3 µε and 15 µε 

respectively. This resulted in the development of tensile total strains along the 

tunnel lining, albeit the small magnitudes computed. The observed behaviour 

indicates that the tunnel seems to experience relatively small tensile strains at both 

the tunnel crown and the tunnel axis when surrounded by a homogeneous medium 

weak marl layer and subjected to the external water pressure accumulated due to 

drainage blockage (Figure 7.10c).  

Also, the change in the position of the marl and very weak marl layers around the 

tunnel led to different distributions of total strains along the lining. Larger strains 

(bending and axial) are computed at the tunnel crown compared to the tunnel axis 

level when the very weak marl layer is located in the top ground layer (i.e. tunnel 

depth 38.7 m of Chapter 6), whereas more significant strains are observed at the 

tunnel axis level when the very weak marl unit is placed at tunnel invert (Case 1 with 

the tunnel crown in the medium weak marl and the tunnel axis and invert in the very 

weak marl), as shown in Figure 7.10a. Therefore, the distribution of the strains along 

the tunnel lining seems to be influenced by the position of the very weak marl unit 

in the layered formation surrounding the tunnel. The mechanism of deformation of 

the layered formation will be discussed in more detail in Section 7.6.  
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(c) 

 Figure 7.10. Development of strain along the lining during the application of the external pore 
pressure on the lining: (a) Case 1 (ACSM), (b) Case 1 (MC) and (c) Case 2 (Linear elastic model).  

 
Figure 7.11 shows the pore pressure distribution during the application of the 

water pressure on the tunnel lining for Case 1 and Case 2 at the end of the 4-year 

stage. The change in pore pressure around the tunnel gave contours that seem to 

spread vertically in Case 1, whereas those computed in Case 2 spread more 

uniformly in the horizontal direction, as shown in Figure 7.11a and 7.11b 

respectively.  
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(b) Case 2– end of pore pressure rise stage 

 
Figure 7.11. Pore pressure distribution during the water pressure rise on tunnel lining at the end of 
the stage (4 years): (a) Case 1 and (b) Case 2. 

 
 

The development of the plastic strains in the ground surrounding the tunnel is 

shown in Figure 7.12 for Case 1, by using the Mohr-Coulomb model (7.12a) and the 

advanced critical state model (7.12b). During the water pressure rising stage, plastic 

strains develop not only at the interface between the two different marl layers (i.e. 

tunnel shoulder level) but also at the tunnel axis level, extending towards the tunnel 

invert and propagating diagonally to the lower boundary ground interface, by adopt-

ing the MC model (Figure 7.12a). Similar behaviour is computed around the tunnel 

perimeter when using the advanced critical state model, but slightly smaller magni-

tudes of plastic strains are computed. This indicates that the change in the tunnel 

lining drainage condition with the application of the external water pressure would 

cause further tunnel deformation around the tunnel boundary, developing plastic 

strains when the very weak marl layers are encountered.  
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(a) MC model 

 

 

(b) ACSM model 

 
Figure 7.12. Development of plastic strains around the tunnel lining at the end of the application of 
water pressure rising stage at tunnel lining for tunnel depth z1 by using: (a) the Mohr-Coulomb model 
and (b) the advanced critical state model. 

 

7.5  Future scenario stage 

 

This section presents the computed results for the worst scenario case when the 

tunnel lining experiences the maximum hydrostatic water pressure (i.e. the water 

table reaches the ground surface). The tunnel lining response in terms of change in 

tunnel diameter was investigated for both Case 1 and Case 2.  
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The maximum water pressure load applied on the tunnel boundary is 350 kPa in 

Case 1 and 257 kPa in Case 2.  

Figure 7.13 shows the computed change in tunnel diameter when the maximum 

hydrostatic load occurs at tunnel depth 35 m (i.e. u= 350 kPa) and by assuming a 

linear interpolation of the performed data, as discussed in Chapter 6. Therefore, if 

the tunnel lining is subjected to a water pressure of 160 kPa within a period of four 

years (2013-2017), the maximum load of 350 kPa would be reached within further 

5 years (i.e. 2022).  

For Case 1, Figure 7.13a shows the changes in tunnel distance at the tunnel axis 

level when the ACSM model is adopted, reaching a value of -2.28 mm under the 

maximum load of 350 kPa, whereas the MC model predicts a value of around -1.2 

mm. A magnitude of –0.52 mm is computed at the tunnel shoulder level with the 

ACSM, against a value of -0.28 mm predicted by the MC model, as shown in Figure 

7.13b. Also, Figure 7.13c shows that the tunnel lining experiences an increase in the 

vertical tunnel distances (distance between the tunnel crown and the tunnel invert 

side) of 0.52 mm when subjected to the maximum water pressure load by using the 

ACSM, whereas a final value of 0.44 mm is computed by the MC model. Overall, the 

tunnel lining exhibits an increase in the vertical distances and a decrease in the 

horizontal distances when the maximum water pressure is applied on the outer edge 

of tunnel lining, implying that the tunnel lining deformation pattern can be 

associated with a vertical elongation, as observed for the previous stage (i.e. water 

pressure rise).  
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(c) 

Figure 7.13. Prediction of change in tunnel distances under the maximum hydrostatic pressure load: 
(a) horizontal distance at tunnel axis level, (b) horizontal distance at tunnel shoulder and (c) vertical 
tunnel distance.  

 

Figure 7.14 (a) and (b) show the performed changes in tunnel diameter when the 

maximum hydrostatic load is applied behind the tunnel lining in Case 1 and Case 2, 

respectively. In Case 1, the change of horizontal tunnel diameter (at the tunnel axis 

level) decreases to 1.3 mm, whereas the vertical tunnel diameter (tunnel crown – 

tunnel floor) increases of around -1.2 mm, by using the advanced critical state model. 

Slightly smaller magnitudes are computed with the MC model, recording a vertical 

diameter change of 1.18 mm and a horizontal diameter change of -0.87 mm. The 

observed behaviour suggests that the tunnel lining, when subjected to the maximum 

pressure load, exhibits an increase of the vertical diameter and a decrease in the 

horizontal, resulting in a vertical elongation as a deformation mode.  

Figure 7.14b shows the change in tunnel diameter in Case 2 when the lining is 

subjected to the maximum hydrostatic load of 257 kPa. The tunnel lining experiences 

slightly larger vertical diameter change compared to the horizontal tunnel change, 

reaching approximately 0.1 mm and 0.07 mm within 10 years, respectively. This 

implies that the tunnel lining deforms with an increase of both tunnel diameter 

(vertical and horizontal) when the tunnel is subjected to a maximum water pressure 

load and is surrounded by a homogeneous formation. This deformation pattern 

suggests that the layering formation surrounding the tunnel in Case 1 allows the 
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tunnel lining to experience bending moments (i.e. tunnel lining distortions), whereas 

the tunnel lining placed in the homogeneous formation encountered in Case 2 is 

uniformly deforming by increasing the tunnel diameter at both the tunnel crown and 

the tunnel axis level (i.e. tunnel lining moving outwards).   

 
(a) 

 

 
 

(b)  

Figure 7.14. Change in tunnel diameter during the application of the maximum hydrostatic load on 
tunnel lining: (a) Case 1 and (b) Case 2.   
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Figure 7.15 shows the strain profile along the tunnel boundary in the future 

scenario case. Larger total strains develop when the lining is subjected to the 

maximum water pressure load compared to the previous water pressure rise stage 

for both tunnel depths. In Case 1, peak tensile strains of 117 με and compressive 

strains of -66 με are computed at the tunnel axis and the tunnel crown, respectively 

(Figure 7.15a). Positive total strains are computed at both the tunnel crown and the 

tunnel axis in Case 2 when the tunnel is surrounded by a homogeneous formation.  

The FE results suggest that the structural behaviour of the tunnel lining is 

influenced by the patterns of layering formation surrounding the tunnel. 

Particularly, the tunnel lining deforms with a vertical tunnel elongation when the 

tunnel cross-section is placed in a layered formation (i.e. two layers). The tunnel 

lining behaviour is sensitive to the variation of soil properties (i.e. stiffness), as the 

medium weak marl unit exhibits a stiffer behaviour compared to the very weak marl. 

Further research should be carried out in order to gain a better understanding of 

layering formations on tunnel lining response.  
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(b) 

 
Figure 7.15. Development of strain along the tunnel lining when the maximum water pressure load 
is applied: (a) Tunnel depth z1 and (b) Tunnel depth z2.  

 

7.6  Summary  

 
The influence of the layering divisions on the TT10 tunnel lining response has been 

investigated through a series of FE analyses. Two different tunnel depths were 

analysed: tunnel depth z1 and z2 located at 35 m and 25.7 m from ground surface 

respectively. The tunnel lining performance of both tunnel depths was investigated 

during three different stages: (a) ground consolidation, (b) water pressure rise on 

the tunnel lining for simulating the tunnel drainage blockage and (c) a future 

scenario stage, which predicts the lining response under the worst water pressure 

load that might occur if the water table reaches ground surface.  

As observed in the previous chapter, the progress of the deterioration of the tunnel 

drainage system and, hence, the application of the external pore pressure behind the 

lining resulted in a vertical tunnel elongation as a mechanism of deformation when 

the tunnel is placed in the layered formation, highlighting the importance of 

groundwater surrounding the tunnel on its long-term response. Also, for the layered 

soil configuration, it was found that the change in tunnel diameter and the 

distribution of the total strains are affected by the presence of the soil layering 

conditions, which led to the development of a different structural behaviour at the 
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tunnel axis and the tunnel crown, as shown in Figure 7.16a and Figure 7.16b for the 

layered formation.  

Figure 7.16a shows that the tunnel is located between a very stiff marl layer 

around tunnel invert and a very weak marl unit around the tunnel crown (i.e. tunnel 

depth 38.7 m, examined in Chapter 6). This soil configuration suggests that the lining 

at tunnel axis level is influenced by the presence of the lower stiff layer, when 

subjected to the external water pressure, implying that the tunnel lining response at 

the tunnel axis is sensitive to the different behaviour of the two layers encountered. 

The lining surrounded by the very weak marl unit is prevented from deforming 

inwards (i.e. decrease in the horizontal diameter) and from developing large strains 

when subjected to the water pressure rise, due to the stiff response of the medium 

weak marl layer at the interface (Figure 7.16a). Such influence is not seen at the 

tunnel crown, where the lining is surrounded by a very weak homogeneous marl 

unit. The lining at the crown exhibits larger vertical movements than the tunnel floor 

and larger strains compared to those at the tunnel axis level, resulting in a vertical 

ovalisation.  

Analogous lining behaviour is observed for the layered formation of tunnel depth 

35 m of Case 1 shown in Figure 7.16b, which presents the opposite layering pattern, 

as the very weak marl layer is placed at the tunnel invert and the stiff marl layer 

around the tunnel crown. In this soil configuration, the lining at the tunnel crown 

does not experience large movements because of the competent rock unit 

encountered, while the tunnel at both axis level and invert is placed in the weaker 

swelling marl and experiences larger strains, resulting in a tunnel vertical elongation 

when subjected to the water pressure rise (increase in vertical tunnel diameter and 

a decrease in the horizontal diameter).  

The tunnel lining deformation modes shown in Figure 7.16a and 7.16b become 

very critical for the tunnel lining performance due to the development of lining 

distortions, which can lead to damage of the tunnel lining such as cracking. This 

implies that the change in the groundwater condition around the tunnel many years 

after the tunnel construction as well as the layering formation surrounding the 

tunnel boundary play a crucial role in the tunnel lining response.   

A different tunnel lining mechanism of deformation is observed for the 

homogeneous ground models shown in Figure 7.16c and Figure 7.16d. Figure 7.16c 

illustrates the FE model with the tunnel entirely located in the very weak marl layer, 
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examined in Section 6.5.4.1 of Chapter 6. This rock unit was modelled by assuming 

the advanced critical state model (Wongsaroj, 2005). When the tunnel is subjected 

to an increase of water pressure around the lining due to the tunnel drainage 

blockage, the ground surrounding the tunnel experiences a decrease in the effective 

stresses, becoming then a softer ground due to pressure dependent elastic model. 

Due to a reduction in soil stiffness around the tunnel, the lining converges inwards 

at both the tunnel crown and tunnel axis level as a mechanism of deformation (i.e. 

both horizontal and vertical tunnel diameter decrease), as shown in Figure 7.16c. 

Conversely, when the tunnel is located in the homogeneous stiff marl layer (Case 2), 

the application of water pressure on the outer edge of the lining led to the tunnel 

lining expansion, as shown in Figure 7.16d.  

The reason behind the different tunnel lining mechanism of deformation for the two 

homogeneous models may depend on the different response of the ground 

surrounding the tunnel. The very weak marl unit is modelled by using the ACSM, 

whose non-linear elastic components (i.e. bulk modulus K’ and the shear stiffness G) 

are related to the mean effective pressure p’ (pressure dependent). Therefore, when 

the pore pressure behind the lining rises, the homogenous weak marl around the 

lining becomes softer and the arching around the tunnel reduces. This, in turn, 

results in a uniform tunnel lining convergence (Figure 7.16c). The stiffer marl unit is 

modelled using the linear elastic model, defined by the two parameters E’ and ν’, 

which do not depend on the mean effective pressure p’, leading the tunnel lining to 

expand outwards when the external water pressure is applied behind the lining 

(Figure 7.16d).  
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(a) Layering model- Tunnel depth 38.7m (Chapter 6)                   (b) Layering model-Tunnel depth 35m (Case 1) 

 

 
 
 
 
 
 

 

         (c) Homogeneous – very weak marl (Chapter 6)               (d) Homogeneous – Medium weak marl (Case 2) 

Figure 7.16. Mechanism of deformation of tunnel lining for different layering scenarios during the 
pore pressure rise stage: (a) Layering model for tunnel depth 38.7 m,  (b) Layering model for tunnel 
depth 35 m (Case 1), (c) Homogeneous model – very weak marl layer, (d) Homogeneous model – 
medium weak marl layer (Case 2).  
 

Furthermore, due to the flat geometry of the tunnel invert, the vertical tunnel 

displacement at the centre of tunnel floor increases more when the tunnel invert is 

located in the very weak marl layer (Case 1) compared to the stiff marl unit 

surrounding the tunnel invert of tunnel depth 38.7 m, when the tunnel is subjected 

to an external water pressure, as shown in Figure 7.17 

 

Figure 7.17. Vertical movement at tunnel floor (middle point) when the tunnel lining is subjected to 
the external water pressure invert is located in the very weak and stiff marl.  
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Overall, the computed results have shown that the presence of very weak marl 

layers surrounding the tunnel axis and the tunnel invert (i.e. for tunnel depth z1) gave 

greater magnitudes of total strains at tunnel lining. Conversely, when the tunnel is 

surrounded by more competent rock layers, such as medium weak marl, less 

important tunnel lining displacements were computed.  

For both cases, the discrepancy between the field measurement data and the 

results computed with the FEA suggests that more research is required to gain a 

better understanding of tunnel lining response. In particular, the attempt of 

comparing the computed strains from the FE modelling with the FO strain data may 

not provide accurate values. Therefore, different approaches may be assumed in the 

future for a more realistic evaluation of the strain distribution along the lining. 



 

 

 



 

 

 
Chapter 8 

 

8 Conclusions and recommendations for future 
research  

 
This research thesis was conducted to improve the understanding of the long-term 

performance of an existing horseshoe-shaped concrete-lined tunnel, housed within 

the underground facilities at CERN, the European Centre of Nuclear Research, based 

in Geneva.   

Due to ageing of the tunnel, tunnel lining structural damage has appeared, 

enhancing groundwater infiltration, leakage and further development of tunnel 

lining deterioration with time. Previous research highlighted the importance of 

tunnel lining permeability relative to the surrounding soil on the long-term ground 

response due to tunnelling in London Clay (Wongsaroj 2005; Laver 2010). In fully 

drained conditions, no pore water pressure develops behind the tunnel lining. The 

long-term operation of a tunnel may cause the deterioration of the tunnel drainage 

system, such as the clogging of the drain pipes, resulting in the generation of an 

external water pressure on the lining. This effect may occur over a long period, and 

thus may be difficult to measure on site.  

In this study, the effect of a change in tunnel lining drainage condition on the lining 

response was investigated for a site at CERN in which the long-term performance 

was expected to be critical. To address the mentioned effect, a monitoring scheme 

was implemented for the TT10 tunnel in the red molasse region, where evidence of 

ongoing movement has triggered the need for an accurate study. The 

instrumentation comprised distributed fibre optic strain sensors (DFOS) and total 

station surveys to evaluate the tunnel lining mechanism of deformation and to 

measure tunnel lining convergence. The data were presented in Chapter 3 and 

Chapter 4.  

A series of finite element analyses was performed to study the long-term tunnel 

lining response into the finite element software ABAQUS 6.14-1. The results were 
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compared against the field data. Further numerical modelling was conducted into 

the effect of layering divisions within the rock mass on the tunnel lining response. 

The main conclusions are detailed in the following sections.   

 

8.1  Main findings  

 

8.1.1  Field investigation and monitoring 
 

An extensive suite of site investigations and monitoring instrumentation 

undertaken in this research has contributed to the identification of tunnel lining 

deformation modes and, therefore, have improved the understanding of lining 

response under certain circumstances. Particularly, the deterioration of the tunnel 

drainage system may have caused the clogging of drain pipes, leading to the build-

up of water pressure on the outer edge of the lining with time. Additionally, the 

analysis of the geological face-logs and geotechnical boreholes surrounding the 

tunnel highlighted the presence of very weak marl units, which have influenced the 

tunnel lining behaviour many years after construction. Some tunnel cross-sections 

were found to be more damaged than others due to the geology encountered. 

Further, the horseshoe tunnel geometry in addition to a flat unreinforced slab seem 

not to provide appropriate resistance to the potential swelling pressure of the very 

weak marl, resulting in tunnel invert heave.   

 

Long-term deformation mechanisms 

This study has enabled the identification of two main tunnel lining deformation 

mechanisms, implying that the tunnel lining undergoes compressive failure at the 

tunnel crown and tension cracks at the tunnel shoulder, whereas the tunnel floor 

exhibits heaving. 

The observational monitoring data presented in this thesis provide evidence that 

the tunnel lining deforms through a vertical elongation. Conventional geodetic 

measurements show that the change in tunnel diameter exhibits a slow decrease 

horizontally, accompanied by an increase in the vertical direction throughout the 

monitoring period. 
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This research has implemented a novel monitoring technique to observe the 

tunnel lining performance under certain circumstances. Distributed fibre optic 

sensors have successfully measured the circumferential strain profile of several 

sections, providing remote and continuous strain data over a monitoring period of 

three years (2014 – 2017). The monitoring instruments have proved to be suitable 

in the CERN radioactive tunnel environment for future installations during 

operational experiments, providing reliable supplementary data for assessing the 

performance of CERN infrastructure. Also, this would allow to overcome the 

limitations of electronic devices, which would provide limited monitoring data also 

for a much shorter lifetime.    

The fibre optic strain data has given key insights into the behaviour of the concrete 

tunnel lining and has suggested the development of compressive and tensile strains 

at the tunnel crown and the tunnel axis level respectively, implying a tunnel lining 

vertical elongation as a mechanism of deformation.  

 

Effect of Weak Marl 

More severe strain values were recorded for certain tunnel cross-sections where 

the very weak and swelling-potential marl unit is encountered. The very weak rock 

units in addition to the change in the groundwater condition around the tunnel may 

have worsened tunnel lining stability, with the development of further cracks and, 

therefore, caused the development of strains with time. Distinct peaks and troughs 

strain values were noticed in the tension and compression development for certain 

months of the year, indicating that there might be a seasonal effect on the FO data.  

The study conducted on the laboratory data results and field tests collected in the 

past years at CERN has shown that the weak sedimentary rock comprises a sequence 

of marls and sandstones, forming 6 rock sub-units with different mechanical 

properties. Due to the complexity associated with the rapid transition between the 

horizontally bedded rock units, a clear distinction of different layers can be often 

difficult from a single borehole. From the strength-stiffness relationship of the 

molasse, the marls have shown to be significantly more ductile than the sandstones. 

One particular marl layer identified as very weak marl was found to have soil-like 

properties, with high plasticity clay minerals and swelling potential when in contact 

with water.  
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8.1.2  Tunnel lining response: numerical modelling  
 

To improve the understanding of an existing concrete tunnel lining behaviour 

when subjected to change in the drainage condition, a series of FE analyses has been 

implemented in this research, for one representative tunnel cross-section, whose the 

tunnel crown is located in the very weak lumpy marl whereas the tunnel invert is 

located in the more competent medium marl. The computed data was validated 

against field measurements. 

The data collected from the total station system was used to derive the hydrostatic 

pore pressure load to be applied upon the tunnel lining. The assumption of 

considering the phreatic water table placed at the interface between the more 

permeable moraine deposits and the molasse region (i.e. 19 m from ground surface) 

seems to perform a pore pressure magnitude that provides a good match between 

computed and field results in terms of tunnel diameter change.   

 

Effect of drainage conditions and water pressure around the tunnel 

The numerical simulations undertaken show the importance of groundwater 

condition around the tunnel on the long-term lining response. The model has shown 

some noteworthy observations. A change in tunnel lining permeability due to a 

reduced capacity of the drainage system several years after construction simulated 

by the imposition of a pore pressure behind the lining has provided a distinct tunnel 

lining mechanism of deformation, which involves compressive (i.e. negative) and 

tensile (positive) strains at the tunnel crown and the tunnel axis respectively. This 

behaviour would suggest a vertical elongation of the tunnel as a deformation mode, 

which is critical for tunnel stability as it results in tunnel lining distortions and, 

therefore, the development of cracks.  

Furthermore, tunnel lining thickness and stiffness have shown to have an impact on 

the computation of displacements and strains magnitudes along the lining.  

However, while the computed change in tunnel diameter result seems to match quite 

well with field data measurements, the magnitude of total strains performed for the 

beam elements at the tunnel lining has been consistently underestimated.  

A likely explanation behind the discrepancy between predicted and observed strains 

along the lining may be associated with the adopted approach for evaluating the 

bending strains from the beam elements curvature. Particularly, the strains obtained 
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from the FO measurements referred to the strain experienced by the optical fibre 

attached to the tunnel lining only at discrete locations, whereas the evaluation of the 

strains performed in the FE environment comprises the calculation of the curvature 

of the beam elements adopted to model the tunnel lining and, consequently, the 

bending strains developed along the lining. When comparing against observational 

FO profiles, the results have suggested that the implemented assessment procedure 

may not be appropriate for predicting the magnitudes of bending strains 

experienced by the tunnel lining. This indicates that more research is required to 

compute more accurately the strains along the tunnel lining.  

 

Effect of soil layering  

Further modelling into the influence of layering divisions within the red molasse 

region on the tunnel lining response have been also carried out. The results have 

shown that the sequence of various marl units with different mechanical properties 

has the potential to influence the tunnel lining mechanism of deformation. The 

numerical results of the layered ground conditions have indicated that the structural 

behaviour of the tunnel lining is affected by the layering formations surrounding the 

tunnel. The change in tunnel diameter and the distribution of the compressive and 

tensile strains along the lining boundary seem to depend on the presence of layered 

soil conditions (i.e. medium weak marl and very weak marl unit). In fact, the tunnel 

lining visibly deforms with a vertical tunnel elongation when the tunnel cross-

section is placed in a layered formation, indicating that the tunnel lining behaviour 

appears to be sensitive to the variation of soil properties (i.e. stiffness). Moreover, 

the change of the position of the marl layers around the tunnel has led to the 

development of different magnitudes of strains along the lining. Larger strain values 

were observed at the tunnel crown when the very weak ground unit was located in 

the top ground layer (i.e. around the tunnel crown), whilst more important strains 

were computed at the tunnel axis level when the very weak marl layer is placed at 

the tunnel invert level. A different tunnel lining behaviour was observed when the 

tunnel is entirely located in a homogenous soil model (i.e. tunnel in the very weak 

marl layer or in medium weak marl layer). This behaviour suggests that the change 

in the groundwater condition around the tunnel boundary many years after 

construction as well as the ground formation surrounding the tunnel (layered or 

homogeneous) play a crucial role in the long-term tunnel lining response.  
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8.2  Recommendations for future work 

 
This research has implemented novel and conventional monitoring techniques for 

assessing the tunnel lining behaviour of an existing tunnel that underwent some 

displacements and damage with time.  

The monitoring through the deployment of DFOS sensors has shown the potential 

of using a remote and innovative technology, providing useful data. The FO results 

have enabled the collection of a 3-year monitoring data set, suggesting a tunnel lining 

deformation mode in agreement with that observed by conventional systems. 

However, the instrumentation involved the installation of only a strain FO cable, due 

to the stable thermal environment in the deep CERN tunnels. It would be beneficial 

to consider the deployment of a temperature cable in future installations, to enhance 

the temperature compensation on the final assessment of the mechanical strain and, 

hence, provide more accurate circumferential strain profiles. This should also 

include the installation of some slack circumferential loops (i.e. zero mechanical 

strain loops) beside the pre-tensioned instrumented cross-sections, not only to 

provide further fibre optic cable in the case of fibre breakage, but also to have a better 

understanding of the influence of the method of attachment of the optical fibre to the 

structure on the observed tunnel cross-section strain profiles.  

Supplementary installation of thermistors would also confirm the stable 

environment.  

The conducted numerical simulations have been shown to quantify accurately the 

change in the tunnel diameter that appears to agree well with observational data. 

However, further investigation is required to predict more precisely the magnitudes 

of bending strains along the tunnel lining, which would involve a more detailed 

tunnel lining modelling. Moreover, the FE simulations that have been conducted in 

this thesis have implemented the advanced critical state model developed by 

Wongsaroj (2005) for stiff London Clay only to model the very weak marl units. 

Particularly, the anisotropy stiffness values calibrated for London Clay have been 

used for the soil-like very weak marl layer. Further work should be carried out to 

assess more realistic parameters for modelling the molasse rock.  

Further research in the long-term investigation of tunnels should include localised 

seepage into the tunnel and, hence, considering non-uniform tunnel lining 

permeability. Also, a parametric study on the assumption of the reduction in 
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percentage of nodal forces along the tunnel lining when adopting the convergence-

confinement method should be carried out when simulating the tunnel lining 

construction in the FE environment.   

 

 

 

 

 


