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Abstract

Edit channels are a class of communication channels where the output of the channel is
an edited version of the input. The edits are considered to be deletions and insertions.
DNA-based data storage system is one of the motivations for this model. This thesis
studies various problems related to edit channel and also edit synchronization problem.
Varshamov-Tenengolts (VT) codes are first introduced. These codes can correct a
single deletion or insertion and have a linear-time decoder. The problem of efficient
encoding of non-binary version of VT codes is addressed, where a simple linear-time
encoding method to systematically map binary message sequences onto VT codewords
is proposed.

Another model that is studied is segmented edit channels, where we have the
additional assumption that the channel input sequence is implicitly divided into
segments such that at most one edit can occur within a segment. A code construction
is proposed for this model based on subsets of VT codes chosen with pre-determined
prefixes and/or suffixes. Also an upper bound is derived on the rate of any zero-error
code for the segmented edit channel in terms of the segment length. This upper bound
shows that the rate scaling of the proposed codes as the segment length increases is
the same as that of the maximal code.

Edit synchronization is another problem studied in this thesis. In this model, there
are two remote nodes (encoder and decoder), each having a binary sequence. The
sequence X, available at the encoder, is the updated sequence and differs from Y

(available at the decoder) by a small number of edits. The goal is to construct a message
M , to be sent via a one-way error free link, such that the decoder can reconstruct X

using M and Y . A coding scheme is devised for this one-way synchronization model.
The scheme is based on multiple layers of VT codes combined with off-the-shelf linear
error-correcting codes and uses a list decoder.

Motivated by the sequence reconstruction problem from traces in DNA-based stor-
age, the problem of designing codes for the deletion channel when multiple observations
(or traces) are available to the decoder is considered. A simple binary and non-binary
code is proposed that splits the codeword into blocks and employs a VT code in each
block. The availability of multiple traces helps the decoder to identify deletion-free
copies of a block, and to avoid mis-synchronization while decoding. The encoding
complexity of the proposed scheme is linear in the codeword length; the decoding
complexity is linear in the codeword length, and quadratic in the number of deletions
and the number of traces. The list decoding technique for the proposed code is also
considered.
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Chapter 1

Introduction

There are two fundamental questions in information theory that are addressed by
Claude E. Shannon in his seminal 1948 paper [1]. Firstly, what are the conditions
under which a reliable communication is possible over a noisy channel. Secondly, how
much can an information source be compressed such that a decoder can retrieve the
information reliably from the compressed version. Much work has been done to achieve
the fundamental limits that are obtained in Shannon’s work, as he did not specify
efficient schemes to achieve these limits. This thesis studies code design for a specific
class of channels called edit channels. Moreover, a source coding problem is studied
which is closely related to edit channels. In this document we refer to this model as
edit synchronization model.

1.1 Problem definition

Generally, a channel coding problem can be represented as in Figure 1.1. The encoder
maps the message m into a codeword X. The channel produces the received sequence
Y according to a conditional distribution PY |X . The decoder estimates m̂ using Y . The
goal is to design a code with small probability of error, which is defined as Pr[m̂ ̸= m].
In some scenarios we may need zero error probability, in this case, the decoder should
always recover m correctly.

The message m belongs to set M, and the codeword X is a length n sequence from
some alphabet, for example, the binary alphabet X ∈ {0,1}n. The received sequence
Y is not necessarily from the same alphabet set as X nor it is necessarily of the same
length.
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p(Y | X)Encoder Decoder
m X Y m̂

Figure 1.1: Channel Model

The rate of the code is defined as the logarithm of the number of messages over the
number of channel uses (in this thesis all logarithms are in base 2):

R ,
log|M|

n
. (1.1.1)

For a given rate R, there are 2nR messages, which correspond to nR information bits.
For a binary code of length n, the redundancy of the code is defined as n(1−R).

Shannon has introduced a quantity called capacity (usually denoted with C) for a
given communication channel, and showed that reliable communication is not possible
with rates greater than the capacity. Also, for any R < C and any ϵ > 0, there exists a
code with rate R, such that the error probability of the code is less than ϵ for large
enough n (code length). A channel coding scheme attempts to achieve the capacity
with an efficient encoding and decoding algorithm.

The zero error capacity was also defined by Shannon [2] as the least upper bound
on rates at which it is possible to send information with zero probability of error. In
Chapter 2 and 3 of this thesis, we consider zero error codes, whereas in Chapter 4 and
5 a small probability of error is allowed.

1.1.1 Edit channel

The specific type of channels that will be discussed in this thesis are edit channels. In
an edit channel, the output sequence is obtained from the input sequence via deletions,
insertions, and substitutions. In this thesis, we will only consider edit channels with
deletions and insertions. Here is an example of a transmission through an edit channel.

Example 1.1. Assume that X = 1101111 is the transmitted codeword, and the output
of the channel Y = 11111100. In this example, the third bit is deleted and two zeros are
inserted at the end of X.

Many of the channels that are studied in information theory are memoryless. This
means that the ith received symbol only depends on the corresponding transmitted
symbol (for example Binary Symmetric channel (BSC) is a memoryless channel).
However, the edit channel is not memoryless. Each received symbol depends on the
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number of deletions and insertions that have occurred up to that point. This is one
of the main reasons why designing codes for correcting deletions or insertions is a
challenging problem.

The edit distance is an important quantity for code design for edit channels. The
edit distance between two sequences X and Y (both from the same alphabet) is defined
as the minimum number of insertions and deletions required to obtain Y from X.

A special case of the edit channel is the deletion channel, where there will be only
deletions in the received sequence. Let us first formally define this channel. Two main
models are considered for the deletion channel.

In the first model, which is a combinatorial model, the channel chooses up to k

locations (k is a parameter of the channel) in the transmitted sequence, then deletes
the corresponding symbols from the sequence. In other words, p(Y |X) is a distribution
with support on the subsequences of X obtained by deleting at most k bits.

There is an alternative model for deletion channel, where a deletion probability
pd is associated with the channel, and each transmitted symbol will be independently
deleted with the probability pd. For instance, if X = 111 is transmitted and pd = 0.1,
then the probability of receiving Y = 11 is 3(0.1)(0.9)2.

Similarly, the insertion channel can be defined. The combinatorial insertion channel
inserts at most k symbols into the transmitted sequence, p(Y |X) is a distribution with
support on the supersequences of X obtained by inserting at most k bits into X. The
alternative definition for insertion channel is that the decoder receives each transmitted
bit appended with a number of insertions (there can be also zero insertions), in the
channel definition we should specify what is the probability of a given substring to
be inserted after transmission of a symbol. Various models have been suggested for
this. One example is duplication channel, where each symbol with probability p will
be duplicated and with probability 1−p there will be no insertion.

Now that we defined both insertion and deletion channels, we can define the edit
channel as the cascade of a deletion channel and an insertion channel. See the model
in [3] for an example of an edit channel. The combinatorial channel can also be defined
wherein p(Y | X) has only non-zero values where edit distance of X and Y is less than
k. In this thesis, the exact model of the channel is defined in each of the chapters
separately.

1.1.2 Edit synchronization

The edit synchronization model is an instance of the source coding problem with
decoder side information [4]. (Figure 1.2) The encoder represents the sequence X
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using a message M from a codebook. The decoder reconstructs X̂ using M and a side
information sequence Y .

In this setup, assume that the side information Y is an edited version of X. For
example, Y can be obtained by a combination of k insertions and deletions from X.
The question is how to construct the message M such that the decoder can reconstruct
X, using M and Y . We refer to this problem as one-way file synchronization. The
motivation is that one can think of X and Y as two copies of a file which are available
at two remote nodes and differ by a small number of edits. The goal is to use the
communication link between the two nodes to update the file at the second node (the
decoder). This problem is studied in Chapter 4 of this thesis where a new class of
codes, called multilayer codes are suggested to address the problem.

Encoder
M

Decoder
X

Y

X̂

Figure 1.2: Source coding with decoder side information

We denote the rate in file synchronization problem by Rsync which is defined as

Rsync = log|M|
n

, (1.1.2)

here n is the length of sequence X, and M is the set of all the messages. We want
the rate to be as small as possible. For the case where X and Y are binary sequences,
Rsync = 1 is equivalent of sending the entire sequence X.

The connection between edit channel coding and edit synchronization:

Here it is shown how one can use a given code for file synchronization problem in
the edit channel setting. Assume that an encoding scheme for file synchronization
problem assign a message M ∈ M to a sequence X, i.e., M = E(X). And there exists a
decoding function which maps Y , the edited version of X, and M to the reconstructed
sequence X̂, i.e., X̂ = D(Y,M). Now corresponding to each of the messages M ∈ M
we can define a codebook as follows

CM = {X ∈ {0,1}n | E(X) = M} . (1.1.3)
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That is, the code for the edit channel consists of all the sequences that the file
synchronization encoder maps to a given message, say M∗. To maximize the rate of
the channel, we choose the M∗ that has the largest number of sequences mapped to it.
With this choice, the size of CM∗ is at least 2n

|M| , therefore the rate (in the binary case)
will be at least

R ≥ 1− log|M|
n

. (1.1.4)

For the decoding, one can use the same decoder D for communication over the edit
channel. Since the decoder knows Y (the edited version) from the output of the channel,
and also the message associated with X is known from the codebook.

Notice that a code for edit channel does not necessarily induce a code for file
synchronization model. This is because in a channel coding scheme some structure
may be assumed for codewords. For example, the codewords can be run limited,
which means there is no run longer than a constant number of bits in the codewords.
However, in the file synchronization, the encoder should deal with any given sequence
and such assumptions are not possible. From this perspective, designing codes for file
synchronization is a more difficult task. In addition, from a complexity point of view,
the encoding for the edit channel model can be challenging. Finding the codebook,
using (1.1.3) for large n is computationally costly, also mapping messages to codewords
is challenging and for large n a systematic way for this mapping should be devised.
The connection between these two problems is studied in detail in [5].

1.2 Motivation
The traditional motivation for studying edit channels was that this type of error
can occur in a communication system due to the lack of synchronization between
transmitter and receiver. Moreover, insertions and deletions may happen when reading
information stored in magnetic or optical media. Another motivation is that deletion
channel with large alphabets can model packet lost in networks like Internet [6, 7].

DNA-based data storage is a new motivation for the study of edit channels. The
idea is to use DNA as the medium for storing data instead of conventional methods.
The technology for synthesizing and also reading a given DNA sequence already exists.
Therefore, for storing data we can first translate the information bits into the nucleotide
alphabets {A,C,G,T}, and then synthesize the resulting DNA sequence. Now reading
back data is possible by sequencing the DNA string. This idea recently attracted
significant attention [8–11], mainly because this new method allows much greater
storage densities than conventional methods. The durability of DNA sequences is
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another important factor. Now in the process of synthesizing and sequencing of DNA
strings, some errors may occur in the form of insertions, deletions, and substitutions.
We can therefore model the storage system as an edit channel.

One of the issues of DNA storage is the cost and time of the process. Nanopore
sequencing is an emerging new technology, which seems to be a promising approach
to address these problems. Although it produces a significantly larger number of edit
errors comparing with the existing methods. This new technology also incited a new
line of research in information theory community [12, 13].

The file synchronization problem has a number of applications including file backup
(e.g., Dropbox), online editing, and file sharing. If a file is slightly edited, storing or
transmitting a new file is wasteful, therefore efficient synchronization techniques are
required for updating the file. Most of the works in this area assuming a two-way
communication link between the two parties.

The one-way File synchronization model is also interesting to study as a two-way
algorithm increases latency and may incur additional overhead. Furthermore, a code
for the one-way model can often be used within a two-way setup. For example, the
codes that we introduce in Chapter 4, can be easily modified to be used effectively in
a two-way model (we discuss this in Chapter 6). Secondly, a one-way coding scheme
can be used in scenarios where there are several nodes in the network. For instance, in
a broadcast network, when there are several independently edited versions of the file
which we need to update simultaneously.

1.3 Previous works

1.3.1 Edit channels

For the special case of correcting one insertion or deletion, there exists an elegant
class of codes called Varshamov-Tenengolts (VT) codes. Binary VT codes were first
introduced by Varshamov and Tenengolts in [14] for channels with asymmetric errors.
Later, Levenshtein [15] showed that they can be used for correcting a single deletion
or insertion with zero error and with a simple decoding algorithm whose complexity
is linear in the code length [16]. Tenengolts subsequently introduced a non-binary
version of VT codes, defined over a q-ary alphabet for any q > 2 [17]. The q-ary VT
codes retain many of the attractive properties of the binary codes. In particular, they
can correct deletion or insertion of a single symbol from a q-ary VT codeword with
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a linear-time decoder. VT codes are backbone of many of the schemes that will be
discussed in this thesis. In Chapter 2 we study these codes in more detail.

Levenshtein in his influential paper [15] also showed that a code that can correct k

deletions with zero error probability is also capable of correcting a combination of k

insertions and deletions (with zero error). Moreover, he obtained asymptotic upper
and lower bounds for the size of the codes that can correct multiple edits. If C(n,k)
denotes the size of the optimal code that can correct k deletions in a length n sequence,
then we have

c1
2n

n2k
≤ C(n,k) ≤ c2

2n

nk
, (1.3.1)

where the constants c1 and c2 depend only on k. This shows that the optimal redundancy
asymptotically is between 2k logn and k logn. We review the existing bounds on the
codebook size in more detail in Chapter 2.

In a VT code (also known as Levenshtein code), codewords are the set of sequences
X = x1x2 · · ·xn that satisfy the following constraint

n∑
i=1

ixi = a mod (n+1), (1.3.2)

where a is a fixed integer between 0 and n. Attempts have been made to use a
similar approach for multiple deletions. In [18] (see also [19]) Helberg and Ferreira
suggest a code that can correct multiple deletions by changing the coefficients which
are multiplied to xi’s in (1.3.2), and also adjusting the modulus based on the number
of deletions. However their suggested code does not have a good rate (the rate goes to
zero as n increases).

Another class of codes for edit channels are those that use markers in their con-
struction. A marker is essentially a predetermined set of symbols that help the decoder
to achieve the synchronization. The first work on such codes was introduced by Sellers
[20], where he used the substring 001 at regular intervals as the marker. Levenshtein
[21] and Ferreira et al. [22] have also used some form of a marker in their code. A
very successful code in this class is proposed by Ratzer [3]. He uses a low-density
parity-check code with some inserted markers and an iterative decoder. More recently,
Wang et al. designed a new code with similar structure [23].

Recently, Brakensiek et. al [24] proposed a new code for recovering multiple
deletions. The proposed code has redundancy ck logn when there are k deletions in
a length n codeword, where ck is of order O(k2 logk). However, their code is mostly
interesting from a theoretical point of view since the construction only works for very
large n. In 2018, a scheme is introduced by Gabrys and Sala [25] which optimizes
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the method in [24] for the special case of two deletions. The dominant term in the
redundancy of this code is 8 logn. Concurrently, another code is suggested for the case
of two deletions in [26], this code is with a redundancy of 7 logn. The approach in [26]
seems promising as it is more structured and hence is more likely to be generalizable.

Variations of the edit channels have also been studied in the literature. One example
is a model called segmented edit channel [27]. Where we have the additional assumption
that the channel input sequence is implicitly divided into segments such that at most
one edit can occur within a segment. Segmented channels are the topic of Chapter
3 of this thesis. Another variation of an edit channels are sticky channels, where the
channel will duplicate some of the symbols a random number of times [28].

From the capacity point of view, Dobrushin showed that the i.i.d. deletion channels
are information stable [29]. In general, the capacity of the edit channel is not known.
The simplest upper bound for a deletion channel that deletes each bit independently
with probability pd is 1−pd. This is because if the decoder knew the position of the
deletions, we had an erasure channel for which the capacity is known to be 1 − pd.
Also in [30–40] various lower and upper bounds are provided. Some of these bounds
are tight in special regimes, for example in a deletion channel when the probability of
deletion pd goes to zero.

Other notable works in coding for synchronization errors include [41–48]. Also
comprehensive surveys are available in [7, 49].

In Chapter 5 of this thesis, the problem of coded trace reconstruction is studied.
This problem is motivated by the DNA storage model. In DNA sequencing it is possible
to get several reads of a single DNA string. Each of these reads (call them traces) are
erroneous. The goal is to use these traces to reconstruct the target sequence. In DNA
storage setup we can design the target sequence, therefore we can assume that there is
an underlying codebook that the target sequence belongs to.

The trace reconstruction problem has been previously studied, with the goal being
either exact recovery of the sequence [50–54], or an estimate [55]. In these papers,
the sequence can be an arbitrary one from the underlying alphabet, i.e., it need not
originate from a codebook. A few recent works study the reconstruction of a coded
sequence under different trace models. The paper [56] analyzes the minimum number
of deletion channel traces required to recover a sequence drawn from a single-deletion
correcting code, and [57] considers a similar problem for the insertion channel. The
problem of reconstructing a coded sequence from the multiset of its substrings is studied
in [58]. From an information-theoretic perspective, [59] characterizes the capacity of
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the multiple trace i.i.d. deletion channel as the deletion probability p → 0. The related
works to this problem will be discussed in more details in Chapter 5.

1.3.2 Edit synchronization

Various forms of the edit synchronization mode have been studied in previous works; the
majority of them allow for two-way interaction between the encoder and decoder [60–72].
Interaction between the two nodes is also used in some practical file synchronization
tools such as rsync [73]. Some other models assume that the encoder knows Y , the file
at the decoder. Two examples of such works are [63, 74, 75]. An overview of different
models for file synchronization problem can be found in [75]. However, as stated earlier
in Chapter 4 we consider the one-way version of the problem. To the best of our
knowledge, the only work which directly addresses the one-way file synchronization is
the Guess and Check code, recently proposed by Hanna and Rouayheb [76]. Although
one should notice that some of the codes that are suggested for edit channels principally
can be used for one-way synchronization as well. An example of these codes is maker
codes which we discussed earlier [3]. Instead of having predetermined markers the
encoder in file synchronization setup can send the substring in X explicitly to the
decoder and the decoder can use it exactly as it would use a marker. We will compare
the work in [76] with our proposed multilayer code in Chapter 4.

1.4 Overview of the thesis

• In Chapter 2, the VT codes are first reviewed, along with the decoding algorithm.
It is shown that these codes are zero error single edit correcting codes. Also, the
graph interpretation of these codes is introduced and it is shown that the VT
code is the only integer code that can offer a valid vertex coloring for the edit
graph. Moreover, the existing lower and upper bounds on the rate of the zero
error deletion codes are discussed in this chapter. Systematic encoding of VT
code is also studied. In particular, a new systematic encoding for non-binary VT
codes is given and a new lower bound for the size of non-binary VT classes is
introduced. The result of this work is published in [77].

• In Chapter 3, the segmented model is studied for the deletion channel, insertion
channel, and insertion or deletion channel. A subset of VT codes is used to devise
a zero error coding scheme for these models. Also, an upper bound is found
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which shows that the achieved rate is asymptotically optimal. The above results
are published in [78, 79].

• The edit synchronization model is studied in Chapter 4, where we introduce
multilayer codes, a new class of code that can correct multiple deletions in a
one-way setup. These codes use a list decoder and therefore can be easily modified
to be used in a two-way setup as well. First, it is shown how to decode multiple
deletions. Then necessary modifications in the decoding algorithm are explained
in order to recover a combination of insertions and deletions. The modified
decoding algorithm will have a higher complexity and a longer list is expected to
be produced. A variation of these codes can be used in the edit channel problem.
Some of the results of this work are reported in [80].

• In Chapter 5, motivated from the DNA storage model, the problem of coding for
the deletion channel with multiple traces is studied. Here, we show that even by
using a single deletion code like VT codes (and suitable choice of parameters)
multiple deletions can be recovered with a small error probability when several
traces are available at the decoder. The results of this work are yet to be published
and can be found in [81].

• In Chapter 6, we summarize the contributions of the thesis and discuss directions
for future work.

1.5 Notation
We denote scalars by lower-case letters and sequences by capital letters. We denote
the subsequence of X, from index i to index j, with i < j by X(i : j) = xixi+1 · · ·xj .
Matrices are denoted by bold capitals. We use brackets for merging sequences, so
X = [X1, · · · ,Xu] is a supersequence defined by concatenating the sequences X1, · · · ,Xu.
Random variables are denoted using bold lower case letters. The set Zq = {0,1, · · · , q−1}
is the finite integer ring of size q. We consider the natural order for the elements of
Zq, i.e., 0 < 1 . . . < (q − 1). The term dyadic index will be used to refer to an index
that is a power of 2. Finally, sets are in calligraphic, in particular, Di(X) is the set
of subsequences of X that can be obtained with i deletions. Ii(X) denotes the set of
supersequences of X, obtained by inserting i bits into X.



Chapter 2

VT codes, structure and encoding

2.1 Introduction

In this chapter, VT codes and some of their properties are discussed. These codes were
first introduced by Varshomov and Tenengolts in 1956 for channels with asymmetric
error [14]. In the same year, Levenshtein showed that these codes can correct a single
edit [15]. The rate of the code is asymptotically optimal, and it is conjectured that the
optimal code also belongs to the family of VT codes [16]. Another attractive feature of
these codes is that the decoding algorithm is very simple and its complexity is linear
in time. Given the simplicity of VT decoding, a natural question is: can one construct
a linear-time encoder to efficiently map binary message sequences onto VT codewords?
For binary VT codes, such an encoder was proposed by Abdel-Ghaffar and Ferriera
[82]. (A similar encoder was also described in [83].) However, the issue of efficient
encoding for non-binary VT codes has not been addressed previously. In this chapter,
an efficient systematic encoder for non-binary VT codes is proposed. The encoder has
the complexity that is linear in the code length and is systematic in the sense that the
message bits are assigned to pre-specified positions in the codeword. The encoder also
yields a new lower bound on the size of q-ary VT codes, for q > 2.

VT codes are a key ingredient of the code construction for channels with segmented
deletions and insertions that we will propose in next chapter, and also in the codes that
are suggested for multiple traces problem in Chapter 5. The proposed VT encoder can
be applied to these constructions. VT codes have also recently been used in algorithms
for synchronization from deletions and insertions, e.g., [65, 66, 84] and are the key
component of multilayer codes which will be discussed in Chapter 4.

In [17, Sec. 5], Tenengolts introduced a systematic non-binary code that can correct
a single deletion or insertion. However, this code is not strictly a VT code as its
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codewords do not necessarily share the same VT parameters. (Formal definitions of VT
codes and their parameters are given in the next section.) In this chapter, we propose
an encoder for VT codes defined in the standard way, noting that using standard VT
codes is a key requirement in some of the code constructions mentioned above.

The rest of the chapter is organized as follows. In the next section, we formally
define binary and non-binary VT codes and present some results on the size of the
classes. Then in Section 2.3, the graph model for zero error codes (like VT codes) is
introduced and it is shown that VT codes are the only integer codes that can color the
graph. Moreover, existing bounds for the size of zero error codes are presented. Then
in Section 2.4 the systematic encoder from [82] is briefly reviewed. In Section 2.5, a
new systematic encoding method for q-ary VT codes (q > 2) and the resulting lower
bound on the size of the codes is described.

2.2 The VT code construction

In this section we introduce the code construction and also the decoding algorithm for
both binary and non-binary VT codes. Also, the size of these codes is studied.

2.2.1 Binary codes

The VT syndrome of a binary sequence X = x1x2 · · ·xn ∈ Zn
2 is defined as

syn(X) ,
n∑

i=1
ixi mod (n+1). (2.2.1)

For positive integers n and 0 ≤ a ≤ n, the VT code of length n and syndrome a, is
defined as

VTa(n) = {X ∈ Zn
2 : syn(X) = a}, (2.2.2)

i.e., the set of binary sequences X of length n that satisfy syn(X) = a. For example,
the VT code of length 3 and syndrome 2 is

VT2(3) =
{
x1x2x3 ∈ Z3

2 :
3∑

j=1
j xj = 2 mod 4

}
= {010,111}.

(2.2.3)

Now we show that each of the sets VTa(n), 0 ≤ a ≤ n, is a code that can correct a
single deletion or insertion by introducing the decoder. Note that this will prove that,
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if two sequences S,S′ ∈ VTa(n), then

D1(S)∩D1(S′) = ∅, and I1(S)∩I1(S′) = ∅, (2.2.4)

where D1(S) denotes the set of subsequences obtained by deleting one bit from S, and
I1(S) is the set of supersequences obtained by inserting one bit in S.

Decoding a single deletion: Assume that X ∈ VTa(n) and X ′ = x′
1x′

2 · · ·x′
n−1 is a

sequence obtained by deleting one bit from X. Compute the following checksum for
X ′:

a′ =
n−1∑
i=1

ix′
i mod (n+1). (2.2.5)

Define the deficiency as δ = a−a′ mod (n+1). Now assume the deleted symbol from X

is xp, if xp = 0, then the deficiency is exactly equal to the number of ones in X(p+1 : n).
Therefore, if we denote by w the weight of X ′ (number of ones in X ′), then we have
δ ≤ w. Now consider the case where xp = 1, in this case δ will be equal to the number
of ones in X(p+1 : n) added to p. Thus, δ will be strictly greater than w. Therefore,
comparing δ and w determines the value of the deleted bit. Also, given these two
values we can determine the run that the deleted bit belongs to and hence uniquely
decode the codeword.

1. If δ ≤ w: Then the deleted bit is 0 and it belongs to the run that is after exactly
δ ones from the right side of X ′.

2. If δ > w: Then the deleted bit is 1 and it belongs to the run that is after exactly
δ −w ones from the right side of X ′.

Clearly, the decoding complexity is linear in n.

Decoding a single insertion: Assume that X ′ = x′
1x′

2 · · ·x′
n+1 is a sequence obtained

by inserting one bit into X ∈ VTa(n). Also assume that the inserted bit is x′
p. Similarly

compute the following checksum for X ′:

a′ =
n+1∑
i=1

ix′
i mod (n+1). (2.2.6)

This time define deficiency to be δ = a′ − a mod (n + 1). Again define w to be the
weight of X ′. For decoding:

1. If δ ≤ w: Then the inserted bit is 0 and it belongs to the run that is after exactly
δ ones from the right side of X ′.
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2. If δ > w: Then the inserted bit is 1 and it belongs to the run that is after exactly
δ ones from the right side of X ′.

2.2.2 Size of VT classes

The (n+1) sets VTa(n), 0 ≤ a ≤ n, partition the set of all binary sequences of length n,
i.e., each sequence X ∈ Zn

2 belongs to exactly one of the sets. Therefore, the smallest
of the codes VTa(n) will have at most 2n

n+1 sequences. Hence, we have the following
bounds on the rate of different classes:

min
0≤a≤n

1
n

log2|VTa(n)|≤ 1− 1
n

log2(n+1) ≤ max
0≤a≤n

1
n

log2|VTa(n)|. (2.2.7)

The systematic encoding that is introduced in Section 2.4 can map 2n−⌈log2(n+1)⌉

messages to any of the VT classes. This gives the following lower bound on the rate of
VT classes for all n and 0 ≤ a ≤ n.

1− 1
n

⌈log2(n+1)⌉ ≤ 1
n

log2|VTa(n)|. (2.2.8)

A byproduct of this inequality is that when n +1 is a power of 2, the size of all VT
classes is 2n

n+1 . This is because |VTa(n)|≥ 2n−⌈log2(n+1)⌉, hence

2n =
n∑

a=0
|VTa(n)| (2.2.9)

≥ (n+1)2n−⌈log2(n+1)⌉ (2.2.10)
= 2n, (2.2.11)

where (2.2.11) holds since when n + 1 is a power of two we have 2⌈log2(n+1)⌉ = n + 1.
Thus the inequalities used in (2.2.10) are indeed satisfied with equality. This means
that we have |VTa(n)|= 2n−⌈log2(n+1)⌉ for 0 ≤ a ≤ n, and this completes the proof. This
result motivates the misguided intuition that when n+1 is a power of 2, the VT0(n) is
a linear code, and other classes are essentially different cosets of a linear code. However,
as it is shown in [16], this is not the case and for n ≥ 5, VT0(n) is not a linear code.

The exact size of each of the classes is studied in [85–87]. In [16, Theorem 2.2], an
expression for the exact size of VT classes is given,

|VTa(n)|= 1
2(n+1)

∑
h|n+1
h odd

φ(h)
µ( h

(h,a))
φ( h

(h,a))
2(n+1)/h. (2.2.12)
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Here φ is the Euler totient function, and µ is the Möbius function [88]. Also (h,a)
denotes the greatest common divisor of the integers h and a. In general, this expression
is hard to compute, but in some special cases it is computable. When (n+1) is a power
of two, then 1 is the only odd divisor of (n+1). Also φ(1) = µ(1) = 1, thus we have

|VTa(n)| = 1
2(n+1)2(n+1) (2.2.13)

= 2n

n+1 (2.2.14)

which confirms the earlier stated result. Also, using this formula it can be shown that
for any 0 ≤ a ≤ n

VT1(n) ≤ VTa(n) ≤ VT0(n), (2.2.15)

(see [16] for the proof). It is conjectured that VT0(n) is the largest codebook capable
of correcting one edit (for n ≤ 8 this has been checked) [16].

Moreover, for general n, the formula can be used to deduce that the sizes of the
codes VTa(n) are all approximately 2n/(n+1). In particular,

2n

(n+1) −2(n+1)/3 ≤ |VTa(n)|≤ 2n

(n+1) +2(n+1)/3, for a ∈ {0, . . . ,n}. (2.2.16)

To prove this, first notice that for a positive integer h, the Euler totient function φ(h)
is the number of positive integers up to h that are relatively prime to h, and φ(1) is
defined to be 1. Thus, 1 ≤ φ(h) ≤ h. We will also use the fact that the Möbius function
µ(·) takes values in the set {−1,0,1}. Then, from (2.2.12) we have

|VTa(n)| = 1
2(n+1)

∑
h|n+1
h odd

φ(h)
µ( h

(h,a))
φ( h

(h,a))
2(n+1)/h (2.2.17)

≤ 1
2(n+1)

2n+1 +
∑

h|n+1
h>1, odd

φ(h) 1
φ( h

(h,a))
2(n+1)/h

 (2.2.18)

≤ 1
2(n+1)

2n+1 +(n+1)
∑

h|n+1
h>1, odd

2(n+1)/h

 . (2.2.19)

Here, (2.2.18) is obtained from µ(x) ≤ 1, and (2.2.19) holds since φ(h) ≤ h ≤ n + 1.
The number of terms in the summation in (2.2.19) is not more than (1 + n+1

3 ), and
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the largest term in the summation in (2.2.19) occurs when h = 3. Moreover, we have
2(n+1)/h ≤ 2n+1

3 −h. Hence we have

|VTa(n)| ≤ 1
2(n+1)

2n+1 +(n+1)
n+1

3∑
h=0

2
n+1

3 −h

 (2.2.20)

= 1
2(n+1)

(
2n+1 +(n+1)

(
2

n+1
3 +1 −1

))
(2.2.21)

≤ 2n

(n+1) +2(n+1)/3. (2.2.22)

The lower bound in (2.2.16) is obtained by using µ(x) ≤ −1 in (2.2.17), and following
similar steps.

2.2.3 Non-binary codes

For any code length n, the VT codes over Zq, for q > 2 are defined as follows [17].
For each q-ary sequence S = s0s1 · · ·sn−1 ∈ Zn

q , define a corresponding length (n−1)
auxiliary binary sequence AS = α1α2 . . .αn−1 as follows1. For 1 ≤ i ≤ n−1,

αi =

1 if si ≥ si−1

0 if si < si−1.
(2.2.23)

We also define the modular sum of S as

sum(S) =
n−1∑
i=0

si (mod q). (2.2.24)

For 0 ≤ a ≤ n−1 and b ∈ Zq, the q-ary VT code with length n and parameters (a,b) is
defined as

VTa,b(n) = {S ∈ Zn
q : syn(AS) = a, sum(S) = b}. (2.2.25)

Each of the sets VTa,b(n) is a code that can correct deletion or insertion of a single
symbol with a decoder whose complexity is linear in the code length n. The decoder
first constructs the auxiliary sequence of the received sequence and then uses the binary
VT syndrome of the auxiliary sequence to find the run which the deleted (inserted)
symbol belongs to. Finally the summation of symbols will determine the value of
the deleted bit and from the order of the symbols (known from auxiliary sequence)

1For non-binary sequences, we start the indexing from 0 as this makes it convenient to describe
the encoding procedure in Section 2.5.
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the decoder finds the exact position of the symbol within the run. The details of the
decoding algorithm can be found in [17, Sec. II].

Similar to the binary case, the codes VTa,b(n), for 0 ≤ a ≤ n−1 and b ∈Zq, partition
the space Zn

q of all q-ary sequences of length n. For a given n, there are nq of these
codes, and hence the largest (smallest) of them will have at least (at most) qn

nq sequences.
Let Rmin be the rate of the smallest of these codes, i.e.,

Rmin , min
a,b

log2|VTa,b(n)|
n

, (2.2.26)

where the minimum is over 0 ≤ a ≤ n−1 and b ∈ Zq. We then have the bound

Rmin ≤ log2 q − 1
n

log2 n− 1
n

log2 q bits/symbol. (2.2.27)

We are interested in Rmin, since it is an upper bound for the best rate that a systematic
encoder (which can map messages to any of the classes) can achieve.

Unlike the binary case, there exists no lower bound on the size of non-binary VT
classes in the previous literature. Later in this chapter Proposition 2.2 provides the
first lower bound on the size of these classes.

2.3 Edit graph model
Let us define the confusability graph for a channel that deletes up to k symbols from
the input sequence. In the zero error model we need to consider the worst case scenario,
hence we assume that the channel deletes exactly k symbols. The confusability graph
Gn,k has 2n vertices corresponding to each of the length n binary sequences. There is
an edge between two vertices when they have an edit distance smaller than or equal to
2k. Equivalently, two vertices corresponding to sequences X and Y are connected to
each other if and only if |Dk(X)∩Dk(Y )|> 0. Now we know that a valid codebook for
zero error communication via a deletion channel with k deletions is an independent set
of this graph.

Remark 2.1. Recall Levenshtein’s result in [15], which shows that a code that can
correct k deletions is also capable of correcting a combination of k insertions or deletions.
This means that the confusability graph when k insertions and deletions are allowed is
the same as Gn,k.

For a graph G we denote the chromatic number by X (G), this is the minimum
number of required colors to color vertices of G such that any two connected vertices
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have different colors. Also, the independence number denoted by α(G) is the maximum
number of vertices for which there are no edges among them. From the definition,
when we have a valid coloring, the set of vertices of any of the colors will form an
independent set.

VT syndromes color Gn,1 with n + 1 colors, where each of the syndromes is a color.
This is a valid coloring because each of the sets VTa(n) (for 0 ≤ a ≤ n) are a single
edit zero error correcting code, which means the vertices corresponding to codewords
are not connected to each other. An integer code, defined by Vinik and Morita [89]
(see also [90]) is a code where the codewords are all length n sequences that satisfy the
following constraint:

n∑
i=1

wixi = d mod m, (2.3.1)

where wi’s and d are in Zm. VT codes are an instance of these codes where m is set to
be n+ 1 and wi = i. In the following we investigate all the integer codes that can offer
a vertex coloring (with n+1 colors) for Gn,1.

Proposition 2.1. Let

d =
n∑

i=1
wixi mod n+1.

Then, assigning color d to node X = x1 · · ·xn is a valid coloring if and only if wi = iw1,
where (w1,n+1) = 1 (i.e. w1 and n+1 are co-prime).

It is clear that choosing w1 = 1 gives VT syndromes. The proof of this proposition
gives intuition about why VT codes are capable of coloring the graph. Moreover, we
were interested in finding whether there exists another code with the same structure
capable of correcting one edit. Note that this proposition shows that VT codes are in
a sense unique, since other codes (when we choose w1 ̸= 1) are essentially relabeling of
the colors and the set of sequences with the same color remains invariant.

Proof. The first observation is that wi’s are a permutation of 1 to n. This is because
if wi = wj for some i ̸= j, then two sequences X1, which has n−1 zeros and a single
one at position i, and X2, which has n − 1 zeros and a single one at position j, are
connected to each other and they have the same color. Also, we have wi ̸= 0, since if
wi = 0, then the sequence that has only a single 1 at position i and has zeros elsewhere
is connected to all zero sequence and they both have the same color (d is zero for both
of them) this is a contradiction. This shows that wi’s are a permutation of 1 to n.

Consider Y to be a length n −1 sequence. To have a valid coloring we need this
property: two sequences that are obtained by inserting two symbols into Y should
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have different colors. This is because the vertices corresponding to these two sequences
are connected in the graph. Assume that Y1 is the sequence obtained by inserting
symbol xp1 into position p1 of Y . And Y2 is the sequence obtained by inserting xp2 into
position p2 of Y . Y1 and Y2 are different if either the values of symbols xp1 and xp2

are different or positions p1 and p2 belong to different runs in Y . Denote by d(Y,xp1)
the deficiency after inserting xp1 into Y . Then, we have

d(Y,xp1) = xp1wp1 +
n∑

i=p1+1
(wi −wi−1)yi−1 mod n+1, (2.3.2)

where yi is the ith bit of Y . With this notation the above property can be stated as
follows:

∀Y ∈ {0,1}n−1, d(Y,xp1) ̸= d(Y,xp2), (2.3.3)

when xp1 and xp2 are either not equal or not in a same run. Now consider p2 > p1,
when xp1 and xp2 are in different runs, for satisfying the property in (2.3.3) we need

xp1wp1 +
n∑

i=p1+1
(wi −wi−1)yi−1 ̸= xp2wp2 +

n∑
i=p2+1

(wi −wi−1)yi−1 mod n+1,

(2.3.4)

xp1wp1 +
p2∑

i=p1+1
(wi −wi−1)yi−1 ̸= xp2wp2 mod n+1. (2.3.5)

Now using (2.3.5) we have the following inequalities:

∀l > 2 : w2 −w1 ̸= wl mod n+1. (2.3.6)

For instance to see w2 −w1 ̸= w3, choose p2 = 3 and p1 = 1. Also xp1 = 0 and xp2 = 1.
Now consider y1 = 1 and yi = 0 for i > 1. Using these parameters in (2.3.5) gives the
result. Similarly using p2 = l gives the other inequalities in (2.3.6).

Notice that wi’s are a permutation, thus there exist a unique i such that wi =
w2 − w1 (all calculations are in Zn+1). Therefore, we have either w1 = w2 − w1 or
w2 = w2 −w1. The second possibility is not acceptable since w1 ̸= 0. Hence, w1 = w2 −w1

or equivalently w2 = 2w1.

Similarly for j ≥ 3, we have following inequalities:

∀l > j : wj −w1 ̸= wl mod n+1. (2.3.7)
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Choose p2 = l, p1 = 1, xp1 = 0, and xp2 = 1. Now for Y , choose y1 = y2 = · · · = yj−1 = 1
and yi = 0 for i ≥ j. Using these parameters in (2.3.5) gives (2.3.7). Now induction on
j (with the hypothesis that wi = iw1 for i < j) shows that wj −w1 = wj−1 is the only
available choice in order to have a permutation and hence we have wj = jw1.

Now for wi’s forming a permutation, we need (w1,n+1) = 1. This shows that the
condition of the proposition is necessary. The other direction is easy, since we know
that VT syndrome colors the graph. For a constraint where wi = iw1 and w1 ̸= 1, since
(w1,n+1) = 1, there exist w−1

1 ∈ Zn+1 such that w−1
1 w1 = 1 (in Zn+1). Therefore, if

this constraint colors two sequences with the same color d, by using the VT syndrome
for coloring, these two sequences will also have the same color w−1

1 d, and thus are not
connected to each other. Therefore this new constraint is also a valid coloring. This
completes the proof.

2.3.1 Lower bounds for zero error codes

In this subsection we want to find some lower bounds for the size of the maximum zero
error codebook (α(Gn,k)), using graph theory concepts that we reviewed in this section.
As we discussed, when there is a valid vertex coloring, the set of vertices of any of the
colors will form an independent set. Hence, these sets are a zero error codebook, thus
we have the following lower bound for α(Gn,k):

2n

X (Gn,k) ≤ α(Gn,k). (2.3.8)

Now if we upper bound the chromatic number X (Gn,k), we can find a lower bound
for α(Gn,k). The simplest upper bound for X (Gn,k) is X (Gn,k) ≤ ∆(Gn,k) + 1, where
∆(Gn,k) is the greatest degree in the graph (the proof by induction is straightforward).
Thus,

2n

∆(Gn,k)+1 ≤ α(Gn,k). (2.3.9)

A simple upper bound for ∆(Gn,k) is the following:

∆(Gn,k) ≤
(

n

k

) k∑
i=0

(
n

i

) (2.3.10)

This is because a sequence like X is connected to all the sequences which can obtained
by deleting k bits from X and inserting k bits into the n − k subsequece.

(
n
k

)
is an

upper bound for the number of ways that k bits can get deleted from a length n
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sequence (i.e., the number of subsequences of length (n−k)) and the second term in
RHS is the number of ways to insert k bits into a length (n−k) sequence. In general
the number of distinct sequences obtained by inserting k bits into X a q-ary sequence
of length n is the following (see [91] for the proof).

|Ik(X)|=
k∑

i=0

(
n+k

i

)
(q −1)i (2.3.11)

Using (2.3.10) we have

∆(Gn,k)+1 ≤ (k +1)
(

n

k

)2
(2.3.12)

≤ (k +1)
(

en

k

)2k

, (2.3.13)

where the last inequality holds because of Lemma 4.2 in Chapter 4 (see page 101).
Therefore, we obtain a lower bound for α(Gn,k) as

2n

(k +1)
(

en
k

)2k
≤ α(Gn,k). (2.3.14)

This is in accordance with Levenshtein’s asymptotic lower bound (1.3.1) which gives
redundancy of order 2k logn.

For the non-binary alphabet, denote the confusability graph for the q-ary alphabet
as Gn,k,q. Similarly an upper bound for ∆(Gn,k,q) can be found:

∆(Gn,k,q)+1 ≤ (k +1)qk

(
n

k

)2
. (2.3.15)

This will result to the following lower bound on the size of the zero error code

qn−k

(k +1)
(

n
k

)2 ≤ α(Gn,k,q). (2.3.16)

One can refine the above lower bound by bounding ∆ more accurately. This can be
done by using a better bound for the number of subsequences. Unlike the number of
supersequences which is given explicitly in (2.3.11), for the number of subsequences we
can only give bounds based on the number of runs (see [92, 93] for details). However,
there exist a more powerful method which gives the best known lower bound for zero
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error deletion codes. It has been proved in [94] (another proof is given in [95]), that
one can used the average degree instead of ∆(Gn,k)+1 in the denominator of (2.3.9).
Using this method Levenshtein gave the following lower bound in [96] for a zero error
code that can correct k deletions in a q-ary sequence:

α(Gn,k,q) ≥ qn+k(∑k
i=0

(
n
i

)
(q −1)i

)2 . (2.3.17)

For small values of n and k in [97, 98] better bounds for α(Gn,k) are found by using
computer search.

Remark 2.2. The bound X (Gn,k) ≤ ∆(Gn,k)+1, is the simplest upper bound on the
chromatic number. One idea is to use better existing upper bounds for chromatic number
to get a better lower bound on the independence number. One example of a tighter
upper bound is the following:

X (G) ≤ max
i∈{1,···,n}

min(di +1, i), (2.3.18)

here d1 ≥ d2 ≥ ·· · ≥ dn are the degrees of the vertices in G (with this notation ∆(G) = d1).
One can check that using this bound, if there exist s such that ds +1 ≤ s then we have
X (G) ≤ s. Using this technique we have not been able to find a bound which strictly
improves on (2.3.17) for the edit channel. However, it is interesting to investigate
whether there exists a graph (which is important from information theory perspective)
for which this type of bound can strictly improve the bound given in [94], which is based
on the average degree of the graph.

2.3.2 Upper bounds on the size of deletion codes

Levenshtein [96] also introduced a family of upper bounds on the the size of α(Gn,k,q).
The following inequality holds for all r and s, such that 1 ≤ s ≤ r +1 ≤ n.

α(Gn,k,q) ≤ qn−k∑k
i=0

(
r+i−s

i

) + q
r−1∑
i=0

(
n−1

i

)
(q −1)i (2.3.19)

A slightly improved upper bound is given in [99].
Kulkarni and Kiyavash [100] proposed a new method for achieving nonasymptotic

upper bounds on the size of edit correcting codes. They formulate the problem as an
integer linear program, and propose upper bounds by finding feasible solutions for the
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dual of the linear programming relaxation of the integer linear program. In particular,
they showed that the size of any single deletion correcting q-ary code of length n is
bounded by

α(Gn,1,q) ≤ qn − q

(q −1)(n−1) . (2.3.20)

In [101] a generalization of their method is given.

2.3.3 Properties of the confusability graph

Another relevant parameter in the edit channel confusability graph is the clique number.
A clique is a subset of vertices where each pair in the subset are connected to each
other. Clique number is the size of the largest clique of the graph, and is denoted by
ω(Gn,k). A simple observation is that ω(Gn,k) ≤ X (Gn,k), since all the vertices of a
clique in a valid coloring should have different colors. Moreover, the following lower
bound is known for the clique number of Gn,k:

k∑
i=1

(
n

i

)
≤ ω(Gn,k). (2.3.21)

This is because all the sequences that have at most k ones are connected to each other
in Gn,k. Therefore, we have the following inequalities for Gn,k:

k∑
i=1

(
n

i

)
≤ ω(Gn,k) ≤ X (Gn,k). (2.3.22)

For the special case of k = 1, VT codes show that both of these inequalities are tight
(all three quantities are n + 1). In other trivial cases (e.g. when k = n − 1) these
inequalities are also tight. Hence, one can question whether these inequalities are tight
in general. Using computer search it can be shown that for k = 2 the first inequality is
not tight. For example for n = 4 the lower bound is 11, while ω(G4,2) = 12. However,
it is curious to see whether ω(Gn,k) = X (Gn,k) holds, the graphs for which we have this
equality are called weakly perfect graphs.

2.4 Systematic encoding of binary VT codes

Abdel-Ghaffar and Ferriera [82] proposed a systematic encoder to map k-bit message
sequences onto codewords in |VTa(n)|, where k = n−⌈log2(n+1)⌉. We briefly review
the encoding procedure which is also an ingredient of the systematic q-ary VT encoder.
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Consider a k-bit message M = m1 · · ·mk to be encoded into a codeword C = c1 · · ·cn ∈
VTa(n), for some a ∈ {0,1, · · · ,n}. The number of “parity” bits is denoted by t =
n−k = ⌈log2(n+1)⌉. The idea is to use the code bits in dyadic positions, i.e., c2i , for
0 ≤ i ≤ (t−1), to ensure that syn(C) = a. The encoding steps are:

1. Denote the first k non-dyadic indices by {j1, · · · , jk}, where the indices are in
ascending order, i.e., j1 = 3, j2 = 5, . . . We set cji equal to the message bit mi, for
1 ≤ i ≤ k.

2. First set the bits in all the dyadic positions to be zero and denote the resulting
sequence by C ′ = c′

1 · · ·c′
n (so that we have c′

2i = 0 for 0 ≤ i ≤ t−1 and c′
jl

= ml

for 1 ≤ l ≤ k = (n − t)). Define the deficiency d as the difference between the
desired syndrome a and the syndrome of C ′. That is,

d = a− syn(C ′) mod (n+1). (2.4.1)

3. Let the binary representation of d be dt−1 . . .d1d0, i.e., d =∑t−1
i=0 2idi. Set c2i = di,

for 0 ≤ i ≤ (t−1), to obtain C.

The rate of this systematic encoder is R = 1 − 1
n⌈log2(n + 1)⌉, regardless of the

syndrome a ∈ {0, . . . ,n}. Comparing with (2.2.7), we observe that the rate loss for the
smallest VT code of length n is less than 1

n . On the other hand, if (n+1) is not a power
of two, the rate loss for the larger VT codes may be higher due to codewords that are
unused by the encoder. However, this rate loss is unavoidable with any systematic
encoder [82].

Remark 2.3. The dyadic positions are not the only set of positions that can be used
for syndrome bits. For instance, the following set of indices also produce all syndromes:

{ci0 , · · · , cit−1} where ij = −2j (mod n+1) for 0 ≤ j ≤ t−1.

This can be helpful in some applications (see e.g. [78]) where some code bits are already
reserved for prefixes or suffixes, and thus cannot be used as syndrome bits. In general,
a set of positions {p1,p2, · · · ,pr} can be used for syndrome bits if for each syndrome
a ∈ {0, · · · ,n}, there exists a subset P ⊆ {p1,p2, · · · ,pr} such that

∑
j∈P

pj = a (mod n+1). (2.4.2)
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In other words, for each a ∈ {0, · · · ,n}, there should exist binary coefficients b1, · · · , br

such that
r∑

j=1
bjpj = a (mod n+1). (2.4.3)

2.5 Efficient encoding for non-binary VT codes

The encoding procedure described below yields a lower bound on the size of |VTa,b(n)|
(see Proposition 2.2), which shows that for q ≥ 4,

Rmin ≥ log2 q− 1
n

⌈log2 n⌉(3 log2 q−2log2(q−1))− 1
n

(5 log2(q−1)−3log2 q) bits/symbol.
(2.5.1)

Kulkarni and Kiyavash [100] have shown that the size of any single deletion correcting
q-ary code of length n is bounded by qn−q

(q−1)(n−1) . This yields a rate upper bound Rmax

for any single deletion correcting code as

Rmax ≤ log2 q − log2(n−1)
n

− log2(q −1)
n

. (2.5.2)

We now describe the encoder to map a sequence of message bits to a codeword
of the q-ary VT code VTa,b(n). For simplicity, we first assume that q is a power of
two, and address the case of general q at the end of this section. We also assume that
n ̸= 2j +1 for any integer j, for such code lengths the rate is slightly less. We will map
a k-bit message M = m1m2 · · ·mk to a codeword in VTa,b(n), where

k = (n−3t+3)log2 q +(t−3)(2 log2 q −1)+(log2 q −1) (2.5.3)
= n log2 q − t(log2 q +1)−2(log2 q −1), (2.5.4)

with t = ⌈log2 n⌉. Therefore, the rate of our encoding scheme is

R = log2 q − ⌈log2 n⌉(log2 q +1)
n

− 2log2 q −2
n

bits/symbol. (2.5.5)

In Figure 2.1 we plot the upper bound in (2.5.2) and the rate of the proposed method
(2.5.5) for the case of q = 4 for n = 20 up to n = 2000.

Our encoding method gives a lower bound on the size of any non-binary VT code
of length n. An immediate lower bound on the size is 2k, with k given by (2.5.4). The
proposition below gives a slightly better bound, which is obtained by modifying the
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Figure 2.1: Comparison of the rate of the encoder with the upper bound on the rate for q = 4, and
20 ≤ n ≤ 2000.

encoding method to map q-ary message sequences to q-ary VT codewords, rather than
a binary message sequence to a q-ary VT codeword.

Proposition 2.2. For n ≥ 6, q ≥ 4, and any 0 ≤ a ≤ n, and b ∈ Zq, we have

|VTa,b(n)| ≥ (q −1)2t−5qn−3t+3,

= qn(1− t
n [3 log2 q−2log2(q−1)]− 1

n [5 log2(q−1)−3log2 q])

where t = ⌈log2 n⌉.

The proof of the proposition is given at the end of this section, after describing the
encoding procedure. We emphasize that we use t = ⌈log2 n⌉ throughout this section
(as opposed to ⌈log2(n+1)⌉ used for binary VT encoding) because the binary auxiliary
sequence has length (n−1).

2.5.1 Encoding procedure

The high level idea for mapping a k-bit message to a codeword C ∈ VTa,b(n) is the
following. Similar to the binary case, we reserve the t dyadic positions in the binary
auxiliary sequence AC to ensure that syn(AC) = a. Recall from (2.2.23) that each
bit of AC is determined by comparing two adjacent symbols of the q-ary sequence C.
Therefore, to ensure that syn(AC) = a, in addition to reserving the symbols in the
dyadic positions of C, we also place some restrictions on the symbols adjacent to the
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dyadic positions. Finally, we use the first three symbols of C to ensure that sum(C) = b.
We explain the method in six steps with the help of the following running example.

Example 2.1. Let q = 8,n = 16, and suppose that we wish to encode a binary message
M to a codeword C in VT0,1(16). We have t = ⌈log2 n⌉ = 4 and log2 q = 3. Therefore,
from (2.5.3) the length of M is k = 3(n−3t+3)+5(t−3)+2 = 28 bits. Let

M = 110 001 000 111 010 101 000 11100 11, (2.5.6)

where the spacing indicates the bits corresponding to the three terms in (2.5.3).

Step 1. Let S be the set of pairs of symbols adjacent to a dyadic symbol, i.e.,

S = {(c2j−1, c2j+1), for 2 ≤ j ≤ (t−1)}. (2.5.7)

There are |S|= (t−2) pairs of symbols in S. Excluding c0, the number of symbols in
C that are neither in dyadic positions nor in S is

(n−1)−2|S|−t = (n−3t+3). (2.5.8)

Assign the first (n−3t+3)log2 q bits of the message M to these symbols, by converting
each set of log2 q bits to a q-ary symbol. This corresponds to the first term in (2.5.3).

In Example 2.1, (n−3t+3)log2 q = 21, and the representation of first 21 bits of M

in Z8 is 6 1 0 7 2 5 0. Therefore the sequence C is

C = c0 c1 c2 c3 c4 c5 6 c7 c8 c9 1 0 7 2 5 0. (2.5.9)

Step 2. In this step, we assign the remaining bits of the message to the symbols in
S. For a given dyadic position c2j , j = 2,3, · · · ,(t−1), we constrain the pair of adjacent
symbols (c2j−1, c2j+1) to belong to the following set

T = {(r, l) ∈ Zq ×Zq : r ̸= 0, l ̸= (r −1)}. (2.5.10)

Via (2.5.10), we enforce c2j−1 ̸= 0 because if c2j−1 were 0, then we necessarily have
c2j ≥ c2j−1 which constrains the value of α2j to 1. Recall from (2.2.23) that α1 . . .αn−1

is the auxiliary sequence. However, α2j needs to be unconstrained in order to guarantee
that any desired syndrome can be generated. Furthermore, we will see in Step 5 that if
c2j+1 = c2j−1 − 1, then we may be unable to find a suitable symbol c2j compliant with
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the restrictions induced by the auxiliary sequence. We therefore enforce the constraint
c2j+1 ̸= c2j−1 −1 using (2.5.10). It is easy to see that |T |= (q −1)2.

Excluding the pair (c3, c5), there are (t−3) pairs in S. If we were encoding q-ary
message symbols, each of these (t−3) pairs could take any pair of symbols in T . Since
we are encoding message bits, we use a look up table to map ⌊log2|T |⌋ = 2log2 q − 1
bits to each of the pairs in S excluding (c3, c5). We thus map (t−3)(2 log2 q −1) bits
to the pairs in S excluding (c3, c5). This corresponds to the second term in (2.5.3).

Next, set c3 = q − 1. This choice is important as it will facilitate step 6. Since
(c3, c5) ∈ T , when c3 = q − 1, then c5 has to be such that c5 ̸= q − 2. Hence, there
are q − 1 possible values for c5. As we are encoding a binary message, we map
⌊log2(q −1)⌋ = log2 q −1 bits to c5 using a look-up table. This corresponds to the third
term in (2.5.3). We note that the two look-up tables used in this step have sizes at
most (q − 1)2 and q, respectively. Thus, in steps one and two in total we have mapped
the claimed k message bits to the symbols of C.

In Example 2.1, as seen from (2.5.9), (c7, c9) is the only pair in S other than (c3, c5).
We can assign 2log2 q −1 = 5 bits to (c7, c9). After the first 18 message bits mapped in
Step 1, the next five bits in M are 11100. Suppose that in our look-up table these bits
correspond to the pair (3,5). We then have (c7, c9) = (3,5). Also, we fix c3 = q − 1 = 7,
and the last two message bits determine c5. The last two message bits are 11. Suppose
that 3 is the corresponding symbol in the look-up table. We therefore set c5 = 3.
Therefore, we have

C = c0 c1 c2 7 c4 3 6 3 c8 5 1 0 7 2 5 0. (2.5.11)

Up to this point, we have mapped our k message bits to a partially filled q-ary sequence.
In the following steps we ensure that the resulting sequence lies in the correct VT
code by carefully choosing remaining (t+1) symbols to obtain the auxiliary sequence
syndrome a and the modular sum b.

Step 3. In this step, we specify the bits in the non-dyadic locations of the auxiliary
sequence AC . Notice that according to (2.2.23), in order to define α2j+1, the value of
c2j should be known. This is not the case here as the dyadic positions in C have been
reserved to generate the required syndrome. To circumvent this issue, we determine
α2j+1 (for 1 < j < t) by comparing c2j+1 with c2j−1 as follows:

α2j+1 =

1 if c2j+1 ≥ c2j−1,

0 if c2j+1 < c2j−1.
(2.5.12)
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As we shall show in step 5, we will be able to make these choices for the auxiliary
sequence compatible with the definition of a valid auxiliary sequence in (2.2.23).

Next, since we have chosen c3 = q − 1, from the rule in (2.2.23) we have α3 = 1,
regardless of what c2 is. The other non-dyadic positions of the auxiliary sequence AC

can be filled in using (2.2.23), i.e., αi = 1 if ci ≥ ci−1, and 0 otherwise.
For our example with C shown in (2.5.11), at the end of this step we have

AC = α1 α2 1 α4 0 1 0 α8 1 0 0 1 0 1 0. (2.5.13)

Step 4. In this step, we use the binary encoding method described in Section 2.4
to find the bits in the dyadic positions α20 , · · · ,α2t−1 such that syn(AC) = a. With this,
the auxiliary sequence AC is fully determined.

In the example, we need to find α1,α2,α4 and α8 such that syn(AC) = 0. First, we
set the syndrome bits α1 = α2 = α4 = α8 = 0, and denote the resulting sequence by

A′
C = 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0. (2.5.14)

Now, syn(A′
C) = 12, and the deficiency d = 0−12(mod 16) = 4. The binary represen-

tation of d is d3d2d1d0 = 0100. Hence, α1 = α2 = α8 = 0 and α4 = 1 will produce the
desired syndrome. Summarizing, we have the following auxiliary sequence

AC = 0 0 1 1 0 1 0 0 1 0 0 1 0 1 0. (2.5.15)

Step 5. In this step, we specify the symbols of C in the dyadic positions (except c1

and c2). This will be done by ensuring that AC is a valid auxiliary sequence consistent
with the definition in (2.2.23). In particular, the choice of c2j for j = 2, · · · , t−1, should
be consistent with α2j+1 and α2j . We ensure this by choosing c2j (for 1 < j < t) as
follows:

c2j =

c2j−1 −1 if α2j = 0,

c2j−1 if α2j = 1.
(2.5.16)

From the definition in (2.2.23), this choice is consistent with α2j . Now we show that it is
also consistent with α2j+1. If α2j+1 = 1, then according to (2.5.12), c2j+1 ≥ c2j−1; then
the choice of c2j in (2.5.16) always guarantees that c2j−1 ≥ c2j , and thus c2j+1 ≥ c2j .
Next suppose that α2j+1 = 0. Then according to (2.5.12), c2j+1 < c2j−1. We need
to verify that c2j+1 < c2j Now, if α2j = 1, then c2j = c2j−1 and c2j+1 < c2j . Also,
if α2j = 0, from (2.5.16) we have c2j = c2j−1 − 1. Since symbols adjacent to dyadic
positions (c2j−1, c2j+1) are chosen from T (see step 2), then c2j+1 ̸= c2j−1 −1. Thus,
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we have that c2j+1 < c2j−1 −1 = c2j . Therefore, in either case the choice is consistent
with (2.2.23).

For the example, using (2.5.16) and (2.5.15) we obtain

C = c0 c1 c2 7 7 3 6 3 2 5 1 0 7 2 5 0. (2.5.17)

Step 6. Finally, we need to find c0, c1 and c2 that are compatible with α1,α2,α3

(the first three bits of the auxiliary sequence), and such that sum(C) = b. Let

w , b−
n−1∑
i=3

ci (mod q). (2.5.18)

Hence we need c0 + c1 + c2 = w (mod q). We will show that when q ≥ 4, we can find
three distinct integers (x,y,z) such that 0 ≤ x < y < z < q and x+y + z = w (mod q).
We will assign these numbers to c0, c1 and c2. Also recall that we set c3 = q − 1; hence
we always have x,y,z ≤ c3, which is consistent with α3 = 1.

The triplet with smallest numbers that we can choose is x = 0,y = 1, z = 2. For
this choice, w = 0 +1+2 = 3 (mod q). By increasing z from 2 to q −1 with x = 0 and
y = 1, we can produce any value of w from 3 to q − 1 as well as w = 0. Finally, the
only remaining values are w = 1,2. To obtain these values, we choose x,y,z as follows.

1. w = 1: Choose x = 0,y = 2, z = q −1.

2. w = 2: Choose x = 1,y = 2, z = q −1.

Hence, we have shown that for q ≥ 4, any w ∈ Zq can be expressed as the (mod q)
sum of three distinct elements of Zq. Assigning these elements to c0, c1, c2 in the order
required by the auxiliary sequence completes the encoding procedure. We now have
sum(C) = b and syn(AC) = a, and thus C ∈ VTa,b(n) as required.

In our example, from (2.5.17) we have

15∑
i=3

ci = 48 = 0 (mod 8), (2.5.19)

and b = 1. Therefore we need c0 + c1 + c2 = 1 (mod 8). We have α1 = α2 = 0 so
c0 > c1 > c2 is the correct order. We therefore assign c0 = 7, c1 = 2, and c2 = 0 to
obtain the codeword.

C = 7 2 0 7 7 3 6 3 2 5 1 0 7 2 5 0 ∈ VT0,1(16). (2.5.20)
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It can be verified that sum(C) = 1, and the auxiliary sequence syndrome syn(AC) = 0.

2.5.2 The case where q is not a power of two

When log2 q is not an integer, the main difference is that we map longer sequences of bits
to sequences of q-ary symbols. Recall that in step 1, we determine (n−3t+3) symbols
of the q-ary codeword. One can map ⌊(n − 3t + 3)log2 q⌋ bits to these (n − 3t + 3)
symbols using standard methods to convert an integer expressed in base 2 into base q.
In the second step, as described earlier we can map ⌊log2(q −1)2⌋ bits to (t−3) pairs
in S (excluding (c3, c5)). Moreover ⌊log2(q −1)⌋ bits can be mapped to c5. Therefore,
in total we can map k bits to a q-ary VT codeword of length n, where

k = ⌊(n−3t+3)log2 q⌋+(t−3)⌊log2(q −1)2⌋+ ⌊log2(q −1)⌋ (2.5.21)
≥ n log2 q − t(log2 q +2)− (2 log2 q −4). (2.5.22)

For q ≥ 4, the remaining steps are identical to the case where q is a power of two. The
case of q = 3 is slightly different and it is discussed below.

2.5.3 Encoding for q = 3

For q = 3, we need to slightly modify the proposed algorithm. The first step is as
described in Section 2.5.2. The difference in the second step is that we do not embed
data in c5 and simply choose c5 = c3 = 2. Steps three to five remain the same. In the
sixth step, we compute w as in (2.5.18), and choose c0, c1, c2 as follows depending on
the values of α0 and α1:

1. α1 = α2 = 1: Choose c2 = c1 = 2 and c0 = w −4 (mod 3).

2. α1 = 1,α2 = 0: Choose c2 = 1 and c1 = 2 and c0 = w −3 (mod 3).

3. α1 = 0,α2 = 1: Choose c2 = 2. If w = 1, then c1 = 0, c0 = 2. If w = 0, then
c1 = 0, c0 = 1. If w = 2, then c1 = 1, c0 = 2.

The only remaining case is when α1 = α2 = 0. For this case, we need to change c3 and
c4, and also the first three bits of AC . Since c3 has been set to 2, the first three bits
of AC in this case are 001. If we change these three bits to 110, syn(AC) will remain
unchanged. We therefore set α1 = α2 = 1 and α3 = 0. Now we update c0, c1, c2, c3 to be
compatible with the new auxiliary sequence. Set c3 = 1, recall that c5 = 2 so we still
have c5 ≥ c3 and hence this change will not affect α5. Update c4 according to (2.5.16).
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Set c2 = c1 = 2, and c0 = w −2 (mod 3). Now we have c3 < c2 which is consistent with
α3 = 0. Also c2 ≥ c1 ≥ c0 is consistent with α1 = α2 = 1.

Hence, for q = 3, we have mapped k = ⌊log2 3(n−3t+3)⌋+2(t−3) bits to a q-ary
codeword C. This induces following rate:

R = ⌊log2 3 (n−3⌈log2 n⌉+3)⌋
n

+ 2(⌈log2 n⌉−3)
n

(2.5.23)

≥ log2 3− 2.76 ⌈log2 n⌉
n

− 2.25
n

(2.5.24)

Similarly in Proposition 2, we can show that for q = 3 there are at least 22(t−3)3n−3t+3

codewords in each of the VT codes.

2.5.4 Proof of Proposition 2.2

The result can be directly derived from steps one and two of our encoding method by
mapping sequences of q-ary message symbols (rather than sequences of message bits) to
distinct codewords in |VTa,b(n)|. In step 1, we can assign (n−3t+3) arbitrary symbols
to positions that are neither dyadic nor in S. There are qn−3t+3 ways to choose these
symbols. Then in step two, we can choose (q −1)2 pairs for each of the (t−3) specified
pairs of positions; furthermore, there are (q −1) choices for c5. According to steps 3
to 6, we can always choose the remaining symbols such that resulting codeword lies
in VTa,b(n). Therefore, we can map qn−3t+3(q −1)2t−5 different sequences of message
symbols to distinct codewords in VTa,b(n). This yields the lower bound on |VTa,b(n)|.



Chapter 3

Segmented model

3.1 Introduction

In this chapter the problem of constructing codes for segmented edit channels is
considered, where the channel input sequence is implicitly divided into disjoint segments.
Each segment can undergo at most one edit, which can be either an insertion or a
deletion. There are no segment markers in the received sequence.

This model, introduced by Liu and Mitzenmacher [27], is a simplified version of
the general edit channel, where the insertions and deletions can be arbitrarily located
in the input sequence. The assumption of segmented edits not only simplifies the
coding problem, but is also likely to hold in many edit channels that arise in practice,
e.g., in data storage and in sequenced genomic data, where the number of edits is
small compared to the length of the input sequence. As explained in [27], when
edits (deletions or insertions of symbols) occur due to timing mismatch between the
data layout and the data-reading mechanism, there is often a minimum gap between
successive edits. The segmented edit model includes such cases, though it also allows for
nearby edits that cross a segment boundary. Furthermore, a complete understanding of
the segmented edit model may provide insights into the open problem of constructing
efficient, high-rate codes for general edit channels. As it is shown in this chapter, the
segmented edit assumption allows for the construction of low-complexity, zero error
codes with the optimal rate scaling for any finite alphabet. The segmented deletion
channel is also studied in [102], where the authors found capacity bounds for the
channel in terms of pd, the probability of having a deletion in a given segment. They
also suggested a practical encoding scheme. We highlight that here we are assuming
the zero error model where in [102] small probability of error is allowed.
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Here three examples are considered to illustrate the model. For simplicity, we
consider a binary alphabet and assume that the segment length, denoted by b, is 3 in
each case.

1) Segmented Deletion Channel: Each segment can undergo at most one deletion;
no insertions occur. Consider the following pair of input and output sequences:

X = 011100010 −→ Y = 0110010, (3.1.1)

with the underlined bits in X being deleted by the channel to produce the output
sequence Y . It is easily verified that many other input sequences could have produced
the same output sequence, e.g., 010100010, 010101010, 011000100 etc. The receiver
has no way of distinguishing between these candidate input sequences. In particular,
despite knowing the segment length and that deletions occurred, it does not know in
which two segments the deletions occurred.

2) Segmented Insertion Channel: Each segment can undergo at most one insertion;
no deletions occur. The inserted bit can be placed anywhere within the segment,
including before the first bit or after the last bit of the segment. For example, consider

X = 011100010 −→ Y = 011101000110, (3.1.2)

with the underlined bits in Y indicating the insertions. Two inserted bits can appear
between two segments whenever there is an insertion after the last bit of first segment
and before the first bit of the next segment.

3) Segmented Insertion-Deletion Channel: This is the most general case, where a
segment could undergo either an insertion or a deletion, or remain unaffected. For
example, consider

X = 011100010 −→ Y = 0101000110, (3.1.3)

with the underlined bits on the left indicating deletions, and the underlined bits on
the right indicating insertions. Unlike the previous two cases, the receiver cannot even
infer the exact number of edits that have occurred. In the example above, an input
sequence 9 bits (three segments) long could result in a 10-bit output sequence in two
different ways: either via one segment with an insertion, or via two segments with
insertions and the other with a deletion.

The above examples demonstrate that one cannot reduce the problem to one of
correcting one edit in a b-bit input sequence. To see this, consider the example in
(3.1.1), and suppose that we used a single-deletion correcting code for each segment.
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Such a code would declare the first three bits of Y to be the first segment of X, which
would result in incorrect decoding of the following segments.

In this chapter, zero error codes for each of the three segmented edit models
above is constructed, for any finite alphabet of size q ≥ 2. The codes can easily be
constructed even for relatively large segment sizes (several tens), and can be decoded
segment-by-segment in linear time. Moreover, the proposed codes have rate R of at
least

R ≥ log2 q − 1
b

log2(b+1)− κ

b
log2 q, (3.1.4)

where the constant κ is at most 2.5 for the segmented deletion channel, 4 for the
segmented insertion channel, and 8 for the segmented insertion-deletion channel.
(Slightly better bounds on κ are obtained for the binary case q = 2.)

An upper bound is also derived in terms of the segment length b on the maximum
rate of any code for the segmented edit channel. This upper bound (Theorem 1) shows
that the rate R of any zero error code with code length n satisfies

R ≤ log2 q − 1
b

log2 b− 1
b

log2(q −1)+ 1
b

+ log2(2q)
n

+O

(
lnb

b4/3

)
. (3.1.5)

Comparing (3.1.4) and (3.1.5), we see that the rate scaling for the proposed codes is
the same as that of the maximal code with the rate penalty being O(1/b). The bound
we find in Theorem 1 is non-asymptotic, however it will not be close to the expression
in (3.1.4) even for large values of b.

The starting point for the code constructions is the VT codes studied in the previous
chapter. In our constructions, the codewords in each segment are drawn from subsets
of VT codes satisfying certain prefix/suffix conditions, which are carefully chosen to
enable fast segment-by-segment VT decoding.

3.1.1 Previous work on segmented channels

The segmented edit assumption places a restriction on the kinds of edit patterns
that can be introduced in the input sequence. Other models with restrictions on edit
patterns include the forbidden symbol model considered in [103].

We now highlight some similarities and differences with the codes proposed by Liu
and Mitzenmacher in [27] for the binary segmented deletion and segmented insertion
channels.

Code construction: The code in [27] is a binary segment-by-segment code specified
via sufficient conditions [27, Theorems 2.1, 2.2] that ensure that as decoding proceeds,
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there are at most two choices for the starting position of the next undecoded segment.
Finding the maximal code that satisfies these conditions corresponds to an independent
set problem, which is challenging for large b. The maximal code satisfying these
conditions was reported in [27] for b = 8,9. For larger b, a greedy algorithm was used
to find a set of codewords satisfying the conditions. It was also suggested that one
could restrict the code to a subset of VT codes that satisfy the sufficient conditions.

In comparison, our codes are directly defined as subsets of VT codes that satisfy
certain simple prefix/suffix conditions; these conditions are different from those in [27].
Our conditions ensure that upon decoding each segment, there is no ambiguity in the
starting position of the next segment. These subsets of VT codes are relatively simple
to enumerate, so it is possible to find the largest code satisfying our conditions for b of
the order of several tens. Table 3.1 lists the number of codewords per segment for the
three segmented edit channels for q = 2 and lengths up to b = 24. For the segmented
deletion and segmented insertion-deletion channels, another difference from the code
in [27] is that our codebook for each segment is chosen based on the final bit of the
previous segment.

Rate: The VT subsets and sufficient conditions we define allow us to obtain a lower
bound of the form (3.1.4) on the rate of our code for any segment length b. Though
the maximal codes satisfying the Liu-Mitzenmacher conditions have rate very close
to the largest possible rate with segment-by-segment decoding, finding the maximal
code satisfying these conditions is computationally hard, so one has to resort to greedy
algorithms to construct codes for larger b. This is reflected in the rate comparison: for
b = 8,9, the optimal Liu-Mitzenmacher code for segmented deletions is larger than our
code (12, 20 vs. 8, 13 codewords). However for b = 16, the code obtained in [27] using
a greedy algorithm has 652 codewords, whereas our code has 964 codewords, as shown
in Table 3.1. For large b, our codes are nearly optimal since the rate penalty decays as
κ/b.

For the segmented insertion channel, it is shown in Section 3.5.3 that our code
construction satisfies the sufficient conditions specified [27]. The lower bound on the
rate of our code affirmatively answers the conjecture in [27] that the rates of the
maximal codes satisfying the sufficient conditions increases with b.

Encoding and decoding complexity: As discussed in the previous chapter, an efficient
encoding for VT codes (both binary and non-binary) is available, and hence our codes
can also be efficiently encoded even for large segment sizes b, without the need for
look-up tables. As segment-by-segment decoding is enforced by design, the decoding
complexity grows linearly with the number of segments for both our codes and those in
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Table 3.1: Number of codewords per segment of the proposed codes. Lower bounds computed from
(3.4.3), (3.5.4), and (3.6.5) are given in brackets.

b Deletion Insertion Insertion-Deletion
8 8 (8) 6 (6) 1 (1)
9 13 (13) 10 (10) 2 (1)
10 24 (24) 18 (18) 2 (1)
11 44 (43) 33 (32) 2 (2)
12 79 (79) 60 (59) 4 (3)
13 147 (147) 111 (110) 6 (5)
14 276 (274) 208 (205) 12 (9)
15 512 (512) 384 (384) 16 (16)
16 964 (964) 724 (723) 34 (31)
17 1,824 (1,821) 1,368 (1,366) 59 (57)
18 3,450 (3,450) 2,588 (2,587) 114 (108)
19 6,554 (6,554) 4,916 (4,916) 206 (205)
20 12,490 (12,484) 9,369 (9,363) 399 (391)
21 23,832 (23,832) 17,847 (17,874) 746 (745)
22 45,591 (45,591) 34,194 (34,193) 1,435 (1,425)
23 87,392 (87,382) 65,544 (65,536) 2,736 (2,731)
24 167,773 (167,773) 125,831 (125,830) 5,257 (5,243)

[27]. Within each segment, the decoding complexity of our code is also linear in b, since
VT codes can be decoded with linear complexity [16]. In general, for each segment,
the maximal Liu-Mitzenmacher codes have to be decoded via look-up tables, in which
case the complexity is exponential in b. Using subsets of VT codes was suggested in
[27] as a way to reduce the decoding complexity.

Finally, we remark that codes proposed in this chapter are the first for the binary
segmented insertion-deletion model, and for all the non-binary segmented edit models.

3.1.2 Organization of the chapter

The remainder of the chapter is organized as follows. In Section 3.2, we formally define
the channel model. In Section 3.3, we derive an upper bound on the rate of any code
for a segmented edit channel, in terms of the segment length. In Sections 3.4, 3.5, and
3.6, we present our code constructions for the segmented deletion channel, segmented
insertion channel, and the segmented insertion-deletion channel, respectively. For each
model, we first treat the binary case to highlight the key ideas, and then extend the
construction to general non-binary alphabets.
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3.2 Channel model

The channel input sequence is denoted by X = x1x2 · · ·xn, with xi ∈ X for i = 1, · · · ,n,
where X = {0, · · · , q −1} is the input alphabet, with q ≥ 2. The channel input sequence
is divided into k segments of b symbols each. We denote the subsequence of X, from
index i to index j, with i < j by X(i : j) = xixi+1 · · ·xj . The i-th segment of X is
denoted by Si = si,1 · · ·si,b = X(b(i−1)+1 : bi) for i = 1, · · · ,k.

In the segmented deletion channel, the channel output Y = Y (1 : m) = y1 · · ·ym,
with m ≤ n is obtained by deleting at most one symbol in each segment, i.e., at most
one symbol in Si, i = 1, . . . ,k, is deleted. Similarly, in the segmented insertion channel,
the channel output Y = y1 . . .ym, with m ≥ n is obtained by inserting at most one
symbol per segment. In the segmented insertion-deletion channel, the channel output
is such that each segment Si, i = 1, . . . ,k undergoes at most one edit. In all cases, we
assume that the decoder knows k and b, but not the segment boundaries.

We consider coded communication using a code C = {X(1), . . . ,X(M)} ⊆ X n of
length n, M codewords and rate R = 1

n log2 M . We consider segment-by-segment
coding, where Ms is the number of codewords per segment. The overall code of length
n = kb has (Ms)k codewords, and rate

R = 1
n

log2(Ms)k (3.2.1)

= 1
b

log2 Ms. (3.2.2)

The decoder produces an estimate X̂ of the transmitted sequence. We denote
the corresponding segment estimates by Ŝi = ŝi,1 · · · ŝi,b, for i = 1, . . . ,k. Thus X̂ =
(Ŝ1, . . . , Ŝk). We consider zero error codes that always ensure the recoverability of the
transmitted sequence, i.e., codes for which X̂ = X.

3.3 Upper bound on rate

In this section, we derive an upper bound on the rate of any code for q-ary segmented
edit channels, for q ≥ 2. The upper bound is valid for all zero error codes, including
those that cannot be decoded segment-by-segment.
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Theorem 1. For each of the three segmented edit models, with segment length b, the
rate R of any zero error code with code length n = kb satisfies

R ≤ log2 q − 1
b

log2 b− 1
b

log2(q −1)+ 1
b

+ log2(2q)
kb

+O

(
lnb

b4/3

)
. (3.3.1)

Remarks:

1. In the theorem, the alphabet size q is held fixed as the segment size b grows. The
number of segments per codeword, k, is arbitrary, and need not grow with b.

2. The theorem is obtained via non-asymptotic bounds on the size and the rate
of any zero error code. These bounds, given in (3.3.30)–(3.3.35), may be of
independent interest.

3. The dominant terms in the upper bound may be interpreted as follows for the case
of the segmented deletion channel. For a noiseless q-ary input channel the rate is
log2 q bits/transmission. The log2 b/b term corresponds to a penalty required to
convey the run in which the deletion occurred in each segment. The log2(q −1)/b

term is a penalty required to convey the value of the deleted symbol.

Proof of Theorem 1. We give the proof for the segmented deletion model with segment
length b. The argument for the segmented insertion model is similar.

The proof technique is similar to that used by Tenengolts in [17, Theorem 2]. The
high-level idea is the following. The codewords are split into two groups: the first
group contains the codewords in which a large majority of segments have at least
b (q−1)

q −O(b2/3) runs. The other group contains the remaining codewords. As b grows
larger, the fraction of length b sequences with close to b (q−1)

q runs (the ‘typical’ value)
approaches 1. So we carefully bound the number of codewords in the first group, while
the number of codewords in the second group can be bounded by a direct counting
argument.

Consider a code C of length n = kb, i.e., each codeword has k segments of length
b. Let M = |C| = 2nR denote the size of the code. For integers r ≥ 0 and 0 ≤ l ≤ k,
define M(r, l) ⊂ C as the set of the codewords that have exactly l segments with more
than r runs. Let M(r, l) = |M(r, l)|. Note that for any r ≥ 0, we have

k∑
l=0

M(r, l) = M. (3.3.2)
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For any l ≤ k and a codeword x ∈ M(r, l), let ρl(x) denote the number of distinct
sequences of length (n− l) by deleting exactly l symbols from x, following the segmented
assumption. We then have

(r −1)l ≤ ρl(x). (3.3.3)

To show (3.3.3), we only need to consider r ≥ 3 as the inequality is trivial for r ≤ 2.
Considering the l segments that each have at least (r + 1) runs. There are at least
(r − 1)l ways of choosing one run from each segment so that the l chosen runs are
non-adjacent. For each such choice of l non-adjacent runs, we get a distinct subsequence
of length (n− l) by deleting one symbol from each run. This proves (3.3.3).

Since C is a zero error code, for two distinct codewords x1,x2 ∈ M(r, l), the set
of length (n− l) sequences obtained via l deletions (in a segmented manner) from x1

must be distinct from the corresponding set for codeword x2. We therefore have

qn−l ≥
∑

x∈M(r,l)
ρl(x) (3.3.4)

(a)
≥

∑
x∈M(r,l)

(r −1)l (3.3.5)

= M(r, l)(r −1)l, (3.3.6)

where (a) is obtained from (3.3.3). We therefore obtain

M(r, l) ≤ qn−l

(r −1)l
. (3.3.7)

Fix α ∈ (0,1). Summing (3.3.7) over αk ≤ l ≤ k, we obtain

∑
l≥αk

M(r, l) ≤
∑

l≥αk

qn−l

(r −1)l
(3.3.8)

≤ 2qn−αk

(r −1)αk
. (3.3.9)

Now define r′ as follows

r′ = (q −1)
q

b−
√

2κ(q −1)b lnb

q
, (3.3.10)
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where κ > log(2q)
logb will be specified later. We choose r = ⌈r′⌉. Using this r in (3.3.7),

and noting that n = kb, we have

∑
l≥αk

M(r, l) ≤ 2qkb−αk

(r −1)αk
(3.3.11)

≤ 2qkb−αk

(r′ −1)αk
(3.3.12)

= 2qkb

(b(q −1))αk
(

1−
√

2κq lnb
(q−1)b − q

(q−1)b

)αk
. (3.3.13)

For l < αk, we use the looser bound

M(r, l) ≤
(

k

k −1

)q
r−1∑
t=0

(q −1)t

(
b−1

t

)k−l

qbl, (3.3.14)

which is obtained as follows. We first choose the (k − l) segments with at most r

runs. Then, a segment with t runs is determined by the choice of the first symbol,
and the starting positions and values of the next (t−1) runs. There are q choices for
the first symbol,

(
b−1
t−1

)
choices for the starting position of the next (t −1) runs, and

(q −1)t−1 choices for the values of these runs. Therefore, the number of possible length
b sequences with at most r runs is q

∑r
t=1

(
b−1
t−1

)
(q − 1)t−1 = q

∑r−1
t=0

(
b−1

t

)
(q − 1)t. We

then obtain (3.3.14) by noting that: i) there are (k − l) segments with at most r runs,
and ii) there are at most qbl choices for the remaining l segments. We write the right
hand side of (3.3.14) as

(
k

k −1

)q
r−1∑
t=0

(q −1)t

(
b−1

t

)k−l

qbl

=
(

k

k −1

)qb+1
r−1∑
t=0

(
1− 1

q

)t(1
q

)b−t(
b−1

t

)k−l

qbl (3.3.15)

≤ 2kqbk+k−l

r−1∑
t=0

(
1− 1

q

)t(1
q

)b−t(
b−1

t

) k−l

. (3.3.16)

Now we prove that
r−1∑
t=0

(
1− 1

q

)t(1
q

)b−t(
b−1

t

)
≤ 1

bκ
. (3.3.17)



42 Segmented model

Let U be a Binomial
(
b, q−1

q

)
random variable, with mean µ = b(q−1)

q . Then, using
a standard Chernoff bound for a binomial random variable (see, for example [104,
Theorem 4.5]), we have for any ϵ > 0:

P(U ≤ µ(1− ϵ)) ≤ exp
(

−µϵ2

2

)
. (3.3.18)

Choosing ϵ =
√

2κq lnb
(q−1)b , we have

µ(1− ϵ) = b(q −1)
q

−
√

2κ(q −1)b lnb

q
(3.3.19)

= r′, (3.3.20)

where r′ is defined in (3.3.10). Using this in (3.3.18), we obtain

P(U ≤ r′) = P(U ≤ µ(1− ϵ)) (3.3.21)

≤ exp
(

−µϵ2

2

)
(3.3.22)

= b−κ, (3.3.23)

where the last equality is obtained by substituting the values of µ and ϵ. Finally, note
that

P(U ≤ r′) ≥ P(U ≤ (r −1))

=
r−1∑
t=0

(
1− 1

q

)t(1
q

)b−t(
b

t

)

≥
r−1∑
t=0

(
1− 1

q

)t(1
q

)b−t(
b−1

t

)
.

(3.3.24)

Combining (3.3.24) and (3.3.23) yields the desired inequality.

Using (3.3.17) to bound (3.3.16), and then substituting in (3.3.14), we obtain

M(r, l) ≤ 2kqbk+k−l

bκ(k−l) . (3.3.25)
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Summing over 0 ≤ l < αk and considering κ > log(2q)
logb , we obtain

∑
l<αk

M(r, l) ≤ 2kq(b+1)k

bκk

∑
l<αk

(
bκ

q

)l

(3.3.26)

≤ 2kq(b+1−α)k+1

bκ(1−α)k . (3.3.27)

Combining the bounds in (3.3.13) and (3.3.27), we have

M =
k∑

l=0
M(r, l) (3.3.28)

≤ 2qkb

(b(q −1))αk
(

1−
√

2κq lnb
(q−1)b − q

(q−1)b

)αk

+ 2kq(b+1−α)k+1

bκ(1−α)k (3.3.29)

≤ 2max{T1,T2} (3.3.30)

where

T1 = 2qkb

(b(q −1))αk
(

1−
√

2κq lnb
(q−1)b − q

(q−1)b

)αk
, (3.3.31)

T2 = 2kq(b+1−α)k+1

bκ(1−α)k . (3.3.32)

Therefore the rate can be bounded as

R = logM

kb
≤ 1

kb
+max

{
logT1

kb
,

logT2
kb

}
. (3.3.33)

From (3.3.31) and (3.3.32), we have

logT1
kb

≤ log2 q − α log2(b(q −1))
b

− α

b
log2

(
1−

√
2κq lnb

(q −1)b − q

(q −1)b

)
+ 1

kb
, (3.3.34)

logT2
kb

≤ log2 q − κ(1−α) log2 b

b
+ (1−α) log2 q

b

+ 1
b

+ log2 q

kb
. (3.3.35)
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Now choose α and κ as follows:

α = 1− 1
3√

b
, (3.3.36)

κ = α

1−α

log2(b(q −1))
log2 b

(3.3.37)

=
(

3√
b−1

) log2(b(q −1))
log2 b

. (3.3.38)

Note that we have α → 1 and 2κq lnb
(q−1)b → 0 as b → ∞. Using the fact that ln(1/(1−x)) ≤ 2x

for x ∈ (0,1/2] in (3.3.34), we have the following bound on T1 for sufficiently large b:

logT1
kb

≤ log2 q − α log2(b(q −1))
b

+ 1
kb

+ 2α

b ln2

(√
2κq lnb

(q −1)b + q

(q −1)b

)

= log2 q − log2(b(q −1))
b

+ log2(b(q −1))
b4/3

+ 1
kb

+ 2α

b ln2

(√
2κq lnb

(q −1)b + q

(q −1)b

)
.

(3.3.39)

Also substituting the values of α,κ from (3.3.36) and (3.3.38) in (3.3.35), we have

logT2
kb

≤ log2 q − log2(b(q −1))
b

+ 1
b

+ log2(b(q −1))
b4/3

+ log2 q

b4/3 + log2 q

kb
.

(3.3.40)

Finally, substituting the values of α,κ into the last term in (3.3.39), it can be seen
that this term is O(

√
lnb/b4/3), which yields the desired result.

3.4 Segmented deletion correcting codes

In this section, we show how to construct a segment-by-segment zero error code for
the segmented deletion channel. For simplicity, we first introduce binary codes and
explain the binary decoder. We then highlight the differences in the non-binary case.

If the decoder knew the segment boundaries, then simply using a VT code for each
segment would suffice. Since the segment boundaries are not known, recall from the
example in (3.1.1) that this approach is inadequate if segment-by-segment decoding is
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to be used. Our construction chooses a subset of a VT code for each segment, with
prefixes determined by the last symbol of the previous segment.

3.4.1 Binary code construction

For 0 ≤ a ≤ b, define the following sets.

A0
a , {S ∈ {0,1}b : syn(S) = a, s1s2 = 00},

A1
a , {S ∈ {0,1}b : syn(S) = a, s1s2 = 11}.

(3.4.1)

For c ∈ {0,1}, the set Ac
a ⊆ VTa(b) is the set of VT codewords that start with prefix

cc. We now choose the sets with the largest number of codewords, i.e., we choose A0
a0

and A1
a1 where we define

a0 = argmax
0≤a≤b

|A0
a|, a1 = argmax

0≤a≤b
|A1

a|. (3.4.2)

By defining Ms = min{|A0
a0 |, |A1

a1 |}, we can now construct A0 ⊆ A0
a0 by choosing any

Ms sequences from A0
a0 ; similarly construct A1 ⊆ A1

a1 by choosing any Ms sequences
from A1

a1 . The sets A0 and A1 are subsets of the VT codes VTa0(b) and VTa1(b),
containing sequences starting with 00 and 11, respectively.

Finally, the overall code of length n = kb is constructed by choosing a codeword for
each segment from either A0 or A1. The codeword for the first segment is chosen from
A0. The codeword for segment i = 2, . . . ,k is chosen as follows: if the last code bit in
segment (i−1) equals 0, then the codeword for segment i is chosen from A1; otherwise
it is chosen from A0.

3.4.2 Rate

The rate of the above codes can be bounded from below as

R ≥ 1− 1
b

log2(b+1)− 2
b
. (3.4.3)

Indeed, there are 2b−2 binary sequences of length b whose first two bits equal 0. Each
of these sequences belongs to exactly one of the sets A0

0, . . . ,A0
b . Therefore, the largest

among these (b+1) sets will contain at least 2b−2/(b+1) sequences and thus,

|A0
a0|≥ 2b−2

b+1 . (3.4.4)
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A similar argument gives the same lower bound for |A1
a1|, hence

Ms ≥ 2b−2

b+1 . (3.4.5)

Taking logarithms gives (3.4.3).
From (3.4.3), we see that the rate penalty with respect to VT codes is at most 2

b

due to the prefix of length 2. As an example, for b = 16 our code has 964 codewords,
while the greedy algorithm described in [27], gives 740; this is reduced to 652 when the
search is restricted to VT codes. More examples are reported in Table 3.1.

3.4.3 Decoding

Thanks to the segment-by-segment code construction, decoding will also proceed
segment by segment. Decoding proceeds in the following simple steps.

In order to decode segment i, for i = 1, . . . ,k, assume that the first i−1 segments
have been decoded correctly. Thus the decoder knows the correct starting position of
segment i in Y ; we denote it by pi +1.

By examining the last bit of segment (i−1), the decoder learns the correct syndrome
for the codeword in segment i, i.e., either a0 or a1; recall that segment 1 was drawn
from A0. Without loss of generality, assume it is a0; the decoding for a1 is identical.

1. The decoder computes the VT syndrome

â = syn(Y (pi +1 : pi + b)) (3.4.6)

and compares it to the correct syndrome (assumed to be a0). There are two
possibilities:

(a) â = a0: The decoder concludes that there is no deletion in segment i. This
is because if there was a deletion in segment i, then Y (pi + 1 : pi + b)
cannot have VT syndrome a0 unless Y (pi + 1 : pi + b) = Si — indeed, if
Y (pi + 1 : pi + b) ̸= Si, then both these length b sequences would have
syndrome a0 and Y (pi +1 : pi + b−1) as a subsequence, contradicting the
property of VT codes in (2.2.4).
In this case, the decoder outputs Ŝi = Y (pi +1 : pi +b). The starting position
of the next segment in Y is pi + b+1.

(b) â ̸= a0: The decoder knows that there is a deletion in segment i and feeds
Y (pi +1 : pi +b−1) to the VT decoder to recover the codeword. The output
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of the VT decoder is the decoded segment Ŝi. The starting position of the
next segment in Y is pi + b.

2. The decoder now checks the last bit of the decoded segment ŝi,b. If ŝi,b = 0, the
decoder knows that segment (i +1) has been drawn from A1; otherwise it has
been drawn from A0. Thus the decoder is now ready to decode segment (i+1).

3.4.4 Non-binary code construction

We now construct segmented deletion correcting codes for alphabet size q > 2. For
a = 0, . . . , b−1, and c = 0, . . . , q −1, define following sets:

Aj
a,c , {S ∈ X b : syn(AS) = a, sum(S) = c,s1, s2 ∈ X \{j}}, (3.4.7)

for j = 0, . . . , q −1. Now for each j = 0, . . . , q −1 define

{aj , cj} = argmax
0≤a≤b−1
0≤c≤q−1

|Aj
a,c|. (3.4.8)

Similarly to the binary case, the sets Aj
aj ,cj

for 0 ≤ j ≤ q − 1 are used to construct the
codebook. Choose the first segment from A0

a0,c0 . For encoding ith segment (i > 1) we
choose a word from Aj

aj ,cj
if j is the last symbol of segment i − 1. The size each set

Aj
aj ,cj

, for 0 ≤ j ≤ q −1, can be bounded from below as

Ms ≥ qb−2(q −1)2

qb
. (3.4.9)

Indeed, for any j ∈ {0,(q −1)}, there are qb−2(q −1)2 sequences of length b with the
first two symbols are not equal to j. Each of these symbols belong to one of the sets
Aj

a,c, where 0 ≤ a ≤ b−1, and 0 ≤ c ≤ q −1. Therefore the largest set has size at least
qb−2(q−1)2

qb . This gives a lower bound on the rate

R ≥ log2 q − 1
b

log2 b− 1
b

log2 q − 2
b

log2

(
q

q −1

)
. (3.4.10)

Decoding proceeds in a similar way to the binary case. The main difference is that
instead of computing (3.4.6), the decoder computes

â = syn(AZ), ĉ = sum(Z) (3.4.11)
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where
Z = Y (pi +1 : pi + b). (3.4.12)

Then, the conditions in cases 1) a) and 1) b) are replaced by {â = a0 and ĉ = c0} and
by {â ̸= a0 or ĉ ̸= c0}, respectively.

3.5 Segmented insertion correcting codes

3.5.1 Binary code construction

As in the deletion case, we define a subset of VT codewords such that upon decoding a
segment, there is no ambiguity in the starting position of the next segment. We define
the following set of sequences

Aa , {S ∈ {0,1}b : syn(S) = a, s1s2 = 01, s3s4 ̸= 01, S ̸= 011 · · ·1} (3.5.1)

and
a0 = argmax

0≤a≤b
|Aa|. (3.5.2)

Similarly to the previous section, the sets Aa ⊆ VTa(b) are sets of VT codewords with a
prefix of a certain form. Our code is thus the maximal code in this family, i.e., C = Ak

a0 .
In contrast to the deletion case, the codeword for each segment is drawn from the same
set Aa0 .

In order to find the size of the code, we use similar arguments to those in the
previous section. There are 2b−2 sequences with prefix 01, out of which 2b−4 are
removed because they have prefix 0101; 01 · · ·1 is excluded from Aa by construction.
Each of the 2b−2 − 2b−4 − 1 sequences belong to exactly one of the sets A0, . . . ,Ab.
Therefore, the largest of these b+1 sets will have size at least

|Aa0| ≥ 2b−2 −2b−4 −1
b+1 . (3.5.3)

This yields the following lower bound for the rate for b ≥ 6:

R ≥ 1− 1
b

log2(b+1)− 2.5
b

. (3.5.4)

Hence the rate penalty is at most 2.5
b due to the added constraints on the prefix.
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3.5.2 Decoding

Decoding proceeds on a segment-by-segment basis, and as in the case of deletions, the
code structure ensures that before decoding segment i, the previous (i−1) segments
have been correctly decoded. Thus the decoder knows the correct starting position of
segment i in Y ; as before, denote it by pi +1.

1. The decoder computes the VT syndrome

â = syn(Y (pi +1 : pi + b)) (3.5.5)

and compares it to the correct syndrome a0. There are two possibilities:

(a) â ̸= a0: The decoder knows that there has been an insertion in this segment
and feeds Y (pi +1 : pi + b+1) to the VT decoder to recover the codeword.
The output of the VT decoder is the decoded segment Ŝi. The decoder
proceeds decoding segment i+1, skipping step 2. The starting position in
Y for decoding segment i+1 is pi + b+2.

(b) â = a0: The decoder concludes that there is no insertion in Y (pi +1 : pi + b).
This is because if there was an insertion in segment i, then Y (pi + 1 : pi + b)
cannot have VT syndrome a0 unless Y (pi + 1 : pi + b) = Si — indeed, if
Y (pi + 1 : pi + b) ̸= Si, then both these length b sequences would have
syndrome a0 and Y (pi +1 : pi + b+1) as a supersequence, which contradicts
the property of VT codes in (2.2.4).
In this case, the decoder outputs Ŝi = Y (pi +1 : pi + b).

2. If case 1.b) holds, the decoder has to check whether ypi+b+1 could be an inserted
bit at the very end of the segment. To this end, the Y (pi + b +1 : pi + b +4) is
checked against the prefix conditions for segment i+1 set in Aa0 .

(a) If ypi+b+1ypi+b+2 ̸= 01: the decoder understands that there is an irregularity
caused by either an insertion in ypi+b+1, or in ypi+b+2 or both. Therefore it
deletes ypi+b+1 and proceeds to decode segment i+1 starting from ypi+b+2.

(b) If ypi+b+1ypi+b+2 = 01, ypi+b+3ypi+b+4 ̸= 01, then ypi+b+1 is the correct start
of segment i+1.

(c) If ypi+b+1ypi+b+2 = 01, ypi+b+3ypi+b+4 = 01: In this case, the decoder needs
to decide among three alternatives by decoding segment i+1:
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i. ypi+b+3 = 0 is an inserted bit in segment i + 1 and no inserted bit in
segment i; let Ỹ1 = ypi+b+1ypi+b+2ypi+b+4 · · ·ypi+2b+1 denote the length
b sequence resulting from deleting ypi+b+3 from the received sequence.
If syn(Ỹ1) = a0 then Ŝi+1 = Ỹ1.

ii. ypi+b+4 = 1 is an inserted bit in segment i + 1 and no inserted bit in
segment i; let Ỹ2 = ypi+b+1ypi+b+2ypi+b+3ypi+b+5 · · ·ypi+2b+1 denote the
length b sequence resulting from deleting ypi+b+4 from the received
sequence. If syn(Ỹ2) = a0 then Ŝi+1 = Ỹ2.

iii. ypi+b+1 = 0, ypi+b+2 = 1 are inserted bits in segments i and i+1, respec-
tively; let Ỹ3 = ypi+b+3ypi+b+4 · · ·ypi+2b+2 denote the length b sequence
resulting from deleting ypi+b+1,ypi+b+2 from the received sequence. If
syn(Ỹ3) = a0 then Ŝi+1 = Ỹ3.

When Y (bi+ 1 : bi+ 4) = 0101, we now show that the three cases listed in step 2.c)
are mutually exclusive, and hence only one of them will give a matching VT syndrome.
What needs to be checked is that the syndromes of Ỹ1, Ỹ2, Ỹ3 will all be different. From
the very properties of VT codes we know that syn(Ỹ1) ̸= syn(Ỹ2). Now find that

syn(Ỹ1)− syn(Ỹ3) (mod(b+1)) (3.5.6)

=
b∑

j=1
j ỹ1,j −

b∑
j=1

j ỹ3,j (mod(b+1)) (3.5.7)

= 5+
pi+2b+1∑

j=pi+b+5
yj −2− bypi+2b+2 (mod(b+1)) (3.5.8)

= 3+wH(Y (pi + b+5 : pi +2b+1))+ypi+2b+2

(mod(b+1)) (3.5.9)
̸= 0 (3.5.10)

where wH(Z) denotes the Hamming weight of sequence Z. The last step of (3.5.10)
holds because

3+wH(Y (pi + b+5 : pi +2b+1))+ypi+2b+2 (mod(b+1)) (3.5.11)

can equal to 0 only if wH(Y (pi + b + 5 : pi + 2b + 1)) = b− 3 and ypi+2b+2 = 1, implying
that both Ỹ1 = Ỹ3 = 011 · · ·1. Since this sequence has been explicitly excluded from the
codebook, we always have strict inequality, and hence syn(Ỹ1) ̸= syn(Ỹ3). Furthermore,
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Table 3.2: State of ypi+b+1 when â = a0 and ĉ = c0.

Y (pi + b+1 : pi + b+3) State of ypi+b+1 = 0 Starting point of next segment
001 No action (ypi+b+1 is not an insertion) pi + b+1
000 Delete the first zero (ypi+b+1 is an insertion) pi + b+2
010 Delete the 1 (ypi+b+1 may or may not be inserted) pi + b+1

since
syn(Ỹ2)− syn(Ỹ3) = syn(Ỹ1)− syn(Ỹ3)−1 (3.5.12)

is always non-zero, we conclude that there is no ambiguity at the decoder .

3.5.3 The Liu-Mitzenmacher conditions for binary segmented
codes

In [27], Liu and Mitzenmacher specified three conditions such that any set of binary
sequences satisfying these conditions is a zero error code for both the segmented
insertion channel and the segmented deletion channel. We list these conditions in
Section 3.6.4, and show that the segmented insertion correcting code Aa0 described
in Section 3.5.1 satisfies these conditions. This shows that the segmented insertion
correcting code can also be used for the segmented deletion channel, with the decoder
proposed in [27]. The deletion correcting code described in Section 3.4 has a slightly
higher rate than the insertion correcting code in in Section 3.5.1. Moreover, the
construction for the deletion case is more direct and can be generalized to non-binary
alphabets and the segmented insertion-deletion channel.

However, the binary deletion correcting code proposed in Section 3.4.1 (or more
precisely, the combined set of codewords A0

a ∪A1
a) cannot be guaranteed to satisfy the

Liu-Mitzenmacher conditions. Therefore, the construction in Section 3.4.1 may not be
a zero error code for the segmented insertion channel, even with an optimal decoder.

It was conjectured in [27] that the rate and size of the maximal code satisfying the
three sufficient conditions grows with b. As our insertion correcting code Aa0 satisfies
the sufficient conditions, the lower bounds on its rate and size given in (3.5.3) and
(3.5.4) confirm this conjecture.

3.5.4 Non-binary code construction

For the segmented insertion channel with alphabet size q > 2, we use prefix VT codes
similar to those for the binary case. In this case, however, we set a prefix of length
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3. This incurs a small penalty in rate with respect to the binary code described in
Section 3.5.1, but results in a slightly simpler decoder. Define the following sets for all
a = 0, . . . , b−1 and c = 0, . . . , q −1:

Aa,c ,{S ∈ X b : syn(AS) = a, sum(S) = c, s1s2s3 = 001}. (3.5.13)

Now choose the largest set as the codebook, i.e., C = Aa0,c0 where

{a0, c0} = argmax
0≤a≤b−1
0≤c≤q−1

|Aa,c|. (3.5.14)

Similar to the binary case, the number of codewords can be bounded from below as

Ms ≥ qb−3

qb
, (3.5.15)

which gives the following lower bound on the rate:

R ≥ log2 q − 1
b

log2 b− 4
b

log2 q. (3.5.16)

Decoding proceeds in a similar manner to the binary case. As the code is somewhat
different from the binary one, we give a few more details about the decoder. Assume
that the first (i−1) segments have been decoded correctly, and let pi +1 is the starting
point of the ith segment. Let

Z = Y (pi +1 : pi + b), (3.5.17)

and compute
â = syn(AZ), ĉ = sum(Z). (3.5.18)

1. â ̸= a0 or ĉ ̸= c0: The decoder knows that there has been an insertion in the ith
segment and feeds Y (pi + 1 : pi + b+ 1) to the non-binary VT decoder to recover
the codeword. The output of the VT decoder is the decoded segment Ŝi. The
starting position of the next segment in Y is pi + b+2.

2. â = a0 and ĉ = c0: The decoder concludes that there is no insertion in segment
i and outputs Ŝi = Y (pi + 1 : pi + b). The decoder must then investigate the
possibility of an insertion at the very end of the ith segment in order to find
the correct starting point of the next segment. This is done as follows. First, if
the symbol ypi+b+1 is not equal to 0, it is an insertion. The decoder deletes the



3.6 Segmented insertion-deletion correcting codes 53

inserted symbol, and the starting position for the next segment is (pi + b + 2).
Next, if ypi+b+1 = 0 and there is any symbol different from 0 or 1 in position
(pi + b + 2) or (pi + b + 3), it is an inserted symbol thanks to the binary prefix.
The decoder deletes the inserted symbol and sets the starting position of the
next segment to (pi + b+1). If neither of these cases hold, the decoder follows
Table 3.2.

3.6 Segmented insertion-deletion correcting codes

3.6.1 Binary code construction

Since we now have both insertion and deletions, the decoder must first identify the
type of edit in a segment prior to correcting it. Define the following sets:

A0
a , {S ∈ {0,1}b : syn(S) = a, s1s2s3s4s5 = 00111,

sb−2 = sb−1 = sb} (3.6.1)
A1

a , {S ∈ {0,1}b : syn(S) = a, s1s2s3s4s5 = 11000,

sb−2 = sb−1 = sb}. (3.6.2)

As in previous sections, these are subsets of VT codewords with certain constraints. In
this case, in order to be able to identify the edit type, both prefix and suffix constraints
have been added. Based on the above sets, we further define

a0 = argmax
0≤a≤b

|A0
a|, a1 = argmax

0≤a≤b
|A1

a| (3.6.3)

and Ms = min{|A0
a0|, |A1

a1|}. We construct the sets A0,A1 by choosing Ms sequences
from A0

a0 ,A1
a1 , respectively. Finally, the overall code of length n = kb is constructed by

choosing a codeword for each segment from either A0 or A1. The codeword for the
first segment is chosen from A0. For i ∈ {2, . . . ,k}, if the last bit of segment (i−1) is
0, then the codeword for segment i is drawn from A1 and otherwise from A0.

The size and rate are lower-bounded using the same arguments as in the previous
sections. For b ≥ 7, we obtain

Ms ≥ 2b−7

b+1 (3.6.4)
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which yields a rate lower bound given by

R ≥ 1− 1
b

log(b+1)− 7
b
. (3.6.5)

Due to the prefix and suffix constraints, our segmented insertion-deletion correcting
codes have a rate penalty of at most 7

b .

3.6.2 Decoding

As in the previous two cases, decoding proceeds segment-by segment. We ensure
that before decoding segment i, the previous (i−1) segments have all been correctly
decoded. Hence, the decoder knows the correct starting position in Y for segment i,
which is denoted by pi +1. The decoder also knows whether Si belongs to A0 or to A1.
We discuss the case where Si ∈ A0, so syn(Si) = a0; the case where Si ∈ A1 is similar,
with the roles of the bits reversed.

The decoder computes the syndrome syn(Y (pi +1 : pi + b)), and checks whether it
equals a0. There are two possibilities:

1. syn(Y (pi +1 : pi + b)) ̸= a0: This means that there is an edit in this segment, we
should identify the type of edit and correct it. We show that can be done without
ambiguity by using the fact that three last bits of each segment (suffix) are the
same, and considering prefix of the next segment. The decoder’s decision for
each combination of the three consecutive bits (ypi+b−1,ypi+b,ypi+b+1) is listed
in Table 3.3. Once the type of edit is known, the decoder corrects the segment
using the appropriate VT decoder. We now justify the decisions listed in Table
3.3.

(a) If ypi+b−1 = ypi+b = ypi+b+1: The edit is an insertion. To see this, assume
by contradiction that it was a deletion. Then at least one of ypi+b and
ypi+b+1 are the first bit of the prefix of Si+1, and ypi+b−1 is a suffix bit of
Si. This is not possible because by construction, the first two prefix bits of
Si+1 must be different from the suffix bits of Si.

(b) If ypi+b−1 = ypi+b ̸= ypi+b+1: The edit is a deletion. To see this, suppose
that the edit was an insertion; then the suffix condition can only be satisfied
if ypi+b+1 is the inserted bit. However, this implies that syn(Y (pi + 1 :
pi + b)) = a0, which is contradiction.

(c) If ypi+b−1 = ypi+b+1 ̸= ypi+b: The edit could be either an insertion, or a
deletion, according to the rules in lines 3, 4, 5 of Table 3.3. If the the edit is
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Table 3.3: Type of edit when syn(Y (pi +1 : pi + b)) ̸= a0

State of sequence Type of edit
ypi+b−1 = ypi+b = ypi+b+1 Insertion
ypi+b−1 = ypi+b ̸= ypi+b+1 Deletion

ypi+b−1 = ypi+b+1 ̸= ypi+b and syn(Z) ̸= a0, where Z = [Y (pi +1 : pi + b−1),ypi+b+1] Deletion
ypi+b−1 = ypi+b+1 ̸= ypi+b and syn(Z) = a0 and ypi+b+1 = ypi+b+2 = ypi+b+3 Deletion

ypi+b−1 = ypi+b+1 ̸= ypi+b and syn(Z) = a0 and (ypi+b+1 ̸= ypi+b+2 or ypi+b+1 ̸= ypi+b+3) Insertion
ypi+b−1 ̸= ypi+b = ypi+b+1 and ypi+b−2 = ypi+b−1 Deletion
ypi+b−1 ̸= ypi+b = ypi+b+1 and ypi+b−2 ̸= ypi+b−1 Insertion

an insertion, then ypi+b is the inserted bit, therefore by omitting this bit, the
sequence Z = [Y (pi +1 : pi +b−1),ypi+b+1] should have VT-syndrome equal
to a0. Therefore, if syn(Z) ̸= a0, then the edit is deletion; if syn(Z) = a0, we
need to check the prefix of the next segment to determine the type of edit.

If syn(Z) = a0: If ypi+b+1 = ypi+b+2 = ypi+b+3, then the edit in segment i is
a deletion (it can be verified that the prefix condition for segment (i + 1)
cannot otherwise be satisfied with at most one edit),. In all other cases the
edit in segment i is insertion, with ypi+b being the inserted bit. We observe
that when syn(Z) = a0, Si = Z with either type of edit, but the decoder
needs to infer the type of edit in order to guarantee the correct starting
position for the next segment.

(d) If ypi+b−1 ̸= ypi+b = ypi+b+1: In this case, ypi+b−2 determines the type of
edit: if ypi+b−2 = ypi+b−1 the edit is a deletion, otherwise it is an insertion.
This can be seen by examining the suffix condition: if the edit is an insertion
then ypi+b−1 is the inserted bit therefore ypi+b−2 belongs to suffix of Si,
hence ypi+b−2 = ypi+b = ypi+b+1. On the other hand, if the edit is a deletion,
then ypi+b−2 and ypi+b−1 belongs to suffix of Si, so they should be equal.

Hence we have shown that whenever syn(Y (pi +1 : pi + b)) ̸= a0, we can uniquely
decode Si and determine the correcting starting position for the next segment.

2. syn(Y (pi + 1 : pi + b)) = a0: In this case, by combining the arguments in step
1.a) of the deletion decoder and step 1.b) of the insertion encoder, we conclude
that Ŝi = Y (pi + 1 : pi + b). To determine the correct starting position for the
next segment, we have to investigate the possibility of an insertion at the end of
the block, i.e., determine whether ypi+b+1 is an inserted bit. This can be done
by examining the prefix of Si+1. We consider five bits, Y (pi + b+1 : pi + b+5),
and for all 32 cases determine the state of ypi+b+1. For the simplicity, assume
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Table 3.4: State of ypi+b+1 when syn(Y (pi +1 : pi + b)) = a0.

Y (pi + b+1 : pi + b+5) State of ypi+b+1

1uvst Inserted
000uv Inserted
011uv Not Inserted
01000 Not possible
01001 Inserted
01010 Not possible
01011 Not inserted
00100 Not possible

00101 and syn(Z1) matches Inserted
00101 and syn(Z2) matches Not Inserted

00110 Not Inserted
00111 Not Inserted

that the last bit of Si is 1, so that the prefix for Si+1 is 00111; the other case is
identical, with 0 and 1 interchanged.

First, if ypi+b+1 = 1, then it is an inserted bit (this is 16 of the 32 cases). Table
3.4 lists the type of edit for each of the other cases when ypi+b+1 = 0. These are
justified below.

(a) If Y (pi + b+1 : pi + b+5) = 011uv for some bits u,v, then ypi+b+1 is not an
insertion corresponding to segment i: if it was inserted, then decoding for
segment (i+1) would start with the bits 11 . . ., which cannot be matched
with the prefix 00111 with only one edit. Hence the correct starting position
for decoding segment (i+1) is pi + b+1.

(b) If Y (pi + b+1 : pi + b+5) = 000uv, then ypi+b+1 (or another 0 from the run)
is an insertion for segment i, as 000u does not match 0011 unless we remove
a zero form the run.

(c) The cases Y (pi + b+1 : pi + b+5) = 01000,01010, 00100 cannot occur as
they cannot be matched with the required prefix 00111 through any valid
edits for segment i+1, whether or not ypi+b+1 is inserted.

(d) If Y (pi + b+1 : pi + b+5) = 01001 , then ypi+b+1 is an insertion for segment
i as this is the only option consistent with the prefix 00111.

(e) If Y (pi + b+1 : pi + b+5) = 0011u or 01011, then ypi+b+1 = 0 is not an in-
sertion for segment i, and is the starting bit for decoding segment (i+1).
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(f) If Y (pi + b+1 : pi + b+5) = 00101, we need to compare the VT syndromes
of two sequences to determine the status of ypi+b+1. We will also decode
Si+1 in the process. If ypi+b+1 = 0 is inserted, then ypi+b+3 = 1 should also
be inserted, therefore Si+1 = Z1 where Z1 = [00,Y (pi + b+5 : pi +2b+2)].
On the other hand, if ypi+b+1 is not inserted then ypi+b+4 = 0 should be an
inserted bit, therefore, Si+1 = Z2 where Z2 = [001,Y (pi + b+5 : pi +2b+1)].
However, Z1 and Z2 will always produce different syndromes and only one
of them will be equal to a0, the correct syndrome for segment (i + 1). Thus
we can correctly identify whether ypi+b+1 was an insertion for segment i or
not.

Hence we have shown that whenever syn(Y (pi + 1 : pi + b)) = a0, we can uniquely
decode Si and determine the correcting starting position for the next segment.

The decoding algorithm described above was simulated in Matlab to confirm that
the code is indeed zero error. The Matlab files for implementing the codes proposed
for all three binary segmented edit models are available at [105].

3.6.3 Non-binary code construction

We now construct segmented insertion-deletion correcting codes for alphabet size q > 2.
For a = 0, . . . , b−1, and c = 0, . . . , q −1, define following sets:

A0
a,c ,{S ∈ X b : syn(AS) = a, sum(S) = c,

s1s2s3s4s5 = 00111, sb−2 = sb−1 = sb}, (3.6.6)
A1

a,c ,{S ∈ X b : syn(AS) = a, sum(S) = c,

s1s2s3s4s5 = 11000, sb−2 = sb−1 = sb}. (3.6.7)

For j = 0,1 define
{aj , cj} = argmax

0≤a≤b−1
0≤c≤q−1

|Aj
a,c|. (3.6.8)

We use the sets A0
a0,c0 and A1

a1,c1 to construct the codebook by alternating depending
on the last symbol of the previous segment. We set Ms = min{A0

a0,c0 ,A1
a1,c1} and

construct the sets A0,A1 by choosing Ms sequences from A0
a0,c0 ,A1

a1,c1 , respectively.
The codeword for the first segment is chosen from A0. For i ∈ {2, . . . ,k}, if the last
symbol of segment (i−1) is an even number, then the codeword for segment i is drawn
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from A1; if the last symbol of segment (i−1) is an odd number, the codeword is drawn
from A0.

The number of codewords per segment satisfies

Ms ≥ qb−7

qb
(3.6.9)

and thus a lower bound on the rate is

R ≥ log2 q − 1
b

log2 b− 8
b

log2 q. (3.6.10)

The decoding is almost identical to the binary case. As with previous decoders,
to decode segment i, it is assumed that the first (i−1) segments have been decoded
correctly. Let Z = Y (pi + 1 : pi + b), where pi + 1 is the starting position of the ith
segment. Compute

â = syn(AZ), ĉ = sum(Z). (3.6.11)

The decoder checks whether {â = a0 and ĉ = c0} or {â ̸= a0 or ĉ ̸= c0}. In the first case,
the decoder sets Ŝi = Y (pi +1 : pi +b) and in order to find the starting point of segment
i + 1, follows the same case breakdown as in the binary decoder (see case 2 of the
binary decoder). On the other hand, if {â ̸= a0 or ĉ ̸= c0}, thanks to the prefix-suffix
code structure being the same as the binary one, the decoder follows exactly the same
case breakdown (see case 1 of the binary decoder) in order to identify the type of edit
and correct it.

3.6.4 The Liu-Mitzenmacher conditions

Let I1(X) denote the set of all sequences obtained by adding one bit to the binary
sequence X. Then C ⊆ {0,1}b is a binary zero error code for both the segmented
insertion channel and the segmented deletion channel (with segment length b) if the
following conditions are satisfied.

1. For any U,V ∈ C, with U ̸= V , I1(U)∩I1(V ) = ∅;

2. For any U,V ∈ C, with U ̸= V , prefix(I1(U))∩ suffix(I1(V )) = ∅;

3. Any string of the form y∗(zy)∗ or y∗(zy)∗z, where y,z ∈ {0,1}, is not in C.

Here prefix(X) denotes the subsequence of X obtained excluding the last bit, suffix(X)
the subsequence obtained excluding the first bit, and X∗ is the regular expression
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notation referring to 0 or more copies of sequence X. The set prefix(I1(U)) is defined
as {prefix(X) : X ∈ I1(U)}. The set suffix(I1(V )) is defined similarly.

We now show that the insertion correcting code Aa0 defined in Section 3.5.1 satisfies
these conditions. Since Aa0 is a subset of a VT code and is hence a single insertion
correcting code, the first condition is satisfied.

We next verify the third condition. All the codewords in Aa0 start with 01. It is
easy to see that any sequence starting with 01 and violating the third condition in
either of the two ways must have 0101 as its first four bits. But these sequences are
excluded from Aa0 , so each codeword in Aa0 satisfies the third condition.

It remains to prove that the second condition is satisfied. Assume towards
contradiction that there exist codewords U,V ∈ Aa0 such that U ̸= V and the set
W = prefix(I1(U))∩ suffix(I1(V )) is non-empty. Suppose that the sequence Z ∈ W,
and Z1 ∈ I1(U) and Z2 ∈ I1(V ) are length (b + 1) sequences such that that Z =
prefix(Z1) = suffix(Z2).

Since U ∈ Aa0 and Z1 ∈ I1(U), prefix(Z1) will start with a 0, unless the inserted bit
in Z1 is a 1 and is inserted exactly at the beginning of U , i.e., unless Z1 = [1,U ]. Also,
since Z2 ∈ I1(V ), suffix(Z2) will start with 1 unless Z2 is obtained by adding a bit at
the beginning of V , i.e. Z2 = [h,V ], for h ∈ {0,1}. Since Z = prefix(Z1) = suffix(Z2),
clearly one of the above two cases should hold. First, assume that Z starts with 1 and
therefore we have Z1 = [1,U ]. Now since U ∈ Aa0 starts with 01, we have

Z = prefix(Z1) (3.6.12)
= Z1(1 : b) (3.6.13)
= [1,U(1 : b−1)] (3.6.14)
= [101,U(3 : b−1)]. (3.6.15)

Now we also know that Z = suffix(Z2), so suffix(Z2) = [101,U(3 : b−1)]. Now, notice
that Z2 ∈ I1(V ) and first bit of V is 0, so the first two bits of Z2 cannot be 11. We
therefore have

Z2 = [0101,U(3 : b−1)]. (3.6.16)

But we know that V ∈ Aa0 cannot start with 0101, so either the third or the fourth
bit in Z2 is the inserted bit. Therefore, we know that

V = [01z,U(3 : b−1)], (3.6.17)
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for z ∈ {0,1}. We also know that

U = [01,U(3 : b−1),ub], (3.6.18)

where ub ∈ {0,1}. But this contradicts condition 1 (which has already been verified)
because we obtain the same length (b+1) sequence by: i) inserting ub to the end of V ,
and ii) inserting z after the second bit of U .

Next consider the second case where Z starts with a 0. As explained above, we
then have Z2 = [h,V ], and hence, Z = suffix(Z2) = V . Therefore prefix(Z1) = V , so one
can obtain Z1 by adding the last bit of Z1 to V . Therefore Z1 ∈ I1(U)∩I1(V ), which
is a contradiction. This completes the proof that Aa0 satisfies all the three conditions.



Chapter 4

Multilayer codes

4.1 Introduction

Consider two remote nodes having binary sequences X and Y , respectively, where Y

is an edited version of X. The goal in this chapter is to construct a message M such
that the second node (decoder) can reconstruct X using M and Y . In the majority of
this chapter, we consider the edits to be deletions. In Section 4.8, we briefly consider
the case with both insertions and deletions. Let the length of X be n bits, and the
number of deletions be k. Thus, Y is a sequence of length m = (n − k), obtained by
deleting k bits from X. As discussed in Chapter 1, in the synchronization model shown
in Fig. 4.1, the node with X (the “encoder”) sends a message M via an error-free link
to the other node (the “decoder”), which attempts to reconstruct X using M and Y .
The goal is to design a scheme so that the decoder can reconstruct X with minimal
communication, i.e., we want to minimize the number of bits used to represent the
message M .

The deletion model is a simplified version of the general file synchronization model
where the edits can be a combination of deletions, insertions, and substitutions. The
general synchronization model has a number of applications including file backup (e.g.,
Dropbox) and file sharing. Various forms of the synchronization model have been
studied in previous works; see, e.g., [60–62, 64–67]. A number of these works allow for
two-way interaction between the encoder and decoder. In contrast, we seek codes for
one-way synchronization: the message M is produced by the encoder using only X,
with no knowledge of Y except its length m. We assume that the decoder knows n, so
it can infer the number of deletions k = (n−m). The message M belongs to a finite
set M with cardinality |M|.
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Encoder M = E(X) Decoder
X

Y

X̂

Figure 4.1: Synchronization Model

In this chapter, we construct a code based on multiple layers of VT codes for
synchronization from deletions when the number of deletions k is small compared to n.
The output of the decoder is a small list of sequences that is guaranteed to contain
the correct sequence X. We observe from simulations that with a careful choice of the
code parameters, the list size rarely exceeds 2 or 3; for reasonably large n, the list size
can be made 1, i.e., X is exactly reconstructed. For example, we construct a code of
length n = 378 that can synchronize from k = 7 deletions with R = 0.365, and a length
n = 2800 code which can synchronize from k = 10 deletions with R = 0.135. (Details
are provided in Section 4.4.) We later show how to modify the decoder (keeping the
same encoding scheme) to reconstruct a combination of up to k insertions and deletions.
Also in Section 4.9 we discuss how the proposed multilayer code can be used in a
deletion channel setup.

4.1.1 Overview of the code construction

The starting point for our code construction is VT codes. The VT code gives an elegant
way to exactly synchronize from a single deletion: the encoder simply sends the VT
syndrome of the sequence X. The decoder then uses the single deletion correcting
property of the VT code to recover the deleted bit.

Remark 4.1. The VT syndrome is known to be optimal for recovering one deletion.
This is because there are exactly n+1 distinct sequences that can be obtained by inserting
one bit into a length n−1 sequence (see (2.3.11)). Therefore, the encoder in order to
signal these sequences needs at least n+1 messages.

In our model, the code needs to synchronize from k > 1 deletions. The encoder
sends the VT syndromes of various substrings of X to the decoder. Specifically, the
length n sequence X is divided into smaller chunks of nc bits each. The encoder
then computes VT syndromes for two kinds of substrings: blocks which are composed
of adjacent chunks, and chunk-strings which are composed of well-separated chunks.
Fig. 4.2 shows an example where X of length 12 is divided into 4 length-3 chunks.
The blocks B1 and B2 are each formed by combining two adjacent chunks, while the
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C1
1 = x1x2x3 C1

2 = x4x5x6 C2
1 = x7x8x9 C2

2 = x10x11x12

C1 = x1x2x3x7x8x9 C2 = x4x5x6x10x11x12

B1 = x1x2x3x4x5x6 B2 = x7x8x9x10x11x12

Figure 4.2: Blocks and chunk-strings structure for the example where l1 = l2 = 2

chunk-strings C1 and C2 are each formed by combining two alternate chunks. In this
case, the encoder sends the VT syndromes of B1,B2,C1, and C2.

The intersecting VT constraints of blocks and chunk-strings help the decoder to
estimate locations of the edits. The VT syndromes serve a dual purpose: i) they can
be used to recover deleted bits in blocks or chunk-strings inferred to have a single
deletion; this recovery may result in new blocks and chunk-strings with a single deletion;
ii) the VT syndromes also act as checks that eliminate a large number of potential
deletion patterns, allowing the decoder to localize the deletions to a relatively small
set of chunks. The final element of the message is a parity check syndrome of X

using a linear code. This is used to recover the deletions in chunks that still remain
uncertain at the decoder after processing the intersecting VT constraints. We refer
to this code construction as a two-layer code as the chunks are combined to form
two kinds of intersecting substrings. The construction can be generalized to combine
chunks in multiple ways to form many layers of intersecting substrings (see Section
4.10.2). Increasing the number of constraints in the code improves its synchronization
capability at the cost of increasing the rate.

For decoding, we use a list decoder. The output of the decoder is the list of all
length n sequences that can be obtained by inserting k bits into sequence Y , and
satisfy VT constraints and the parity check constraints that are imposed via message
M . The correct sequence X is always in the list. List decoding has also been recently
used in [106] for the case of multiple deletions. Specifically, a lower bound is found for
the maximum list size when the code has a single VT constraint, and it is shown that
the list size can grow exponentially with the length of the code.

4.1.2 Comparison between erasure and deletion errors

Using multiple VT constraints for recovering multiple deletions seems a natural approach
if one compares the two cases of deletion and erasure errors. Assume that the sequence
Y (at the decoder) suffers from only a single erasure, and encoder wants to send the
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message M such that the decoder recovers the erasure. In this case, as the position of
the error is known it suffices to send the binary summation of bits in X to the decoder.
Now consider the case when Y suffers from multiple erasures; linear codes are the
simplest codes that can be used in this setup (e.g., LDPC codes). That means we
will send the binary summation of various subsequences of X to the decoder. Now in
comparison with the deletion error, when there is only one deletion in Y , VT syndrome
of X suffices for recovering the single deletion. In this work we are considering using
multiple VT constraints of various subsequences of X for the case when Y suffers from
multiple deletions.

4.1.3 Structure of the chapter

The remainder of this chapter is structured as follows. In Section 4.2, we explain
the encoding scheme which can be used for synchronizing from deletion or insertions.
Then in Section 4.3, we describe the decoding algorithm for synchronization from
deletions. In Section 4.4, we provide the simulation results for the proposed encoding
and decoding algorithm. In Section 4.5, we analyze the complexity of the encoding
and decoding schemes. In Section 4.6 we explain how the decoding algorithm can be
modified in order to work without the linear parity check constraints in message M .
In Section 4.7, we introduce a new simple method for recovering deletions. Using this
method we can provide a new interpretation of the decoder which we use to give an
upper bound for the list size. In Section 4.8, a modified decoder is described that
can correct a combination of insertions and deletions. The next section studies two
approaches to use multilayer code in a deletion channel setup. Section 4.10 discusses
two extensions of the proposed code construction and a short summary of the work.

4.2 Code construction and encoding

The message M generated by the encoder consists of three parts, denoted by M1,M2,
and M3. The first part comprises the VT syndromes of the blocks, the second part
comprises the VT syndromes of the chunk-strings, and the third part is the parity
check syndrome of X with respect to a linear code.

The first step is to divide X = x1x2 · · ·xn into l1 equal-sized blocks (assume that n

is divisible by l1). The length of each block is denoted by nb = n
l1

. For 1 ≤ i ≤ l1, the ith
block is denoted by Bi = X((i−1)nb +1 : inb), and its VT syndrome is sBi

= syn(Bi).
The first part of the message is the collection of VT syndromes for the l1 blocks, i.e.,
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M1 = {sB1 , sB2 , · · · , sBl1
}. Since each sBi

is an integer between 0 and nb, the number
of bits required to represent the VT syndromes of the l1 blocks is l1⌈log(nb +1)⌉.

For the second part of the message, we divide each of the blocks into l2 chunks,
each of size nc bits. We assume that n

l1
is divisible by l2; the length of X is n = ncl1l2.

For 1 ≤ j ≤ l2, the jth chunk within the ith block is denoted by

Ci
j = X((i−1)nb +(j −1)nc +1 : (i−1)nb + jnc). (4.2.1)

The jth chunk-string is then formed by concatenating the jth chunk from each of the
l1 blocks. That is, the jth chunk string Cj = [C1

j ,C2
j , · · · ,C l1

j ], for 1 ≤ j ≤ l2. Fig. 4.2
shows the blocks and the chunk-strings in an example where X of length n = 12 is
divided into l1 = 2 blocks, each of which is divided into l2 = 2 chunks of nc = 3 bits.

The second part of the message is the collection of VT syndromes for the l2

chunk-strings, i.e., M2 = {sC1 , sC2 , · · · , sCl2
}, where sCj

denotes the VT syndrome of
the jth chunk string. Since the length of each chunk-string is ncl1, each sCj

is an
integer between 0 and ncl1. Therefore the number of bits required to represent the VT
syndromes of the l2 chunk-strings is is l2⌈log(ncl1 +1)⌉.

The final part of the message is the parity check syndrome of X with respect to a
linear code. Consider a linear code of length n with parity check matrix H ∈ {0,1}z×n.
Then M3 = HX is the third component of M . The coset of the linear code containing
X will be used as an erasure correcting code. In our experiments in Section 4.4, the
linear code is chosen to be either a Reed-Solomon code, or a random linear code
defined by a random binary parity check matrix. The number of bits in M3 is equal
to the number of rows of H, i.e., number of binary parity checks in the code, z.
The overall number of bits required to represent the message M = [M1,M2,M3] is
l1⌈log(nb +1)⌉+ l2⌈log(ncl1 +1)⌉+ z.

Since nb = ncl2, normalizing by n = ncl1l2 gives the synchronization rate Rsync of
our scheme

Rsync = z

n
+ ⌈log(ncl2 +1)⌉

ncl2
+ ⌈log(ncl1 +1)⌉

ncl1
. (4.2.2)

Example 4.1. Suppose that we want to design a code for synchronizing a binary
sequence of length n = 60 from k = 4 deletions. Choose the chunk length nc = 4, so that
there are 15 chunks in the string. Divide the string into l1 = 5 blocks, each comprising
l2 = 3 chunks. Thus there are 5 blocks each consisting of 3 adjacent chunks, and 3
chunk-strings each consisting of 5 separated chunks.

Noting that each chunk of nc = 4 bits corresponds to a symbol in GF (24), we use a
Reed-Solomon code defined over GF (24) with length 24 −1 = 15. We also choose the
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parity check matrix to have 4 parity check equations in GF (24), so we can recover 4
erased chunks using this Reed-Solomon code.

Assume that the sequence X in GF (24) is

X = [4 10 5 0 3 14 7 7 1 0 2 4 4 6 8]T .

Each symbol above represents a chunk of nc = 4 bits. The first block [4 10 5] in binary
is B1 = 0100 1010 0101. The VT syndrome of this sequence is sB1 = syn(B1) = 10. The
VT syndromes of the other four blocks are 6,3,4, and 11, respectively. We therefore
have M1 = {10,6,3,4,11}.

We similarly compute M2. The first chunk-string [4 0 7 0 4] in binary is

C1 = 0100 0000 0111 0000 0100,

with VT syndrome sC1 = 11. Computing the VT syndromes of the other chunk-strings
in a similar manner, we get M2 = {11,20,4}.

The final part of the message is the syndrome of X with respect to the Reed-Solomon
parity check matrix. We use the following parity check matrix H in GF (24):

H =


1 1 1 1 · · · 1
1 2 4 8 · · · 214

1 4 3 12 · · · 22(14)

1 8 12 10 · · · 23(14)


to compute M3 = HX = [11,6,13,2]T . As z = 16 bits are needed to represent the
parity check syndrome, the total number of bits to convey the message is 5⌈log(13)⌉+
3⌈log(21)⌉+16 = 51 bits.

4.3 Decoding algorithm

The goal of the decoder is to recover X given Y , n and the message M = [M1,M2,M3].
From M1,M2, the decoder knows the VT syndrome of each block and each chunk-string.
Using this, the decoder first finds all possible configurations of deletions across blocks,
and then for each of these configurations, it finds all possible chunk deletion patterns.
Since each chunk is the intersection of a block and a chunk-string, each chunk plays a
role in determining exactly two VT syndromes. The intersecting construction of blocks
and chunk-strings enables the decoder to iteratively recover the deletions in a large
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Figure 4.3: Tree representing the valid block vectors for Example 4.2.

number of cases. The decoder is then able to localize the positions of the remaining
deletions to within a few chunks. These chunks are considered erased, and are finally
recovered by the erasure-correcting code.

The decoding algorithm consists of six steps, as described below.

Step 1: Block boundaries

In the first step, the decoder produces a list of candidate block-deletion patterns
V = (a1, · · · ,al1) compatible with Y , where ai is the number of deletions in the ith
block. Each pattern in the list should satisfy ∑l1

i=1 ai = k with 0 ≤ ai ≤ k. The list of
candidates always includes the true block-deletion pattern. It is convenient to represent
the candidate block-deletion patterns as branches on a tree with l1 levels, as shown in
Fig. 4.3. At every level (block) i = 1, . . . , l1, branches are added and labeled with all
possible values of ai. Specifically, the tree is constructed as follows.

Level 1 of the tree: Consider the first nb received bits Y (1 : nb), compute its VT
syndrome u = syn(Y (1 : nb)) and compare it with sB1 , the correct syndrome of the first
block. There are two alternatives for the k branches of the first level.

1. u = sB1 : First, the decoder adds a branch with a1 = 0, corresponding to the
case that the first nb bits are deletion-free. The first block cannot have just one
deletion, because in this case the single-deletion correcting property of the VT
code would imply that u ̸= sB1 . However, it is possible that two or more than
two deletions happened in block one, and by considering additional bits from the
next block, the VT-syndrome of first nb bits accidentally matches with sB1 . For
example, consider blocks of length nb = 4, and let the first two blocks of X be
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0100 1111 . . ., with the underlined bits deleted we get Y = 001111 . . .. In this
case u = sB1 = 2. The decoder thus adds a branch for a1 = 0,2, . . . ,k.

2. u ̸= sB1 : Block one contains one or more deletions and the decoder adds a branch
for a1 = 1,2, . . . ,k.

Level i + 1, 1 ≤ i < l1: Assume that we have constructed the tree up to level i.
Consider a branch of the tree at level i with the number of deletions in blocks 1 through
i given by a1,a2, · · · ,ai, respectively. This gives us the starting position of block (i + 1)
in Y . Denote this starting position by

pi+1 = nbi−di +1. (4.3.1)

where di =∑i
j=1 aj is the number of deletions on the branch up to block i. Compute

the VT syndrome of next nb bits u = syn(Y (pi+1 : pi+1 +nb −1)). There are two
alternatives:

1. u = sBi+1 : If (k −di) < 2 then the only possibility is that ai+1 = 0. If (k −di) ≥ 2,
k −di −1 branches are added for ai+1 = 0,2, . . . ,k −di.

2. u ̸= sBi+1 : If (k −di) > 0 then there are (k −di) possibilities at this branch: the
ith block can have 1,2, · · · ,(k −di) deletions. If (k −di) = 0, it is assumed this is
an invalid branch, and the path is discarded.

Example 4.2. Assume k = 3 deletions, l1 = 3 blocks, and that the true deletion pattern
is (0,2,1), i.e., there are zero deletions in the first block, two deletions in second block,
and one deletion in third block. The tree constructed by the decoder depends on the
underlying sequences X and Y . In Fig. 4.3, we illustrate one possible tree constructed
for this scenario without explicitly specifying X and Y .

Assume that in the first step, the syndrome matches with sB1, so we have a1 = 0,2,
or 3 . At node b (corresponding to a1 = 0), suppose that the syndrome does not match
with sB2, so we have a2 = 1,2, or 3. Now suppose that at nodes c and d, the syndrome
does not match with sB2. At node d, a1 = 3, so there are no more deletions available for
the second block; so this branch is discarded. At node c, a1 = 2, so the only possibility
is one deletion in the second block. Then if the syndrome at node h does not match sB3,
the branch is discarded. At nodes e and f, we assign the remaining deletions to the last
block. At node g, the syndrome does not match with a3, and the branch is discarded.
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Step 2: Primary fixing of blocks

Denote by L1 the list of the block-deletion pattern candidates after the first step and
denote the corresponding block-deletion patterns by V1, · · · ,V|L1|. In this second step,
for each of the block-deletion patterns, we restore the deleted bit in blocks containing
a single deletion by using the VT decoder. Specifically, for a block-deletion pattern
V = (a1, · · · ,al1), let the ith block of Y with respect to V be S = Y (pi : pi +nb −1)
where pi is the starting position of the ith block in Y , defined analogously to (4.3.1).
If ai = 1, feed the sequence S to the VT decoder and in Y , replace S with the decoded
sequence. After this, the ith block in Y is deletion free, thus, the decoder updates
the block-deletion pattern V by setting ai = 0. We carry out this procedure for all
blocks with one deletion in V . This results in a sequence Ŷ , which is obtained from
Y by recovering the single-deletion blocks corresponding to block-deletion pattern V .
Denote the updated version of block-deletion pattern V by V̂ . Thus at the end of
this step, we have |L1| updated candidate sequences Ŷ1, · · · , Ŷ|L1| with corresponding
block-deletion patterns V̂1, · · · , V̂|L1|.

Example 4.3. Consider the code of Example 4.1 with l1 = 5 blocks, and k = 4 deleted
bits. If the list of block-deletion patterns at the end of the first step is

V1 = (1,1,1,1,0), V2 = (1,1,2,0,0),
V3 = (1,2,1,0,0), V4 = (2,0,2,0,0),

then the updated list of block-deletion patterns is

V̂1 = (0,0,0,0,0), V̂2 = (0,0,2,0,0),
V̂3 = (0,2,0,0,0), V̂4 = (2,0,2,0,0).

Step 3: Chunk boundaries

In this step, for each updated block-deletion pattern V̂ and the corresponding Ŷ , we list
all possible allocations of deletions across chunks. More precisely, for each pair (V̂ , Ŷ )
we list all possible l1 × l2 matrices A = (aij), where aij is the number of deletions in the
jth chunk of the ith block, such that ∑l2

j=1 aij = ai, the ith entry of V̂ . The jth column
of matrix A, specifies the number of deletions in the l1 chunks of the jth chunk-string.
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For example, some of the possible matrices for V̂4 = (2,0,2,0,0) in Example 4.3 are

A1 =



1 1 0
0 0 0
0 1 1
0 0 0
0 0 0


, A2 =



2 0 0
0 0 0
0 1 1
0 0 0
0 0 0


, A3 =



1 0 1
0 0 0
1 0 1
0 0 0
0 0 0


. (4.3.2)

The algorithm that lists all chunk-deletion matrices A compatible with a given block-
deletion pattern V̂ = (a1, . . . ,al1) is very similar to the tree construction described in
Step 1. In this case, for each block-deletion pattern V̂ , another tree will be constructed,
with each path in the tree representing a valid chunk-deletion matrix A.

Level 1 of the tree: Construct a sequence S by concatenating the first nc bits of
each block in Ŷ and compute its VT syndrome u = syn(S). There are two possibilities:

1. u = sC1 : For the first chunk-string, list all valid chunk-deletion patterns of the
form (a11, . . . ,al11), where 0 ≤ ai1 ≤ ai, and ∑l1

i=1 ai1 ̸= 1, since a single deletion
in the chunk-string would result in u ̸= sC1 .

2. u ̸= sC1 : List all valid chunk-vectors for the first chunk-string of the form
(a11, . . . ,al11), where 0 ≤ ai1 ≤ ai, and ∑l1

i=1 ai1 ≥ 1.

Level j, 1 < j ≤ l2: Assume that we have constructed the tree up to layer j − 1.
Thus, we know the number of deletions in each chunk of the first (j − 1) chunk-strings.
From this, we can determine the total number of deletions in the first (j −1) chunks
of each block. Let di,j−1 denote the number of deletions in the first (j −1) chunks of
block i. Then along this path, the jth chunk of ith block in Ŷ is

Sij = Ŷ
(
pi +(j −1)nc −di,j−1 : pi + jnc −di,j−1 −1

)
.

Form the jth chunk-string, Sj = [S1j , · · · ,Sl1j ], compute its VT syndrome u = syn(Sj),
and compare it with the correct syndrome sCj

. There are two possibilities.

1. u = sCj
: List all valid chunk-deletion patterns for the jth chunk-string of the

form (a1j , . . . ,al1j), where 0 ≤ aij ≤ ai −di,j−1, and ∑l2
i=1 aij ̸= 1.

2. u ̸= sCj
: List all valid chunk-deletion patterns for the jth chunk-string of the form

(a1j , . . . ,al1j), where 0 ≤ aij ≤ ai − di,j−1, and ∑l2
i=1 aij ≥ 1. If the list is empty,

discard the branch. The list will be empty when there are no more deletions to
assign to jth chunk-string.
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At the end of step 3, the decoder provides a list of pairs (Ŷ ,A), where Ŷ is a candidate
sequence to be decoded using the chunk-deletion pattern matrix A, with aij being the
number of deletions in the jth chunk of the ith block. Denote the number of such pairs
in the list by |L3|.

Step 4: Iterative correction of blocks and chunk-strings

Similarly to step 2, in step 4 we use the VT syndromes (known from M1 and M2) to
recover deletions in blocks and chunk-strings for which the matrix A indicates a single
deletion. Whenever a deletion recovered using a VT decoder lies in a chunk different
from the one indicated by A, the candidate is discarded. Simulations results in Section
4.4 indicate that this is an effective way of discarding several invalid candidates (see
Table 4.2). The iterative algorithm is described below. For each pair (Ŷ ,A):

i) For each column of A containing a single 1 (indicating a single deletion in the
corresponding chunk-string), recover the deleted bit in the chunk-string using its
VT syndrome. With some abuse of notation we still refer to the restored sequence
as Ŷ . If the restored bit does not lie in the expected chunk indicated by the 1,
discard the pair (Ŷ ,A) and move to the next candidate pair. Otherwise, update
the matrix A by replacing the 1s corresponding to the restored chunks by 0s. If
there is a row in the updated matrix A with a single 1, proceed to step 4.ii).

ii) For each row of A containing a single 1 (indicating a single deletion in the
corresponding block), recover the deleted bit in the block using its VT syndrome.
Again, with some abuse of notation we still refer to the restored sequence as Ŷ .
If the restored bit does not lie in the expected chunk indicated by the 1, discard
the pair (Ŷ ,A) and move to the next pair. Otherwise, update the chunk-deletion
matrix by replacing the 1s corresponding to the restored chunks to 0s. If there is
a column in the updated matrix A with a single 1, go to step 4.i).

Denote the updated candidate pairs at the end of this procedure by (Ỹ ,Ã), and
assume there are |L4| of them.

As an illustrative example, consider the three chunk-matrices given in (4.3.2). In
A1, we can successfully recover all the deletions. In A2, we can only fix two deletions
in the third block. However, for A3, we cannot recover any of the deletions. Thus, the
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updated Ã matrices are

Ã1 =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0


, Ã2 =



2 0 0
0 0 0
0 0 0
0 0 0
0 0 0


, Ã3 =



1 0 1
0 0 0
1 0 1
0 0 0
0 0 0


. (4.3.3)

In Section 4.6, we discuss a method to recover remaining deletions using VT constraints
and bypassing the fifth step (where we use linear codes).

Step 5: Replacing deletions with erasures

In this step, for each of the |L4| surviving pairs (Ỹ ,Ã), we replace each chunk of Ỹ that
still contains deletions with nc erasures. Hence, if there are ν chunks with deletions
(where 1 ≤ ν ≤ k), the resulting sequence will have length n, with ncν erasures and
no deletions. Notice that this operation of replacing with erasures can be performed
without ambiguity since Ã precisely indicates the starting position of each chunk and
also the number of deletions within that chunk.

The purpose of the linear code is to recover from the remaining erasures. The
minimum distance of the linear code should be large enough to guarantee that we can
resolve all the νnc erased bits. In Example 4.1, as there are four deletions, we will have
at most ν = 4 erased chunks, so we choose a Reed-Solomon code with 4 parity check
equations in GF (24). The chunk-matrix Ã3 in (4.3.3) shows that a smaller number of
parity check symbols will not suffice if we want to correct all deletion patterns.

Some invalid candidates may be discarded in the process of correcting the erasures
as we may find that the parity check equations cannot be solved. We denote the
number of remaining candidates at the end of this step by |L5|.

Remark 4.2. Note that when the decoder uses the linear code to recover an erased
chunk, it can check that whether the recovered chunk is a supersequence of the erased
chunk. We can discard a candidate if this is not the case for one of the erased chunks.
We do not check this condition in our simulations but we will use this condition in
Section 4.7.3 to derive an upper bound for the list size.
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Step 6: Discarding invalid/identical candidates

The reconstructed sequences at the end of Step 5, denoted by X̂, all have length n and
are deletion free. For each of the |L5| sequences X̂, we check the VT and parity-check
constraints for each of the block and chunk-strings and discard those not meeting any
of the constraints. At the end of Step 5 it is possible to have multiple copies of the
same sequence. This is due to a deletion occurring in a run that intersects two chunks
(or more); this deletion can be interpreted as a deletion in either chunk, and each
interpretation leads to seemingly different candidates which will turn out to be the
same at the end of the process. The surviving |L6| distinct sequences comprise the
final list produced by the decoder.

The final list of reconstructed sequences comprises all length-n sequences that can be
obtained by adding k bits to Y and also satisfy all the VT and parity check constraints.
The correct sequence is always among the |L6| candidates. The synchronization
algorithm is said to be zero error if and only if |L6|= 1 for all sequences and deletion
patterns. When |L6|> 1, the list size can be further reduced if additional hash functions
or cyclic redundancy checks are available from the encoder.

4.4 Numerical examples

In this section, we present numerical results illustrating the performance of the syn-
chronization code for various choices of the system parameters. The different setups
considered for the numerical examples are shown in Table 4.1. For each setup, the
performance was recorded over 106 trials. In each trial, the sequence X and the
locations of the k deletions were chosen independently and uniformly at random. For
the first five setups, we used parity check constraints from a Reed-Solomon code over
GF (2nc) with code length (2nc −1). For example, in setup 5 we used 7 parity check
constraints from a Reed-Solomon code over GF (26), hence z = 42 bits are needed to
represent the parity check syndrome. In the last two setups, denoted with an asterisk,
we used a random binary linear code, i.e., z binary parity check constraints drawn
equiprobably.

Table 4.2 shows the list sizes of the number of candidates at the end of various steps
of the decoding process. Recall that |L1| is the number of candidate block-deletion
patterns at the end of step 1, |L3| is the number of pairs (Ŷ ,A) at the end of step
3, |L4| is the number of pairs (Ỹ ,Ã) at the end of step 4, and |L6| is the number of
sequences X̂ in the final list. The average of |Li| over one million trials is denoted by
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Table 4.1: Number of deletions k, code length n, and code parameters for each setup.

k n l1 l2 nc z R

Setup 1 3 60 5 3 4 4 0.650
Setup 2 3 60 5 3 4 8 0.717
Setup 3 3 60 5 3 4 12 0.783
Setup 4 4 60 5 3 4 16 0.850
Setup 5 7 378 9 7 6 42 0.365
Setup 6 7 486 9 9 6 50∗ 0.325
Setup 7 10 2800 20 20 7 60∗ 0.135

Table 4.2: List size after each step.

E|L1| E|L3| E|L4| E|L6| max|L6| P[|L6|> 1]
Setup 1 1.87 1.92 1.42 1.003 3 0.003
Setup 2 1.87 1.92 1.42 1.000 2 2.5×10−5

Setup 3 1.87 1.92 1.42 1 1 0
Setup 4 3.39 6.18 2.53 1 1 0
Setup 5 11.51 74.43 3.42 1 1 0
Setup 6 11.20 28.64 2.55 1 1 0
Setup 7 12.76 26.16 1.57 1 1 0

E|Li|. The column max|L6| shows the maximum size of the final list across the one
million trials. The column P[|L6|> 1] shows the fraction of trials for which |L6|> 1.

The first three setups have identical parameters, except for the number of Reed-
Solomon parity checks. This shows the effect of adding parity check constraints on
the list size and the rate. Adding more parity check constraints improves the decoder
performance by reducing the number of trials with list size greater than one, at the
expense of a rate increase.

The fourth setup is precisely the code described in Example 4.1. It has the same
values of (nc, l1, l2) as the first three setups but with a larger number of deletions
and of parity check constraints. We observe that increasing the number of deletions
(with nc, l1, l2 unchanged) increases the average number of candidates in the different
decoding steps. In general, choosing l1 ≥ k ensures that the average list size after step
1 is small.

The fifth setup is a larger code with length n = 378 and can handle a larger number
of deletions (k = 7). Though the final list size is always one, there are a large number
of candidates at the end of the third step; this increases the decoding complexity.
Comparing this with setup six, we observe that increasing l2 significantly reduces
the number of candidates at the end of the third step. This is because increasing
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l2 increases the number of chunk-string VT constraints, which allows the decoder to
eliminate more candidates while determining chunk boundaries.

The last setup is a relatively long code. Although the average number of candidates
in each of the decoding steps is not very high, we found that a small fraction of trials
have a very large number of candidates, resulting in considerably slower decoding for
these trials.

4.5 Complexity analysis

In this section we discuss the number of required operations for constructing the
encoded message M = [M1,M2,M3] and for the decoding algorithm. Computing the VT
syndrome of a length m sequence needs O(m) arithmetic operations. For constructing
M1 we need to compute VT syndrome of l1 blocks, each of length nb = ncl2. This can
be done with O(ncl1l2) operations. Similarly, for M2 we need O(ncl2l1) arithmetic
operations. Recalling that n = ncl1l2, both M1 and M2 can be computed with O(n)
operations. Recall that M3 = HX is constructed via multiplication of a z ×n matrix
into a length n vector. This requires O(zn) operations. This is the dominant term in
the encoding complexity, therefore, the overall complexity of the encoder is O(zn).

In the following, we analyze the decoding complexity by finding an upper bound
for the complexity of each of the six decoding steps.

Step 1: Block boundaries

In the first step, we construct a tree for finding all the candidates for block boundaries.
At each node of the tree, a VT syndrome of a length nb sequence is computed and
compared with the syndrome known from M1. The tree has l1 levels. The number of
nodes in level i (1 ≤ i ≤ l1 −1) can be upper bounded by the number of non-negative
integer solutions of the following inequality:

a1 + · · ·+ai ≤ k. (4.5.1)

Recall that aj shows the number of deletions in the jth block. For the last level of the
tree, the number of nodes is upper bounded by the number of non-negative integer
solutions of the following equation:

a1 + · · ·+al1 = k. (4.5.2)



76 Multilayer codes

The number of integer solutions for each equation in (4.5.1) is bounded by the number
of solution to the equation in (4.5.2), which is

(
k+l1−1

k

)
. Hence, there are at most

l1
(

k+l1−1
k

)
nodes in the tree. Therefore, an upper bound for the number of required

operations in this step is:
(

k + l1 −1
k

)
× l1 ×O(nb) = O

(
n

(
k + l1 −1

k

))
. (4.5.3)

Note that in the above upper bound, we did not take into account that the solutions
of (4.5.1) and (4.5.2) should be consistent with the VT syndrome of blocks. As
explained in the decoding section, many of the branches of the tree will get discarded
because of inconsistency with VT constraints. The average number of nodes at the final
level of the tree (denoted by E|L1|) is particularly important since it will determine
the average complexity of the next steps of the decoding. In table 4.3, we compare
the empirical value of E|L1| (from Table 4.2) with

(
k+l1−1

k

)
, the upper bound for |L1|

obtained from (4.5.2). The considerable difference between these two numbers shows
the importance of using VT codes, which not only recover deletions but also decrease
the complexity of the decoding algorithm by reducing the number of possibilities that
need to be considered in the next steps. This lower complexity allows us to have
relatively long code lengths like the code in setup 7 (see Table 4.1).

Table 4.3: Comparison of average number of surviving paths.

Setup 1 to 3 Setup 4 Setup 5 Setup 6 Setup 7
E|L1| 1.87 3.39 11.51 11.20 12.76(
k+l1−1

k

)
35 70 6.4×103 6.4×103 2.0×107

In Figures 4.4 and 4.5, we show how the empirical average E|L1| changes with the
parameters of the code. The contributing parameters on L1 are k, l1 and nb (recall
that nb = l2nc). In Figure 4.4, where k and nb are fixed, it can be seen that although(

k+l1−1
k

)
(the upper bound on |L1|) increases with l1, E|L1| decreases. This is because

a given solution of equation (4.5.2) will not be in the list L1 when it is not consistent
with a block VT constraint. In particular, if ai = 0, the VT syndrome of the sequence
corresponding to ith block should match with the correct syndrome known from M1.

Figure 4.5 shows that E|L1| decreases with nb as well. The reason for this is that, as
explained in the decoding section, sometimes a VT syndrome of a sequence accidentally
matches with the correct VT syndrome. These accidental matches can increase the
number of compatible deletion patterns at the end of the tree search. A block VT
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Figure 4.4: Empirical average E|L1| for different values of l1 when k = 8, l2 = 7, and nc = 6.

syndrome is a number between 0 and nb, therefore, the probability of an accidental
match decreases as nb increases.

Step 2: Primary fixing of blocks

In the second step, we use block VT syndromes to recover deletions in single-deletion
blocks, there are at most l1 such blocks. Since the VT decoding complexity is linear in
nb (the length of each block), the complexity for this step is

|L1|×l1 ×O(nb) = O (n|L1|) . (4.5.4)

Step 3: Chunk boundaries

In this step, we find all possibilities for the number of deletions in each chunk by
performing the tree search on each of the block deletion patterns produced in the
first step. Consider V = (a1, · · · ,al1) to be one of these deletion patterns. After the
second step of the decoding, assume that there are s blocks with non-zero number of
deletions. Without loss of generality, assume that a1 to as are non-zero. Since they are
not recovered in the second step of the decoding we know that ai > 1, also ∑s

i=1 ai ≤ k.
Similar to the first step, the number of non-negative integer solutions of the following
set of equations is an upper bound for the number of nodes in the last level of the tree
which can also serve as an upper bound for the other levels. Recall that aij represents
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Figure 4.5: Empirical average E|L1| for different values of nc when k = 8, l1 = 9, and l2 = 7.

the number of deletions in the jth chunk of the ith block.

a11 +a12 + · · ·+a1l2 = a1

a21 +a22 + · · ·+a2l2 = a2
...

asl2 +asl2 + · · ·+asl2 = as,

(4.5.5)

To bound the complexity of this step we need the following definition and lemma.

Definition 4.1. For a real number x and an integer number a we define
(

x
a

)
as follows:

(
x

a

)
,

x(x−1) · · ·(x−a+1)
a! . (4.5.6)

When x is an integer, this definition reduces to the normal binomial coefficient.

Lemma 4.1. The number of non-negative integer solutions of the set of equations in
(4.5.5) when ∑s

i=1 ai = k, ai ≥ 0, and s and l2 are positive integers, is upperbounded by
(

k/s+ l2 −1
l2 −1

)s

. (4.5.7)

Proof. See Section 4.11.3.

Lemma 4.1 shows that (4.5.7) is an upperbound for the number of nodes in each
level of the tree. Since the summation of ai’s is k and ai ≥ 2 for each i, s is a number
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between 1 and k
2 . The derivative of (4.5.7) with respect to s is positive when s > 1.

Therefore, s = k
2 maximizes (4.5.7). Thus an upper bound for the number of nodes in

each level of the tree is

max
1≤s≤ k

2

(
k/s+ l2 −1

l2 −1

)s

=
(

l2 +1
l2 −1

)k
2

=
(

l2 +1
2

)k
2
. (4.5.8)

Therefore we have

|L3|≤ |L1|
(

l2 +1
2

)k
2
. (4.5.9)

At each node of the tree, we compute the VT syndrome of a length ncl1 sequence and
compare it with the syndrome known from M2. Therefore, the complexity of this step
is

|L3|×l2 ×O(ncl1) ≤ O

n|L1|
(

l2 +1
2

)k
2
 (4.5.10)

= O
(
n|L1|(l2/

√
2)k

)
. (4.5.11)

Similar to the first step, many of the solutions of (4.5.5) are not compatible with
VT syndromes of chunk-strings. The following table compares the empirical value of
E|L3| with the upper bound in (4.5.9), and shows the importance of VT constraints in
eliminating the number of compatible deletion patterns.

Table 4.4: Comparison of average number of surviving paths after the third step.

Setup 1 to 3 Setup 4 Setup 5 Setup 6 Setup 7
E|L2| 1.92 6.18 74.43 28.64 26.16

E|L1|
(

l2+1
2

)k/2
27.48 122.04 1.3×106 6.8×106 5.2×1012

Step 4: Iterative correction of blocks and chunk-strings

In this step, we iteratively use the VT decoder for blocks and chunk strings to recover
deletions. Each of the VT checks will be used at most once. Since there are l1 blocks
and l2 chunk-strings an upper bound for the complexity is

|L3|×(l1 ×O(ncl2)+ l2 ×O(ncl1)) = O (n|L3|) . (4.5.12)
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Recall from the decoding algorithm that some of the candidates will be discarded in
this step, therefore, |L4|≤ |L3|.

Step 5: Replacing deletions with erasures

In this step, we use the linear equations for recovering the erased chunks. There are
at most k erased chunks and hence knc bits erased. Hence, the complexity of finding
solutions for the set of linear equations can be upper bounded by

O
(
n3|L4|

)
. (4.5.13)

We discard a candidate if there is no solution for the linear equations; therefore
|L5|≤ |L4|.

Step 6: Discarding invalid/identical candidates

In this step, we compute the VT syndrome of blocks and chunk-strings for all the
candidates on the list and compare them with the known syndromes. Hence the
complexity is

E|L4|×O(n). (4.5.14)

Summary

In this section, we have computed the complexity of the encoding and the different steps
of the decoding. An upper bound for the decoding complexity (not considering the
effect of VT codes in eliminating candidates) is O

(
n3
(

k+l1−1
k

)
( l2√

2)k
)
. If one assumes

that k, l2, and l1 are fixed and the length of the code is increased by increasing nc,
then the complexity of the decoding is O(n3) while the complexity of the encoding is
O(n).

4.6 Guess-based VT decoding
In this section, we suggest an alternative way of decoding which does not rely on
linear parity checks. The purpose of linear codes is to recover deletions that cannot
be directly recovered using the intersecting VT constraints. Here we first characterize
these deletions, and then show how to recover them using only VT constraints. The
main advantage of this approach is the rate reduction, which comes at the expense of
an increased list size.
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A0 =


1 1 0 0 0
0 0 0 0 0
1 0 1 0 0
0 1 1 0 1
0 0 0 0 0

 ⇐⇒

B1

C1

B2

C2

B3

C3

B4

C4

B5

C5

B6

C6

Figure 4.6: Bipartite graph corresponding to Matrix A0

4.6.1 Unresolved deletions in step four

Here we explain which deletions cannot be recovered by means of the iterative algorithm
in the fourth step of decoding, for a given chunk-deletion matrix produced in the third
step. We use a graph representation for the chunk-deletion matrix to illustrate this.

Definition 4.2. Define a bipartite graph G = (B,C) associated with each chunk-deletion
matrix A. There is a vertex in set B corresponding to each block (rows of A) and a
vertex in set C corresponding to each chunk-string (columns of A). For any non-zero
element of A, like aij, there will be aij edges between the ith vertex in B and jth vertex
in C.

After each iteration in the fourth step, we update the graph with respect to the
updated deletion matrix. We will adopt usual definitions of paths and cycles from
graph theory. In particular, if there are two edges between two vertices, we consider
that as a cycle of length 2. For example, consider the matrix A0 defined below, The
bipartite graph G given in Figure 4.6 represents this matrix. Here vertex Ci represents
the ith column (chunk-string) of the matrix and Bi represents ith row (block). The
deletion corresponding to edge between B4 and C5 will be recovered as it is the only
deletion in the fifth chunk-string. But the other deletions will remain unresolved as
they form a cycle in the graph. In general, in a given step of the iterative algorithm, we
will recover a deletion if and only if the corresponding edge in the graph is connected
to a vertex of degree one. Consequently, when the iterative algorithm finishes, there
will be no degree one vertex. The following result determines the graph configurations
that result in deletions that cannot be recovered.

Proposition 4.1. A deletion occurring in the jth chunk of the ith block will not be
recovered by means of the iterative algorithm if and only if, the corresponding edge,
BiCj, in the graph G belongs to a cycle, or belongs to a path between two cycles.

Proof. Consider an unrecovered edge BiCj which does not belong to a cycle. As the
degree of Bi is greater than one, we can find a vertex other than Cj connected to Bi.
Similarly, the degree of that vertex is greater than one, hence we can continue this
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procedure. Since the graph is finite we revisit a vertex which means there is a path
from Bi to a cycle. By repeating this argument for Cj , we conclude that BiCj is in a
path which connects two cycles.

4.6.2 Guess-based decoding

Here we show how to recover the remaining deletions from step four of the decoding
using VT constraints only by guessing bits to break cycles in the bipartite graph. Since
there are no parity check constraints, the new rate is:

R = ⌈log(ncl2 +1)⌉
ncl2

+ ⌈log(ncl1 +1)⌉
ncl1

, (4.6.1)

which is a saving of z
n over the rate in (4.2.2). Consider the matrix A0 and its

corresponding graph given in Figure 4.6. If we recover one of the deletions in the cycle,
then we can recover all other remaining deletions using the iterative algorithm (as
there is no other cycle in the graph). This motivates us to guess the deleted bit in
one of the chunks in the cycle. For instance, we can guess the deleted bit in the first
chunk. Since the first chunk length is (nc −1), there are (nc +1) distinct sequences that
can be obtained by inserting one bit into this chunk. In general, number of distinct
supersequences that can be obtained by inserting a bits in a length (nc − a) binary
sequence is [91]

a∑
j=0

(
nc

j

)
≤ (nc +1)a. (4.6.2)

The decoder can run the iterative algorithm of the fourth step on each of the nc +1
obtained sequences. Since there are no other cycles in the graph, the iterative algorithm
will either successfully find all the remaining deletions, or discard the sequence due
to the incompatibility of the position of the recovered bits with their expected chunk
(known from A0). The decoder then forwards the remaining sequences, which now are
of length n, to the sixth step of the decoding algorithm (bypassing the fifth step).

In general, in order to find which deletions need to be guessed, Proposition 4.1
indicates that it is necessary and sufficient to remove a number of edges such that
there are no more cycles in the graph. Hence, the minimum number of edges that need
to be removed to make the graph acyclic is equal to the minimum number of bits that
need to be guessed. Denote this number by q. If there are c connected components
in the graph with α1, · · · ,αc vertices, then a∗ = e− (∑c

i=1 αi)+ c, where e is the total
number of edges in the graph (total number of deletions). Using equation (4.6.2),
(nc +1)a∗ is an upper bound for the number of different possibilities for the guessed
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Table 4.5: Number of deletions and code parameters for each setup.

k n l1 l2 nc z Rsync (R′
sync)

Setup 8 3 60 5 3 4 0 (4) 0.583 (0.650)
Setup 9 3 60 5 3 6 0 (6) 0.444 (0.511)
Setup 10 4 60 5 3 4 0 (16) 0.583 (0.850)
Setup 11 4 60 5 3 6 0 (24) 0.444 (0.711)

Table 4.6: List size distribution.

|L6|= 1 |L6|= 2 |L6|= 3 |L6|> 3 max|L6|

Setup 8 92.7% 6.3% 0.91% 0.09% 6
Setup 9 85.9% 10.2% 2.8% 1.1% 10
Setup 10 84.3% 12.8% 2.3% 0.6% 13
Setup 11 71.9% 18.2% 6.1% 3.8% 25

sequence. In our algorithm, the decoder chooses one of the edges in a cycle uniformly
at random, removes it by guessing a bit in the corresponding chunk, and then performs
the iterative algorithm on the updated graph and discard inconsistent candidates. If
there are any unresolved deletions, it chooses another edge from a cycle uniformly at
random and repeat the algorithm until there are no more edges in the graph.

In the following, we present the result of simulations for the setups listed in Table
4.5. The performance was recorded over 106 simulation trials. Setup 8 and 10 are
similar to setups 1 and 4 in Section 4.4 respectively. The only difference is that there
is no linear code in setups 8 and 10. The rate R′

sync in brackets is the higher overall
rate when linear codes were used. The first three columns in Table 4.6 show the
percentage of trials in which the final list size was exactly 1, 2, and 3 respectively. The
fourth column shows the number of trials with more than 3 candidates on the final list.
Finally, the last column shows the largest list size over all 106 trials. Comparing setups
8 and 10 in Table 4.6 with setups 1 and 4 in Table 4.2 shows a significant increase
in the probability of having more than one candidate on the final list. Comparing
setups 8 and 9 shows that increasing nc decreases the rate (see (4.6.1)), but increases
the average list size. The reason for this is that, in the cases where deletion pattern
contains cycles, the number of possible guesses increases with nc. The same effect
can be observed by comparing setups 10 and 11. Also comparing the setup 8 with 10
(and also 9 with 11) shows that increasing k will increase the list size. Guess-based
iterative decoding is effective if we are willing to tolerate list sizes greater tan one with
non-negligible probability.
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4.7 Recovering deletions using erasure codes and
hashes

In this section we first propose a simple code for recovering deletions using erasure
codes and random hashes. Then we show the connection between Guess and Check
codes [76] and this method. This method also provides an alternative interpretation to
the multilayer code which we will use to find a bound for the list size.

Let us revisit the main problem. We want to construct a message M for recovering
length n binary sequence X = x1x2 · · ·xn from its length (n−k) subsequence Y . We can
interpret this problem as having k erasures in some unknown positions of the sequence
Y . There are

(
n
k

)
ways for choosing positions of k erasures. Given the positions of the

erasures in Y , one can use an erasure code to reconstruct X. For recovering k erasures
we need a code with minimum distance of k +1. For different values of n and k various
codes are suggested in the literature with minimum distance of at least k +1 and lower
bounds are also available on the rate of such a code (e.g. see Gilbert-Varshamov bound
[107, Chapter 4]). Here we denote the rate of a code with minimum distance of at least
k +1 with Rk+1.

Notice that there are
(

n
k

)
possibilities for guessing the positions of erasures which

gives us up to
(

n
k

)
different reconstructed sequences. Denote these sequences by

X1,X2 · · · ,Xt where t ≤
(

n
k

)
. Since we are considering all possibilities, the correct

position of the erasures will be also considered, hence, X is among X1 to Xt. A natural
way to find X is using a number of random hash functions to discard other sequences.
This hash function can have different forms. For now consider a universal hash function
which is define for the sequence X as follows.

h(X) =
n∑

i=1
gixi (mod s), (4.7.1)

where gi’s are uniformly distributed over {0,1, · · · , s}, and s is an arbitrary positive
integer. If the jth reconstructed sequence Xj ̸= X, then h(Xj) will be a random
number in {0,1, · · · , s}. Assume that Xj = xj1 · · ·xjn,

h(Xj)−h(X) =
n∑

i=1
gi(xji −xi) (mod s), (4.7.2)

since Xj ̸= X there exist some i where xji ̸= xi, thus h(Xj) − h(X) is uniformly
distributed over {0,1, · · · , s}. Hence, the probability of h(Xj) = h(X) is 1

s .
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Consider r different hashes h1,h2, · · · ,hr which are independently produced (i.e.
their coefficients are independently and uniformly produced from {0,1, · · · , s}). Similarly
one can show that if Xj ̸= X, the probability of hp(Xj) = hp(X) for all 1 ≤ p ≤ r, is(

1
s

)r
.

For the sequence X, we construct the message M by concatenating Rk+1 bits of
the erasure code and r hashes h1(X), · · · ,hr(X). Therefore, the number of required
bits to represent M is Rk+1 + r⌈logs⌉.

At the decoder we consider all
(

n
k

)
possibilities for positions of erasures in Y . For

each of them we use the first k bits of M to recover the erasures. This will give
us sequences X1, · · · ,Xt. Now for all 1 ≤ j ≤ t we compute h1(Xj), · · · ,hr(Xj) and
compare it with h1(X), · · · ,hr(X) (known from M). If Xj satisfies all r constraints
imposed by the hashes, we put Xj in the final list. We know that X will be in the list.
If the list size is 1, then we have successfully decoded X.

Denote the final list by Lr. As discussed earlier for any Xj ̸= X the probability of
Xj ∈ Lr is

(
1
s

)r
. Thus we have the following upper bound for the expected list size,

E|Lr|≤
(

n

k

)(1
s

)r

+1. (4.7.3)

The number of required hashes in order to constraint the expected value of the list size
to be less than two can be derived by imposing that(

n

k

)(1
s

)r

≤ 1. (4.7.4)

Notice that
(

n
k

)
can be upper bounded by

(
en
k

)k
(the proof is simple noting that

ek > kk

k! ). Hence, a sufficient condition for s and r is

(
en

k

)k

≤ sr. (4.7.5)

This gives r logs ≥ k log(en/k). Thus the number of required bits to represent M is

Rk+1 + ⌈r logs⌉ ≤ Rk+1 +k⌈log en

k
⌉. (4.7.6)

One should note that we need to consider all
(

n
k

)
possibilities for the decoding which

is computationally expensive. The following subsection explains how to decrease
complexity in expense of rate.
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4.7.1 Rate, complexity tradeoff

Consider again the problem of recovering X from Y . Divide the sequence X into
chunks of length nc, thus we have n = lnc. Here, X((i−1)nc +1 : inc) is the ith chunk
of the sequence. Now assume that Y can be obtained from X by deleting αi bits from
ith chunk of X. Therefore,

l∑
i=1

αi = k. (4.7.7)

We call any integer vector (α1, · · · ,αk) which satisfies (4.7.7) with αi ≥ 0, a deletion
pattern. The number of different deletion patterns can be upper bounded by

(
l+k−1

k

)
which is the number of integer (non-negative) solutions of (4.7.7) (the bound is exact
if nc ≥ k).

In contrast with the previous section where we guess the positions of deletions, here
we guess the deletion pattern. Thus, we will not know the exact position of a deletion
but just the chunk that contains it. For the decoding, when a chunk contains deletions,
we replace the entire chunk with nc erasures and then use an erasure code to recover
erased chunks. We should modify the encoding process of the previous section, by
considering each chunk as a symbol sending k parity check symbols from an MDS code
for recovering erasures. Note that the alphabet size is 2nc . Thus, we need knc bits for
sending these parity check symbols. Here again, we use r random hashes defined in
(4.7.1).

If we use the same estimation method for the number of required hashes, we have(
l +k −1

k

)(1
s

)r

≤ 1. (4.7.8)

Here, the LHS is an upper bound for the expected number of the sequences that survive
the hashes. We can upper bound the binomial term using Lemma 4.2,(

l +k −1
k

)
≤
(

en

nck
+1

)k

. (4.7.9)

Therefore, the number of required bits to represent M is

k(nc − lognc)+k log e(n+knc)
k

. (4.7.10)

By comparing (4.7.6) and (4.7.10), one can notice that by increasing nc the rate also
increases almost linearly. In exchange, number of possibilities that need to be checked
(and thus the complexity) is decreasing by the factor of nk

c .
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4.7.2 Relationship with guess and check code

The guess and check code proposed in [76] can be compared with the method we
introduced in this section. In that work, the length n sequence X is divided into chunks
of length logn. Therefore, we have l = n

logn . Then the message M is consist of c MDS
parity checks where c > k. Hence, we can consider k of the parity checks as the erasure
code and the other c−k as the hashes (r = c−k).

The decoding algorithm is similar to what we suggest in the previous subsection.
The decoder consider all

(
k+l−1

k

)
possibilities for the deletion positions. Use k erasure

code to recover the erased chunk and then check whether the recovered sequence
satisfies the other c−k parity checks (hashes).

Note that each hash is a symbol with logn bits, thus it represents a number between
0 and (n−1). Therefore, using the notation in this section we have s = n. Now (4.7.8)
suggests to choose r ≥ k which means c ≥ 2k, this is exactly the condition found in [76].
Of course, the importance of the analysis given in [76] is that it proves the vanishing
error (by bounding probability of error) when c > 2k while the argument proposed here
is an approximation. Since it was for a random hash and it is not clear that can be
generalized the MDS parity checks used in [76].

In general, an advantage of multilayer codes in comparison with the code in [76] is
the lower complexity of the decoding. As discussed in Section 4.5, different layers of
VT codes significantly decrease the number of cases that the decoder needs to check
(see Table 4.3), whereas in [76] all possibilities should be visited by the decoder. The
existence of rigorous analysis for error probability of the coding scheme in [76] is an
advantage for guess and check method. In the following we give an upper bound for
the list size of Multilayer code.

4.7.3 List size analysis for Multilayer code

Assume that the linear code in a multilayer code is capable of recovering k erased chunks.
This means that the minimum distance of the linear code is at least knc + 1 (which
implies z ≥ knc). In the multilayer construction we have l = l1l2 chunks. Therefore, if
we use the decoding procedure that we described in this section, there are

(
k+l1l2−1

k

)
solutions for the following equation (deletion patterns) which the decoder needs to
check.

a11 +a12 + · · ·+al1l2 = k, (4.7.11)

where aij is the number of deletions in jth chunk of ith block. Then the decoder
erases the chunks with deletions according to the guessed deletion pattern, and uses
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the linear code to recover the erased chunks. Note that the recovered bits should be a
supersequence of the erased chunk, otherwise the decoder can discard the candidate.
Here, we use this fact to obtain an upper bound on the list size. We need the following
assumption:

Assumption 1. When the deletion pattern is not correct, if the set of parity check
constraints has a solution for the erased chunks corresponding to the deletion pattern,
then the recovered bits will be uniformly random.

We illustrate this assumption in the following example.

Example 4.4. Assume that nc = 3 and l1 = l2 = 2, also there are k = 3 deletions. Let
X = 101 100 011 100 and Y = 011000111. The underlined bits are deleted from X to
get Y . Consider an incorrect deletion pattern (0,2,0,1). According to this pattern, the
decoder erases the second and fourth chunks to get Y ′ = 011 xxx 001 xxx, where x

indicated an erased bit. Then, it uses the linear code to recover the erasures. Assumption
1 states that the recovered bits in second and fourth chunks of Y ′ are uniformly random
and hence independent from the erased bits, namely 0 in the second chunk and 11 in
the fourth chunk.

Assumption 2. Given an incorrect deletion pattern, if the decoder uses z′ < z linear
constraints to recover the erasures imputed with respected to the incorrect pattern,
the recovered sequence satisfies each of the remaining constraints independently with
probability 1

2 . Therefore, the probability that the resulting sequence satisfies all the

remaining linear equations is
(

1
2

)z−z′

.
The motivation for this assumption is that when an incorrect pattern is considered,

the ith bit in the recovered sequence is not representing the actual ith bit of the
sequence, furthermore, using Assumption 1, the recovered erased bits are uniformly
random. Hence, it is plausible to assume that the probability of the satisfaction of a
binary linear constraint will be 1/2. Given the two above assumptions, we prove the
following proposition:

Proposition 4.2. Under Assumptions 1 and 2, the average final list size of a multilayer
code, when the minimum distance of the linear code is more than knc, satisfies the
following inequality:

E|L6|≤ 1+
(

e(k + l1l2)(nc +1)
k2nc

)k

. (4.7.12)

Proof. Consider an incorrect deletion pattern (a11, · · · ,al1l2), where the deletions are
in k′ ≤ k chunks. Now consider the jth chunk of the ith block (assume that aij > 0).
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Using the first assumption, the probability that the nc bits recovered using the linear
code in this chunk are a supersequence of the current (nc −aij) bits in this chunk is:

∑aij
m=0

(
nc
m

)
2nc

≤ (nc +1)aij

2nc
. (4.7.13)

The numerator on the LHS is the number of supersequences of length nc for the erased
chunk, and the denominator is the total number of length nc binary sequences. Now
k′nc independent linear equations are enough to recover k′nc erasures. Using the second
assumption, the probability that the recovered sequence satisfies the remaining parity
check equations is

1
2z−k′nc

≤
( 1

2nc

)k−k′

. (4.7.14)

Using (4.7.13) and (4.7.14), we have the following upper bound on the probability that
the assumed incorrect deletion pattern ends up on the final list:

( 1
2nc

)k−k′ ∏
i,j:aij≥1

(
(nc +1)aij

2nc

)
=
( 1

2nc

)k−k′((nc +1)k

2k′nc

)
(4.7.15)

=
(

nc +1
2nc

)k

, (4.7.16)

where (4.7.15) holds because ∑i,j aij = k and there are k′ chunks with deletions. Now
using this upper bound for each of the guess patterns, and noting that the correct
pattern will always be on the list we have

E|L6| ≤ 1+
(

k + l1l2 −1
k

)(
nc +1

2nc

)k

(4.7.17)

≤ 1+
(

e(k + l1l2)
k

)k(
nc +1

2nc

)k

. (4.7.18)

As nc increases the second term goes to zero (when other parameters of the code is
fixed), and the average of the list size goes to one. For having E|L6|< 2 we need to
choose parameters such that:

nc − log(nc +1) > log(k + l1l2)+ logk +loge. (4.7.19)
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In the above argument we did not consider VT constraints for obtaining the bound.
In the multilayer code, we can think of VT constraints as hashes. Taking this into
account can give a better bound for the list size. There is a major difference between
the structure of hashes defined in (4.7.1) and VT codes used in the multilayer code.
A hash function in (4.7.1) is defined over the sequence X, while a VT code is defined
over a block or chunk-string which is a subsequence of X. As a result some of the VT
constraints may be dependent in the multilayer construction. Further analysis of the
list size that take into account the effect of VT constraints is a direction for future
work.

4.8 Decoding insertions and deletions

In this section, we discuss the required modifications in the decoding algorithm such
that it can recover a combination of up to k deletions and insertions. We use the
same message M constructed in Section 4.2 with a modified decoder. First notice
that for the case where we have only insertions we can use almost the same decoding
algorithm we used for the deletion only case (recall that VT codes can also recover a
single insertion in a sequence).

For the case that both insertions and deletions are possible, assume that the
sequence Y is of length m (where n−k ≤ m ≤ n+k) and can be obtained from X by
a deletions and b insertions where a+ b ≤ k (thus m = n−a+ b). We will use a similar
six-step decoding for reconstructing sequence X.

Step 1

In this step, we perform a tree search to find the number of insertions and deletions in
each of the blocks. The output of this step is a list of edit vector candidates where each
edit vector comprises a deletion pattern vector Vd and an insertion pattern vector Vi.

Vd = (a1,a2, · · · ,al1) , Vi = (b1, b2, · · · , bl1) . (4.8.1)
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Each entry of Vd and Vi shows the number of deletions and insertions respectively in
the corresponding block. We know that

l1∑
i=1

(ai + bi) ≤ k,

l1∑
i=1

(ai − bi) = n−m.

(4.8.2)

At each node of the tree we compute the VT syndrome of the next block. Assume
that for a given node at level j, in total dj deletions and ιj insertions occurred in j −1
previous blocks. The starting point of the jth block is

pj = (j −1)nb −dj + ιj +1. (4.8.3)

Note that given (4.8.2), we know that aj and bj should satisfy

aj ≤ k +n−m

2 −dj , bj ≤ k +m−n

2 − ιj . (4.8.4)

We can compute the VT syndrome of the jth block, syn(Y (pj : pj + nb − 1)). If it does
not match with sBj

, the correct VT syndrome of this block, the possible values for aj

and bj are all the pairs which satisfy (4.8.4) and also aj + bj ̸= 0. If dj + ιj = k, then
we discard the correspond branch of the tree. If the VT syndrome of the block matches
with sBj

, then the possible values for aj and bj are all the pairs which satisfy (4.8.4)
and also aj + bj ̸= 1.

The total number of solutions of (4.8.2) can be upper bounded by

k/2∑
i=1

(
i+ l2 −1

i

)2
. (4.8.5)

This upper bound will be achieved when m = n and a + b = k. We expect many of
these solutions to be inconsistent with the VT syndrome and thus does not appear on
the first step list. Comparing (4.8.5) with the upper bound for the deletion only case
shows that the complexity of the decoding is higher when both insertions and deletions
are possible.
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Step 2

For any given edit vector produced from step one, we can recover the edit in the blocks
with single insertion or deletion, i.e. when ai + bi = 1. After recovering the edit in a
block we should update the edit vector accordingly.

Step 3

The goal of this step is to create a list of edit matrices where each edit matrix comprises
a deletion matrix A, and an insertion matrix B. aij in A shows the number of deletions
in the jth chunk of ith block, and bij in B shows the number of insertions in this
chunk. Similar to step 3 in the deletion decoding, we construct this matrix for any
edit vector candidate via a tree search.

For each node of the tree at level j,we compute the VT syndrome of jth chunk-string
and compare it with the correct syndrome known from M . Note that for each node at
level j of the tree, we know aih and bih for all i and h < j. Thus we know the starting
position of the jth chunks of blocks, and therefore we can form the jth chunk-string
and compute its VT syndrome. Consider the following two possibilities:

1. If the VT syndrome of the chunk-string matches with sCj
(the correct syndrome

of the jth chunk-string), the possible values for aij and bij are all non-negative
integers that satisfy ∑l1

i=1(aij + bij) ̸= 1 and also:

aij ≤ ai −
j−1∑
h=1

aih and bij ≤ bi −
j−1∑
h=1

bih. (4.8.6)

2. If the VT syndrome of the chunk-string does not match with sCj
, the possible

values for aij and bij are all non-negative integers that satisfy (4.8.6), and also∑l1
i=1(aij + bij) ̸= 0. The node will be discarded if

ai =
j−1∑
h=1

aih and bi =
j−1∑
h=1

bih, for 1 ≤ i ≤ l1. (4.8.7)

Since there are up to k edits in the sequence, number of non-zero value among ai’s
and bi’s is at most k. If we denote this number wit s then with an argument similar to
step 3 of the deletion only case in Section 4.5, we can give this upperbound for the
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number of edit matrix candidates (
k/s+ l2 −1

l2 −1

)s

. (4.8.8)

Note that, here unlike the deletion only case we cannot claim that ai’s and bi’s are
greater than one. This is because if there is exactly one deletion and one insertion in a
block we will not be able to recover them in the second step of the decoding. Therefore
s = k is a possibility and since the derivative of (4.8.8) with respect to s is positive,
s = k maximizes (4.8.8). Therefore, an upper bound for the number of solutions is lk2 .
Similar to the deletion case, we expect many of the solutions to be discarded due to
inconsistency with VT syndrome.

Steps 4 to 6

The last three steps are very similar to the deletion only case. In step 4, perform the
iterative algorithm on all candidates i.e., if there exist a block or chunk-string with
single edit we recover the edit using VT decoder an update the edit matrices. Then we
repeat this until there is no more single edits in blocks or chunk-strings. Similar to
the deletion only case, we will discard a candidate if the recovered bit lies in a wrong
chunk.

In step 5, we replace any chunk which still contains edits with nc erasures, and use
the linear code to recover erasures. This will be done for all the candidates, and any
candidate which is inconsistent with the linear constraints will be discarded. Finally,
at the sixth step we check all the constraints for all candidates and discard inconsistent
candidates.

4.9 Multilayer codes for deletion channels

The multilayer construction can be adapted to the deletion channel which introduces k

deletions in a block of n bits. Here the goal is to transmit one of the 2nR messages,
where R ≤ 1 is the communication rate. A codebook can be produced for the deletion
channel based on multilayer construction for message M . The channel codebook
consists of length n sequences where blocks and chunk-strings satisfy a pre-specified VT
syndrome, and also a pre-specified linear code coset. For a length n = ncl1l2 sequence,
there are (ncl2 +1)l1(ncl1 +1)l2 possibilities for the VT syndromes of l1 blocks and l2

chunk-strings and also 2z possibilities for the coset of z linear codes. Therefore, there
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exists a set of syndromes and a coset of linear code for which there are at least

2n

2z(ncl2 +1)l1(ncl1 +1)l2
(4.9.1)

sequences with these parameters. We can use this set of sequences as the codebook,
and use the same decoding algorithm described in Section 4.3 for decoding. The rate
of this code will be at least

R ≥ 1− log2(ncl2 +1)
ncl2

− log2(ncl2 +1)
ncl1

− z

ncl1l2
. (4.9.2)

From the codebook definition we know the VT syndrome of the blocks and chunk-
strings, and also the linear code coset. Hence, the decoding is exactly the same as the
decoding process explained in Section 4.3. However, this code construction does not
immediately suggest an efficient method for mapping information bits onto codewords.
Also, finding the codebook becomes unfeasible even for a relatively small n, this is
because we need to calculate syndromes and linear cosets for all length n sequences
in order to find the codewords. In the following we suggest a heuristic method for
systematically mapping the data bits into a codeword. The codewords are designed
based on the multilayer and repetition codes. The rate of the proposed code is less
than the lower bound in (4.9.2).

4.9.1 A heuristic encoding scheme for the deletion channel

First recall the systematic encoding of the VT codes from Chapter 2. The idea was to
reserve bits in dyadic positions for adjusting the VT syndrome of the sequence, and
assign data bits to the rest of the bits. The rate of the systematic code is:

R = 1− ⌈log(n+1)⌉
n

. (4.9.3)

We explain our proposed encoding scheme via an example. Recall the parameters of
setup 7 from Table 4.5. Assume that we want to have the same number of blocks
and chunk-strings in our codewords. We use the above systematic encoding method
to encode data bits into all the blocks but block 3 and 15 (assume that our desired
syndrome is 0). Therefore we embed

(l1 −2)(ncl2 −⌈log(ncl2 +1)⌉) = 2376 (4.9.4)
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bits. And the VT syndrome of all the blocks except for the third and the 15th are
set to be 0. Now in each chunk-string there are two chunks that are yet to be filled,
namely, the third and 15th chunks. The idea is to use these two chunks to adjust
the VT syndrome of the chunk-strings. The reason that we chose these two specific
chunks is that we can find appropriate 2nc remaining bits in these chunks to adjust
the VT syndrome of the chunk-strings (this has been checked by computer search).
Assume that we want all the chunk-strings to have VT syndrome 0. We can compute
the current VT syndrome (excluding the two chunks) and find the deficiency (the
difference between the calculated syndrome and 0), then use a look up table that give
us the two appropriate chunks for that deficiency.

Up to this point we have embedded the data bits into the sequence, and also
adjusted the VT syndrome of all chunk-strings, and all but two of the blocks. Now we
compute the VT syndromes of the two remaining blocks, and also the coset of the linear
code for the length ncl1l2 sequence. The VT syndrome is a number between 0 and 140
and can be represented with 8 bits. Also, we have z = 60 hence if we concatenate the
VT syndrome of two blocks and the linear coset of the sequence we have a message of
length 76 bits. We will use a repetition code with k + 1 repetitions on this message
and append the resulting sequence at the end of the length ncl1l2 = 2800 sequence.
Therefore, the total length of the sequence (codeword) will be 3636 bits. The decoder
will first decode the repetition code and find the VT syndromes of two blocks and the
coset of linear code. Then we can use the decoder that we described in Section 4.3 to
decode the rest of the codeword. The rate of the code is 0.65 = 2376

2800+76×11 . The rate
lower bound of the impractical code which is given in (4.9.2) is 0.87.

The main question in this scheme is whether we can find two chunks that can
generate all the syndromes in a chunk-string. For a fixed nc as number of chunks
in a block increases (l1 increases) finding two chunks to produce all the syndromes
becomes less likely. A pair of chunks can produce at most 22nc different syndromes.
Therefore, when ncll (the length of a chunk-string) is greater than 22nc we cannot find
a pair of chunks that can produce all syndromes (this is a necessary condition). Using
computer search we found that, for example, when nc = 4, we can always find a pair of
chunks that produces all the syndromes for l1 ≤ 24, when nc = 5, we can find a pair for
l ≤ 42. If we fail to find a pair of chunks (due to large l1) we can attempt to produce
all syndromes with more chunks, and consequently reserve more blocks for adjusting
chunk-strings syndrome, this will reduce the rate.
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4.10 Extensions and discussion

In this section we describe two extenstions to the basic multilayer code described in
the previous sections, and conclude the chapter with a short discussion.

4.10.1 Non-binary multilayer codes

Non-binary VT codes over q-ary alphabets (for q > 2) were introduced in [17]. Similar
to the binary VT codes these codes also partition the length n sequences into qn

classes. Each of the classes is a single deletion (or insertion) correcting code with
linear encoding and decoding complexity [77]. In our code construction we can replace
the binary VT codes with the non-binary version, and the binary linear codes with a
suitable non-binary linear codes to get a non-binary version of the multilayer codes.

4.10.2 Multilayer codes with more than two layers

Here we show how one can generalize the proposed two-layer construction of multilayer
codes to a three-layer construction, the generalization to more than three layers is
similarly possible. First consider this example. Divide the sequence X = [V1,V2, · · · ,V8]
into eight chunks of length nc. There are three kinds of intersecting VT constraints in the
code. Two block constraints are the VT syndromes of [V1,V2,V3,V4] and [V5,V6,V7,V8].
Two chunk-string constraints are the VT syndrome of [V1,V2,V5,V6] and [V3,V4,V7,V8].
The third set of constraints are VT syndromes of [V1,V3,V5,V7] and [V2,V4,V6,V8].
In Figure 4.7, we use factor-graph convention to illustrate the construction of the
code. Each of the chunks is represented via a variable node, and each of the VT
constraints is represented via a check node. We denoted block constraints by letter B

and chunk-string constraints by letter C and third layer constraints by letter T . This
graph is essentially equivalent of Figure 4.2, but for a three layers construction. The
fact that there are three layers in the code can be noted from the degree of variable
nodes.

In general assume a length n = ncl1l2l3 sequence. We construct the message
M = [M1,M2,M3,M4], by first dividing the sequence into l1 equal-size blocks. Similar
to the two-layer code, M1 contains the VT syndrome of these blocks. Then encoder
splits each block into l2 chunks and forms the chunk-strings as in Section 4.2. The
VT syndrome of all the chunk-strings are contained in M2. Divide each chunk to l3

equal-size sub-chunks each of length nc. Then form l3 sequences each of length ncl1l2

by concatenating sub-chunks of different l1l2 chunks. The VT syndrome of all these
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v1 v2 v3 v4 v5 v6 v7 v8

B1 C1 T1 T2 C2 B2

Figure 4.7: Factor graph representation for a three-layer code

sequences come to M3. Finally M4 is the coset of z parity check equations. The rate
of the code will be

Rsync = ⌈log(ncl1l2 +1)⌉
ncl1l2

+ ⌈log(ncl1l3 +1)⌉
ncl1l3

+ ⌈log(ncl2l3 +1)⌉
ncl2l3

+ z

n
. (4.10.1)

It is possible to devise a decoding algorithm for this code similar to the six-steps
algorithm for two-layer code which we described in Section 4.3. For this code two extra
steps are needed in the decoding due to the extra layer of VT constraints in the code.
Here we only provide a high level idea of the decoder. The first four steps are similar to
the steps in two-layer decoder, where we find all the acceptable boundaries for blocks
and chunks and also recover deletions in blocks or chunk-strings with single deletion
for all of the candidates. In the fifth step, the decoder determines the boundaries of
sub-chunks, similarly to steps one and three of the two-layer decoder. This can be
done via a tree search. Then in the sixth step, the decoder uses an iterative algorithm
(similar to the fourth step of two-layer decoder) to recover any single deletion in any of
the three layers of VT constraints. The seventh step will be replacing sub-chunks with
deletions with erasures and using the linear code to recover the erasures. The final
step is to check all the constraints for the remaining candidates on the list and discard
any inconsistent candidate.

One of regimes where this construction (more than two layers of VT constraints)
can be useful is when there are few deletions in a very long sequence, in this regime by
having more than two layers we can split the sequence into small enough chunks more
efficiently. Further investigation in this direction is for future work.

The representation in Figure 4.7, motivates the generalization of the code using
factor graphs.

Factor graph construction

In general, one can divide the sequence into some chunks of length nc, and then choose
l different arbitrary subsets of chunks like C1, · · · ,Cl. Now l subsequences can be formed
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by concatenating the chunks within each subset (with the order they appear in X), and
the message M will be the VT syndrome of these l sequences, M can be appended with
an erasure code. Note that the multilayer code with two layers is a special case of this
code when l = l1 + l2. Also, the three layers code is a special case when l = l1 + l2 + l3.
The decoding algorithm in Section 4.3 cannot be used for this code as it heavily depends
on the the way that VT constraints are formed, for example, the fact that blocks are
concatenation of consecutive chunks is important to the decoding process described in
Section 4.3. However, a decoder similar to the hash decoder explained in Section 4.7.1
can be used for this encoder. The decoder can guess the number of deletions in each of
the chunks and then form the constraints accordingly. Then it can attempt to decode
by iteratively recover single deletions connected to a check node. This is similar to
iterative decoding of erasures with a linear code. Investigating decoders for multilayer
codes designed via a general factor graph construction is an interesting direction for
future work.

4.10.3 Discussion

In this work we introduced a new method for one-way synchronization problem based
on using multiple VT constraints concatenated with linear codes, and a list decoder.
We showed that VT constraints can serve for both recovering multiple deletions and also
reducing the complexity of the decoding algorithm. Thanks to the efficient decoding
algorithm we are able to recover significant number of deletions (e.g. 10 deletions) in
relatively long codes (few thousands). There are several direction for the future work,
for example, it is interesting to investigate how multilayer codes perform in a two-way
synchronization model. In a two-way model, the decoder may be allowed to request a
small amount of extra information to disambiguate a list with multiple reconstructed
sequences. Another direction is that the decoder can ask for additional information in
complex cases when decoding is time consuming, for instance when there are atypical
number of candidates after the first or third step of the decoding.

4.11 Proofs

4.11.1 Proof of Lemma 4.1

Proof. Define the function p(x) =
(

x+l2−1
l2−1

)
(p is a polynomial of degree (l2 −1)). We

first show that p(x)p(y) ≤ p(x+y
2 )2 for any two real positive numbers x,y. To show
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this, we need to prove

l2−1∏
i=1

(y + i)(x+ i) ≤
l2−1∏
i=1

(x+y

2 + i)2, (4.11.1)

which clearly follows from xy ≤ (x+y
2 )2. Now if we define g(x) , ln(p(x)), we have

g(x)+g(y) ≤ 2g(x+y
2 ) which means g is mid-point concave, and since it is continuous,

it is generally concave. Hence, we have g(x1) +g(x2) + · · · +g(xn) ≤ ng(∑n
i=1 xi/n) for

any integer n and positive xi’s. Therefore, we have

p(x1)p(x2) · · ·p(xn) ≤ p

(∑n
i=1 xi

n

)n

. (4.11.2)

Choosing n = s and xi = ai will prove the result.

4.11.2 Derivative of (4.5.7)

Here we show that the derivative of f(s) =
(

k/s+l2−1
l2−1

)s
with respect to s is positive for

s > 0. Define g(s) = ln(f(s)), then we have:

dg

ds
= 1

f(s)f ′(s) (4.11.3)

Also, define

h(s) =
(

k/s+ l2 −1
l2 −1

)
(4.11.4)

We get
dg

ds
= ln(h(s))+ s

h(s)h′(s) (4.11.5)

Therefore, to prove df/ds > 0 for s > 0 we have to show that

ln(h(s))+ s

h(s)h′(s) > 0 (4.11.6)

Recall the definition in (4.5.6), h(s) can be shown as p(s−1)/(l2 −1)!, where p(s) is a
polynomial of degree (l2 −1).

p(s) = (ks+1)(ks+2) · · ·(ks+ l2 −1) (4.11.7)
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Rewrite (4.11.6)

ln(h(s)) >
−s

p(s−1)
(
p(s−1)

)′
(4.11.8)

ln(h(s)) >
1

sp(s−1)p′(s−1) (4.11.9)

We prove (4.11.9) by induction on l2 −1. For l2 −1 = 1, we get

ln(ks−1 +1) >
k

(k + s) (4.11.10)

If we denote ks−1 by x, then we can rewrite (4.11.10) as

ln(x+1) >
x

(x+1) . (4.11.11)

Which holds for all x > 0. Assuming that (4.11.9) holds for w = l2 −1, we prove it for
w +1.

ln(h(s)) =
(
ln(ks−1 +w +1)− ln(w +1)

)
+

w∑
i=1

(ln(ks−1 + i)− ln(i)) (4.11.12)

>
(
ln(ks−1 +w +1)− ln(w +1)

)
+ 1

s
∏w

i=1(ks−1 + i)

(
w∏

i=1
(ks−1 + i)

)′

(4.11.13)

Where the last inequality holds by using the hypothesis of induction. Note that we
have:

p′(s−1) = k

(
w∏

i=1
(ks−1 + i)

)
+(ks−1 +w +1)

(
w∏

i=1
(ks−1 + i)

)′
(4.11.14)

Hence,
1

sp(s−1)p′(s−1) = k

k +(w +1)s +

(∏w
i=1(ks−1 + i)

)′

s
∏w

i=1(ks−1 + i) (4.11.15)

Comparing (4.11.13) and (4.11.15) we have to prove

ln
(

(ks−1 +w +1)
w +1

)
>

k

k +(w +1)s (4.11.16)
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If we denote ks−1 by x, then we have to prove

ln
(

(x+w +1)
w +1

)
>

x

x+(w +1) . (4.11.17)

This holds for all x > 0.

4.11.3 Upper bound on the binomial coefficients

Lemma 4.2. For any real x ≥ 1
2 and positive integer a we have

(
x+a

a

)
≤ min

{(
e(x+a)

a

)a

,

(
e(x+a)

x

)x}
(4.11.18)

Proof. Recall that Gamma function is defined as follows for any complex number z,

Γ(z) =
∫ ∞

0
xz−1e−x dx. (4.11.19)

Since Γ(x+1) = xΓ(x), and Γ(a+1) = a!, one can rewrite (4.5.6) as
(

x

a

)
= Γ(x+1)

Γ(a+1)Γ(x−a+1) . (4.11.20)

We will use the following inequalities for the Gamma function which can be found in
[108, Thm. 5]

√
2e

(
x+1/2

e

)x+1/2
≤ Γ(x+1) ≤

√
2π

(
x+1/2

e

)x+1/2
. (4.11.21)



102 Multilayer codes

Using (4.11.20) and (4.11.21) we have
(

x+a

a

)
= Γ(x+a+1)

Γ(a+1)Γ(x+1) (4.11.22)

≤
√

2π
(

x+a+1/2
e

)x+a+1/2

√
2e
(

a+1/2
e

)a+1/2 √
2e
(

x+1/2
e

)x+1/2 (4.11.23)

=
√

π

2e

(x+a+1/2)x+a+1/2

(a+1/2)a+1/2 (x+1/2)x+1/2 (4.11.24)

≤
√

1
a+1/2

(x+a+1/2)a

(a+1/2)a

(x+a+1/2)x+1/2

(x+1/2)x+1/2 (4.11.25)

≤
(

x+a

a

)a (x+1/2+a)x+1/2

(x+1/2)x+1/2 (4.11.26)

=
(

x+a

a

)a (x′ +a)x′

(x′)x′ (4.11.27)

≤
(

x+a

a

)a

ea (4.11.28)

Where in (4.11.27) x′ = x + 1/2 and in (4.11.28) we used the fact that ln(1 + y) ≤ y

for positive y. The other inequality in (4.11.18) can be proved similarly, noting that(
x+(a+1/2)

a+1/2

)a+1/2
≤ ex.



Chapter 5

Deletion Channels with Multiple
Traces

5.1 Introduction
In this chapter we consider the problem of coding for multiple independent deletion
channels. Each output sequence (known as a traces) is produced by deleting at most
k symbols from the length n input sequence. We assume that the positions of the
deletions are chosen uniformly and independently. As we discussed in the first chapter,
the problem of recovering coded information from multiple traces is relevant in DNA-
based storage systems [11, 109]. While retrieving information by sequencing stored
DNA, each trace may contain errors that are a combination of deletions, insertions, and
substitutions. In this chapter, using the stylized model of a channel that introduces
only deletions, we aim to understand the coding benefits obtained by having multiple
traces. In particular, it is shown how one can use VT codes to achieve small probability
of error for multiple deletions under suitable assumptions.

Here we assume that there are t traces available to the decoder. Each of the traces
undergoes at most k deletions where k is a fixed number. The positions of these
deletions are uniformly distributed. Also we assume that the deletion channels are
independent which means the deletion patterns of different traces are independent. In
particular, there is a chance that some of the t traces be equal. Here is an example
of the channel. Assume that we have two traces, t = 2, and k, maximum number
of deletions is also 2. If X = 000111 be the transmitted codeword, the decoder may
receive Y1 = 00111 and Y2 = 0011. The goal is to design a codebook C which X belongs
to, such that the decoder can reconstruct X with high probability when Y1 and Y2 are
received.
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5.1.1 Related works

Trace reconstruction is a well-studied problem relevant to this coding problem. In trace
reconstruction, the assumption is that there are several traces available where each of
them is an edited version of a target sequence. The task is to reconstruct the target
sequence using the available traces. Several algorithms are suggested for recovering
the sequence from its traces, e.g. see [55, 51, 53]. In all of these works, the assumption
is that the target sequence is an i.i.d sequence. In contrast, in our model the target
sequence is drawn from a predefined set, i.e. a codebook which can be designed. As
stated in the first chapter, the motivation for this model is DNA storage system. In
DNA sequencing, it is possible to have several erroneous reads of the DNA sequence,
one can think of each of these reads as one of the traces. Nanopore sequencer motivated
a new line of research in this area, see [110]. In DNA-based data storage systems, we
embed data into the DNA sequence by synthesizing a desired DNA string and we read
the data back by sequencing the DNA. As we are in control of the synthesizing, it can
be assumed that the sequence belongs to a codebook that we design. Very recently in
[58, 111] a relevant problem is studied. There, a codebook is designed for a version of
k-deck problem. In k-deck problem, the goal is to reconstruct a sequence X of length n,
when all subsequences of X of length k are known. Also, recently in [59] the multiple
deletion channel is studied and a characterization for the capacity is given when the
probability of deletion goes to zero.

5.1.2 Graph model

Recall the edit graph model in Chapter 2, where there is a vertex corresponding to
every length n sequence, and there is an edge between two vertices like X and Y if
|Dk(X)∩Dk(Y )|≥ 1. Here we want to define a weighted version of confusability graph.
If X is the alphabet set, the vertices in G correspond to elements of X n. Two vertices
of G, like X and Y , are connected with an edge of weight t, if t = |Dk(X) ∩Dk(Y )|.
We call this graph, weighted deletion graph. Similarly one can define weighted insertion
graph. In [50], Levenshtein found the greatest weight in both of these graphs, i.e.,
he found the minimum number of traces required for guaranteed reconstruction for
both deletion and insertion graphs (in the graph related models the assumption is that
traces are different). In [56], the authors found the greatest weight among a subset
of vertices in the deletion graph. The subset was defined by codewords of a single-
deletion-correcting code. In [57], the greatest weight is found for the insertion graph in
a subset of sequences. In [112] the number of required traces for exact reconstruction
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is studied when there are different types of traces, i.e., number of edits in the traces
are different.

Another approach is to view the problem as a traditional code design problem,
where one wants to find a set of codewords for reliable communication. Instead of
finding the greatest weight in the graph or a subset of it, for a fixed t, one can find a
subset of the graph (a codebook) where there is no edge in that subset with a weight
greater or equal to t. Such a subset is a codebook capable of recovering k deletions
when t (distinct) traces are available to the decoder. This is the zero error version of
the problem that we are studying in this chapter and to the best of our knowledge is
not studied yet.

5.1.3 Overview of the coding scheme

Our code construction is based on VT codes. Each codeword is a concatenation of
blocks, with each block drawn from a predetermined VT codebook (the syndrome of
the VT code in each block can be chosen arbitrary). Since our codes are based on VT
codebooks, they can be constructed for any finite alphabet q ≥ 2.

We illustrate the idea using the following binary example, which shows a codeword
X of length 15 with three blocks, each of which is a sequence from a length 5 binary
VT code. The channel produces two traces, Y1 and Y2, by deleting the underlined bits:

10001 11011 01010 −→ Y1 = 1001110101010
10001 11011 01010 −→ Y2 = 100011110101

The decoder operates in two phases. In phase 1, it identifies blocks that are
deletion-free in at least one of the traces. Each block for which a deletion-free copy is
identified in one of the traces is recovered by inserting the required bits in the other
traces. In the example above, block 1 has no deletions in Y2, so Y2 is used to correct
the first block of Y1; similarly, block 3 has no deletions in Y1. Assuming that there
were no errors, at the end of this phase the decoder has corrected all blocks which are
deletion-free in at least one trace. We call the remaining blocks ‘congested’. In the
example, block 2 is congested as both traces have bits deleted in this block.

In phase 2, the decoder attempts to correct the congested blocks, i.e., blocks for
which no clean copy was found in phase 1. In the example, since Y1 has one deletion in
block 2, the block can be corrected using the VT decoder. Since blocks 1 and 3 were
corrected in phase 1, the entire codeword is recovered.
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However, decoding errors may occur in either phase. In phase 1, we may wrongly
identify a block as deletion-free in a trace, which leads to errors in the starting positions
of other blocks. In phase 2, a congested block (or set of consecutive congested blocks)
may not be correctable with the VT code, because of too many deletions in each trace.
In phase 1, wrongly identifying a trace as having a deletion-free copy of a block will
lead to an unusually large number of insertions when correcting the other traces using
this copy. This can be used to discard accidental matches in phase 1. We show via
numerical simulations that the probability of phase 1 error decreases with nb, the
length of each block. For the phase 2 error, under the assumption that the locations of
the deletions within each trace are uniformly random, we obtain a bound that decreases
exponentially with the number of traces. We provide simulation results which confirm
that when nb is large and the number of traces is small, decoding errors are mostly
due to phase 2 errors (unresolvable congestion). On the other hand, as t grows with nb

fixed, phase 1 errors are the dominant source of decoding errors.
The rate of the code is equal to the rate of a VT code of length nb, which is close

to logq − lognb/nb, where q ≥ 2 is the alphabet size. (The precise values are given in
Section 5.2.) The decoding complexity is O(t2k2n). Therefore the proposed scheme
offers an explicit, efficient technique for recovering from deletions using multiple traces.
Due to its low-complexity, it can be well suited for a variety of applications, particularly
in DNA-based storage.

The remainder of this chapter is structured as follows. In Section 5.2 we explain
the code construction for both binary and non-binary cases. Then in Section 5.3, we
introduce the decoding algorithm and its complexity. In Section 5.4, we provide the
simulation results and also an upperbound for one of the error events. In the last
section, alternative encoding and decoding schemes are introduced that can reduce
error probability at the expense of higher complexity or lower rate.

5.2 Code construction

Codewords of length n are constructed by concatenating l blocks of VT codewords
from the relevant alphabet. Each block has length nb (therefore n = lnb).

Binary code: Each block i (1 ≤ i ≤ l) is a binary VT codeword with a predetermined
VT syndrome ai, known to both the encoder and the decoder (ai’s can be chosen
arbitrarily). To encode each block, one can use the systematic VT encoder in [82] that
maps nb − ⌈log(nb + 1)⌉ bits to a length nb VT sequence with the desired syndrome.
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The rate of the code will be

R = 1− 1
nb

⌈log(nb +1)⌉. (5.2.1)

Non-binary code: The code construction is very similar to the binary case. Each
block is encoded separately, and belongs to a known non-binary VT class, as defined in
(2.2.25). The systematic encoder for non-binary VT codes which is discussed in Chapter
2 can be used for the mapping of messages bits to each of the blocks. Alternatively,
one can use a look up table for the mapping. There are qnb non-binary VT classes,
so there exists a class with at least qnb

qnb
sequences. Using this class for encoding each

block induces the following lower bound for the rate of the code

R ≥ logq − 1
nb

lognb − 1
nb

logq. (5.2.2)

5.3 Decoding

The goal of the decoder is to reconstruct X using the traces Y1,Y2, · · · ,Yt, each obtained
by deleting up to k symbols from X. We next describe the binary decoder, and then
outline the main differences for the non-binary case. We first explain the main ideas
using examples, and then specify the decoding algorithm in detail.

5.3.1 Phase 1

Consider block i of the codeword, for 1 ≤ i ≤ l. If the starting position of block i within
each trace is known, then the decoder can compute the VT syndrome of the length nb

sequence from the starting position, for each trace. If there is a trace for which the
computed syndrome matches with ai (the correct syndrome for block i), then the trace
can be used to correct this block within other traces. The following example illustrates
this idea.

Example 5.1. Let the number of blocks be l = 3, with each block of length nb = 5.
Thus n = 15. Let

X = 01001 11001 11111

be the transmitted codeword. The VT syndromes of the blocks are a1 = 1, a2 = 2, and
a3 = 3. Suppose that the decoder receives two traces, each with k = 2 deletions. The
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underlined bits are deleted from X to produce Y1 and Y2:

01001 11001 11111 −→ Y1 = 0111100111111
01001 11001 11111 −→ Y2 = 0100110011111

The decoder first computes the VT syndromes of Y1(1 : 5) and Y2(1 : 5). We have

syn(Y1(1 : 5)) = 2 and syn(Y2(1 : 5)) = 1.

Since a1 = 1, the decoder assumes that Y2(1 : 5) is the first block of X, and uses it to
correct the first block of Y1 by inserting the two missing bits. The decoder then considers
the second block, whose starting position is now known for each trace. Finding that
syn(Y1(4 : 8)) = a2 = 2, it assumes this sequence is the second block of X, and uses it
to correct Y2 by inserting two bits. Since there are no deletions in the third block, the
decoder finds syn(Y1(9 : 13)) = syn(Y2(9 : 13)) = a3 = 3, and stops.

A decoding error may occur if the VT syndrome of a block in a trace accidentally
matches the correct value. In this case, an incorrect sequence will be used to correct
the block in all other traces, potentially introducing multiple errors. The following
example shows that how other traces can help to identify and discard such accidental
matches.

Example 5.2. Let the number of blocks be l = 2, with each block of length nb = 10.
The VT syndromes of the blocks are a1 = a2 = 5. Let the transmitted codeword be

X = 1000111100 0011101100.

There are two traces, each with k = 2 deletions (underlined bits are deleted):

1000111100 0011011100 −→ Y1 = 100111000011011100
1000111100 0011011100 −→ Y2 = 000111100001011100

The decoder finds that syn(Y1(1 : 10)) = 5 (this is an instance of an accidental match),
and syn(Y2(1 : 10)) = 0. It assumes that Y1(1 : 10) is the correct block, and uses it to fix
Y2. It does this by comparing Y1(1 : 10) with Y2, and inserting the required bits to get
Ŷ2(1 : 10) = 1001110000. Since there are two deletions in Y2, exactly two inserted bits
are required to recover the codeword. However, since 7 bits need to be inserted into Y2

to get Y1(1 : 10) and k = 2, the decoder realizes that Y1(1 : 10) is an accidental match.
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The above example shows that when an accidentally matched block is used as the
model to correct other traces, the number of inserted bits is likely to be large. Hence
the decoder can distinguish between an accidental match and a correct match in most
cases.

Congested blocks and resynchronization. There may be blocks that have undergone
at least one deletion in each of the traces. These blocks are called congested, as a
correct match for them cannot be found in any of the traces. In Example 5.2, the
first block is congested as there are deleted bits in both of the traces. As the decoder
proceeds from left to right in phase 1, it needs to resynchronize whenever it identifies a
congested block. It does so by testing all possible starting positions for the next block
in each trace.

Assume block i is congested, and consider a trace for which the decoder has inferred
that there are d < k deletions up to block (i − 1). The decoder needs to test (k − d)
possible starting positions for block (i+1) in this trace. It computes the VT syndromes
of the length nb sequences starting from each of these positions, and checks for a match
with the correct syndrome ai+1. If a match is found, it is used to correct the other
traces. It repeats this process for each trace, testing all possible starting positions for
block (i+1), and checking whether a match is found for the correct VT syndrome. If
the decoder finds one or more syndrome matches among those tested, it chooses the
one that requires the minimum number of insertions (across all traces) for correcting
block (i+1).

When block i is identified as congested, it is possible that block (i + 1) is also
congested (i.e., has deletions in all the traces). In this case, no matches may be found
among all the tested starting positions for block (i + 1). The decoder then tries to
synchronize by testing all possible starting positions for block (i+2).

5.3.2 Phase 2

At the end of phase 1, if there are no errors, the decoder has corrected all the blocks for
which there is at least one trace with a deletion-free copy of the block. Each remaining
block is congested, and is either: i) isolated, i.e., the bits corresponding to the block in
each trace are known, or ii) part of an isolated set of consecutive congested blocks.

In the second phase, the decoder uses the VT syndromes to correct as many
congested blocks as possible. For each congested set of r consecutive blocks (r ≥ 1,
with r = 1 corresponding to a single congested block), the decoder can infer the number
of deleted bits within each trace. It uses this information, and attempts to correct
the congested blocks as follows. For a congested set of r consecutive blocks (r ≥ 1),
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the decoder looks for a trace with exactly r deletions. If such a trace exists, then this
set of blocks can be corrected using that trace and the known VT syndromes of the r

blocks. On the other hand, a congested set of r consecutive blocks cannot be corrected
if it has at least (r +1) deletions in each trace.

Example 5.3. Let the number of blocks be l = 4, each with length nb = 5. The VT
syndromes of all blocks are a1 = a2 = a3 = a4 = 0. Let the transmitted codeword be

X = 11100 10001 10001 01010.

There are two traces, with 4 deletions in the first trace and 3 in the second:

11100 10001 10001 01010 → Y1 = 1110100110001101
11100 10001 10001 01010 → Y2 = 11100100110001000.

The first block is recovered using Y2, using which the block is corrected in Y1. The
second block is congested, and neither trace provides a match for its VT syndrome. The
decoder therefore tests the possible starting positions for the third block. Consider the
first trace, which has a total of 4 deletions. Since there was one deletion in the first
block, there are three possible starting positions for the third block: bits 7,8 and 9 of Y1.
Similarly, bits 8,9 and 10 of Y2 are the possible starting positions for the third block.

The decoder therefore computes the VT syndrome of Y1(9 : 13),Y1(8 : 12),Y1(7 : 12),
and Y2(10 : 14), Y2(9 : 13), Y2(8 : 12). Among these, the only one that satisfies the
correct syndrome a3 = 0 is Y1(9 : 13) = Y2(10 : 14) = 10001. This indicates that there is
one deletion in the second block, in each of the traces. Thus the second block can be
recovered using the VT decoder in phase 2. With the first three blocks synchronized,
the decoder attempts to correct the fourth. The fourth block has two deletions in both
traces. As the VT decoder can only correct a single deletion, the decoder declares an
error due to an unresolvable congestion.

In the next section (Propositon 5.1), we derive a bound on the probability of phase
2 error, caused by an unresolvable congestion like the one above.

5.3.3 Decoding algorithm (for binary alphabet)

We now describe the decoder in detail. Denote the number of deletions in the jth trace
by kj , recalling that kj ≤ k for 1 ≤ j ≤ t.

Phase 1



5.3 Decoding 111

Block 1: Compute the VT syndrome of Yj(1 : nb), for 1 ≤ j ≤ t. If the computed
syndrome for trace j is equal to a1, consider Yj(1 : nb) as a candidate for the first block
of the codeword, and use it to correct the other traces. In the process, if the total
number of bits inserted into any trace exceeds the number of deletions in it, discard Yj

from the list of candidates. If the final list of candidates is non-empty, pick one that
leads to the fewest total insertions in the other traces. If the final list of candidates is
empty, declare block 1 congested and proceed to the second block.

Block i > 1: There are two possibilities:

1. If block (i−1) is not congested: The starting position of the ith block is known in
each trace. As in block 1, for each trace compute the VT syndrome for the length
nb sequence from the starting position, and compare with ai. Each sequence
whose VT syndrome matches ai is a candidate. Use each candidate sequence to
correct the other traces; if the total number of bits inserted in any trace (up to
this point in decoding) exceeds the number of deletions in it, discard the sequence
from the list of candidates. If the final list of candidates is non-empty, pick one
that leads to the fewest total insertions in the other traces. If the final list list of
candidates is empty, declare block i congested, and proceed to the next block.

2. If block (i−1) is congested: The starting position of block i is not known. Suppose
that blocks (i−1) to (i−c) are congested (where c ≥ 1). Since block (i−c−1) is
not congested, for each trace the decoder can infer the total number of deletions
up to block (i− c−1). Denote this number by dj for trace j. Then the starting
position of the block i in trace j is a number between (i−1)nb − c−dj +1 and
(i−1)nb −kj +1, where kj is the total number of deletions in trace j. Compute
the VT syndrome for each of these (kj − c − dj + 1) possibilities, and compare
with ai. If there is a sequence whose syndrome matches, add it to the list of
candidates and correct the other traces using this sequence. Since the starting
position of block i is not known, when correcting using a candidate sequence, we
need to consider all the possible starting positions of block i in the other traces.
Pick the starting position that results in the minimum number of inserted bits.
(If there is more than one starting position that gives the minimum, we pick the
rightmost one.) As before, discard a candidate if the number of bits inserted in
trace j is larger than kj − c−dj for some j.

If the final list of candidates is non-empty, pick one that leads to the fewest total
insertions in the other traces. This process also gives the starting positions for
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block (i + 1) in each trace. If the final list of candidates is empty, declare block i

congested, and proceed to the next block.

Phase 2

Consider each congested set of r consecutive blocks separately, for 1 ≤ r ≤ k. For
each of these congested sets, the decoder knows the number of deletions in each trace.
For a congested set with r blocks, if each trace has more than r deletions in the
congested set, the decoder declares an error. Otherwise the decoder finds a trace
with exactly r deletions in the congested set, i.e., exactly one deletion per block. The
decoder corrects these blocks using the VT decoder, and uses them to correct the other
traces by inserting the appropriate bits. During this process, if the number of inserted
bits does not match the number of deletions in the trace within the congested set, the
decoder declares an error.

5.3.4 Non-binary alphabet

The decoding is similar to the binary case. The only difference is that the VT syndrome
of a non-binary sequence is a pair of numbers. Therefore, when we comparing VT
syndromes of two sequences in the first phase, both numbers in the pair should be
compared. In the second phase, the decoder uses the non-binary VT decoder from [17]
to recover a block with a single deletion.

5.3.5 Decoding complexity

In the first phase, for a block for which the starting position is unknown, the decoder
computes at most VT syndromes of k length nb sequences in each of the t traces. For
each matched syndrome, the decoder needs to check inserted bits in at most k blocks
in the other (t−1) traces. Since there are l blocks, and n = nbl, the complexity for the
first phase is O(t2k2n).

In the second phase, the decoder uses the VT decoder in at most l blocks (each of
length nb), and then use the recovered sequence to correct the block in the other traces.
Since the VT decoder has linear complexity, the complexity for phase 2 is O(tn).
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5.4 Error probability and simulation results

5.4.1 Phase 1 errors

In the first phase of decoding, an error can occur in two ways. First, an accidental
match may lead to a block being wrongly identified as deletion-free in a trace; this
is then used to correct the block in other traces. Second, when a congested block is
identified, the decoder may pick a wrong starting position for the next block. As shown
in Example 5.2, an accidental match in a trace can be often detected by the decoder
when it leads to a large number of inserted bits in the other traces. This detection
feature makes it hard to derive a rigorous bound for the phase 1 error.

Without the detection feature, the probability of an accidental VT match in the
binary case will be inversely proportional to nb, the length of the block. Indeed, the
family of (nb +1) VT codes (in the binary case) partitions the space of length-nb binary
sequences into approximately equal-sized sets of size ∼ 2nb/(nb + 1) (see Section 2.2.2).
Hence the probability that a binary sequence picked uniformly at random will match a
given VT syndrome is close to 1

(nb+1) . (Although one should notice that an accidentally
matched sequence is not a uniformly random sequence and here we merely provided a
heuristic argument.)

5.4.2 Phase 2 errors

Errors in the second phase of the decoding are due to unresolvable congestion. Recall
that unresolvable congestion occurs if, for some 1 ≤ r ≤ k, there is a set of r consecutive
congested blocks with at least (r +1) deletions in each trace. The following proposition
bounds the probability of phase 2 error, denoted by Pe2 .

Proposition 5.1. Consider a code with l blocks, and a channel that introduces at most
k deletions in each of the t traces. If k < l and the locations of deletions within each
trace are uniformly random, the probability of phase 2 error satisfies

Pe2 ≤ l
(
(1−p0 −p1)t +

(
(1−p0)2 −p1p′

1
)t

+
k−1∑
r=3

(1−p0)rt
)

(5.4.1)

≤ l
(
(1−p0 −p1)t+

(
(1−p0)2 −p1p′

1
)t

+ (1−p0)3t

1− (1−p0)t

)
(5.4.2)

where, for s = 0,1,

ps =

((k−s)+(l−1)−1
k−s

)
(

k+l−1
k

) , (5.4.3)
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and

p′
1 =

((k−2)+(l−2)−1
k−2

)
((k−1)+(l−1)−1

k−1

) . (5.4.4)

We note that the phase 2 error probability (and the bound) depends only on k and
l. It does not depend on either nb or the alphabet size. The restriction k < l is natural,
since otherwise the expected number of deletions per block would be greater than 1.

Proof. For 1 ≤ i ≤ l and 1 ≤ r ≤ k, let Zi,r be an indicator random variable with Zi,r = 1
if the ith block is in an unresolvable congestion of exactly r consecutive blocks, and
Zi,r = 0 otherwise. Let

Z =
k−1∑
r=1

l∑
i=1

1
r

Zi,r. (5.4.5)

For each r, the inner sum in (5.4.5) counts the number of distinct sets of r consecutive
congested blocks. Therefore Z is the total number of distinct congested sets, where
a congested set is a set of of r consecutive congested blocks, for some r ≥ 1. Hence
Pe2 = P(Z ≥ 1). Using Markov’s inequality,

P(Z ≥ 1) ≤ E[Z] =
l∑

i=1

k−1∑
r=1

1
r
E[Zi,r] (5.4.6)

The probability that a given block has exactly s deletions (for 0 ≤ s ≤ k) is given
by ps in (5.4.3). Indeed, since the locations of the k deletions are uniformly random,
the probability of a block having s deletions is the proportion of non-negative integer
solutions of x1 +x2 + · · ·+xl = k with x1 = s.

A block can be in an unresolvable congestion only if it has more than one deletion
in each of the traces. Therefore,

E[Zi,1] ≤ (1−p0 −p1)t. (5.4.7)

To find an upperbound for E[Zi,r] for r ≥ 2, we need the following lemma.

Lemma 5.1. For a given trace and r blocks (1 ≤ r ≤ k), denote by qr the probability
of at least one deletion occurring in each of the r blocks. Then

qr ≤ (1−p0)r. (5.4.8)

Proof. We prove this by using induction on r. For r = 1, we have q1 = (1−p0). Now
assume that (5.4.8) holds for qu, for some u < r. For s ≥ u, we write qu(s) for the
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probability of s deletions occurring in a given set of u consecutive blocks, with at least
one deletion in each of them. Clearly, qu =∑k

s=u qu(s). We then have

qu+1 =
k∑

s=u
qu(s)

1−

((k−s)+(l−u)−2
k−s

)
((k−s)+(l−u−1)

k−s

)
 (5.4.9)

=
k∑

s=u
qu(s)

(
1− l −u−1

(k − s)+(l −u−1)

)
(5.4.10)

≤
k∑

s=u
qu(s)

(
1− l −1

k + l −1

)
(5.4.11)

=
k∑

s=u
qu(s)(1−p0) (5.4.12)

≤ (1−p0)u+1. (5.4.13)

In the chain above, it can be verified that (5.4.11) holds when l > k and s ≥ r. Eq.
(5.4.13) is obtained using the induction hypothesis: ∑k

s=u qu(s) = qu ≤ (1−p0)u.

Using the lemma, the probability that two consecutive blocks, say i and (i + 1),
have at least three deletions in each trace (and are hence unresolvable) is bounded by
[(1−p0)2 −p1p′

1]t. Here p′
1 defined in (5.4.4) is the probability of block (i+1) having

one deletion given that block i has one deletion. Therefore, considering the event of
unresolvable congestion either in the pair of blocks {(i−1), i} or in blocks {i,(i+1)},
we have

E[Zi,2] ≤ 2
(
(1−p0)2 −p1p′

1
)t

. (5.4.14)

For r > 2, consider a set of r consecutive blocks, say i, . . . ,(i+r −1). The probability of
congestion in this set of blocks is qt

r, which by (5.4.8) is bounded by (1−p0)rt. Hence,

E[Zi,r] ≤ r(1−p0)tr, (5.4.15)

where we use the fact that a given block i is part of (up to) r different sets of r

consecutive blocks. Using (5.4.7), (5.4.14), and (5.4.15) in (5.4.6) yields the result of
the proposition.

5.4.3 Numerical results

Figure 5.1 shows the empirical error probability of the code for different values of nb,
for q = 2 (binary) and for q = 4. Each codeword consists of l = 7 blocks, each of length
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Figure 5.1: Probability of error for different block lengths when l = 7,k = 4, and t = 5.

nb. There are t = 5 traces, each with k = 4 deletions at uniformly random locations.
We note that both the code length and the rate (cf. (5.2.1), (5.2.2)) increase with nb.

Figure 5.1 also shows the empirical phase 2 error (dashed line), which does not
depend on either nb or the alphabet. Proposition 5.1 gives an upper bound of 3.41×10−4

for the phase 2 error, while the empirical value is 7.63×10−5. The difference between
the overall and the phase 2 error probabilities can be (roughly) interpreted as the
phase 1 error probability. The phase 1 error caused by wrong matches of VT syndrome
decreases with nb, as explained in Section 5.4.1. Furthermore, we observe that the
phase 1 error is smaller (and decreases faster with nb) for q = 4 than for q = 2. There
are two reasons for this. First, the number of potential VT syndromes for q > 2 is
qn, in contrast to the binary case where there are (n + 1) VT syndromes. Thus the
probability of an accidental match is smaller for the non-binary code. Second, as q

increases we expect an accidental match to produce more insertions in the other traces,
making it is less likely to be accepted as the correct block. This is because matching of
two symbols is less likely in a larger alphabet.

Figure 5.2 shows how the error probability decreases with the number of traces t,
for a rate 5

6 binary code with code parameters held fixed. Each trace has 4 deletions.
As shown in Proposition 5.1, the phase 2 error decays exponentially with t. The overall
error probability decays more slowly. Hence for larger values of t, phase 1 error becomes
the dominant contribution to the overall error probability.
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Figure 5.2: Probability of error for a binary code for different values of t when l = 6,k = 4, and nb = 30.
The code length n = 180, and the rate is 5/6.

Figure 5.3 shows the probability of error for different k for a rate 5
6 binary code

with t = 5 traces. No errors were observed for k = 2.

5.5 List decoding approach

In this section we develop ideas to improve the error performance of the coding scheme
by using more complex decoding algorithms in both phases.

Improving Phase 1 : When there are multiple syndrome matches for a block, the
current decoder picks the match that produces the fewest insertions in other traces.
Instead, the decoder could accept up to a certain number of matches (based on the
number of insertions they produce), and run the decoding procedure in parallel for each
of the accepted candidates. As decoding proceeds, multiple matches may be produced
within each of these parallel scenarios; the decoder uses the “fewest insertion” rule
to decide which candidates to discard. The extreme version of this decoder will only
discard a candidate if it is inconsistent with the received traces. This would be a list
decoder that produces all the codewords that are consistent with the received traces.

Improving Phase 2 : In phase 2, when there is an unresolvable congestion in a block
(i.e., more than one deletion in each trace), an error is declared. Instead, the decoder
could choose the trace with the minimum number of deletions in the block, guess all
bits except one, and use the VT decoder to find the remaining bit. If the trace has d
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Figure 5.3: Probability of error of a binary rate 5/6 code for different values of k, the number of
deletions. Code parameters are nb = 30, l = 10, and the number of traces t = 5.

bits deleted in the block, there are

d−1∑
i=1

(
nb −1

i

)
≤ nd−1

b (5.5.1)

ways to insert d−1 bits into the trace. Among these, it chooses the one that produces
the correct number of insertions in the other traces. Note that there might be more
than one candidate which produce the correct number of insertions in other traces.
In this case the decoder keeps all the compatible candidates and runs the rest of the
algorithm on these candidates separately. This is in a way similar to the guess based
VT decoding which we discussed in Section 4.6.

The complexity of list decoding can be an issue. For the phase 1 improvement that
we discussed above, one can choose the number of parallel scenarios that the decoder
considers as a tradeoff between error probability and the complexity of the decoder.
For the guess-based decoder to handle unresolvable congestion in phase 2, there are
different ways for adjusting the complexity. One is limiting the number guesses per
block that the decoder is allowed to have. Another way that we discuss here is to only
attempt to fix a congested block if there are a limited number of consecutive congested
blocks. For a fixed number i, the decoder that attempts to recover a congestion of at
most i consecutive blocks is called i-guess decoder. For instance, 1-guess decoder will
only guess bits in a trace when there is only single congested blocks (i.e. there are
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no consecutive congested blocks). The following propositions shows that the average
complexity of the 1-guess decoder remains O(t2k2n) when there are enough traces
available at the decoder and also l > k +1. Recall that in the upper bound proposed
Proposition 5.1 for phase 2 error, the first term in (5.4.1) is the dominant term. This
term is the upper bound for the cases where there is a single unresolvable congested
block, and should be removed for the upper bound of phase 2 errors for the 1-guess
decoder.

Proposition 5.2. The average complexity of the 1-guess decoder is O(t2k2n) under
the following conditions on the code parameters.

t ≥ lognb (5.5.2)
l ≥ k +2 (5.5.3)

Proof. Phase 1 in the 1-guess decoder is identical to the normal decoder described
in Section 5.3.3. Thus its complexity is at most O(t2k2n). For the phase 2, if the
decoder guesses u bits for a given block, then the complexity of recovering that block
is O(tnu+1

b ). This is because the complexity of the guessing u bits is O(nu
b ), for all

of these guesses the decoder recover one deleted bit and compare the recovered block
with other traces, the complexity of this is O(tnb).

Define p(u) as the probability of an unresolvable congestion in a block where there
are at least u deletions in this block across all the t traces. Recall pi from (5.4.3), we
have

p(u) =
1−

u−1∑
i=0

pi

t

. (5.5.4)

Therefore, the average complexity of the decoding of a block is bounded by

k∑
u=0

p(u) O(tnu+1
b ) (5.5.5)

This is an upper bound since the decoder will not attempt to decode the block if it
belongs to a consecutive congestion (we are not considering this in (5.5.5)). Therefore,
can be upper bounded by

Using (5.4.3) we have
pi+1
pi

= k − i

k − i+ l −2 , (5.5.6)
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therefore, l ≥ k +2 will guarantee that pi+1
pi

≤ 1
2 for every i ≥ 0. Using this in (5.5.4)

we get

p(u) ≤
( 1

2u

)t

. (5.5.7)

Therefore, an upper bound for the average complexity of the phase 2 is

l
k∑

u=0
p(u) O(tnu+1

b ) ≤ l
k∑

u=0

( 1
2u

)t

O(tnu+1
b ) (5.5.8)

=
( 1

2t

)u

O(tnu+1
b ) (5.5.9)

≤
(

1
nb

)u

O(tnu+1
b ) (5.5.10)

= O(tn). (5.5.11)

Here (5.5.10) follows from the assumption that t ≥ log2 nb.

Both of the conditions in the above propositions are intuitive. The condition
l ≥ k + 2 ensures less than one deletion per block on average, assuming that the
locations of the deletions are uniformly random. The other constraint shows that the
decoder needs more traces as the length of the block increases. This is because as nb

increases the number of guesses also increases. Finding similar constraints for general
guess-based decoders is an interesting direction for future work.

5.6 Discussion
The coding scheme in this chapter demonstrates that single-deletion correcting codes
can be effective in correcting multiple deletions when several traces are available. The
availability of multiple traces helps the decoder in two ways: to identify deletion-free
copies of a block, and to avoid mis-synchronization (by examining the number of bits
inserted while correcting each trace).

In this work, each block of the codeword is chosen from a VT code which is capable
of recovering one deletion. One can replace the VT code with any other deletion
correcting code. For instance, if we choose blocks from codebook C which is capable
of recovering two deletions the resulting code will have a lower phase two error in
comparison with the suggested code in this work. This is because when the blocks are
drawn from C in order to have unresolvable congestion, all the traces should have more
than two deletions. It is also expected to have a lower phase 1 error: since the number
of codewords in a two deletion correcting codebook is less than a VT codebook, the
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probability of an accidental match is expected to be lower. Clearly the trade off is that
the rate of such a code is less than VT codes.

Note the decoding algorithm suggested in this chapter can be modified to work in
association with any codebook C. The difference in the first phase of the decoding
is that for VT codes, to consider a sequence as a candidate, the decoder compares
its VT syndrome with the known syndrome of the block. For a general codebook C,
a sequence is considered as a candidate for a block if it simply belongs to C. In the
second phase, we need to use the decoder associated with C instead of using the VT
decoder.

The code presented in this chapter is the first step in designing codes for multiple
traces. Many of the codes that are suggested for recovering edits from one trace can
potentially work with a modified decoder in our setup where multiple edited traces are
available. Specifically, codes in [3, 23] are promising candidates to consider for this
direction of future work.





Chapter 6

Conclusion and Future work

In this thesis we considered various models pertaining to edit channels and edit
synchronization.

• In Chapter 2, we studied VT codes in detail. These codes are near optimal
in terms of rate and can correct one edit with zero error probability. We also
described the confusability graph for edit channels, and showed that the VT
family is the only integer code that can offer a vertex coloring for the confusability
graph. Furthermore, we reviewed the existing lower and upper bounds for zero
error codes. One future work can be exploring if lower bounds for the zero
error code based on tight upper bounds on the chromatic number of the graph
can improve on the existing bounds. Another question is whether edit graphs
are weakly perfect, i.e., whether clique number and chromatic number are the
same for these graphs. Moreover, a new systematic encoder for non-binary codes
was introduced in this chapter. Improvement of this scheme may be possible,
especially in the fifth step of the encoding where we assign symbols to dyadic
positions. In most of the cases, there is more than one suitable choice for these
symbols. It might be possible to use this to embed more information bits. Such
an improvement will also give a tighter lower bound on the size of the non-binary
VT classes.

• In Chapter 3, we have considered three segmented edit channel models and
proposed zero error codes for each of them over alphabets of size q ≥ 2. The
proposed codes are constructed using carefully chosen subsets of VT codes, and
can be decoded in a segment-by-segment fashion in linear time. The rate scaling
for the codes is shown to be the same as that of the maximal code; the upper
bound of Theorem 1 shows that the rate penalty is of order 1/b.
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One direction for future work is to obtain tighter non-asymptotic upper and lower
bounds on the cardinality of these codes. For tighter upper bounds, the linear
programming technique from [100] is a promising approach. For tighter lower
bounds, one approach would be to use the known formulas for the cardinality of
VT codes (2.2.12), and adapt them to our setting where the prefix and/or suffix
constraints are added. In particular, one may be able to generalize the proof
given in [16, Theorem 2.2] for the exact size ov VT classes.

Also, in the three segmented models that we discussed here only one edit per
segment was allowed. A natural question is how to generalize the coding scheme
for models where k > 1 edits are allowed per segment. Assuming that there exists
a codebook C which is a zero error k deletion correcting code, it may be possible
to determine appropriate prefix and suffix for the codewords of C (similar to the
techniques proposed for one edit per segment) to construct a zero error code
for segmented model. Carefully exploring this idea would constitute another
interesting line for future work.

• In Chapter 4, we introduced multilayer codes for one-way file synchronization. We
have used multiple layers of VT codes, which could localize the the deletions and
also recover many of them and also some linear code to recover erasures. Using
the proposed structure reduces the complexity of the decoding in comparison with
the method suggested in [76] as the decoder does not consider all the patterns for
the deletions. We also introduced a guess-based decoding algorithm which only
uses VT codes. Further studies on this decoding method is one direction to work
con. For example, exploring how much adding random hashes to the multilayer
construction can reduce the list size given in Table 4.6. We also gave an analysis
on the list size in Section 4.7.3, improving that analysis by also considering VT
constraints is another future work.

We proposed a modified decoder to decode a combination of insertions and
deletions. Implementing this decoder and evaluating its empirical performance
is an important next step. In Section 4.10 we introduced the multilayer codes
with more than two layers. A better understanding of this code and the tradeoffs
it presents is key. For example, an interesting direction is to investigate the
tradeoffs in a three layer code compared to a two layer one, with respect to rate,
complexity an error probability. Adapting multilayer codes for a two-way setup
is another interesting direction. For example, the decoder can ask for additional
information from the encoder when there is more than one candidate on the
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final list. Another idea is asking for additional information when the number of
candidates in one of the decoding steps is larger than a threshold. The additional
information can be used to discard some of the candidates, and this will reduce
the complexity of the decoding.

The final suggestion for continuing this work is the study of burst deletion
models. There are different models suggested for burst deletions (see for example
[113, 114]). One interesting model considered in [114] is that all of the k deletions
occur in a window of at most w bits in the input sequence. The intersecting
constraints in the multilayer construction allow us to localize the deletion. If
we choose nb ≥ w, then we know that the deletions will occur in one block or
two consecutive blocks. This will simplify the decoding algorithm. Nevertheless,
one may choose not to use the VT codes as the intersecting constraints. This is
because in a burst deletion model, it is less likely to have a single deletion in a
constraint. Therefore, we may use other random constraints (like a random binary
hash) to get a better rate. Formalizing these ideas and finding the performance
of a multilayer code in the burst model can be an important contribution.

• In Chapter 5, we considered the problem of coding for the deletion channel when
several traces are available to the decoder. The codeword consisted of a number
of blocks each of them drawn from a VT code. For each block, the decoder
searches for a clean copy across the traces and use that copy to fix other traces.
Multiple traces not only increase the probability of receiving a clean copy but
also help the decoder to identify the clean copy when there are several candidates.
List decoding was suggested as future work for improving the performance of
the code in terms of error probability. In phase 1, when there are multiple
syndrome matches for a block, the decoder could run the decoding procedure for
a fixed number of these matches in parallel, using the “fewest insertions” rule to
decide which candidates to retain. In phase 2, when an unresolvable congestion
occurs, the decoder could guess a subset of the bits in the block, use the VT
decoder to recover the rest, and choose a guess that produces the correct number
of insertions in other traces. Implementing these methods is a very promising
direction for future work. The number of required traces in order to have a low
complexity of decoding and short list size is needed to be investigated.

As suggested at the end of Chapter 5, we can also use a more sophisticated
code in the blocks of the proposed construction. This will reduce the rate of
the overall code but will improve the probability of error. One example of these
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codes can be our multilayer code. Furthermore, in this work we only considered
the deletion errors, generalizing of the method for both insertions and deletions
errors is another direction for future work. For such a generalization in the first
phase of the decoding instead of looking for the number of insertions the decoder
needs to find the edit distance between the blocks of different traces.

Finally, finding bounds for the zero error capacity of the the trace deletion channel
is an interesting combinatorial problem. For example, assume that t = 2 distinct
traces are available to the decoder, and there are at most k deletions. The decoder
may confuse two sequences if they share at least two subsequences. Therefore,
two sequences X and Y in the confusability graph will be connected to each
other if |Dk(X)∩Dk(Y )|≥ 2. As discussed in Section 2.3, finding upper bounds
for the degree of this graph yields a lower bound on the zero error capacity.

Small code construction

In the end, we want to highlight the importance of designing codes for a specific regime
we call small code regime. This problem is related to the different chapters of this
thesis. As mentioned earlier we may be able to use a code that can correct multiple
deletions with a suitable prefix and suffix in the construction of the segmented model
when multiple errors can occur in a segment. Also, such codes can be used in the
construction we proposed in Chapter 5. Note that in both of these constructions the
case where the length of the block (or segment) is not very long is also interesting. Say,
when the length of the block (or segment) is less than 100. This is because we can
concatenate different blocks to construct a code with the desired length. For example,
in the code proposed in Chapter 5, we have the assumption k ≤ l, where k is the
number of deletions and l is the number of blocks. This means that k

n ≤ 1
nb

(recall
that nb is the length of the block). Hence, if the fraction of deleted bits is more than
0.01 (which is a reasonable assumption, especially in DNA storage model), we have
nb ≤ 100.

Motivated by this, we want to suggest a method for constructing a code capable of
correcting multiple deletions in the small code regime, where the size of the codebook
is not very large. For example, there are a few hundred codewords in the codebook.
For this regime, finding the codebook even without an efficient encoding and decoding
is acceptable. Since the number of codewords is not large, a look up table can be
used for the mapping of the messages into codewords. Also for the decoding, the edit
distance between the received sequence and all the codewords can be computed and
the codeword with the least distance will be the output of the decoder. Notice that by
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using the known bounds when the code length is not very large we expect to be in the
small code regime for many of the cases. For example, from (2.3.17), for n = 50 and
k = 6 the best lower bound for the size of the codebook is 217.

The proposed method has two steps. Assume that we want to construct a code that
can correct k deletions. In the first step, we use a known code which can be referred
as the core code to construct a set of codewords that are known to have a small error
probability when used over a channel with k deletions. This can be any of the known
code with small error probability, for example multilayer codes. Codes suggested in
[3, 39, 41] are among other candidates for construction of the core code. Denote the
codebook of the core code by C1. Now we construct the confusability graph G for this
codebook. We will have a graph with |C1| vertices corresponding to codewords in C1,
and two sequences X,Y ∈ C1 are connected if |Dk(X)∩Dk(Y )|> 0. In the second step,
we can use a greedy algorithm on G to find an independence set. In other words, we
choose the vertex in the graph with the minimum degree and add the corresponding
sequence to the final codebook (if there are more than one vertex we randomly choose
one of them). Then we remove the neighbours of the chosen vertex and repeat the
algorithm for the rest of the graph. The resulting codebook will be zero error code
capable of correcting k deletions.

The most computationally expensive part of the above algorithm is the constructing
of confusability graph. Constructing this graph when there are 2n sequences (if we do
not use a core code) soon become impractical as n increases. Using a core code reduces
this complexity since we need to find the edges only among |C| vertices. Also, when
the core code C1 is has a good performance in terms of error probability (i.e. when
codewords have large edit distance), the second step is expected to retain many of the
codewords. For example, for k = 2 and n = 20, we first constructed C1 by enforcing the
VT syndrome of X[1 : 10] and X[11 : 20] to be 0. Also, we split the sequence into four
chunks of length 5 and enforce the summation of the chunks in GF (25) to be zero. In
the first step, C1 had 596 codewords and the final zero error code had 249 codewords.
The lower bound from (2.3.17) for n = 20 and k = 2 is 94. Exploring which of the small
error codes will perform better as a core code is a direction for future work.
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