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Summary 

Monitoring the responses of leaf functional traits and vegetation structure to environmental 

change is key to understanding the responses of ecological systems to anthropogenic global 

change. Advancement in earth observation technologies provide new opportunities to answer 

complex ecological questions at scales ranging from the community to the landscape level. 

This thesis investigates the impacts of environmental change on foliar traits and forest 

structure. In particular, it investigates the impacts of El Niño on leaf traits using 

hyperspectroscopy and on the structure of forests modified by oil palm plantations using 

airborne LiDAR. The first chapter explores the potential and limitations of using hyperspectral 

data to estimate leaf traits remotely. Working with six temperate tree species in contrasting soil 

types, I explore the relationship between leaf structure and chemistry and spectral 

characteristics. We show that interspecific differences in leaf traits were generally much 

stronger than intraspecific differences related to soil type. We highlight the difficulties that can 

arise in detecting within-species variation owing to “constellation effects” but demonstrate the 

power of spectroscopy to predict traits. The second chapter investigates the effects of drought 

on leaf traits and spectra, by taking measurements during and after an El Niño event. Pigments 

were particularly lower after the drought, when rain was more frequent, sunshine duration was 

shorter and radiation was lower, indicating increased greenness and forest resilience to climatic 

variation. Spectral information was also shown to be effective at detecting the impacts of 

droughts on leaf traits. Upscaling to the landscape level, the third chapter focuses on methods 

for estimating aboveground carbon stocks in oil palm plantations using airborne LiDAR. We 

show that an area-based approach is more accurate than tree-centric methods, although the 

latter may be useful to detect, extract and count individual oil palm trees from images. The 

fourth chapter explores the effects of El Niño drought on the canopy structure of tropical forests 

in Borneo using repeat airborne LiDAR. Our results reveal extensive leaf shedding caused by 

extreme high temperatures and Vapour-Pressure Deficit. Regenerating short forests on ridges 

were particularly more vulnerable to climatic variation owing to greater heat and atmospheric 

dryness. In conclusion, this thesis integrates field measurements and remote sensing to narrow 

down the uncertainties of vegetation responses to environmental changes. 
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Chapter 1 | General introduction 

 

The interconnected nature of the biosphere means that the stability of biological communities 

is affected by man-induced and natural changes (Odum, 1983; Greegor, 1986). Land-use 

change is rapid in the tropical forests regions (Salas et al., 2000), contributing to declining 

biodiversity (Newbold et al., 2015), and subsequently affecting the stability and resistance of 

ecosystems to climate extremes (Isbell et al., 2015; Hautier et al., 2015). Southeast Asia has 

experienced the greatest rates of forest loss anywhere in the tropics (Sohdi et al., 2004; 

Miettinen et al., 2011), and extreme climate events in the region are becoming more frequent 

and intense (Thirumalai et al., 2017). Given that these forests are amongst the most diverse 

(Slik et al., 2015) and carbon dense in the tropics (Sullivan et al., 2017), these changes are 

threatening many species and exerting a large impact on the Earth’s climate system (Patra et 

al., 2017).  

In this introductory chapter, I briefly review forest responses to environmental change, with a 

focus on responses to climatic events at species, community and landscape levels. I describe 

the changes that have already occurred on the island of Borneo, in Southeast Asia, and discuss 

efforts to conserve what remains. I explain how functional traits can be used to investigate 

forest responses to environmental change, and how remote sensing techniques may contribute 

to investigating these traits. Finally, I outline the aims of my thesis, explaining how the chapters 

address the use of remotely sensed functional traits as a means to examining the impact of 

extreme climate events on human-modified forests in the tropics.     

1.1 Anthropogenic changes at the centre of forest change 

Human activity has profoundly affected tropical forests (Hansen et al., 2013) mostly due to 

change in land use (Sala et al., 2000). These changes have a large influence on biogeochemical 

cycles. Tropical forests store 471 billion tonnes of carbon in their live biomass, soils, deadwood 

and litter, which is equivalent to almost half the total atmospheric carbon stocks (Pan et al., 

2011). They also influence the hydrological cycle (Kooperman et al., 2018) and trace gases 

such as isoprene (Vickers et al., 2009). Tropical forests have high transpiration rates 

(Schlesinger and Jasechko, 2014; Manoli et al., 2018), and land use change affects affect 



2 

 

precipitation (Malhi et al., 2009). Their loss contributes to increasing CO2 in the atmosphere 

and influence physiological behaviour of plants (e.g. reduced stomatal conductance; 

Kooperman et al., 2018).  

1.1.1 Climate change and El Niño-Southern Oscillation events` 

El Niño events are the dominant interannual climate variation on Earth (McPhaden et al., 

2006), driven by variability in the trade winds and the zonal contrasts in sea surface temperature 

that they generate (Cane, 2005). Trade winds along the equator usually lead to an accumulation 

of warm surface water in the western Pacific and upwelling of cold water off the west coast of 

South America. This east-west surface temperature contrast reinforces an east-west air pressure 

differences that drive the wind trades. During El Niño, these winds are weakened causing the 

warm surface waters to move into the central Pacific region, with major consequences for rain 

patterns in the region (McPhaden et al., 2006). Shifts in precipitation patterns in response to El 

Niño typically bring drought to Australia and some Southeast Asia’s countries, and flood to 

central Pacific islands and west coast of South America (McPhaden et al., 2006). However, the 

position and duration of sea surface temperature anomalies affect the intensity of El Niño 

events (Trenberth and Stepaniak, 2001), and fluctuations in temperature and precipitation on 

land are irregular in amplitude, duration, temporal evolution, and spatial structure (Neelin et 

al., 1998).    

The Southern Oscillations responsible for El Niño events have occurred for at least 130,000 

years (Tudhop et al., 2001), suggesting ample opportunity for natural selection of trees capable 

of tolerating irregular drought events (Detto et al., 2018). However, there are concerns that 

anthropogenic climate change is increasing the frequency and intensity of El Niño events 

(Thirumalai et al., 2017; Wang et al., 2017) due to increases in upper-ocean stratification in 

the equatorial Pacific under global warming (Cai et al., 2018). The 2015/2016 El Niño was the 

third most intense since the 1950s, and exerted a large impact on the Earth’s natural climate 

system (Patra et al., 2017). The Earth was then a net carbon source, contributing to an excess 

CO2 emission from the Earth’s surface primarily due to reduced vegetation uptake associated 

with drought, and to a lesser extent from increased biomass burning.  

There is evidence that increasing drought severity is having catastrophic effects on forests in 

some regions, including California (Asner et al., 2016), Inner Asia (Liu et al., 2013) and South-
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western USA (Williams et al., 2010; Williams et al., 2013). Increased air temperature is 

causing higher evaporative demand, resulting in greater water stress even if rainfall patterns 

remain unchanged (Clark et al., 2010; Allen et al., 2015). This increased evaporative demand 

has the potential to shift tropical forests from net carbon sinks to sources due to increased tree 

mortality and decreased productivity during drought (Gatti et al., 2014; Qie et al., 2017; Zuleta 

et al., 2017; Greenwood et al., 2017; Mitchard, 2018). However, we still have a poor 

understanding of how tropical forests in different regions are responding to extreme climate 

events, particularly because rainforest species vary in resilience (Nepstad et al., 2002; Doughty 

et al., 2015; Santos et al, 2018) and CO2 concentration can enhance forest productivity (Norby 

et al., 2005). Stomatal regulation and plant physiological response strongly regulate 

evapotranspiration, and responses to drought may vary from leaf shedding (Wolfe et al.,2016), 

lower productivity to widespread death of trees (Saatchi et al., 2013). Understanding how 

tropical forests respond to extreme drought events has therefore emerged as a key priority if 

we are to forecast the impacts of climate change on the terrestrial carbon cycle (Mitchard 2018; 

McDowell et al. 2018). 

1.1.2 Forest fragmentation and logging in the context of extreme climate events 

Anthropogenic disturbance can have significant effects on forest responses to drought (Huang 

and Asner, 2010; Baccini et al., 2017; Putz et al., 2012; Qie et al., 2017; Brinck et al., 2017). 

Disturbance of vegetation results in changes in surface albedo, evapotranspiration and cloud 

cover, affecting the regional and global climate (Bala et al., 2007; McAlpine et al., 2018), as 

well as modifying canopy gap formation and dynamics, producing canopies with lower height 

and more spatially uniform surfaces (Vaughn et al., 2015). Selective logging lowers and thins 

the forest canopy, reducing its area index (Ewers et al., 2015; Hardwick et al., 2015), the 

number of vegetation strata it contains, and creating large forest gaps (Okuda et al., 2003). 

These logged forests can be especially vulnerable to global warming because structural 

changes increase evapotranspiration, leading to depleted soil moisture and creating stress 

for drought-sensitive plants (Laurance 2004). For example, canopy height affects air 

temperature and atmospheric dryness in the understory of forests in Malaysian Borneo, and 

these microclimatic changes may influence forest regeneration (Jucker et al., 2018c). Given 

that microclimate modulates plant responses to macroclimate warming (De Frenne et al., 

2013), logged forest understories are less buffered from regional climate change than old 

http://science.sciencemag.org/content/282/5388/439.full#ref-39
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growth forests, experiencing much higher microclimate extremes and heterogeneity 

(Blonder et al., 2018).  

Forest fragmentation can increase tree mortality around the fragment borders, with edge effects 

reported to penetrate from 100 m (Laurance et al., 2006, Lindenmayer et al., 2012, Laurance 

et al.,2011; Numata et al., 2011) to 1500 m from the forest edge (Chaplin-Kramer et al., 2015). 

A recent global analysis estimates that edge effects extend 100 m from the forest edge, and 

shows that 19% of tropical forests lie within this area leading to 31% of the estimated annual 

carbon emissions associated with deforestation (Brinck et al., 2017). 

These disturbed forests contain a high proportion of pioneer tree species (Both et al., 2018; 

Riutta et al., 2018), whose physiological characteristics may make them more vulnerable to 

drought and higher temperatures (Bazzaz and Pickett, 1980; Lohbeck et al., 2013). Pioneer 

species are characterised by “acquisitive” traits that maximize carbon capture and growth 

(Lohbeck et al., Poorter et al., 2008; 2013; Both et al., 2018), and have biomass growth rates 

several times higher than old-growth forests (Blanc et al., 2009; Berry et al., 2010). However, 

acquisitive traits are associated with cheap-to-construct material with short lifespans (Lohbeck 

et al., 2008).  High stem turnover in early successional stands creates canopy gaps which results 

in high irradiance and temperatures in the forest understory, making these stands susceptible 

to climate extremes (Lebrija‐Trejos et al., 2011).  

1.2 Anthropogenic change on the island of Borneo 

The island of Borneo contains some of the richest and carbon dense forests on the planet 

(McKinnon, 1996; Sullivan et al., 2016). Before human disturbance, most of the island was 

covered in lowland, hill and montane dipterocarp forests, heath forests, mangroves forests, and 

freshwater and peat swamp forests (McKinnon, 1996). Lowland dipterocarp forests occur up 

to 1200 m elevation dominated in its upper and emergent canopy by the family 

Dipterocarpaceae and is the most extensive forest type in Borneo (Newbury et al., 1992). The 

forests of Borneo have been severely impacted by selective logging, fire and conversion to 

plantations, which has occurred at unprecedented rates since the early 1970s (Gaveau et al., 

2014). Between 1973 and 2010, 30% of Borneo’s intact forests were lost, mostly to logging 

(15%) and industrial plantations (10%). With a land area of 73 631 km2, the state of Sabah 
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occupies just less than 10 % of Borneo, and is registered as the region with the highest forest 

loss rate on the island between 1973 and 2010 (Gaveau et al., 2014).  

1.2.1 Drivers of forest loss and degradation in Borneo 

The oil palm (Elaeis guineensis) is the most rapidly expanding crop in the tropics (Koh and 

Wilcove, 2008). Malaysia has increased its planted area by 150% over the last decade (FAO, 

2017) and, along with Indonesia, represents over 80% of global palm oil production (Koh 

and Wilcove, 2007; FAO, 2017). Rapid conversion to industrial plantations represents ~25% 

(~20.5% oil palm and ~4.5% pulpwood) of deforestation in Borneo (Gaveau et al., 2016). 

Oil palm plantations are a major driver of national economic and social development in the 

region where labour and land costs are low (Gaveau et al., 2016). If planted on degraded 

lands (e.g. logged forests), oil-palm may contribute more effectively to economic 

development and to human welfare than any comparable crop (Sheil et al., 2009), however 

76% of the industrial plantations have been developed at the expense of old-growth forests 

(Gaveau et al., 2016). Oil palm plantations continue to expand rapidly in Southeast Asia 

(Gaveau et al., 2016) and across the tropics (Fitzherbert et al. 2008). Although oil palm 

plantations continue to expand, the government of Malaysia has pledged to reduce the 

country’s projected GHG emissions by 45% by 2030 (UNFCCC, 2017). 

In addition, Borneo’s forests have been impacted by logging. More round wood was harvested 

from Borneo than from Africa and the Amazon combined between 1980 and 2000 (Curran et 

al., 2004). Almost 50% of the total forest area in Borneo has been logged (Gaveau et al., 2014), 

and further degraded by illegal logging, droughts and fires (Page et al., 1997; Wooster et al., 

2012). Since 2000 the rate of logging roads expansion has approximately halved, reflecting a 

growing scarcity of unlogged, accessible forests (Gaveau et al., 2014). Forest conversion has 

occurred with little regional planning and has created a mosaic of degraded, logged-over areas 

and non-native monocultures (Curran et al., 1999).  

El Niño induced droughts have also caused forest loss and degradation in Southeast Asia 

(Siegert et al., 2001; Wooster et al., 2012). The exposed ground surface of logged forests dries 

out and becomes increasingly susceptible to fire, and fires are much more frequent in logged 

areas (Siegert et al., 2001). Borneo’s intact forests become carbon source in El Niño years due 

to increased mortality of trees (Qie et al., 2017). In addition, viable seed production and 
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seedling establishment have declined in Borneo, affecting reproduction and regeneration 

processes (Curran et al., 1999). Furthermore, the underlying mechanisms of forest responses 

to extreme climate events, and the influences of logging and fragmentation on those responses 

remain poorly understood. 

1.3 Plant responses to environmental change 

Rising temperatures and evaporative demand are important components of anthropogenic 

global, threatening plants that are unable to acclimate to these changes (Vickers et al., 2009). 

Understanding the mechanisms underlying plant responses to heat and water shortage, and to 

determine which species are more vulnerable than others, are key topics in global change 

biology (McDowell et al., 2008). The use of functional traits has been key to exploring the 

relationship between climate and plant responses (Niinemets, 2001; Lamont et al., 2002; 

Barlett et al., 2012; Fortunel et al., 2014). 

1.3.1 Plant morphological and physiological functional traits 

An increasing number of plant morphological and physiological traits are measured routinely 

in plant communities, and global trade-offs among these traits are often interpreted in terms of 

the life histories of different species (Adler et al., 2014; Fry et al., 2014). Morphological traits 

include aboveground growth, foliar mass, leaf mass pert unit area (LMA), leaf longevity, 

canopy structure and architecture (Bloom et al., 1985; Ehleringer and Werk, 1986). 

Physiological traits include photosynthesis, light harvesting, water and nutrient acquisition, 

although they should be associated with structural investments (Field et al., 1992). Many of 

these traits covary; a study that compared six plant traits – adult plant height, stem specific 

density, leaf area, LMA, nitrogen (N) and diaspore mass of 46,085 species revealed two 

dimensions of trait variation that accounted for 74% of the variability in traits (Diaz et al., 

2016). They found that plant height tends to increase with seed diaspore, whereas a second 

independent dimension of variation indicates whether leaves have conservative (high LMA and 

low nitrogen concentration per unit mass) or acquisitive (low LMA and high nitrogen) 

properties. LMA and leaf N express different aspects of leaf strategy for resource capture and 

conservation: LMA reflects a trade-off between carbon gain and longevity, whilst N reflects a 

trade-off between the benefits of photosynthetic potential and the costs of acquiring nitrogen 

and suffering herbivory. Other physiological leaf traits, such as pigments, describe light use at 
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the leaf level, controlling the amount of photosynthetically active radiation absorbed for 

photosynthesis (Ustin et al., 2009). Morphological traits, such as canopy height (vertical 

distance between canopy top and ground), are essential to describe canopy architecture, 

encompassing the horizontal and vertical structure of forests and influencing light availability, 

thus affecting competitive and complementary light use and ecosystem productivity (Ishii et 

al., 2004; Williams et al., 2017). As morphological or physiological plant traits represent 

species’ strategies for acquiring and using resources, traits may determine their growth, 

reproduction and survival (Poorter and Bongers 2006). Measuring plant traits in different 

environments is therefore key to investigating plant’s responses to climate change. 

Canopy leaf area is an efficient way to control canopy water loss of an entire tree, while 

maintaining sufficient water supply to the remaining leaves to attain high levels of 

photosynthesis per unit of leaf area, albeit at the loss of whole tree productivity (Coomes and 

Grubb, 2000). 

1.3.2 Trait responses to environmental change 

Functional traits provide a way of predicting tropical forest responses to environmental 

changes (Reich, 2014). Variation in traits takes on a new importance in the context of global 

changes; populations that experience the greatest extent of variability in a given 

environmental condition are expected to be more plastic in traits to acclimate to those 

conditions (Sultan and Spencer, 2002). It has been suggested that this variability of traits 

within species help explain differences in growth and survival across resource gradients; for 

example, plant trait diversity might act as an insurance against climate change impacts on 

Amazon forests biomass, and considering the possible plasticity of traits, shifts of functional 

dominance enhance biomass resilience (Sakschewski et al., 2016). Morphological and 

physiological trait acclimation is linked in predictable ways by resource limitations, biotic 

factors, responses to disturbance or other aspects of the environment, and plant’s allocation 

of energy to these morphological and physiological components should reflect the 

integration of multiple stresses and resource availability (Ustin and Gamon, 2004).  
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1.4 Functional traits from a remote sensing perspective 

Tracking the consequences of land use, disturbance, and climate change on functioning of 

ecosystems requires remote sensing data at different scales. Advances in technology have 

progressively expanded capability for distinguishing the structure, phenology and physiology 

of vegetation. In particular, field spectrometers are making novel contributions to our 

understanding of functional traits (Ustin et al., 2004), whilst LiDAR is contributing new forms 

of explicit three‐dimensional structural information (Lefsky et al., 1999; Gillespie et al., 2004; 

Vierling et al., 2008). 

1.4.1 Field spectroscopy to study ecosystem functioning 

Field spectroscopy involves the study of the inter-relationships between the spectral 

characteristics of plants and their biophysical attributes (Milton, 1987). Rapid, non-destructive 

determination of leaf traits in vivo and in situ using spectroscopy reduces the need to collect 

large amounts of material in the field, decreases processing time, lessens costly chemical 

analyses and eliminates sampling that could itself alter experimental conditions (Couture et al., 

2013). Spectroscopy can provide predictions of a range of foliar traits at the leaf and canopy 

scales (Asner et al., 2011a; Doughty et al., 2011; Serbin et al., 2014). If variation in leaf traits 

associated with environmental change is large enough to influence remotely sensed patterns, 

these effects should be detectable in individual leaves. Hyperspectral reflectance signatures are 

related to the absorption features across a range of wavelengths: absorption in the visible (400 

- 750 nm) portion of the spectrum is mainly driven by pigments (Sims and Gamon, 2002; 

Gitelson et al.,  2005), while absorption in the near infrared (751-1300nm) and shortwave 

infrared (1301 - 2400nm) are driven by internal and external leaf structure, including water 

(Tucker, 1980), phenolics (Kokaly and Skidmore, 2009)  and other organic constituents 

(Petisco et al., 2006; Asner et al., 2011a).  

One challenge with the use of spectroscopy for traits prediction, is that some traits do not have 

absorption features within the visible and shortwave infrared spectral range of spectrometers 

conventionally used for vegetation analyses, but can be estimated indirectly through their 

covariance with traits that do have absorption features in the visible-to-shortwave-infrared 

region (“constellation effects” sensu Chadwick and Asner, 2016). These traits include 

elemental concentrations and stable isotopes (e.g. Serbin et al., 2014). In addition, structural 
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differences (i.e. leaf thickness, number of air water interfaces, cuticle thickness and 

pubescence) between leaves may have significant effects on the relationship between leaf 

reflectance and traits, and can complicate interpretation of data (Sims and Gamon, 2002; Wu 

et al., 2016). It is therefore key to gaining a critical understanding of the ability of spectroscopy 

to measure intraspecific variation in multiples traits in response to environmental change, 

particularly when some of those traits are indirectly determined through “constellation effects”.  

Nevertheless, it is poorly understood how climatic variation will affect leaf spectral properties; 

for example, it remains controversial whether a “green-up” phenomena in the Amazon during 

dry seasons is an artefact of optical sensors geometry (Morton et al., 2014) or whether leaves 

are actually investing in a photosynthetically apparatus and investing in greater leaf area 

(Saleska et al., 2005; Huete et al., 2006). From our knowledge, no study has repeatedly 

measured spectral properties of leaves to investigate the impact of extreme climate events on 

leaf spectra and traits.  

1.4.2 LiDAR for aboveground carbon and canopy structure dynamics 

Information about vegetation structure, from the leaf to the entire stand, is an essential 

component for assessing ecosystem functioning, and LiDAR instruments are contributing to 

the three‐dimensional structural information (Lefsky et al., 2002). LiDAR uses internal 

energy sources to emit laser pulses in the near‐infrared region (for terrestrial ecology 

applications) and precisely measures the time for the reflected signal (the pulse) to return to 

the detector, thus locating the position of the scattering object in space with high precision 

(Lefsky et al., 2002). LiDAR then can emit and measure sufficient numbers of pulses to 

characterize the plant canopy surface and the ground (topographic) surface.  

Airborne LiDAR overcomes difficulties in scaling up estimates of forest structure made on 

trees or plots to larger scales by generating high resolution 3D maps of forest canopies 

(Marvin et al., 2014). LiDAR is able to resolve fine-scale heterogeneity in forest structural 

attributes within landscapes (Marvin et al., 2014; Asner et al., 2010; Coomes et al., 2017; 

Asner et al., 2018). Top-of-the-canopy height (TCH) measured by LiDAR is a useful metric 

for estimating forest structure and is relatively insensitive to sensor and flight specifications 

(Asner and Mascaro, 2014). Individual-tree-based approaches also make greater use of the 

three-dimensional information to quantify the architecture of single trees, but it is 
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challenging to identify all trees in a stand, owing to the complex nature of forests (Féret and 

Asner, 2013).  

The use of LiDAR to map aboveground biomass of tropical plantations and neighbour 

forests is crucial for optimization of forest management and land-use planning (Carlson et 

al., 2012). Oil palm trees have been counted using airborne imaging spectrometry (Shafri et 

al., 2011) and their biomass estimated from satellite images (Thenkabail et al., 2004; Koh 

et al., 2011; Morel et al., 2011; Carlson et al., 2012), but nobody has yet developed equations 

and tested approaches to estimate carbon density in oil palm plantations from airborne 

LiDAR data. The development of carbon prediction models provides opportunities to assess 

the aboveground carbon density of oil palm plantations, which is essential for assessments 

of the environmental sustainability of human modified tropical landscapes (Carlson et al., 

2012). 

Repeat-survey LiDAR can be a powerful technique for monitoring forest dynamics over 

large spatial scales and tease apart the environmental effects on forest dynamics, (Zhao et 

al., 2018). Some studies have interpreted change in terms of mortality and growth (Kellner 

et al., 2009; Dubaya et al., 2010; Meyer et al., 2013; Englhart et al., 2013, Andersen et al., 

2014; Réjou-Méchain et al., 2015), however repeat-LiDAR surveys can also detect leaf 

shedding and budburst through the effects on canopy height estimated from the point clouds 

(Wasser et al., 2013; Simonson et al., 2018). Repeat surveys then lead to a better 

understanding of the processes governing canopy turnover and the associated carbon fluxes 

associated with environmental change such as El Niño-induced droughts (Leitold et al., 

2018).  

1.5 Thesis aims  

Working primarily in the forests of Sabah, this thesis uses field and remotely sensed data to 

address three broad questions: 

 

1) How well can the traits of tropical forest trees be predicted remotely (Chapters 3, 4, 

5)? 
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2) Did the 2015/2016 El Niño event affect leaf traits of old-growth tropical forests 

(Chapter 3)? 

3) What are the environmental controls on canopy structure of tropical forests during El 

Niño (Chapter 5)? 

 

Before approaching these questions, in Chapter 2 I critically assess the ability of field 

spectroscopy to estimate intra-specific variation in leaf traits by comparing the traits of trees of 

the same species growing on contrasting soil types in temperate forests of the UK. I describe 

how the variation in foliar traits affect different regions of the spectra. In Chapter 3, I 

investigate trait variation in tropical forests that comprise a considerably larger number of 

species. I explore the effects of El Niño events on leaf traits including spectral reflectance. 

Expanding my work from the community to the landscape level, in Chapter 4 I test different 

approaches to predict aboveground carbon of oil palm plantations from airborne LiDAR data. 

Having developed a reliable approach, we then explore the use of repeat LiDAR surveys in 

Chapter 5 to explore the impacts of El Niño events on aboveground carbon of oil palm 

plantations and canopy structure of tropical forests. In particular, I ask whether fragmentation, 

logging and topographic variation modulate forest responses to El Niño, and investigate 

whether microclimate play a significant role in these responses. Finally, in Chapter 6, I discuss 

my findings, and consider the implications and limitations of my research.   
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Chapter 2 | On the challenges of using field spectroscopy to measure the 

impact of soil type on leaf traits 

 

2.1 Summary 

Understanding the causes of variation in plant functional traits is a central issue in ecology, 

particularly in the context of global change.  Spectroscopy is increasingly used for rapid and 

non-destructive estimation of foliar traits, but few studies have evaluated its accuracy when 

assessing phenotypic variation in multiple traits.  Working with 24 chemical and physical leaf 

traits of six European tree species growing on strongly contrasting soil types (i.e. deep alluvium 

versus nearby shallow chalk), we asked (i) whether variability in leaf traits is greater between 

tree species or soil type; and (ii) whether field spectroscopy is effective at predicting 

intraspecific variation in leaf traits as well as interspecific differences.  Analysis of variance 

showed that inter-specific differences in traits were generally much stronger than intraspecific 

differences related to soil type, accounting for 25% versus 5% of total trait variation, 

respectively.  Structural traits, phenolic defences and pigments were barely affected by soil 

type.  In contrast, foliar concentrations of rock-derived nutrients did vary: P and K 

concentration were lower on chalk than alluvial soils, while Ca, Mg, B, Mn and Zn 

concentrations were all higher, consistent with the findings of previous ecological studies. 

Foliar traits were predicted from 400-2500 nm reflectance spectra collected by field 

spectroscopy using partial least square regression, a method that is commonly employed in 

chemometrics.  Pigments were best modelled using reflectance data from the visible region 

(400 - 700 nm), whilst all other traits were best modelled using reflectance data from the 

shortwave infrared region (1100 - 2500 nm) region. Spectroscopy delivered accurate 

predictions of species-level variation in traits. However, it was ineffective at detecting 

intraspecific variation in rock-derived nutrients (with the notable exception of P).  The 

explanation for this failure is that rock-derived elements do not have absorption features in the 

400-2500 nm region, and their estimation is indirect, relying on elemental concentrations co-

varying with structural traits that do have absorption features in that spectral region 

(“constellation effects”).  Since the structural traits did not vary with soil type, it was 

impossible for our regression models to predict intraspecific variation in rock-derived nutrients 

via constellation effects. This study demonstrates the value of spectroscopy for rapid, non-
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destructive estimation of foliar traits across species, but highlights problems with predicting 

intraspecific variation indirectly. We discuss the implications of these findings for mapping 

functional traits by airborne imaging spectroscopy.  

2.2 Introduction 

There is currently great interest in using plant traits to understand the influences of 

environmental filtering and species identity on the functioning of plant communities, and to 

model community responses to environmental change (MacGillivray et al., 1995; McGill et 

al., 2006; Green et al., 2008; Funk et al., 2016). Traits vary at multiple scales within 

individuals, within populations, between populations and between species (Albert et al., 2011), 

and analysis of this variation is key to evaluating the strength of various filtering processes on 

communities growing along environmental gradients (Davey et al., 2009; Violle et al., 2012). 

For example, intraspecific variation in traits may reflect differences in microclimate driven by 

competition, disturbance, environmental conditions and age (Funk et al., 2016), whereas inter-

specific and inter-site variation may reflect both genetic variation and phenotypic plasticity in 

response to environment (Davey et al., 2009; Sultan, 2001; Donohue et al., 2005). Despite 

substantial advances in trait-based community ecology over the past decade (Kunin et al., 2009; 

Funk et al., 2016), the importance of environmental filters is still debated, especially at small 

scales where biotic factors may prevail over abiotic environmental constraints (Vellend, 2010). 

Global analyses of leaf nitrogen, phosphorus and leaf mass per unit areas (LMA) indicate that 

about half of all variation occurs within communities (Wright et al., 2004), underscoring the 

importance of community-level variation in traits.  

An increasing number of leaf traits are measured routinely in plant communities and global 

tradeoffs among these traits are often interpreted in terms of life history of different species 

(Adler et al., 2014; Pillar et al., 2003; Aubin et al., 2009; Fry et al., 2014). In this study we 

measured 24 traits which we organise into three functional groups (Asner, 2014, Asner et al., 

2014b; Asner et al., 2015): (i) light capture and growth traits include pigments, the maximum 

efficiency of photosystem II (PSII), nitrogen concentration which is closely related to protein 

concentration (Milton and Dintzis, 1981), soluble C compounds and leaf water content, C 

isotope discrimination (δ13C), N isotope discrimination (δ15N); (ii) defence and structural traits 

include silicon (Si) organic cell wall constituents (cellulose, hemicellulose and lignin), that are 

associated with leaf toughness, longevity and defence capability (Hikosaka, 2004), 
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polyphenols that are associated with defence against herbivores (Mithöfer and Boland, 2012), 

and LMA, a primary axis of specialization among plants (Grime et al., 1997; Lambers and 

Poorter, 1992), that plays a crucial role in herbivore defence as well as leaf longevity (Wright 

et al., 2004); finally, (iii) rock-derived nutrients include phosphorus (P), which is involved in 

many enzymatic, genetic and epigenetic processes (Schachtman et al., 1998), and calcium (Ca), 

magnesium (Mg), potassium (K), zinc (Zn), manganese (Mn), boron (B) and iron (Fe), which 

are involved in signalling pathways and/or cofactors of enzymes (Marschner, 2012). We 

recognise that leaf traits can contribute to more than one class (e.g. LMA is related to growth 

but also to defence, P is a rock-derived nutrient also associated with growth). Many analyses 

of traits have focussed on interspecific variation, but there is recognition that intraspecific 

variation can strongly influence species and community responses to environmental change 

(e.g. Weiner, 2004; Funk et al., 2016). 

There is currently great interest in using hyper-spectroscopy as a tool for studying the chemical 

and structural traits of leaves, particularly because improved airborne sensors and faster 

computing make it possible to map functional traits from the air (Ustin et al., 2009; Asner and 

Martin 2016b; Jetz et al., 2016; Asner et al., 2017). Plans to put hyperspectral sensors into 

space (e.g. DRL plan to launch EnMAP in 2018; Guanter et al., 2015) will soon enable spectral 

response curves of vegetation communities to be assessed at the global scale. Rapid, non-

destructive determination of leaf traits in vivo and in situ using spectroscopy reduces the need 

to collect large amounts of material in the field, decreases processing time, lessens costly 

chemical analyses, and eliminates sampling that could itself alter experimental conditions 

(Couture et al., 2013). Spectroscopy can provide predictions of a range of foliar traits at the 

leaf and canopy scales within diverse tropical ecosystems (Asner et al., 2011a; Doughty et al., 

2011) and temperate forests (Wessman et al., 1988; Serbin et al., 2014).  However, some traits 

do not have absorption features within the visible and shortwave infrared spectral range of 

spectrometers conventionally used for vegetation analyses, but can be estimated indirectly 

through their covariance with traits that do have absorption features in the visible-to-

shortwave-infrared region (“constellation effects” sensu Dana Chadwick and Asner, 2016). 

These traits include elemental concentrations and isotope ratios (e.g. Serbin et al., 2014). In 

addition, structural differences (i.e., leaf thickness, number of air water interfaces, cuticle 

thickness, and pubescence) between leaves may have significant effects on the relationship 

between leaf reflectance and traits, and can complicate interpretation of data (Sims and Gamon, 
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2002; Wu et al., 2016). The ability of spectroscopy to measure intraspecific variation in 

multiples traits between soil types, particularly when some of those traits are indirectly 

determined through constellation effects, has not been critically evaluated.  

This paper examines the drivers of leaf trait variation in temperate woodlands growing on chalk 

in southern England compared with woodlands growing on nearby alluvial soils. Several 

studies have evaluated change in species composition among British semi-natural habitats that 

differ markedly in soil type (Haines-Young et al., 2003; Smart et al., 2003), but none to our 

knowledge have compared within- versus between-species variation of leaf traits in this 

context. The alkalinity of calcareous soils gives rise to phosphorus limitation, preventing short-

term responses to nitrogen addition (Grime et al., 2000), so comparisons of chalklands with 

less-alkaline soils nearby provide strong edaphic contrast. We investigated 24 leaf traits on 

these contrasting soil types and examined the ability of reflectance spectroscopy to quantify 

these leaf chemical and structural traits. We place these traits into groups based on ordination 

analyses, rather than working with pre-defined functional groups, and evaluate the functional 

significance of these groups. Our specific questions were: (i) is variability in leaf traits greater 

between tree species or soil type?  (ii)  is field spectroscopy effective at predicting intraspecific 

variation in leaf traits between soil types, as well as interspecific differences?   

2.3 Material and methods 

2.3.1 Field site and sampling 

Leaves were collected from trees growing on deep alluvial soils and shallow chalk soils, near 

Mickleham in Surrey, UK (latitude = 51°16’N, longitude = 0°19’W).  The alluvial soil, along 

the banks of the river Mole, was a loam of several metres depth. The chalk soil was located on 

a steep south-facing escarpment into which the river was cutting; the top soil was a few 

centimetres deep, underlain by solid chalk (i.e. a typical rendzina soil).  The chalk soils were 

alkaline with an average pH and standard deviation of 7.9 ± 1.0 (n = 10), whereas the alluvial 

was near neutral having a pH of 6.7 ± 0.2 (n = 10). Phosphorus becomes unavailable to plants 

in alkaline chalk soil (Gerke, 1992), and greater depth of loamy soil on the alluvial surfaces 

must result in much greater availability of nutrients to plants.  
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Across both sites, leaves were collected from 66 trees, representing six species. The six species 

common to both sites were: Acer campestre (field maple), Acer pseudoplatanus (sycamore), 

Corylus avellana (hazel), Crataegus monogyna (hawthorn), Fraxinus excelsior (ash) and 

Sambucus nigra (elder). Two fully sunlit branches were selected, cut and placed in a cool box, 

and subsequently transported to a laboratory for processing within two hours.  For each branch, 

ten mature leaves were selected. Three samples of 15 leaf disks were cored from these leaves 

using a 6 mm corer, wrapped in aluminium foil and frozen in liquid N for later chemical 

analyses. Leaf area was measured from fixed-height photos against a white background 

analysed in imageJ. The scanned leaves were weighed to give hydrated mass, then dried at 70 

°C for a minimum of 72 h to obtain dry mass.  Leaf mass per area (LMA) was calculated as 

dry mass per unit of fresh leaf area. Leaf water content was computed as the ratio between the 

quantity of water (fresh weight – dry weight) and the fresh weight. A further 22 leaf chemical 

traits were measured on these samples (see below). 

2.3.2 Chemical assays 

Protocols for chemical assays are adapted from those developed by the Carnegie Airborne 

Observatory (see http://spectranomics.ciw.edu). Briefly, oven dried leaves were ground and 

analysed for a variety of elements and carbon fractions. Concentration of elements (B, Ca, K, 

Mg, Mn, P, Si, Fe, Zn) were determined by ashing samples in a muffle furnace followed by 

digesting them in nitric acid and analysis on an inductively-coupled plasma mass spectrometry 

(Perkin Elmer SCIEX, Elan DRCII, Shelton, CT, USA). Nitrogen and carbon concentrations 

were determined using a Thermo Finnigan 253 with elemental analyser using a gas 

chromatographic separation column linked to a continuous flow isotope ratio mass 

spectrometer. This technique also provided foliar concentrations of the stable isotopes of N and 

C. Carbon fractions, including hemicellulose, cellulose, lignin and soluble carbon (mainly 

carbohydrates, lipids, pectin and soluble proteins), were determined by sequential digestion of 

increasing acidity (Van Soest, 1994) in an Ankom fiber analyzer (Ankom Technology, 

Macedon, NY, USA). These carbon fractions are presented on an ash-free dry mass basis. 

Concentrations of photosynthetic pigments (chlorophyll a, b, anthocyanins and total 

carotenoids) were measured by spectroscopy of solution derived from frozen leaf disks on area 

basis. Absorbance values of the supernatant were measured at wavelengths 470 nm, 649 nm 

and 665 nm for chlorophyll a, b and total carotenoids determination and published equations 

used to calculate pigment concentrations as in Lichtenthaler (1987). Absorbance values were 

http://spectranomics.ciw.edu/
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also measured at wavelengths 530 nm and 650 nm for anthocyanins determination and 

published equations used as per Giusti et al. (1999), but corrected for possible chlorophyll 

contamination as per Sims and Gamon (2002). The maximum efficiency of photosystem II 

(PSII) was calculated according to Genty et al. (1989) by measuring the maximum fluorescence 

(Fm) and the yield of fluorescence in the absence of an actinic (photosynthetic) light (Fo) using 

a PAM fluorometer. Total phenolic concentration of the upper methanol/water layer was 

determined colorimetrically using the Folin-Ciocalteau method, based on absorbance at 760 

nm on a spectrophotometer, and quantified using tannic acid equivalents with water serving as 

a blank as per Davey et al. (2007). 

2.3.3 Leaf and canopy spectroscopy 

The remaining leaves were detached from the branches, and 10 leaves selected at random, 

avoiding damaged and soft or young leaves. These leaves were laid on a matt black surface. 

Reflectance within bands ranging from 400–2500 nm was measured using a FieldSpec 4, 

produced by Analytical Spectral Devices (ASD, Boulder, Colorado, USA). The spectrometer’s 

contact probe was mounted on a clamp and firmly pushed down onto the sample, so that no 

light escaped through the sides.  The spectral measurements were taken at the mid-point 

between the main vein and the leaf edge, approximately half-way between the petiole and leaf 

tip, with the abaxial surface pointing towards the probe. The readings were calibrated against 

a Spectralon white reference every 5 samples. In all statistical analyses, the mean reflectance 

values of the 10 measurements per branch were used. 

2.3.4 Statistical analyses 

Analyses were performed within the R statistics framework (R Team, 2014). To evaluate the 

correlation among traits, Spearman rank correlation coefficient was calculated between all trait 

pairs and the variables were ordered in the figure by hierarchical clustering. Analyses of 

variance (ANOVA) were used to examine the influences of species identity and soil type on 

each of the 24 leaf traits. Species, soil and soil x species terms were included in the model, and 

the ratio of sum of squares of these terms versus the total sum of squares was used as an index 

of species- versus site-level variation. This partitioning of variance quantifies the variation 

between species, between soil types, the interaction between soil and species, and the 

unexplained variance (residual variance).  The residual variance comprises analytical error and 
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various types of intraspecific variation including micro-site and within-canopy variation. 

Where necessary, variables were log transformed to meet assumptions of ANOVA (see Table 

1 for details). In addition, permutation-based multivariate analysis of variance 

(PERMANOVA; Anderson 2001) was applied to the matrix of dissimilarity among traits to 

evaluate the importance of soil type, species identity and the interaction soil-species as a source 

of variation in the 24 traits simultaneously. The non-parametric permutation-based analysis of 

variance (PERMANOVA) was then performed on the resulting distances (10000 

permutations). An alpha level of 0.05 was used for all significance tests, and no effort was 

made to test for or address non-normal data distributions. The PERMANOVA used distance 

matrices calculated using the adonis function in the vegan package of R. 

Leaf traits were grouped using principal component analysis (PCA) using Simca-P (2016) 

software (Umetrics MKS Data Analytics Solutions, Sweden).  The principal components for 

the variables were obtained by the correlation matrix modelling in lieu of covariance matrix 

modelling. We used the unit variance scaling (van den Berg et al., 2006) to avoid the effects 

of variables with high variance. The PCA was used to obtain score scatter and loadings plots 

to show the relatedness of all leaf traits in the dataset. R2 and Q2 overview plots were computed 

from the cumulated PCA axes 1-5. R2 values denote how well a trait can be explained in the 

model and Q2 denote how well a trait can be predicted from the dataset. The traits are ranked 

in descending R2 order of how well they correlate with the other traits in the data set. These 

plots were used to evaluate whether traits clustered into functional groups.  

Partial least squares regression (PLSR) was used to evaluate whether field spectroscopy can 

reliably predict leaf traits (Haaland and Thomas, 1988). The spectral reflectance values of each 

sample were transformed into pseudo-absorption values, that is log [1/ R]) where R is 

reflectance (see Bolster et al., 1996; Gillon et al., 1999; Richardson and Reeves III, 2005; 

Petisco et al., 2006; Kleinebecker et al., 2009). There is strong autocorrelation in pseudo-

absorption values, so PLSR involves dimensionality reduction, producing orthogonal 

uncorrelated latent vectors containing the maximum explanatory power in relation to the trait 

data (Wold et al., 2001). The number of latent variables (nL) used in the PLSR analysis was 

predicted by minimising the Prediction Residual Error Sum of Squares (PRESS) statistic (Chen 

et al., 2004; Zhao et al., 2015). We adopted a leave-one-out cross-validation for each PLSR 

model. Model accuracy and precision were expressed by the coefficient of determination (R2) 

and root mean square error (RMSE). We also standardised RMSE to the percentage of the 
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response range (RMSE%) by dividing each RMSE by the maximum and minimum values of 

each leaf trait, as in Feilhauer et al. (2010). RMSE and R2 were acquired during both model 

calibration and after model validation. PLSR was conducted initially using all available 

wavelengths (i.e. 400-2500 nm), but we then evaluated whether models based on smaller 

regions of the spectrum performed any better (see Serbin et al., 2014), based on comparisons 

of RMSE. The smaller regions were selected from absorption features recognised in previous 

papers (Curran, 1989; Elvidge, 1990; Kokaly et al., 2009). The visible (VIS, 400-700 nm), near 

infra-red (NIR, 700-1500 nm) and shortwave infra-red I (SWIR I, 1500-1900 nm), shortwave 

infra-red II (SWIR II, 1900-2500 nm) regions, as well as combinations of the regions (700-

1100 nm, 700-1900 nm, 700-2500 nm, 1100-1500 nm, 1100 -1900 nm, 1100-2500 nm, 1500-

2500 nm and 400-2500 nm) were tested and the best-supported model selected based on 

minimisation of RMSE. To evaluate the effectiveness of field spectroscopy at measuring 

variation in traits related to soil type and species identity, we partitioned variance in model-

predicted trait values using exactly the same approach as we used with lab-measured traits (i.e. 

first paragraph of methods).    

2.4 Results 

2.4.1 Soil and species controls on leaf traits 

Foliar concentrations of rock-derived nutrients varied with soil type, but few other traits varied 

strongly with soil.  Foliar concentrations of the macronutrients N, P and K were 17 %, 43 % 

and 24 % higher on alluvial compared to chalk soils (Table 2.1). Nitrogen isotope 

discrimination (δ15N) varied greatly between the two soils, from -3.8 ‰ in the chalk soil to 3.4 

‰ in the alluvial.  Foliar concentrations of nutrients required in smaller quantities (Si, Ca, Mg, 

B, Mn and Zn) showed the opposite trend: they were higher in chalk soils (by 22%, 37%, 50%, 

19%, 23% and 49%, respectively). In contrast, hemicellulose, cellulose, lignin and LMA were 

completely unaffected by soil type, and pigments and traits related to water status (δ13C and 

water content) varied little with soil type, with the exception of carotenoids concentration, 

which was 25 % higher in alluvial soil. The efficiency of PSII showed only a slight increase of 

4 % in alluvial soil.  The percentage contribution of soluble C was affected by soil, with an 

increase in soluble C of 9 % in the alluvial soil.  
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Table 2.1 | Average, standard deviation (SD) and coefficient of variation (CV) in percentage 

for leaf traits of six generalist species growing on alluvial and chalk soils. Foliar trait was 

statistically different between soil types with P-value < 0.05 *, < 0.01 ** and < 0.001 ***.   

Note that water content and the concentrations of defence and structure compounds are 

invariant of soil type, as this is key to understanding why variation in elemental concentrations 

between soil types cannot be predicted indirectly by “constellation effects”.   

Leaf trait 
 Alluvial Chalk 

Mean ± SD %CV Mean ± SD %CV 

Light capture and growth     

N (%) *** 2.53 ± 0.81 32.1 2.16 ± 0.73 34.0 

δ15N (‰) *** 3.43 ± 2.65 77.3 -3.83 ± 2.01 52.3 

δ13C (‰) -28.2 ± 1.2 4.5 -28.7± 1.0 3.6 
+Chlorophyll a (mg m-2) 338.8 ± 116.0 34.2 279.6 ± 89.2 31.9 

Chlorophyll b (mg m-2) 78.6 ± 27.6 35.1 64.7 ± 22.4 34.7 

Anthocyanins (mg m-2) 423.3 ± 143.8 33.9 362.8 ± 121.6 33.5 

Carotenoids (mg m-2) * 110.5 ± 40.4 36.5 88.2± 35.5 40.2 

Efficiency of PSII ** 0.74 ± 0.05 7.1 0.71 ± 0.06 9.8 

Soluble C (%) ** 73.6 ± 6.5 8.8 70.3 ± 7.5 10.6 

Leaf water content (%) 59.1 ± 8.2 14.0 58.5 ± 7.9 13.5 

Defence and structure     
+LMA (g cm-2) 60.8 ± 24.0 39.4 60.6 ± 23.6 38.9 

Phenolics (%) 83.7 ± 64.1 76.5 84.3 ± 49.7 59.0 
+Hemicellulose (%) 10.9 ± 3.2 29.8 12.5 ± 3.6 29.4 

Cellulose (%) 10.1 ± 1.8 18.6 11.0 ± 2.1 19.3 

Lignin (%) 3.9 ± 1.9 49.8 4.7 ± 3.1 64.8 
+Si (%) * 0.91 ± 0.56 62.2 1.11 ± 0.79 71.5 

Rock-derived nutrients     
+P (%) *** 0.20 ± 0.05 25.5 0.14 ± 0.03 26.8 

K (%) *** 0.98 ± 0.49 50.0 0.79 ± 0.50 64.4 
+Ca (%) * 1.67 ± 0.75 45.1 2.29 ± 1.24 54.1 
+Mg (%) *** 0.24 ± 0.11 47.1 0.36 ± 0.15 43.8 
+B (µg g-1) *** 29.0 ± 8.7 30.1 34.5 ± 12.4 36.0 
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+Fe (µg g-1) 122.3 ± 24.6 20.1 125.4 ± 32.0 25.5 
+Mn (µg g-1) * 84.7 ± 64.3 75.9 103.8 ± 69.5 66.9 
+Zn (µg g-1) *** 22.9 ± 12.6 55.0 34.1 ± 18.7 54.9 

+log transformed prior to ANOVA. 

Most traits varied greatly between species and that variation was far greater than the soil effects 

(Fig. 2.1). Interspecific variation (green bars, Fig. 2.1) accounted for > 60% of the variation of 

eight traits (in descending order Si, water content, B, soluble C, N, LMA, K and cellulose 

concentrations), and > 40% of the variation of another six traits (in descending order, lignin, 

hemicellulose, Mg, Zn, phenolics and Fe). Species identity exerted little or no influence on 

pigment concentrations, efficiency of PSII, δ13C, δ15N, P, Ca or Mn concentrations. The 

interactions between species and soil (blue bars, Fig. 2.1) explained little variation and were 

significant for δ15N, P, Mn and Zn, but for no other traits. The pigments, efficiency of PSII and 

δ13C had the largest unexplained variance. PERMANOVA analyses showed that, overall, 

species identity accounted for 25% of the variation in leaf traits, soil type accounted for 5%, 

while the interaction between species and soil accounted for virtually no variation (i.e. the traits 

of different species responded similarly to soil type).  
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Figure 2.1 | Partitioning of variance of foliar traits between species, soil, species-soil 

interaction and residual components for six generalist species found on both chalk and alluvial 

soils. Residual variation arises from within-site intraspecific variation, micro-site variability, 

canopy selection and measurement error variance.  

The Principal Component Analysis (PCA) was able to distinguish species across component 1 

and 2 (Fig. 2.2A), with less separation of species within the same genus (i.e. A. campestre and 

A. pseudoplatanus). The first two components of PCA explain 45% of the total variance. 

Separation of individuals between the soil types was weak. Growth vs structural/defence traits 

were separated in its first axis and area-based vs concentration-based traits in its second axis. 

The first two components of PCA explain 46% of the total variance. Considering only traits 

that were well-predicted by PCA (i.e. had Q2 > 0.5), the first component distinguishes the traits 
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associated in growth (i.e. N, K and soluble carbon concentrations, and water content) from 

traits associated with leaf defence and structure (i.e. hemicellulose and Si). The second 

component is chlorophyll a, chlorophyll b, carotenoids, anthocyanins and LMA, and mainly 

separates the traits that were calculated on area basis. The first component distinguishes species 

relatively well, with less separation of species within the same genus (i.e. A. campestre and A. 

pseudoplatanus).  
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Figure 2.2 | Principal component analysis of all leaf traits (unit variance scaled) measured 

across all species and sites. (A) Score scatter plot showing first and second principal 

components using all six species for which data exist for all 24 traits on two contrasting soil 

types. Colours represent species identity: Fe = Fraxinus excelsior; Sn = Sambucus nigra; Ac = 

Acer campestre; Cm = Crataegus monogyna; Ca = Corylus avellana; Ap = Acer 

pseudoplatanus. Samples from chalk sites are denoted by squares symbols and alluvium sites 

are denoted by triangles. (B) Loadings plot showing position and correlation of all leaf traits. 

Traits highlighted in red denote are those with Q2 > 0.5; (C) cumulated R2 of PCA axes 1-5 

(Green bars denote how well a trait can be explained in the model) and Q2 (Blue bars denote 

how well a trait can be predicted) values for each trait. The traits are in descending R2 order of 

how well they correlate with the other traits in the data set. 

2.4.2 Spectroscopy of leaf traits 

The ability to predict leaf traits from hyperspectral reflectance spectra varied greatly among 

the 24 traits (Table 2.2). The R2 values of validation data varied from 0.92 to 0.16, with traits 

ranked by goodness of fit as follows (highest first): LMA, leaf water content, Si, phenolics, 

carotenoids, K, B, efficiency of PSII, N, chlorophyll a and chlorophyll b.  Some minerals, such 

as P, Zn and Mn, as well as δ13C and δ15N showed low R2.  There was virtually no difference 

in the average reflectance curves of leaves of trees growing on chalk and alluvial soils (Fig. 

2.3a), but the coefficient of variation among plants was greater on the chalk soil (Fig. 2.3b).  

Pigments were most accurately modelled using reflectance data from the visible region of the 

spectra, whilst other traits were most accurately modelled using spectral data in the 1100 - 2500 

nm range (Fig. 2.3). Efficiency of PSII and Fe were the only foliar traits for which the strength 

of relationship was greatest when all wavelengths between 400 and 2500 nm were used in the 

model.   
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Table 2.2 | Partial Least Squares Regression (PLSR) on spectral data and leave-one-out cross-

validation for 24 leaf traits of 6 species occurring on both alluvial and chalk soils. The model 

calibration (indicated with subscript cal) and validation (indicated as subscript val) 

performance was evaluated for each leaf trait by calculating the coefficient of determination 

(R2), root mean square error (RMSE) and the percentage root mean square error (%) based on 

the given number of latent variables (nL) for each PLS model.  

Leaf trait 
Spectral 

range (nm) 
nL 

R2 RMSE RMSE% 

Cal Val Cal Val Cal Val 

Light capture and growth 

N (%) 1100 – 2500 3 0.61 0.55 0.49 0.52 15.0 16.0 

δ15N (‰) 1100 – 2500 9 0.41 0.16 3.28 4.01 23.5 28.7 

δ13C (‰) 1100 – 2500 6 0.46 0.30 0.85 0.96 16.1 18.2 
+Chlorophyll  a (mg m-2)  400 – 700 7 0.65 0.53 60.05 69.62 13.5 15.7 

Chlorophyll b (mg m-2) 400 – 700 4 0.59 0.50 16.48 18.57 15.2 17.1 

Anthocyanins (mg m-2) 400 – 700 4 0.45 0.33 99.20 110.70 18.0 20.1 

Carotenoids (mg m-2) 400 – 700 7 0.75 0.62 19.31 23.54 11.0 13.4 

Efficiency of PSII 400 – 2500 6 0.68 0.55 0.03 0.04 13.4 15.9 

Soluble C (%) 1100 – 2500 4 0.54 0.46 4.76 5.15 18.1 19.6 

Leaf water content (%) 1100 – 1500 5 0.87 0.83 2.89 3.29 9.0 10.1 

Defence and structure 
+LMA (g cm-2) 1100 – 2500 6 0.94 0.92 1.09 1.12 6.1 6.9 

Phenolics (%) 1500 – 1900 6 0.78 0.70 26.20 30.48 9.7 11.3 
+Hemicellulose (%) 1100 – 2500 4 0.44 0.35 1.28 1.30 18.4 19.8 

Cellulose (%) 1100 – 2500 4 0.44 0.34 1.52 1.66 17.0 18.6 

Lignin (%) 1100 – 2500 4 0.57 0.47 1.72 1.89 13.0 14.2 
+Si (%) 1100 – 2500 4 0.77 0.72 1.50 1.55 14.4 15.5 

Rock-derived nutrients 
+P (%) 1500-2500 7 0.43 0.22 1.26 1.30 17.8 20.2 

K (%) 1500 – 2500 7 0.70 0.61 0.27 0.31 11.9 13.6 
+Ca (%) 1500-2500 7 0.53 0.40 1.40 1.47 15.9 17.9 
+Mg (%) 1900 – 2500 3 0.54 0.46 1.39 1.42 15.2 16.5 
+B (µg g-1)  1500-1900 6 0.66 0.56 1.24 1.28 13.6 15.2 
+Fe (µg g-1)  700 – 2500 5 0.56 0.46 1.17 1.19 15.6 17.2 
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+Mn (µg g-1)  1500-1900 6 0.35 0.20 1.83 1.95 20.5 22.7 
+Zn (µg g-1)  1500-1900 7 0.41 0.21 1.50 1.60 19.5 22.4 

  + Trait values were natural log-transformed for PLSR. 

 

 

Figure 2.3 | Spectral reflectance and percentage coefficient of variation (CV) of reflectance of 

six generalist species for alluvial and chalk soils. The spectral regions for each trait were 

selected based on the model that minimised RMSE.  

Some leaf traits which appeared to be predicted accurately by PLSR do not have absorbance 

features in the 400-2500 nm range, and were instead predicted because of their close 

association with leaf traits that do have absorbance features in that range (see correlations in 

Fig. A.1).   

For instance, Si and B do not have absorption features in the 400-2500 nm range, but their 

concentrations are highly correlated to hemicellulose, cellulose and lignin concentrations, and 

these organic polymers do have strong absorbance features in the SWIR region. Likewise, K 

do not have absorption features in the 400-2500 nm range, but K concentration is highly 
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correlated to leaf water content, soluble carbon, lignin, hemicellulose and cellulose, all of 

which have absorbance features in the region. The importance of these “constellation effects” 

(sensu Chadwick and Asner 2016) becomes apparent when we examine the partitioning of 

variance of PLSR-predicted trait values: several rock-derived nutrients vary significantly with 

soil type when measured in leaves but little of that variation is successfully modelled by PLSR 

(Fig. 2.5). The explanation for this failure to model soil-related variation correctly is that 

concentrations of their associated traits remain invariant of soil type. The use of PLSR also 

considerably under-predicted the importance of soil (~ 37 %) on the δ15N variation, presumably 

for similar reasons.  Some species-soil interaction effects were detected by PLSR modelling, 

except for traits that showed strong interaction (Mn, P and δ13C).  PLSR models were better 

able to detect intra-specific variation in foliar N concentrations, because much of the nitrogen 

is contained in proteins, which have strong absorbance features.  
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Figure 2.4 | Partitioning of variance of foliar traits between species, soil, species-soil 

interaction and residual components for six generalist species found on both chalk and alluvial 

soils from predicted data. Residual variation arises from within-site intraspecific variation, 

micro-site variability, canopy selection but not measurement error variance, and is therefore 

smaller than for field measurements (Fig. 2.1). Predicted data were obtained from partial least 

square regression (PLSR).  

 

2.5 Discussion 

2.5.1 Patterns of variation in leaf traits  

Compared with trees growing on deep alluvium, trees on thin chalk soils had low 

concentrations of N, P and K macronutrients in their leaves, but high concentrations of several 

micronutrients. Similar findings have been reported for herbaceous species growing on chalk 

(Hillier et al., 1990). Phosphorus and several micronutrients form low-solubility compounds 

in alkaline soils and become less available for plant uptake (Marschner, 1995; Misra and Tyler, 

2000; Tyler, 2002; Sardans and Peñuelas, 2004), while the low N concentrations may reflect 

stoichiometric constraints (Niklas et al., 2005). The lower efficiency of PSII in the chalk soil 

is likely to be a consequence of phosphorus deficiency (Santos et al., 2006). Importantly for 

our later discussion on indirect estimation of traits by spectroscopy, species did not vary 

between soil types in their structural and defensive traits (i.e. LMA, lignin, phenolics) despite 

these differences in rock-derived nutrients. A similar lack of intraspecific change has been 

found in New Zealand rainforest trees growing on alluvium versus phosphorus-depleted marine 

terraces (Wright et al., 2010) and in several other studies (Koricheva et al., 1998; Boege and 

Dirzo, 2004; Fine et al., 2006).     

Species had a greater influence on trait values than soils for all traits except P, and PCA 

analyses demonstrated that species with traits associated with fast growth had low 

concentration of traits associated with defence and structure (see Coley, 1983; 1987; Fine et 

al., 2006). Traits favouring high photosynthetic rate and growth are usually considered 

advantageous in rich-resource soil environments, while traits favouring resource conservation 

are considered advantageous in low-resource environments (Aerts and Chapin, 1999; Westoby 
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et al., 2002), but in this study the species were generalists growing on both soil types. The traits 

most influenced by species (in descending order) were Si, leaf water content, B, soluble C, N, 

LMA, K, cellulose, lignin, hemicellulose, magnesium, Zn, phenolics and Fe. It is interesting to 

note that two trace elements were near the top of this list; it is likely that strong differences in 

B and Si concentrations between species reflect differences in ion channel activity in roots (Ma 

and Yamaji, 2006). Previous studies have also shown Si to be under strong phylogenetic 

control, and to be little affected by environmental conditions (Hodson et al., 2005). We also 

found Si and B concentrations to be positively correlated, which might ameliorate the effects 

on B toxicity as Si can increase B tolerance of plants (Gunes et al., 2007). High Zn organization 

at the species level corroborates earlier analyses that showed more than 70% of Zn variation 

occured within family and substantial differences existed between and within species (Broadley 

et al., 2007).    

The patterns revealed by our variance partitioning analysis of six temperate species (Fig. 2.1) 

bear similarities to those emerging from an analysis of 3246 species from nine tropical regions 

(Fig. 5 of Asner and Martin, 2016a). The tropical analyses included a “site” term which 

captured variation due to soil and geology, among other factors. They, like us, found that 

taxonomic identity explained far more variation than site for most traits. Additionally they 

found foliar concentrations of P and other rock-derived minerals varied strongly with site, 

while nitrogen concentrations varied little; found that soluble carbon, structural and defensive 

traits hardly varied between sites; and observed that pigments (in their case just chlorophyll) 

was the least predictable of traits, probably because photosynthesis is rapidly up- and down-

regulated in response to light environment among other factors (Asner and Martin, 2011). 

Similarly, δ13C is known to vary strongly with light condition and with relative humidity 

(Buchmann et al., 1997; Yan et al., 2012) which may explain why species and soil explained 

little of its variance in our study. These parallels between tropical and temperate systems 

suggest broad similarities in plant responses to soil across different regions that differ greatly 

in temperature. 

2.5.2 Measuring interspecific variation in leaf traits with field spectroscopy 

The spectral regions selected by our PLSR models match the locations of known spectral 

absorption features related to proteins, starch, lignin, cellulose, hemicellulose and leaf water 

content  (Knipling, 1970; Curran, 1989; Elvidge, 1990; Fourty and Baret, 1998; Kokaly et al., 
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2009).  In the region between 700 and 2500 of the electromagnetic spectrum, absorption 

features are commonly the result of overtones and combinations of fundamental absorptions at 

longer wavelengths. The visible region was useful to predict pigments concentrations and 

contributed to the predictions of the efficiency of PSII and Fe only, whereas the infra-red region 

was associated with most traits. The region of importance with correlated wavelengths with 

nitrogen varies between 1192 nm in deciduous forest (Bolster et al., 1996) to 2490 for forage 

matter (Marten et al., 1983), which results directly from nitrogen in the molecular structure. 

According to Kumar et al. (2002), three main protein absorption features reported as important 

for N estimation are located around 1680 nm, 2050 nm and 2170 nm. In this study, pigments 

were found to influence the visible region of the spectrum while PSII-efficiency was predicted 

from features across the VSWIR range.  The spectra of chlorophylls are distinct from those of 

proteins because C-H bonds in their phytols tails create a strong absorption feature not found 

in proteins (Katz et al., 1966). However, pigments are tightly bound by proteins to form 

photosynthetic antenna complexes that capture light energy and transfer it to the PSI and PSII 

reaction centres (Liu et al., 2004). The vibration of the bonds in the pigment–protein complex 

adds additional absorption features to the spectra of pigments and may help explain why so 

many bands were involved in PSII-efficiency prediction (Porcar-Castell et al., 2014). The 

1500-1900 nm region was important for phenolic compounds prediction, which includes the 

1660 nm feature across a variety of species and phenolic compounds (Windham et al., 1988; 

Kokaly and Skidmore, 2015). The primary and secondary effects of water content on leaf 

reflectance are greatest in spectral bands centred at 1450, 1940, and 2500 nm (Carter and Porter 

,1991), but has also been predicted using bands between 1100-1230 nm absorption features 

(Ustin et al., 1998; Asner et al., 2004). With respect to the other rock-derived nutrients, Galvez-

Sola et al. (2015) also showed that near-infrared spectroscopy can constitute a feasible 

technique to quantify several macro and micronutrients such as N, K, Ca, Mg, Fe and Zn in 

citrus leaves of different leaves with coefficient of determination (R2) varying between 0.53 

for Mn and 0.98 for Ca, whereas B showed less accurate results with the use of spectroscopy. 

The regions of importance for prediction described in those studies were relatively similar to 

all the mineral nutrients analysed in our study, except for B that had the band between 1500 

and 1900 as the best predictive region.  

Some of most accurately predicted traits have no absorption features in the visible-to-near-

infrared, but were instead estimated indirectly via constellation effects.  Leaf mass per unit area 
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(LMA) is consistently among the more accurately predicted traits using spectroscopy (Asner 

and Martin, 2008; Serbin et al., 2014; Chavana-Bryant et al., 2016),  but is measured indirectly 

via its close coupling with water content and leaf structural traits (Asner et al., 2011). Silicon 

(Si) concentrations were well-predicted by field spectroscopy, as recently reported by Smis et 

al. (2014). Silicon is absorbed by plants from the soil solution in the form of silicic acid 

(H4SiO4), being translocated to the aerial parts through xylem, and then deposited as 

phytoliths (Tripathi et al., 2011). Si is closely associated with phenol- or lignin-carbohydrate 

complexes (Inanaga et al., 1995), cellulose (Law and Exley, 2011), and polysaccharide and 

peptidoglycans (Schwarz, 1973). It seems that spectroscopy is able to predict Si concentrations 

reliably because it integrates information on several of these foliar traits to make the 

predictions. Similarly, the relative high precisions for K, Fe and B predictions may be as strong 

as they are because information on several foliar traits are integrated.  Unfortunately, foliar P 

concentrations are not closely predicted by spectroscopy.  RNA and DNA absorb in the 

ultraviolet (e.g. Tataurov et al., 2008) and phosphates in the longwave infrared, but there are 

no pronounced absorption features in the VSWIR region (Homolová et al., 2013) and 

covariance with other traits is weak, making constellation effects unreliable.  Whilst a few 

spectroscopy studies have modelled P with some success, the spectral bands chosen differs 

among studies  (Homolová et al., 2013) suggesting that constellation effects cannot be relied 

upon. 

2.5.3 Difficulties in measuring intraspecific variation by field spectroscopy and its 

implications for mapping functional traits 

Rock-derived nutrients lack absorption features in visible to shortwave-infrared region of the 

electromagnetic spectrum so cannot be measured directly by spectroscopy.  They can, 

nevertheless, be estimated indirectly by virtue of the fact that element concentrations co-vary 

with organic molecules that do have strong absorption features (“constellation effects”, see 

above). This paper identifies a problem with this approach: there were strong differences in 

rock-derived mineral nutrients between soil types, but we could not measure these because the 

concentrations of defence and structural traits were barely affected by soil type. We have shown 

many similarities between our study and those in tropical forests, demonstrating that this 

problem is likely to be widespread.    

There are likely to be implications of the constellation-effect problem for mapping functional 
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traits using imaging spectroscopy. Ever larger areas of earth are being mapped with airborne 

spectrometers (e.g. Asner et al., 2017) and the anticipated launch of satellite-borne sensors (e.g. 

EnMAP; DLR 2015; Guanter et al., 2015) will soon enable vegetation and ecosystem function 

to be characterised at a global scale. The effectiveness of indirect prediction of traits using 

constellation-effect approaches will depend critically on whether soils act as a strong filter on 

tree species within a particular region. In the Amazonian lowlands, Asner et al. (2015) found 

that variation in soil P was mirrored by changes in species composition, and that P variation 

among species was correlated with changes in structural and defence compounds: in this 

instance, indirect estimation should be effective (e.g. Chadwick and Asner, 2016).  However, 

in low-diversity temperate forests, a single tree species is often found to span many different 

soil types and show substantial phenotypic plasticity in some traits (Oleksyn et al., 2002; 

Turnbull et al., 2016). The six species growing on both chalk and alluvial soils in this study are 

a case in point.  In these low diversity systems, it will be much more difficult to map variation 

using constellation effects, for the reasons explained above. Our study confirms the power of 

spectroscopy for predicting biochemical and structural plant traits, but we urge caution in 

interpreting results when species range across contrasting soil types.   

2.5.4 Conclusions 

Trees on thin chalk soils had low concentrations of N, P and K macronutrients in their leaves 

than trees growing on deep alluvium, but had high concentrations of several micronutrients. 

Phosphorus is sequestered in insoluble forms in alkaline soils. This shortage of plant available 

phosphorus was associated in this study with low concentrations of foliar N and low efficiency 

of PSII, but had no effect on structural and defensive traits.  Trait differences were far greater 

among species than between soil types, for all traits except foliar P.  Foliar traits predicted from 

VSWIR reflectance spectra matched the locations of known spectral absorption features related 

to proteins, starch, lignin, cellulose, hemicellulose and leaf water content. Some of the most 

accurately predicted traits have no absorption features in the VSWIR range, and were estimated 

indirectly through their covariance with structural traits that do have absorption features in that 

spectral region (“constellation effects”) including cell wall constituents. Since these structural 

traits did not vary with soil type, our models were unable to reliably predict intraspecific 

variation in rock-derived nutrients via constellation effects. Similarities between our results 

and those of large-scale tropical studies suggest this problem is likely to be widespread.  This 

study demonstrates the value of spectroscopy for rapid, non-destructive estimation of foliar 
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traits across species, but highlights the difficulties that can arise in detecting within-species 

changes along environmental gradients.  

2.6 Authors' Contributions 

Study design: David Coomes. Data collection: David Coomes. Laboratory analysis: Matthew 

Davey. Data analysis: Matheus Nunes. Manuscript writing: Matheus Nunes with support from 

all the co-authors. 
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Chapter 3 | Changes in leaf functional traits of rainforest canopy trees 

associated with an El Niño event in Borneo 

 

3.1 Summary 

El Niño generates periods of relatively low precipitation, low cloud cover and higher irradiation 

over the rainforests of Southeast Asia, but its impact on tree physiology remains poorly 

understood. Here we use a functional trait approach - commonly used to understand plant 

adaptation along environmental gradients -  to evaluate rainforest responses to El Niño.  Leaf 

chemical and structural traits, and hyperspectral reflectances, were measured on 104 Malaysian 

trees from 65 species during and after the 2015/16 El Niño. Chlorophyll and carotenoid 

concentrations were ~35% higher during the El Niño than afterward, suggesting greening-up 

of the canopy in response to higher irradiance. Concentrations of mineral nutrients (N, P, K, 

Mg and Ca) were unaffected, suggesting that mineralisation and transportation processes were 

unaffected by the El Niño. Leaves also contained more phenolics and tannins during the El 

Niño, and differences in concentrations were highly organised by species. We show that 

reflectance spectra provide reliable estimates of these changes in traits. Our study provides 

evidence that pigments increase during the El Niño, contributing to the debate over canopy-

level responses to dry periods in tropical forests.   

3.2 Introduction 

El Niño bring periods of low rainfall and low cloud cover to tropical rainforests typically 

supplied with plentiful water (Lopes et al., 2016), but the responses of rainforests to these 

events remain poorly understood. The Southern Oscillations responsible for El Niño events 

have occurred for least 130,000 years (Tudhop et al., 2001) suggesting ample opportunity for 

natural selection of trees capable of tolerating irregular drought events (Harrison, 2000; Detto 

et al., 2018). However, global warming is increasing the severity and frequency of El Niño 

events (Breshears et al., 2005; Allen et al., 2010; Thirumalai et al., 2017; Wang et al., 2017). 

For example, higher than average temperatures recorded across Southeast Asia in 2015 were 

attributed to an El Niño event amplified by global warming (Thirumalai et al., 2017); those 

higher temperatures increase evaporative demand and increase the severity of drought events 
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(Adams et al., 2009). Recent research has demonstrated a variety of biotic responses to El 

Niño-induced droughts (O'Brien et al., 2017; Qie et al., 2017; Detto et al., 2018). There is 

evidence of increased mortality in the Amazon (Phillips et al., 2009; Doughty et al., 2015) but 

West African forests are more resilient owing to a gradual shift in species composition toward 

drought-tolerant species (Fauset et al., 2012). There is also evidence of forest greening in 

periods without rain based on optical remote sensing (Saleska et al., 2007); one interpretation 

of these data is that the greatest photosynthetic activity coincides with peaks in solar irradiance 

associated with reduced cloud cover and perhaps primary forests are deep-rooted and continue 

to access sufficient water in dry periods (Huete et al., et al., 2006).   

The functional trait approach provides a way of dealing with large uncertainties in predicting 

tropical forest responses to short- and long-term climate changes that arise from the high 

diversity of tropical tree species (Reich, 2012; Reich, 2014; Doughty et al., 2018).  Traits help 

explain differences in growth and survival across resource gradients; for example, plant trait 

diversity might act as an insurance against climate change impacts on Amazon forests biomass, 

and considering the possible plasticity of traits, fast shifts of functional dominance enable 

enhancement of biomass resilience (Sakschewski et al., 2016).  Nevertheless, repeated trait 

measurements on the same plants are less frequent. Recent studies have measured traits over 

time to investigate leaf aging impacts (Chavana-Bryant et al., 2017), but this approach has not 

been used previously to track traits changes through an El Niño event.  

If variation in leaf traits associated with El Niño is large enough to influence remotely sensed 

patterns, these effects should be detectable in individual leaves. Hyperspectral reflectance 

signatures are related to the electromagnetic radiation and leaf matter across a range of 

wavelengths; the visible (400 - 750 nm) portion of the spectrum is mainly driven by pigments 

(Sims and Gamon, 2002), the near infrared (751 - 1300 nm) and shortwave infrared (1301 - 

2400 nm) driven by internal and external leaf structure (Slaton et al., 2001), including water 

(Tucker, 1980; Ustin et al., 2004), phenolics (Kokaly and Skidmore, 2009)  and organic 

constituents (Petisco et al., 2006; Asner et al., 2011). The spectral diversity observed among 

plants is coupled with their functional and evolutionary divergence and may be used to predict 

ecosystem function (Schweiger et al., 2018), expressing leaf traits that are important for 

resource capture and stress tolerance. Earth observation studies using MODIS satellite 

spectroscopy have shown positive impacts of dry seasons on EVI (Huete et al., 2006; Saleska 

et al., 2007), an enhanced vegetation index which is a combination of chlorophyll content and 

https://scholar.google.co.uk/citations?user=0ejpwZ8AAAAJ&hl=en&oi=sra
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leaf area that does not saturate in dense forests, indicating a “green up” phenomenon associated 

with light availability during dry seasons. However, it remains controversial whether trees are 

actually investing in photosynthetically apparatus or whether this phenomenon is an artefact of 

optical sensors (Morton et al., 2014). We then propose that leaf-level reflectance can provide 

an efficient and accurate method to monitor short-term climate change, on the basis that trait 

variation affects reflectance in different portions of the spectrum, and indicates forest resilience 

to short-term climate change.  

This paper presents observations of changing leaf traits in a Bornean tropical forest associated 

with the 2015/16 ENSO-induced drought, and determines whether these can be observed 

through spectral analysis as well as in situ sampling. In terms of drought stress, there may be 

species-specific responses at the leaf level (Maréchaux et al., 2015). A change among several 

of these factors could indicate a combination of canopy physiological and structural responses 

to drought. No studies have previously reported such responses in the context of tropical forest 

remote sensing from repeatedly measured traits.  We investigate variation in 17 foliar traits and 

leaf-level spectroscopy in response to the El Niño event to address the following questions: 1) 

how do foliar traits change with El Niño events? 2) Can response to El Niño affect leaf spectral 

properties? To answer these questions, we measured a diverse range of leaf properties to 

investigate the response to El Niño effects that comprise higher than average temperatures, 

reduced rainfall and longer sunshine duration, and used spectroscopy to capture the variation 

in leaf traits. We aim to offer a new spectral approach for determining the response of forest 

canopies to climatic variations from a temporal perspective. Leaf samples and field 

spectroscopy data were acquired in two field campaigns, one during the El Niño event 

(September 2015) and one after the rains had returned (October 2016).  By taking repeat 

measurements of physico-chemical and spectral properties on the same trees, this is the first 

study to measure leaf-level responses to El Niño events, providing a unique perspective on 

rainforest tree acclimation to short-term climatic variation. 

3.3 Material and methods 

3.3.1 Site Description and 2015-16 ENSO in Southeast Asia 

The study was conducted in Danum Valley Conservation Area in the Malaysian state of Sabah, 

on the island of Borneo (Reynolds et al., 2011). Vegetation is classified as lowland mixed 
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dipterocarp forest (Fox, 1972) on clay soils (Wright, 1975). Data collection was carried out 

within two 1-ha plots located in old growth forests (plot coordinates 4.951° N, 117.796° E and 

4.953° N, 117.793° E) characterised by high species richness and tall and emergent trees where 

there was no evidence of logging or recent human disturbance (Riutta et al., 2018).  

Borneo experiences variability in climate due to influences from both the Pacific and Indian 

Oceans. The National Oceanic and Atmospheric Administration (NOAA) considers El Niño 

conditions to be present when the Oceanic Niño Index (ONI) is + 0.5 or higher. The strong El 

Niño of 2015-16 El (Fig. 3.1a) coincided with a period of higher diurnal range in surface air 

temperatures across the island, peaking during the months November 2015 to April 2016 which 

were on average 0.6° – 1.2° higher than average seasonal temperatures (Colledge, 2017). 

Precipitation during 2015 and 2016 varied considerably across the region, but in North-eastern 

Borneo seasonal total rainfall in May to October 2015 was between 75% to 100% of normal 

rainfall (based on a 1981-2010 seasonal average), reducing to 50% to 75% of normal rainfall 

for the period November 2015 to April 2016, returning to long-term seasonal average amounts 

for May to October 2016 (typically 900 – 1000 mm) (Colledge, 2017). At Danum Valley 

Conservation Area itself, mean daily rainfall (mm) in the latter half of 2015 and early 2016 

was lower than typically recorded for the site (Fig. 3.1b), before increasing rapidly in the latter 

half of 2016.  In the months immediately preceding the two surveys (May to August) the 

average number of days when no rain was recorded was 16 in 2015 and 10 in 2016, whilst the 

longest run of consecutive days without rain was 10 in 2015, and just 3 in 2016.  Coupled with 

reduced rainfall, an increase in sunshine duration was also recorded at Danum Valley, with 

mean daily sunshine of 5.9 hours in May to August 2015, reducing to 5.4 hours for the same 

months in 2016. Thus, at Danum Valley Conservation Area, the forest experienced reduced 

rainfall and longer sunshine duration before the first survey (September 2015) compared to 

higher rainfall and fewer hours of sunshine in the months before the second survey.  
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Figure 3.1 | a) Oceanic Niño Index based upon surface temperature anomalies; and b) monthly 

precipitation (mm) recorded at Danum Valley Field Centre in Malaysian Borneo. Shaded 

regions represent the periods of trait collection during and after the 2015/2016 El Niño event. 

3.3.2 Sampling design and field data collection 

Seventeen functional traits were measured on 104 individual trees > 10 cm diameter at breast 

height (DBH) during and after the 2015/2016 El Niño. The first measurement was conducted 

in September 2015 during a period of dry conditions, and the second in October 2016 after a 

return to wetter conditions (Fig. 3.1b). We combined two strategies to sample functional traits 

in each plot that included sampling the species that most contributed to 90% of the total plot 

basal area, followed by a stratified random and taxon-independent sampling of all trees in three 

randomly selected subplots (400 m2) to ensure representation of understory and potentially rare 

species (see Both et al., 2018 for details). Tree height ranged from 2.3 m to 73.7 m. Branches 

were collected from 104 trees representing 65 species from 44 genera and 24 families. We 

attempted to sample fully sunlit canopy branches and fully shaded branches, but it was 
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uncommon for large‐canopy trees to have fully shaded branches or for small understory trees 

to have fully sunlit branches, so in many cases only one branch was sampled.   

Physico-chemical traits were determined using standardised laboratory approaches selected so 

that measurements are directly comparable with other international trait campaigns (see Both 

et al. 2018 for details). Branch samples were collected by tree climbing or by cutting from the 

ground with telescopic branch cutters. Undamaged mature leaves were collected and cleaned 

with water for subsequent analyses. Dried bulked and milled leaf material was used for 

determination of Ca, K, Mg, P and N concentrations, δ13C and δ15N stable isotope composition, 

soluble carbon, cellulose, hemicellulose and lignin concentrations (for analyses see Perez-

Harguindeguy et al., 2013). Analyses of pigments (Chlorophyll a, Chlorophyll b and 

carotenoids), phenols and tannins were conducted on 0.7‐cm‐diameter leaf discs punched from 

fresh leaves immediately after field collection and frozen in liquid N. The analyses of 

chlorophyll a, chlorophyll b and bulk carotenoid concentrations in leaf discs included an 

internal laboratory standard derived from a single batch of Macaranga leaves sampled prior to 

the first set of analyses, as well as a commercial common reference material. Chlorophyll a 

and chlorophyll b concentrations were summed and treated herein as chlorophyll a + b. These 

standards assured consistency of results across both sets of laboratory analyses. Leaf scans 

were obtained using a high resolution scanner (CanoScan LiDE 220, Canon Inc., Japan) shortly 

after collection and their area estimated via contrast analysis of the images. We extracted the 

blue channel of each image and converted it to grayscale values where pixels belonging to the 

white background have values close to one and pixels belonging to the dark leaf have values 

close to zero. We applied a binary segmentation algorithm in the EBImage package in R (Pau 

et al., 2010, R Core Team, 2018) to identify dark (leaf) clusters and filled any gaps within those 

clusters. Filling in of gaps is necessary as lighter colour irregularities such as necrosis or fungal 

infections may be otherwise mistakenly identified as background. We also applied a masking 

kernel via a moving window over the image that removed small patches identified by the binary 

segmentation algorithm. Doing so ensured that accidental dirt patches on the image are not 

counted as leaf area. The number of pixels within each leaf segment were summed and divided 

by the scanner resolution to obtain leaf area. Fresh and dry leaf weight were determined in a 

field laboratory and leaf mass per area (LMA) were calculated. Herbarium voucher specimens 

were taken for identification of tree species and were deposited in the herbarium at Danum 

Valley Field Centre (see Both et al., 2018). 
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Analyses were performed within the R statistics framework (R Core Team, 2018). We 

conducted analyses that considered the hierarchical structure of the data, and analyses 

focussing on species-level responses: (a) to evaluate the relative influence of the drought, 

shading and taxonomic level on each trait, we developed hierarchical models using the lme4 

package in R. We included the phylogenetic levels of family, genus nested within family, 

species nested within genus, and branch type (shaded or sunlit) nested within species, as well 

as a temporal effect. All effects were treated as random. In each model, the response variable 

(y) is any chemical trait for each canopy sample. The total variance of the mean for a given 

trait was quantitatively separated into variance explained by each taxonomic level, El Niño and 

unexplained variance was treated as a residual comprised of micro-environment, sample 

selection and measurement errors associated with laboratory analyses; (b) To examine the 

influence of El Niño at the species level,  trait values sampled from different branches of the 

same species were averaged to generate species‐level values for each of the 17 leaf chemical 

traits. One-way analysis of variance (ANOVA) were used to examine the influence of the El 

Niño event.   

3.3.3 Spectroscopy collection 

For both surveys, five leaves attached to the branches were selected at random, avoiding 

damaged and young leaves. Reflectance spectra (350 to 2500 nm) were acquired using a 

FieldSpec 4, produced by Analytical Spectral Devices (ASD, Boulder, Colorado, USA). The 

spectroradiometer’s contact probe was mounted on a clamp and firmly pushed down onto the 

sample against a black background, so that no light escaped through the sides. The spectral 

measurements were taken at the midpoint between the main vein and the leaf edge, 

approximately halfway between the petiole and leaf tip, with the abaxial surface pointing 

towards the probe. The readings were calibrated against a Spectralon white reference panel 

every five samples. In all statistical analyses, the spectral data were trimmed to the 400–2500‐

nm range, and the mean reflectance values of the 5 spectra per branch were used.    

Partial least squares regression (PLSR) was initially used to predict leaf traits from spectral 

reflectance. There is strong autocorrelation in reflectance values, so PLSR involves 

dimensionality reduction, to produce orthogonal uncorrelated latent vectors containing the 

maximum explanatory power in relation to the trait data (Wold et al., 2001). To avoid over-

fitting the calibration models, the number of latent variables was chosen according to the “one 
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standard error” rule that selects the least complex model with the average cross-validated 

accuracy within one standard error from that in the optimal model (Breiman et al., 2017). We 

determined the contribution of wavelengths within the visible (VIS; 400 – 750 nm), near 

infrared (NIR; 751 - 1300) and shortwave infrared (SWIR; 1301 – 2400 nm) to the model 

performance (Serbin et al., 2014; Nunes et al., 2017a). We also combined two or more spectral 

regions to evaluate performance. In general, previous research indicates that the SWIR contains 

absorption features for most traits (Curran, 1989; Kokaly et al., 2009; Nunes et al., 2017a), 

with the visible being useful for pigments (Curran et al., 1991; Sims and Gamon, 2002), and 

the NIR for leaf mass per area (LMA; Asner et al., 2011). Performance of the final models was 

evaluated using an 80/20 split of the data for calibration/validation, respectively, over 100 

randomized permutations of the dataset. For each such permutation, we tracked the model fit 

(R2) and the percentage root-mean-square error over the data range (%RMSE). These analyses 

generated a distribution of model coefficients and fit statistics and allowed for the assessment 

of model stability as well as uncertainty in predictions. Models were built using the 

packages caret and vegan in R (www.r-project.org). Additionally, we explored whether the 

data collected using spectroscopy could be used as a surrogate for the reference data to 

determine the effect of El Niño on leaf traits. To test this question, we used ANOVA separately 

for both reference and predicted data, as well as bias of the estimates.  

3.4 Results 

3.4.1 The influence of the El Niño event on traits 

Pigment concentrations and some other chemical traits at the species level varied in response 

to the El Niño event that impacted Southeast Asia in 2015/2016 (Table 3.1). In general, most 

traits decreased in concentration after the El Niño, tracking the increased precipitation and 

reduction in irradiance in the post-ENSO period. Pigment concentrations, namely chlorophyll 

a + b and carotenoids, were about a third higher during the El Niño event, thereby representing 

the highest variation among all traits (Fig. 3.2). We also observed that phenolics decreased post 

El Niño by ~19%, and δ13 C decreased by 9%. Carbon fractions, including soluble C, 

hemicellulose, cellulose and lignin, N, δ15 N and rock-derived nutrients, namely P, K, Ca and 

Mg, did not change between sampling periods. LMA and water content did not vary with El 

Niño. Correlation analysis (Fig. B.1) indicates that plants with high LMA have more phenolics 
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and pigments but less water and lower N concentrations, however a decrease in pigments and 

phenolics did not cause a decrease in LMA.  

Table 3.1 | Descriptive statistics and ANOVAs comparing foliar traits of species average 

values for 65 species during and after the El Niño event. Mean + standard deviation of each 

trait is provided along with the change magnitude and significance (adjusted P value using the 

False Discovery Rates-based method) of the comparison. Traits in bold represent those 

statistically significant according to the adjusted P-value.   

Foliar trait  During El Niño After El Niño 
During - After 

change 
P-adj 

LMA (g cm-2 ) 94.0 + 17.4 88.5 + 19.0 5.4 + 11.0 0.06 

Water content (%) 59.1 + 6.6 57.4 + 8.1 1.7 + 4.5 0.26 

N (%) 1.81 + 0.52 1.86 + 0.43 -0.05 + 0.32 1 

δ13 C (‰) -32.0 + 1.35 -32.5 + 1.24 0.5 + 1.0 0.01 

δ15 N (‰) 1.23 + 1.51 0.86 + 1.11 0.37 + 1.4 1 

Chl a + b (mg m-2) 326.2 + 73.7 221.5 + 91.3 109.4 + 87.0 <0.001 

Car (mg m-2)  58.1 + 14.9 38.8 + 17.1 19.3 + 17.3 <0.001 

Sol. carbon (%) 50.7 + 9.3 50.2 + 9.2 0.5 + 5.0 1 

Phenolics (mg g-1) 34.4 + 19.0 27.8 + 18.4 6.5 + 13.2 0.01 

Tannin (mg g-1) 7.8 + 5.3 6.4 + 4.5 1.4 + 3.7 0.26 

Hemicellulose (%) 12.3 + 3.2 12.1 + 3.1 0.2 + 1.1 1 

Cellulose (%) 20.8 + 4.2 19.9 + 3.8 0.9 + 2.4 0.24 

Lignin (%) 16.1 + 6.1 17.6 + 6.4 -1.5 + 3.5 0.07 

P (mg g-1) 1.31 + 0.48 1.31 + 0.41 0.0 + 0.35 1 

K (mg g-1) 10.8 + 7.2 10.4 + 5.9 0.4 + 3.5 1 

Mg (mg g-1) 4.3 + 3.0 4.2 + 3.1 0.1 + 1.0 1 

Ca (mg g-1) 13.9 + 8.8 14.9 + 8.0 -1.0 + 4.7 1 
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Figure 3.2 | Percentage differences in the ratio of each canopy chemical trait during and after 

El-Niño induced droughts. Differences (coloured boxes) were calculated from the species 

average value and error bars represent relative 95% confidence intervals of the average change. 

Percentage difference for δ15 N and δ13 C isotopes were calculated as trait change / trait range 

ratio. 

3.4.2 Organisation of traits by taxonomy, light exposure and El Niño 

Using hierarchical models for variance partitioning to analyse the dataset, we found evidence 

for strong taxonomic organization of multiple traits operating independently of variation in 

climate (Fig. 3.3). Our analysis also incorporates branch type (sunlit or shaded branches) to 

indicate traits highly variable within canopies. Residuals variation may result from variation in 

micro-environment, sample selection and analytical error. High trait diversity among 

coexisting trees is driven by differences between taxa rather than by environmental conditions. 

Water content, rock-derived nutrient concentrations, lignin, phenolics and tannin were all 
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strongly phylogenetically conserved; species-level differences were usually greater than 

family- or genus-level differences, although K, water, tannins, N and lignin had strong family-

level effects. Pigments had the highest impact by El Niño and δ15 N was the least taxonomically 

organised trait and the highest unexplained variation. For most traits, branch type accounted 

for more variance than the El Niño event, in particular LMA, N, δ13 C and carbon fractions. 

LMA was conspicuously variable within canopies, indicating the dependence of environmental 

attributes associated with the vertical canopy profile, and is less affected by short-term climatic 

variation. Our analysis suggests that sun exposed leaves can have variable responses to El Niño. 

Figure 3.3 | Variance partitioning of functional traits into taxonomic level 

(family/genus/species), branch (sun exposed vs shaded), the El Niño event (during and after), 

and unexplained residual components from 104 trees in an old growth forest in Danum Valley 

Conservation Area, Malaysian Borneo. 

3.4.3 Spectral analyses of leaf trait responses to El Niño  

PLSR indicates that many of the 17 chemical traits can be estimated using leaf spectral 

reflectance (Table 3.2). Variation in water content, LMA, N, phenolics and cellulose 
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concentrations were explained particularly well using spectral reflectance. On the other hand, 

P, K, δ13 C and δ15 N were poorly predicted using reflectance, confirming previous studies that 

show the difficulties in detecting these traits from reflectance. In general, the highest absolute 

spectral sensitivity was observed in the SWIR portion of the spectrum between 1301 and 2400 

nm, with all traits influencing this spectral region. The visible portion of the spectrum (400 - 

750 nm) was influenced only by chlorophyll a + b, carotenoids and LMA, and the near infrared 

(751 - 1300 nm) influenced by LMA, phenolics and P.  

Table 3.2 | Spectroscopy estimation of leaf chemical and structural properties using leaf 

spectral reflectance of 104 trees in Malaysian Borneo during and after an El Niño event. 

NComp is the number of latent components using partial least square regression and the 

average + standard deviation of metrics to assess predictive power using. Performance of the 

final models was evaluated using an 80/20 split of the data for calibration/validation, 

respectively, over 100 randomized permutations of the dataset.  

Trait Region ncomp R2 %RMSE 

LMA(g cm-2 ) VIS – NIR - SWIR 10 59.2 + 9.4 14.1 +1.4 

Water content (%) SWIR 5 67.3 + 8.0 7.1 + 0.9 

N (%) SWIR 16 58.8 + 8.8 17.4 + 2.7 

δ13 C (‰) SWIR 14 32.6 + 10.7 17.1 + 1.6 

δ15 N (‰) SWIR 1 3.2 + 3.1 7.5 + 2.5 

Chl a + b (mg m-2) VIS - SWIR 8 40.0 + 12.5 28.4 + 2.6 

Car (mg m-2) VIS - SWIR 7 41.2 + 12.7 28.3 + 2.9 

Soluble carbon (%) SWIR 18 38.8 + 10.8 14.2 + 1.6 

Phenolics (mg g-1) NIR - SWIR 9 53.8 + 10.1 40.3 + 4.6 

Tannin (mg g-1) SWIR 11 42.9 + 9.9 47.6 + 4.8 

Hemicellulose (%) SWIR 12 45.1 + 9.7 21.3 + 2.3 

Cellulose (%) SWIR 19 53.3 + 10.1 15.2 + 1.7 

Lignin (%) SWIR 17 34.8 + 11.9 30.0 + 4.3 

P (mg g-1) NIR - SWIR 10 27.7 + 14.6 27.9 + 6.1 

K (mg g-1) SWIR 9 24.5 + 10.7 50.4 + 7.0 

Mg (mg g-1) SWIR 13 43.0 + 11.3 57.8 +7.6 

Ca (mg g-1) SWIR 11 36.7 + 9.3 47.1 + 6.6 
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Following conversion of each reflectance spectrum to chemical values, usually referred to as 

spectranomic traits, we compared the predicted data and the observed data for traits affected 

by El Niño (Table 3.3). We only compared traits significantly affected by El Niño to investigate 

whether remote sensing is able to detect patterns of variation. El Niño influence on traits, except 

on water and δ15 N, were detected using spectral reflectance. We plotted the observed traits 

against spectranomic traits to further investigate the ability of remote sensing to detect El Niño 

influences (Fig. 3.4). The influence of El Niño on pigments was apparent by the separation of 

the data-set into during and after El Niño classes, indicating the spectral ability to detect the 

“green-up” phenomenon associated with the El Niño. 

Table 3.3 | Comparison of foliar trait values predicted from spectral reflectance to the observed 

change in traits significantly affected by El Niño. Partial-least square regression was used to 

generate models relating leaf traits measured during and after an El Niño event to spectral 

reflectance data collected by field spectroscopy. Regression analyses did not include sampling 

date in model calibration, so the predicted during and after El Niño values indicate predictive 

power to detect El Niño influences on each trait. Mean + standard deviation of each 

spectranomic trait change is provided along with the significance (adjusted P value) of the 

change and predictive bias. 

Trait Predicted Change Observed Change P-value Bias 

δ13 C (‰) -0.4 + 0.7 -0.5 + 1.0 <0.001 0.02 

Chl a + b (mg m-2) -79.8 + 43.4 - 109.4 + 87.0 <0.001 18.3 

Carotenoids (mg m-2) -15.2 + 7.5 - 19.3 + 17.3  <0.001 2.0 

Phenolics (mg g-1) -5.7 + 7.0 - 6.5 + 13.2 <0.001 1.1 
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Figure 3.4 | Observed traits against traits predicted from spectral reflectance data, using Partial-

Least Square regression, for traits significantly influenced by El Niño. The findings show that 

remote sensing is able to detect accurately traits during (yellow) and after (black) El Niño.    

3.5 Discussion 

The repeated measurements of a range of foliar traits and leaf reflectance for 104 trees in an 

intact forest in Malaysian Borneo shed light on the responses of plants to El Niño. Pigment 

concentrations were particularly high during the El Niño event, corroborating the hypothesis 

of a leaf-level “green up” phenomenon associated with dry seasons when irradiance is 

promoted by the absence of clouds (Nemani et al., 2003). To our knowledge, this paper 

provides field-based evidence of this phenomenon for the first time. The “green up” 

phenomenon can also be detected from proximal spectral reflectance, which strengthens the 

hypothesis that “green up” observed during dry periods in other tropical forests is caused by an 

increase in pigment and/or leaf area index (Huete et al., 2006; Saleska et al., 2007). We also 

detected an accumulation of phenolic compounds during El Niño, demonstrating that plants 

can also invest in defense alongside enhanced photosynthetic machinery. These results 

demonstrate the importance of understanding temporal changes in the expression of plant 

functional traits when studying short-term responses to climatic variation; these trait changes 

may represent acclimation to lower precipitation, higher temperatures but also higher 



49 

 

irradiance associated with reduced cloud cover. We also demonstrate the power of spectral 

reflectance data to predict the effects of El Niño on leaf level processes. Considering the 

expected increase in frequency of El Niño events associated with global warming (Wang et al., 

2017), our results display the capacity of plants to express short-term acclimation to these 

conditions, and suggest that remote sensing may successfully predict these responses.   

3.5.1 Leaf trait responses to an El Niño event 

The repeated measurements indicate that forests responded to the environmental changes 

imposed by the El Niño event by investing in pigments and phenolics, and enhancing leaf-level 

water use efficiency. These rapid shifts in multiple leaf chemical traits reveal the sensitivity of 

forest functioning to El Niño. The differential dynamics of chemical traits in leaves may reflect 

their function. Chlorophylls control the amount of photosynthetically active radiation absorbed 

for photosynthesis, while carotenoids absorb radiation for photosynthesis and protect leaves 

from over-exposure to solar radiation by releasing the excess energy as heat (Ustin et al., 2009). 

The amount of these photosynthetic pigments per unit leaf area enhances photosynthetic 

capacity in high light (Poorter at al., 2009). In our study, pigment concentrations were ~35% 

higher during the El Niño event than afterwards, which suggests that the plants had a capacity 

to acclimate rapidly to the loss of the high irradiance conditions during wet periods and to up-

regulate pigment synthesis when sunshine hours were high. The increase in photosynthetic 

pigment concentrations occurred during a dry spell, which suggests that the climatic water 

deficits may not have been sufficient to inhibit photosynthetic rates. Photosynthesis can be 

maintained at the same or even higher levels than during the wet La Niña phase of the ENSO 

cycle because of increased light availability during the relatively dry El Niño phase (Guan et 

al., 2015). 

Forests green‐up during drought events, as previously reported in a study examining the 2005 

drought over the Amazon basin from satellite remote sensing (Saleska et al., 2007). The authors 

proposed that forests might be more resilient to drought that previously thought, because plants 

invest in photosynthetic apparatus during drought. However, a plot-based approach 

demonstrate that the 2005 drought negatively affected forest carbon through increased 

mortality (Phillips et al., 2009). Although our study provides evidence of a rapid shift to 

maximise water use efficiency, as well as a large investment in photosynthetic and defensive 

machineries, we cannot infer information about mortality and productivity of trees. We only 
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consider functional traits associated with light capture and gas exchange, not wood, root traits, 

canopy-level properties such LAI, height or tree architecture. Hence it is difficult to predict the 

responses to El Niño events.  

During the El Niño event, leaves had higher δ13 C values. Water-use efficiency can be 

effectively measured with foliar δ13C values (Farquhar et al. 1989). Our results indicate higher 

water-use efficiency when precipitation was lower and higher temperatures. A decrease in δ13C 

post El Niño may have resulted from a high ratio of stomatal conductance to net photosynthesis 

and consequently higher intercellular CO2 / ambient CO2 ratios. The rapid shift in water-use 

efficiency indicate the ability of plants to acclimate to these short-term climate variation, but 

also may indicate the prospect of more frequent droughts could increase selection towards 

greater intrinsic water-use efficiency (Cernusak et al., 2009). 

Defensive compounds, namely phenolics, were also at higher concentration during the El Niño. 

A number of plant products typically associated with anti-herbivore defenses, such as phenolic 

compounds, accumulate in larger quantities in plants exposed to UV-B radiation than in plants 

receiving no UV-B radiation (Tegelberg et al., 2004). Phenolic compounds are secondary 

metabolites with antioxidant effects in plants exposed to oxidative stress (Olsson et al., 1998; 

Tattini et al., 2004; Tatinni et al., 2005; Mansori et al., 2015). In a controlled environment 

study, several clover varieties were compared under combined treatments of drought and high 

UVB fluxes (Hofmann et al., 2003). Drought and UV-B radiation were tested synergistically 

in clover varieties resulting in a substantial increase of UV-B radiation-absorbing compounds, 

including phenolics, in drought stressed plants (Hofmann et al., 2003). These changes were 

linked to an improved water status of the plants. Solar UV-B radiation induces a variety of 

acclimation responses, which typically include accumulation of phenolic compounds that serve 

as “sunscreens” or UV filters (Caldwell et al., 2003). Phenolic compounds accumulate in large 

quantities in the vacuoles of epidermal cells and effectively attenuate the UV component of 

sunlight with minimal change in the visible region of the spectrum. The increase in defence-

related compounds in plants exposed to UV-B radiation correlates with a lower forage quality 

in tissues from these plants (Izaguirre et al., 2006). 
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3.5.2 Hierarchical structuring of traits 

By concentrating on functional traits without reference to species identities or individuals, we 

are able to account for intra-specific variability, often neglected when functional diversity is 

indirectly calculated from taxonomic data. Strong taxonomic organisation probably indicates 

low plasticity within species. The strong phylogenetic signal in water indicates selective 

pressure among coexisting species. Although plants can quickly adjust investment in the 

photosynthetic apparatus, water-use efficiency and defence, minerals stored in tissues may be 

reused and changes in those traits may take longer to manifest.   

Our finding suggests that the efficiency of C fixation and pigments is increased during El Niño 

which could potentially correlate to high photosynthetic capacity (Girardin et al., 2010). High 

growth rate environments likely create the conditions under which competition and defense are 

the most critical factors determining how maximum productivity is achieved and maintained 

(Asner et al., 2014a), and traits associated with defense would be taxonomically organized 

within communities, and a divergence in functional strategies to ensure high growth rates under 

varying abiotic conditions (Coley, 2014). Our results suggest that the El Niño may favour 

individuals, but not necessarily species, that invest more in light capture, as well as species that 

can maintain strong defenses during extreme climatic events. The old growth forests of Borneo 

may have high levels of interspecific spectral variability associated with high biological 

diversity, and increased diversity in response to short-term climatic variation. A clearer sense 

of the diversity and organization of canopy chemical traits may help us to forecast winners and 

losers within specific communities in response to El Niño.  

3.5.3 Application of spectroscopy to predict trait variation   

To our knowledge, our study is the first to analyse changes in physico-chemical leaf traits and 

spectral reflectance during and after El Niño. Many previous papers have shown that leaf 

reflectance can predict morphological and biochemical leaf traits in the tropics (Asner et al., 

2012b; Asner et al., 2014a; Doughty et al., 2017) that are commonly used for determining 

functional diversity (Schweiger et al., 2018). We demonstrate that repeated reflectance 

measurements can also predict variation of the El Niño effects at the leaf level. In particular, 

the variation of traits affected by El Niño such as pigments, δ13C and phenolics were 

successfully detected. 
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The effects of El Niño on pigment content were detected from the visible (400 – 750 nm) 

portion of the spectra, as expected from previous studies (Curran et al., 1991, Sims and Gamon, 

2002; Serbin et al., 2014). From a remote sensing perspective, a potential leaf-level green-up 

phenomenon during El Niño could be then a factor contributing to the “green-up” phenomenon 

observed during the dry season in Amazonia (Huete et al., 2006; Saleska et al., 2007), although 

some studies argue that it could be driven by an artefact of sun-sensor geometry (Morton et al., 

2014) or that dry-season droughts do not co-vary with green-up of the Amazon whatsoever 

(Samanta et al., 2010). Our results demonstrate that trees do increase chlorophyll concentration 

in their leaves during El Niño and this change can be detected from spectral reflectance.  

Large areas of earth are being mapped with airborne spectrometers (e.g. Asner et al., 2017) 

soon enable vegetation and ecosystem functioning to be characterised at the global scale. 

Evidence that plant acclimation during short-term climate change can be accurately predicted 

using spectrometers may be of great contribution to understand tropical forests. 

3.6 Authors' Contributions 

Study design: Mark Cutler, David Burslem, David Coomes, Sabine Both and Christopher 

Phillipson. Data collection: Matheus Nunes, Sabine Both, Christopher Phillipson, Craig 

Brelsford. Laboratory analysis: Sabine Both, Christopher Phillipson, Noreen Majalap, 

Matheus Nunes, Boris Bongalov. Data analysis: Matheus Nunes. Manuscript writing: Matheus 
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Chapter 4  | Mapping aboveground carbon in oil palm plantations using 

LiDAR: a comparison of tree-centric versus area-based approaches 

4.1 Summary 

Southeast Asia is the epicentre of world palm oil production. Plantations in Malaysia have 

increased 150% in area within the last decade, mostly at the expense of tropical forests. Maps 

of the aboveground carbon density (ACD) of vegetation generated by remote sensing 

technologies, such as airborne LiDAR, are vital for quantifying the effects of land use change 

for greenhouse gas emissions, and many papers have developed methods for mapping forests. 

However, nobody has yet mapped oil palm ACD from LiDAR.  The development of carbon 

prediction models would open doors to remote monitoring of plantations as part of efforts to 

make the industry more environmentally sustainable. This paper compares the performance of 

tree-centric and area-based approaches to mapping ACD in oil palm plantations. We find that an 

area-based approach gave more accurate estimates of carbon density than tree-centric methods 

and that the most accurate estimation model includes LiDAR measurements of top-of-canopy 

height and canopy cover. We show that tree crown segmentation is sensitive to crown density, 

resulting in less accurate tree density and ACD predictions, but argue that tree-centric approach 

can nevertheless be useful for monitoring purposes, providing a method to detect, extract and 

count oil palm trees automatically from images. 

4.2 Introduction 

Southeast Asia has been the epicentre of the oil palm industry for over 50 years (Gutiérrez-

Vélez and DeFries, 2013). Oil palm is one of the most profitable land uses in the humid tropics 

(Sayer et al., 2012). Malaysia has increased its planted area by 150% over the last decade 

(FAO, 2017) and, along with Indonesia, currently represents over 80% of global palm oil 

production (FAO, 2017; Koh and Wilcove, 2007). The planted area increased from 6 to 16 

million hectares between 1990 and 2010, an area which now accounts for about 10 percent of 

the world’s permanent cropland (MPOB, 2016). Conversion of forests to plantation agriculture 

represents a substantial source of greenhouse gas (GHG) emissions, especially in tropical 

peatlands (Foley et al., 2009), generating 10–20% of net global emissions (van der Werf et al., 

2009). Although oil palm plantations continue to expand, the government of Malaysia has 

pledged to reduce their projected GHG emissions by 45% by 2030 (UNFCCC, 2017). 
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High-resolution forest biomass maps can provide detailed and spatially explicit estimates of 

aboveground carbon density (ACD, units of Mg C ha−1) to assist natural resource management 

and assess emissions from deforestation. LiDAR (light detection and ranging) has become a 

commonly used technology to remotely predict ACD in many forest types (Asner et al., 2010; 

Simonson et al., 2016; Coomes et al., 2017). Carbon mapping by airborne LiDAR is 

significantly more accurate than approaches based on radar or passive optical measurements 

from space (Hyde et al., 2007; Nelson et al., 2007; Zolkos et al., 2013). Oil palm trees have 

been counted using airborne imaging spectrometry (Shafri et al., 2011) and their biomass 

estimated from satellite images (Thenkabail et al., 2004; Morel et al., 2011; Carlson et al., 

2012; Koh et al., 2011), but nobody has yet developed equations to estimate carbon density in 

oil palm plantations from airborne LiDAR data. The development of carbon prediction models 

provides opportunities to assess the aboveground carbon density of oil palm plantations, which 

is essential for assessments of the environmental sustainability of human modified tropical 

landscapes. 

Airborne LiDAR provides detailed information about forest structure within scanned areas, 

which can extend over hundreds of square kilometres (Lim et al., 2003; Dassot et al., 2011; 

Nguyen et al., 2016), but it also poses the challenge of how best to use these data to estimate 

aboveground carbon (Jucker et al., 2016). It has been demonstrated that top of canopy height 

(TCH), as measured by LiDAR, is a useful metric for estimating ACD of natural tropical forests 

and is relatively insensitive to sensor and flight specifications (Asner and Mascaro, 2014). 

However, the generality of TCH-based approaches to plot-aggregate carbon stock estimation 

has not been examined for oil palm plantations. There is current interest in developing 

individual-tree-based approaches to make greater use of the 3D information contained in 

airborne LiDAR data (Duncanson et al., 2013; Ferraz et al., 2016; Dalponte and Coomes, 

2016). The tree-centric method is fundamentally similar to field-based approaches based on 

inventory plots (Coomes et al., 2002; Chen et al., 2015), so individual-based modelling has a 

strong theoretical basis (Shugart et al., 2015). Nevertheless, over- or under-segmentation of 

trees can lead to biases in biomass estimation (Coomes et al., 2017). To our knowledge, no 

study has used tree-centric approaches to map carbon in tropical plantations. 

This paper develops methods for mapping the aboveground carbon density of oil palm 

plantations using LiDAR. Sabah has a larger percentage of oil palm plantation than any other 

state in the world (MPOB, 2016), so has become an important testbed to examine the effects 
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of oil palm plantations within human modified tropical landscapes. We compare the Dalponte 

and Coomes (2016) tree-centric approach with area-based methods (Asner and Mascaro, 2014; 

Coomes et al., 2017; Jucker et al., 2018a), and critically evaluate whether the advantages of 

working with individual trees outweigh any disadvantages associated with the accuracy of tree 

detection. We also explore the relationship between ACD and canopy gap fraction measured 

by LiDAR, and then use this finding to refine the area-based approach. Our study site contained 

plots with oil palm plantation that varied in age from 8 to 14 years at the time of sampling, 

providing an opportunity to test the generality of the approaches used. 

4.3 Methods  

4.3.1 The SAFE Degradation Landscape 

The oil palm plantations are within the Stability of Altered Forest Ecosystem (SAFE) Project  

(4° 38′ N to 4° 46′ N, 116° 57′ to 117° 42′ E), located within lowland dipterocarp forest regions 

of East Sabah in Malaysian Borneo (Fig. 4.1). SAFE reflects Sabah's predominant land use 

change over the past decades, characterised by industrial harvesting and large-scale forest-to-

palm conversions (Reynolds et al., 2011). The region has a tropical climate with high rainfall 

(>2000 mm/year) and varying topography, although all study plots are below 800 m altitude. 

The geology comprises a mixture of sedimentary rocks, including siltstones, sandstones and 

others that are easily eroded (Douglas, 1999). 

 

Figure 4.1 | Panel (a) shows the location of the Stability of Altered Forest Ecosystem (SAFE) 

landscape within Sabah, Malaysia and (b) the LiDAR Canopy Height Model (greener shades 
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corresponding to higher heights in metres) of the SAFE Project landscape including 27 plots 

located in oil palm plantations. 

4.3.2 Field Data 

Twenty-seven vegetation plots (25 m × 25 m, 0.0625 ha) with North–South orientation were 

set out at SAFE in 2010 using a Garmin GPSMap60 device. Vegetation plots were established 

according to a hierarchical sampling design based around a triangular pattern to assess regional 

forest attributes (Ewers et al., 2011). Plots were located at roughly equal altitude = 400 m and 

oriented to minimise potentially confounding factors such as slope. Oil palm is generally grown 

on fairly flat surfaces under Roundtable on Sustainable Palm Oil guidelines, recommendations 

from the Malaysian Palm Oil Board, and Standards for Oil Palm Production. On top of that, 

production on flat surfaces is higher. Therefore, these conditions will commonly be shared in 

oil palm plantations across SE Asia and are therefore valid. Plots were distributed among three 

oil palm plantation blocks of two different ages (OP1 and OP2 planted in 2006 and OP3 planted 

in 2000), henceforth referred to as 8-year-old and 14-year-old plots. In each 0.0625 ha plot, all 

oil palm individuals had their stem height measured in 2013 and remeasured in 2015; we used 

the average height between these years (Fig. 4.2). The average height and standard deviation 

(in metres) was 6.1 ± 2.3 for OP1, 5.4 m ± 1.5 for OP2 and 8.5 ± 2.0 for OP3. Palms have 

vascular bundles embedded in their trunks, in contrast to most tree species which have 

meristem cells just beneath their bark, so trunks do not increase in diameter as the trees grow 

taller. Thus, as secondary thickening does not occur in palm trees, we did not include tree 

diameter in our field measurements or biomass equation. 
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Figure 4.2 | Boxplots contrasting the structural attributes of oil palm plantations of two 

different ages (x axis), based on measurements taken in 27 1-ha plots. ACD is aboveground 

carbon density (Mg C ha−1).  

A 1-ha plot was created that was centred on each 0.0625-ha plot, to expand the plot size for 

aboveground carbon density calculations and minimize plot size effects on LiDAR model 

performance (Zolkos et al., 2013). We then used Earth Imaging data from the Pléiades satellite 

constellation (EADS Astrium), acquired over the SAFE landscape in June 2016, to visually 

count the tree density within each 1-ha plot. Pléiades data comprises a 0.5-m resolution 

panchromatic band, and four spectral bands (blue, green, red, and near infrared) with a 2.8 m 

spatial resolution, resampled to 2 m (Fig. 4.3a). The panchromatic band has sufficiently high 

resolution to distinguish the rows of trees in oil palm stands, as inter-row spacing is 

approximately 8 m. The average height of each 1-ha plot was assumed to be the same as in the 

0.0625 ha plots, embedded at the centre. We recognise that spatial autocorrelation magnitude 

could impact the 1-ha plot data; however, we emphasize that the plots are not being used for 

landscape sampling, rather they are intended for calibration and validation purposes only. 

Areas within oil palm are all planted at the same time and managed in the same way, and are 

therefore likely to be extremely homogeneous.  

Figure 4.3 | (a) A monochromatic image from the Pléiades satellite constellation and (b) an 

airborne LiDAR image of a 1-ha plot to show a typical oil palm plantation canopy. The legend 

refers to height in metres of individual palms displayed on the LiDAR image. 
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4.3.3 LiDAR Data Acquisition and Processing 

Airborne LiDAR data were acquired on 5 November 2014 using a Leica LiDAR50-II flown at  

1850 m altitude on a Dornier 228–201 travelling at 135 knots. The LiDAR sensor emitted pulses 

at 83.1 Hz with a field of view of 12.0°, and a footprint of about 40 cm diameter. The average 

pulse density was 7.3 /m2. The Leica LiDAR50-II sensor records full waveform LiDAR, but 

for the purposes of this study the data were discretised, with up to four returns recorded per 

pulse. Accurate geo-referencing of LiDAR point cloud was ensured by incorporating data from 

a Leica base station running in the study area concurrently to the flight. The LiDAR data were 

pre-processed by NERC’s Data Analysis Node and delivered in standard LAS format. All 

further processing was undertaken using LAStools (http://rapidlasso.com/lastools/). Points 

were classified as ground and non-ground, and a digital elevation model (DEM) was fitted to 

the ground returns, producing a raster of 1 m resolution. The DEM elevations were subtracted 

from elevations of all non-ground returns to produce a normalised point cloud, and a canopy 

height model (CHM) was constructed from this on a 0.5 m raster by averaging the first returns. 

Finally, holes in the raster were filled by averaging neighbouring cells (Fig. 4.3b). 

4.3.4 Estimating Tree- and Plot-Level Aboveground Carbon Density 

Oil palm aboveground biomass (AGBpalm) was computed as dry mass in kg for each palm tree 

from its height (H) in metres using the equation of Thenkabail (2004): 

         𝐴𝐺𝐵𝑝𝑎𝑙𝑚 =  37.47 × 𝐻 + 3.6334                                                                              (Eqn. 4.1) 

Note, as explained above, palm trees do not increase in diameter as they increase in height, so 

the formula is based only on height. The average AGBpalm within the field plot was multiplied 

by the number of individuals counted in the 1-ha plots from the Pléiades images to give the 

total AGB within each 1 ha plot. A carbon content conversion factor of 0.47 was then applied, 

following Martin and Thomas (2011). 
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4.3.5 Area-Based Approach 

Asner and Mascaro (2014) proposed a generalised approach to estimate ACD using top of 

canopy height estimated by LiDAR. As recommended by the authors, least squares regression 

was used to relate field measured TCH and ACD as follows:  

          𝐴𝐶𝐷 = 𝑎 𝑇𝐶𝐻𝑏   (Eqn. 4.2) 

This model was fitted to data from the 27 1-ha SAFE plots and the estimates were obtained by 

leave-one-out cross validation. TCH was the mean height of CHM pixels within each 1-ha plot 

extracted using the raster package of R, while a and b are the parameters of the nonlinear model. 

We also tested whether canopy cover (CC) - the proportion of area occupied by crowns at a 

given height aboveground - could be used as an alternative LiDAR metric to predict ACD. CC 

is calculated by creating a horizontal plane in the canopy height model (CHM) at height h 

above ground, and calculating the number of pixels for which the CHM lies beneath the plane 

divided by the total number of pixels in the plot. CC was calculated for h from 1 m to the 

maximum canopy height encountered in the plots (23 m). There were a few individuals of other 

tree species encountered in the 1-ha plots. 

         𝐴𝐶𝐷 = 𝑎 𝐶𝐶𝑏  (Eqn. 4.3) 

We also tested whether TCH and canopy cover could both be included as a predictor of ACD 

(Coome et al., 2017; Jucker et al., 2018a). The model requires accounting for multi-

collinearity, considering that TCH is closely correlated to CC. This can be done by regressing 

one variable against the other, and replacing the variable with the residuals from the regression 

(Graham, 2003). We therefore first modelled the relationship between CC and TCH using 

logistic regression, validated the model using a leave-one-out procedure, and then used the 

residuals of this model (CCres in Equation. 4.4) to identify plots that have higher or lower than 

expected canopy cover for a given TCH. Equation 4.5 was used following Jucker et al. (2018a), 

who carefully compared alternative functional forms.  
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         CCres =  CC −   1
1+ e−dTCH −f 

    (Eqn. 4.4) 

         ACD = a TCHb (1 + c CCres), (Eqn. 4.5) 

where lowercase letters indicate regression coefficients. To aid interpretation, Spearman rank 

correlation coefficients (r) between structural variables and area-based approach metrics were 

calculated to investigate the relationship of both average tree height and tree density with both 

TCH and CC LiDAR metrics. 

4.3.6 Tree-Centric Approach 

As an alternative to area-based approaches, we tested whether ACD could be estimated 

accurately by summing the biomass of individual tree crowns (ITCs). The itcSegment algorithm 

was used to delineate trees within each of the 27 plots and determine the tree heights and 

individual crown areas. itcSegment is implemented in R and made freely available on CRAN 

(https://cran.r-project.org/web/packages/itcSegment/index.html). It works by finding local 

maxima in the raster CHM, regarding these maxima as tree tops, then growing crowns around 

them by local searching of the raster CHM and point cloud. This approach was initially 

developed for coniferous forests (Dalponte et al., 2014; Dalponte and Coomes, 2016) following 

the concept of Nyström, et al. (2012), and modified in this manuscript to adapt to forests with 

low variation in height (i.e., oil palm plantations). The tree-centric approach consists of three 

stages (Dalponte et al., 2015): (1) a Guassian low-pass filter to smooth the canopy height 

model; (2) an iterative search for local maximum in the CHM, which are assumed to represent 

the tops of tree crown, using a window size that varied with the height of the CHM; we included 

a weighting exponent in the itcSegment function to increase the contrast in the CHM and found 

this greatly improved the accuracy of segmentation; (3) a region-growing step then searches 

for crowns around each local maximum, constraining the search with pre-determined crown 

width and depth information. The itcSegment algorithm has been upgraded in R after inclusion 

of the weighting exponent explained in stage 2.  

The next step was to calculate a correction factor to account for the fact that the individual tree 

heights obtained by the ITC approach overestimated the oil palm tree heights, because large 

oil palm fronds arch up beyond the meristem at the top of the trunk, which were not accounted 
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for in field measurements. This correction factor was obtained by fitting a nonlinear regression 

as follows: 

            𝐻𝑐̅̅̅̅ = 𝑎 𝐻𝐼𝑇𝐶̅̅ ̅̅ ̅̅ 𝑏  (Eqn. 4. 6) 

where 𝐻𝑐̅̅̅̅  is the mean field-estimated height within the 27 0.0625 ha plots and 𝐻𝐼𝑇𝐶̅̅ ̅̅ ̅̅  is the mean 

LiDAR-esimated height within the surrounding 1-ha plots, and a and b are parameters 

estimated by nonlinear least squares regression. The model was validated using the leave-one-

out procedure.  

The next step was to estimate individual biomass, by entering 𝐻𝐶̅̅̅̅  values into equation 1. We 

then summed the AGB of segmented trees, and multiplied by a carbon density of 0.47 to obtain 

ACD estimates as before. The accuracy of the ITC delineation was assessed by comparing the 

numbers of delineated trees with the numbers observed in the field plots and ACD predicted 

from the summed individual biomasses.  

Goodness of fit of models and the tree-centric approach are compared by reporting the 

normalised RMSE (%), calculated as √∑(𝑦−�̂�)2 
𝑛

 ×  100 �̅�⁄ , and bias (%) as 

∑(𝑦 −  �̂�)  ×  100 (𝑁�̅�)⁄ , where y are the field data,  �̅� is the mean, �̂� are the model estimates 

and N is the number of observations (Coomes et al., 2017). 

4.4 Results 

4.4.1 Relating LiDAR Metrics to Oil Palm Plantation Structure 

Both LiDAR area-based approach metrics, top of canopy height and canopy cover, are 

correlated to tree density and average plot tree height (Fig. 4.4 a–d). Canopy cover (CC) at 3 

m height was chosen after a comparison of different models that included heights between 1 

and 23 metres, to include a few individuals other than oil palm trees within the 1-ha plots. Top 

of canopy height was more strongly influenced by height, whereas CC at 3 m was more 

influenced by tree density.  
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Figure 4.4 | Spearman correlation (r) between field-measured average tree height per plot and 

LiDAR-derived (a) top-of-canopy-height (TCH), and (b) canopy cover (CC) at 3 m height, as 

well as between field-measured tree density (#.ha−1) and (c) TCH and (d) CC. 

4.4.2 Area-Based Approaches 

The local model obtained by fitting a power-law model to the data available from SAFE oil 

palm plantations yielded the following relationship between top of canopy height (TCH) and 

aboveground carbon density (Fig. 4.5a):  

            ACDHTC = 1.494 TCH 1.107 (Eqn. 4.7) 

A TCH exponent of just over 1 indicates a near-linear relationship between TCH and carbon 

density in oil palm plantations, as expected from the straight-line relationship between 
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individual biomass and height (i.e. Equation 4.1). The relationship between ACD and CC 

follows instead an exponential relationship (Fig. 4.5b) 

            ACDCC = 22.991 CC 2.744 (Eqn. 4.8) 

 

Figure 4.5 | Relationship between aboveground carbon density (ACD) and (a) top-of-canopy-

height (TCH), and (b) canopy cover (CC) at 3 m height per plot for 8-year-old and 14-year-old 

plantations. 

In comparison, when ACD was expressed a function of both TCH and residual CC, we obtained 

the following model: 

              𝐴𝐶𝐷 = 1.31 𝑇𝐶𝐻1.17 (1 + 3.52 𝐶𝐶𝑟𝑒𝑠)  (Eqn. 4.9) 

where CCres can be obtained by subtracting the actual CC by the model that predicted CC 

from logistic regression with TCH as the predictor variable: 

              𝐶𝐶𝑟𝑒𝑠 =  𝐶𝐶 −   1
1+ 𝑒0.77 𝑇𝐶𝐻−0.37      

    (Eqn. 4.10) 

The model based on TCH generated unbiased ACD predictions with RMSE of 26.3%, whereas 

the model based on CC showed a bias of 1.2% with similar RMSE of 26.4%, with both models 

yielding an R2 = 0.62 (Fig. 4.6a–b). The inclusion of both TCH and residual canopy cover into 
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the model reduced RMSE to 23.9% and improved the strength of relationship to R2 = 0.69 (Fig. 

4.6c). The predictions were obtained from the validation datasets using the leave-one-out 

procedure. Neither approach showed any trend with oil palm plantation age (e.g., plots 

deviating from the 1:1 line), which indicates that the equations can be applied to plantations of 

different ages and to faster and slower growing stands of the same age.  

 

Figure 4.6 | Relationship between aboveground carbon density (ACD) estimated from field 

data and (a) ACD estimated from the leave-one-out cross validated datasets using LiDAR-

derived top of canopy height (HTC), (b) canopy cover (CC) at 3 m, and (c) ACD estimated 

from TCH and residual CC at 3 m height per plot for 8-year-old and 14-year-old plantations. 

The 1:1 line is given for reference in both panels (dashed black lines). 

4.4.3 Individual Tree Crown Approach 

ITCsegment used variable window sizes when searching for local maxima, which avoided 

omitting small palms when the window was large, or over-segmenting large palms when the 

window was small (Fig. 4.7a). Heights obtained from the individual tree crown segmentation 

(HITC) included the upward pointing fronds of palms. The relationship between stem height and 

HITC (Fig. 4.7b) was:  

               Hc = 0.61 HITC 1.02 (Eqn. 4.11) 

This equation was used to predict the tree stem height (Hc) of all trees in the plots, from their 

segmented heights. 
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Figure 4.7 | a) Detection of individual tree crowns in a 1-ha plot LiDAR imagery using 

itcSegment (Dalponte and Coomes, 2016) for oil palm plantations; b) The relationship between 

tree stem height obtained from field data and tree height obtained from the individual tree 

crown segmentation (HITC). The regression line fitted to all 27 plots is shown as a red line and 

the 1:1 line as a black dashed line. 

A comparison of the number of delineated trees with the tree density obtained from the Pléiades 

optical imagery was used to estimate the accuracy of the ITC delineation for all the 1-ha plots 

(Fig. 4.8a). ACD of individual oil palm trees was summed to estimate plot ACD at the 1-ha 

plot level (Figure 8b). The ITC approach gave a percentage RMSE of 25.9% and was biased 

(−11.6%), showing a slight trend from over-estimation of lower carbon density values and 

under-estimation of higher carbon density values. 
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Figure 4.8 | Relationship between (a) the number of trees in the 1-ha plots estimated from 

Pléiades optical imagery and number of trees obtained from the LiDAR-derived individual tree 

crown (ITC) segmentation approach, and (b) aboveground carbon density predicted from the 

ITC approach and ACD estimated from field data for 8-year-old and 14-year-old plantations. 

The 1:1 line is given for reference in both panels (dashed black lines).  

4.5 Discussion 

We have demonstrated that the ACD of oil palm plantations can be assessed accurately using 

airborne LiDAR and can give better results compared to estimates using satellites (Morel et 

al., 2011).  Our ACD estimates of 10.0 Mg C ha-1 for a 8-year-old plantation and  

18.3 Mg C ha-1 for a 14-year-old plantation are similar to those reported in previous studies. 

mean ACD of oil palm in the SAFE landscape was estimated as 17.9 Mg C ha-1 by Pfeifer et 

al. (2016) using optical satellite imagery (age of stands not distinguished), while elsewhere in 

Sabah, the ACD of a 3-year-old oil palm plantation was given as 1.1 Mg C/ha, rising to an 

average value of 24.4 Mg C ha-1 for plantations ranging from 4 to 19 years old (Morel et al., 

2011).  

Area-based approaches yielded more accurate carbon stock predictions in oil palm plantations 

than the tree-centric approach. ACD predictions were most accurate when incorporating both 

TCH and canopy cover as predictors (Simonson et al., 2016). Power-law modelling 

incorporates basal area and wood density relating to TCH; however, our function assumes that 

wood density and basal area are both constant, as the field biomass equation that was used to 
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predict individual biomass, used tree height only. Coomes et al. (2017) found that the crown 

area of each forest tree scales with its basal area, so the gap fraction at ground level of a plot is 

negatively related to the basal area of its trees. The authors also showed that incorporating 

canopy cover in tropical forests into ACD models gave more accurate results, as ACD is more 

closely related to basal area than to height. However, secondary thickening does not occur in 

palm trees, with basal area increase instead being due to division and enlargement of 

parenchyma cells (Mauseth, 2012). Thus, cover fraction is not necessarily correlated to basal 

area, but more dependent on tree density and height. When incorporating both TCH and CC, 

the model yielded better results as a result of complementarity, by taking into account the high 

correlations between tree height and TCH as well as with tree density and CC.  

The tree-centric approach was less accurate. It showed a slight tendency to over-estimate the 

number of trees in younger plantations. A likely reason for this over-segmentation is overlap 

of palm crowns of similar heights. In mature plantations, crowns were more likely to be 

connected to other tree crowns, making them difficult to distinguish and resulting in 

miscounting of trees.  Other studies focussing on tropical rainforests have also found the tree-

centric approach to perform slightly less well than area-based methods (Coomes et al., 2017; 

Ferraz et al., 2016), due to over-segmentation of emergent trees and incomplete detection of 

sub-canopy trees. Here, the problem is instead the under-segmentation of large crowns, which 

merge into one another, owing to their similar height. 

Although the tree-centric approach gives less accurate results, it can still be advantageous to 

segment individual trees for precision agriculture (McBratney et al., 2005), particularly in oil 

palm plantations as individual trees are long-lived. Field-based tree counting is labour 

intensive, and the use of remote-sensing using high-resolution optical imagery from satellites 

has been suggested as a cost efficient alternative (Jusoff and Pathan, 2009). A semi-automatic 

technique to count oil palm trees using high-resolution airborne imaging spectrometer data has 

also been developed (Shafri et al., 2011), and LiDAR has been used to detect and classify oil 

palm diseases (Khosrokhani et al., 2016). The detection of diseases, such as the Ganoderma 

basal stem rot, using airborne spectral imagery (Shafri and Hamdan, 2009) and space-borne 

multispectral sensors (Santoso et al., 2011) has also been demonstrated.  

The Roundtable on Sustainable Palm Oil, the major accreditation body for sustainable palm oil 

production, recognises the importance of developing approaches for growers to monitor 
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emissions across their estates. However, it has been recognised that emission cannot be 

monitored completely, or accurately, using current methodologies (RSPO, 2013). Studies 

indicate that remote sensing missions should estimate carbon with an error within 20% of field 

estimates (Houghton et al., 2009; Hall et al., 2011). Both area-based and individual tree-centric 

approaches offer reliable opportunities to map oil palm plantation ACD, within acceptable 

standards of estimation. High-resolution LiDAR techniques are a reliable tool to collect 

reference data, in order to decrease the uncertainty associated with satellite-based mapping 

projects. It is through the integration of optical and samples of LiDAR data, based upon the 

above findings, that measures in support of carbon sequestration programs may be generated. 

4.5.1 Conclusions 

Area-based modelling proved more effective at mapping ACD in oil palm plantations than a 

more sophisticated tree-centric approach. Using both canopy cover and top-of-canopy height 

in the model generated the most accurate ACD predictions. Canopy cover is related primarily 

to tree density and secondarily to tree height, so provides complementary information to TCH 

and improves accuracy. The tree-centric approach underestimated the density of trees, 

particularly in older plantations, because tree crowns were overlapping and our segmentation 

algorithm recognised overlapping crowns as a single tree. Nevertheless, the tree-centric 

approach may prove useful in the future for detecting individual trees and for monitoring 

growth and foliar properties. 
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Study design: David Coomes, Rob Ewers, Ed Turner. Data collection: David Coomes, Rob 
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Chapter 5 | Extensive leaf loss of tropical forests during an El Niño, with 

fragmented edges, primary forests and hilltops most affected 

 

5.1 Abstract 

Droughts associated with El Niño Southern Oscillation (ENSO) events can lead to leaf loss, 

tree mortality and lower productivity in tropical rain forests, but what remains unclear is how 

and why drought impacts vary across tropical landscapes. Here, we use repeat airborne LiDAR 

surveys conducted before and after the strong ENSO event of 2015-16 in Malaysian Borneo to 

produce high-resolution maps of canopy height change across 25,000 ha of a human-modified 

tropical landscape which encompasses the world’s largest forest fragmentation experiment. We 

hypothesise that forest fragmented communities and those on ridge-tops would be most 

affected by the ENSO, whereas mature forests in damp valley bottoms would be more resilient. 

We found that following the El Niño canopy profiles increased 0.19 - 0.23 m, however there 

was a strong environmental filter on the vegetation response to the El Niño event. As predicted, 

forests near fragment edges and tall forests (i.e. primary or slightly logged forests) were 

particularly susceptible to the El Niño – with canopy height decreasing by 0.4 - 0.6 m within 

450 m from the edges, and canopy losses of 0.1 - 0.2 m of forests > 20 m in canopy height. 

Topography also had a significant effect on forest growth, with those on hilltops virtually 

presenting no growth (0 - 0.2 m). Long-term tree census and leaf area index data revealed that 

these changes in canopy height were primarily driven by leaf shedding rather than tree 

aboveground biomass (AGB) change, which is consistent with a short-term physiological 

response owing to increased atmospheric water pressure deficit. The El Niño did not affect 

negatively AGB, which kept positive change rates after two years following up the climatic 

event. By mapping landscape-scale variation in forest responses to microclimate and regional 

climate variations, our study demonstrates that primary forests are more susceptible to extreme 

climatic events whereas secondary forests can be resilient even under high temperatures and 

atmospheric dryness of the understory. 
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5.2 Introduction 

El Niño is a natural phenomenon that creates periods of water shortage in regions where water 

is typically plentiful. The Southern Oscillations responsible for El Niño events have occurred 

for at least 130,000 years (Tudhop et al., 2001), suggesting ample opportunity for natural 

selection of trees capable of tolerating irregular drought events, which occur at frequencies far 

greater than their lifespans (Harrison, 2000; Detto et al., 2018).  However, there is concern that 

anthropogenic climate change is increasing the frequency and intensity of El Niño events 

(Thirumalai et al., 2017,Wang et al., 2017), which has the potential to shift tropical forests from 

net carbon sinks to sources due to increased tree mortality and decreased productivity during 

drought (Gatti et al., 2014; Qie et al., 2017; Zuleta et al., 2017; Greenwood et al., 2017; 

Mitchard, 2018). In particular, increased air temperatures cause greater evaporative demand, 

resulting in greater water stress even if rainfall patterns remain unchanged (Weiss et al., 2009; 

Clark et al., 2010; Allen et al., 2015). There is mounting evidence that drought events in a 

warming world are having catastrophic effects on forests in many regions of the world (Asner 

et al., 2016; Liu et al., 2013; Williams et al., 2010; Williams et al., 2013). However, we still 

have a poor understanding of how tropical forests in different regions are responding to climate 

change (Huntingford et al., 2013), particularly because rainforest species vary in resilience 

(Nepstad et al., 2002; Doughty et al., 2015; Santos et al, 2018) and rising CO2 concentrations 

may allow trees to use water more efficiently (Norby et al., 2005). Stomatal regulation and 

plant physiological response strongly regulate evapotranspiration, and responses to drought 

may vary from leaf shedding (Wolfe et al.,2016), decreased productivity (Coomes and Grubb, 

2000; Phillips et al., 2009) to widespread death of trees (Phillips et al., 2009; Saatchi et al., 

2013). Understanding how tropical forests respond to extreme drought events has therefore 

emerged as a key priority if we are to forecast the impacts of climate change on the terrestrial 

carbon cycle (Mitchard 2018; McDowell et al. 2018), given that anthropogenic warming will 

emerge sooner in the low latitudes (Thirumalai et al., 2017). 

A key challenge to predicting the impacts of drought on tropical forest carbon cycling is that 

we lack a quantitative understanding of how responses to drought vary across landscapes and 

why.  For instance, anthropogenic disturbance such as fragmentation and selective logging can 

have significant effects on forest responses to drought (Huang and Asner, 2010; Baccini et al., 

2017; Putz et al., 2012; Qie et al., 2017; Brinck et al., 2017), although these human-modified 

landscapes have received much less attention than intact forests – even though they are the new 

http://science.sciencemag.org/content/282/5388/439.full#ref-39
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norm (Malhi et al., 2014). Although logged forests are reported to have more accelerated 

woody growth rates (McMahon et al., 2010; Pretzsch et al., 2014; Riutta et al., 2018), the 

dynamics of secondary forests are also being impacted by droughts associated with changing 

climate (Anderson-Teixeira et al., 2013; Uriarte et al., 2016). These disturbed forests can be 

vulnerable to global warming because such changes increase evapotranspiration, leading to 

depleted soil moisture and creating stresses for drought-sensitive plants (Laurance 2004). 

Conversely, higher competition for water in forests with high aboveground biomass can have 

a strong influence on the response to drought (Young et al., 2017). Local topography also 

modulates soil and air moisture conditions, thereby impacting on population-level responses to 

drought (Slik, 2004; Itoh et al., 2012; Zellweger et al., 2013; Méndez-Toribio et al., 2017; 

Jucker et al., 2018b). Response of vegetation to drought associated with topographic variation 

is dependent on the tolerance of species, and forests can be more (Itoh et al., 2012) or less (Slik 

2004) prone to mortality in wetter areas of the landscape. This tolerance is mediated by species-

specific traits that induce enormous variation from leaf turgor loss point (Maréchaux et 

al.,2015), leaf shedding to refilling cavitated xylem (Nepstad et al., 2002; Doughty et al., 2015; 

Santos et al, 2018). However, the role of topography and forest disturbance in shaping canopy 

dynamics during an El Niño event has not been explored spatially because the scales of 

variability from local to regional levels are difficult to measure.  

Here we investigated the immediate effects of El Niño (i.e. high temperatures and droughts 

leading to higher evaporative demand) on human-modified tropical forests in Borneo using 

repeat-LiDAR surveys across 250 km2. The surveys fell immediately before and after two 

back-to-back El Niño droughts in 2015 and 2016, which were particularly severe due to the 

exacerbating effects of global warming (Thirumalai et al., 2017). By combining LiDAR-

derived maps of canopy height change and local topography with field measurements of tree 

demography and leaf dynamics time-series across the world’s largest forest fragmentation 

experiment, we tested whether: 1) El Niño would impact forest canopies through aboveground 

biomass change or leaf shedding; 2) the effects of drought would be greatest near forest edges 

and in logged forest; 3) valleys and low-lying areas would be less affected. The extreme 

droughts led by high temperatures in 2015 and 2016 owing to global warming exacerbating the 

El Niño effects in Southeast Asia, in combination with spatially continuous high-resolution 

canopy change, microclimatic and topographic data documenting regional forest processes, 

make the region an ideal natural experimental target for examining the immediate influence of 

extreme climatic events on forest canopies with unprecedented detail. 
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5.3 Material and methods 

5.3.1 Study site and El Niño event 

The study is located in Sabah, Malaysian Borneo, within a region dominated by logged forests 

and oil palm plantations (4 38' N to 4 46' N, 116 57' to 117 42' E).  Few regions have seen such 

rapid and extensive transformation as Borneo, where 163,000 km2 (30%) of forest cover was 

lost between 1973 and 2010 (Gaveau et al., 2014). By 2009, 28% of the original forest area of 

Sabah and Sarawak had been converted to plantations, predominantly oil palm, and 72% of the 

remaining forest area had been selectively logged (Bryan et al., 2013), radically altering forest 

composition and structure (Shima et al., 2018). The study area also encompasses the world’s 

largest forest fragmentation experiment, the Stability of Altered Forest Ecosystems (SAFE) 

Project, located in an area gazetted for conversion to oil palm: as the plantations are established, 

patches of logged forests are being protected as part of an experiment seeking to establish the 

consequences of fragmentation on biodiversity and ecosystem functioning (Ewers et al., 2011). 

The SAFE Project site connects a 2200 ha of a lightly disturbed Virgin Jungle Reserve (VJR) 

forest to a large area of degraded forest (over 1 million ha), most of which has been through 

one to three rotations of selective logging. Logging intensity varies greatly over small scales 

due to differences in topography, proximity to roads and quality of the timber, which has 

created a complex mosaic of heavily to moderately logged sites (Pfeifer et al., 2016; Riutta et 

al, 2018). The forest modification gradient reproduces the real-world pattern of habitat 

conversion in Borneo, ensuring that phenomena observed in the study should be directly 

pertinent to policy issues in the region. 

Eastern Sabah typically has an aseasonal climate. We used monthly mean precipitation (mm 

hour-1) data for the SAFE region estimated by the Tropical Rainfall Measuring Mission 

(TRMM, 3B43 version 7). Between January 2000 and December 2014, the average annual 

rainfall (± standard error) was 2,827± 350 mm. However, the region experienced severe 

droughts between January 2015 and April 2016 linked to El Niño, with average monthly 

rainfall of 169 ± 61 mm compared with the long-term average of 235 ± 61 mm. Exceptionally 

high temperatures observed in April 2016 were the result of El Niño combined with global 

warming (Thirumalai et al., 2017).  
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5.3.2 Airborne laser scanning: data acquisition, fusion and height change estimation 

The first LiDAR data were acquired in November 2014 using a Leica ALS50‐II LiDAR 

sensor flown by NERC's Airborne Research Facility. Data acquisition parameters are 

described in detail in Jucker et al. (2018a). The second LiDAR survey was conducted by the 

Carnegie Airborne Observatory-3 (CAO; Asner et al., 2012a) in April 2016. The juxtaposed 

area with repeat LiDAR flights were 24,120 ha. Data acquisition parameters for the second 

flight are described in detail in Asner et al., 2018. Sensors of both flights record full 

waveform information, but for the purposes of this study the data were discretised, with up 

to four returns recorded per pulse. Average pulse density of the first flight was 7.3 m-2 with 

some pulse density reaching values near 0 m-2, whereas settings of the second flight were 

selected to achieve a minimum pulse density of 1.14 pulses m-2.  

We used the LAStools (rapidlasso, GmbH; Gilching, Germany) suite of computational tools to 

identify ground points and interpolate ground and upper canopy returns into 2 m resolution 

maps of bare-earth ground elevation (DEM) and top-of-canopy height above ground (TCH) for 

each flight line d the LAStools (rapidlasso, GmbH; Gilching, Germany) suite of computational 

tools to identify ground points and interpolate ground and upper canopy returns into 2 m 

resolution maps of bare-earth ground elevation (DEM) and top-of-canopy height above ground 

(TCH) for each flight (Figure 5.1a). 

 All further processing was undertaken using LAStools software (rapidlasso GmbH, 

Germany). To minimize errors in the fusion of both datasets, a common digital terrain model 

(DTM) at 1 m resolution was created using a combination of ground returns from both 

surveys. Using a TIN-densifying algorithm available in “lasground” tool, ALS returns were 

classified as ground and non-ground, and their heights above ground were calculated by 

subtracting the elevation of the resulting DTM underneath each of them. Then a canopy 

height model (CHM) representing the height of vegetation was generated separately for each 

survey, following the methodology outlined by Khosravipour et al. (2014), and top-of-

canopy height aboveground (TCH) was initially calculated as the mean CHM at 2 m 

resolution. From the two LiDAR measurements of TCH obtained in 2014 and 2016, namely 

hereafter as TCH before (𝑇𝐶𝐻𝑖) and TCH after (𝑇𝐶𝐻𝑓) the El Niño, TCH change (𝑇𝐶𝐻𝐶ℎ𝑎𝑛𝑔𝑒) 

at each 2 × 2 m cell over the wider SAFE landscape was calculated as TCHf  – TCHi (Figure 

5.1c)  
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Since ALS estimates of TCH increase asymptotically with pulse density (Silva et al., 2017), 

biases arising from differences in pulse density were removed using the approach of Roussel 

et al. (2017), as explained in supplementary information (S1). Variance of (𝑇𝐶𝐻𝐶ℎ𝑎𝑛𝑔𝑒can 

be overestimated owing to artefacts of repeat LiDAR data such as wind direction and within-

canopy variation. TCH map was then resampled until resampling would no longer affect 

variance (See Supplementary Information). We found that 30 m resolution is the sample size 

that 𝑇𝐶𝐻𝐶ℎ𝑎𝑛𝑔𝑒 distribution is no longer affected by pixel size. A small number of outliers 

that may have resulted from anomalies in the processing of the DTM and TCH or small 

misalignments were still detected, and thus we trimmed 1% of the maximum positive change 

and 1% of the maximum negative change with the intention to eliminate unrealistic values 

of TCH change.   

5.3.3 Mapping topography and distances from edge 

A map of topographic position index (TPI) was generated from the combined LiDAR-derived 

DTM (Figure 5.1b). TPI describes the height of a pixel relative to the surrounding landscape 

and ranges from negative where the terrain is concave (i.e. valleys) to positive where it is 

convex (i.e. ridges). TPI was calculated by first coarsening the resolution of the DTM to 10 m 

by spatial averaging, then point mean values were extracted at 1 ha as in Jucker et al., 2018b.  

Satellite imagery was used to classify land use, and calculate distance from edges.  Earth 

Imaging data from the Pléiades satellite constellation (EADS Astrium), acquired over the 

SAFE landscape in June 2016, were classified visually to define boundaries between forest and 

plantations. Pléiades data comprise a 0.5-m resolution panchromatic band, and four spectral 

bands (blue, green, red, and near infrared). The panchromatic band has sufficiently high 

resolution to distinguish forests, oil palm plantations and clear-cut logging. Oil palm 

plantations did not expand between both flight times, however recently clear-cut areas between 

flights were easily identified by their large drops in canopy height and near-zero height in 2016. 

Care was taken to avoid considering the forest edges that were recently created by clear-cut 

logging into the analysis. Pixels within 200 m of the clear-cut areas were then removed from 

the analysis as they could be a source for disturbance during the survey. Distance of each pixel 

to these boundaries (𝐷𝐸𝑑𝑔𝑒) was finally calculated using the gDistance function from the rgeos 

package in R, with values ranging from 0 to 4000 m distance.  
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Figure 5.1 | Variation in a) top-of-canopy height (TCH), b) topographic position index (TPI) 

and c) TCH change across the Stability of Altered of Altered Forest Ecosystems (SAFE) 

landscape at 2 x 2.  

5.3.4 Field data used to elucidate mechanisms 

Canopy height loss recorded by LiDAR could be a response to leaf loss, branch loss or tree 

death, while height gain could arise from leaf gain or upward stem growth. We used field data 

from 38 permanent plots established through the SAFE project (each 25 x 25 m in size) to 

assess which factors were driving the changes observed by LiDAR. The centre of each plot 
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was geolocated using hand-held Garmin GPS device, and mean top-of-canopy height observed 

by LiDAR for each plot was used for bivariate comparison with aboveground biomass (AGB) 

growth, AGB mortality, AGB change, crown area weighted height and field microclimatic 

variables.  

Growth, death and biomass change:  Estimates of canopy height and aboveground carbon 

density were made in the permanent forest plots in 2013, 2014, 2015, 2016 and 2017 (Jucker 

et al., 2018a). Stem diameters at 1.3 m height (DBH), or immediately above buttresses, of all 

trees > 10 cm DBH were measured in these plots. We excluded trees exhibiting extreme 

diameter growth, defined as trunks where DBH increased by ≥ 5 cm yr−1 or that shrank by ≥ 12 

s, where s is the standard deviation of the DBH measurement error, s = 0.9036 + 0.006214 DBH 

(see Condit et al., 2004; Condit et al., 2006; Stephenson et al., 2014); outliers of these 

magnitudes were almost certainly due to recording errors. An H-DBH allometric equation was 

locally calibrated to estimate total tree height (H) for individuals with no height measurement 

in the field (Eq. S2; see Supplementary Information). Aboveground carbon density in these 

plots was estimated using the BIOMASS package in R, which draws on global databases of 

wood density and allometry to makes its estimates, and accounts for uncertainty associated 

with both field measurement errors and uncertainty in allometric models (Réjou-Méchain et 

al., 2017). We firstly estimated aboveground biomass of individual trees (in Mg) using Chave 

et al’s (2014) pantropical biomass equation: 𝐴𝐺𝐵 = 0.0673 × (𝐷×𝐻 × 𝐷2 )0.976. The WD was 

either attributed to an individual at a species, genus, family or stand level. Given data from two 

censuses, annual productivity was calculated as the AGB growth of all stems present in both 

censuses, annual mortality was the AGB lost in dead trees, and annual AGB change was the net 

gain all corrected for a one-year period. We then used a non-parametric bias-corrected and 

accelerated bootstrapping to generate 95% confidence intervals (resampling plots 999 times 

with replacement). 

Canopy height growth: We apply a crown-area weighted height suited for LiDAR applications 

(Pang et al., 2008), where the height of each individual tree is weighted by the projected crown 

area, to compare field and LiDAR-based top-of-canopy heights. Since the upper canopy surface 

measured by LiDAR consists primarily of the tallest dominant and codominant trees, we are 

then able to minimise the influence of smaller stems that are incorrectly included as dominant 

or codominant stems. We first fitted allometric relationships between DBH and crown area 

using non-linear least-squares regression (Eq. S2; see Supplementary Information) and the 
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crown area of all trees with missing crown information was then estimated from their DBH 

values. The height of each tree was weighted by its proportional contribution to total crown 

area to calculate mean TCH as in Kent et al. (2015). 

Canopy openness: Hemispherical photographs were taken at 2 different heights (ca 1 and 2 m) 

at 17 locations on each plot on a yearly basis using Sigma 4.5 mm f/2.8 EX DC HSM circular 

fisheye lens. The photos were then adjusted in Adobe Photoshop CC 2018, classified in ImageJ 

1.51j8 (sky 0, vegetation 1) using Auto Threshold and IsoData methods, and converted to 

binary bmp files. The R package cimesr was used to calculate: 1) total gap which is 

unweighted canopy openness, and 2) weighted canopy openness for zenith angles 60° and 90°. 

When computing canopy openness, 40 zenith bands and 150 sectors were used; more details 

on calculation can be found in cimesr package documentation. 

Microclimate:  Air temperature (T, in °C) and relative humidity (RH, in %) were measured 

across a network of 113 permanent forest plots (each 25 × 25 m in size) established through 

the SAFE project (see Jucker et al., 2018c). These plots also include all the plots where tree 

measurements were conducted. Suspended Hygrochron iButton loggers (Maxim Integrated, 

USA) at a height of 1.5 m above the ground and shielded from direct solar radiation were used 

to record hourly T and RH readings in each plot (accurate to ± 0.5 °C and ± 5 %, respectively). 

Microclimate data were collected between May 2013 and May 2016, resulting in a total of 

953,789 coupled T and RH readings. However, only measurements from January 2014 to 

December 2014 prior to the start of El Niño-induced droughts were used to investigate whether 

extreme events have exacerbated effects on forests that usually reach higher temperatures and 

lower RH (see Thirumalai et al., 2017). From the hourly temperature records we calculated 

mean annual temperature (Tmean), mean maximum daily temperature (Tdmax) and maximum 

annual temperature (Tmax), variables directly related to biological activity across a range of 

taxonomic groups of tropical forests (Clarke, 2017). We used the microclimate data to 

characterize atmospheric water balance by estimating Vapour-Pressure Deficit (VPD, in hPa). 

VPD is the difference between the saturation water vapour pressure (es) and the actual water 

vapour pressure (e), or atmospheric dryness. Given that 𝑅𝐻 =  𝑒 𝑒𝑠⁄  × 100, VPD can be 

expressed as [(100 −  𝑅𝐻 100⁄ )] × 𝑒𝑠, where 𝑒𝑠 is derived from T using Bolton's (1980) 

equation: 𝑒𝑠  = 6.112 × 𝑒17.67 ×𝑇 [ 𝑇+243.5]⁄ . Having estimated VPD for each coupled hourly 

observation of T and RH, we then calculated annual mean VPD (VPDmean), mean daily 

maximum VPD (VPDdmax) and maximum annual VPD (VPDmax) for each study plot.  
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5.3.5 Landscape drivers of canopy height change during drought 

∆TCH was modelled as a non-linear function of 𝐷𝐸𝑑𝑔𝑒 , TPI and 𝑇𝐶𝐻𝑖. After comparing various 

alternative models (using AIC) the following was selected:  

∆TCH𝑖 =  𝛽0 +  𝛽1𝑇𝑃𝐼𝑖 +  𝛽2𝑇𝐶𝐻𝑖𝑖 +  𝛽3 e−𝛽4∗ 𝐷𝐸𝑑𝑔𝑒𝑖 + 𝜀𝑖,                     (Eqn. 5.1) 

where 𝛽0 to 𝛽4 are the model parameters and 𝜀𝑖 is the normally-distributed  residual error. The 

model was fitted using the nlme R package (Pinheiro et al, 2016) and only variables with P-

value < 0.05 were selected. We recognise that spatial autocorrelation could result in a slight 

underestimation of the true uncertainty in the fitted parameter values. A spatial correlation 

structure was first generated using the function corSpatial in R with a randomised sample of 

3000 pixels to investigate whether ∆TCH𝑖in was spatially correlated. Then we replicated the 

model 1000 times to obtain the mean and 95% confidence interval of the model parameters.  

5.4 Results 

5.4.1 Canopy height loss driven by leaf shedding and lower productivity 

Local average maximum daily temperature and average maximum daily Vapour-Pressure 

Deficit (VPD), in other words the difference between how much moisture the air can hold 

before becoming saturated and the amount of moisture actually present in the air) obtained 

from a network of permanent forest plots between 08 May 2013 and 03 August 2017 indicate 

the increased temperature and atmospheric dryness in the region during the second LiDAR 

flight and marking the end of the 2015/2016 El Niño (Figure 5.2). 
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Figure 5.2 | Local average daily temperature and average daily Vapour-Pressure Deficit (VPD). 

Air temperature (in °C) and relative humidity (RH, in %) were measured across a network of 

129 permanent forest plots (each 25 × 25 m in size) between 08 May 2013 and 03 August 2017. 

We used the microclimate data to characterize atmospheric water balance by estimating VPD 

(in hPa). VPD, or atmospheric dryness, is the difference between the saturation water vapour 

pressure and the actual water vapour pressure – in other words the difference between how 

much moisture the air can hold before becoming saturated and the amount of moisture actually 

present in the air. Dashed vertical lines represent the LiDAR surveys in November 2014 and 

April 2016. 

Top-of-canopy height increased 0.19 – 0. 23 m (95% confidence interval from bootstrapping) 

during the El Niño event on Borneo. Variation in top-of-canopy height can be an artefact of 

leaf shedding or flushing, as well as variation in aboveground biomass as a result of mortality 

and woody growth. Overall, there was no evidence that AGB change was negatively affected 

by El Niño (Figure 5.3). Long-term measurements between 2011 and 2018 revealed annual 



80 

 

AGB change rates of 1.0 – 5.1 Mg ha−1 year−1 in December 2015 and 0.7 – 4.1 Mg ha−1 year−1 

after the El Nino in September 2016, similar to the annual AGB change rates observed 

immediately in November 2014 of -0.7 – 4.7 Mg ha−1 year−1. Two plot networks of tree 

measurements in early 2018 revealed higher annual AGB change rates post-El Niño of 2.0 – 

6.1 and 5.8 – 12.5 Mg ha−1 year−1, which indicate that mortality did not increase as a response 

to the climatic event.  

  
Figure 5.3 | Net aboveground biomass (AGB) change estimated from a plot network of 38 small 

plots of 625 m2 (red dots) and 4 large plots of 1 ha (black dots) in a human modified landscape 

in Borneo. Median net AGB changes are corrected to express annual variation monitored 

between July 2011 and March 2018, including an El Niño event shown in yellow that occurred 

in the region between Jan 2016 with its peak in April 2016. Bars represent non-parametric bias-

corrected and accelerated bootstrapping to generate 95% confidence intervals and the solid red 

line denotes a cubic smoothing spline. Different letters represent significant differences at α = 

0.05 using the nonparametric Wilcoxon test. 

We assessed the impact of the El Nino on canopy openness and found significant effects on 

plots that were slightly logged or with no logging history only (Figure 5.4). Canopy openness 

early 2017 are similar to canopy openness before the El Niño event.  
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Figure 5.4 | Changes in canopy openness measured from hemiphotos between December 2014 

and March 2018 within 38 25 x 25 m plots across 4 fragments. Heavily logged forests (red) are 

characterized by shorter top-of-canopy values than slightly or unlogged forests (black). Values 

are median and 95% confidence interval bars.   

From the 38 permanent forest plots used to estimate AGB change, only 27 were under both 

flight paths (Figure 5.5). Even though both flights swept across all the plots, clouds affected 

data availability. The repeat LiDAR survey was able to capture spatial differences among plots 

in canopy openness and AGB change.  
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Figure 5.5 | Relationship between LiDAR-estimated top-of-canopy (TCH) change and field-

based annual aboveground (a) change and (b) canopy openness from 27 permanent plots. Field-

estimated carbon dynamics rates and canopy openness were measured between January 2015 

and January 2016 whereas LiDAR-based carbon change was measured between November 

2014 and April 2016.  

Oil palm plantations recorded a mean height growth of 0.9 m which corresponds to an 

aboveground carbon stock gain of 2.2 Mg C ha-1 per year. This indicates that the LiDAR 

measurements are reliable and not biased by modifications in sensors and flight specifications 

over the study period (see Supplementary Information for more details).  

5.4.2 Effects of drought on fragmented logged forests 

Bivariate relationships suggest canopy height change was related to forest structure, edge 

effects and variation in topography (Fig. 5.6). Short regenerating forests (i.e. recently heavily 

logged forests) within average canopy height > 20 m showed loss in canopy height, whilst there 

was small positive gain in the canopy height of regenerating forests. Forests close to edges 

were greatly affected on average within approximately 800 metres from plantations, with 

permanent losses regardless of edge effects shaped by forest structure and topography. Forests 

associated with bottom-lying had values of gain in height, while hilltops were associated with 

reductions of canopy height. 
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Figure 5.6 | Predicted top‐of‐canopy height (TCH) change (grey lines) and 95% confidence 

interval (red lines) as a function of (a) initial top-of-canopy height (TCH) measured from 

LiDAR immediately before the onset of the El Niño event and (b) Topographic Position Index 

(TPI) denoting negative values associated with valleys and positive values corresponding to 

hilltop areas.  

A 1000-times iteration of a nonlinear multiple regression modelling confirms an asymptotic 

edge effect with significant effects of topography and successional stage on the response of 

vegetation to the El Niño, producing the following relationship: 

∆TCH = 1.0998 − 0.0308 𝑇𝑃𝐼 − 0.0442 𝑇𝐶𝐻𝑖  − 1.6105e−(0.0032)∗ 𝐷𝐸𝑑𝑔𝑒 ,       (Eqn. 5.4) 

Predictions from this model are shown in Figure 5.7. Successional stage had a strong influence 

on canopy structure change. Forests within 450 m from edges were negatively affected during 

the El Nino with a significant decrease in canopy height. Short regenerating forests distant from 

edges (i.e. oil palm plantations, logging stations) in damp valley areas had particularly high 

increase in canopy height, whereas tall forests on hilltops were negatively affected with loss in 

canopy height.  

a) b) 
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Figure 5.7 | Change in canopy height in relation to forest height, distance from edge (m) and 

topographic position, predicted by nonlinear modelling.  Short, medium and tall forests were 5 

m, 17 m and 30 m in height, corresponding with the a) 10th, b) 50th and c) 90th quantiles of 

Top-of-canopy height. Valley-bottom and hilltop curves correspond with TPI values of -8.6 

and 9.3, respectively, from the 10th and 90th quantiles. 

5.5 Discussion 

Repeat-survey LiDAR provided high-resolution maps of canopy height change over 300 km2 

of forests and plantations, detecting strong environmental controls over leaf shedding and 

aboveground carbon accumulation in lowland rainforests during an El Niño drought. Ground 

data demonstrates that loss in canopy height change measured by LiDAR was primarily the 

result of higher canopy openness during the El Niño and lower aboveground biomass change 

rates. Canopy height change was highly variable across these human modified landscapes, 

being strongly influenced by logging history and fragmentation. Growth estimate of 1.2 m in 

oil palm plantations is consistent with the published literature (Morel et al., 2011; Nunes et al., 

2017b). Although oil palm exhibits some definite symptoms of water stress during the dry 

season, there is no visible wilting because of the nature of the fronds (fibrous, thick hypodermis 

and well-developed cuticle) (Rees, 1961). Furthermore, the less dense canopies in oil palm 

plantations than tropical forests transpire less water (Hardwick et al., 2015), so are expected to 
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be less affected by short-term drought. Distance from edge also had strong effects, extending 

450 metres into the interior. Ignoring the exacerbated edge effects under changing climate 

circumstances would substantially underestimate the impacts of El Niño on disturbed forests, 

with implications for forest policy and management.  

5.5.1 ENSO drought effects on Bornean forests 

The time series of LAI measurements indicate that forests responded to drought by shedding 

leaves, while forest inventory dataset indicates a reduction in productivity without any 

indication of increased mortality.  Leaf abscission is a well-known response to drought (Tyree 

et al., 1993; Wolfe et al.,2016). When soil water and plant water transport are non‐limiting, 

transpiration is a function of the radiation and vapour pressure deficit which controls 

atmospheric demand (Monteith, 1965). The diel transpiration of a leaf is approximately linearly 

related to radiation or VPD – whichever is more limiting – until maximum hydraulic 

conductivity occurs and saturation of transpiration is reached (Oren et al., 1999). Reducing leaf 

area is therefore an efficient way to control canopy water loss of an entire tree, while 

maintaining sufficient water supply to the remaining leaves to attain high levels of 

photosynthesis per unit of leaf area, albeit at the loss of whole tree productivity (Coomes and 

Grubb, 2000). Shedding of leaves has been observed as a response to both intense short and 

long period droughts in the north of Borneo (Ichie et al., 2004) and most trees flush new young 

leaves with the end of drought and increase in rainfall (Itioca and Yamauti, 2003). Manoli et 

al. (2018) recreated dry-season greening in the Amazon using an eco-hydrological model, 

providing further support for the idea that leaf development and synchronized dry season 

litterfall and dry conditions are in agreement with evolutionary strategies aimed at increasing 

the efficiency of photosynthesis and water consumption during periods of abundant light but 

potentially low water availability. We observed the greening with both ground-based sensor in 

the early part of the el Niño in Chapter 3, quite possibly because plants were not initially 

droughted despite increased evaporative demand, but then towards its climax in April 2016 

forest greenness reduced, presumably because of leaf shedding in response to water 

availability.  

Our analyses suggest that rainforest trees may be resilient during El Niño droughts, showing 

no indication of increased mortality. Previous studies in tropical forests have shown that 

droughts result in branch dieback and elevated tree mortality (Saatchi et al., 2013) and 
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mortality of large trees can remain elevated for several years after the drought (Phillips et al., 

2009). The recovery of canopy trees after drought events is a slow process and may take long 

to reach the pre-drought state (Condit et al., 1995; Nakagawa et al., 2000). Tropical forests 

contain plant species with widely varying resource acquisition and reproductive strategies, 

which are associated with different phenological responses to seasonal cycles (Detto et al., 

2018). Similar AGB rates during El Nino to the preceding year revealed that the climate event 

immediately affected only leaf demography, and higher AGB change rates post-El Nino 

suggests that the canopy recovery (observed by canopy openness time-series) acted positively 

upon woody growth rates. Our study shows that trees responded to drought by shedding leaves, 

but our approach was unable to distinguish variability in resilience among species.  

Anthropogenic global warming is increasing the severity of ENSO droughts in Southeast Asia, 

because evaporative demand increases exponentially with temperature (Thirumalai et al., 

2017), and we do not currently know whether species resilient to drought will be pushed 

beyond their physiological limits as the climate warms. 

5.5.2 Edge forests are more vulnerable to ENSO 

Forest fragmentation results in an increased proportion of the remaining forest being located in 

close proximity to the forest edge (Saunders et al., 1991). While the majority of these edge 

effects are thought to extend no further than 1 km (Murcia, 1995), some may extend as far as 

5–10 km into forest areas (Curran et al., 1999). Our results are consistent with studies showing 

desiccation patterns during dry seasons in fragmented forests with different levels of 

disturbance (Laurance and Williamson, 2002). The extent, magnitude and progression of edge 

effects on dry-season canopy water appeared to differ between the moderately and heavily 

fragmented landscapes. The heavily fragmented or heavily logged landscapes suffered a greater 

penetration of canopy desiccation associated with higher temperatures which increased vapour-

pressure deficit, up to 1.5 km from edges, whereas in late-successional fragmented forests 

desiccation penetrated only 300 – 400 m into the forest interior. Forest edges affect 

microclimate (increasing wind speed to 400 m from the edge; Laurance et al., 2002), increase 

plant desiccation (up to 2.7 km from the edge; Briant et al., 2010) and affect phenology and 

tree recruitment (up to 5–10 km; Curran et al., 1999). Trees on forest edges have been found 

to transpire more than those in forest interiors, but this pattern appears to be influenced by the 

level of edge exposure and species-specific levels of stomatal resistance to water loss 

(Giambelluca et al., 2003; Herbst et al., 2007).  
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5.5.3 Microtopography buffering ENSO 

Soil nutrients and water availability become increasingly limiting on ridges and at higher 

elevations within the landscape (Werner and Homeier, 2015), whereas low-lying, alluvial 

valleys are more productive (Banin et al., 2014) and exhibit high turnover rates (Stephenson et 

al., 2005; Russo et al., 2008). Our results suggest that small-scale variation in topography 

contributes to landscape-scale variation in both water deficit and temperature, which in turn 

affect the degree of canopy loss associated with leaf shedding and decreased productivity. 

Areas associated with high water availability may buffer the impacts of El Niño on forest 

canopy loss. Although we have measured water deficit of the air only, forests in valleys and 

possibly associated with less dry soils lost fewer leaves than on ridges in the forest interior, 

corroborating another study in Borneo where the author found less carbon loss associated with 

lower mortality in humid soils during a previous drought caused by El Niño (Slik 2004).   Fine-

scale topographic variation amplifies El Niño independent of logging intensity or 

fragmentation, suggesting that canopy sensitivity is largely associated with local fine‐scale 

processes that differentiate water availability among habitats, which, in turn, may determine 

the forest dynamics at the landscape scale (Valencia et al. 2009, Gonzalez‐Akre et al. 2016, 

Levine et al. 2016). One clear implication of these results is that data on canopy turnover should 

always be accompanied by information on the relative topographic position of trees, in order 

to enable scaling up to the landscape scale.  
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Chapter 6 | General discussion and conclusion 

 

The aim of this thesis was to investigate the effects of El Niño on forests at species, community 

and landscape levels. I have shown the power of field spectroscopy to estimate traits (Chapter 

2) and used it to demonstrate how spectroscopy can estimate the El Niño effects on trees 

(Chapter 3). My results reveal the influences of El Niño on leaf traits, and the coupled 

relationship between traits and leaf spectra. I demonstrated how we can use LiDAR to map 

aboveground carbon in oil palm plantations (Chapter 4). I then investigated canopy structural 

dynamics using repeat LiDAR surveys to map the environmental filters that affect canopy 

structural change during El Niño events (Chapter 5). My results also reveal the links between 

canopy structural change and the microclimate of the forest understory.  

 

1) How well can the traits of tropical forest trees be predicted remotely (Chapters 3, 4, 

5)?  

2) Did the 2015/2016 El Niño event affect leaf traits of old-growth tropical forests 

(Chapter 3)? 

3) What are the environmental controls on canopy structural change of tropical forests 

during El Niño (Chapter 5)? 

 

In this final chapter I return to these questions and critically evaluate how the work presented 

in this thesis has addressed them.  

6.1 How well can the traits of tropical forest trees be predicted remotely  

6.1.1 Field spectroscopy as tools to investigate leaf trait variation  

In Chapter 2 and 3, I identify the spectral regions in which different leaf traits have strong 

absorption features, working with both temperate and tropical species. As expected, the visible 

region was the most useful for predicting pigments (Curran et al., 1991, Sims and Gamon, 

2002), whereas the most other traits had strong absorption features in the infra-red region 
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(Serbin et al., 2014). The spectral regions selected by our partial-least-square regression models 

match the locations of known spectral absorption features related to proteins, starch, lignin, 

cellulose, hemicellulose and leaf water content  (Knipling 1970; Curran 1989; Elvidge 1990; 

Fourty and Baret 1998; Kokaly et al. 2009) demonstrating that PLSR approaches deliver 

reliable predictions. PLSR proved successful at predicting variation in LMA, phenolics, N, 

water content and pigments of temperate trees on different soil types and tropical trees affected 

by El Niño.  

As discussed in Chapter 2, some of the most accurately predicted traits (e.g. potassium and 

silicon) have no absorption features in the visible-to-near-infrared (VSWIR), but were instead 

estimated indirectly via constellation effects, an artefact of covariance with traits that do exhibit 

absorption features. For example, Chapters 2 and 3 confirm that LMA is consistently among 

the most accurately predicted traits using spectroscopy, despite the fact that LMA is measured 

indirectly via its close coupling with water content and leaf structural traits (Asner and Martin 

2008; Serbin et al. 2014; Chavana-Bryant et al. 2016). The relative high precision of 

predictions of K, Fe and B concentrations in temperate species and Mg concentrations in 

tropical species may arise from the integration of information from several leaf traits that co-

vary with these metal concentrations. In contrast, I show that leaf P concentrations are not 

closely predicted by spectroscopy in either temperate or tropical forests. P absorption features 

associated with RNA and DNA lie in the ultraviolet (e.g. Tataurov et al. 2008) and phosphates 

in the longwave infrared, but there are no pronounced absorption features in the VSWIR region 

(Homolová et al. 2013), and covariance with other traits is not strong enough, making 

constellation effects unreliable. Chapter 2 initially identifies a problem with estimating traits 

indirectly. There were strong differences in foliar concentrations of rock-derived mineral 

nutrients between soil types, but these soil effects were poorly predicted using PLSR, because 

the concentrations of rock-derived mineral are estimated indirectly via co-variance with 

defence and structural traits that were barely affected by soil type.  In Chapter 3, I show that 

the traits which responded to El Niño - phenolics, pigments and δ13 C – could all be detected 

using field spectroscopy. This is because phenolics and pigments have known absorption 

features in the range of wavelengths measured (Curran et al., 1991; Kokaly and Skidmore, 

2015). The relationship between δ13 C and spectral reflectance is not direct, given that δ13 C is 

present in only minute quantities in leaves, but appear to be driven indirectly by the covariance 

between δ13 C and phenolics.  Our analyses of leaf spectra based on field spectroscopy have 
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important implications for remote sensing of forest canopies using airborne or spaceborne 

spectrometers.  Large areas of earth are being mapped with airborne spectrometers (e.g. Asner 

et al., 2017), but some of the traits mapped by these surveys are indirectly predicted, and the 

accuracy of those predictions depend critically on whether covariance among traits remains 

consistent along environmental gradients. For example, I found that changes in water use 

efficiency (i.e. δ13 C) over the El Niño in Sabah could be predicted reliably from field 

spectrometry because phenolics concentrations co-varied with δ13 C. 

Time series of spectral data that capture long-term and seasonal changes in plant community 

functioning have the potential to transform our understanding of ecosystem processes 

(Schweiger et al., 2018). To our knowledge, Chapter 3 is the first study to measure leaf traits 

and spectral reflectance during and after an El Niño event. Field spectroscopy was able to detect 

changes in pigment concentrations over the course of the El Niño event. Leaf-level increases 

in chlorophyll observed during the El Niño in Sabah (Chapter 3) provides a new perspective 

on a longstanding argument in the remote sensing literature about “green-up” during dry 

seasons in Amazonia (Huete et al., 2006; Saleska et al., 2007;  cf. Samanta et al., 2010). Those 

critical of the “green-up” hypothesis argue that it is an artefact of sun-sensor geometry (Morton 

et al., 2014). Ground-based spectral data in this study suggest canopy-level greening in 

response to the initial phase of the El Niño drought, similar to those observed in several studies 

and attributed to greater irradiance when cloud cover is reduced and/or to leaf demography 

(Nemani et al.. 2003, Huete et al., 2006; Wu et al., 2016).  Manoli et al. (2018) recreated dry-

season greening in the Amazon using an eco-hydrological model, providing further support for 

the idea that leaf development and synchronized dry season litterfall and dry conditions are in 

agreement with evolutionary strategies aimed at increasing the efficiency of photosynthesis 

and water consumption during periods of abundant light but potentially low water availability. 

We observed the greening with ground-based sensor in the early part of the el Niño, quite 

possibly because plants were not initially droughted despite increased evaporative demand. 

In our analysis we have analysed the spectral information at specific wavelengths within broad 

regions of the electromagnetic spectrum, i.e., visible, near infrared and shortwave infrared 

regions of the spectrum. Future work will examine changes in spectral response associated with 

specific absorption and reflectance features within each spectra. This will likely yield better 

predictive and explanatory models of changing leaf traits with hyperspectral remote sensing in 

an era when airborne spectrometers are mapping large areas of the Earth (e.g. Asner et al., 
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2017) and new spaceborne hyperspectral missions (e.g. ESA’s EnMap) are being developed, 

thus paving the way for changing leaf and canopy traits to be observed at landscape-scales.  The 

implication of this study thus extends beyond the Borneo region and suggests that remote 

sensing-based observations will soon enable vegetation and ecosystem function, and their 

responses to short-term climate changes, to be characterised at the global scale. Providing 

evidence that plant strategies during short-term climate change can be accurately predicted 

using spectrometers paves the way for new research on tropical forest responses to a changing 

climate using sensors in space. 

6.1.2 LiDAR to quantify aboveground carbon density of oil palm plantations 

LiDAR is known to be able to quantify forest structure and forest properties like canopy cover 

and gap fraction, however it remains uncertain how aboveground carbon density (ACD) in oil 

palm plantations can be quantified from LiDAR. In Chapter 4 we tested a tree-centric and 

area-based approaches to predict ACD. The area-based approach that incorporates both top-of-

canopy height and canopy cover yielded more accurate ACD predictions. We demonstrated 

that canopy cover is correlated to palm tree density and improved ACD predictions of oil palm 

plantations. We also showed that the tree-centric approach was less accurate. It showed a slight 

tendency to under-estimate the number of trees in mature plantations given that overlapped 

crowns in mature plantations make it more difficult to distinguish palm crowns of similar 

heights. Other studies focussing on tropical rainforests have also found the tree-centric 

approach to perform slightly less well than area-based methods (Coomes et al., 2017; Ferraz et 

al., 2016), due to over-segmentation of emergent trees and incomplete detection of sub-canopy 

trees.  

Although the tree-centric approach gives less accurate results, it can still be advantageous to 

segment individual trees for precision agriculture (McBratney et al., 2005), particularly in oil 

palm plantations as individual trees are long-lived. Field-based tree counting is labour 

intensive, and the use of remote-sensing using high-resolution optical imagery from satellites 

has been suggested as a cost efficient alternative (Jusoff and Pathan, 2009). Chapter 4 

demonstrates the potential of the tree-centric approach based on two plantation ages, but 

identifies under-segmentation of adult palm trees, a problem that can be persistent with 

plantation age. Testing a large range of oil palm plantations age may indicate which ages are 

more sensitive to segmentation errors using the tree-centric approach. The potential for this 
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approach will also increase as its methodology improves; I have modified the itcSegment 

algorithm in R to adapt to forests with low variation in height such as palm plantations, but 

further improvements to reduce uncertainties in segmentation could generate better results.   

6.1.3 Repeat-LidAR for canopy structure dynamics 

Increased availability of repeat-measures data from LiDAR provide opportunities to measure 

ecosystem dynamics (Dubaya et al., 2010; Réjou-Méchain et al., 2015). Decreasing acquisition 

costs and standardised processing pipelines are stimulating many new applications of these 

data (Schimel et al., 2015). Despite these advances in the use of LiDAR, assessing dynamics 

using multi-temporal measurements is constrained by field data availability and differences in 

sensor specification (Zhao et al.,2018). This limitation is more severe in the tropics, given the 

challenges of long-term in situ observations (Schimel et al., 2015).  

In Chapter 5 I demonstrate that repeat-LiDAR surveys in combination with field 

measurements can detect the effects of environmental change on forest structure dynamics and 

leaf shedding. LiDAR provided spatially detailed measurements of canopy height change by 

recording the return-time of reflected laser pulses. Variation in leaf and branch structure 

influences light energy reflection, transmission and absorption within canopies (Hyer and 

Goetz, 2004), thereby pulse penetration may represent naturally occurring variability in canopy 

structure and the associate effects of environment. Differences in top-of-canopy penetration 

depth can be a combination of species-specific differences in canopy architecture and leaf 

condition (Wasser et al., 2013). For example, LiDAR measurements can be used to classify 

deciduous species in North American forests during leaf-off events (Brandtberg, 2007), and 

repeat measurements detect the El Niño impacts on leaf and branch turnover in the Amazon 

forest (Leitold et al., 2018). Nonetheless, closed canopy can affect beam penetration and be 

misinterpreted as growth when actually there was none (Dubayah et al., 2010). Thus, the use 

of field data is key to separating the effects of aboveground biomass change on canopy height 

change from the effects of leaf shedding. By disentangling the woody biomass change and leaf 

shedding on canopy structure, I then show in Chapter 5 that repeat-LiDAR can be used to 

detect the effects of vegetation structural characteristics and micro-topography on canopy 

structure dynamics.  
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A key challenge in repeat-LiDAR measurements can be the differences in LiDAR settings. One 

potential solution to minimise the effects of difference in flight settings on forest estimates is 

to assess the effects that LiDAR acquisition parameters have on the structure of the point cloud, 

and hence on metrics and model predictions (Roussel et al., 2017). We have accounted only 

for pulse density effects on model prediction, given that point density has received more 

attention in the literature (Gobakken and Næsset, 2008; Jakubowski et al., 2013). Differences 

in flight altitude can also have effects on top-of-canopy height change estimations, given that 

emitted light energy will attenuate and spread as it travels towards the earth’s surface and 

through the canopy (Goodwin et al., 2006). However, removing potential systematic biases 

arising from differences in altitude cannot be overcome by increased sampling. Any potential 

effects of differences in altitude would be modelled by incorporating the known effect of 

altitude on the vegetation, but it is beyond our scope here.     

6.2 What environmental factors influence canopy structural change during El Niño? 

Trees possess regulatory mechanisms to reduce water loss and maintain functional plant-water 

relations when water supply is limited (Hartmann, 2010). Plant responses to El Niño-induced 

droughts include stomatal closure in the short-term (Farquhar and Sharkey, 1982), 

morphological acclimatisation such as leaf shedding at the medium-term (Bréda et al., 2006) 

and long-term adaptations such as cavitation resistant xylems and thick scherophyll leaves 

(Chaves et al., 2003). Net carbon assimilation is reduced with stomatal closure and leaf 

shedding due to lower photosynthetic carbon gain at the plant level (Hartmann, 2010). If trees 

are unable to tolerate drought through one or more of these mechanisms, mortality can occur, 

years to decades after drought events (Bigler et al., 2007; Phillips et al., 2009). In Chapter 5, I 

demonstrate that during the 2015/2016 El Niño there was an increase in canopy height across 

most of a human-modified landscape in Borneo. I show that the most likely explanation for 

changes in height change were leaf area and aboveground biomass change. Biomass 

productivity can increase during El Niño events, when reduced cloud cover increases 

photosynthetically active radiation, however when soil moisture is low, productivity may 

decline (Brando et al., 2008). 

Nevertheless, canopy structural changes in response to El Niño varied across the landscape. 

Chapter 5 reveals the strong influence of the vegetation structure and topography on leaf area 

and aboveground biomass change. Our results demonstrate that the tallest canopies (> 20 
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metres in height) were the most affected by El Niño and depending on topography reduced in 

canopy height. Our results provide new insights on the effects of climatic events on tropical 

forests. Under severe droughts associated with climate change, fragmented and primary forests 

may be under greater risk. Considering that extreme high temperatures were a product of both 

natural and anthropogenic causes, the repeat-LiDAR surveys over the world’s largest forest 

fragmentation experiment is a testbed to investigate the forest responses to drought and how 

degraded and primary forests will respond to warming. With increasing vapour-pressure deficit 

and temperatures predicted for the rest of the 21st century, in response to business-as-usual 

greenhouse-gas emissions scenarios, negative effects on degraded tropical forests are highly 

likely. This may mean that primary and fragmented forests will gain relative importance as 

drought intensifies in the coming decades. My work highlights the complex interactions 

between climate and land-use change on forest functioning.   

6.3 Did the 2015/2016 El Niño event affect leaf traits of old-growth tropical forests? 

In Chapter 3, I show that leaves of old-growth tropical trees responded to the 2015/2016 Nino, 

and plant traits in intact forests can rapidly acclimate to climatic events. The repeated 

measurements indicate that forests responded to the El Niño event by investing in pigments 

and phenolics, and by enhancing leaf-level water use efficiency. Pigment concentrations were 

about a third higher during the El Niño event than afterwards, which suggests that trees 

responded to having more light by upregulating photosynthetic processes. Greater foliar 

chlorophyll concentrations ensures that more photosynthetically active radiation is utilised for 

electron transport (Poorter et al., 2009). Increased light availability during the relative dry 

phase of the El Niño cycle can result in high rates of photosynthesis (Guan et al., 2015). 

However, it remains unclear whether higher rates of photosynthesis occur in Sabah, as N and 

P concentrations are similar during and after the El Niño, suggesting that the total concentration 

of leaf proteins (including Rubisco) remain unchanged (Evans, 1989); this is a topic in need of 

further research. Carotenoids protect leaves from photoinhibition (i.e. damage caused by solar 

radiation when supply outstrips demand) by releasing excess energy as heat via the xanthophyll 

cycle (Ustin et al., 2009). The ratio of carotenoids to chlorophyll remains similar between 

surveys, suggesting leaves retain similar commitment to protection against photoinhibition. 

The rapid shift in water-use efficiency (suggested using δ13 C values) indicates the ability of 

plants to adapt to these short-term climatic variation, but also may indicate the prospect that 
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more frequent droughts could increase selection towards greater intrinsic water-use efficiency 

(Cernusak et al., 2009). Higher phenolics concentration in leaves during El Niño also indicates 

a mechanism of leaf protection, given that solar UV-B radiation induces a variety of 

acclimation responses, which typically include accumulation of phenolic compounds that serve 

as “sunscreens” or UV filters (Caldwell et al., 2003). In general, our results indicate that plants 

of intact forests shifted leaf traits to acclimate to higher irradiance.  

Nevertheless, shedding of leaves has been observed as a response to both intense short and 

long period droughts in the north of Borneo (Ichie et al., 2004) and most trees flush new young 

leaves with the end of drought and increase in rainfall (Itioca and Yamauti, 2003). This is also 

evidenced in Chapter 5. If leaf loss was greater in the period running up to the first field 

campaign, and if new leaves were flushed almost immediately, then we could have 

inadvertently sampled younger leaves in the first campaign which are known to have higher 

concentrations of photosynthetic pigments (Doughty and Goulden, 2008; Hilker et al., 2017). 

Recent studies have demonstrated strong relationships of leaf traits and spectra with leaf age 

(Chavana-Bryant et al., 2017; Wu et al., 2017). By selecting what appeared to be mature leaves 

on each branch we attempted to minimise any effects of leaf turnover, but leaf age was not 

determined. Here, an opportunity of combining LiDAR and trait measurements and foliar 

spectroscopy could give rise to better understanding whether leaf shedding and flushing related 

to extreme climatic events affect leaf quality with its associated impacts on foliar traits.    
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Appendix A | Field spectroscopy in temperate forests 

 

Trait correlations of 6 species growing on contrasting soil types 

 

Figure A.1 | Spearman correlation rank test among leaf traits of 6 species growing on both soil 

types. Red and black circles mean, respectively, negative and positive correlations. Foliar traits 

were organised using cluster analysis.  
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Appendix B | El Niño effects on leaf traits and spectral properties  

 

Trait correlations of 65 species in Borneo affected by the 2015/2016 El Niño. 

 

Figure B.1 | Spearman correlation matrix among all chemical traits and LMA using both year’s 

data. The correlation matrix was reordered according to the correlation coefficient using 

hierarchical clustering order to identify hidden patterns in the matrix. 
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Appendix C | The El Niño effects on canopy structure  

Microclimate variation 

Field measurements of microclimatic temperature and Vapour Water-Deficit (VPD), or 

atmospheric dryness, across a network of 113 permanent forest plots (see Material and methods 

for details) showed a peak in the recorded mean annual and mean maximum daily temperatures 

in April 2016 (Figure S1a), and also high atmospheric dryness (Figure S1b).  

Figure C.1 | a) mean annual temperature (Tmean; black) and mean maximum daily temperature 

(Tdmax; red). b) annual mean Vapour-Pressure Deficit (VPDmean ; black) and maximum annual 

VPD (VPDmax; red). Air temperature (T, in °C) and relative humidity (RH, in %) were 

measured across a network of 113 permanent forest plots (each 25 × 25 m in size). 

Microclimate data were collected between May 2013 and May 2016, resulting in a total of 

953,789 coupled T and RH readings. We used the microclimate data to characterize 

atmospheric water balance by estimating VPD (in hPa). VPD, or atmospheric dryness, is the 

difference between the saturation water vapour pressure and the actual water vapour pressure 

– in other words the difference between how much moisture the air can hold before becoming 

saturated and the amount of moisture actually present in the air. The shaded region represents 

the time between both LiDAR surveys in November 2014 and April 2016.  
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Removing uncertainties caused by pixel size  

Variance of TCH change can be overestimated owing to artefacts of repeat LiDAR data such 

as wind direction and within-canopy variation to reduce uncertainties of TCH change. TCH 

map was resampled several times until resampling would no longer affect variance (Fig. S2a). 

We found that 36 m resolution is the sample size that TCH distribution is no longer affected 

by pixel size ((Fig. S2b).    

 

Figure C.2 | a) standard deviation versus pixel size and b) top-of-height change distribution 

related to pixel size.  

Field top-of-canopy height calculation 

A H-DBH and Crown – DBH allometric equations were locally calibrated to estimate total tree 

height (H, metres) and crown area (m2) for individuals with missing height and crown 

measurements in the field (Fig. S3).  

 𝐶𝑟𝑜𝑤𝑛 = 0.22  × 𝐷𝐵𝐻1.41                                                                                         (Eqn. S1) 

 𝐻𝑒𝑖𝑔ℎ𝑡 = 2.21  ×  𝐷𝐵𝐻0.67                                                                                        (Eqn. S2) 

(a) (b) 
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Figure C.3 | Diameter at 1.3 m (DBH; cm) explaining variation in (a) tree height (metres) and 

(b) crown area across a large experiment in a human modified landscape in Borneo. Each point 

corresponds to an individual, with fitted curves highlighting bivariate relationships captured by 

non-linear models. 

We then apply a crown-area weighted height suited for ALS applications (Pang et al., 2008), 

where the height of each individual tree is weighted by the projected crown area. Since the 

upper canopy surface measured by ALS consists primarily of the tallest dominant and 

codominant trees, we are then able to minimise the influence of smaller stems that are 

incorrectly included as dominant or codominant stems. We first fitted allometric relationships 

between DBH and crown area using non-linear least-squares regression and the crown area of 

all trees with missing crown information was then estimated from their DBH values. The height 

of each tree was weighted by its proportional contribution to total crown area to calculate the 

mean top-of-canopy height as in Kent et al. (2015). 

a) b) 
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Figure C.4 | Crown-area weighted height measured in the field (a) before the El Niño in 

December 2014, (b) after the El Niño in February 2017, and (c) canopy height change 

comparing both years in comparison with the ALS-measured data. The crown-area weighted 

height is suited for comparison with ALS data as it minimises the influence of smaller stems 

that are incorrectly included as dominant or codominant stems. Each dot represents a 25 x 25 

m plot.  

Microclimate variables selection 

Air temperature (T, in °C) and relative humidity (RH, in %) were measured across a network 

of 113 permanent forest plots. From the hourly temperature records we calculated the mean 

annual temperature (Tmean), the mean maximum daily temperature (Tdmax) and the maximum 

annual temperature (Tmax) of each study plot. Having estimated VPD for each coupled hourly 

observation of T and RH, we then calculated annual mean VPD (VPDmean), mean daily 

maximum VPD (VPDdmax) and maximum annual VPD (VPDmax) for each study plot. We then 

coupled the mean top-of-canopy height for each plot estimated from ALS. The bivariate 

relationships denote the significant influences of TPI and canopy structure on microclimatic 

variables with the coefficient of determination (R2) indicating the explained variation of the 

model (Fig. S5). Each point corresponds to a 25 x 25 m field plot (n = 37) although only 37 

were under both flight paths with topographic and microclimatic data available. Even though 

both flights swept across all the plots, undue circumstances, like clouds, affected data 

availability.  

a) b) c) 
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Figure C.5 | Bivariate relationships between microclimatic variables with topographic position 

index (TPI) and canopy structure before drought (Initial TCH); a) mean maximum daily 

temperature (Tdmax) versus Initial TCH, b)  mean annual temperature (Tmean) versus TPI, c) 

annual mean Vapour-Pressure Deficit (VPDmean) versus TPI and d) maximum annual VPD 

(VPDmax) versus TPI across a large experiment in a human modified landscape in Borneo. Each 

point corresponds to a 25 x 25 m field plot, with fitted curves highlighting bivariate 

relationships captured by ordinary least-square models. 

Oil palm plantations offsetting forest top-of-canopy height loss 

Change in top-of-canopy height was measured across 9587 hectares of oil palm plantations and 

8669 hectares of logged forests in different stages of recovery before and after El Niño in 

Malaysian Borneo. Overall, oil palm plantations had an increase of 0.93 metres in total which 
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represents a change in carbon stocks of 2.2 Mg C ha-1 year-1 whereas forests lost on average 

0.92 m in height (Fig. S6). Aboveground carbon stocks of oil palm plantations were calculated 

as in Nunes et al. (2017b) and annual estimates were divided by 1.41. Although oil palm 

exhibits some definite symptoms of water stress during the dry season, there is no visible 

wilting because of the nature of the leaves (fibrous, thick hypodermis and well-developed 

cuticle) (Rees, 1961). Furthermore, the less dense canopies in oil palm plantations than tropical 

forests transpire less water (Hardwick et al., 2015), so are expected to be less affected by short-

term drought. We are confident that the height change results are not an artefact of having two 

different LiDAR sensors and flight specifications.   

 

Figure C.6 | Change in top-of-canopy height in 9587 hectares of oil palm plantation and 8669 

hectares of logged forests in different stages of recovery for forests and oil palm plantations 

before and after El Niño in Malaysian Borneo.  

 

 

 


