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SUMMARY

We study the effect of imperfect training data labels on the performance of classification meth- 15

ods. In a general setting, where the probability that an observation in the training dataset is mis-

labelled may depend on both the feature vector and the true label, we bound the excess risk of an

arbitrary classifier trained with imperfect labels in terms of its excess risk for predicting a noisy

label. This reveals conditions under which a classifier trained with imperfect labels remains con-

sistent for classifying uncorrupted test data points. Furthermore, under stronger conditions, we 20

derive detailed asymptotic properties for the popular k-nearest neighbour (knn), support vector

machine (SVM) and linear discriminant analysis (LDA) classifiers. One consequence of these

results is that the knn and SVM classifiers are robust to imperfect training labels, in the sense

that the rate of convergence of the excess risks of these classifiers remains unchanged; in fact,

our theoretical and empirical results even show that in some cases, imperfect labels may improve 25

the performance of these methods. On the other hand, the LDA classifier is shown to be typically

inconsistent in the presence of label noise unless the prior probabilities of each class are equal.

Our theoretical results are supported by a simulation study.

Some key words: Label noise; Linear discriminant analysis; Misclassification error; Nearest neighbours; Statistical
learning; Support vector machines. 30

1. INTRODUCTION

Supervised classification is one of the fundamental problems in statistical learning. In the

basic, binary setting, the task is to assign an observation to one of two classes, based on a number

of previous training observations from each class. Modern applications include, among many

others, diagnosing a disease using genomics data (Wright et al., 2015), determining a user’s 35

action from smartphone telemetry data (Lara & Labrador, 2013), and detecting fraud based on

historical financial transactions (Bolton & Hand, 2002).
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In a classification problem it is often the case that the class labels in the training data set are

inaccurate. For instance, an error could simply arise due to a coding mistake when the data were

recorded. In other circumstances, such as the disease diagnosis application mentioned above,40

errors may occur due to the fact that, even to an expert, the true labels are hard to determine, es-

pecially if there is insufficient information available. Moreover, in modern Big Data applications

with huge training data sets, it may be impractical and expensive to determine the true class la-

bels, and as a result the training data labels are often assigned by an imperfect algorithm. Services

such as the Amazon Mechanical Turk, e.g. https://www.mturk.com, allow practitioners45

to obtain training data labels relatively cheaply via crowdsourcing. Of course, even after aggre-

gating a large crowd of workers’ labels, the result may still be inaccurate. Chen et al. (2015) and

Zhang et al. (2016) discuss crowdsourcing in more detail, and investigate strategies for obtaining

the most accurate labels given a cost constraint.

The problem of label noise was first studied by Lachenbruch (1966), who investigated the50

effect of imperfect labels in two-class linear discriminant analysis. Other early works of note

include Lachenbruch (1974), Angluin & Laird (1988) and Lugosi (1992).

Frénay & Kabán (2014) and Frénay & Verleysen (2014) provide recent overviews of work

on the topic. In the simplest, homogeneous setting, each observation in the training dataset is

mislabelled independently with some fixed probability. van Rooyen et al. (2015) study the effects55

of homogeneous label errors on the performance of empirical risk minimization classifiers, while

Long & Servedio (2010) consider boosting methods in this same homogeneous noise setting.

Other recent works focus on class-dependent label noise, where the probability that a training

observation is mislabelled depends on the true class label of that observation; see Stempfel &

Ralaivola (2009), Natarajan et al. (2013), Scott et al. (2013), Blanchard et al. (2016), Liu & Tao60

(2016) and Patrini et al. (2016). An alternative model assumes the noise rate depends on the

feature vector of the observation. Manwani & Sastry (2013) and Ghosh et al. (2015) investigate

the properties of empirical risk minimization classifiers in this setting; see also Awasthi et al.

(2015). Menon et al. (2016) propose a generalized boundary consistent label noise model, where

observations near the optimal decision boundary are more likely to be mislabelled, and study the65

effects on the properties of the receiver operator characteristics curve.

In the more general setting, where the probability of mislabelling is both feature- and class-

dependent, Bootkrajang & Kabán (2012, 2014) and Bootkrajang (2016) study the effect of label

noise on logistic regression classifiers, while Li et al. (2017), Patrini et al. (2017) and Rolnick

et al. (2017) consider neural network classifiers. On the other hand, Cheng et al. (2017) in-70

vestigate the performance of an empirical risk minimization classifier in the feature- and class-

dependent noise setting when the true class conditional distributions have disjoint support.

Our first goal in the present paper is to provide general theory to characterize the effect of

feature- and class-dependent heterogeneous label noise for an arbitrary classifier. We first spec-

ify general conditions under which the optimal prediction of a true label and a noisy label are the75

same for every feature vector. Then, under slightly stronger conditions, we relate the misclas-

sification error when predicting a true label to the corresponding error when predicting a noisy

label. More precisely, we show that the excess risk, i.e. the difference between the error rate of

the classifier and that of the optimal, Bayes classifier, is bounded above by the excess risk asso-

ciated with predicting a noisy label multiplied by a constant factor that does not depend on the80

classifier used; see Theorem 1. Our results therefore provide conditions under which a classifier

trained with imperfect labels remains consistent for classifying uncorrupted test data points.

As applications of these ideas, we consider three popular approaches to classification prob-

lems, namely the k-nearest neighbour (knn), support vector machine (SVM) and linear discrim-

inant analysis (LDA) classifiers. In the perfectly labelled setting, the knn classifier is consistent85
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for any data generating distribution and the SVM classifier is consistent when the distribution of

the feature vectors is compactly supported. Since the label noise does not change the marginal

feature distribution, it follows from our results mentioned in the previous paragraph that these

two methods are still consistent when trained with imperfect labels that satisfy our assumptions,

which, in the homogeneous noise case, even allow up to 1/2 of the training data to be labelled in- 90

correctly. On the other hand, for the LDA classifier with Gaussian class-conditional distributions,

we derive the asymptotic risk in the homogeneous label noise case. This enables us to deduce

that the LDA classifier is typically not consistent when trained with imperfect labels, unless the

class prior probabilities are equal to 1/2.

Our second main contribution is to provide greater detail on the asymptotic performance of 95

the knn and SVM classifiers in the presence of label noise, under stronger conditions on the

data generating mechanism and noise model. In particular, for the knn classifier, we derive the

asymptotic limit for the ratio of the excess risks of the classifier trained with imperfect and perfect

labels, respectively. This reveals the nice surprise that using imperfectly-labelled training data

can in fact improve the performance of the knn classifier in certain circumstances. To the best of 100

our knowledge, this is the first formal result showing that label noise can help with classification.

For the SVM classifier, we provide conditions under which the rate of convergence of the excess

risk is unaffected by label noise, and show empirically that this method can also benefit from

label noise in some cases.

In several respects, our theoretical analysis acts a counterpoint to the folklore in this area. 105

For instance, Okamoto & Nobuhiro (1997) analysed the performance of the knn classifier in the

presence of label noise. They considered relatively small problem sizes and small values of k,

where the knn classifier performs poorly when trained with imperfect labels; on the other hand,

our Theorem 2 reveals that for larger values of k, which diverge with n, the asymptotic effect

of label noise is relatively modest, and may even improve the performance of the classifier. As 110

another example, Manwani & Sastry (2013) and Ghosh et al. (2015) claim that SVM classifiers

perform poorly in the presence of label noise; our Theorem 3 presents a different picture, how-

ever, at least as far as the rate of convergence of the excess risk is concerned. Finally, in two-class

Gaussian discriminant analysis, Lachenbruch (1966) showed that LDA is robust to homogeneous

label noise when the two classes are equally likely (see also Frénay & Verleysen, 2014, Section 115

III-A). We observe, though, that this robustness is very much the exception rather than the rule:

if the prior probabilities are not equal, then the LDA classifier is almost invariably not consistent

when trained with imperfect labels; cf. Theorem 4.

Although it is not the focus of this paper, we mention briefly that another line of work on

label noise investigates techniques for identifying mislabelled observations and either relabelling 120

them, or simply removing them from the training data set. Such methods are sometimes referred

to as data cleansing or editing techniques; see for instance Wilson (1972), Wilson & Martinez

(2000) and Cheng et al. (2017); as well as Frénay & Kabán (2014, Section 3.2), who provide

a general overview of popular methods for editing training data sets. Other authors focus on

estimating the noise rates and recovering the clean class-conditional distributions (Blanchard 125

et al., 2016; Northcutt et al., 2017).

The following notation is used throughout the paper. We write ‖ · ‖ for the Euclidean norm on

R
d, and for r > 0 and z ∈ R

d, write Bz(r) = {x ∈ R
d : ‖x− z‖ < r} for the open Euclidean

ball of radius r centered at z, and let ad = πd/2/Γ(1 + d/2) denote the d-dimensional volume

of B0(1). If A ∈ R
d×d, we write ‖A‖op for its operator norm. For a sufficiently smooth real- 130

valued function f defined on D ⊆ R
m, and for x ∈ D, we write ḟ(x) = (f1(x), . . . , fm(x))T
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Fig. 1. One training dataset from the model in Example 1 for n = 1000, without label noise (left) and with
label noise (right). We plot class 0 in red and class 1 in black.

and f̈(x) = (fjk(x))
m
j,k=1 for its gradient vector and Hessian matrix at x respectively. Finally,

we write △ for symmetric difference, so that A△B = (Ac ∩ B) ∪ (A ∩ Bc).
We conclude this section with a preliminary study to demonstrate our new results for the knn,

SVM and LDA classifiers in the homogeneous noise case.135

Example 1. In this motivating example, we demonstrate the surprising effects of imperfect

labels on the performance of the knn, SVM and LDA classifiers. We generate n independent

training data pairs, where the prior probabilities of classes 0 and 1 are 9/10 and 1/10 respec-

tively; class 0 and 1 observations have bivariate normal distributions with means µ0 = (−1, 0)T

and µ1 = (1, 0)T respectively, and common identity covariance matrix. We then introduce label140

noise in the training data set by flipping the true training data labels independently with proba-

bility ρ = 0·3. One example of a data set of size n = 1000 from this model, both before and after

label noise is added, is shown in Fig. 1.

In Fig. 2, we present the percentage error rates, both with and without label noise, of the knn,

SVM and LDA classifiers. The error rates were estimated by the average over 1000 repetitions of145

the experiment of the percentage of misclassified observations on a test set, without label noise,

of size 1000. We set k = kn = ⌊n2/3/2⌋ for the knn classifier, and set the tuning parameter

λ = 1 for the SVM classifier; see (8).

In this simple setting where the decision boundary of the Bayes classifier is a hyperplane, all

three classifiers perform very well with perfectly labelled training data, especially LDA, whose150

derivation was motivated by Gaussian class-conditional distributions with common covariance

matrix. With mislabelled training data, the performance of all three classifiers is somewhat af-

fected, but the knn and SVM classifiers are relatively robust to the label noise, particularly for

large n. Indeed, we will show that these classifiers remain consistent in this setting. The gap

between the performance of the LDA classifier and that of the Bayes classifier, however, persists155

even for large n; this again is in line with our theory developed in Theorem 4, where we derive

the asymptotic risk of the LDA classifier trained with homogeneous label errors. The limiting

risk is given explicitly in terms of the noise rate ρ, the prior probabilities, and the Mahalanobis

distance between the two class-conditional distributions.
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Fig. 2. Risks (%) of the knn (black), SVM (red) and LDA (blue) clas-
sifiers trained using perfect (solid lines) and imperfect labels (dotted

lines). The dot-dashed line shows the Bayes risk, which is 7·0%.

2. STATISTICAL SETTING 160

Let X be a measurable space. In the basic binary classification problem, we observe inde-

pendent and identically distributed training data pairs (X1, Y1), . . . , (Xn, Yn) taking values in

X × {0, 1} with joint distribution P . The task is to predict the class Y of a new observation X,

where (X,Y ) ∼ P is independent of the training data.

Define the prior probabilities π1 = pr(Y = 1) = 1− π0 ∈ (0, 1) and class-conditional distri- 165

butions X | {Y = r} ∼ Pr for r = 0, 1. The marginal feature distribution of X is denoted PX

and we define the regression function η(x) = pr
(

Y = 1 | X = x). A classifier C is a measurable

function from X to {0, 1}, with the interpretation that a point x ∈ X is assigned to class C(x).
The risk of a classifier C is R(C) = pr{C(X) 6= Y }; it is minimized by the Bayes classifier

CBayes(x) =

{

1 if η(x) ≥ 1/2
0 otherwise.

However, since η is typically unknown, in practice we construct a classifier Cn, say, that de- 170

pends on the n training data pairs. We say (Cn) is consistent if R(Cn)−R(CBayes) → 0 as

n → ∞. When we write R(Cn) here, we implicitly assume that Cn is a measurable function

from (X × {0, 1})n × X to {0, 1}, and the probability is taken over the joint distribution of

(X1, Y1), . . . , (Xn, Yn), (X,Y ). It is convenient to set S = {x ∈ X : η(x) = 1/2}.

In this paper, we study settings where the true class labels Y1, . . . , Yn for the training data 175

are not observed. Instead we see Ỹ1, . . . , Ỹn, where the noisy label Ỹi still takes values in

{0, 1}, but may not be the same as Yi. The task, however, is still to predict the true class la-

bel Y associated with the test point X. We can therefore consider an augmented model where

(X,Y, Ỹ ), (X1, Y1, Ỹ1), . . . , (Xn, Yn, Ỹn) are independent and identically distributed triples tak-

ing values in X × {0, 1} × {0, 1}. 180

At this point the dependence between Y and Ỹ is left unrestricted, but we introduce the fol-

lowing notation: define measurable functions ρ0, ρ1 : X → [0, 1] by ρr(x) = pr(Ỹ 6= Y | X =
x, Y = r). Thus, letting Z | {X = x, Y = r} ∼ Bin(1, 1 − ρr(x)) for r = 0, 1, we can write
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Ỹ = ZY + (1− Z)(1− Y ). We refer to the case where ρ0(x) = ρ1(x) = ρ for all x ∈ X as

ρ-homogeneous noise. Further, let P̃ denote the joint distribution of (X, Ỹ ), and let η̃(x) =185

pr(Ỹ = 1 | X = x) denote the regression function for Ỹ , so that

η̃(x) = η(x)pr(Ỹ = 1 | X = x, Y = 1) + {1− η(x)}pr(Ỹ = 1 | X = x, Y = 0)

= η(x){1 − ρ1(x)}+ {1− η(x)}ρ0(x). (1)

We also define the corrupted Bayes classifier

C̃Bayes(x) =

{

1 if η̃(x) ≥ 1/2
0 otherwise,

which minimizes the corrupted risk R̃(C) = pr{C(X) 6= Ỹ }.190

3. EXCESS RISK BOUNDS FOR ARBITRARY CLASSIFIERS

A key property in this work will be that the Bayes classifier is preserved under label noise;

more specifically, in Theorem 1(i) below, we will provide conditions under which

PX

(

{x ∈ Sc : C̃Bayes(x) 6= CBayes(x)}
)

= 0. (2)

In Theorem 1(ii), we go on to show that, under slightly stronger conditions on the label error

probabilities and for an arbitrary classifier C , we can bound the excess risk R(C)−R(CBayes)195

of predicting the true label by a multiple of the excess risk of predicting a noisy label

R̃(C)− R̃(C̃Bayes), where this multiple does not depend on the classifier C . This latter result

is particularly useful when the classifier C is trained using the imperfect labels, that is with the

training data (X1, Ỹ1), . . . , (Xn, Ỹn), because, as will be shown in the next section, we are able

to provide further control of R̃(C)− R̃(C̃Bayes) for specific choices of C .200

It is convenient to let B = {x ∈ Sc : ρ0(x) + ρ1(x) < 1}, and let

A =

{

x ∈ B :
ρ1(x)− ρ0(x)

{2η(x) − 1}{1 − ρ0(x)− ρ1(x)}
< 1

}

.

THEOREM 1. (i) We have

PX

(

A△{x ∈ B : C̃Bayes(x) = CBayes(x)}
)

= 0. (3)

In particular, if PX(Ac ∩ Sc) = 0, then (2) holds.

(ii) Now suppose, in fact, that there exist ρ∗ < 1/2 and a∗ < 1 such that PX({x ∈ Sc :
ρ0(x) + ρ1(x) > 2ρ∗}) = 0, and205

PX

({

x ∈ B :
ρ1(x)− ρ0(x)

{2η(x) − 1}{1 − ρ0(x)− ρ1(x)}
> a∗

})

= 0.

Then, for any classifier C ,

R(C)−R(CBayes) ≤
R̃(C)− R̃(C̃Bayes)

(1− 2ρ∗)(1− a∗)
.

In Theorem 1(i), the condition PX(Ac ∩ Sc) = 0 restricts the difference between the two

mislabelling probabilities at PX-almost all x ∈ Sc, with stronger restrictions where η(x) is

close to 1/2 and where ρ0(x) + ρ1(x) is close to 1. Moreover, since A ⊆ B, we also have

PX(Bc ∩ Sc) = 0, which limits the total amount of label noise at each point; cf. Menon et al.210
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(2016, Assumption 1). In particular, it ensures that

pr(Ỹ 6= Y | X = x) = η(x)ρ1(x) + {1− η(x)}ρ0(x) < 1,

for PX -almost all x ∈ Sc. In part (ii), the requirement on a∗ imposes a slightly stronger restric-

tion on the same weighted difference between the two mislabelling probabilities compared with

part (i).

The conditions in Theorem 1 generalize those given in the existing literature by allowing a 215

wider class of noise mechanisms. For instance, in the case of ρ-homogeneous noise, we have

PX(Ac ∩ Sc) = 0 provided only that ρ < 1/2. In fact, in this setting, we may take a∗ = 0
(Ghosh et al., 2015, Theorem 1). More generally, we may also take a∗ = 0 if the noise depends

only on the feature vector and not the true class label, i.e. ρ0(x) = ρ1(x) for all x (Menon et al.,

2016, Proposition 4). 220

The proof of Theorem 1(ii) relies on the following proposition, which provides a bound on the

excess risk for predicting a true label, assuming only that (2) holds.

PROPOSITION 1. Assume that (2) holds. Further, for κ > 0, let

Aκ =
{

x ∈ X : |2η(x) − 1| ≤ κ|2η̃(x)− 1|
}

.

Then, for any classifier C ,

R(C)−R(CBayes) ≤ min
[

pr{C(X) 6= C̃Bayes(X)}, inf
κ>0

{

κ{R̃(C)−R̃(C̃Bayes)}+PX(Ac
κ)
}]

.

(4)

Our main focus in this work is on settings where C̃Bayes and CBayes agree, i.e. (2) holds, because 225

this is where we can hope for classifiers to be robust to label noise. However, in this instance, we

present a more general version of Proposition 1 as Proposition A1 in the online supplement; this

bounds the excess risk of an arbitrary classifier without the assumption that (2) holds. We see in

that result, there is an additional contribution to the risk bound of R(C̃Bayes)−R(CBayes) ≥ 0.

See also, for instance, Natarajan et al. (2013), who study asymmetric homogeneous noise, where 230

ρ0(x) = ρ0 6= ρ1 = ρ1(x), with ρ0 and ρ1 known.

We can regard |2η(x) − 1| as a measure of the ease of classifying x. Hence, in Proposition 1,

we can interpret Aκ as the set of points x where the relative difficulty of classifying x in the

corrupted problem compared with its uncorrupted version is controlled. The level of this control

can then be traded off against the measure of the exceptional set Ac
κ. 235

To provide further understanding of Proposition 1, observe that in general, we have

R̃(C)− R̃(C̃Bayes) =

∫

X

[

pr{C(x) = 0} − 1{η̃(x)<1/2}

]

{2η̃(x)− 1} dPX (x)

≤ pr{C(X) 6= C̃Bayes(X)}.

Thus, if PX(Ac
1) = 0, then the second term in the minimum in (4) gives a better bound than

the first. However, typically in practice, we would have that PX(Ac
1) 6= 0, and indeed, in Exam- 240

ple A1 in the supplementary material, we show that for the 1-nearest neighbour classifier with

homogeneous noise, either of the two terms in the minimum in (4) can be smaller, depending on

the noise level. As a consequence of Proposition 1, we have the following corollary.

COROLLARY 1. Suppose that (C̃n) is a sequence of classifiers satisfying R̃(C̃n) →
R̃(C̃Bayes) and assume that (2) holds. Further, let S̃ = {x ∈ X : η̃(x) = 1/2}. Then 245

lim sup
n→∞

R(C̃n)−R(CBayes) ≤ PX(S̃ \ S).
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In particular, if PX(S̃ \ S) = 0, then R(C̃n) → R(CBayes) as n → ∞.

The condition R̃(C̃n) → R̃(C̃Bayes) asks that the classifier is consistent for predicting a cor-

rupted test label. In Section 4 we will see that appropriate versions of the corrupted knn and SVM

classifiers satisfy this condition, provided, in the latter case, that the feature vectors have compact

support. To understand the strength of Corollary 1, consider the special case of ρ-homogeneous250

noise, and a classifier C̃n that is consistent for predicting a noisy label when trained with cor-

rupted data. Then S̃ = S by (1), so provided only that ρ < 1/2, Corollary 1 ensures that C̃n

remains consistent for predicting a true label when trained using the corrupted data.

4. ASYMPTOTIC PROPERTIES

4·1. The k-nearest neighbour classifier255

We now specialize to the case X = R
d. The knn classifier assigns the test point X to a class

based on a majority vote over the class labels of the k nearest points among the training data.

More precisely, given x ∈ R
d, let (X(1), Y(1)), . . . , (X(n), Y(n)) be the reordering of the training

data pairs such that

‖X(1) − x‖ ≤ . . . ≤ ‖X(n) − x‖,

where ties are broken by preserving the original ordering of the indices. For k ∈ {1, . . . , n}, the260

k-nearest neighbour classifier is

Cknn(x) = Cknn
n (x) =

{

1 if 1
k

∑k
i=1 1{Y(i)=1} ≥ 1/2

0 otherwise.

This simple and intuitive method has received considerable attention since it was introduced

by Fix & Hodges (1951, 1989). Stone (1977) showed that the knn classifier is universally consis-

tent, i.e., R(Cknn) → R(CBayes) for any distribution P , as long as k = kn → ∞ and k/n → 0
as n → ∞. For a substantial overview of the early work on the theoretical properties of the knn265

classifier, see Devroye et al. (1996). Further recent studies include Kulkarni & Posner (1995),

Audibert & Tsybakov (2007), Hall et al. (2008), Biau et al. (2010), Samworth (2012), Chaud-

huri & Dasgupta (2014), Gadat et al. (2016), Celisse & Mary-Huard (2018) and Cannings et al.

(2018).

Here we study the properties of the corrupted k-nearest neighbour classifier270

C̃knn(x) = C̃knn
n (x) =

{

1 if 1
k

∑k
i=1 1{Ỹ(i)=1} ≥ 1/2

0 otherwise,

where Ỹ(i) denotes the corrupted label of (X(i), Y(i)). Since the knn classifier is universally

consistent, we have R̃(C̃knn) → R̃(C̃Bayes) for any choice of k satisfying Stone’s conditions.

Thus, by Corollary 1, if (2) holds and PX(S̃ \ S) = 0, then the corrupted knn classifier remains

universally consistent. In particular, in the special case of ρ-homogeneous noise, provided only

that ρ < 1/2, this result tells us that the corrupted knn classifier remains universally consistent.275

We now show that, under further regularity conditions on the data distribution P and the noise

mechanism, it is possible to give a more precise description of the asymptotic error properties of

the corrupted knn classifier. Since our conditions on P , which are slight simplifications of those

used in Cannings et al. (2018) to analyse the uncorrupted knn classifier, are a little technical,

we give an informal summary of them here, deferring formal statements of our assumptions280

(A1)–(A4) to just before the proof of Theorem 2 in Section A·2. First, we assume that each of
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the class-conditional distributions has a density with respect to Lebesgue measure such that the

marginal feature density f̄ is continuous and positive. It turns out that the dominant terms in the

asymptotic expansion of the excess risk of knn classifiers are driven by the behaviour of P in a

neighbourhood Sǫ of the set S , which consists of points that are difficult to classify correctly, so 285

we ask for further regularity conditions on the restriction of P to Sǫ. In particular, we ask for

both f̄ and η to have two well-behaved derivatives in Sǫ, and for η̇ to be bounded away from

0 on S . This amounts to asking that the class-conditional densities, when weighted by the prior

probabilities of each class, cut at an angle, and ensures that the set S is a (d− 1)-dimensional

orientable manifold. Away from the set Sǫ, we only require weaker conditions on PX , and for η 290

to be bounded away from 1/2. Finally, we ask for two αth moment conditions to hold, namely

that
∫

Rd ‖x‖
α dPX(x) < ∞ and

∫

S f̄(x0)
d/(α+d) dVold−1(x0) < ∞, where dVold−1 denotes the

(d− 1)-dimensional volume form on S .

For β ∈ (0, 1/2), let Kβ = {⌈(n− 1)β⌉, . . . , ⌊(n − 1)1−β⌋} denote the set of values of k to

be considered for the knn classifier. Define 295

B1 =

∫

S

f̄(x0)

4‖η̇(x0)‖
dVold−1(x0), B2 =

∫

S

f̄(x0)
1−4/d

‖η̇(x0)‖
a(x0)

2 dVold−1(x0),

where

a(x) =

∑d
j=1

{

ηj(x)f̄j(x) +
1
2ηjj(x)f̄(x)

}

(d+ 2)a
2/d
d f̄(x)

.

We will also make use of a condition on the noise rates near the Bayes decision boundary:

Assumption B1. There exist δ > 0 and a function g : (1/2 − δ, 1/2 + δ) → [0, 1) that is differ-

entiable at 1/2, with the property that for x such that η(x) ∈ (1/2 − δ, 1/2 + δ), we have

ρ0(x) = g(η(x)) and ρ1(x) = g(1 − η(x)). 300

This assumption asks that, when η(x) is close to 1/2, the probability of label noise depends only

on x through η(x), and moreover, this probability varies smoothly with η(x). In other words,

Assumption B1 says that the probability of mislabelling an observation with true class label 0

depends only on the extent to which it appeared to be from class 1; conversely, the probability

of mislabelling an observation with true label 1 depends only, and in a symmetric way, on the 305

extent to which it appeared to be from class 0. To give just one of many possible examples,

one could imagine that the probability that a doctor misdiagnoses a malignant tumour as benign

depends on the extent to which it appears to be malignant, and vice versa. We remark that Menon

et al. (2016, Definition 11) introduce a related probabilistically transformed noise model, where

ρ0 = g0 ◦ η and ρ1 = g1 ◦ η, but they also require that g0 and g1 are increasing on [0, 1/2] and 310

decreasing on [1/2, 1]; see also Bylander (1997).

THEOREM 2. Assume A1, A2, A3 and A4(α). Suppose that ρ0, ρ1 are continuous, and that

both

ρ∗ =
1

2
sup
x∈Rd

{ρ0(x) + ρ1(x)} <
1

2

and

a∗ = sup
x∈B

ρ1(x)− ρ0(x)

{2η(x) − 1}{1 − ρ0(x)− ρ1(x)}
< 1.

Moreover, assume B1 holds with the additional requirement that g is twice continuously differ- 315

entiable, ġ(1/2) > 2g(1/2) − 1 and that g̈ is uniformly continuous. Then we have two cases:
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(i) Suppose that d ≥ 5 and α > 4d/(d − 4). Then for each β ∈ (0, 1/2),

R(C̃knn)−R(CBayes) =
B1

k{1− 2g(1/2) + ġ(1/2)}2
+B2

(k

n

)4/d
+ o

(

1

k
+

(k

n

)4/d
)

as n → ∞, uniformly for k ∈ Kβ .

(ii) Suppose that either d ≤ 4, or, d ≥ 5 and α ≤ 4d/(d − 4). Then for each β ∈ (0, 1/2) and

each ǫ > 0 we have320

R(C̃knn)−R(CBayes) =
B1

k{1− 2g(1/2) + ġ(1/2)}2
+ o

(1

k
+

(k

n

)
α

α+d
−ǫ)

as n → ∞, uniformly for k ∈ Kβ .

The proof of Theorem 2 is given in Section A·2, and involves two key ideas. First, we

demonstrate that the conditions assumed for η also hold for the corrupted regression func-

tion η̃. Second, we show that the dominant asymptotic contribution to the desired excess risk

R(C̃knn)−R(CBayes) is {R̃(C̃knn)− R̃(C̃Bayes)}/{1 − 2g(1/2) + ġ(1/2)}, a scalar multiple325

of the excess risk when predicting a noisy label. We then conclude the argument by appealing to

Cannings et al. (2018, Theorem 1), and of course, can recover the conclusion of that result for

noiseless labels as a special case of Theorem 2 by setting g = 0.

In the conclusion of Theorem 2(i), the terms B1/[k{1 − 2g(1/2) + ġ(1/2)}2] and

B2(k/n)
4/d can be thought of as the leading order contributions to the variance and squared330

bias of the corrupted knn classifier respectively. It is both surprising and interesting to note that

the type of label noise considered here affects only the leading order variance term compared

with the noiseless case; the dominant bias term is unchanged. To give a concrete example, ρ-

homogeneous noise satisfies the conditions of Theorem 2, and in the setting of Theorem 2(i), we

see that the dominant variance term is inflated by a factor of (1− 2ρ)−2.335

We now quantify the relative asymptotic performance of the corrupted knn and uncorrupted

knn classifiers. Since this performance depends on the choice of k in each case, we couple these

choices together in the following way: given any k to be used by the uncorrupted classifier Cknn,

and given the function g from Theorem 2, we consider the choice

kg =
⌊

{1− 2g(1/2) + ġ(1/2)}−2d/(d+4)k
⌋

(5)

for the noisy label classifier C̃knn. This coupling reflects the ratio of the optimal choices of k for340

the corrupted and uncorrupted label settings.

COROLLARY 2. Under the assumptions of Theorem 2(i), and provided that B2 > 0, we have

that for any β ∈ (0, 1/2),

R(C̃kgnn)−R(CBayes)

R(Cknn)−R(CBayes)
→ {1− 2g(1/2) + ġ(1/2)}−8/(d+4) , (6)

as n → ∞, uniformly for k ∈ Kβ .

If ġ(1/2) > 2g(1/2), then the limiting regret ratio in (6) is less than 1 – this means that the label345

noise helps in terms of the asymptotic performance! This is due to the fact that, under the noise

model in Theorem 2, if ġ(1/2) > 2g(1/2) then for points Xi with η(Xi) close to 1/2, the noisy

labels Ỹi are more likely than the true labels Yi to be equal to the Bayes labels, 1{η(Xi)≥1/2}. To

understand this phenomenon, first note that by rearranging (1), we have

η̃(x)− 1/2 = {η(x) − 1/2}{1 − ρ0(x)− ρ1(x)}+
1

2
{ρ0(x)− ρ1(x)}.350
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Thus η̃(x)− 1/2 = η(x)− 1/2 for x ∈ S using B1. On the other hand, for x ∈ Sc, we have

η̃(x)− 1/2 = {η(x) − 1/2}

(

1− ρ0(x)− ρ1(x) +
ρ0(x)− ρ1(x)

2η(x)− 1

)

. (7)

We next study the term in the second parentheses on the right-hand side above. Write t =
η(x) − 1/2. Then, for x such that |η(x)− 1/2| ∈ (0, δ), we have ρ0(x) = g(1/2 + t) and

ρ1(x) = g(1/2 − t). It follows, for such x, that

1−ρ0(x)−ρ1(x)+
ρ0(x)− ρ1(x)

2η(x) − 1
= 1− g(1/2 + t)− g(1/2 − t) +

g(1/2 + t)− g(1/2 − t)

2t
355

→ 1− 2g(1/2) + ġ(1/2)

as |t| ց 0. Since 1− 2g(1/2) + ġ(1/2) > 1, we obtain that for any ε ∈
(

0, ġ(1/2)/2 −

g(1/2)
)

, there exists δ0 ∈ (0, δ) such that for all x with |η(x)− 1/2| ∈ (0, δ0), we have that

1− ρ0(x)− ρ1(x) +
ρ0(x)− ρ1(x)

2(η(x) − 1/2)
> 1− 2g(1/2) + ġ(1/2) − ε > 1.

This together with (7) ensures that, for all x such that |η(x) − 1/2| ∈ (0, δ0), we have

|η̃(x)− 1/2| > |η(x)− 1/2|.

Example 2. Suppose that for some g0 ∈ (0, 1/2) and h0 > 2− 1/g0 we have g(1/2 + t) = 360

g0(1 + h0t) for t ∈ (−δ, δ). Then g(1/2) = g0 and ġ(1/2) = g0h0, which gives 1− 2g(1/2) +
g′(1/2) = 1 + (h0 − 2)g0. We therefore see from Corollary 2 that if h0 < 2, then the limiting

regret ratio is greater than 1, but if h0 > 2, then the limiting regret ratio is less than one, so the

label noise aids performance.

4·2. Support vector machine classifiers 365

In general, the term support vector machines (SVM) refers to classifiers of the form

CSVM(x) = CSVM
n (x) =

{

1 if f̂(x) ≥ 0
0 otherwise,

where the decision function f̂ satisfies

f̂ ∈ argmin
f∈H

{

1

n

n
∑

i=1

L(Yi, f(Xi)) + Ω(λ, ‖f‖H)

}

.

See, for example, Cortes & Vapnik (1995) and Steinwart & Christmann (2008). Here L :
R× R → R is a loss function, Ω : R× R → R is a regularization function, λ > 0 is a tuning

parameter and H is a reproducing kernel Hilbert space with norm ‖ · ‖H (Steinwart & Christ- 370

mann, 2008, Chapter 4).

We focus throughout on the L1-SVM, where L(y, t) = max{0, 1 − (2y − 1)t} is the hinge

loss function and Ω(λ, t) = λt2. Let K : Rd × R
d → R be the positive definite kernel function

associated with the reproducing kernel Hilbert space. We consider the Gaussian radial basis

function, namely K(x, x′) = exp(−σ2‖x− x′‖2), for σ > 0. The corrupted SVM classifier is 375

C̃SVM(x) = C̃SVM
n (x) =

{

1 if f̃(x) ≥ 0
0 otherwise,

(8)
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where

f̃ ∈ argmin
f∈H

{

1

n

n
∑

i=1

max{0, 1 − (2Ỹi − 1)f(Xi)}+ λ‖f‖2H

}

. (9)

Steinwart (2005, Corollary 3.6 and Example 3.8) show that the uncorrupted L1-SVM clas-

sifier is consistent as long as PX is compactly supported and λ = λn is such that λn → 0
but nλn/(| log λn|

d+1) → ∞. Therefore, under these conditions, provided that (2) holds and

PX(S̃ \ S) = 0, by Corollary 1, we have that R(C̃SVM) → R(CBayes) as n → ∞.380

Under further conditions on the noise probabilities and the distribution P , we can also provide

more precise control of the excess risk for the SVM classifier. Our analysis will make use of the

results in Steinwart & Scovel (2007), who study the rate of convergence of the SVM classifier

with Gaussian kernels in the noiseless label setting. Other works of note on the rate of conver-

gence of SVM classifiers include Lin (1999) and Blanchard et al. (2008); see also Steinwart &385

Christmann (2008, Chapters 6 and 8).

We recall two definitions used in the perfect labels context. The first of these is the well-known

margin assumption of, for example, Audibert & Tsybakov (2007). We say that the distribution P
satisfies the margin assumption with parameter γ1 ∈ [0,∞) if there exists κ1 > 0 such that

PX({x ∈ R
d : 0 < |η(x) − 1/2| ≤ t}) ≤ κ1t

γ1

for all t > 0. If P satisfies the margin assumption for all γ1 ∈ [0,∞) then we say P satisfies the390

margin assumption with parameter ∞. The margin assumption controls the probability mass of

the region where η is close to 1/2.

The second definition we need is that of the geometric noise exponent (Steinwart & Scovel,

2007, Definition 2.3). Let S+ = {x ∈ R
d : η(x) > 1/2} and S− = {x ∈ R

d : η(x) < 1/2}, and

for x ∈ R
d, let τx = infx′∈S∪S+ ‖x− x′‖+ infx′∈S∪S−

‖x− x′‖. We say that the distribution395

P has geometric noise exponent γ2 ∈ [0,∞) if there exists κ2 > 0, such that
∫

Rd

|2η(x) − 1| exp
(

−
τ2x
t2

)

dPX(x) ≤ κ2t
γ2d

for all t > 0. If P has geometric noise exponent γ2 for all γ2 ∈ [0,∞) then we say it has geo-

metric noise exponent ∞.

Under these two conditions, Steinwart & Scovel (2007, Theorem 2.8) show that, if PX is

supported on the closed unit ball, then for appropriate choices of the tuning parameters, the400

SVM classifier achieves a convergence rate of O(n−Γ+ǫ) for every ǫ > 0, where

Γ =

{

γ2
2γ2+1 if γ2 ≤

γ1+2
2γ1

2γ2(γ1+1)
2γ2(γ1+2)+3γ1+4 otherwise.

In the imperfect labels setting, and under our stronger assumption on the noise mechanism

when η is close to 1/2, we see that the SVM classifier trained with imperfect labels satisfies the

same bound on the rate of convergence as in the perfect labels case.

THEOREM 3. Suppose that P satisfies the margin assumption with parameter γ1 ∈ [0,∞],405

has geometric noise exponent γ2 ∈ (0,∞) and that PX is supported on the closed unit ball.

Assume the conditions of Theorem 1(ii) and B1 holds. Then

R(C̃SVM)−R(CBayes) = O(n−Γ+ǫ),

as n → ∞, for every ǫ > 0. If γ2 = ∞, then the same conclusion holds provided σn = σ is a

constant with σ > 2d1/2.
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4·3. Linear discriminant analysis 410

If P0 = Nd(µ0,Σ) and P1 = Nd(µ1,Σ), then the Bayes classifier is

CBayes(x) =

{

1 if log
(

π1
π0

)

+
(

x− µ1+µ0

2

)T
Σ−1(µ1 − µ0) ≥ 0

0 otherwise.
(10)

The Bayes risk can be expressed in terms of π0, π1, and the squared Mahalanobis distance ∆2 =
(µ1 − µ0)

TΣ−1(µ1 − µ0) between the classes as

R(CBayes) = π0Φ

(

1

∆
log

(π1
π0

)

−
∆

2

)

+ π1Φ

(

1

∆
log

(π0
π1

)

−
∆

2

)

,

where Φ denotes the standard normal distribution function.

The LDA classifier is constructed by substituting training data estimates of π0, π1, µ0, µ1, 415

and Σ in to (10). With imperfect training data labels, and for r = 0, 1, we define estimates

π̂r = n−1
∑n

i=1 1{Ỹi=r} of πr, as well as estimates µ̂r =
∑n

i=1Xi1{Ỹi=r}/
∑n

i=1 1{Ỹi=r} of

the class-conditional means µr, and set

Σ̂ =
1

n− 2

n
∑

i=1

1
∑

r=0

(Xi − µ̂r)(Xi − µ̂r)
T
1{Ỹi=r}.

This allows us to define the corrupted LDA classifier

C̃LDA(x) = C̃LDA
n (x) =

{

1 if log
(

π̂1
π̂0

)

+
(

x− µ̂1+µ̂0

2

)T
Σ̂−1(µ̂1 − µ̂0) ≥ 0

0 otherwise.

Consider now the ρ-homogeneous noise setting. In this case, writing P̃r, r ∈ {0, 1}, for the 420

distribution of X | {Ỹ = r}, we have P̃r = prNd(µr,Σ) + (1− pr)Nd(µ1−r,Σ), where pr =

πr(1− ρ)/{πr(1− ρ) + π1−rρ}. Notice that while π̂r, µ̂r and Σ̂ are intended to be estima-

tors of πr, µr and Σ, respectively, with label noise these will in fact be consistent estimators

of π̃r = πr(1− ρ) + π1−rρ, µ̃r = prµr + (1− pr)µ1−r, and Σ̃ = Σ + α(µ1 − µ0)(µ1 − µ0)
T ,

respectively, where α > 0 is given in the proof of Theorem 4. 425

We will also make use of the following well-known lemma in the homogeneous label noise

case (e.g. Ghosh et al., 2015, Theorem 1), which holds for an arbitrary classifier and data gener-

ating distribution. We include the short proof for completeness.

LEMMA 1. For ρ-homogeneous noise with ρ ∈ [0, 1/2) and for any classifier C , we have

R(C) = {R̃(C)− ρ}/(1 − 2ρ). Moreover, R(C)−R(CBayes) =
{

R̃(C)− R̃(CBayes)
}

/(1− 430

2ρ).

The following is the main result of this subsection.

THEOREM 4. Suppose that Pr = Nd(µr,Σ) for r = 0, 1 and that the noise is ρ-homogeneous

with ρ ∈ [0, 1/2). Then

lim
n→∞

C̃LDA(x) =

{

1 if c0 +
(

x− µ1+µ0

2

)T
Σ−1(µ1 − µ0) > 0

0 if c0 +
(

x− µ1+µ0

2

)T
Σ−1(µ1 − µ0) < 0,

where 435

c0=
{

(1− 2ρ)+
ρ(1−ρ)(1+π0π1∆

2)

(1−2ρ)π1π0

}

log
( (1−2ρ)π1+ρ

(1− 2ρ)π0+ρ

)

−
(π1 − π0)ρ(1− ρ)∆2

2{(1−2ρ)2π1π0+ρ(1−ρ)}
.
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Fig. 3. Risk estimates for the knn (left), SVM (middle) and LDA (right) classifiers. Top: Model 1, d = 2, π1 = 0·5,
Bayes risk = 6·68%, shown as the black dotted line. Bottom: Model 2, d = 2, Bayes risk = 19·63%. We present the

results without label noise (black) and with homogeneous label noise at rate ρ = 0·1 (red) and 0·3 (blue).

As a consequence,

lim
n→∞

R(C̃LDA) = π0Φ

(

c0
∆

−
∆

2

)

+ π1Φ

(

−
c0
∆

−
∆

2

)

≥ R(CBayes). (11)

For each ρ ∈ (0, 1/2) and π0 6= π1, there exists a unique value of ∆ > 0 for which equality in

the inequality in (11) is attained.

The first conclusion of this theorem reveals the interesting fact that, regardless of the level ρ ∈
(0, 1/2) of label noise, the limiting corrupted LDA classifier has a decision hyperplane that is440

parallel to that of the Bayes classifier; see also Lachenbruch (1966) and Manwani & Sastry

(2013, Corollary 1). However, for each fixed ρ ∈ (0, 1/2) and π0 6= π1, there is only one value

of ∆ > 0 for which the offset is correct and the corrupted LDA classifier is consistent.

5. NUMERICAL COMPARISON

In this section, we investigate empirically how the different types of label noise affect the445

performance of the k-nearest neighbour, support vector machine and linear discriminant analysis

classifiers. We consider two different model settings for the pair (X,Y ):
Model 1: Let pr(Y = 1) = π1 ∈ {0·5, 0·9} and X | {Y = r} ∼ Nd(µr, Id), where µ1 =

(3/2, 0, . . . , 0)T = −µ0 ∈ R
d and Id denotes the d by d identity matrix.

Model 2: For d ≥ 2, let X ∼ U([0, 1]d) and pr(Y = 1 | X = x) = η(x1, . . . , xd) =450

min{4(x1 − 1/2)2 + 4(x2 − 1/2)2, 1}.

In each setting, our risk estimates are based on an uncorrupted test set of size 1000, and we

repeat each experiment 1000 times. This ensures that all standard errors are less than 0·4% and

0·14 for the risk and regret ratio estimates, respectively; in fact, they are often much smaller.
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Fig. 4. Risk estimates for the LDA classifier. Model 1, d = 5, π1 =

0·9, Bayes risk = 3·37%. We present the estimated error without
label noise (black) and with homogeneous label noise at rate ρ =

0·1 (red), 0·2 (blue), 0·3 (green) and 0·4 (purple). The dotted lines
show the corresponding asymptotic limit as given by Theorem 4.

Our first goal is to illustrate numerically our consistency and inconsistency results for the knn, 455

SVM and LDA classifiers. In Fig. 3 we present estimates of the risk for the three classifiers

with different levels of homogeneous label noise. We see that for Model 1 when the class prior

probabilities are equal, all three classifiers perform well and in particular appear to be consistent,

even when as many as 30% of the training data labels are incorrect on average. For the knn and

SVM classifiers we observe very similar results for Model 2; the LDA classifier does not perform 460

well in this setting, however, since the Bayes decision boundary is non-linear. These conclusions

are in accordance with Corollary 1 and Theorem 4.

We further investigate the effect of homogeneous label noise on the performance of the LDA

classifier for data from Model 1, but now when d = 5 and the class prior probabilities are unbal-

anced. Recall that in Theorem 4 we derived the asymptotic limit of the risk in terms of the Ma- 465

halanobis distance between the true class distributions, the class prior probabilities and the noise

rate. In Fig. 4, we present the estimated risks of the LDA classifier for data from Model 1 with

π1 = 0·9 for different homogeneous noise rates alongside the limit as specified by Theorem 4.

This articulates the inconsistency of the corrupted LDA classifier, as observed in Theorem 4.

Finally, we study empirically the asymptotic regret ratios for the knn and SVM classifiers. We 470

focus on the noise model in Example 2 in Section 4, where the label errors occur at random as

follows: fix g0 ∈ (0, 1/2), h0 > 2− 1/g0, we let g(1/2 + t) = max[0,min{g0(1 + h0t), 2g0}],
then set ρ0(x) = g(η(x)) and ρ1(x) = g(1 − η(x)). In particular, we use the following settings:

(i) g0 = 0·1, h0 = 0; (ii) g0 = 0·1, h0 = −1; (iii) g0 = 0·1, h0 = 1; (iv) g0 = 0·1, h0 = 2; (v)

g0 = 0·1, h0 = 3. Noise setting (i), where h0 = 0, corresponds to g0-homogeneous noise. 475

For the knn classifier, where k is chosen to satisfy the conditions of Corollary 2, our theory

says that when d = 5 in Models 1 and 2, the asymptotic regret ratios in the five noise settings

are 1·22, 1·37, 1·10, 1 and 0·92 respectively. We see from the left-hand plots of Fig. 5 that, for

k chosen separately in the corrupted and uncorrupted cases via cross-validation, the empirical

results provide good agreement with our theory, especially in the last three settings. Reasons for 480

the slight discrepancies between our asymptotic theory and empirically observed regret ratios in

the first two noise settings include the following facts: the choices of k in the noisy and noiseless
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Fig. 5. Estimated regret ratios for the knn (left) and SVM (right) classifiers. Top: Model 1, with d = 5

and π1 = 0·5. Bottom: Model 2, with d = 5. We present the results with label noise of type (i – red),
(ii – blue), (iii – green), (iv – black), and (v – purple).

label settings do not necessarily satisfy (5) exactly; the asymptotics in n may not have fully

‘kicked in’; and Monte Carlo error – when n is large, we are computing the ratio of two small

quantities, so the standard error tends to be larger. The performance of the SVM classifier is485

similar to that of the knn classifier for both models.

Finally, we discuss tuning parameter selection. We have seen that for the knn classifier the

the choice of k is important for achieving the optimal bias–variance trade-off; see also Hall

et al. (2008). Similarly, we need to choose an appropriate value of λ for the SVM classifier;

in practice, this is typically done via cross-validation. When the classifier C̃ is trained with ρ-490

homogeneous noisy labels, we would like to select a tuning parameter to minimize R(C̃), but

since the training data is corrupted, a tuning parameter selection method will target the minimizer

of R̃(C̃). However, by Lemma 1, we have that R(C̃) = {R̃(C̃)− ρ}/(1 − 2ρ), and it follows

that our tuning parameter selection method requires no modification when trained with noisy

labels. In the heterogeneous noise case, however, we do not have this direct relationship; see495

Inouye et al. (2017) for more on this topic.

In our simulations, we chose k for the knn classifier and λ for the SVM classifier via leave-

one-out and 10-fold cross-validation respectively, where the cross-validation was performed over
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the noisy training dataset. Moreover, for the SVM classifier, we used the default choice σ2 = 1/d
for the hyper-parameter for the kernel function. 500
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