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Abstract

Automated text scoring (ATS) is the task of automatically scoring a text based on some
given grading criteria. This thesis focuses on ATS in the context of free-text writing
exams aimed at learners of English as a foreign language (EFL). The benefit of an ATS
system is primarily to provide instant and consistent feedback to language learners,
and service reliability also forms a crucial part of an ATS system. Based on previous
work, we investigated only partially explored meta-properties in text and integrated
them into a machine learning based ATS model across multiple datasets:

• In most previous work, the proposed models implicitly assume that texts produced
by learners in an exam are written independently. However, this is not true for the
exams where learners are required to compose multiple texts. We hence explicitly
instructed our model which texts are written by the same learner, which boosts
model performance in most cases.

• We used three intra-exam properties within the same exam including prompt,
genre and task as a starting point, and we showed that explicitly modelling
these properties via frustratingly easy domain adaptation (FEDA) (Daume III,
2007) can positively affect model performance in some cases. Furthermore,
modelling multiple intra-exam properties together is better than modelling any
single property individually or no property in four out of five test sets.

• We studied how to utilise and combine learners’ responses from multiple writing
exams. We also proposed a new variant of the transfer-learning ATS model which
mitigates the drawbacks of previous work. This variant first builds a ranking model
across multiple datasets via FEDA, and the ranking score of each text predicted
by the ranking model is used as an extra feature in the baseline model. This
variants gives improvement compared to a baseline model on the development
sets in terms of root-mean-square error. Furthermore, the transfer-learning model
utilising multiple datasets tuned on each development set is always better than
the baseline model on the corresponding test set.

• We found that different datasets favour different meta properties. We therefore
combined all the models looking at different meta properties together using



ensemble learning. Compared to the baseline model, the combined model has
a statistically significant improvement on all the test sets in terms of root-mean-
square error based on a permutation test.
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Chapter 1

Introduction

The English language is one of the most commonly spoken languages in the world. Based
on a report published by the British Council1, there are about 1.75 billion people who
can speak English at a useful level. It is also estimated by the report that the number of
English speakers will rise to two billion in 2020. English is also the most widely learned
foreign language chosen by the people all around the world. For example, about 97.3%
pupils studied English as a foreign language in the European Union (Eurostat, 2017).
Besides that, the popularity of learning English is also visible in the number of non-native
English speakers taking different English exams. Based on another report from the
British Council2, more than two million International English Language Testing System
(IELTS) tests were taken in 2012-2013. The existence of various English exam products
provides a useful and fair way for learners to measure their English skills accurately.
It also offers a well-accepted standard to help schools, companies and immigration
bureaux to quantitatively judge whether the foreign candidates and applicants who are
non-native English speakers meet the compulsory language requirements they set up.

To thoroughly and objectively evaluate a learner’s English skills from multiple
dimensions, some educational organisations like Cambridge Assessment and Educa-
tional Testing Service (ETS) propose different types of questions and practices in their
English exam products. These questions and practices include not only multiple-choice,
true-or-false and fill-in-the-blank style questions, but also more advanced questions
such as free-text writing. This variety helps learners identify what they are good at and
what their weaknesses are. It also gives them opportunities to practise their English in
different ways.

Although the desire to learn English might be high, the hurdle to mastering it is
not negligible. One existing barrier is that for some areas, there are not enough human
examiners who can objectively evaluate learners’ writing quality. While it is relatively

1https://www.britishcouncil.org/sites/default/files/english-effect-report-v2.pdf
2https://www.britishcouncil.org/organisation/press/record-two-million-ielts-tests
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easy to judge the correctness of a multiple-choice question or a true-or-false question if
we know what the gold standard is, it requires much more skill to appropriately assess
the quality of free-text writing. The lack of professional and qualified examiners makes
it hard for learners to get accurate feedback on the quality of their English writing
in a timely fashion. Consequently, it is hoped that an automated text scoring (ATS)
system can possibly act as a kind of examiner to mitigate this problem, which offers an
assistance to both learners and educators.

The main goal of ATS is to automatically evaluate the quality of a person’s writing
in terms of specific grading criteria. The earliest research into ATS dates back to the
1960s (Page, 1968). It is also hoped that automated assessment will improve consistency
and provide assistance in learning and teaching. The application of this technique
not only frees educators from the burden of manually marking piles of texts, but also
provides learners with instant feedback for iterative writing improvement. The ATS
technique is often used as the second marker in high-stakes exams such as e-rater in
the Graduate Management Admission Test (GMAT) (Burstein et al., 1998), the Test
of English as a Foreign Language (TOEFL) (Chodorow and Burstein, 2004) and the
Graduate Record Examinations (GRE) (Ramineni et al., 2012). ATS also acts as the only
grader in low-stakes exams and online tutoring applications such as Cambridge English
Write & Improve (Andersen et al., 2013) and Turnitin3.

1.1 Meta Properties

The performance of an ATS system directly determines the success of the automated
assessment application. Previous work has approached ATS from different aspects
including simple features such as word counts (Page, 1968), semantic similarity (Foltz
et al., 1999), prompt relevance (Higgins et al., 2006; Briscoe et al., 2010; Cummins
et al., 2016a), syntactic complexity (Yannakoudakis et al., 2011), coherence (Higgins
and Burstein, 2007; Yannakoudakis and Briscoe, 2012), discourse relations (Lin et al.,
2011; Feng et al., 2014; Song et al., 2017) and argument structure (Klebanov et al., 2016;
Wachsmuth et al., 2017). One aspect not fully studied is whether and how the meta
properties of a learner’s text affect ATS. In this section, we describe how we classify the
meta properties of a text into different categories for the research of this thesis.

When an educational organisation designs an exam product, they do so with specific
goals and philosophy in mind. For example, some exams are designed to gauge which
proficiency level a learner has mastered, while others aim to test whether a learner has
fulfilled the requirements for a specific level. In order to benchmark learners’ English
skills, the Common European Framework of Reference for Languages (CEFR) provides

3www.turnitin.com
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a common basis to assess language skills in European countries (Council of Europe,
2001). CEFR provides a range of proficiency levels to measure at what stage learners
have mastered a specific language. The proposed proficiency is divided into six levels:

• A. Basic User:

– A1 (Breakthrough)

– A2 (Waystage)

• B. Independent User:

– B1 (Threshold)

– B2 (Vantage)

• C. Proficient User:

– C1 (Effective Operational Proficiency)

– C2 (Mastery)

Based on this summary, the IELTS exam is designed to examine which CEFR level
learners have achieved. In comparison, some exams like the Cambridge English First
(FCE) and Advanced (CAE) exams examine whether participants have mastered a
specific CEFR level (B2/C1) or not. Once the ultimate goals and philosophy of an exam
product are determined, all the free-text writing questions within the same exam should
share the same broad level goals and values on meta properties such as target proficiency
level. We define these meta properties as the intra-exam properties.

After the goals of the whole exam are decided, the examiners need to design the
questions for the exam, and each question has its own focal points. For example, some
questions require learners to write an essay, while others ask learners to describe a figure
or a picture. Herein, each question also has its own goals, and so we define the meta
properties that distinguish a question from other questions within the same exam as the
inter-exam properties.

When the exam organisation publishes their exam products, learners can then
register to take the exams they want. Other meta properties that distinguish different
writing could be but not limited to participant gender, native language and age. We
define the meta properties which are independent of an exam but characterised by
the external properties of participants or the environment where participants take the
exam as the exam-independent properties. In contrast, we put the intra-exam and
inter-exam properties under a broader term together as the exam-dependent properties.
The values of the exam-dependent properties of a text rely solely on the exam product,
while the exam-independent properties are independent of the exam, the designers of
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the exam and the questions in the exam. For example, two responses to the same prompt
in the same exam can have different values for these exam-independent properties, but
they must have the same value on any exam-dependent property. The relations between
these meta properties are shown in Figure 1.1.

Meta Properties



Exam-Independent Properties


Location Where Exam was Taken
Age
First Language
...

Exam-Dependent Properties



Intra-Exam Properties


Prompt
Genre
...

Inter-Exam Properties


Pro f icency Level
Exam Name
Overall Score Bands
...

Figure 1.1: Meta properties of a learner’s text

1.2 Research Questions

Obviously, some meta properties we list here affect and determine the grading criterion
of a text, and explicitly differentiating meta-proprieties of different texts in an ATS
system might be beneficial in improving system performance. It is always crucial to
provide learners with accurate feedback regarding their writing quality. This thesis
focuses on meta properties that have not been thoroughly examined in previous work.
Specifically, we try to determine how text meta properties can be used in an ATS system.
We also intend to investigate whether adding and explicitly modelling these meta
properties can improve ATS system performance or not.

1.3 Thesis Structure and Contributions

The remainder of this thesis is structured:

• Chapter 2 reviews previous work in ATS.
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• Chapter 3 describes how we prepare the datasets and baseline model for this
thesis. We prepared six different datasets and extended the model proposed by
Yannakoudakis et al. (2011). Based on the experimental results in this chapter, we
chose the support vector regression model as the baseline model in the following
chapters.

Chapters 4 to 6 take a closer look at three types of meta properties in ATS. The contents
and the major contributions of each chapter are listed as follows:

• Chapter 4 focuses on the authorship knowledge of a text to study the exam-
independent property in this chapter. In some English writing exams, learners
are required to write texts to multiple free-text writing tasks. Previous work has
implicitly assumed that all texts are composed independently and so ignores the
fact that some texts are actually composed by the same learner in a single exam
session. We define this information as the authorship knowledge of a text. In
this chapter, we proposed two approaches to explicitly pass this knowledge to
the baseline model by means of feature fusion and score fusion. The benefit of
doing this is to add more connections among the training data so that the model
can better understand a learner’s writing skills. We experimentally demonstrated
that model performance improves in most cases, and that this improvement is
irrespective of human examiners’ bias of knowing the authorship of each text even
if this bias might exist.

• Chapter 5 looks at the intra-exam properties of a text. In this chapter, we
examined three properties including prompt, genre and task as a starting point. We
experimentally demonstrated that modelling these properties via frustratingly easy
domain adaptation (FEDA) (Daume III, 2007) improves our grader performance
on some datasets.

• Chapter 6 investigates the modelling of the inter-exam properties of a text. Par-
ticularly, we distinguished which exam each dataset comes from and studied
whether utilising multiple datasets is better than building a grader from only a
single dataset.

In this chapter, we proposed a variant based on the model from Cummins et al.
(2016b). They built a pairwise ranking model based on FEDA across multiple
datasets and predicted a ranking score for each text, and they then used a linear
regression model to map the outputs of the ranking model back to the original
scores for each exam. We found that their model performed worse than the
baseline model in terms of root-mean-square error on some development sets. To
overcome this problem, we used the predicted ranking score of each text as an
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extra feature and fed it back to the baseline model in Chapter 3. Compared to the
other models evaluated in this thesis, this variant gets the best performance on
four out of six development sets in terms of the root-mean-squared error.

Finally, the best-performing transfer-learning model utilising multiple datasets
tuned on each development set is always better than the baseline model in Chapter
3 on the corresponding test set.

As we found that different datasets benefit from different meta properties proposed
in Chapter 4 to Chapter 6, in Chapter 7, we jointly modelled all the meta properties
together via ensemble learning. Compared to the baseline model in Chapter 3, the
combined model has a statistically significant improvement on all the test sets in terms
of root-mean-square error based on the permutation test.

Finally, Chapter 8 draws the conclusions and identifies possible future work for this
thesis.
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Chapter 2

Background

This chapter summarises the datasets and techniques that have been used in ATS. A
more comprehensive survey can be found in Shermis and Burstein (2003); Valenti et al.
(2003); Shermis and Burstein (2013); Burrows et al. (2015).

2.1 Learner Corpora

It is difficult to conduct research into ATS without a suitable learner corpus. A good
learner corpus is required to provide an opportunity for us to conduct quantitative
analyses and test assumptions about ATS. The quality of this corpus directly determines
the quality of our work/research/models. In this section, we introduce several learner
corpora that have been used for various purposes in previous work. The corpora not
covered in this section can be found in the surveys written by Pravec (2002); Granger
(2004); Nesselhauf (2004). A comprehensive list of learner corpora is available on the
website of the Univeristé catholique de Louvain.1

Many datasets have been created by different researchers and organisations. Building
a learner corpus has substantially benefited various natural language processing tasks
including:

• first language identification (Gebre et al., 2013; Tetreault et al., 2013, 2012; Brooke
and Hirst, 2012; Kochmar, 2011; Koppel et al., 2005);

• grammatical error detection and correction (Ji et al., 2017; Yuan, 2017; Chollampatt
et al., 2016; Herbelot and Kochmar, 2016; Rei et al., 2016; Yuan et al., 2016; Susanto
et al., 2015; Kochmar, 2016; Andersen, 2011; De Felice and Pulman, 2009, 2008);

• grammatical error correction evaluation (Felice et al., 2016; Bryant and Felice, 2016;
Napoles et al., 2016; Felice and Briscoe, 2015; Dahlmeier and Ng, 2012);

1https://uclouvain.be/en/research-institutes/ilc/cecl/learner-corpora-around-the-world.html
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• artificial grammatical error generation (Felice, 2016; Felice and Yuan, 2014; Foster
and Andersen, 2009);

• part-of-speech (POS) tagging and parsing of texts written by learners of English as
a foreign language (EFL) (Berzak et al., 2016);

• analysing the similarity between learners’ first languages via their second language
writing patterns (Berzak et al., 2015, 2014);

• ATS, which is the topic of this dissertation.

These corpora can be characterised by several other criteria. For example:

• the medium in which the learners’ responses are collected (hand-written or
computer-typed);

• the learners’ first languages (English, Chinese, German);

• the text type (narrative, discussion, exams, assignments);

• the learners’ proficiency levels (beginning, intermediate or advanced);

• whether the corpus is publicly available or has limited access.

In this thesis, we are primarily interested in learners’ abilities in written English. One
way to classify these corpora is based on whether the learners’ first language is English
or not.

2.1.1 English Native Speaker Corpora

One of the most well-known publicly-available corpora for English native speakers
is the Automated Student Assessment Prize (ASAP) dataset.2 The William and Flora
Hewlett Foundation (Hewlett) organised a shared task on ATS in 2013. In this shared
task, Hewlett gathered about twenty thousand texts from eight different prompts. The
essays were written by students in Grade 7 to Grade 10 in the United States, and each
essay is between 150 to 550 words, depending upon the requirement of each prompt.
The dataset has been used in previous work in ATS (Chen and He, 2013; Phandi et al.,
2015; Alikaniotis et al., 2016; Cummins et al., 2016b; Taghipour and Ng, 2016; Dong and
Zhang, 2016; Dong et al., 2017; Tay et al., 2018; Cozma et al., 2018).

2https://www.kaggle.com/c/asap-aes
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2.1.2 EFL Corpora

In this dissertation, we are more interested in EFL learners corpora, as human examiners
who can objectively assess learners’ writing are hard to access for EFL learners in some
areas. That said, the research outcome from this dissertation should also be of benefit to
ATS for native speakers even if we only use the EFL learners corpora to conduct our
research. In this section, we introduce several EFL corpora and identify whether they
are suitable for our research into ATS in this dissertation.

The International Corpus of Learner English (ICLE) (Granger et al., 2002) is one
of the biggest and earliest corpora built for essays written by EFL learners. The first
and second versions were released in 2002 and 2009, respectively. The second version
contains argumentative essays and literature examination papers with 3.7 million words
written by intermediate and advanced learners. There are sixteen different first language
backgrounds for these learners including Bulgarian, Chinese, Czech, Dutch, Finnish,
French, German, Italian, Japanese, Norwegian, Polish, Russian, Spanish, Swedish,
Tswana and Turkish.3 Each essay contains 500-1000 words. Data collection involved the
collaboration of a group of participating universities. In this corpus, only prompts were
controlled by Granger et al., and other factors were left to the participating universities
to decide. For example, different students wrote texts in different environments and it is
unclear whether they used dictionaries and grammar books or not. Although the second
version of the corpus included meta-data such as gender, first, second or even third
language, it did not contain any scores indicating the quality of each essay. Persing et al.
consequently marked a sample of essays from this corpus based on organisation (Persing
et al., 2010), thesis clarity (Persing and Ng, 2013), prompt adherence (Persing and Ng,
2014) and argument strength (Persing and Ng, 2015).

The National University of Singapore Corpus of Learner English (NUCLE) was
created by Dahlmeier et al. (2013). It contains 1,400 essays with one million words
written by students from the National University of Singapore on different topics. All
the essays were annotated with error tags and corrections by well-trained English
instructors, although the essays themselves are not marked with any grading criterion.
Consequently, NUCLE is not directly suitable for research in ATS. Many corpora share
the same problem that they are not marked based on any grading criteria such as the
Langman Learner’s Corpus (LLC) (Gillard and Gadsby, 1998) and the Uppsala Student
English (USE) corpus (Axelsson, 2000).

The Cambridge Learner Corpus (CLC) has been developed through a collaboration
between Cambridge University Press (CUP) and Cambridge Assessment English since
1993 (Nicholls, 2003). The CLC contains 52.5 million words (16 million in 2003) written
by non-native English learners in different types of exams. Each text was marked with

3https://uclouvain.be/en/research-institutes/ilc/cecl/icle.html
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a score based on the grading criterion of the corresponding exam. The 2003 version
has 86 different first languages, and the 350,000-word subset of the corpus is further
annotated with 80 different error codes. Although access to the full CLC is restricted by
CUP and its collaborators, a subset is publicly available. Specifically, the FCE public
(FCE-PUB) dataset was released by Yannakoudakis et al. (2011). This dataset contains
the writing sections from 1,141 exam papers answered by 1,141 learners in the year 2000
and 103 exam papers written by 103 learners in 2001.

TOEFL11 (Blanchard et al., 2013) are the essays collected from the Test of English as
a Foreign Language (TOEFL) organised by the Educational Testing Service. This dataset
was originally collected and prepared for the purpose of native language identification,
but it can also be used in other research projects in education. It contains 12,100 essays
with 11 different first languages, evenly sampled, including Arabic, Chinese, French,
German, Hindi, Italian, Japanese, Korean, Spanish, Telugu and Turkish. Each essay
in this dataset was marked with one out of three different levels (low/medium/high).
Blanchard et al. pointed out one difference between the FCE-PUB public dataset and
TOEFL11 is that the FCE-PUB dataset has a broader range of prompts available.

2.1.2.1 English Exams from Cambridge Assessment

In this dissertation, we use learners’ data collected from the English exam products
designed by Cambridge Assessment. There are several advantages of using the
Cambridge Assessment exams to conduct our research.

An advantage of the English exam products made by Cambridge Assessment is
that the marking scheme and quality of each Cambridge English exam is strictly
controlled (Ffrench et al., 2012). In particular, all examiners need to complete a training
class and pass a qualification assessment in order to be qualified to assess learners’
writings. Next, during the marking procedure, the performance of each examiner
is monitored and regularly reviewed by senior examiners to ensure that the scores
assigned by examiners accurately reflect the writing ability of each learner. This
monitoring procedure also provides instant feedback to examiners concerning their
scoring performance. which ensures the quality of the dataset we use in this thesis.

In fact, such strict control is not only applied to the marking procedure but also
to the environment in which learners compose and finish their writing. For instance,
unlike in ICLE, the academic writing and general writing tasks in IELTS must be strictly
completed within one hour.4 This guarantees that learners taking exams in different
locations are all overseen and examined under the same conditions.

Another benefit of Cambridge English exams is that participating learners have
different first languages, and they come from a variety of countries and cultures.

4https://www.ielts.org/en-us/about-the-test/test-format-in-detail
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The CLC, for example, has collected responses from learners with 86 different first
languages (Nicholls, 2003). This diversity can help us ensure the robustness of the
automated grader we build. In other words, the grader is trained to capture the linguistic
competency of each learner, regardless of their first language or cultural background.
Also, different English exams in the CLC target learners of different CEFR levels, so we
can investigate how the target proficiency level of an exam affects automated assessment.
In contrast to the ICLE and TOEFL11 corpora, there are also different types/genres of
text in each exam, and, similarly, this can be used to evaluate the robustness of the
automated grader.

Our work is an extension of the previous work done by Briscoe et al. (2010);
Yannakoudakis et al. (2011); Yannakoudakis and Briscoe (2012) (to be described in
Section 2.4), who evaluated their approach on the same subset of the CLC. A common
problem in ATS is that different approaches are not evaluated on the same dataset. For
example, although some ATS systems (Page and Petersen, 1995; Cozma et al., 2018)
have achieved reasonably good performance and even outperformed human annotation
agreement on some datasets it is actually hard to interpret which system is better,
because they all evaluated on their own private datasets. Hence, to benchmark with
previous work, we hence test our hypotheses on the same CLC subset released by
Yannakoudakis et al. (2011).

Finally, the CLC is the biggest dataset our research group can access. Due to licensing
issues, many corpora such as the Hong Kong University of Science and Technology
(HKUST) corpus (Milton and Chowdhury, 1994) are unobtainable. In contrast, our
research partner Cambridge Assessment is willing to share their dataset to test our
assumptions and methods in this thesis.

2.1.2.2 Product Categories

The products of Cambridge English exams can be classified into the following categories:

• The main suite consists of a series of exams including Key English Test (KET),
Preliminary English Test (PET), First Certificate of English (FCE), Certificate of
Advanced English (CAE) and Certificate of Proficiency in English (CPE). These
exams target learners with different CEFR language proficiency levels;

• The business suite (BEC) focuses on business English (e.g. business preliminary,
business vantage and business higher) with different CEFR language proficiency
levels;

• The universal exams without a target proficiency level include the International
English Language Teaching System (IELTS) and the Business Language Testing
Service (BULATS).
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All the Cambridge English exams have writing sections to examine and gauge
learners’ writing abilities. The writing sections in the main suite and business suite are
designed to target specific proficiency levels. In contrast, the universal exams do not
target a specific proficiency level. In this thesis, we investigate the exams in the main
suite and IELTS. We will describe the exams and their corresponding datasets in more
detail in Chapter 3.

2.2 Machine Learning

Most previous work into ATS relies on machine learning to model the relationship
between texts and scores (Page, 1968; Larkey, 1998; Yigal and Burstein, 2006; Yan-
nakoudakis, 2013; Zesch et al., 2015; Dong and Zhang, 2016; Taghipour and Ng, 2016;
Tay et al., 2018). In this section, we introduce several machine learning models used
in ATS. More details about different machine learning techniques can be found in the
textbooks and surveys of Mitchell (1997); Bishop (2006); Murphy (2012); Goodfellow
et al. (2016). The aim of machine learning is to implement a system capable of learning
from an experience related to a task to improve the system performance in this task
based on a performance measure (Mitchell, 1997).

There are several tasks in machine learning, one of which is supervised learning. In
supervised learning, the system learns a function f that predicts output yi ∈ Y given
input xi ∈ X without explicit human instructions. In automated assessment, the output
could be a scalar yi, which is the score of the text marked by a human examiner, or a
vector yi, which represents different aspects of the quality of a text. In this thesis, we
assume each output is a scalar yi. The input xi is a text written by a learner. This learning
process requires an annotated dataset, a machine learning model and an appropriate
optimisation method to learn the relationship between the input and output space.
In automated assessment, the annotated dataset consists of a collection of texts with
scores marked by human examiners; we define this dataset as the training set {x}train in
supervised learning. The procedure for the system to learn this relationship is called
training. The machine learning model can only read data in a specific format, and the
process that maps each text to a model-readable format is defined as feature extraction.
The format of the model-readable data of xi could hence be a vector x with size D:

xi =< xi,1, xi,2, . . . , xi,D >

It could also be a sequence of vectors or other possible forms depending on how the
model is designed. During training, we want the predictions ŷi made by the model
on the input xi to be as close as possible to the gold score yi. We therefore need some
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performance measures P to quantitatively describe this closeness, and the model should
be optimised on a pre-defined target function which reflects the performance measure
we are interested in. In other words, P should ideally get better when we are optimising
the pre-defined target function.

After we train a model, we need to ensure the model performs well on future unseen
data. To evaluate future performance, we reserve an annotated dataset and evaluate the
trained model on this held-out dataset. This procedure is called testing, and the unseen
annotated dataset {x}test used in testing is the test set. The format of the training and
test sets should be the same, and they should both have been marked and annotated by
human examiners.

In order to optimise on the performance measure P, we need to define some
configurational parameters before training. Compared to the parameters of the model
directly learned during the training process, these configurational parameters cannot be
directly learned from the training process. These configurational parameters are called
the hyper-parameters of the model. The hyper-parameters of a model could be the
parameters controlling the complexity of the parameters learned by the model including
the regularisation term, the learning rate of the optimisation method, or the time when
we stop training the model. During training, when deciding appropriate values for
hyper-parameters, we can tune the model on a development set, which is another
annotated dataset following the same annotation procedure as the training and test sets.
We use the optimal hyper-parameters on the development set in the trained model we
evaluate on the test set. This hyper-parameters tuning process is called validation.

In contrast to supervised learning, unsupervised learning does not involve any
annotated dataset but identifies the pattern and structure of some unannotated data that
might be useful for some downstream tasks. At the intersection of supervised learning
and unsupervised learning is semi-supervised learning. Semi-supervised utilises both
labelled and unlabelled data instances to learn the relation between the input space X
and the output space Y. Only limited work (Chen et al., 2010) in automated assessment
studied unsupervised learning.5 Most previous work in this field relies on supervised
learning (Page, 1968; Larkey, 1998; Briscoe et al., 2010; Yannakoudakis, 2013). Our work
in the following chapters is also based on supervised learning because the patterns
learned from unsupervised learning might not capture the patterns to predict the scores
we are interested in. For this reason, we focus on supervised learning in this thesis.

5Although Chen et al. (2010) did not explicitly use essay scores in training their model; their work
still needs some supervised signals, such as knowing the historical score distribution so that they knew
the number of unique terms in each essay has a strong correlation with the essay scores in their dataset.
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2.3 Supervised Learning

Generally speaking, three different board supervised learning methods that have
previously been applied to automated assessment include regression, classification
and ranking. In regression, the model predicts a score on a continuous scale, while in
classification, it predicts a label from a finite set. For example, it would be a regression
task to predict the amount of rainfall on a particular day, but a classification task to
predict whether it will rain or not. This latter case is a binary-classification task. In
contrast, a ranking model aims to determine the order of a set of inputs. For example,
we can rank essays from best to worst based on overall quality.

In this section, we will describe several machine learning models used in automated
assessment, which cover the necessary knowledge required to understand the techniques
relevant to this dissertation.

2.3.1 Linear Regression

We start with the simplest regression model: linear regression. Linear regression is a
regression technique. It assumes that given a data set {(xi, yi)}Ni=1 of N instances, the input
space X and the output space Y form a linear relationship. The prediction function f for
a given data instance xi ∈ RD is defined as follows:

f (xi; w, b) = wTxi + b = ŷi (2.1)

ŷi is the value predicted by f for xi; w ∈ RD and b ∈ R are the model parameters to
be learned in training. During training, the target function we would like to optimise
can be described in Equation 2.2:

min
w,b

Cost(w, b) = Error(ŷ,y) + λReg(w, b) (2.2)

The first term Error(ŷ,y) in this equation means that we want to minimise the error
between the predictions ŷ and gold labels y. Some common metrics quantifying
Error(ŷ,y) include the mean-squared error (L2 error):

ErrorL2(ŷ,y) =
1
N

N∑
i=1

(ŷi − yi)2 (2.3)

and the mean-absolute error (L1 error):

ErrorL1(ŷ,y) =
1
N

N∑
i=1

|ŷi − yi| (2.4)
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The second term in the target function Equation 2.2 is the regularisation term that
simplifies the model complexity. After training, we expect the model not only to
correctly mark texts in the training set, but also to accurately predict scores for unseen
data instances. In other words, rather than merely memorising and overfitting the seen
data, we want the model to generalise well on the unseen data. Adding a regularisation
term λReg(w, b) into the target function can hence avoid the model overfitting to the
noise in the training set. λ is the hyper-parameter to balance the contribution between
the error term and the regularisation term in the target function. Commonly used
regularisation terms include the L2 penalty:

RegL2(w, b) = ||w||22 + b2 =

D∑
d=1

w2
d + b2 (2.5)

and the L1 penalty:

RegL1(w, b) = ||w||1 + |b| =
D∑

d=1

|wd| + |b| (2.6)

The target function Equation 2.2 can be optimised by different approaches, the most
well-known of which is gradient descent. In this approach, at each iteration, we calculate
the partial derivatives of the parameters w and b over the target function Cost(w, b) with
∂Cost
∂w and ∂Cost

∂b . We then update each parameter by adding its negative partial derivative:

w := w − η
∂Cost(w, b)

∂w

b := b − η
∂Cost(w, b)

∂b

(2.7)

η is the learning rate hyper-parameter to be configured before we start to train the
model. We repeat this procedure until w and b converge. It has been proven that
gradient descent always converges to the global minimum if the target function is
strictly convex and the learning rate η is appropriately chosen (Boyd and Vandenberghe,
2004). More advanced optimisation methods are also available, but they are not the
focus of this dissertation so we refer the reader to Goodfellow et al. (2016); Boyd and
Vandenberghe (2004) for more information.

2.3.2 Support Vector Machines

The support vector machine (SVM) is a popular machine learning technique proposed
by Cortes and Vapnik (1995) used for classification. It has shown good performance in a
wide variety of natural language processing tasks (Joachims, 1998b). The explanation in
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Figure 2.1: SVM hyperplanes that separate blue and red points. Left: some valid
hyperplanes separating the given points; Right: the optimal-hyperplane found by the
SVM which maximises the distance (margin) between the two dashed hyperplanes
bounding the blue and red points, respectively.

this section can be found in the notes written by Ng6.
An SVM model is a maximum-margin classifier. In order to explain the intuition

behind maximum margin, let us start with binary classification. In Figure 2.17, given N
points {(x1, y1), . . . , (xN, yN)}, we are asked to find a (green) boundary to separate these
N positive and blue (y = 1) and negative and red (y = −1) points. This hyperplane can
be described by the set of points x satisfying the following equation:

wTx + b = 0 (2.8)

In the SVM, it is assumed that the ideal boundary we are looking for should maximally
separate the positive and negative data instances. If the data points are linearly separable
by the ideal boundary, there should exist another two hyperplanes (the two green dashed
lines in Figure 2.1) in parallel to the ideal boundary. Each dashed hyperplane bounds all
the points from the same category. The distance between these two dashed hyperplanes
is called the margin in the SVM, and the ideal hyperplane lies halfway between these
two dashed hyperplanes. The data points (the red and blue solid points) lying on the
two dashed hyperplanes are the support vectors. The two dashed hyperplanes can
respectively be described by the equations

wTx + b = −1 (2.9)

and
wTx + b = +1 (2.10)

6http://cs229.stanford.edu/notes/cs229-notes3.pdf
7Source: http://docs.opencv.org/2.4/doc/tutorials/ml/introduction to svm/introduction to svm.html
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In order to maximise the margin between the two hyperplanes 2
||w|| , we can reformulate

this problem as:

min
w,b

1
2
||w||2

subject to yi(wTxi + b) ≥ 1 ∀i ∈ 1, . . . ,N
(2.11)

This is a quadratic convex optimisation problem that can be solved using existing
optimisation methods such as the ellipsoid method (Grötschel et al., 2012, p.64).

So far, we have assumed that the points from negative and positive classes are
linearly separable. In order to make the algorithm work in the non-linearly separable
case and also more robust to the outliers in data, we add a slack variable ξi for each data
instance (xi, yi) as:

ξi = max(0, 1 − yi(wTxi − b)) (2.12)

and we reformulate the minimisation problem in the following way:

min
w,ξ

C
N∑

i=1

ξi +
1
2
||w||2

subject to

yi(wTxi + b) ≥ 1 − ξi ∀i ∈ 1, . . . ,N

ξi ≥ 0,∀i ∈ 1, . . . ,N

(2.13)

C is the hyper-parameter to balance the degree of error we can tolerate and how
much sacrifice we can accept if the margin found by the model becomes smaller. This is
similar to the hyper-parameter controlling the regularisation term in linear regression
(Equation 2.2).

The optimisation problem we are solving now is defined as the primal optimisation
problem. In contrast, we can also turn the SVM optimisation into a dual problem. Solving
the dual problem can help us know the contribution of each data instance in deciding
the final learned hyperplane in the SVM model. For Equation 2.13, we first wrap the
target function we are minimising and the constraints together into L(w, b, ξ,a, r) (the
generalised Lagarangian) by the Lagrange multiplier:

L(w, b, ξ,a, r) =
1
2

wTw + C
N∑

i=1

ξi −

N∑
i=1

αi[yi(xT
i w + b) − 1 + ξi] −

N∑
i=1

riξi (2.14)
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Here we define:

f0(w, ξ) ≡
1
2

wTw + C
N∑

i=1

ξi (2.15)

f αi (w, b, ξi) ≡ −[yi(xT
i w + b) − 1 + ξi] (2.16)

f r
i (ξi) ≡ −ξi (2.17)

We represent θprimal(w, b, ξ) as maxα,r:α,r�0 L(w, b, ξ,a, r), and minw,b,ξ θprimal(w, b, ξ) is
equivalent to the primal optimisation problem in Equation 2.13:

p∗ = min
w,b,ξ

θprimal(w, b, ξ) = min
w,b,ξ

max
α,r:α,r�0

L(w, b, ξ,a, r) (2.18)

If we swap the minimum-maximum order in this equation, we get the dual optimisation
problem maxα,r:α,r�0 θdual(α, r):

d∗ = max
α,r:α,r�0

θdual(α, r) ≡ max
α,r:α,r�0

min
w,b,ξ

L(w, b, ξ,α, r) (2.19)

The solution to the dual (maximisation) problem d∗ is the lower bound to the solution
of the primal (minimisation) problem p∗:

d∗ ≤ p∗ (2.20)

Based on the Slater condition (Slater, 1959), the lower bound provided by the dual
problem is exactly the optimal solution for the primal problem, because f0, f αi and f r

i are
all convex functions. Moreover, the optimal solutions w∗, b∗, ξ∗, α∗ and r∗ should satisfy
the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951):

∂
∂wi

L(w∗, b∗, ξ∗,α∗, r∗) = 0, i = 1, . . . ,N

∂
∂ξi

L(w∗, b∗, ξ∗,α∗, r∗) = 0, i = 1, . . . ,N

∂
∂b

L(w∗, b∗, ξ∗,α∗, r∗) = 0

a∗i f αi (w∗, b∗, ξ∗i ) = 0, i = 1, . . . ,N

r∗i f r
i (ξ∗i ) = 0, i = 1, . . . ,N

f αi (w∗, b∗, ξ∗i ) ≤ 0, i = 1, . . . ,N

f r
i (ξ∗i ) ≤ 0, i = 1, . . . ,N

α∗i ≥ 0, i = 1, . . . ,N

r∗i ≥ 0, i = 1, . . . ,N

(2.21)
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Based on the KKT conditions, we can substitute w, b, ξ and r by α and further turn
maxα,r:α,r�0 θdual(α, r) into the following form:

max
α

W(α) =

N∑
i=1

αi −
1
2

N∑
i, j=1

yiy jαiα jK(xi, x j)

subject to

0 ≤ αi ≤ C ∀i ∈ 1, . . . ,N∑N
i=1 αiyi = 0

(2.22)

where K(xi, x j) is the kernel function that encodes the relationship between xi and x j.
More specifically, K(xi, x j) is the inner product between vectors xi and x j if K is a linear
kernel. We can also use other kernels such as a polynomial or radial basis function
kernel to map x into a non-linear space, which might improve the model’s capability of
capturing more useful patterns in classification and handling of cases when data are not
linearly separable.

By treating the primal problem as a dual problem, it becomes easier and faster to do
non-linear transformations on the X space by applying different kernels including the
radial basis function and polynomial kernels. In addition, some optimisation methods
such as sequential minimal optimisation (Platt, 1998) and tricks such as heuristic
shrinkage (Joachims, 1998a) can accelerate the convergence rate and reduce the memory
usage of SVMs. Besides that, by combining the primal and dual optimisation problems
together, Hsieh et al. (2008) further speeds up SVMs by the dual coordinate descent
method based on the linear kernel.

2.3.3 SVM Pairwise Ranking

An easy approach to solve a ranking problem by SVMs is Ranking SVM (Joachims,
2002). This method treats ranking as a pairwise ranking problem. In this problem, we
have N texts, and r is the set of all the pairs of texts xi and x j where xi receives a higher
score than x j has. The model needs to correctly decide which text should get a higher
score in each pair of texts. We can apply the binary classification framework used in the
SVM to solve the ranking problem based on a linear kernel by:

min
w,ξ

C
∑

(xi,x j)∈r

ξi, j +
1
2
||w||2

subject to

wT(xi − x j) ≥ 1 − ξi, j ∀(xi, x j) ∈ r

ξi, j ≥ 0,∀(xi, x j) ∈ r

(2.23)
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Figure 2.2: Illustration of SVR. Left figure: The black boundaries of the grey region
represent the upper and lower boundaries of SVR. The scores of the points in the grey
area can be correctly predicted by SVR, and the score errors predicted by the SVR model
for the points outside of the grey region are zero (Equation 2.24). Right figure: the error
function of L2 loss in SVR.

The number of constraints is twice the size of all the possible pairs r, and we can use
the same optimisation strategy used in the SVM to learn the model optimal parameters
as w∗.

During prediction, given a dataset {xi}
N
i=1, we calculate the ranking score ŷrank

i for each
data instance xi by w∗ · xi, and the rank of {xi}

N
i=1 is sorted based on {ŷi}

N
i=1. The ranking

problem is also solvable in the dual form in the SVM with different kernels other than
the linear kernel.

2.3.4 Support Vector Regression

For the target function of linear regression model described in Equation 2.2, we can
see that the regression problem can actually be fitted into the SVM framework in
Equation 2.13 as support vector regression (SVR) (Vapnik, 1999; Smola and Schölkopf,
2004), because both equations contain the error and regularisation terms to be minimised.
Based on the optimisation problem for the SVM in Equation 2.13, the regression problem
based on a linear kernel is formulated by adding the error constraints in both directions
with L2 loss by:

min
w,b,ξupper,ξlower

C
N∑

i=1

((ξupper
i )2 + (ξlower

i )2) +
1
2
||w||2

subject to


yi −wTxi − b ≤ ε + ξupper

i

wTxi + b − yi ≤ ε + ξlower
i

ξupper
i , ξlower

i ≥ 0

∀i ∈ 1, . . . ,N

(2.24)
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where C is the cost hyper-parameter, and ε is the hyper-parameter controlling the
margin of tolerance where no penalty is given to errors. ξupper

i and ξlower
i describe how

much error the model makes on xi in terms of the upper and lower boundaries in the
SVR (Figure 2.2). Similarly to the SVM, this regression problem can still be converted to
its dual form so that we can find the support vectors of SVR. After we find the optimal
parameters w∗ and b∗ during training, we can easily do prediction for an incoming
instance xi as ŷi = w∗ · xi + b∗.

2.4 Related Work in ATS

Many researchers have studied different aspects of ATS Some work focus on scoring on
different types of texts including short text (Leacock and Chodorow, 2003b; Sukkarieh
et al., 2003; Pulman and Sukkarieh, 2005; Mohler et al., 2011; Tack et al., 2017), narra-
tion (Somasundaran et al., 2015, 2018), academic writing (Yang et al., 2018) and essay
scoring. Automated essay scoring could be further split into non-English (Ishioka and
Kameda, 2006; Östling et al., 2013; Horbach et al., 2017) and English essay scoring.
Researchers approach English essay scoring from rule-based approaches (Mitchell et al.,
2002) and different machine learning approaches including regression (Page, 1968, 2003;
Burstein, 2003; Cozma et al., 2018), classification (Larkey, 1998; Rudner and Liang, 2002;
Rosé et al., 2003; Coniam, 2009) and ranking (Briscoe et al., 2010; Yannakoudakis et al.,
2011; Chen and He, 2013) based models. More recent work focus on neural network
without handle crafted feature engineering but innovation on model structure (Alikan-
iotis et al., 2016; Taghipour and Ng, 2016; Dong and Zhang, 2016; Dong et al., 2017;
Tay et al., 2018). Other aspects have been addressed in ATS including spelling and
grammatical errors (Leacock and Chodorow, 2003a; Han et al., 2006; Tetreault and
Chodorow, 2008), semantics (Rehder et al., 1998; Lonsdale and Strong-Krause, 2003),
coherence (Miltsakaki and Kukich, 2000, 2004; Higgins and Burstein, 2007; Burstein et al.,
2010; Yannakoudakis and Briscoe, 2012; Burstein et al., 2013; Somasundaran et al., 2014),
discourse (Burstein et al., 2001; Lin et al., 2011; Feng et al., 2014; Song et al., 2017), argu-
mentation (Persing and Ng, 2015; Ghosh et al., 2016; Klebanov et al., 2016; Wachsmuth
et al., 2017), prompt (Higgins et al., 2006; Persing and Ng, 2014; Cummins et al., 2016a;
Rei, 2017), clarity (Persing and Ng, 2013), structure (Somasundaran et al., 2016; Persing
et al., 2010), sentence parallelism (Song et al., 2016), question difficulty (Pado, 2017),
non-English response detection (Yoon and Higgins, 2011), utilising data from different
sources (Phandi et al., 2015; Cummins et al., 2016b) and evaluation (Williamson, 2009;
Yannakoudakis and Cummins, 2015). In this section, we describe several influential
approaches in this field. For more detailed reviews of ATS, see Shermis and Burstein
(2003); Valenti et al. (2003); Pérez-Marı́n et al. (2009); Shermis and Burstein (2013);
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Burrows et al. (2015).
Page is one of the pioneers of ATS research. The Project Essay Grade (PEG) (Page,

1968, 1994; Page and Petersen, 1995; Page, 2003) built by his team was the first attempt
at building an ATS system. In the original paper (Page, 1968), Page claimed that the
writing quality of an essay could be measured by different observable attributes. He
proposed several features to approximate these attributes, which he named proxes. The
proxes used in his system include:

• word count;

• the number of pronouns, POS tags, punctuation marks and paragraphs;

• word length describing the complexity of word usage;

• the presence of a title

Linear regression was used to learn the relationship between essays and scores.
Page’s original work in the 1960s was not widely used because computer usage

availability was minimal at the time, and Page needed to hire staff to transcribe texts
from paper to tape and punched cards so that a computer could directly handle and read
these texts (Page, 2003). This problem did not change until the 1990s when more families
could afford and access computers. This not only encouraged more researchers to work
on ATS, but also made it easier to build larger learner corpora and apply more advanced
technology in ATS. For example, Shermis et al. (2001) added a web interface to PEG to
make it easier and faster to collect learners’ texts for further research, and Page (2003)
added more features including different dictionaries and parsers. PEG was evaluated
on 1,314 essays provided by the Educational Testing Service (ETS) from the Praxis test to
assess applicants for teacher certifications. The average correlation between the system
and human judge was 0.742, even higher than the average inter-annotator correlation
0.646 (Page and Petersen, 1995).

In terms of the real-world application of ATS systems, Kukich (2000) pointed out
two problems that have discouraged people from using ATS systems. One problem is
that these systems are relatively easy to fool. Specifically, since longer essays tend to get
higher scores, learners could cheat simply by writing more words. Another more crucial
problem is that people think these proxes do not capture other critical writing features
including content, organisation and style. It may be artificial to emphasise the ability to
score highly on an ATS system, when this might not correlate with the ability to plan,
compose and reorganise high-quality texts in different conditions and circumstances.

To make an ATS system work better, different researchers have approached this
problem from various angles. For example, Larkey (1998) brought classification
approaches to ATS to add extra features to the regression model. He used the naive
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Bayes classifier (Maron, 1961) to predict whether an incoming essay was good or bad,
and the k-nearest-neighbour classifier (Altman, 1992) to gauge the similarity between
the incoming essay and all the low-quality and well-written essays in the training set.
For naive Bayes, he built several classifiers, one for each level band. Each classifier
was used to predict the probability that the grade of an incoming essay was higher or
lower than the given level band. Compared to the Project Essay Grade, Larkey also
injected more lexical information into his ATS system via his classification models. A
bag of stemmed words was used to represent the features of each essay in naive Bayes.
For the k-nearest-neighbour classifier, they encoded each essay via its word occurrence
weighted by term-frequency inverse-document-frequency (Spärck Jones, 1972). Finally,
a linear regression grader with low variance features filtered was built to predict essay
scores based on the outputs from the naive Bayes, the k-nearest-neighbour classifier
and extra features measuring the length statistics of characters, words and sentences,
and word varieties in each essay. The grader was trained and tested on five different
datasets separately from social studies, physics, law and two general college exams, and
Larkey experimentally showed that the classification models with lexical information
could boost ATS system performance based on text-complexity features such as word
length and the number of sentences in one essay.

Rudner and Liang (2002) treated ATS as a classification task as well. Their system, the
Bayesian Essay Test Scoring sYstem (BETSY), was based on the multivariate Bernoulli
model (McCallum and Nigam, 1998) and the multinomial naive Bayes model to classify
a given essay with an appropriate grade. The features they used include the word
unigram and bigram counts in each essay. They conducted their research on the
responses to a biology exam for the Maryland High School Assessment. The best
combination of model, features and feature selection method achieved 80% accuracy.
One potential problem with their approach was that it ignored the order among different
level bands. For example, given the three levels 1, 2 and 3 in a grading criterion, the
classification method they used did not know that score 3 is better than 2 and 1, and 2 is
better than 1. This is different from Larkey (1998)’s work, which preserved the order
between bands. Furthermore, the likelihoods from Larkey’s classifiers were also used as
features in a regression model, which further preserved the difference between bands.
Further experiments in Briscoe et al. (2010) also showed that the ranking and regression
approaches outperformed treating ATS as an unordered classification task such as naive
Bayes and maximum entropy classification.

Foltz et al. (1999) built their ATS grader to mark essays. Their product Intelligent
Essay Assessor (IEA) mainly used the features from the following five categories:

• content (essay semantic similarity and vector length based on latent semantic
analysis);
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• lexical sophistication (word variety and confusable words);

• mechanics (punctuation, spelling and capitalisation);

• grammar (n-gram features, grammatical errors and grammar error types);

• style, organisation and development (sentence-sentence coherence, overall essay
coherence and topic development)

Unlike the work we have discussed so far, they started to emphasise the importance
of content using latent semantic analysis (LSA) (Deerwester et al., 1990; Laham and
Landauer, 1998; Landauer et al., 1998). For LSA, they trained a semantic model from a
large domain-specific background corpus. The texts from this corpus were similar to
the reading materials read by the learners who participated in their exams. LSA builds
a co-occurrence matrix A for the background corpus, in which the rows and columns
represent the words and the paragraphs in the corpus, respectively. Element ai j in the
matrix A describes whether word i appears in paragraph j of the background corpus or
not. The truncated singular-value decomposition is then applied to compress the matrix
to a smaller one.

To use LSA to mark a text submitted by a learner, they treated each text as a bag of
words (Harris, 1954), in which each text was a vector and each element of that vector
was a word count. The bag of words vector for each text was then mapped to the
latent space. They then calculated the cosine similarity between the model answers
and learners’ responses to represent the similarity of the conceptual content. For each
learner’s essay, they selected the top K graded essays with the highest cosine similarity
as the learner’s essay, and gave the learner’s essay a score equal to the average of these
top K essay grades. In subsequent work, they found that the length of the LSA vector
strongly correlated with the essay scores (Rehder et al., 1998). In addition to semantic
features, Foltz et al. (1998) used coherence features which were calculated from the
average similarity of adjacent sentences in learners’ texts according to LSA. Although
they claimed other types of features, such as the strength of introduction, arguments
and conclusion, were also used in their system, they did not disclose how these features
were extracted and used in ATS.

The Educational Testing Service (ETS) developed their ATS system e-rater and
deployed it to score high-stakes assessments including Graduate Record Examinations
(GRE) and TOEFL (Burstein, 2003; Attali and Burstein, 2004). E-rater has several sub-
systems that extract features from each text. The outputs from these sub-systems are
then combined together. They grouped their features into the following categories:

• grammatical errors;

• discourse structure and organisation-related features;
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• topic-relevant word usage;

• style-related word usage;

• sophistication, register and relevance of word usage.

The grammatical errors are detected by different error detection systems including
erroneous bigrams (Leacock and Chodorow, 2003a), article errors (Han et al., 2006) and
preposition errors (Tetreault and Chodorow, 2008). Discourse structure and organisation
development features are extracted by building a discourse function classifier to detect
the role of each sentence (Burstein et al., 2003). Topic-relevant word usage is measured
by the word frequency cosine similarity between the incoming essay and the other
score essays from the same topic (Burstein et al., 1998). Style-related word usage is
measured in terms of whether a word is overly repeated (Burstein and Wolska, 2003).
Sophistication features include the ratio between word type and token, vocabulary level,
and average word length (Yigal and Burstein, 2006).

After the features are extracted from each text, a linear regression model is applied
to predict the essay scores in an exam. The model is trained to learn the weights of some
features above, while the weights of other features are pre-defined manually based on
the requirements and goals of the exam. E-rater has also deployed an anomaly detection
system to filter essays, which detects essays that might be either off topic, copies of the
prompt, written in bad faith, a result of keyboard mashing, or otherwise exceptionally
similar to other essays, hence likely to be plagiarised.

Briscoe et al. (2010) were the first to investigate ATS on the exams from Cambridge
Assessment. In their work, they treated ATS as a ranking problem and proposed a
discriminative model called Time Aggregated Perceptron (TAP), which is a variation of
the batch perceptron method (Rosenblatt, 1958; Bös and Opper, 1998). During training,
TAP iteratively updates the model parameters in the direction of all misclassified items.
The step size for the parameters in each iteration is controlled by a decaying hyper-
parameter. This decaying hyper-parameter causes the step size to gradually shrink,
which terminates the parameters update. They used TAP in the context of pair-wise
ranking, to determine which of the two texts written by two learners was better. The
texts forming the pairs in the training set were sampled to reduce the number of data
instances to train the ranking model. The distribution of the sampled training set was
restricted to the same score distribution as the original training set. They showed that
their TAP ranking model outperformed the classification approaches including naive
Bayes and maximum entropy in this task. Moreover, they found a strong temporal
effect in ATS. Specifically, they trained a model on data collected during different years
and evaluated the model on the FCE exam papers collected in 2001. The model trained
on the 400 essays, collected in 2001, achieved 0.69 in terms of the Pearson correlation,
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but only 0.60 if the model was trained on the data from the year 1997, even though the
training set for that year was more than twice as large with 900 essays. Based on these
results, they suggested that either the type of prompts or the marking rubrics of the
exam or both might have evolved and changed over time, which contributed to this
performance degradation.

Yannakoudakis et al. (2011) extended Briscoe et al. (2010)’s work by adding grammar
complexity features. For each sentence in a learner’s text, these complexity features
measure the distance between any pair of words in the parse tree of this sentence.
They believed that longer range syntactic dependencies written by a learner might
demonstrate that the learner has a higher proficiency level in English writing. They
released a subset of the FCE dataset used in Briscoe et al. (2010) as the FCE-PUB dataset.
They also compared SVM ranking and support vector regression on the FCE-PUB
dataset. The ranking model significantly outperformed support vector regression in
terms of Pearson and Spearman correlations.

In their subsequent work, Yannakoudakis and Briscoe (2012) investigated how
different coherence features affected the overall score of the texts in the FCE-PUB dataset.
They showed that the coherence features based on incremental semantic analysis
(ISA) (Baroni et al., 2007) measuring average adjacent sentences similarity improved
their ATS system in terms of Pearson and Spearman correlations. Yannakoudakis (2013)
combined their previous work (Yannakoudakis et al., 2011; Yannakoudakis and Briscoe,
2012) together and compared ATS in the FCE and IELTS exams. They found that the
coherence features such as ISA working for one exam might not work for another exam,
and vice versa. Consequently, coherence feature transferability across different exams
in ATS still deserves further investigation.

Recent work in ATS investigated using deep neural network models on raw word
features. Alikaniotis et al. (2016) showed that a bi-directional long-short term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) neural network model with pre-trained
word embeddings outperformed a model with feature engineering on the Automated
Student Assessment Prize (ASAP) dataset (Section 2.1). Taghipour and Ng (2016)
improved model performance of their neural network model by averaging the LSTM
hidden layers across all timestamps. Dong et al. (2017) demonstrated that modelling the
relationship between sentences in their neural network model could further improve
model performance. Tay et al. (2018) added a coherence feature into their neural model.
Although progress is visible in building deep neural network models for ATS, the
performance of a model heavily depends on which datasets are evaluated. All the deep
neural network work mentioned here was evaluated on the ASAP dataset. Farag et al.
(2017) used the same model in Taghipour and Ng (2016) and tested their model on the
FCE-PUB dataset. Even if Farag et al. used more training data and fine-tuned their
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embeddings on the error annotated Cambridge Learner Corpus (Section 2.1), there was
still a performance gap between their neural model and the shallow model with feature
engineering implemented by Yannakoudakis and Briscoe (2012). In addition, Cozma
et al. (2018) showed that performance improvement could be achieved on the ASAP
dataset with a shallow model based on a histogram intersection string kernel (Ionescu
et al., 2014) and features derived from clustering embeddings (Butnaru and Ionescu,
2017). Therefore, we did not include any results from neural models in this thesis.

As we conducted our research on the exams from the Cambridge Assessment, and
the most relevant ATS work on these exams we know is the work done by Briscoe et al.
(2010); Yannakoudakis (2013) on the FCE exam. Therefore, we will build our baseline
models and extend their work based on Briscoe et al. (2010); Yannakoudakis (2013) in
this thesis.

2.5 Methods Differentiating Data with Different Meta-

Properties

The grading criteria for texts answering one question might be different for another
question, and thus training a single ATS system for texts, without discerning questions,
might ignore the potential influence on scoring brought by their properties. For example,
a high-quality letter should use correct salutations and closing phrases. In comparison, a
text summarising a figure or table might rely on more numerical expressions to describe
its details. Such exam-dependent properties discussed in Section 1.1 affect the way in
which a piece of text is evaluated.

However, training separate ATS systems for texts answering different questions
might not be an ideal approach, as texts with different properties may also share
commonalities in their grading criteria. For example, we can see that in the exam
products in Section 2.1, texts are penalised for misspellings and grammatical errors
if they hinder reading comprehension. Therefore, if we were to isolate these texts to
train different grading systems separately, each system would have fewer texts from
which to learn the relationship between texts and scores, and this might lead to poorer
performance relative to training a single and universal grader for the whole set of texts.

In summary, the differences and commonalities between the questions learners
answer might be reflected in their corresponding grading criteria, and multi-domain
learning is a technique to differentiate data from various domains, while capturing the
similarities between domains. In this section, we summarise related work in multi-
domain learning and research progress for multi-domain learning in ATS. We borrow
the concepts from multi-domain learning (Joshi et al., 2012) to define the meta-properties
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categorise a text as the attributes of the text, in which each attribute can be used to
categorise various texts into different domains.

2.5.1 Overview

We begin with a brief review of existing multi-domain learning techniques and related
topics discussed in previous work. A more detailed summary can be found in the
reviews written by Jiang (2008); Pan and Yang (2010); Weiss et al. (2016).

Multi-domain learning is highly relevant to domain adaptation, multi-task learning
and transfer learning. Previous work has failed to reach a consensus on a universally
accepted definition of these four paradigms, and the terminology used to describe them
has often been mixed. Here we adopt the following definitions for the four paradigms:

• domain adaptation adapts knowledge from one or more source domains to improve
model performance on the data from the target domain on the same task (Pan and
Yang, 2010).

• transfer learning is similar to domain adaptation, but the process can relate to
a different task (Pan and Yang, 2010). For example, it may involve adapting
knowledge from tasks such as POS tagging, parsing or grammatical error correction
to ATS. In transfer learning (Section 2.5.1), when we build a model to mark the
texts from a single dataset, we only use texts from other datasets to optimise model
performance on this single dataset. This single dataset is the target dataset; the
other datasets excluding the target dataset are the source datasets.

• multi-domain learning emphasises improving the overall performance of data
instances from all domains under the same task by modelling the similarities and
differences between domains.

• multi-task learning aims at working on different tasks by sharing common knowl-
edge, while separating and persevering the differences between tasks (Caruana,
1998). Multi-task learning emphasises multiple tasks, while multi-domain learning
focuses on only one single task.

2.5.2 Related Methods

In this section, we briefly describe some common methods used in this area.
Daume III (2007) proposed frustratingly easy domain adaptation (FEDA), which is a

feature-augmentation method used to model the similarities and differences between
data from different domains. This method has a shared representation for all domains,
and each domain duplicates the shared representation to capture domain-specific
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patterns useful in prediction as the domain-specific representation. Daume III showed
that this method can improve model performance in named entity recognition, POS
tagging and recapitalisation on data from different domains. More details will be
described in Section 5.3.

Finkel and Manning (2009) proposed hierarchical Bayesian domain adaptation for
named entity recognition and dependency parsing. In their framework, the authors
grouped data instances from different domains into a hierarchy, in which each node
corresponds to a conditional random field (CRF) model (Lafferty et al., 2001) for a
domain. Each model shares the parameters inherited from their parent model by adding
an L2 regularisation penalty multiplied by a hyper-parameter σ to force models to be
similar to their parent model. All of the models in this hierarchy are trained together. At
test time, the model at each leaf node is used to predict the labels of its corresponding
data instances. Finkel and Manning demonstrated that their model is theoretically
equivalent to FEDA, with extra hyper-parameters σ controlling the similarity between
different domains.

Blitzer et al. (2006) described an domain adaptation method called structural corre-
spondence learning (SCL). In their method, after extracting the feature vector x from each
data instance x, they selected the top m most frequent features as the pivot features.
For each pivot feature f , they trained a linear classifier with parameters w f to predict
whether feature f exists in each feature vector x to determine the correlation between
features. Matrix W represents all the parameters 〈w1, . . . ,wm〉 learnt for each feature f ,
and matrix W is further factorised using singular value decomposition W = UDVT with
θ = UT

[1:h,:], with h representing the hyper-parameter used to determine the dimension
of the projected space. This step creates a new representation for feature vector x in a
projected space. Each feature vector x is then augmented with θx as x ⊕ θx, and these
augmented feature vectors are finally fed into a machine learning model used to learn
the relationship between the augmented input space Xaug and the output space Y.

Jiang and Zhai (2007) proposed an instance weighting method for domain adaptation,
applying different weights for instances from the source and target domains. They
first trained a logistic regression classifier on the data from the target domain and
filtered out the top instances from the source domain that were wrongly classified
with the highest confidence, as this might constitute noise and negatively affect the
classifier’s performance on the target domain. They then used the trained classifier to
obtain predictions for the unlabelled data instances from the target domain. The top
instances with their predicted labels with the highest confidence were used to expand
the training set in a style similar to self training and semi-supervised learning. Finally,
they weighed all data instances from the target domain more highly than those from the
source domain in order to make the model attend more closely to the target domain.
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They experimentally demonstrated that their method could result in improvement for
POS tagging, named entity recognition and spam filtering.

Dredze et al. (2010) introduced a multi-domain learning and domain adaptation
framework based on the confidence-weighted linear classifier (Dredze et al., 2008).
The confidence-weighted linear classifier is an online-learning classifier defined by a
multivariate Gaussian distributionN(µ,Σ) with a diagonal covariance matrix Σ ∈ RN×N

and mean parameters µ ∈ RN. Σ also defines the confidence values over µ. More
specifically, the ith diagonal item Σi in Σ determines how much uncertainty the classifier
has in µi in µ. In their method, Z confidence-weighted linear classifiers, and each
classifier is trained for the data instances from one domain z with Σz and µz. These
classifiers are then combined to form a new classifier cc with Σc and µc by minimising
the sum of the distancesD between the combined classifier and all the classifiers for
each domain:

(µc,Σc) = arg min
µc,Σc

Z∑
z=1

D(N(µc,Σc)||N(µz,Σz); bz) (2.25)

bz =< bz
1, . . . , b

z
N >∈ R

N
+ represents the hyper-parameters to control the contribution of

the classifier trained for domain z. D represents the distance between two distributions.
AsN(µ,Σ) is a multivariate Gaussian distribution with a diagonal covariance matrix,
the authors further definedD(N(µc,Σc)||N(µz,Σz); bz) as the weighted sum of multiple
univariate Gaussian distributions:

D(N(µc,Σc)||N(µz,Σz); bz) =

N∑
i=1

bz
iD(N(µc

i ,Σ
c
i )||N(µz

i ,Σ
z
i )) (2.26)

The distanceD(N(µc
i ,Σ

c
i )||N(µz

i ,Σ
z
i )) between two Gaussian distributions could be

the L2 distance defined over the differences of means and variances of the distributions:

DL2(N(µc
i ,Σ
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i )||N(µz

i ,Σ
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z
i )

2 + (Σc
i − Σz
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and the optimal values for µc
i and Σc

i by setting the derivative ofDL2 over µc
i and Σc

i to 0
will be:

µc
i =

Z∑
z=1

b̃z
iµ

z
i (2.28)

Σc
i =

Z∑
z=1

b̃z
i Σ

z
i (2.29)

and b̃z
i =

bz
i∑Z

z=1 bz
i
. D could also be the Kullback-Leibler divergence DKL between two
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probability distributions:

DKL(N(µc
i ,Σ

c
i )||N(µz

i ,Σ
z
i )) =

1
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(log
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i )

2

Σc
i

− 1) (2.30)

and the optimal values yield:
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(2.32)

The combined model is finally used to predict the label of a data instance xi from a
domain as sign(µc

· xi). The authors showed that their multi-domain learning models
performed better than the baselines without discerning domain differences and FEDA
on spam filtering and sentiment analysis. However, their method is only applicable to
classification, which does not fit to this thesis.

2.5.3 Distinguishing Attributes in ATS

Some studies have aimed at distinguishing attributes in ATS.
Heilman and Madnani (2013) studied multi-domain learning for automated short

answer scoring on two datasets. Their first dataset was the Beetle dataset (Dzikovska
et al., 2012), which focuses on basic electricity and electronics, while the second dataset
was the Science Entailment Corpus (Nielsen et al., 2008), which covers a wide range of
scientific topics. The authors scored each answer using FEDA that distinguishes which
dataset and question each answer corresponded to. They only examined short answer
scoring on scientific topics, while in this thesis, we will look at ATS for English as a
foreign language (EFL) learners. Furthermore, they did not weigh the contributions from
various domains differently, and their datasets included only one type of question, while
Finkel and Manning (2009) showed that weighting domains differently can improve
model performance.

Phandi et al. (2015) studied domain adaptation using the Automated Student
Assessment Prize (ASAP) dataset described in Section 2.1. In their work, the authors
split the essays from eight prompts in the ASAP dataset into four folds. Each fold
contained the essays from two prompts. They then examined how the essays from one
prompt could improve model performance on the essays for the other prompt in each
fold. They modified Bayesian linear ridge regression (Bishop, 2006, p.152) by adding a
prior so their model could dynamically learn how much contribution to derive from
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the source domain to assist the grading system on the target domain. Their work only
studied the adaptation of essays from one prompt to another, and they only studied
prompts in their work.

Cummins et al. (2016b) approached the ATS problem using a multi-task learning
framework. Similar to Phandi et al. (2015), they also worked on the ASAP dataset.
The authors used FEDA to encode each prompt, then built a timed aggregate percep-
tron (Briscoe et al., 2010) to rank any pair of essays on quality. Finally, they trained a
linear regression model to map the ranking scores for each prompt to the original scores.
Similar to Phandi et al., they only studied prompt. Besides that, they only weighed each
prompt equally in FEDA, which is similar to what Heilman and Madnani (2013) have
done.

In summary, the work utilising meta-properties in ATS focused on texts written by
English native speakers with FEDA and its variant, and there might be some useful
meta-properties not identified in previous work (e.g. genre). To supplement the missing
parts of previous research, we are studying the texts written by EFL, and we aim to
identify more intra-exam meta-properties that might be helpful in ATS in Chapter 5 and
investigate inter-exam meta-property for exams targeting different English proficiency
levels in Chapter 6. We also want to study how multi-domain learning and transfer
learning can help us improve model performance for the datasets provided by Cambridge
Assessment. For the multi-domain learning and transfer-learning techniques, we start
with FEDA, because it is a well-tested and easily-implemented method, proven to
be useful in ATS. More specifically, in Chapter 5, we will use FEDA to differentiate
multiple intra-exam meta-properties and use the FEDA variant to weigh meta-properties
differently. In Chapter 6, we will use transfer learning and instance weighting to leverage
more datasets for which the grading criteria are hugely different. In future work, we
might expand our work to more extreme cases such as when we have limited data
for the target domain, and in this scenario, we can test methods such as structure
correspondence learning to explore useful features in ATS.

2.6 Evaluation

In order to measure how well an ATS system performs, we need a suitable evaluation
procedure. In ATS evaluation, researchers collect a group of texts marked by trained
human judges. We then compare the scores predicted by an ATS system against
these gold human scores in order to calculate various quantitative metrics, and these
metrics quantitatively describe model performance. This evaluation procedure gives us
consistent and instant feedback on how well an ATS system performs.

Previous researchers (Chen and He, 2013; Alikaniotis et al., 2016; Taghipour and

52



Ng, 2016; Dong and Zhang, 2016; Dong et al., 2017; Tay et al., 2018; Cozma et al., 2018),
investigating the ASAP dataset, reported quadratic weighted Cohen’s kappa (Cohen,
1960, 1968). Briscoe et al. (2010); Yannakoudakis et al. (2011); Yannakoudakis and Briscoe
(2012); Alikaniotis et al. (2016) reported correlation metrics such as Pearson (Pearson,
1895) and Spearman (Spearman, 1904) correlations. Alikaniotis et al. (2016); Persing
and Ng (2013, 2014, 2015) also included error metrics such as mean-absolute error and
root-mean-squared error (RMSE) in their results.

Yannakoudakis and Cummins (2015) summarised and discussed the problems
behind various metrics used in ATS. The authors went against Cohen’s kappa in ATS,
and one of the reasons they suggested was the bias problem in Cohen’s kappa (Byrt et al.,
1993; Eugenio and Glass, 2004; Sim and Wright, 2005; Powers, 2012). In the bias problem,
Cohen’s kappa rewards an ATS system whose predicted scores marginal distribution
is different from gold scores, even if the percent agreement between the predictions
and gold scores gets lower (Graham and Jackson, 1993), and vice versa (Feinstein and
Cicchetti, 1990; Cicchetti and Feinstein, 1990). Brennan and Prediger (1981) suggested
that it is appropriate to use Cohen’s kappa only if both marginals to be compared in
kappa are fixed, which does not apply in most machine learning evaluation scenarios,
because the marginal of system predictions can freely vary. Furthermore, Uebersax
(1987); Gwet (2002); Pontius Jr and Millones (2011) criticised the agreement correction in
Cohen’s kappa, which describes a random-guessing baseline following the gold score
marginal distribution. It might be misleading as most systems do not make predictions
in this way. More discussion related to Cohen’s kappa can be found in Craggs and
Wood (2005); Artstein and Poesio (2008).

Yannakoudakis and Cummins (2015) also criticised the usage of correlation metrics,
because these metrics do not take any systematic biases into account. In other words,
the correlation between gold scores and system predictions could still be +1 if system
predictions are consistently higher or lower than gold scores. Another problem with
Spearman’s correlation is that it does not handle ties well, despite attempts to remedy
this problem (Amerise and Tarsitano, 2015). According to the grading scale of the exams
in Cambridge English, CAE and FCE are marked based on four different aspects (to be
described in Section 3.2), each of which has five different levels. If we aggregate the
scores from these fours aspects as the total scores, then there are 21 different scores if we
also include 0. As more responses are collected for an exam, the number of ties increases
rapidly, so this problem cannot be ignored.

In this thesis, we will optimise our model based on RMSE, and RMSE is the major
metric we are going to investigate. Compared to Cohen’s kappa, RMSE does not
suffer from the bias problem, and neither does it have the problems discussed in the
correlation metrics. To benchmark and facilitate comparison with previous works, we
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also report the Pearson and Spearman correlations for reference. We do this because
our work is closely related to the work of Briscoe et al. (2010); Yannakoudakis et al.
(2011); Yannakoudakis and Briscoe (2012) (Section 2.4), because they mainly reported
results in terms of Pearson and Spearman correlations, we will do the same for reasons
of comparison.

54



55



56



Chapter 3

Datasets and Baseline

To study ATS, we first need to determine the datasets and ATS model we wish to
investigate. In this chapter, we describe the datasets and baseline model evaluated in
this thesis. The baseline model is an extended version proposed by Yannakoudakis et al.
(2011), which we use as a benchmark for our modified models in the following chapters.

3.1 Exams

In this section, we first describe the exams from which we collected our data. All the
exams were designed by Cambridge Assessment. More Specifically, our work focuses
on the main suite and the International English Language Testing System (IELTS) exam
described in Section 2.1.2.1. Each exam in the main suite has a target CEFR proficiency
level, while IELTS is designed to evaluate learners’ skills at all proficiency levels. The
main suite consists of:

• the Key English Test (KET);

• the Preliminary English Test (PET);

• the First Certificate in English (FCE);

• the Certificate in Advanced English (CAE);

• the Certificate of Proficiency in English (CPE).

For the main suite, the exams we have used in this thesis exclude CPE as we lack
sufficient data for this exam. The target CEFR proficiency level for each exam is
presented in Figure 3.1.
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Figure 3.1: Interpretation between each exam to its CEFR level

3.1.1 KET

KET is used to assess learners’ abilities to use English in simple situations.1 Its target
CEFR level is A2. The KET writing section only contains one writing task: composing a
short message based on given instructions. The number of words required is 25-35.

3.1.2 PET

PET is used to assess learners’ mastery of English basics.2 Its target CEFR level is B1.
The PET writing section contains continuous writing. Learners must choose between
writing an informal letter or a story based on two given questions. In either response,
they are required to write approximately 100 words.

1www.cambridgeenglish.org/exams/key/
2http://www.cambridgeenglish.org/exams/preliminary/
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3.1.3 FCE

FCE is used to assess whether learners have the language skills to live and work
independently in an English-speaking country or study on courses taught in English.3

Its target CEFR level is B2. The exam contains two writing tasks. In the latest version of
FCE by 2017, both writing tasks require learners to compose text passages of 140-190
words. The first writing task is a compulsory task that asks learners to write a letter
based on a given prompt. Learners need to cover all the key information required in the
prompt. In the second writing task, learners choose to write a report, a review or an
article. Prior to 2015, learners could also choose to write a story in the second writing
task.

There is one FCE public dataset released by Yannakoudakis et al. (2011), which was
collected between 2000 and 2001. At that time, the FCE exam had a different word
count requirement (120-180). In this thesis, we use FCE-PUB to differentiate between
the dataset released by Yannakoudakis et al. and the other FCE dataset we will use in
this thesis. We will describe the latter in Section 3.3.

3.1.4 CAE

CAE is used to determine whether learners have reached a high level of achievement in
learning, using and mastering English.4 The exam is comprised of two writing tasks.
The first task is compulsory, and it requires learners to write an essay describing their
opinions to a given question. The second task allows learners to respond to one of three
questions, and the three questions involve writing a letter/email, proposal, report or
review depending on the given context, topic purpose and target readers.5 Learners are
required to finish both writing sections in 90 minutes, and the required word count for
each task is 220-260 words.

3.1.5 IELTS

IELTS is used to test the language skills of learners wishing to study, work or live in
an English-speaking country. This exam can be further classified into two categories:
IELTS academic and IELTS general training. Both exams are comprised of two required
writing tasks.6 The first task in the IELTS academic exam presents learners with a graph,
a table, a chart or a diagram to describe, summarise and explain the key information
conveyed. In contrast, the first task in the IELTS general exam presents a situation and

3http://www.cambridgeenglish.org/exams/first/
4http://www.cambridgeenglish.org/exams/advanced/
5http://www.cambridgeenglish.org/exams/advanced/exam-format/
6https://takeielts.britishcouncil.org/prepare-test/understand-test-format/writing-test
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asks them to write a letter based on the situation, using an appropriate writing style.
In both exams, learners are asked to write at least 150 words in their responses to the
first task. The second writing task in both exams requires learners to write an essay that
discusses an argument to express their own opinions , using at least 250 words. The
writing time allocated in both exams is 60 minutes.

3.2 Grading Criteria

For the exams in the main suite, the KET writing task is evaluated by a single holistic
score ranging from 0 to 5.7 For PET, FCE and CAE, each answer is evaluated along
four dimensions: content, communicative achievement, organisation and language.
Each dimension is scored from Band 0 to Band 5.8,9,10 In contrast, the FCE-PUB dataset,
which refers to an older version of the FCE exam, uses single holistic score ranging from
0,0 to 5,3 (The original scores in Table 3.1). In the IELTS exam, both the first and second
tasks are evaluated along four dimensions: both tasks are evaluated in the same three
dimensions including coherence and cohesion, lexical resource, and grammatical range
and accuracy. For the fourth dimension, the first task is evaluated according to task
response, while the second task is for task achievement11. In addition, in both writing
tasks, each dimension is scored from Band 0 to Band 9, and the scores from all four
dimensions are averaged and rounded to 0.5 to represent the overall score of a text.

3.3 Dataset Preparation for Each Exam

As described in Section 2.2, in order to use a machine learning model to predict text
scores, we require a training set for the model to learn the patterns between the input
text space X and the output score space Y, a development set to tune the model hyper-
parameters, and a test set to evaluate model performance. Therefore, we split the KET,
PET, FCE, CAE, IELTS and FCE-PUB datasets into the training, development and test
sets. We use KET-PRI, PET-PRI, FCE-PRI and CAE-PRI to represent the datasets for the
KET, PET, FCE and CAE exams, respectively.

For the FCE-PUB dataset, we follow the way used by Yannakoudakis et al. (2011),
using all the 97 scripts from 2001 as the test set. Here, we borrow the term script used by

7http://assets.cambridge.org/97805217/54804/excerpt/9780521754804 excerpt.pdf
8http://www.cambridgeenglish.org/images/cambridge-english-assessing-writing-performance-at-

level-c1.pdf
9http://www.cambridgeenglish.org/images/cambridge-english-assessing-writing-performance-at-

level-b2.pdf
10http://www.cambridgeenglish.org/images/231794-cambridge-english-assessing-writing-

performance-at-level-b1.pdf
11https://www.ielts.org/en-us/ielts-for-organisations/ielts-scoring-in-detail
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Yannakoudakis et al. to refer to the set of texts written by a learner in one exam session.
In each dataset, each script consists of one or two texts, and each text corresponds
to a writing task. We then randomly split the scripts from 2000 into the training and
development sets. For the other five datasets, we randomly sample 300 scripts for the
test set and 300 scripts for the development set, and the rest for the training set.

3.3.1 Scores

Next, we choose the score for each text that we use in the output space Y for our ATS
model.

For the KET-PRI dataset, we use the single holistic score for each text as the score for
the ATS model to predict. All texts from the PET-PRI, FCE-PRI and CAE-PRI datasets
are evaluated according to four aspects, and we add the scores of these four aspects
together to obtain a total score in the range 0-20. We use this overall score as the output
score for our study. As the original score of each text in the FCE-PUB was not reported
on a numerical scale, Cambridge Assessment helps us convert the scores to integers
between 0-20. The mapping is shown in Table 3.1. Finally, for the IELTS dataset, we
directly use the existing total score as the individual score for each text for our study.

Original→ New Original→ New
0,0→ 0 3,2→ 13
1,1→ 1 3,3→ 14
1,2→ 4 4,1→ 15
1,3→ 7 4,2→ 16
2,1→ 9 4,3→ 17
2,2→ 10 5,1→ 18
2,3→ 11 5,2→ 19
3,1→ 12 5,3→ 20

Table 3.1: Score mapping for the FCE-PUB dataset.

Some exam scripts referred to multiple tasks. Each task was given a single score, and
the script was also given an overall score. To distinguish the scores here, we define the
single score for each text marked by human examiners as the individual-level score,
and the aggregate of these scores as the overall-level score for the script, reflecting the
learner’s writing overall proficiency level. Furthermore, in this thesis, we define the
ATS model predicting individual text scores as the individual-level model, and the
model predicting the overall-level score of of a single learner in one exam session as
the overall-level model. In this dissertation, we mainly investigate the individual-level
scores and potential improvements to the individual-level model, as the individual-level
provide learners with more feedback on each text, relative to the overall-level scores.
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We keep only those scripts with valid scores across all answer(s), because there are
typos in some answers scores, and some answers do not have any score marked by any
human examiner. Table 3.2 presents the statistics of each dataset.12

Dataset CEFR Score Range MEAN STD #P #S #train #dev #test
KET-PRI A2 0-5 3.86 1.32 6 2096 1496 300 300
PET-PRI B1 0-20 15.26 2.40 16 2069 1469 300 300
FCE-PRI B2 0-20 14.51 2.18 37 2047 1447 300 300
CAE-PRI C1 0-20 13.20 2.69 50 2088 1488 300 300

IELTS A1-C2 0-9 5.78 0.96 58 1604 1004 300 300
FCE-PUB B2 0-20 13.92 2.92 31 1212 822 293 97

Table 3.2: Statistics of each dataset. MEAN and STD represent the mean and standard
deviation of the scores in each dataset, respectively. #P and #S refer to the number of
prompts and scripts, respectively.

3.4 Baseline Model

In this section, we present the baseline model, which is trained and evaluated using the
datasets reported in Section 3.3.

3.4.1 Notation

We introduce some notation to facilitate our discussion. Each dataset consists of M
task(s) for each learner to answer, and there are J learners for each dataset. We assume
that each learner only takes any exam once. tm, j denotes the mth text written by the jth

learner l j, answering the mth task taskm in an exam session. Text tm, j can be represented
as a sequence of words written by learner l j. The individual score for text tm, j marked by
a human examiner is sm, j.

TL j = {tm, j|m = 1, ...,M} denotes the set of all the texts written by learner l j in an
exam. In other words, TL j is equivalent to the script answered by learner l j in one exam
session.

TTm = {tm, j| j = 1, ..., J} denotes the sequence of all responses produced for the mth

task tm answered by all learners in the same exam.

3.4.2 Features

In the baseline model, a feature vector fm, j is extracted from text tm, j. fm, j is then used
to train an individual-level model to learn the relationship between the feature vector

12The FCE-PUB dataset is publicly available at https://ilexir.co.uk/datasets/index.html (Yannakoudakis
et al., 2011), while the other datasets have a restricted access within our research group.
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space F and the text score space S. Ultimately, the model predicts the score of text tm, j as
ŝm, j. In some cases, the predicted score ŝm, j might be invalid on the given grading scale.
For example, an ATS model might predict a score of 4.3, but it is invalid for a grading
scale that requires an integer. Hence, we round each ŝm, j to the nearest valid score on
the given grading scale as r̂sm, j (4 in the given example).

The baseline model we use is similar to that of Yannakoudakis et al. (2011) (Section 2.4).
Specifically, both models are identical in terms of the following features:

1. the number of words in each text;

2. the count of phrase structure (PS) rules;

3. the trigram missing rate counting how many trigrams in each text are not covered
in a background corpus, which are treated as erroneous trigrams;

4. the count of word unigrams and bigrams;

5. the count of POS unigrams, bigrams and trigrams based on the Constituent
Likelihood Automatic Word-tagging System (CLAWS, Garside (1987)) C2 tagset.

However, there are also some differences between our model and that of Yan-
nakoudakis et al.. Our model only uses the top parse result for grammatical relation
distance measures, while they model used the top ten results. In addition, the trigram
missing rate is only estimated on the UKWaC corpus (Ferraresi et al., 2008), whereas
they also used the Cambridge Learner Corpus (Section 2.1) for this purpose. For the
missing rate, we also count how many unigrams and bigrams are not covered in the
background corpus.

In addition, we also include the following features:

• the number of misspelt words;

• the count of different grammatical relation types;

• the minimum, maximum and average sentence and word lengths.

We use the Moby lexicon13 as a dictionary to check word spelling. Some learners
wrote texts such as phone numbers, and these words, while correctly spelled, are not
included in the dictionary. Furthermore, as the RASP tokeniser is originally optimised
for parsing, some words correctly spelled by learners might not be optimally tokenised,
so these tokens may not be found in the dictionary, either. Thus, we define a word as
correctly spelled when:

• it contains any number, or

13/usr/share/dict/linux.words in Scientific Linux 6.8
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• it appears in the dictionary when all punctuation marks are removed in this word
(e.g. u.s.a→ usa, append. → append), or

• the word is split into sub-tokens at each punctuation mark, and all subsequent
tokens exist in the dictionary (e.g. day.Good→ day Good)

Otherwise, we treat this word as a misspelt word.
The POS tags, grammatical relations and phrase structure rules described above are

derived from the robust accurate statistical parsing (RASP) toolkit (Briscoe et al., 2006).
We remove all features with a frequency in the training set of below four. The count of
word unigrams and bigrams and POS unigrams, bigrams and trigrams are weighted
using term frequency-inverse document frequency (TF-IDF) (Spärck Jones, 1972).. We
then keep the top 25,000 features with the highest absolute Pearson correlation with the
individual-level scores. Finally, each feature vector is normalised so that ||fm, j||2 = 1.

3.4.3 Models

In this thesis, we use the support vector regression (SVR) and ranking SVM implementa-
tion from LIBLINEAR (Fan et al., 2008) with L2 loss. The reason we use a linear kernel
but not others is that Yannakoudakis et al. (2011) experimentally demonstrated that the
ranking SVM (Section 2.3.3) with a linear kernel can produce competitive performance.
In addition, it provides an intuitive explanation for the importance of each feature,
which makes it easier for us to study the behaviour of the model we train. Furthermore,
LIBLINEAR is highly optimised for the linear kernel, which is much faster than other
SVM implementations, such as LIBSVM (Chang and Lin, 2011) and SVMlight (Joachims,
2008).

3.4.4 Benchmark

Yannakoudakis et al. (2011) only built an overall-level model and evaluated it in terms
of the Pearson (ρprs) and Spearman (ρspr) correlations on the FCE-PUB dataset. As we
used more features and conducted feature selection based on Pearson’s correlation, in
this section, we benchmark our models with their results on the overall level.

We first concatenate all the texts in script TL j to create the concatenated text ct j so
that

ct j := t1, j ⊕ t2, j ⊕ ... ⊕ tM, j (3.1)

We then extract the script feature vector c f j from the concatenated text ct j based on the
features defined in Section 3.4.2. We define the combined script score cs j of a script on the
overall level as the sum of all the individual text scores within the script cs j :=

∑M
m=1 sm, j
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The FCE-PUB dataset has another overall script score ss j for script TL j, which
is slightly different from the combined script score cs j. In order to compare with
Yannakoudakis et al.’s work, we build two overall-level models based on SVR and the
ranking SVM respectively, and each overall-level model uses the script feature vector
c f j and its script score ss j (rather than cs j) with a linear kernel. For the ranking SVM
model, in order to generate a valid predicted score on the given grading scale, we train
another linear regression model R1

→ R1 to linearly fit the ranking scores predicted by
the ranking SVM back to original overall-level scores. Finally, for each overall-level
model, we round the scores that are predicted from its corresponding regressor to the
nearest valid scores on the given grading scale.

We tune the cost hyper-parameter on the development set and report the results with
the lowest RMSE on the development set. Results are presented in Table 3.3, which also
reports RMSE, and the Pearson (ρprs) and Spearman correlation (ρspr) values. The upper
part of the table shows previous results. UKWaC and CLC are the results reported in
Yannakoudakis et al. (2011) on the ranking SVM models which use the UKWaC (Ferraresi
et al., 2008) and the Cambridge Learner Corpus (CLC) (Nicholls, 2003) as the background
corpus for n-gram missing rate estimation respectively. DISCOURSE is the CLC version
with extra discourse features. In the DISCOURSE version, Yannakoudakis and Briscoe
(2012) used the feature based on incremental semantic analysis (Baroni et al., 2007)
measuring average adjacent sentence similarity to model the coherence of a text.

Table 3.3 does not include any recent neural model on the FCE-PUB dataset, because
the neural model developed by Farag et al. (2017) showed that there is still a performance
gap between the neural model and the models built on hand-crafted features for this
dataset.

Model RMSE ρprs ρspr

UKWaC - 0.735 0.758

CLC - 0.741 0.773

DISCOURSE - 0.749 0.790

SVR 3.988 0.761 0.787

RANKING SVM + LINEAR FITTING 4.123 0.735 0.766

Table 3.3: Comparison of previous work and our baseline models for the FCE-PUB test
set on the overall level.

As Table 3.3 shows, our models can achieve relatively good performance. The
Pearson correlation ρprs of SVR is higher than that of DISCOURSE (0.761 versus 0.749),
while the Spearman correlation ρspr is close (0.787 versus 0.790). We also found that
by selecting appropriate features and hyper-parameters, the regression model can
outperform the ranking model for ATS. This is different from Yannakoudakis et al.
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(2011)’s finding that the ranking model is significantly better than the regression model
for this task. The main reason we suggest might be the hyper-parameters selection. The
default cost hyper-parameter used in Yannakoudakis et al. (2011) is 1.0 in SVMlight if all
the input vectors are L2 normalised, and the optimal cost hyper-parameter we found
in this section is 2000.0, which might explain the difference between our findings and
theirs. As we are optimising RMSE, and SVR achieves better performance on RMSE
(3.988), we therefore use SVR in all the remaining experiments that are presented in this
thesis.

3.5 Results

In this section, we present the results for each dataset evaluated on SVR for each dataset
in Table 3.4. In this table, columns dev rmse to dev spr record the performance of SVR
in terms of RMSE, the Pearson correlation (ρprs) and the Spearman correlation (ρspr) on
each development set, and columns test rmse to test spr are the performance of SVR on
the corresponding test set.

Dataset dev rmse dev prs dev spr test rmse test prs test spr

KET-PRI 0.970 0.661 0.585 0.968 0.706 0.648

PET-PRI 2.247 0.594 0.541 2.179 0.567 0.467

FCE-PRI 1.994 0.379 0.363 1.991 0.359 0.339

CAE-PRI 2.421 0.377 0.341 2.405 0.411 0.410

IELTS 0.701 0.697 0.680 0.693 0.684 0.659

FCE-PUB 2.402 0.567 0.571 2.569 0.662 0.652

Table 3.4: Results of the baseline model for each dataset on the individual level.

It is difficult to compare the same grader performance across datasets, because
the datasets might differ in terms of their inherent properties or score distributions.
However, if we naively conduct a comparison across of the absolute values, we can
see that the model achieves better performance on some datasets (e.g. KET-PRI and
IELTS), relative to others (e.g. FCE-PRI and CAE-PRI). One possible reason is that the
features that work well on one dataset might not perform well for other datasets, which
has been confirmed in previous work (Yannakoudakis, 2013) (Section 2.4). However,
identification of the best feature set for each dataset is not the main goal of this thesis, so
we will leave this as a future research direction.
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3.6 Summary

In this chapter, we presented the datasets that we will use to conduct our research. We
then described the implementation of a baseline automated text grader. The baseline
model we built gets competitive performance compared to previous work. We finally
evaluated this model using multiple datasets. The performance of the baseline system
will be used to assess our models later on in the following chapters.
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Chapter 4

Multi-Source Scoring by Bringing
Authorship Knowledge

4.1 Introduction

To evaluate a learner’s writing skill more thoroughly, many English exams such as
IELTS and TOEFL ask them to answer multiple writing tasks. These tasks are drawn
from different topics and genres, and each learner is required to write a text for each
task. In practice, human judges score each text with an individual-level score, and these
scores are aggregated to obtain an overall-level score, which reflects their writing skills.

When an individual-level ATS model scores texts, previous work has made an
implicit assumption that all responses to all tasks are composed independently. This is
not true for exams requiring responses to multiple tasks. The writing skill exemplified
by a learner during the same exam session will not normally vary greatly, so the texts
written by one learner may share some commonalities, such as preferential word usage
and common mistakes, and should also approximately equally reflect their writing
skills. We suggest that when an individual-level model predicts the score of a learner’s
text, it is helpful to use their other texts as a reference and pass it as an extra piece of
information to the model. We refer to this information as authorship knowledge, and
we define using multiple texts from the same learner as an extra reference to assess each
individual text as multi-source scoring.

No previous work has investigated the utility of authorship knowledge in ATS except
for Yannakoudakis et al. (2011). One possible reason is that most datasets only have one
text written by each learner except for the First Certificate in English public (FCE-PUB)
dataset in Section 3.1.3 released by Yannakoudakis et al., which contains two texts
per learner. Yannakoudakis et al. did not explicitly consider the usage of authorship
knowledge but built an overall-level model to directly predict the overall-level score of
all the texts written by each learner. In this chapter, we will explicitly investigate the
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influence of authorship knowledge.
The potential benefit of passing this authorship knowledge to an ATS model might

come from a reduction of data sparsity and an improvement in the robustness and
reliability of feature extraction. Normally the text length to each task is limited, and
so there may be insufficient features exemplified in a single response to differentiate
the language quality of the response. Hence, it can be challenging for an ATS model to
learn the mapping between texts and scores accurately.

In this chapter, we test the hypothesis that authorship knowledge can improve
individual-level model performance. We pass this authorship knowledge to an
individual-level model in two independent ways: feature fusion and score fusion.
When the model predicts the score for one text, both methods pass all the texts written
by the same learner to the model as an extra reference. We show that adding this
knowledge could be helpful in an individual-level ATS model in some cases. To our
knowledge, this is the first study that investigates how authorship knowledge affects
the ATS system performance.1

4.2 Datasets

As the aim of this chapter is to investigate the effect of authorship knowledge on ATS,
we require a dataset that includes more than one text written by each learner, and each
text is scored with an individual score. We use the four datasets for our experiments
described in Chapter 3 including FCE-PUB, IELTS, FCE-PRI and CAE-PRI. All datasets
contain two writing tasks for learners to answer. The answers to both tasks were scored
on the same grading scale. Each script was written on the same day so we can safely
assume no dramatic variation in writing skill for each learner.

One problem that exists in these four datasets is that all the texts written by the
same learner were marked by the same human examiner. More specifically, each human
examiner marked the first and second text written by a learner in sequence. Therefore,
the score of the second text might be affected by the first marked text, even though the
grading criteria for each exam requested that each text should be scored independently.
To wipe out this bias possibility, Cambridge Assessment provided extra two datasets
for our research in this chapter. The extra two datasets FCE-S and CAE-S were collected
from the FCE and CAE exams respectively after the year 2014. The difference between
these two datasets and the previous datasets in Chapter 3 is that during the marking
procedure, all the texts written by all learners in FCE-S and CAE-S were shuffled together.

1A version of this chapter has been published in the 13th Workshop on the Innovative Use of NLP
for Building Educational Applications, North American Chapter of the Association for Computational
Linguistics: Human-Language Technologies (Zhang et al., 2018). In this paper, I proposed the ideas of
this paper and conducted all the experiments. Other co-authors gave me feedback at different stages.
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Each human examiner then marked individual texts from different learners in a random
sequence. Hence, no human examiner knew whether any pair of texts was written
by the same learner or not. This removes the grading bias caused by knowing the
authorship behind each text. We summarise the six datasets used in this chapter in
Table 4.1.

Dataset CEFR Score Range MEAN STD #P #S #train #dev #test
unshuffled datasets

FCE-PUB B2 0-20 13.92 2.92 31 1212 822 293 97
FCE-PRI B2 0-20 14.51 2.18 37 2047 1447 300 300
CAE-PRI C1 0-20 13.20 2.69 50 2088 1488 300 300

IELTS A1-C2 0-9 5.78 0.96 58 1604 1004 300 300
shuffled datasets

FCE-S B2 0-20 13.72 2.41 67 6584 5984 300 300
CAE-S C1 0-20 12.77 2.73 35 1910 1310 300 300

Table 4.1: Details of the six datasets used in this chapter. The letter S in FCE-S and
CAE-S means these two datasets are the shuffled datasets. MEAN and STD describe
the mean and standard deviation of the scores. #P means the number of prompts and
#S means the number of scripts in the corresponding dataset.

4.3 Notation

We reuse the notation in Section 3.4.1 for our discussion. Each dataset consists of M
tasks for each learner to answer, and there are J learners in one dataset. We assume that
each learner only takes any exam once. All the datasets we described in Section 4.2
require learners to write two texts. Hence, M = 2 in each dataset. tm, j denotes the mth

text written by learner l j, which answers the mth task taskm in a dataset. text tm, j can be
represented as a sequence of words written by learner l j. The individual score for text
tm, j marked by a human examiner is sm, j.

TL j = {tm, j|m = 1, ...,M} denotes the set of all the texts written by l j in a dataset. In
other words, TL j is equivalent to the script answered by learner l j.

TNm, j = TL j \ tm, j denotes the neighbouring text set of tm, j, which is all the texts
written by learner l j except for tm, j. In this chapter, since each dataset only contains 2
texts per learner, the number of texts in TNm, j is always 1, and the only text in this set is
t(M−m+1), j, which denotes the neighbouring text of tm, j.

TTm = {tm, j| j = 1, ..., J} denotes the sequence of all the texts to the mth task taskm

answered by all learners in the same exam.
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4.4 Assumptions

The hypothesis we investigate in this chapter that using authorship knowledge to
improve the performance of an ATS model relies upon two core assumptions.

The first assumption is that the individual scores should be correlated for each script.
If there is a variable skill j which can describe the writing skill of each learner l j, this skill
skill j is approximately constant during an exam. If we believe the skill of a learner could
be measured by the English exam they take, score sm, j for any task taskm will be a sample
from a distribution centred on skill j during the exam. We also assume that learners will
not behave totally differently on the two tasks during the same exam session. In this
case, these individual scores should be close and correlated well with their skill skill j,
and including this correlation knowledge into our individual-level model might be
helpful in boosting the model performance.

However, the first assumption is not always correct. In some circumstances, learners
will perform really well on some tasks, but fail to finish other tasks to the same quality,
and they can get low scores on these tasks. An obvious reason for this is that some
learners might have managed their time badly and failed to finish the second task; some
might also be better prepared for the topic and genre elicited by one of the prompts.

To verify and measure this assumption, we calculate several metrics between all the
texts to the first task (TT1), and the second task (TT2) answered by all the learners in
each dataset. These metrics include the root-mean-squared error (RMSE), the Pearson
correlation (ρprs) and the Spearman correlation (ρspr). The results are given in Table 4.2.

Dataset RMSE ρprs ρspr

unshuffled datasets
FCE-PUB 2.264 0.706 0.704

FCE-PRI 1.902 0.630 0.607

CAE-PRI 2.148 0.684 0.670

IELTS 0.716 0.746 0.735
shuffled datasets

FCE-S 2.566 0.440 0.416

CAE-S 2.984 0.419 0.394

Table 4.2: Relation between TT1 and TT2 to check how the scores of the first and second
text written by each learner are correlated.

As we can see, ρprs and ρspr are above 0.6 in the four unshuffled datasets, and above
0.4 in the two shuffled datasets, and the p-values for ρprs and ρspr of each dataset are
both smaller than 10−10. This verifies our first assumption to some degree that there is a
correlation between the scores of TT1 and TT2. Whether this amount of agreement is
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Figure 4.1: Score fusion between a text written by a learner and its corresponding script
(concatenated text).

beneficial in improving the performance of an ATS model is further investigated in the
following sections.

The second assumption concerns whether passing authorship knowledge to an ATS
model truly improves the model performance by bringing more reliable features and
better understanding about each learner’s writing skill. An alternative explanation
for the possible improvement, if it exists, is brought by the bias during the marking
procedure. When comparing the unshuffled and shuffled datasets on RMSE in Table 4.2,
FCE-S is higher than FCE-PRI, and CAE-S is higher than CAE-PRI, which suggests that
human examiners might be affected when marking the second text after the first. Hence,
we aim to determine whether authorship knowledge truly improves ATS performance
by looking at the shuffled dataset, since any improvement on the unshuffled dataset
might be the result of grading bias.

4.5 Model Fusion

In this section, we describe the approaches to pass the authorship knowledge of each
text into our individual-level model described in Section 3.4. We propose two ways in
which we can pass authorship knowledge into our ATS model, which we refer to as
score fusion and feature fusion.

For score fusion (Figure 4.1), we concatenate all the texts within the same script TL j

together as ct j. We extract the script feature vector cf j from the concatenated text ct j.
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Figure 4.2: Feature fusion between a text written a learner and its corresponding script
(concatenated text).

An overall-level model is trained between cf j and its combined script score cs j. This
overall-level model predicts the combined script score of ct j as ĉs j, and the predicted
normalised combined score

ˆcs j

M is fused with the predicted individual score ŝm, j to get the
predicted fused score f̂ sm, j by linear interpolation:

f̂ sm, j := (1 − α)ŝm, j + α
ĉs j

M

The interpolation hyper-parameter α ∈ [0, 1] is tuned on the development set, and
f̂ sm, j is then rounded to the nearest valid score r̂sm, j on the given grading scale as the
final predicted individual score for text tm, j.

For feature fusion (Figure 4.2), we still extract the script feature vector cf j from ct j.
Then, we define the fused feature vector ffm, j of tm, j as the vector concatenated by fm, j

and cf j together as follows:

ffm, j := (1 − β)fm, j ⊕ βcf j

where β ∈ [0, 1] is the concatenating weight hyper-parameter to be tuned on the
development set. We train an individual-level model on the fused feature vector ffm, j

and text score sm, j, and the predicted score ŝm, j is rounded to the nearest valid score r̂sm, j

on the given grading scale for text tm, j. The benefit of feature fusion compared to score
fusion is that this individual-level model can see the features from both the individual
and overall levels at the training and test time. Hence, the model can optimise on the

74



individual score prediction based on the features from both sides.

4.5.1 What to Fuse

Another question raised by the discussion in Section 4.5 is what to fuse. For text tm, j in
score fusion, instead of fusing the individual score ŝm, j with the combined script score
ĉs j, we can also fuse ŝm, j with the individual predicted score ŝ(M−m+1), j from the other text
within the same script, which is the neighbouring text t(M−m+1), j.

For feature fusion, when we are augmenting text feature vector fm, j to ffm, j, we can
concatenate the feature vector f(M−m+1), j from the neighbouring text t(M−m+1), j instead of
the script feature vectors cf j, which is from the concatenated text ct j. Therefore, we have
two different fusion approaches, and each approach also has two different sources to
fuse.

4.5.2 Alternative View: Structural Probabilistic Models

We can put the fusion methods we proposed in this section into a broader framework
named structured probabilistic models (Koller and Friedman, 2009). Without feature or
score fusion, we implicitly assume score s1, j and s2, j of text t1, j and t2, j written by learner l j

are independent, while in the fusion methods we proposed, we add an explicit structural
constraint so that s1, j and s2, j affect each other now. Adding structural constraints into a
machine learning model is a well-known method, and this method has been proved
effective in different fields such as topic modelling (Blei et al., 2003), parsing (Sha and
Pereira, 2003) and skill rating (Herbrich et al., 2007).

4.6 Results and Discussion

In this section, we evaluate the baseline model in Section 3.4 and the fusion approaches
proposed in Section 4.5 to investigate the influence of authorship knowledge.

The five setups we evaluate include:
BASE: baseline, which is the same SVR in Table 3.3.
SF-NT: SVR with score fusion between each text and its corresponding neighbouring

text.
SF-CT: SVR with score fusion between each text and its corresponding concatenated

text.
FF-NT: SVR with feature fusion between each text and its corresponding neigh-

bouring text.
FF-CT: SVR with feature fusion between each text and its corresponding concate-

nated text.
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setup dev rmse dev prs dev spr test rmse test prs test spr hyper

1. FCE-PUB

BASE 2.402 0.567 0.571 2.569 0.662 0.652 X
SF-NT 2.343+ 0.611+ 0.612+ 2.572 0.693 0.696 0.35
SF-CT 2.318+ 0.607+ 0.610+ 2.495 0.696 0.702 0.70
FF-NT 2.331+ 0.599+ 0.601+ 2.529 0.688 0.688 0.30
FF-CT 2.296+ 0.616+ 0.621+ 2.460+ 0.694 0.695 0.67

2. FCE-PRI

BASE 1.994 0.379 0.363 1.991 0.359 0.339 X
SF-NT 1.965+ 0.407 0.386 1.979 0.371 0.347 0.18
SF-CT 1.963 0.406 0.390 1.954+ 0.398+ 0.377+ 0.32
FF-NT 1.963 0.403 0.391 1.982 0.348 0.324 0.20
FF-CT 1.960+ 0.405 0.390 1.974 0.354 0.333 0.25

3. CAE-PRI

BASE 2.421 0.377 0.341 2.405 0.411 0.410 X
SF-NT 2.401 0.403 0.368 2.387 0.438 0.433 0.37
SF-CT 2.410 0.386 0.356 2.372 0.448+ 0.444+ 0.34
FF-NT 2.380 0.412 0.376 2.356+ 0.460+ 0.455+ 0.50
FF-CT 2.392 0.418 0.390+ 2.360 0.447 0.440 0.70

4. IELTS

BASE 0.701 0.697 0.680 0.693 0.684 0.659 X
SF-NT 0.686 0.725+ 0.708+ 0.686 0.704 0.687+ 0.34
SF-CT 0.690 0.715 0.701 0.691 0.689 0.667 0.33
FF-NT 0.679+ 0.723+ 0.701 0.683 0.698 0.680 0.50
FF-CT 0.685 0.716 0.697 0.664+ 0.720+ 0.710+ 0.70

5. FCE-S

BASE 1.997 0.447 0.375 2.085 0.476 0.442 X
SF-NT 1.979 0.454 0.385 2.050+ 0.501+ 0.463 0.23
SF-CT 1.945+ 0.483+ 0.407+ 2.029+ 0.510+ 0.476+ 0.33
FF-NT 1.947+ 0.483+ 0.391 1.983+ 0.541+ 0.511+ 0.33
FF-CT 1.917+ 0.514+ 0.435+ 2.017+ 0.506 0.481 0.80

6. CAE-S

BASE 2.312 0.521 0.447 2.421 0.504 0.471 X
SF-NT 2.301+ 0.530+ 0.457+ 2.413 0.511 0.480 0.02
SF-CT 2.300 0.537 0.459 2.346+ 0.567+ 0.523+ 0.78
FF-NT 2.288 0.529 0.462 2.370+ 0.529 0.498 0.40
FF-CT 2.263+ 0.556+ 0.484+ 2.361+ 0.548+ 0.513+ 0.67

Table 4.3: Results of different setups. The best setup per dataset is in bold. Numbers in
green mean improvement and red mean degradation over BASE. + means significantly
better (p < 0.05) than BASE using the permutation randomisation test (Yeh, 2000) with
2,000 samples. No result is significantly worse than BASE.
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setup dev rmse dev prs dev spr test rmse test prs test spr

SF-NT 0.028 0.028 0.027 0.046 0.028 0.028
SF-CT 0.028 0.028 0.028 0.028 0.028 0.028
FF-NT 0.028 0.028 0.028 0.028 0.046 0.046
FF-CT 0.028 0.028 0.028 0.028 0.046 0.046

Table 4.4: p-value for each approach estimated by the Wilcoxon signed-rank test (Demšar,
2006) across all the six datasets in this chapter. The metrics of each setup which are
better than the baseline with p < 0.05 are highlighted in the green colour.

For each setup, we train an individual-level model for each exam in Table 4.1. The
model of each setup is optimised on the corresponding development set of each exam
using RMSE. We tune α for score fusion and β for feature fusion on each development
set. We report RMSE, ρprs and ρspr in Table 4.3 for each development and each test set.
The optimal α for each score fusion approach and β for each feature fusion approach
are reported as α/β in Table 4.3. We can derive the following observations based on
Table 4.3.

For feature fusion, feature fusion with neighbouring text (FF-NT) and concatenated
text (FF-CT) is consistently better than the baseline (BASE) on all the datasets except for
the FCE-PRI test set on ρprs and ρspr. For score fusion, score fusion with concatenated
text (SF-CT) is better than BASE on all the six development and test sets. In contrast,
score fusion with neighbouring text (SF-NT) is better than BASE on all the datasets
regarding RMSE except for FCE-PUB. Both SF-CT and SF-NT are better than the baseline
in terms of ρprs and ρspr. The improvement is visible on the two shuffled datasets FCE-S
and CAE-S as well, and we suggest that the improvement is not merely the result of
modelling grading bias.

We notice that in some cases, some methods do not perform well in terms of some
metrics. For example, FF-CT and FF-NT did not get improvement on the FCE-PRI
dataset in terms of ρprs and ρspr. One reason might be that we optimise our models on
RMSE rather than on other metrics. There are differences between these metrics. In
terms of RMSE, we can observe that SF-CT, FF-CT, FF-NT are always better than the
baseline on the test sets.

We also conduct the Wilcoxon signed-rank test (Wilcoxon, 1945; Demšar, 2006) across
the six datasets to see whether any setup is significantly better or worse than BASE across
multiple datasets. The Wilcoxon test we use is based on the SciPy implementation2.
As the score step magnitude of each dataset affects the Wilcoxon test for RMSE, we
multiply all the scores in the IELTS dataset by two, to ensure the minimum score steps
of all the datasets compared have the same value (1.0). We follow the same procedure to

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
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conduct Wilcoxon signed-rank test in the following chapters as well. Based on the result
in Table 4.4, all methods are significantly better than BASE across multiple development
and test sets.

4.6.1 Fusion Hyper-parameters

We now start to discuss the hyper-parameters tuned by each approach. α, β > 0.5 in
each fusion approach tells the ATS model that it should favour the information from the
other source over the current individual text tm, j being marked, and vice versa.

For the fusion with concatenated text ct j, α > 0.5 on FCE-PUB and CAE-S in SF-CT,
and β > 0.5 for all the datasets except for FCE-PRI in FF-CT in Figure 4.3. It is still to be
expected that the model favours ct j over the current text tm, j, because ct j also contains
tm, j, and the information from tm, j is still dominant in the model even if α, β > 0.5.

In comparison, we expect that the model fused with neighbouring text achieves the
best performance on each dataset when α or β is smaller than 0.5, as the model should
focus on the text tm, j being marked. The exception happens on FF-NT for IELTS and
CAE-PRI, where the optimal β = 0.5.

Furthermore, Figure 4.4 visualizes the relation between RMSE and β in FF-NT. If we
tune our model on the test sets, the optimal β for the CAE-PRI and IELTS datasets are
even bigger than 0.5. The results of FF-NT suggest that some features from the tasks
written by the same learner could be highly similar and shared in an ATS model in some
cases.

When we are determining whether we should fuse each text with its corresponding
concatenated or neighbouring text, there is no definite answer. For example, in terms
of RMSE, FF-NT is better than FF-CT on CAE-PRI, IELTS and FCE-S, but not on the
FCE-PUB, FCE-PRI and CAE-PRI test sets.

4.6.2 Score Difference

Although positive effects are observed in most cases, no method is significantly better
than BASE on every dataset and metric we used. One reason might be that it is not
ideal to aggregate the two texts written by the same learner together if the performance
difference between these two texts is big. For example, some learners might perform
well on the first task, but fail to complete the second task. This is what we have discussed
in the first assumption in Section 4.4, and this assumption might be invalid in some
cases. So, we conduct another study to see how the score difference between the two
texts in each script affects the model performance.

We define the script score difference sd j as the score difference between two texts t1, j

and t2, j within the same script TL j, which denotes sd j := |s1, j − s2, j|.
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Figure 4.3: How RMSE changes with β in FF-CT. The vertical blue and orange dash-
dotted lines in each graph represent that the model achieves the lowest RMSE on the
development and test sets at the corresponding β.

The text score difference of tm, j denotes sdm, j := sd j.
The text score error errorm, j denotes the difference between the predicted score and

the gold score of tm, j, and errorm, j := |r̂sm, j − sm, j|.
The text score errors errorm, j produced by BASE and any fusion approach on text tm, j

denote errorBASE
m, j and errorFUSION

m, j respectively.
The performance difference PDm, j between BASE and any fusion approach for text

tm, j denotes the difference between the errors made by two setups:

PDm, j := errorBASE
m, j − errorFUSION

m, j (4.1)
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Figure 4.4: How RMSE changes with β in FF-NT. The vertical blue and orange dash-
dotted lines in each graph represent that the model achieves the lowest RMSE on the
development and test sets at the corresponding β.

PDm, j > 0 means that the fusion approach is better than BASE at predicting the score of
tm, j, and vice versa.

We calculate the Pearson correlationρprs between PDm, j and sdm, j for each development
set in Table 4.5 and each test set in Table 4.6. On the one hand, most values are negative,
and the few positive values in black tend to be close to 0. We suggest that there is a
negative correlation between performance difference PDm, j and text score difference
sdm, j on some datasets.

On the other hand, only the p-values for some negative values are smaller than
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0.05. We think the score differences do not have much negative contribution on model
difference, because the score differences for most scripts are relatively small (Table 4.2).
This might reduce the negative influence of score difference here.

setup FCE-PUB FCE-PRI CAE-PRI IELTS FCE-S CAE-S

SF-NT -0.054 -0.083* -0.043 -0.164* -0.123* -0.001

SF-CT -0.038 -0.066 0.040 -0.133* -0.108* -0.066

FF-NT -0.033 -0.043 0.020 -0.035 -0.103* 0.060

FF-CT -0.052 -0.098* -0.030 -0.056 -0.050 -0.003

Table 4.5: Pearson correlation between performance difference PDm, j and script score
difference sdm, j on the development sets. * denotes p-value < 0.05, and blue denotes a
negative correlation.

setup FCE-PUB FCE-PRI CAE-PRI IELTS FCE-S CAE-S

SF-NT -0.102 -0.034 -0.060 -0.188* -0.039 -0.074
SF-CT -0.156* -0.009 -0.018 -0.107* -0.039 -0.102*
FF-NT 0.002 0.036 0.034 -0.021 0.014 -0.032
FF-CT -0.162* 0.012 -0.005 -0.108* -0.074 -0.048

Table 4.6: Pearson correlation between performance difference PDm, j and script score
difference sdm, j on the test sets. * denotes p-value < 0.05, and blue denotes a negative
correlation.

4.7 Analysis of Text Length

We can view the methods utilising authorship knowledge in a way that these methods
expand the length of a text, which can effectively expose more salient features for each
text for our ATS model to learn. Based on the results in Table 4.3, injecting authorship
knowledge to the datasets used in this chapter improves model performance in most
cases. One question now is whether there are some factors behind using authorship
knowledge can affect model performance, and one of the factors we will explore in this
chapter is text length. More specifically, we want to study how model performance is
affected if we have fewer words for each text.

To study the influence of text length in different fusion methods, for each dataset,
we slice each text into two halves and treat each halve as a pseudo text. We then
assign the original individual-level text score as the score of each new halved text.
Therefore, the sizes of the training, development and test sets are doubled. Now, for
each sliced dataset, we can train an SVR model without or with combining different
fusion methods. To utilise authorship knowledge for each halved dataset, we treat the
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setup test rmse test prs test spr α/β

1. FCE-PUB

BASE 2.787 0.549 0.542 -
SF-NT 2.662+ 0.647+ 0.642+ 0.47
SF-CT 2.585+ 0.652+ 0.628+ 0.81
FF-NT 2.648+ 0.615+ 0.595 0.70
FF-CT 2.643+ 0.617+ 0.601 0.67

2. FCE-PRI

BASE 2.037 0.300 0.285 -
SF-NT 2.009 0.340 0.312 0.50
SF-CT 1.977+ 0.343 0.318 0.73
FF-NT 1.991+ 0.347+ 0.324 0.67
FF-CT 1.979+ 0.356+ 0.321 0.67

3. CAE-PRI

BASE 2.426 0.389 0.380 -
SF-NT 2.413 0.407+ 0.399+ 0.11
SF-CT 2.404 0.420 0.408 0.63
FF-NT 2.394 0.425+ 0.414 0.40
FF-CT 2.390+ 0.419 0.413 0.67

4. IELTS

BASE 0.741 0.629 0.602 -
SF-NT 0.714+ 0.670+ 0.642+ 0.47
SF-CT 0.704+ 0.681+ 0.650+ 0.42
FF-NT 0.698+ 0.679+ 0.654+ 0.50
FF-CT 0.697+ 0.684+ 0.666+ 0.60

5. FCE-S

BASE 2.129 0.428 0.417 -
SF-NT 2.057+ 0.495+ 0.474+ 0.50
SF-CT 2.073+ 0.484+ 0.477+ 0.68
FF-NT 2.074+ 0.474+ 0.443 0.50
FF-CT 2.080 0.470 0.453 1.00

6. CAE-S

BASE 2.494 0.441 0.413 -
SF-NT 2.452+ 0.490+ 0.460+ 0.44
SF-CT 2.411+ 0.524+ 0.488+ 0.66
FF-NT 2.456+ 0.477+ 0.451+ 0.50
FF-CT 2.390+ 0.522+ 0.480+ 0.75

Table 4.7: Results for each halved dataset without/with authorship knowledge added.
The numbers highlighted are the best numbers in each dataset.
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Figure 4.5: Illustration of halving a dataset and applying FF-NT to the halved dataset.
For the mth text written by the jth learner, t(m, j) is sliced into two halves t(m, j,1) and
t(m, j,2). To apply FF-NT to each halved text, t(m, j,1) is concatenated with t(m, j,2), and t(m, j,2)

is concatenated with t(m, j,1). We then train an SVR model on the re-concatenated texts.
The blue and the black rectangles in the figure refer to the texts answering the first and
second writing tasks, respectively.

two halved texts originally coming from the same individual-level text as two different
responses belonging to the same exam script, and we apply the same fusion methods
described in Section 4.5.1 for all the halved scripts in each dataset. An example of
applying FF-NT to a halved dataset is given in Figure 4.5, and the other fusion methods
used in this chapter follow a similar manner.

We summarise the results of the baseline and different fusion methods applied
to each halved test set in Table 4.7. In this table, we can see that all fusion methods
outperform the baseline, which is different from Table 4.3 that some fusion methods
perform slightly worse than the baseline in a few cases. The results might suggest that
when we do not have enough words for each text, utilising authorship knowledge and
expanding each text can improve model performance more effectively, compared to the
circumstance when we have more words for each text.

4.7.1 Bringing Features from Different Responses

Another question related to text length is whether the improvement we observed in
this chapter comes from simply writing more words or not. The background behind
this question is that some exams have multiple writing tasks, and these writing tasks
examine each learner from multiple aspects. Some aspects could be the same, while the
others could be different between different writing tasks. Hence, for each text, if we
can utilise the authorship knowledge of each text and bring more features to a text, it
is worth asking which features are more beneficial in improving model performance.
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Figure 4.6: Illustration of halving a dataset and applying FF-NT to the halved dataset
via cross concatenation. Different from Figure 4.5, during re-concatenation for halved
text t(m, j,k), we cross concatenate t(M−m+1, j,K−k+1) instead of t(m, j,K−k+1), where M = 2 and
K = 2 in this chapter.

In other words, if we have already collected some texts written by some learners, and
we want to utilise authorship knowledge to improve model performance, the question
here is in other to understand each learner’s writing skills more accurately, whether
we should simply ask learners to write more words to the same writing task they have
already answered or to a different and new writing task. This simple question does not
have a simple answer. Compared to asking learners to answer an extra task, the benefit
of writing more words answering to the same task is that the extra words to the same
task is highly relevant to the current writing task, which directly brings more relevant
features to the score prediction for the current writing. In contrast, the advantage of
using words to a different task is that it can diversify the features available for each text
to understand a learner’s writing skills more thoroughly. Therefore, in this section, we
will study this question.

To study the effect of writing tasks, similar to the re-concatenation method in
Figure 4.5, we still cut each text into two halves. Different from Figure 4.5, we cross
concatenate halved texts written to different tasks instead of the same task. An example
illustrating applying FF-NT to a halved dataset in a cross-concatenated way is given in
Figure 4.6.

In Table 4.8 and 4.9, the results for the baseline (BASE) and non-cross-concatenated
methods (cross conc=FALSE) come from Table 4.7. Similar to non-cross-concatenated
methods, cross-concatenated methods (cross conc=TRUE) are always better than the
baseline, which means that concatenating texts from different questions is also helpful.
In terms of the best performing method for each test set, FF-CT with cross-concatenated
method has achieved the best result across all the test sets except for the CAE-S test set.
It suggests that feature diversity is also a useful factor in improving model performance,
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setup cross conc test rmse test prs test spr

1. FCE-PUB

BASE - 2.787 0.549 0.542
SF-NT FALSE 2.662+ 0.647+ 0.642+
SF-CT FALSE 2.585+ 0.652+ 0.628+
FF-NT FALSE 2.648+ 0.615+ 0.595
FF-CT FALSE 2.643+ 0.617+ 0.601
SF-NT TRUE 2.743 0.602+ 0.584
SF-CT TRUE 2.624+ 0.637+ 0.640+
FF-NT TRUE 2.679+ 0.598+ 0.585+
FF-CT TRUE 2.556+ 0.661+ 0.657+

2. FCE-PRI

BASE - 2.037 0.300 0.285
SF-NT FALSE 2.009 0.340 0.312
SF-CT FALSE 1.977+ 0.343 0.318
FF-NT FALSE 1.991+ 0.347+ 0.324
FF-CT FALSE 1.979+ 0.356+ 0.321
SF-NT TRUE 2.014 0.328 0.299
SF-CT TRUE 1.969+ 0.350+ 0.331
FF-NT TRUE 1.996+ 0.347+ 0.319
FF-CT TRUE 1.961+ 0.362+ 0.333+

3. CAE-PRI

BASE - 2.426 0.389 0.380
SF-NT FALSE 2.413 0.407+ 0.399+
SF-CT FALSE 2.404 0.420 0.408
FF-NT FALSE 2.394 0.425+ 0.414
FF-CT FALSE 2.390+ 0.419 0.413
SF-NT TRUE 2.425 0.392 0.386
SF-CT TRUE 2.404 0.414 0.407
FF-NT TRUE 2.400 0.415 0.409
FF-CT TRUE 2.372+ 0.437+ 0.440+

Table 4.8: Comparison between cross-concatenated and non-cross concatenated methods
for the FCE-PUB, FCE-PRI and CAE-PRI halved test sets. The numbers highlighted are
the best numbers in each test set.
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setup cross conc test rmse test prs test spr

4. IELTS

BASE - 0.741 0.629 0.602
SF-NT FALSE 0.714+ 0.670+ 0.642+
SF-CT FALSE 0.704+ 0.681+ 0.650+
FF-NT FALSE 0.698+ 0.679+ 0.654+
FF-CT FALSE 0.697+ 0.684+ 0.666+
SF-NT TRUE 0.727+ 0.651+ 0.623+
SF-CT TRUE 0.706+ 0.680+ 0.655+
FF-NT TRUE 0.709+ 0.666+ 0.646+
FF-CT TRUE 0.688+ 0.691+ 0.670+

5. FCE-S

BASE - 2.129 0.428 0.417
SF-NT FALSE 2.057+ 0.495+ 0.474+
SF-CT FALSE 2.073+ 0.484+ 0.477+
FF-NT FALSE 2.074+ 0.474+ 0.443
FF-CT FALSE 2.080 0.470 0.453
SF-NT TRUE 2.101 0.459 0.434
SF-CT TRUE 2.063+ 0.487+ 0.475+
FF-NT TRUE 2.090+ 0.456 0.447
FF-CT TRUE 2.048+ 0.509+ 0.489+

6. CAE-S

BASE - 2.494 0.441 0.413
SF-NT FALSE 2.452+ 0.490+ 0.460+
SF-CT FALSE 2.411+ 0.524+ 0.488+
FF-NT FALSE 2.456+ 0.477+ 0.451+
FF-CT FALSE 2.390+ 0.522+ 0.480+
SF-NT TRUE 2.482 0.464 0.435
SF-CT TRUE 2.443+ 0.485+ 0.452+
FF-NT TRUE 2.453+ 0.471+ 0.442
FF-CT TRUE 2.417+ 0.494+ 0.457+

Table 4.9: Comparison between cross-concatenated and non-cross concatenated methods
for the IELTS, FCE-S and CAE-S halved test sets. The numbers highlighted are the best
numbers in each test set.
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and the improvement we observed in this chapter here might be a combination of the
extra information brought by writing more words and feature diversity. Furthermore,
the best performance brought by the non-cross-concatenated method on the CAE-S test
set suggests that feature relevance might also affect model performance.

4.8 Summary

In this chapter, we investigated whether multi-source learning based on authorship
knowledge, by means of score fusion and feature fusion, is a useful feature in ATS.
We showed that including such information improves model performance, and this
improvement is not only from modelling grading bias. In some operational settings, it
might be considered impossible or unfair to use other responses to score a new response,
and grading guidelines usually require texts to be marked in isolation. Nevertheless,
we found a clear improvement when making use of such information, and no approach
is significantly worse than the baseline on any metric and any dataset. In other words,
the positive influence brought by our fusion approaches is stronger than the possible
negative effect hidden discussed in Section 4.6.2 behind each approach. Finally, we
investigated how text length affects scoring. We notice that there is more a consistent
improvement for using fusion approaches when we have fewer words available for
each text, and feature diversity brought by different writing tasks might also be a factor
in the model performance improvement we observed in this chapter.
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Chapter 5

Multi-Domain Scoring within the Same
Exam

5.1 Introduction

In this chapter, we investigate how multi-domain learning can be conducted on different
intra-exam properties.

As we have discussed in Section 2.5, the grading criteria for texts answering one
question might be different for another question, which might a factor affecting the
performance of an ATS model. In this chapter, we focus on the intra-exam properties
that pertain to the same exam, whereas in the next chapter, we look at ATS across
various exams. These properties act as attributes to put data into different domains, and
a question behind these attributes and domains now is whether modelling the existence
of attributes explicitly in an ATS system can improve or degrade system performance,
and, if it can help to improve the ATS system performance, how we should do it. One
way in which we can embed this attribute information in an ATS system is multi-domain
learning (described in Section 2.5).

In this chapter we set out to investigate:

• identifying intra-exam properties that can be good attributes and define a good
domain in ATS;

• examining whether multi-domain learning can improve ATS system performance.

The contributions of our work in this chapter can be summarised as follows:

• It is the first work to identify possible attributes other than prompt information
for learners’ texts in ATS. We divide the data we have into different domains for
multi-domain learning based on the attribute information;
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• We apply frustratingly easy domain adaptation (Daume III, 2007), a multi-domain
learning technique described in Section 5.3, to model the similarities and differences
between data from multiple domains;

• We apply frustratingly easy domain adaptation to a multi-attribute version (Joshi
et al., 2012) in order to encourage texts with more attributes in common to share
more features than they did the original method;

• We further extend the multi-attribute multi-domain learning model by weighting
hyper-parameters from various attributes differently to better model the similarities
and differences between the texts.

• We experimentally demonstrate that partitioning data into different domains by
their attributes could gain a marginal ATS system performance improvement in
most cases;

• We show that an ATS system modelling multiple attributes has marginally better
performance to a system modelling a single attribute or no attribute in four out of
five test sets;

• We show that there are more cases that weighted FEDA has better performance
compared to the original FEDA, although the difference is not big.

5.2 Attributes

First, we must decide which attributes will be used to group texts into different domains
for multi-domain learning. In our study, we identify the following attributes of each
text based on the datasets presented in Section 3.3: prompt, genre and task. In this section,
we give and summarise the definitions of these attributes.

The prompt attribute of a text is the prompt the text responds to, which includes all
the information that learners are required to answer in their responses. An example is
presented in Figure 5.1.

Prompts can be further classified into sub-categories according to the given require-
ments. An example of the requirement is genre, which refers to what type of text learners
are required to write, such as writing a letter or a story.

In Chapter 4, we have seen that some exams require learners to complete two writing
tasks. We define the task attribute of a text as the task (i.e. first or second) the text
answers. We define this attribute because the writing tasks within some exams have
slightly different requirements. For example, in IELTS, the minimum required word
count for the first task is 150, but 250 for the second task. Thus, including this attribute

90



in the model is thought to improve system performance potentially. Furthermore, in
some datasets, the task attribute could also represent genre to some extent. The first task
of the CAE-PRI dataset, for example, asks learners to write an essay, while the second
task asks them to write a letter/email, proposal, report or review. The task attribute, in
this case, is equivalent to whether the genre is an essay or not, and thus modelling the
task attribute might capture some genre-specific information as well. In contrast, in the
FCE-PRI dataset, the first task is to write an essay, but a small portion of prompts ask
learners to write another essay in the second task. In the FCE-PUB dataset, the first
task is to write a letter either in a formal or informal format, and some questions in the
second task require learners to write a letter only in a casual style.

It would be possible to identify other text attributes, such as topic (e.g. whether
the prompt requires learners to express their views on education, science, sports or
other issues) or formality (e.g. whether the prompt asks learners to write in a formal or
informal style). We leave further attribute identification to future research.

5.2.1 Annotation

After defining the attributes of each text, we then need to derive the possible values for
each attribute. In this section, we describe how we determine and annotate the attribute
information for each prompt in the datasets described in Section 3.3.

For the FCE-PUB and IELTS datasets, we have all the prompt information for all the
learners’ texts. To annotate the genre information, for the FCE-PUB dataset, we use the
exact type the learners are required to write in each prompt. An annotation example is
presented in Figure 5.5. In this figure, q=”1” is the first task from which all learners are
required to finish, while q=”2”, q=”3”, q=”4” and q=”5” are the optional questions in
the second writing task from which learners can choose one and only one to answer.
The highlighted words in Figure 5.5 are treated as the genre attributes for each prompt.
For the fifth question q=”5”, there are two optional sub-questions for learners to write
an article or a review for a book. We group all these book-related questions in q=”5”
into the book genre. After our annotation work, the first task in FCE-PUB contains only
one genre letter, while the second task have six genres: letter, composition, article, report,
story and book.

For the IELTS dataset, we define three genres: data summarisation, letter and essay.
The example prompts from the IELTS academic exam in Figures 5.1 and 5.2 would be
annotated as data summarisation and essay, respectively. While the IELTS general exam
in Figure 5.3 and Figure 5.4 would be annotated as letter and essay, respectively. For
the task attribute, we treat all the data summarisation (Figure 5.1) and letter questions
(Figure 5.3) as the first task in the IELTS dataset, and all the essay questions from both
exams (Figures 5.2 and 5.4) as the second task.
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The chart below shows the number of men and women in further education in Britain
in three periods and whether they were studying full-time or part-time.

Summarise the information by selecting and reporting the main features, and
make comparisons where relevant.
Write at least 150 words

Figure 5.1: An example prompt for the first task (data summarisation) in the IELTS
academic exam

The first car appeared on British roads in 1888. By the year 2000 there may be as many
as 29 million vehicles on British roads.
Alternative forms of transport should be encouraged and international laws introduced
to control car ownership and use.
To what extent do you agree or disagree?
Give reasons for your answer and include any relevant examples from your knowledge
or experience.
Write at least 250 words.

Figure 5.2: An example prompt for the second task (essay) in the IELTS academic exam
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You live in a room in college which you share with another student.
However, there are many problems with this arrangement and you find it very difficult
to work.
Write a letter to the accommodation officer at the college. In the letter,

• describe the situation

• explain your problems and why it is difficult to work

• say what kind of accommodation you would prefer

Write at least 150 words.
You do NOT need to write any addresses.
Begin your letter as follows:
Dear Sir or Madam,

Figure 5.3: An example prompt for the first task (letter) in the IELTS general exam

The first car appeared on British roads in 1888. By the year 2000 there may be as many
as 29 million vehicles on British roads.
Alternative forms of transport should be encouraged and international laws introduced
to control car ownership and use.
To what extent do you agree or disagree?
Give reasons for your answer and include any relevant examples from your knowledge
or experience.
Write at least 250 words.

Figure 5.4: An example prompt for the second task (essay) in the IELTS general exam
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We do not have detailed prompt information for the KET-PRI, PET-PRI, FCE-PRI
and CAE-PRI datasets, but only the prompt ID of each text answers. This prompt ID can
indicate whether any two texts written answer the same or different prompts.1 We also
lack the genre information of each prompt in the FCE-PRI and CAE-PRI datasets, but
we can infer the genre information of the texts from the PET-PRI and KET-PRI datasets.
For PET-PRI, Question 7 asks learners to write a letter, while Question 8 asks them to
write a story based on a given beginning or ending. In contrast, for the KET-PRI dataset,
there is only one writing task. In this task, there is only one type of question asking
learners to write a message to a friend. Hence, the only attribute information with more
than one value for KET-PRI is the prompt attribute.

To annotate the task attribute of the FCE-PRI and CAE-PRI datasets, we still apply the
same strategy as that used for the FCE-PUB dataset: we group all of the first questions
(q=“1”) as the first task and all other questions as the second task.

The distribution of the prompt, genre and task attributes of each dataset is outlined
in Table 5.1.

Dataset Prompts Genres Tasks
KET-PRI 6 1 1
PET-PRI 16 2 1
FCE-PRI 37 - 2
CAE-PRI 50 - 2
FCE-PUB 31 6 2
IELTS 58 3 2

Table 5.1: Distribution of attributes in each dataset.

5.3 Multi-Domain Learning

Multi-domain learning is a technique used to help machine learning tasks such as
ATS learn the relationship between the input and output space by discriminating
data instances from miscellaneous sources. This technique helps to identify common
aspects shared by data instances and discriminate between domain-specific differences,
potentially improving model performance. In this section, we describe the multi-domain
learning technique we use in this chapter for this purpose.

1The reason for this data omission is that, at the time of writing, Cambridge Assessment is still using
the prompts for these texts in the exams, and the organisation wishes to ensure that the information is not
leaked to the public via any channels.
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1 <?xml version="1.0" encoding="UTF-8"?><xml><exam m="6" x="0100" y="2000">

2 Part 1

3 You must answer this question.

4 <q n="1">

5 You recently entered a competition and have just received this letter from the

organiser.

6 ...

7 Write a letter of between 120 and 180 words in an appropriate style on the opposite
page.

8 Do not write any postal addresses.

9 </q>

10

11 Part 2

12

13 Write an answer to one of the questions 2 - 5 in this part.

14 Write your answer in 120 - 180 words in an appropriate style on the opposite page.

15 Put the question number in the box at the top of page 5.

16

17 <q n="2">

18 Your English class is going ...

19 Write your report.
20 </q>

21

22 <q n="3">

23 You have recently had a class discussion about shopping.

24 ...

25 Write your composition.
26 </q>

27

28 <q n="4">

29 Last month, you enjoyed helping at a pop concert and your pen friend, Kim, wants to

hear about your experience.

30 ...

31 Write your letter.
32 </q>

33

34 <q n="5">

35 Answer one of the following two questions based on your reading of one of these set

books.

36 Write (a) or (b) as well as the number 5 in the question box, and the title of the

book next to the box.

37 Your answer must be about one of the books below.
38 <qq nn="a">

39 ...

40 </qq>

41 Or

42 <qq nn="b">

43 ....

44 </qq>

45 </q>

46 </exam></xml>

Figure 5.5: Example prompts from FCE-PUB in one exam session. The highlighted
words are the genre information we annotate for each prompt. The full prompts are
available in Appendix A.
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5.3.1 Frustratingly Easy Domain Adaptation

Frustratingly easy domain adaptation (FEDA, Section 2.5) is a well-known multi-domain
learning technique that was originally proposed by Daume III (2007). In this section, we
describe this method in more details.

Assume that we have data from only two domains, D1 and D2, and the data {x}
is split as {x}D1 and {x}D2. After performing feature extraction from the data {x} and
representing each data instance x by its corresponding feature vector x with vector size
D, FEDA defines a function Φ(aug) to map {x}D1 and {x}D2 separately as:

Φaug(x) =

{
x ⊕ x ⊕ 0, if x ∈ {x}D1 (5.1a)

x ⊕ 0 ⊕ x, if x ∈ {x}D2 (5.1b)

where 0 = 〈0, 0, ..., 0〉︸      ︷︷      ︸
D

is defined as the zero vector with size D, and ⊕ is the vector

concatenation.
The feature vectors x from both D1 and D2 are mapped to an augmented space

Xaug with size (2 + 1) × D = 3D. Following this, the mapped vectors are passed into
the machine learning model (e.g. the Support Vector Regression model) to learn the
relationship between the augmented space Xaug and the output space Y. In this thesis, Y
represents the text scores marked by human examiners.

We can see how FEDA can handle data from different domains. Both Equation 5.1a
and 5.1b contain three terms, and all data instances after feature augmentation now
have domain-independent representation (the first term x in both equations) shared
between D1 and D2, and the weight parameters from the machine learning model on
this sub-space might learn the similarities shared by all the data instances from both
domains. Moreover, this method preserves one domain-dependent representation (the
items after the first terms x in Equation 5.1a and 5.1b) for each domain to learn the
weights needed to model the differences between domains. If we use the second terms
in both equations as an example, the zero vector 0 in Equation 5.1b cannot directly affect
the weight parameters learned by the machine learning model on this sub-space, and
the weight parameters of this sub-space will only directly learn from the second item x
in Equation 5.1a to predict the output {y}D1 of the data instances {x}D1. The last items in
both equations also proceed in a similar way that they help learn the domain-specific
features for D2. Hence, the weights under this sub-space learn the unique properties of
D2, but not D1.

We can view a kernelised perspective of FEDA in order to understand the influence
of the data from different domains. Assume that we have a linear kernel K to encode
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the similarity between two vectors x and x′ as:

K(x, x′) = 〈x, x′〉 (5.2)

The kernel Kaug that describes the relation between x and x′ after feature augmentation
can be written as:

Kaug(x, x′) =

2K(x, x′) if Domain(x) = Domain(x′)

K(x, x′) otherwise
(5.3)

We can see that a text will be twice as similar as the data instances from the same
domain measured by Kaug, compared to the data instances from a different domain.

It is straightforward to extend this method to more than two domains using Equa-
tion 5.4. In general, to encode data from N domains, the augmented feature space Xaug

consists of N+1 copies of the original feature space X. Apart from the global copy shared
by all the data instances in the training set, the augmented space will have a sub-space
for each domain a to encode domain-dependent information, as in Equation 5.4:

Φaug(x) = ⊕N
a=0 f (x, a) (5.4)

with f (x, j) defined as follows:

f (x, a) =


x, if a = 0

x, if Domain(x) = a

0, otherwise

(5.5)

5.3.2 From Attributes to Domains

We can see that a crucial question relating to FEDA and multi-domain learning is
the determination of a domain. For example, in previous work in natural language
processing tasks related to multi-domain learning such as sentiment analysis, the
Amazon sentiment analysis dataset (Blitzer et al., 2007) gathered 8,000 product reviews
associated with four types of products, and many researchers (Blitzer et al., 2007; Pan
et al., 2010; Glorot et al., 2011) working on this dataset treated all reviews about the
same type of product as data from the same domain. (Therefore, there are four domains
in total.) They then proposed different multi-domain learning techniques to classify the
reviews as positive or negative.

It is relatively easy to define a domain when there is only one discriminative attribute
(e.g. the type of product a review corresponds to, in the previous sentiment analysis
example). However, in many real-world contexts, such as that of ATS, data can be
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characterised using multiple attributes attrs = 〈attr1, attr2, ...attrA〉, with A attributes
available (e.g. prompt, genre and task discussed in Section 5.2). Determining which
attributes contribute to the domains that will be characterised in multi-domain learning
is not necessarily straightforward. For example, if we were to have two texts answering
two different prompts from the same genre, should these texts belong to different
domains or the same domain? On the one hand, we could say that these two texts
come from the same domain, but the texts may have sufficient differences relating to
the key information that is meant to be included in the response. On the other hand,
we could say that they come from different domains, but they still have something
in common, as the genre required in both prompts is identical, and the texts might
need to be similarly organised in structure when we are training the ATS model, due to
genre-related constraints. Finally, it is relevant to also ask when multiple attributes are
present (e.g. prompt and genre), whether we should consider only one attribute or both,
in order to determine domains for FEDA.

5.3.3 Multi-Attribute Multi-Domain Learning

Joshi et al. (2013) have addressed the fact that items in a dataset can be categorised
according to multiple attributes and offered suggestions as to how attributes should be
selected to form domains in multi-domain learning. In their work, the authors extended
several multi-domain learning techniques from single attribute to multiple attributes
version.

One possible method (Equation 5.6) they suggested is treating every set of unique
attributes as a single domain, such that, if there were two instances xi and x j with A at-
tributes attrsi = 〈attr1,i, attr2,i, ..., attrA,i〉 and attrs j = 〈attr1, j, attr2, j, ..., attrA, j〉, respectively,
then xi and x j would be from the same domain only if all attributes were identical:

Domain(xi) = Domain(x j)⇐⇒

attra,i = attra, j ∀a ∈ 1, 2, ...,A
(5.6)

However, this method is impractical. As Joshi et al. pointed out, the number of
possible domains grows exponentially with the number of training instances, making it
infeasible to train a model. In addition, another problem we notice is that sparsity might
occur in the domains. Some domains have only one training instance or just a few, so
this might make it impossible to train a robust ATS system or just degrade performance.
This is a relatively common problem in our datasets, because the prompts we have are
not evenly distributed across the texts in some datasets. We sorted the prompts in each
dataset according to the number of answers given by learners and visualised the prompt
frequency distribution using bar charts in Figure 5.6. The bar charts show that the
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prompts are not evenly distributed in each dataset, except for the KET-PRI dataset (the
top left graph in Figure 5.6). Furthermore, this problem becomes even more severe in
the FCE-PUB, PET-PRI, FCE-PRI and CAE-PRI datasets, as these datasets allow learners
to choose one question from a group of optional questions to answer. Some questions in
these datasets are rarely selected and answered by learners, because they are hard to
answer, or learners prefer answering other questions. In consequence, this reduces the
number of texts responding to certain prompts available for training our model.
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Figure 5.6: Prompt distribution in each dataset.

To avoid problems of this nature, Joshi et al. proposed another method to extend
multi-domain learning techniques, including multi-domain learning by confidence-
weighted parameter combination (Dredze et al., 2008, 2010) (described in Section 2.5) and
FEDA, into multiple attribute versions. For multi-attribute FEDA, each unique attribute
value is given a parameter sub-space, and the original feature vector x is mapped from
RD into a larger space RD(1+

∑
m Km), where Km represents the number of possible values

for the m-th attribute. This representation still preserves a shared space for all possible
attribute values, and each attribute value has an independent parameter sub-space for
learning the features of the specific attribute value. During feature augmentation, each
data instance copies its features from the original space into all sub-spaces in which the
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data instance belongs. An example is provided in Figure 5.7. In this figure, there are five
data instances with two attributes: prompt and genre. There are three distinct values
(ranging from Prompt 1 to Prompt 3) for the prompt attribute and two values available
for the genre attribute. Prompt 1 and Prompt 2 are from Genre 1, and Prompt 3 is from
Genre 2. Data instances x1 and x2 come from Prompt 1; x3 comes from Prompt 2, and
x4 and x5 come from Prompt 3. Therefore, the augmented space of the multi-attribute
FEDA is R(1+2+3)D = R6D. All data instances copy their original features from the shared
space to the corresponding sub-spaces (Prompt Space and Genre Space in Figure 5.7),
leaving the other sub-spaces as 0.

Figure 5.7: Illustration of multiple attribute FEDA.

From the perspective of the kernelised space, if data instances x and x′, with
feature vectors x and x′, were to have three attributes in common with similarity
K(x, x′), the similarity calculated by kernel Kaug between xi and xj then would be
(3 + 1) × Kaug(x, x′) = 4K(x, x′). The method simply forces data instances with more
attributes in common to have greater similarity in the augmented space.

5.3.4 Weighted FEDA

As demonstrated in Equation 5.3, one problem with FEDA and multi-attribute FEDA in
the kernelised space perspective is that if two data instances writing to the same prompt
have n domains in common, they have n times more influence on each other than they
do with the data instances with no domain in common. This implicitly assumes that
the influence of all domains are identical to their domain-independent representations.
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However, this might not be accurate. Given that prompts from the same exam, for
example, these prompts might have many commonalities in terms of the grading criteria,
and the n times more influence for the texts from the same prompt might be too high.
Therefore, we suggest that a more appropriate way of conducting multi-domain learning
is to assign different weights aw = 〈aw1, aw2, ..., awA〉 for A attribute values:

Φaug(x) = ⊕A
a=0 f (x, a) × awa (5.7)

These weights, aw, are the hyper-parameters to be tuned on the development set.
To reduce the aw search space, all aw from the same attribute type are fixed to the

same value for any two different attribute values a, a′ ∈ A:

awa = awa′

if Type(a) = Type(a′)
(5.8)

where Type could be prompt, genre or task. We have three unique weights, and each
weight corresponds to one type of attribute in this chapter.

5.3.5 Relation between W-FEDA and Other Types of Multi-Domain

Learning Methods

In this section, we give an analysis of the relation between W-FEDA and other types
of multi-domain learning methods.

Lu et al. (2016) proposed a general framework to describe some domain adaptation
and multi-domain learning methods by adding regularisation terms to force the model
parameters for similar domains to be close. They derived this framework as Theorem 2.3
in their paper to summarise the objective functions minimised in the methods proposed
by Evgeniou and Pontil (2004); Daume III (2007); Finkel and Manning (2009):

min
w1,w2,...,wN ,w0

[
N∑

i=1

L
′

i

(
Di; wi,w0

)
+

λ0 ‖w0‖
2 +

N∑
i=1

λi ‖wi‖
2

]

= min
v1,v2,...,vN

[
N∑

i=1

Li

(
Di; vi

)
+

 N∑
i=1

η0,i ‖vi‖
2 +

∑
1≤ j<k≤N

η j,k

∥∥∥v j − vk

∥∥∥2

]

(5.9)

In Equation 5.9 (Theorem 2.3 in their paper), we have N domains categorised by different
attributes.

• In the left-hand side (LHS) of Equation 5.9, L′i
(
Di; wi,w0

)
is the model loss on the
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data from domain Di, w0 is the shared-representation weights for all N domains,
and wi corresponds to the domain-specific representation for domain Di. λi ≥ 0 is
the hyper-parameter to control the regularisation on wi;

• In the right-hand side (RHS) of Equation 5.9, we define vi ≡ w0 + wi, and we can
always rewrite LHS to hide w0 into RHS by2:

λ0||w0||
2 +

N∑
i=1

λi||wi||
2

=

N∑
i=1

η0,i||w0 + wi||
2 +

∑
1≤ j<k≤N

η j,k||w j −wk||
2

=

N∑
i=1

η0,i||vi||
2 +

∑
1≤ j<k≤N

η j,k||v j − vk||
2

where ηi, j =
λiλ j∑N
l=0 λl

(5.10)

Li

(
Di; vi

)
is still the loss on the data from domain Di, η0,i ≥ 0 is the hyper-parameter

to control the regularisation on vi, and η j,k ≥ 0 controls the similarity between v j and vk.
To give an example of Equation 5.9, Lu et al. concluded that FEDA proposed by

Daume III (2007) is a special case when we have only two domains (Domain D1 and
D2 for the source and target domains, respectively), and Equation 5.9 for Daume III’s
FEDA could be written as:

min
w1,w2,w0

[L′1
(
D1; w1,w0

)
+L′2

(
D2; w2,w0

)
+ λ

(
‖w1‖

2 + ‖w2‖
2 + ‖w0‖

2
)
]

= min
v1,v2

[L1

(
D1; v1

)
+L2

(
D2; v2

)
+

1
3
λ
(
‖v1‖

2 + ‖v2‖
2 + ‖v1 − v2‖

2
)
]

(5.11)

To supplement what were not fully discussed in Lu et al. (2016), we can see that
W-FEDA is equivalent to Equation 5.9 if we do not enforce λi in LHS categorised by
the same type of attribute to be the same value like what we did in Equation 5.8. The
multi-attribute version of FEDA (Joshi et al., 2013), which is a special case of W-FEDA,
is equivalent to Equation 5.9 when:

• we force ηm,n = η j,k for any m,n, j, k ∈NN
1 if m and n are the same type of attribute,

so are j and k;

• ηm,n = 0 if m and n are not the same type of attribute.

Hierarchical Bayesian domain adaptation (Finkel and Manning, 2009) (Section 2.5.1)

2Please refer to the original paper for the proof of this lemma.
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is also a special case of W-FEDA by adjusting the hyper-parameters η in RHS in
Equation 5.9 by:

η j,k

> 0 if Parent(D j) = Dk

= 0 otherwise
(5.12)

Different from hierarchical Bayesian domain adaptation, W-FEDA does not require
the attributes to be organised into a hierarchy.

5.4 Results

In this section, we report the results and discuss the multi-domain learning with different
attributes under different setups.

5.4.1 Weighted FEDA on Single Attribute

First, we evaluate weighted FEDA (W-FEDA) on each single attribute in all the datasets
(KET-PRI, PET-PRI, FCE-PRI, CAE-PRI, IELTS and FCE-PUB) described in Chapter 3.

W-FEDA is still implemented using support vector regression (SVR) based on
LIBLINEAR with L2 loss, as described in Section 3.4.2. The epsilon hyper-parameter is
set to the default value of 0.1. The cost hyper-parameter of SVR is tuned on the same
group of hyper-parameters as the baseline model on the development set. For each
dataset, all models with the lowest root-mean-square error (RMSE) on the development
set are further evaluated on the test set. We report the results in Table 5.2.

In this table, there are six sub-tables, each corresponding to one of the datasets
described in Chapter 3. In each sub-table, the first column ATTR describes the attribute
we use to conduct multi-domain learning. The attribute NONE means that multi-domain
learning is not used to discriminate any attribute. Hence, the first line in each sub-table
is the baseline for each dataset. The other attribute values in the attribute column,
PROMPT, GENRE and TASK indicate the attributes we use to conduct multi-domain
learning. In other words, we treat the data instances with the same attribute value as the
data belonging to the same domain, leaving only one domain to be discriminated. The
second to fourth columns (dev rmse to dev spr) report the performance measures on the
development set in each dataset, which include the root-mean-square error (RMSE), and
Pearson’s ρprs and Spearman’s ρspr correlations. The fifth to eighth columns (test rmse
to test spr) correspond to model performance on each test set.

From Table 5.2, we can derive the following observations. First, W-FEDA improves
model performance in more than half of the cases, relative to the baseline model training
a single grader for all texts in all domains without discerning any domain. In terms of
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ATTR dev rmse dev prs dev spr test rmse test prs test spr

1. KET-PRI

NONE 0.970 0.661 0.585 0.968 0.706 0.648
PROMPT 0.952 0.647 0.595 0.904+ 0.751+ 0.723+

2. PET-PRI

NONE 2.247 0.594 0.541 2.179 0.567 0.467
PROMPT 2.216 0.601 0.540 2.121 0.597 0.494
GENRE 2.214 0.611 0.541 2.139 0.591 0.491

3. FCE-PRI

NONE 1.994 0.379 0.363 1.991 0.359 0.339
PROMPT 1.968 0.399 0.379 1.960 0.369 0.350

TASK 1.969+ 0.404+ 0.386 1.979 0.374 0.354

4. CAE-PRI

NONE 2.421 0.377 0.341 2.405 0.411 0.410
PROMPT 2.381 0.412 0.394+ 2.398 0.436 0.435

TASK 2.417 0.385 0.346 2.368+ 0.439 0.438

5. IELTS

NONE 0.701 0.697 0.680 0.693 0.684 0.659
PROMPT 0.706 0.695 0.674 0.703 0.674 0.642
GENRE 0.700 0.698 0.684 0.686 0.696 0.670
TASK 0.694 0.705 0.692 0.689 0.693 0.670

6. FCE-PUB

NONE 2.402 0.567 0.571 2.569 0.662 0.652
PROMPT 2.377 0.577 0.571 2.662- 0.660 0.655
GENRE 2.378 0.572 0.576 2.548 0.661 0.659
TASK 2.373 0.582 0.579 2.556 0.687 0.677

Table 5.2: W-FEDA on each single attribute in each dataset. The highlighted numbers
are the best results in each dataset. + and - means significantly better/worse (p < 0.05)
than the baseline (NONE) using the permutation randomisation test (Yeh, 2000) with
2,000 samples, respectively.
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the performance on the development sets, the baseline only has the same best result on
the Spearman correlation ρspr in PET-PRI as the W-FEDA expanded model on the genre
attribute. In terms of the test sets, all best results are always produced by multi-domain
learning.

As for statistical significance, W-FEDA achieves significant improvement on the
development sets, including:

• all metrics on the FCE-PRI development set with the task attribute; and

• ρspr on the CAE-PRI development set with the prompt attribute;

For the test sets, W-FEDA shows significant improvement on:

• RMSE, ρprs and ρspr on the KET-PRI test set with the prompt attribute;

• RMSE on the CAE-PRI test set with the task attribute;

Let us analyse multi-domain learning on each single attribute. We start with the
prompt attribute first. W-FEDA on the prompt attribute improves performance on
the KET-PRI, PET-PRI, FCE-PRI and CAE-PRI datasets. However, for the IELTS and
FCE-PUB test sets, there is a performance drop. Based on these performance measures,
we suggest that only differentiation according to the prompt information is not always
effective. In our datasets, some prompts are more similar than others, like requesting
learners to write their texts in a specific genre, and FEDA on prompt information only
ignores this potentially useful information. In addition, for the IELTS dataset, the
number of prompts in Figure 5.6 is also the highest among the six datasets, and most
prompt dependent features might not have enough texts to correctly learn the prompt
specific features, which also might be a reason for performance drop on the IELTS
dataset.

We also suggest another reason for the performance drop on the test set for the
prompt attribute in the FCE-PUB dataset. In the original data setup of Yannakoudakis
et al. (2011), the training and development sets are comprised of texts written in the
year 2000, and the test set consists of texts collected from the year 2001. Hence, there is
no overlap between the prompts from the training/development sets and those from
the test set. The W-FEDA on the single prompt attribute treats all prompts identically
and does not capture any implicit similarities shared (e.g. genre). Therefore, the model
might overfit to the prompts existing in the year 2000 and poorly generalise on the
2001 data. This is another reason why multi-domain learning only on prompts may
not be wise: the model might only optimise to the prompts in the training set, and
not for future and unseen prompts. It is quite typical in many English exams to add
new prompts in each year to meet new requirements and developments in language
education.
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For the genre attribute, performance improvement is shown across the development
and test sets for the PET-PRI, IELTS and FCE-PUB datasets, with the exception of the
Pearson correlation ρprs on the test set in the FCE-PUB dataset.

The task attribute follows a similar improvement trend to that of the genre attribute.
Multi-domain learning on the task attribute achieves better results than the baseline
model across the development and test sets for the FCE-PRI, CAE-PRI, IELTS and
FCE-PUB datasets.

It is difficult to identify the dataset in which each attribute produces the best
performance. Concerning RMSE on the test set for the attribute prompt, for example,
W-FEDA achieves the best results on the KET-PRI, PET-PRI and FCE-PRI datasets,
but not on the others. We will display and summarise the best results for each single
attribute in a tidier way in Section 5.4.3.

5.4.2 Model Inspection

To closely examine the behaviour of our multi-domain learning models, in this section,
we find some features that the weights for some domains are much higher than others.
We list some features and analyse the weights learned for these features by the models.

We begin with the prompt-expanded FEDA for the KET-PRI dataset. Although we
do not have the actual prompt text, we can infer the prompt for each answer based on
the basis of words used in each response, the corresponding scores assigned by human
examiners and the grading criteria for the KET exam. All six prompts ask learners to
write a message to a friend. Below, we briefly describe the six prompts we infer:

• P1: writing a letter inviting a friend to watch a match;

• P2: describing a class the learner recently takes, why s/he takes it and when it will
finish;

• P3: telling a friend about the camping site the learner is taking with his/her family,
what s/he is doing there and when s/he will be back;

• P4: planning for shopping and describing the reasons why the learner wishes to
make purchases;

• P5: describing the details of a cooking club the learner is going to with a friend;

• P6: describing a movie the learner is going to watch, what it is about and when it
will finish.

The first pattern we found is related to the word unigram do and the bigram do
you. The weights learnt for these two features are listed in Table 5.3. In this table, the
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Feature Shared P1 P2 P3 P4 P5 P6
do you -0.039 0.494 -0.134 -0.259 -0.098 0.045 -0.126

do -0.186 0.180 -0.220 -0.138 -0.124 -0.076 0.007

Table 5.3: Word feature weights for the prompt-expanded model on the KET-PRI dataset.
The highest values are highlighted in each row.

Hello Ali!
I have got tickets for a sport match on Saturday. Is playing my brother team. I want to
go because I want to see the new stadium. Do you want to come?

Figure 5.8: Example answer to P1, receiving a score of 5 out of 5.

column Shared outlines the weight shared by all the domains, while P1 to P6 represent
the weights for the six prompts we identified in the KET-PRI dataset. This table shows
that do you and do generally have a negative weight (or a positive but relatively small
weight) for the shared representation and the domain-dependent representations for P2
to P5, in contrast to P1. For the domain-dependent representation of P1, do you has a
weight of 0.494, and do has a weight of 0.180. Both of them are at least ten times higher
than the second highest weight in this table. We suggest that the reason for this is that
do you and do are some beginner-level words used by learners, so the use of such words
tends not to reward extra points for learners’ language ability scores. In some cases,
learners might even receive a penalty for overusing these simple words and phrases.
In P1, these features receive relatively high weights, because P1 asks learners to write
an invitation letter, and examiners might expect learners to write sentences such as Do
you want to come? for this purpose, which is a key point for this specific prompt. An
example is presented in Figure 5.8.

Shared P1 P2 P3 P4 P5 P6
0.198 0.748 -0.004 0.000 -0.240 -0.030 -0.077

Table 5.4: Feature weights learned for the POS trigram TO VV0 NP1 in the KET-PRI
dataset.

Another pattern we found in the prompt-expanded model relates to the weight for
the POS trigram TO + infinitive verb + singular proper noun (TO VV0 NP1) in Table 5.4.
The weight of this feature for P1 is still much higher than that of the shared space and
the other five prompts. An example is given in Figure 5.9. Here, to see Barca is a key
point to describe the event to go to, and our model highlights this prompt-relevant
feature.

In summary, based on the observations presented in Tables 5.3 and 5.4, we suggest
that performing prompt expansion can help to capture some prompt-specific patterns
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that are beneficial for scoring.
We then looked at the trigram missing rate estimated on the UKWaC British English

corpus for the genre-expanded W-FEDA on the IELTS dataset. For each learner’s
text, Yannakoudakis et al. (2011) counted how many trigrams were not present in a
background corpus of well-formed text, and they treated such missing trigrams as
erroneous trigrams and fed the missing rate as a feature to their model. As presented in
Table 5.5, the weight for data summarisation is much higher than the weights for the
essay and letter genres. The reason we suggest might be that the data summarisation
questions require learners to use numerical words to describe the information in the
given figures. While phrases containing numerical words are the vital points to get
scores, they are not commonly found in the background corpus. Therefore, the weight
of the missing trigrams for the data summarisation task is relatively higher than the
weights for the other two genres. To support this suggestion, we summarise the missing
trigram rate fore each genre in Table 5.6. We can see that the normalised missing trigram
rate (E/T/W * 100) for data summarisation (Data-S) is higher than the other two types of
genre. Furthermore, 47.94% of the missing trigrams for data summarisation contain
at least one numerical word whose POS tag is MC, which is much higher than essay
(1.42%) and letter (7.22%).

Shared Essay Data Summarisation Letter
-1.608 -0.956 1.232 -1.080

Table 5.5: Feature weights learned for the trigram missing rate estimated on the UKWaC
British English corpus.

Finally, we examine weights learned for the task-expanded W-FEDA trained on
the IELTS dataset with attention to word count in learners’ texts. As mentioned in
Section 5.2, the minimum word count requirements for the two tasks in the IELTS exam
is different, as Task 2 requires more words than Task 1. We display the weights learned
for the word count in Table 5.7. The table shows that the weight for Task 2 is higher
than that of Task 1 for this feature, although the difference is not large.

In summary, based on the results and discussion presented in Sections 5.4.1 and
5.4.2, we conclude that different text attributes of the learners’ texts can affect grader
performance. We also conclude that explicitly modelling the existence of attributes in

Hello Ali
On Saturday I will go to see Barca vs Madrid. I wont to go there because is an interesting
sports match. If you want, you can come with me because I have tickets. Bye

Figure 5.9: Example answer to P1, receiving a score of 5 out of 5.
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Genre #Miss #Text #Word M/T/W * 100 #MC #MC Miss MC M/M

Essay 164319 1004 322.31 50.78 558 2341 1.42%
Letter 10952 128 206.93 41.35 185 791 7.22%
Data-S 111193 876 200.55 63.29 12556 53308 47.94%

Table 5.6: Trigram missing rate for each genre in the IELTS training set. For each
genre, #Miss corresponds to the number of missing trigrams identified during feature
extraction. #Text represents the number of texts. #Word represents the average length
for each text. M/T/W * 100 is the normalised missing trigram rate (#Miss multiplied by
100 and divided by #Text and #Word). #MC represents the count of numerical unigrams
(e.g first, 17) whose POS tags are MC (cardinal number). #MC Miss represents the
number of missing trigrams which contain at least one numerical unigram. MC M/M is
the normalised percentage for missing numerical trigrams.

Shared Task 1 Task 2
5.801 1.317 1.583

Table 5.7: Feature weights learned for the word count of a learner’s text

a model can improve performance in some cases. However, the task of determining
which attributes to model is not straightforward, and improvement does not appear
across all the datasets, and most improvements are not significant. This motivates us to
evaluate W-FEDA with multiple attributes modelled in the following section.

5.4.3 Multiple Attributes versus Best Single Attribute

In this section, we report the results of the W-FEDA expanded on multiple attributes.
The results are presented in Table 5.8. The five sub-tables in this table map to the five
datasets with more than one attribute available. In contrast to Table 5.2, Table 5.8 does
not include the results for the KET-PRI dataset, because the KET-PRI dataset has only
one available attribute. In each sub-table, each row represents a model as follows:

• baseline is the support vector regression baseline implemented in Chapter 3;

• 1-best is W-FEDA on a single attribute with the best performance on the develop-
ment set in terms of RMSE;

• 1-oracle is W-FEDA on a single attribute with the best performance on the test set
in terms of RMSE;

• all is W-FEDA on all attributes together with the best performance on the develop-
ment set in terms of RMSE.
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The ATTR column describes the attribute on which we conduct W-FEDA for 1-best
and 1-oracle.

Before we compare the results of W-FEDA on multiple attributes and W-FEDA on
each single attribute, let us compare the results between 1-best and 1-oracle. We can
see that, with the exception of the FCE-PRI dataset, the best attributes chosen by 1-best
and 1-oracle are different. This means that selecting the best single attribute on the
development set to conduct multi-domain learning does not always produce the best
performance on the unseen test set, as each attribute might capture different useful
information.

Next, we compare W-FEDA on multiple attributes with the other three setups
including baseline, 1-best and 1-oracle on the development sets. Compared to the
baseline, W-FEDA on all attributes always perform better, except for ρspr on the PET-PRI
dataset.

For the results of the test sets in Table 5.2, W-FEDA shows the best performance
across the PET-PRI, FCE-PRI and CAE-PRI test sets. For the IELTS test sets, W-FEDA
has the best performance in terms of RMSE, ρprs and ρspr. For the FCE-PUB test set, it
performs better than the baseline on RMSE but not the other two metrics. We suggest
that the reason is again the difference between the development set and the test set
in the FCE-PUB dataset. Concerning the significance, W-FEDA on multiple attributes
performs significantly better than the baseline on the PET-PRI, FCE-PRI, CAE-PRI test
sets for at least one metric.

In summary, W-FEDA on multiple attributes performs better than W-FEDA on a
single attribute in four out of five development and test sets. This would suggest that
modelling multiple attributes enables our model to learn more commonalities and
differences among different texts relative to single attribute model. However, in our
study, it is not always the case that modelling on multiple attributes is better than
learning from a single attribute (e.g. in the FCE-PUB test set), and modelling multiple
attributes is significantly better than the baseline only in some datasets.

5.4.4 Comparison between W-FEDA and U-FEDA

As we have added weighting hyper-parameters into W-FEDA, we now compare W-
FEDA with the original unweighted FEDA (U-FEDA) proposed by Daume III (see
Section 5.3.1).

5.4.4.1 Single Attribute

Table 5.9 presents the comparisons between W-FEDA and U-FEDA on all single attributes.
In this table, the six sub-tables follow the same organisation as in Table 5.12. For the
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Method ATTR dev rmse dev prs dev spr test rmse test prs test spr

2. PET-PRI
baseline - 2.247 0.594 0.541 2.179 0.567 0.467
1-best GENRE 2.214 0.611 0.541 2.139 0.591 0.491

1-oracle PROMPT 2.216 0.601 0.540 2.121 0.597 0.494
all 2.202 0.609 0.535 2.094+ 0.615+ 0.510

3. FCE-PRI
baseline - 1.994 0.379 0.363 1.991 0.359 0.339
1-best PROMPT 1.968 0.399 0.379 1.960 0.369 0.350

1-oracle PROMPT 1.968 0.399 0.379 1.960 0.369 0.350
all - 1.954 0.415 0.385 1.952 0.387 0.368

4. CAE-PRI
baseline - 2.421 0.377 0.341 2.405 0.411 0.410
1-best PROMPT 2.381 0.412 0.394+ 2.398 0.436 0.435

1-oracle TASK 2.417 0.385 0.346 2.368+ 0.439 0.438
all - 2.379+ 0.419+ 0.388+ 2.358+ 0.448 0.446

5. IELTS
baseline - 0.701 0.697 0.680 0.693 0.684 0.659
1-best TASK 0.694 0.705 0.692 0.689 0.693 0.670

1-oracle GENRE 0.700 0.698 0.684 0.686 0.696 0.670
all - 0.699 0.702 0.684 0.684 0.701 0.675

6. FCE-PUB
baseline - 2.402 0.567 0.571 2.569 0.662 0.652
1-best TASK 2.373 0.582 0.579 2.556 0.687 0.677

1-oracle GENRE 2.378 0.572 0.576 2.548 0.661 0.659
all - 2.353 0.586 0.584 2.564 0.654 0.636

Table 5.8: W-FEDA on multiple attributes, compared to W-FEDA on single attributes
and training a single baseline grader. The best results in each dataset are highlighted.
+ means the corresponding model is significantly better than the baseline by the
permutation test with 2,000 samples (p < 0.05)
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first column Method:

• Baseline: the support vector regression model described in Chapter 3;

• U-FEDA: the U-FEDA trained for each dataset on each single attribute, with all
weighting hyper-parameters fixed to 1.0;

• W-FEDA: the W-FEDA described in Section 5.3.4.

Column Beat BASE? refers to whether the corresponding model performs better than the
baseline in terms of RMSE, while column W-FEDA wins? presents whether the W-FEDA
is better or worse than the U-FEDA in terms of RMSE.

In Table 5.9, it is clear to see that not in every case that W-FEDA is better than
U-FEDA. For instance, in terms of RMSE, W-FEDA is better than U-FEDA on:

• the KET-PRI, FCE-PRI and IELTS datasets with the prompt attribute;

• the PET-PRI and FCE-PUB datasets with the genre attribute;

• the CAE-PRI dataset with the task attribute.

In contrast, also in terms of RMSE, U-FEDA performs better than W-FEDA for the
PET-PRI dataset for prompt and the IELTS dataset for genre and task. Also, W-FEDA
and U-FEDA show equivalent performance on the CAE-PRI dataset for prompt and
on the FCE-PUB dataset for prompt & task, as the optimal weighting hyper-parameter
found is 1.0.

In terms of statistical significance, there are more metrics and datasets for which
W-FEDA performs significantly better than on than U-FEDA.

The mixed performance could be due to the fact that having a wider space to explore
hyper-parameters in order to improve performance on the development set, the model
might also sometimes overfit to the development set, leading to poorer performance on
the test set.

To numerically understand the differences between U-FEDA and W-FEDA in Table 5.9,
we count the number of cases in which W-FEDA shows better, worse or the same
performance with U-FEDA and report them in Table 5.10. In Table 5.10, differences are
given in terms of each evaluation measure.

On the basis of Table 5.10, we can conclude that W-FEDA shows improved perfor-
mance relative to U-FEDA more frequently than it shows to degraded performance (19
versus 11), although the gap is not large.

To further illustrate the performance difference between W-FEDA and U-FEDA,
Table 5.11 summaries the number of times W-FEDA and U-FEDA are better or worse
than the baseline. The layout of Table 5.11 is similar to that of Table 5.10, with the three
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Method ATTR test rmse test prs test spr Beat BASE? W-FEDA wins?

1.KET-PRI

Baseline NONE 0.968 0.706 0.648 - -

U-FEDA
PROMPT

0.940 0.730 0.685 Yes
WinW-FEDA 0.904* 0.751* 0.723* Yes

2.PET-PRI

Baseline NONE 2.179 0.567 0.467 - -

U-FEDA
PROMPT

2.108 0.608 0.499 Yes
LoseW-FEDA 2.121 0.597 0.494 Yes

U-FEDA
GENRE

2.193 0.558 0.459 No
WinW-FEDA 2.139* 0.591* 0.491 Yes

3.FCE-PRI

Baseline NONE 1.991 0.359 0.339 - -

U-FEDA
PROMPT

2.001 0.347 0.322 No
WinW-FEDA 1.960* 0.368 0.350 Yes

U-FEDA
TASK

1.964 0.373 0.352 Yes
LoseW-FEDA 1.979 0.374 0.354 Yes

4.CAE-PRI

Baseline NONE 2.405 0.411 0.410 - -

U-FEDA
PROMPT

2.398 0.436 0.435 Yes
TieW-FEDA 2.398 0.436 0.435 Yes

U-FEDA
TASK

2.387 0.427 0.436 Yes
WinW-FEDA 2.368 0.439 0.438 Yes

5.IELTS

Baseline NONE 0.693 0.684 0.659 - -

U-FEDA
PROMPT

0.725 0.648 0.617 No
WinW-FEDA 0.703* 0.666* 0.633* No

U-FEDA
GENRE

0.680 0.700 0.679 Yes
LoseW-FEDA 0.686 0.696 0.670 Yes

U-FEDA
TASK

0.681 0.700 0.674 Yes
LoseW-FEDA 0.689 0.693 0.670 Yes

6.FCE-PUB

Baseline NONE 2.569 0.662 0.652 - -

U-FEDA
PROMPT

2.662 0.660 0.655 No
TieW-FEDA 2.662 0.660 0.655 No

U-FEDA
GENRE

2.589 0.664 0.649 Yes
WinW-FEDA 2.548 0.661 0.659 Yes

U-FEDA
TASK

2.556 0.687 0.677 Yes
TieW-FEDA 2.556 0.687 0.677 Yes

Table 5.9: Comparison between U-FEDA and W-FEDA on the test sets. Highlighted
numbers indicate the better results between the U-FEDA and W-FEDA models. * means
that W-FEDA is significantly better than U-FEDA expanded on the same attribute using
a permutation test with 2,000 samples. (p < 0.05)
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RMSE ρprs ρspr Total

Win 6 6 7 19

Tie 3 3 3 9

Lose 4 4 3 11

Table 5.10: Distribution of performance differences between W-FEDA and U-FEDA on
the test sets for each single attribute. The highlighted numbers represent the dominant
numbers in each column.

RMSE ρprs ρspr Total

W U W U W U W U

Win 11 8 10 9 12 9 33 26
Lose 2 5 3 4 1 4 6 13

Table 5.11: Distribution of W (W-FEDA) and U (U-FEDA) relative to the baseline on the
test sets. The highlighted numbers represent the method (W-FEDA or U-FEDA) that
more frequently beats the baseline in each column.

columns RMSE, ρprs and ρspr representing the performance of W/U-FEDA, relative to the
baseline, and the column Total providing the sum of the three columns.

On the basis of the data presented in Table 5.11, we conclude that W-FEDA performs
better than the baseline more frequently than U-FEDA does in terms of RMSE, ρprs

and ρspr. Finally, the Total column shows more cases in which W-FEDA outperforms
baseline, relative to U-FEDA (33 versus 26).

5.4.4.2 Multiple Attributes

We also measure the performance differences between W-FEDA and U-FEDA on
multiple attributes in Table 5.12. The organisation of Table 5.12 follows the presentation
of Table 5.9. Similar to Table 5.9, Table 5.12 shows that W-FEDA is not always better
than U-FEDA.

The W-FEDA wins? column in Table 5.9 is also summarised in Table 5.13. Similar
to Table 5.9, Table 5.13 shows that there are more cases in which W-FEDA is better
than U-FEDA in terms of RMSE and ρprs (3 versus 1), and that W-FEDA shows similar
performance to U-FEDA on ρspr (2 versus 2). Finally, the Total column shows that there
are more cases in which W-FEDA outperforms U-FEDA.

Table 5.14 summarises the number of times of W-FEDA and U-FEDA on multiple
attributes beat the baseline. W-FEDA is better than the baseline in four cases; U-FEDA
outperforms the baseline three times. This trend is similar to that presented in Table 5.11
on each single attribute that there is one more time that W-FEDA is better than the
baseline compared to U-FEDA.
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Method test rmse test prs test spr Better than BASE? W-FEDA wins?

2.PET-PRI

Baseline 2.179 0.567 0.467 - -

U-FEDA 2.081 0.623 0.514 Yes
LoseW-FEDA 2.094 0.615 0.510 Yes

3.FCE-PRI

Baseline 1.991 0.359 0.339 - -

U-FEDA 1.952 0.387 0.368 Yes
TieW-FEDA 1.952 0.387 0.368 Yes

4.CAE-PRI

Baseline 2.405 0.411 0.410 - -

U-FEDA 2.379 0.430 0.426 Yes
WinW-FEDA 2.358 0.448 0.447 Yes

5.IELTS

Baseline 0.693 0.684 0.659 - -

U-FEDA 0.700 0.677 0.646 No
WinW-FEDA 0.684 0.701* 0.676* Yes

6.FCE-PUB

Baseline 2.569 0.662 0.652 - -

U-FEDA 2.765 0.648 0.651 No
WinW-FEDA 2.564* 0.654 0.636 Yes

Table 5.12: W-FEDA and U-FEDA on multiple attributes. Highlighted numbers indicate
whether U-FEDA or W-FEDA has a better performance. * means that W-FEDA is
significantly better than U-FEDA by a permutation test with 2,000 samples at the
corresponding metric (p < 0.05)

RMSE ρprs ρspr Total

Win 3 3 2 8

Tie 1 1 1 3

Lose 1 1 2 4

Table 5.13: Distribution of the performance difference between W-FEDA and U-FEDA
on the test sets on all available attributes. The highlighted number in each evaluation
metric represents the dominant case in that metric.
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RMSE ρprs ρspr Total

W U W U W U W U

Win 5 3 4 3 4 3 13 9
Lose 0 2 1 2 1 2 2 6

Table 5.14: Distribution of the performance differences of W (W-FEDA) and U (U-FEDA)
relative to the baseline on the test sets. The highlighted number in each evaluation metric
represents that method (W-FEDA or U-FEDA) that beats the baseline more frequently.

In summary, although the trend in the performance difference between W-FEDA and
U-FEDA is mixed, we found that there are more cases in which W-FEDA outperforms
U-FEDA. In addition, hyper-parameter tuning provided performance improvement
(even if only marginal) or did not hurt the system performance in more than half of
the cases. Nevertheless, the improvements are small in most cases, and they did not
happen across all the datasets we evaluated.

5.5 Combined Model based on Authorship Knowledge

and Intra-Exam Properties

In this section, we concatenate the vectors based on authorship knowledge used in
Chapter 4 and the vectors of W-FEDA in this chapter together to investigate whether
combining these two types of meta-properties and training one combined model can
further improve model performance or not.

To reduce the hyper-parameters searching space, for each dataset, we choose the
best vectors Φauthor(x) and Φmdl(x) tuned on the development set from each chapter, and
we concatenate these two vectors together via

Φam(x) = λaΦauthor(x) ⊕ (1 − λa)Φmdl(x) (5.13)

where λa ∈ [0.0, 1.0] is the hyper-parameter to decide the contribution of Φauthor(x) in
the concatenated vector. We train an SVR model on the concatenated vector Φam(x) and
tune its hyper-parameters. We choose the hyper-parameters with the best performance
on each development set and report model performance on the corresponding test set.
As only FCE-PRI, CAE-PRI, IELTS and FCE-PUB have more than one response written
by each learner, we only report the performance of these four datasets in Table 5.15,
and the authorship-based vectors Φauthor(x) are chosen from the feature fusion methods
(FF-NT and FF-CT). We will combine the results based on different meta-properties in a
score fusion way in Chapter 7.

In terms of the performance in Table 5.15, the combined method only achieves
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setup test rmse test prs test spr λa

3. FCE-PRI

BASE 1.991 0.359 0.339 X
MDL 1.952 0.387 0.368 X
FF-NT 1.982 0.348 0.324 X
FF-CT 1.974 0.354 0.333 X
FF-NT + MDL 1.969 0.380 0.356 0.80
FF-CT + MDL 1.979 0.368 0.342 0.80

4. CAE-PRI

BASE 2.405 0.411 0.410 X
MDL 2.358+ 0.448+ 0.446+ X
FF-NT 2.356+ 0.460+ 0.455+ X
FF-CT 2.360 0.447 0.440 X
FF-NT + MDL 2.316+ 0.486+ 0.472+ 0.60
FF-CT + MDL 2.341+ 0.468+ 0.467+ 0.80

5. IELTS

BASE 0.693 0.684 0.659 X
MDL 0.684 0.701+ 0.675 X
FF-NT 0.683 0.698 0.680 X
FF-CT 0.664+ 0.720+ 0.710+ X
FF-NT + MDL 0.668+ 0.713+ 0.697+ 0.80
FF-CT + MDL 0.664+ 0.720+ 0.710+ 1.00

6. FCE-PUB

BASE 2.569 0.662 0.652 X
MDL 2.564 0.654 0.636 X
FF-NT 2.529 0.688 0.688 X
FF-CT 2.460+ 0.694 0.695 X
FF-NT + MDL 2.524 0.684 0.688 0.90
FF-CT + MDL 2.460+ 0.694 0.695 1.00

Table 5.15: Results of combining the feature fusion and multi-domain learning methods
based on multiple attributes together on the test sets. The numbers highlighted are the
best in each dataset.
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the best performance on the CAE-PRI dataset (FF-NT + MDL). The reason might be
that this is only dataset where both multi-domain learning (MDL) and feature fusion
(FF-NT) methods are significantly better than the baseline, and both methods find useful
information not included in only modelling authorship knowledge or intra-exam meta
properties.

MDL achieves the best performance on the FCE-PRI dataset. The reason that MDL
is better than the combined method in this case might be the authorship-knowledge
based methods perform worse than the baseline in terms of the Pearson and Spearman
correlations, and the combined method absorbs the noise from the authorship-knowledge
based methods.

The feature fusion with concatenated text (FF-CT) and the combined methods (FF-CT
+ MDL) achieve the same performance on the IELTS and FCE-PUB datasets, because the
hyper-parameter tuned on the development set is 1.0.

In terms of the concatenating hyper-parameter λa for each combined method, λa is
always bigger than 0.5, which shows that the combined method prefers the information
from the authorship-knowledge base methods than MDL.

5.6 Discussion

As Section 5.4 shows, although multi-domain learning on different intra-exam properties
via W-FEDA can improve model performance, this improvement is not present in every
dataset, and only a few models achieve a statistically significant improvement according
to the permutation test. Furthermore, in Section 5.5, the combined model favours
authorship knowledge over the intra-exam properties based on the value of λa. In this
section, we present some possible reasons for the results we observed.

First, we can figure out one reason why FEDA does not work on some attributes
taken from previous work. In the original FEDA work, Daume III (2007) evaluated
his method on tasks including named entity recognition, POS tagging, recapitalisation
and treebank chunking. Daume III showed that FEDA improved model performance
on named entity recognition, part-of-speech tagging and recapitalisation task, but not
treebank chunking. More specifically, FEDA always underperformed the baseline on
the Brown corpus for each individual section, and the baseline only mixed all the
data instances from all domains together without explicitly modelling any domain
knowledge. One reason for the FEDA performance degradation might be related to the
fact that the features are not sufficiently discriminative across different domains that the
features for tree chunking the data from different domains might be very similar, and
the benefit of augmenting feature space for similar domains is not huge. This might also
be the case in ATS. For example, some learners’ numerous misspelling and grammatical
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Next month, Pete, an English friend who lives in London, will be on holiday in New
York for two weeks.
You have agreed to look after his flat for him while he is away. Read the extract from his
letter and your notes.
Then, using all your notes, write a letter to Pete. ...

Figure 5.10: First prompt from 0102 2001 3.xml of the FCE-PUB dataset which asks
learners to write a letter to your friend Pete. The full prompt is available in Appendix B

You recently had a week’s holiday in London.
During your stay you went to the theatre to see a musical show and had a very
disappointing evening.
Read the advertisement for the show and the notes you have made. Then, write a letter
to the manager of the theatre, explaining what the problems were and asking for some
money back.
...
Write a letter of between 120 and 180 words in an appropriate style on the opposite
page.
Do not write any postal addresses.

Figure 5.11: First prompt from 0100 2001 6.xml of the FCE-PUB dataset, which requires
learners to express their disappointment to a theatre manager. The full prompt is
available in Appendix B

errors in their texts may have hampered examiners’ understanding of those texts, and
the negative contribution of these errors might not be very different across different
prompts, genres and tasks in scoring. Therefore, modelling domain information for
these kinds of features might not be helpful enough in some cases.

Another possible reason is we have many different attribute values to explicitly
model, but the number of texts for some attributes might be relatively low. This might
make the model do not have enough texts to learn the correct and useful patterns for
some domain-specific features, and overfitting occurs in some datasets.

Furthermore, some attributes not explicitly modelled in any dataset might still be
crucial in ATS. These attributes might include topic, formality, and sentiment.

With respect to the topic attribute, prompts relating to the same topic (e.g. education
or politics) might share more features relative to other prompts. Learners who use
examples from the same topic to support their views might receive higher scores than
those who use examples from prompts on a different topic.

As for the formality attribute, it might be important to force learners to use the
appropriate register under different circumstances. Two example prompts are provided
in Figures 5.10 and 5.11. The prompt in Figure 5.10 asks learners to write a letter to a
friend, and the writing style might be relatively informal. In contrast, the prompt in
Figure 5.11 requires learners to write a complaint to a music theatre manager. This letter
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You see this announcement in an English language magazine.
An unforgettable birthday
Have you ever had an unforgettable birthday?
How did you celebrate it?
What made it so memorable?
Write us an article answering these questions.
The best article will be published in the magazine.
Write your article.

Figure 5.12: Third prompt from 0102 2001 6.xml of the FCE-PUB dataset, which requires
learners to write an article describing a birthday memory.

should be written in a formal way and should, for example, contain fewer phrasal verbs,
which are considered informal (Williams, 2008, p. 22).

As regards the sentiment attribute, human examiners might expect learners to use
appropriate words to reflect the correct sentiment polarity in their text. Two examples
are given in Figures 5.11 and 5.12. In Figure 5.11, the prompt asks learners to express
their disappointment about a show, so there should be some phrases to correctly express
the learners’ negative feelings. In comparison, the prompt in Figure 5.12 asks learners to
write an article describing a memorable experience about their birthday, so the sentiment
here might be relatively positive. It might be useful to divide prompts according to their
different sentiment polarities and encourage the prompts in each group to share more
parameters.

Finally, other features might be representative but not included in our model. For
instance, (Williams, 2008, p. 45) has summarised the key criteria to get a high score on
the FCE exam (i.e. the FCE-PUB dataset). One criterion is that learners should use
appropriate techniques that are relevant to the task. For instance, in prompts requiring
learners to write an article, learners should appropriately use direct quotations from
the prompt. Similarly, when composing a letter, learners should skilfully use the letter
writing conventions, including salutations, dividing a letter into paragraphs and closing
phrases. Although the lexical features described in Section 3.4.2 (e.g. word unigrams and
bigrams) might implicitly capture direct quotations and the correct use of salutations,
we do not use explicit features that are directly related to these requirements to force the
model to capture them. This problem might apply to other question types within the
FCE-PUB and other datasets.

5.7 Summary

In this chapter, we investigated various attributes to classify texts into different domains.
These attributes include prompt, genre and task. We found that using a technique of
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frustratingly easy domain adaptation improves the ATS model in more than half of
the cases. In addition, multi-domain learning on multiple attributes improves on each
single attribute and on not doing multi-domain learning in four out of five test sets. Our
comparison of W-FEDA and U-FEDA shows that there are more cases that W-FEDA is
better than U-FEDA at beating the baseline, although the difference is not large. Finally,
we provided some possible explanations as to why W-FEDA only significantly improves
model performance in the observed cases.
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Chapter 6

Automated Scoring across Different
Exams by Transfer Learning

6.1 Introduction

Every English writing exam has its own grading criteria; however, these exams can also
share commonalities in their grading criteria. One interesting question to investigate is
whether we can combine datasets from different sources to train an ATS model. The
benefit of doing this might be having more data to train an ATS system more robustly,
potentially giving a performance improvement. Such a system might be better than a
single system only trained on the data from one source (Dong et al., 2015; Luong et al.,
2016).

As we have discussed in Section 2.5.3, although Phandi et al. (2015) and Cummins
et al. (2016b) have investigated how to combine the essays from different exams to train
a single model, they both only used the ASAP dataset. One problem of the ASAP dataset
is that this dataset only contains essays written by English native speakers. Besides
this, this dataset was collected from learners at similar proficiency levels so that the
grade range of the participating students only lies between Grade 7 to Grade 10 in the
United States. Furthermore, for each specific work, Phandi et al. only studied domain
adaptation between two groups of essays on similar topics; it is not clear whether
domain adaptation from more than two or more target proficiency levels works well. In
comparison, Cummins et al. built a single ranking-based model for all the exams in
the ASAP dataset. Whether the same multi-task learning setup works for all the exams
from distinct proficiency levels was not examined.

To make the terminology in this chapter clear, in transfer learning, when we build a
model to mark the texts from a single dataset, we only use the texts from other datasets
to optimise model performance on this single dataset. This single dataset is the target
dataset; the other datasets excluding the target dataset are the source datasets.
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The goal of this chapter is to study whether existing transfer-learning techniques can
boost grader performance on any target non-native English learners’ dataset (Chapter 3)
from different target proficiency levels. More specifically, whether bringing non-native
learners’ data from multiple source datasets can affect grader performance on the target
dataset. We also intend to implement and improve existing transfer-learning techniques
to improve grader performance on the target dataset.1

6.2 Models

In this section, we describe the models used in this chapter which leverage multiple
datasets from various sources.

6.2.1 Two-Stage Model

We can use the regression-based weighted frustratingly easy domain adaptation (W-
FEDA) model from Chapter 5 to utilise multiple datasets. However, there is a potential
drawback of this model, which is the incompatibility of different exam marking schemes.
For example, the meaning of a score of 16 in the PET exam is different from a score of
16 in the FCE exam. When we are training a model to predict the scores of the texts
for PET, the model might be confused by the same numerical scores from different
marking schemes. Although W-FEDA might overcome this problem by having a
separate domain-specific weight parameter space for each dataset, the shared parameter
space shared by different datasets might still be a compromise between the absolute
scores from different marking schemes.

Hence, we suggest that when training an transfer-learning based automated grader
on multiple datasets from different sources to mark the target dataset, it is better to
transfer only the ranking of the language quality among the texts from different source
datasets, rather than the absolute scores. The benefit of transferring ranking is that
when we put different datasets together, we do not need to worry about how to handle
the existence of different marking schemes.

We make a strong assumption here that given any pair of texts text1 and text2, if the
score of text1 is higher than text2 on one grading scale, the relative order between these
two texts is still preserved even if we use a new marking scheme to mark these two
texts. Based on this assumption, transferring the relative order might bring less noise
and more useful knowledge to be passed into the shared parameter space from different

1The idea of the two-stage model in Section 6.2 was published as a paper in the proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Cummins et al., 2016b). In this
paper, I contributed the idea of the two-stage model. Cummins implemented the model and evaluated it
on the ASAP dataset. Briscoe gave feedback and suggestion for the paper.
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datasets as the order is always correct in all scales. Cummins et al. (2016b)’s model also
utilises multiple datasets by transferring relative order instead of absolute scores. In the
following section, we will describe their work in detail.

6.2.1.1 Cummins et al.’s Model

Figure 6.1: First stage of Cummins et al.’s model.

In Cummins et al. (2016b)’s original work in Figure 6.1, we assume that we have
seven texts with their feature vectors from x1 to x7. These texts come from three different
tasks T1, T2, and T3 with three different grading scales (the orange, red and green
numbers in Figure 6.1). Each text is marked with the grading scale of the task which the
text belongs to2, and the feature vector for each text is xi. We use unweighted FEDA
(Section 5.3.1) to augment each feature vector to Φ(xi).

The automated scoring procedure of their model is split into two stages. In the
first stage, we use a perceptron based pairwise-ranking model (Joachims, 2002), which
has been used by Briscoe et al. (2010); Yannakoudakis (2013) (Section 2.4) in ATS to do
ranking. The model constraints during training are similar to the ranking SVM (Section
2.3.3) in the following equation:

wT(Φ(xi) −Φ(x j)) > M f or (xi, x j) ∈ r (6.1)
2The definition of a task given by Cummins et al. (2016b) is different from the task we define in

Chapter 5. The task here is similar to a prompt in this thesis. Different tasks could be marked on the same
grading scale or different scales.
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In the above equation, (xi, x j) ∈ r represents all the data instance pairs in the training
set where xi has an higher rank compared to x j. During training, the model learns
a binary classifier (top right in Figure 6.1) with a weight vector w to minimise the
misclassification rate of difference vectors Φ(xi) − Φ(x j) to ensure most data instance pairs
(xi, x j) are bigger than M, which is the hyper-parameter to control the model margin. The
learned optimal parameters for w after training is w∗ based on the perceptron algorithm.

Similar to the ranking SVM, during prediction, the perceptron model predicts a
ranking score ŷrank

i for an incoming data instance xi by ŷrank
i by w∗ ·Φ(xi), and we can get

the order of an dataset {xi}
N
1 via calculating the ranking score for each instance and sort

the dataset based on the predicted ranking scores.
After we finish training our ranking model, we still do not know the score of each

text on its original grading scale but only an order of all the texts. Therefore, we need
another stage to get the predicted score for each text on its corresponding grading scale
from the ranking model. In this second stage, for feature vector Φ(xi) with predicted
ranking score ŷrank

i , a linear regression model R1
→ R1 is built for all the texts from the

same task to learn the relation between ŷrank
i and yi. We use this linear regression model

to predict the score of xi and round it as ŷi. Therefore, we have one linear regression
model for each task, and three regression models in total in the example of Figure 6.1.

In summary, we can interpret Cummins et al.’s model as a model combining multi-
task learning and transfer learning together. The first stage is a multi-task learning
model optimised on all datasets equally, and the second stage distils and transfers the
knowledge from the first stage to each task, respectively.

In this chapter, we define a model that learns a ranking model first and then builds a
regression model based on the outputs of the ranking model as a two-stage model. In
contrast, the W-FEDA model described in Section 6.3.1 predict the score of each text in
one stage, and we define this type of model as a one-stage model.3

We slightly modify Cummins et al.’s model in that the first-stage model now is the
ranking SVM model in LIBLINEAR (Lee and Lin, 2014) instead of the perceptron model,
because the ranking SVM model and their perceptron model have similar performance
on ATS (Yannakoudakis, 2013), and the LIBLINEAR ranking SVM implementation is
highly optimised for convergence speed, allowing this model to be trained without the
need to sample data in order to reduce the training set size. We use the L2-regularisation
version of ranking SVM in this chapter.

6.2.1.2 Two-Stage Feature-Rich Model

There is one possible drawback in Cummins et al.’s model. In the first stage, we
condense all the features of each text into a ranking score, and these features are no

3The models used in Chapter 4 and Chapter 5 are also one-stage models
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longer visible in the second stage. In other words, the ranking model is optimised
on the order (binary classification error rate) rather than the absolute scores, and the
regression model might not have enough information to map the order to the original
scores by only seeing a single ranking score. Also, Cummins et al. built one single
model for every dataset, and the amount of knowledge that should be transferred from
the source datasets to the target dataset to give the best model performance and mitigate
the potential negative-transfer influence (Rosenstein et al., 2005) might also vary from
one dataset to another.

We propose a variation of Cummins et al.’s model addressing these problems. In the
second stage, we hypothesize that having a transfer-learning based model with richer
features as the inputs to the model should lead to better performance than Cummins
et al.’s original approach. We add the ranking scores predicted by the ranking model
as an extra feature ŷrank

i to the features xi we identified in Chapter 3 and concatenate
them together. In other words, we use the ranking score as an additional feature
and feed it into the baseline SVR model in Chapter 3. Here, we include a weighting
hyper-parameter ζ ∈ [0, 1] to control the influence of the ranking score in the second
stage. The feature representation of the second stage to train the regression model can
be written as:

xFR
i = ζxi ⊕ (1 − ζ)ŷrank

i (6.2)

All the predicted ranking scores ŷrank are normalised to [0, 1] to ensure they are on the
same scale with the features to be concatenated, and we use the SVR model in Chapter 3
as the second-stage model to learn the relation between the new feature vectors xFR

i and
the score yi.

6.3 Transfer-Learning Techniques

In this section, we introduce the transfer-learning techniques we will implement and
describe how to put them into the one-stage (defined in Section 6.2.1.1) and two-stage
models in Section 6.2.1.

6.3.1 W-FEDA

Based on W-FEDA described in Section 5.3.4, we tune the weighting hyper-parameter
for all the texts from all the datasets so that we can weigh how important each space
is in W-FEDA. More specifically, we rewrite Equation 5.4 into the following form to
accommodate the transfer-learning requirement by adding extra hyper-parameters η:

Φaug(x) = ⊕k
a=0ηa f (x, a) (6.3)
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and f (x, j) is still defined as it was in Equation 5.4:

f (x, a) =


x, if a = 0

x, if Domain(x) = a

0, otherwise

(6.4)

ηa is set to 1.0 if attribute a = td corresponds to the target dataset td. η/ηtd for the
shared space and other source datasets are tuned between (0.0, 1.0). This W-FEDA
model is evaluated as one-stage transfer-learning model. We set these hyper-parameters
to the same value to reduce the search space.

For the two-stage models, we only apply this approach to the first stage of each
model. This is similar to what Cummins et al. (2016b) did except that they used standard
FEDA and set ηa = 1.0 for every task a in the first stage.

Although the performance difference between W-FEDA and unweighted FEDA in
Chapter 5 is mixed, we still use W-FEDA in this chapter, because W-FEDA is more
suitable in modelling the differences across multiple datasets as it has the weighting
hyper-parameters to adjust the attention to each dataset, and the differences between
various datasets are much bigger than the difference within the same dataset. Therefore,
W-FEDA can help us put more attention and priority on the target dataset.

6.3.2 Instance Weighting

Another approach to utilise the data from different sources is instance weighting. Jiang
and Zhai (2007) (Section 2.5.2) proposed an approach to combine different datasets via
instance weighting. Following their strategy, we split the training dataset {(xi, yi)}Ni=1

into the target training set {(x j,td, y j,td)}Ntd
j=1 and the source training set {(xi,sd, yi,sd)}Nsd

i=1 , and
Nsd and Ntd represent the number of data instances from the source and target datasets,
respectively. The cost hyper-parameter C of the support vector regression (SVR) model
in Equation 2.24 is also split into Ctd for the target dataset td and Csd for the other source

128



datasets sd by:

min
w,b,ξupper

td ,ξlower
td ,ξupper

sd ,ξlower
sd

Csd
∑Nsd

i=1((ξupper
i,sd )2 + (ξlower

i,sd )2) + Ctd
∑Ntd

j=1((ξupper
j,td )2 + (ξlower

j,td )2) + 1
2 ||w||

2

subject to :



yi,sd −wTxi,sd − b ≤ ε + ξupper
i,sd

wTxi,sd + b − yi,sd ≤ ε + ξlower
i,sd

ξupper
i,sd , ξlower

i,sd ≥ 0

 ∀i ∈ 1, . . . ,Nsd

y j,td −wTx j,td − b ≤ ε + ξupper
j,td

wTx j,td + b − y j,td ≤ ε + ξlower
j,td

ξupper
j,td , ξlower

j,td ≥ 0

 ∀ j ∈ 1, . . . ,Ntd

(6.5)
We set Ctd larger than Csd so that the model pays more attention to the data instances

from the target dataset. In this chapter, we combine this weighting scheme with standard
FEDA and add it to the one-stage models and the first stage of all the two-stage models
to be implemented.

6.4 Implementation

In this section, we describe the implementation of the models we have illustrated in
Section 6.2.

6.4.1 Baseline Models Trained on One Dataset

The individual-level baseline model (BASE) is still an SVR model based on LIBLINEAR
as used in Chapter 3. The cost hyper-parameter C is tuned on each development set,
and the epsilon hyper-parameter is set to the default value of 0.1 in LIBLINEAR.

We also implement a ranking-based model (BRank) as the second baseline model. We
train an SVM pairwise-ranking model only on the training set of each dataset, tune the
model on its development set, and evaluate the model on its test set. The reason we list
this pairwise-ranking model as another baseline model is that we want to verify whether
the performance difference between the two-stage models trained on multiple datasets
and the baseline model is actually affected by bringing more data from various sources
if there is any difference. In other words, if there is any performance improvement or
degradation, it can be a consequence of the ensemble of different models rather than
bringing more datasets from various sources (Mitchell, 1997, pp. 175) (Joshi et al., 2012).

Furthermore, we have a two-stage model as the third baseline in this chapter. It
uses BRank as the first stage model and BASE as the second stage model. We can use
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this model to further measure how much of the performance variation of the two-stage
model utilising multiple datasets is due to the effect of ensemble learning.

6.4.2 Transfer-Learning Models Trained on Multiple Datasets

For a transfer-learning model, we train each model by selecting one of the six training
sets as the target dataset and use the rest as the source datasets. Each model is then
tuned and tested on the target development and test sets respectively. Hence, for each
transfer-learning setup, we have one model for each dataset, and six models in total.

For a one-stage transfer-learning model, to ensure the scores for each dataset are
approximately in the same range, we multiply the score of each text from the KET-PRI
dataset by 4, and the scores of the IELTS dataset by 2. We then convert the scores of
these datasets back to their corresponding original grading scales when we report the
results.

Cummins et al. did not conduct any hyper-parameter tuning and only used the
default hyper-parameters. As we have a development set for each dataset, we can do
hyper-parameter tuning. Here we report how to conduct the hyper-parameter tuning:

• For the one-stage models, we tune all the hyper-parameters on the development
sets.

• For the two-stage models for each target dataset:

– In the first stage, we tune the ranking SVM cost hyper-parameters for the
target and source datasets. We also tune the weighting hyper-parameters for
W-FEDA and instance weighting in the first stage. We then pick the model
with the hyper-parameters achieving the highest Pearson correlation on the
target development dataset.

– In the second stage, we tune the SVR cost hyper-parameter on the target
development set. For the two-stage feature rich models, we also tune the
interpolation hyper-parameter described in Section 6.2.1.2.

6.5 Results

In this section, we report the results of the three baseline models and all the transfer-
learning models we have built. We evaluate these models on all the development
sets. For the test sets, we report the three baseline models as well, and we select the
transfer-learning model achieving the lowest root-mean-squared error (RMSE) on each
development set and evaluate it on the corresponding test set.
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The results of all the models evaluated on the development sets are reported in
Table 6.1 and Table 6.2 with RMSE, and Pearson (ρprs) and Spearman (ρspr) correlations,
and the p-values of the Wilcoxon signed-rank test across all the six development sets are
reported in Table 6.3.

Let us explain the abbreviations of the model names in Table 6.1, Table 6.2 and
Table 6.3 before we start to discuss the results:

• Baseline models:

– BASE: it is the baseline SVR described in Chapter 3;

– BRank: it is the baseline ranking SVM model described in Section 6.4.1;

• Model types:

– OS (e.g. OS-WFEDA): it is a one-stage regression model;

– TS (e.g. TS-IW-FR): it is a two-stage model;

• Transfer-learning strategies:

– WFEDA (e.g. OS-WFEDA): the corresponding model uses W-FEDA as the
transfer-learning strategy;

– IW (e.g. OS-IW): the corresponding model uses instance weighting with
standard FEDA as the transfer-learning strategy;

• Second stage of the two-stage models:

– ONE (e.g. TS-IW-ONE): it is a two-stage model that uses only one rank score
to predict the original score of a text at the second stage. This is the same
strategy used by Cummins et al.;

– FR (e.g. TS-IW-FR): it is a feature-rich two-stage model. This is the variant
we propose in this chapter.

6.5.1 Baselines

We first compare the performance differences between the baseline SVR (BASE) and
ranking models on the development sets. In terms of RMSE, BRank is worse than BASE
on the development sets for KET-PRI, PET-PRI, FCE-PRI and CAE-PRI. Meanwhile, a
mixed result is also found on ρprs. We combine these two models as the two-stage model
with baseline ranking model (TS-BRank-FR). For the Wilcoxon test, we can see that there
is no significant difference between TS-BRank-FR and BASE.
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setup dev rmse dev prs dev spr

1. KET-PRI

BASE 0.970 0.661 0.585
BRank 0.980 0.655 0.615
TS-BRank-FR 0.970 0.661 0.619
OS-WFEDA 0.966 0.665 0.593
OS-IW 0.988 0.643 0.569
TS-WFEDA-ONE 0.998 0.640 0.557
TS-IW-ONE 1.023 0.620 0.564
TS-WFEDA-FR 0.970 0.661 0.585
TS-IW-FR 0.964 0.664 0.595

2. PET-PRI

BASE 2.247 0.594 0.541
BRank 2.260 0.580 0.526
TS-BRank-FR 2.227 0.595 0.541
OS-WFEDA 2.229 0.599 0.540
OS-IW 2.255 0.577 0.507
TS-WFEDA-ONE 2.233 0.592 0.537
TS-IW-ONE 2.253 0.584 0.525
TS-WFEDA-FR 2.198 0.607 0.532
TS-IW-FR 2.213 0.600 0.520

3. FCE-PRI

BASE 1.994 0.379 0.363
BRank 2.049- 0.393 0.378
TS-BRank-FR 2.032 0.406 0.386
OS-WFEDA 1.982 0.392 0.382
OS-IW 1.977 0.387 0.377
TS-WFEDA-ONE 2.027 0.410 0.398
TS-IW-ONE 2.027 0.410 0.398
TS-WFEDA-FR 1.938+ 0.431+ 0.424+
TS-IW-FR 1.973 0.395 0.381

Table 6.1: Results of different setups on the KET-PRI, PET-PRI and FCE-PRI development
sets. The best setup per dataset is in bold. The green colour means improvement and
the red colour means degradation over BASE. + and - mean significantly better and
worse (p < 0.05) than BASE using the permutation randomisation test (Yeh, 2000) with
2,000 samples.
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setup dev rmse dev prs dev spr

4. CAE-PRI

BASE 2.421 0.377 0.341
BRank 2.495- 0.372 0.346
TS-BRank-FR 2.478- 0.368 0.340
OS-WFEDA 2.390 0.419+ 0.381+
OS-IW 2.410 0.390 0.351
TS-WFEDA-ONE 2.457 0.406 0.383
TS-IW-ONE 2.475 0.401 0.371
TS-WFEDA-FR 2.392 0.404 0.371
TS-IW-FR 2.410 0.408 0.371

5. IELTS

BASE 0.701 0.697 0.680
BRank 0.682+ 0.716+ 0.698
TS-BRank-FR 0.682+ 0.716+ 0.700+
OS-WFEDA 0.688 0.712 0.685
OS-IW 0.689 0.709 0.684
TS-WFEDA-ONE 0.663+ 0.735+ 0.712+
TS-IW-ONE 0.680 0.720 0.700
TS-WFEDA-FR 0.664+ 0.734+ 0.705+
TS-IW-FR 0.699 0.701 0.686

6. FCE-PUB

BASE 2.402 0.567 0.571
BRank 2.383 0.570 0.564
TS-BRank-FR 2.373 0.575 0.570
OS-WFEDA 2.387 0.566 0.559
OS-IW 2.392 0.564 0.556
TS-WFEDA-ONE 2.397 0.577 0.567
TS-IW-ONE 2.403 0.573 0.565
TS-WFEDA-FR 2.362 0.585 0.577
TS-IW-FR 2.394 0.573 0.571

Table 6.2: Results of different setups on the CAE-PRI, IELTS and FCE-PUB development
sets. The best setup per dataset is in bold. The green colour means improvement and
the red colour means degradation over BASE. + and - mean significantly better and
worse (p < 0.05) than BASE using the permutation randomisation test (Yeh, 2000) with
2,000 samples.
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setup dev rmse dev prs dev spr

BRank 0.463 0.833 0.293
TS-BRank-FR 0.834 0.208 0.293
OS-WFEDA 0.028 0.046 0.249
OS-IW 0.345 0.753 0.345
TS-WFEDA-ONE 0.753 0.173 0.344
TS-IW-ONE 0.173 0.600 0.463
TS-WFEDA-FR 0.036 0.036 0.142
TS-IW-FR 0.028 0.027 0.295

Table 6.3: p-value for each approach estimated by the Wilcoxon signed-rank test (Demšar,
2006) across all the six development sets in this chapter. The metrics of each setup which
are better than the baseline BASE with p < 0.05 are highlighted in green.

6.5.2 Transfer-Learning Models

Now we switch to a discussion of the transfer-learning models.
We first look at the one-stage models. The one-stage regression model with weighted

FEDA (OS-WFEDA) achieves the best result in terms of RMSE and ρprs on the CAE-
PRI development set, and it is only worse than BASE on the PET-PRI and FCE-PUB
development sets in terms of ρspr. Based on the Wilcoxon test in Table 6.3, OS-WFEDA is
significantly better than BASE in terms of RMSE and ρprs, and no statistically significant
difference is detected on the one-stage regression model with instance weighting and
standard FEDA (OS-IW).

Finally, we come to the two-stage feature-rich models. In terms of the Wilcoxon
test, both TS-WFEDA-FR and TS-IW-FR are significantly better than BASE in terms
of RMSE and ρprs. TS-WFEDA-FR performs better than BASE except for the KET-PRI
development set and the PET-PRI development set in terms of ρspr, and TS-IW-FR is
always better than BASE except for the PET-PRI and FCE-PUB development sets in
terms of ρspr.

To better understand how each model performs across all the development sets, we
summarise the distribution of how many times each model gets the best performance on
each metric in Table 6.4. We can see that two-stage feature-rich WFEDA (TS-WFEDA-FR)
deliver the best performance in terms of RMSE, ρprs and total more frequently than the
other approaches, and TS-WFEDA-ONE, TS-WFEDA-FR and TS-BRank-FR have the
best performance twice in terms of ρspr. We also reduce the same models with different
transfer-learning strategies (W-FEDA and IW) to the same setup in Table 6.5, and the
general pattern is similar to Table 6.4.

Although there are more cases that transferring relative order is better than trans-
ferring absolute scores in Table 6.4 and 6.5, we still observe that in some datasets,
transferring absolute scores could be more beneficial in terms of some metrics. For
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setup dev rmse dev prs dev spr total

BASE 0 0 1 1
BRank 0 0 0 0
TS-BRank-FR 0 0 2 2
OS-WFEDA 1 2 0 3
OS-IW 0 0 0 0
TS-WFEDA-ONE 1 1 2 4
TS-IW-ONE 0 0 0 0
TS-WFEDA-FR 3 3 2 8
TS-IW-FR 1 0 0 1

Table 6.4: Distribution of how many times each approach achieving the best performance
on each metric across all the six development sets. The numbers highlighted are the
best in each column. The total column is the sum of counts for all three metrics.

setup dev rmse dev prs dev spr total

BASE 0 0 1 1
BRank 0 0 0 0
TS-BRank-FR 0 0 2 2
OS 1 2 0 3
TS-ONE 1 1 2 4
TS-FR 4 3 2 9

Table 6.5: Reduced distribution based on the transfer learning strategies. Each row
represents how many times each approach achieving the best performance on each
metric across all the six development sets. The numbers highlighted are the best in each
column. The total column is the sum of counts for all three metrics.
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example, the one-stage model OS-WFEDA has the best performance on the CAE-PRI
development set in terms of RMSE and ρprs. We suggest that the reason might be that
for some exams, the standard for achieving the same score might be similar, as for the
FCE and CAE exams in Table 6.6.4,5,6 We can see that the marking criteria to achieve 5
out of 5 in terms of language quality are similar for the FCE and CAE, unlike for the
KET exam, because the target proficiency levels for the FCE and CAE exams are similar
compared the KET exam. In this case, we suggest that the absolute scores might still
have their values in transfer learning as the scores on these two exams are similar.

In Table 6.5, we notice that in four out of six development sets, the two-stage model
TS-FR we propose gets the best result in terms of RMSE, and the two-stage model
TS-ONE proposed by Cummins et al. also gets the best result in terms of RMSE for one
time on the IELTS dataset (TS-WFEDA-ONE in Table 6.2). We suggest that the ranking
scores predicted from the first-stage model have different influence on different graders.
Some graders on some datasets prefer the knowledge learned from the first-stage model
compared to other graders, and they do not need to look back to the original text
features at the second stage any more. An example is the IELTS development set, where
TS-WFEDA-ONE is better than TS-WFEDA-FR, and the performance difference between
TS-WFEDA-ONE and TS-WFEDA-FR is not big. For the other datasets, the original
features are still valuable in predicting text scores at the second stage. Without using
the original features, we can see that both TS-WFEDA-ONE and TW-WFEDA-IW even
get worse on the KET-PRI, FCE-PRI and CAE-PRI datasets in terms of RMSE.

Furthermore, if we reduce all the transfer-learning approaches in Table 6.5 into a
single setup and compare this setup with the other three baselines, we can see that the
transfer-learning approach dominates all the three metrics in this table. This encourages
us to choose the best performing transfer-learning approach on each dataset and evaluate
the chosen approach on the test set.

6.5.3 Test sets

Finally, as we have tested multiple setups, for each dataset, we report the setup achieving
the lowest RMSE with its corresponding performance on the test sets. We summarise
these results in Table 6.7 and the Wilcoxon signed-rank test in Table 6.8.

For the baseline models on the test sets, in terms of RMSE, BRank is worse than
BASE on the FCE-PRI, CAE-PRI and IELTS test sets, and TS-BRank-FR is worse than
BASE on the FCE-PRI, CAE-PRI and FCE-PUB test sets. In terms of the Wilcoxon test in

4http://www.cambridgeenglish.org/images/cambridge-english-assessing-writing-performance-at-
level-b2.pdf

5http://www.cambridgeenglish.org/images/cambridge-english-assessing-writing-performance-at-
level-c1.pdf

6http://assets.cambridge.org/97805217/54804/excerpt/9780521754804 excerpt.pdf
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Exam Marking Criteria
CAE (C1) Uses a range of vocabulary, including less common lexis, effectively

and precisely.
Uses a wide range of simple and complex grammatical forms with
full control, flexibility and sophistication.
Errors, if present, are related to less common words and structures,
or occur as slips.

FCE (B2) Uses a range of vocabulary, including less common lexis, appro-
priately.
Uses a range of simple and complex grammatical forms with
control and flexibility.
Occasional errors may be present but do not impede communica-
tion.

KET (A2) All three parts of message clearly communicated.
Only minor spelling errors or occasional grammatical errors.

Table 6.6: Selected marking criteria for the CAE, FCE and KET exams. The first two
rows are the marking criteria to get 5 out of 5 in terms of language quality for the CAE
and FCE exams. The third row is the marking criterion to get 5 out of 5 regarding the
total score for the KET exam. (There is no separate score for language quality for the
KET exam.)

Table 6.8, BRank is significantly better than BASE in terms of ρspr, but not RMSE and
ρprs. In summary, the performance differences between these baselines are mixed.

In contrast, we can see that the transfer-learning approaches we have selected are
always better than BASE across all the six test sets, and they are significantly better than
BASE on the PET-PRI, CAE-PRI and IELTS datasets on all the three metrics.

We then summarise the performance differences between the transfer-learning
techniques and the other two baseline approaches BRank and TS-BRank-FR. The
transfer-learning techniques have the best results on the PET-PRI, IELTS and FCE-PUB
datasets for all the three metrics, and BRank has the best results on the KET-PRI dataset
in terms of ρprs and ρspr.

To understand the performance differences more clearly, we summarise Table 6.8 to
see the distribution of which approach performs best on each metric. We can see that
Transfer-Learning still dominates RMSE, ρprs, ρspr and total.

We can conclude that utilising multiple datasets gives us a consistent improvement
over the SVR baseline model, and this improvement is not an effect of switching to
another type of model or of conducting model ensembles without bringing more training
data from different sources.

It is clear that the best approach tuned on the development set is not always
significantly better than BASE in all the test sets, especially for the KET-PRI test set
where the transfer learning approach is not significantly better than BASE on any metric.
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setup dev rmse dev prs dev spr test rmse test prs test spr

1. KET-PRI

BASE 0.970 0.661 0.585 0.968 0.706 0.648
BRank 0.980 0.655 0.615 0.959 0.711 0.685
TS-BRank-FR 0.970 0.661 0.619 0.964 0.708 0.681
TS-IW-FR 0.964 0.664 0.595 0.963 0.713 0.661

2. PET-PRI

BASE 2.247 0.594 0.541 2.179 0.567 0.467
BRank 2.260 0.580 0.526 2.106 0.604 0.534+
TS-BRank-FR 2.227 0.595 0.541 2.112 0.600 0.514+
TS-WFEDA-FR 2.198 0.607 0.532 2.045+ 0.637+ 0.557+

3. FCE-PRI

BASE 1.994 0.379 0.363 1.991 0.359 0.339
BRank 2.049- 0.393 0.378 2.038 0.367 0.347
TS-BRank-FR 2.032 0.406 0.386 2.042 0.365 0.343
TS-WFEDA-FR 1.938+ 0.431+ 0.424+ 1.951+ 0.395 0.372

4. CAE-PRI

BASE 2.421 0.377 0.341 2.405 0.411 0.410
BRank 2.495- 0.372 0.346 2.420 0.424 0.428
TS-BRank-FR 2.478- 0.368 0.340 2.468- 0.373 0.366-
OS-WFEDA 2.390 0.419+ 0.381+ 2.338+ 0.467+ 0.468+

5. IELTS

BASE 0.701 0.697 0.680 0.693 0.684 0.659
BRank 0.682+ 0.716+ 0.698 0.697 0.683 0.671
TS-BRank-FR 0.682+ 0.716+ 0.700+ 0.691 0.689 0.676
TS-WFEDA-ONE 0.663+ 0.735+ 0.712+ 0.669+ 0.712+ 0.702+

6. FCE-PUB

BASE 2.402 0.567 0.571 2.569 0.662 0.652
BRank 2.383 0.570 0.564 2.560 0.644 0.646
TS-BRank-FR 2.373 0.575 0.570 2.574 0.638 0.642
TS-WFEDA-FR 2.362 0.585 0.577 2.446 0.679 0.661

Table 6.7: Three baselines without using extra data and the transfer-learning models
(setups in bold) achieving the lowest RMSE on the development sets. The green colour
means improvement and the red colour means degradation over BASE. + and - mean
significantly better and worse (p < 0.05) than BASE using the permutation randomisation
test (Yeh, 2000) with 2,000 samples.

138



setup test rmse test prs test spr

BRank 0.917 0.345 0.046
TS-BRank-FR 0.752 0.917 0.463
Transfer-Learning 0.028 0.028 0.028

Table 6.8: p-value for each approach estimated by the Wilcoxon signed-rank test (Demšar,
2006) across all the six test sets in this chapter. The metrics of each setup better than the
baseline (BASE) with p < 0.05 are highlighted in green. The Transfer-Learning setup is
the combination of different transfer learning approaches achieving the lowest RMSE
on the development sets in Table 6.7.

setup test rmse test prs test spr total

BRank 0 0 0 0
TS-BRank-FR 1 0 1 2
Transfer-Learning 5 6 5 16

Table 6.9: Distribution of how many times each approach achieves the best performance
on each metric across all the six test sets. The numbers highlighted are the best in each
column. The total column is the sum of counts for all three metrics.

We suggest there are two reasons.
The first possible reason is that the degree of similarity between datasets varies

from one dataset to another, and this degree dictates how much useful knowledge can
pass from various source datasets to the grader assessing the target dataset (Rosenstein
et al., 2005). For example, the target proficiency levels of some datasets we describe in
Chapter 3 are different. The CAE exam is designed to verify whether learners can meet
the C1 level, and the KET exam aims at the A2 level. The differences and similarities in
the target proficiency levels are also reflected in their grading criteria in Table 6.6. We
can clearly see that the criteria for CAE are more similar to FCE compared to those of
KET. The writing sections of both CAE and FCE emphasise some higher level aspects
including precise vocabulary usage and control of grammatical forms, while KET has
no explicit requirement on these two aspects.

The other possible reason is that the ratio between the number of data instances from
the source domains to the target domain is not high enough. Cummins et al. (2016b)
showed that the performance improvement of utilising multiple datasets to train a
grader is higher if there are only limited data instances in the training set from the target
dataset but abundant instances from other source datasets. The performance gap might
become smaller if we use more training data from the target dataset to train the grader.

To quantitatively study the influence of target data in transfer learning, we remove
all the target training set and only use the source datasets as the training set to train a
model. As we have no data from target domain to fit the original score scale for each
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target exam, we only build a ranking model based on W-FEDA and report the Pearson
and Spearman’s correlations for each new model on the corresponding test set. In this
setup during training, we only keep and use the target dataset as the development set
for hyper-parameters tuning for the cost hyper-parameter of SVR and the interpolation
weights of W-FEDA. Here we set the weight of each source dataset to the same value
to reduce the hyper-parameter searching space. Each model without target dataset
is finally evaluated on the corresponding target test set. The results are included in
Table 6.10.

setup test prs test spr

1. KET-PRI

BASE 0.706 0.648
Rank WFEDA without target train data 0.374 (-47.0%) 0.331 (-48.9%)

2. PET-PRI

BASE 0.567 0.467
Rank WFEDA without target train data 0.523 (-7.8%) 0.424 (-9.2%)

3. FCE-PRI

BASE 0.359 0.339
Rank WFEDA without target train data 0.309 (-13.9%) 0.294 (-13.3%)

4. CAE-PRI

BASE 0.411 0.410
Rank WFEDA without target train data 0.350 (-14.8%) 0.324 (-21.0%)

5. IELTS

BASE 0.684 0.659
Rank WFEDA without target train data 0.586 (-14.3%) 0.558 (-15.3%)

6. FCE-PUB

BASE 0.662 0.652
Rank WFEDA without target train data 0.647 (-2.3%) 0.616 (-5.5%)

Table 6.10: Performance drop on each test set for the ranking W-FEDA model without
target dataset in the training set, compared to the baseline model.

First, there is a performance drop for every test set in Table 6.10. For example,
although the IELTS exam targets learners from different proficiency levels, without the
IELTS dataset in the training set still gives the model a performance drop, which means
that the target dataset still plays an important role even if we have multiple source
datasets.

We then notice that the relative performance drop for KET-PRI is 47.0% for the
Pearson correlation and 48.9% for the Spearman correlation, which are about twice
bigger than the CAE-PRI dataset, which has the second biggest drop in terms of model

140



performance. This suggests that transfer learning has limited positive influence if
there is a big discrepancy between the data from source and target datasets, which
quantitatively supports our hypothesis for the KET exam.

Finally, the performance drop for the FCE-PUB dataset is smaller than the other five
datasets. The reason might be that the feature set and model we chose in this thesis
were tuned on the FCE-PUB script level, and the model performance was even higher
than the human annotators agreement in terms of the Pearson correlation (Section 3.4).
The features extracted from other source datasets might still capture useful pattern for
predicting FCE-PUB scores. This means that exploring the optimal feature set for each
dataset might bring more substantial performance improvement.

6.6 Summary

In this chapter, we studied how to leverage the datasets from different sources to train
an automated grader by transfer learning on the target dataset for non-native English
learners. The conclusions and contributions we have made include:

• We experimentally demonstrated that including data from other sources can
improve model performance.

• We have also compared one-stage and two-stage models in this chapter. We found
that two-stage models achieve the best performance in terms of RMSE on five out
of six datasets in total, and the new two-stage models we propose in this chapter
get the best performance on four out of six development sets in terms of RMSE.

• The best transfer-learning approaches picked from the development set always
perform better than BASE, and this improvement is not because of simply changing
a different type of model without bringing extra data.
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Chapter 7

Jointly Modelling all Meta Properties

In Chapters 4 to 6, we approach ATS from three different types of meta properties
including authorship knowledge, inter-exam and intra-exam properties. We notice that
there is not a single approach which performs significantly better than the baseline on
every dataset, and from Chapter 6, the model performance improvement could also be
brought by simply combining different models together. This chapter jointly models
all the meta properties we propose in this thesis. We combine the outputs from the
three chapters together via ensemble learning, which is a technique to combine multiple
learning algorithms together to get a superior predictive performance (Opitz and Maclin,
1999), as the finale of the experiments in this thesis.

7.1 Select Inputs for Ensemble Learning

In this chapter, we combine the models from the previous chapters together via ensemble
learning as the finale of the experiments in this thesis. First, we need to choose what
outputs from the previous chapters to use to form the inputs of the ensemble learning.

For the authorship knowledge in Chapter 4, we average the predictions from feature
fusion with neighbouring text (FF-NT) and concatenated text (FF-CT) (Table 4.3), as for
each development set, only one of these two models has the best performance in terms
of RMSE.

For the intra-exam properties in Chapter 5, we select the approaches modelling
all the intra-exam properties available in each dataset. The intra-exam properties we
choose are listed in Table 7.1.

For the inter-exam property in Chapter 6, we choose the transfer-learning setup
achieving the best performance on each development set in terms of RMSE (Table 6.7).

We use linear interpolation to average the unrounded outputs we select from each
chapter. The interpolation hyper-parameters are tuned on each development set. The
outputs of the ensemble learning are then divided by the sum of the interpolation
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Dataset Prompt Genre Task

KET-PRI T - -
PET-PRI T T -
FCE-PRI T - T
CAE-PRI T - T
IELTS T T T
FCE-PUB T T T

Table 7.1: Intra-exam properties to conduct W-FEDA for each dataset in this chapter.
The performance of W-FEDA on each dataset is available in Table 5.8 and Table 7.2. -
means unavailable.

weights and rounded to the nearest valid scores.

7.2 Results

The results of this chapter are reported in Table 7.2. We summarise the meaning of each
setup in this table as follows:

• BASE: the support vector regression baseline (SVR) in Chapter 3;

• AUTHORSHIP: the model averaging the outputs of FF-NT and FF-CT from
Chapter 4 together;

• INTRA-EXAM: the W-FEDA expanded on the intra-exam properties listed in
Table 7.1 from Chapter 5;

• INTER-EXAM: the transfer-learning setup listed in Table 6.9 from Chapter 6;

• EL: the ensemble learning combining results from the previous three chapters.

From Table 7.2, we can see that the ensemble learning (EL) is better than BASE
on every metric and dataset. One interesting pattern found in Table 7.2 is that if any
method from Chapter 4 to Chapter 6 has a significant improvement on any metric and
any dataset, the ensemble-learning method also has a significant improvement on the
same metric and dataset. In addition, EL has a significant improvement on the FCE-PUB
test set in terms of RMSE, and FCE-PRI on the Pearson and Spearman correlations, and
none of the approaches from Chapter 4 to 6 has a significant improvement on these
metrics. We suggest that jointly modelling the text properties combines the advantages
of the methods from the previous three chapters.

Which properties contribute to the best performance improvement in Table 7.2 heavily
depends on which dataset we are looking at. This is similar to what Yannakoudakis
(2013) (Section 2.4) and Somasundaran et al. (2014) found that graders trained on
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setup dev rmse dev prs dev spr test rmse test prs test spr

1. KET-PRI

BASE 0.970 0.661 0.585 0.968 0.706 0.648
INTRA EXAM 0.952 0.678 0.595 0.904+ 0.751+ 0.723+
INTER EXAM 0.964 0.664 0.595 0.963 0.713 0.661
EL 0.943 0.683 0.603 0.906+ 0.750+ 0.719+

2. PET-PRI

BASE 2.247 0.594 0.541 2.179 0.567 0.467
INTRA EXAM 2.202 0.609 0.535 2.094+ 0.615+ 0.510
INTER EXAM 2.198 0.607 0.532 2.045+ 0.637+ 0.557+
EL 2.185 0.615 0.544 2.031+ 0.646+ 0.547+

3. FCE-PRI

BASE 1.994 0.379 0.363 1.991 0.359 0.339
AUTHORSHIP 1.967 0.398 0.385 1.984 0.343 0.322
INTRA EXAM 1.954 0.415 0.385 1.953 0.386 0.368
INTER EXAM 1.938+ 0.431+ 0.424+ 1.951+ 0.395 0.372
EL 1.933+ 0.434+ 0.411+ 1.933+ 0.402+ 0.383+

4. CAE-PRI

BASE 2.421 0.377 0.341 2.405 0.411 0.410
AUTHORSHIP 2.374+ 0.423+ 0.395+ 2.344+ 0.463+ 0.462+
INTRA EXAM 2.379+ 0.419+ 0.388+ 2.358+ 0.448 0.446
INTER EXAM 2.390 0.419+ 0.381+ 2.338+ 0.467+ 0.468+
EL 2.368+ 0.430+ 0.398+ 2.348+ 0.461+ 0.459+

5. IELTS

BASE 0.701 0.697 0.680 0.693 0.684 0.659
AUTHORSHIP 0.684 0.717 0.699 0.676 0.706 0.696+
INTRA EXAM 0.699 0.702 0.684 0.684 0.701 0.675
INTER EXAM 0.663+ 0.735+ 0.712+ 0.669+ 0.712+ 0.702+
EL 0.651+ 0.746+ 0.718+ 0.671+ 0.708+ 0.696+

6. FCE-PUB

BASE 2.402 0.567 0.571 2.569 0.662 0.652
AUTHORSHIP 2.321+ 0.600+ 0.607+ 2.516 0.684 0.678
INTRA EXAM 2.353 0.586 0.584 2.564 0.654 0.636
INTER EXAM 2.362 0.585 0.577 2.446 0.679 0.661
EL 2.305+ 0.605+ 0.603+ 2.419+ 0.697 0.688

Table 7.2: Results of different setups from Chapter 4 to 6 and ensemble learning (EL)
on different datasets. The best setup per dataset is in bold. Numbers in green mean
improvement and red mean degradation over BASE. + means significantly better
(p < 0.05) than BASE using the permutation randomisation test (Yeh, 2000) with 2,000
samples.
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Dataset CEFR #Words Author Intra Inter Author+Inter

1 KET-PRI A2 25-35 0.86 0.14 0.14
2 PET-PRI B1 About 100 0.67 0.33 0.33
3 FCE-PRI B2 140-190 0.55 0.36 0.09 0.64
6 FCE-PUB B2 120-180 0.36 0.00 0.64 1.00
4 CAE-PRI C1 220-260 0.82 0.00 0.18 1.00
5 IELTS ALL 150 for 1st task,

250 for 2nd task
0.30 0.00 0.70 1.00

Table 7.3: Interpolation weights of ensemble learning (Table 7.2) for each dataset. #Words
represents the number of words required in each dataset.

different datasets favour different features. We summarise the normalised interpolation
hyper-parameters in Table 7.3. Some datasets favour the outputs from the intra-exam
properties like KET-PRI and PET-PRI. In contrast, some datasets like CAE-PRI, IELTS and
FCE-PUB weigh the outputs with 0.00, although modelling these intra-exam properties
in isolation has a performance improvement for these datasets.

The reason for this pattern might be found from the view of Burrows et al. (2015).
The authors summarised two types of automated text scoring: automated short answer
grading (ASAG) and automated essay scoring (AES). The difference they described is
that ASAG focuses on shorter texts and whether any required key points are successfully
answered in each text, while AES mainly looks at longer texts and overall writing
quality.

In Table 7.3, if we treat modelling authorship knowledge as a pseudo way to
increase the training set size, we can then add the weights of Authorship and InterExam
together to represent to what extent each dataset prefers bringing more data over
distinguishing intra-exam properties. We can see that for the KET-PRI and PET-PRI
datasets, the weights of IntraExam are bigger than the weights of InterExam. It means
that differentiating intra-exam properties are more important for these two datasets.
The reason might be that the length of each text in these two datasets is relatively short,
which matches the spirit of ASAG, and differentiating multiple intra-exam properties
might be helpful in capturing the key points required for each prompt in ASAG. In
comparison, the IntraExam weights for the other four datasets are smaller than the sum
of the Authorship and InterExam weights, because these four datasets contain long
texts written by learners, which match the spirit of AES. In AES, bringing more data
from different sources might help us estimate the overall writing quality of each text
more accurately.

Moreover, Burrows et al. (2015) stated that the difference between ASAG and AES is
fuzzy. For example, the KET-PRI, PET-PRI and FCE-PRI favour all the meta properties
we proposed, which could be related to ASAG and AES. Meanwhile, modelling intra-
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exam properties in isolation can help improving model performance for the FCE-PRI,
CAE-PRI and IETLS datasets in Table 7.2. These results here quantitatively support
Burrows et al.’s view.

7.3 Summary

In summary, we combined the outputs from all the previous chapters working on
different types of text meta-properties. Explicitly modelling the meta-properties of a
text helps us achieve an improvement on all the datasets used in this thesis, compared
to modelling no meta-property at all, and each dataset favours different meta-properties
differently.
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Chapter 8

Conclusions

In summary, we have classified the meta properties of each text into two broad categories:
exam-independent and exam-dependent. Exam-dependent properties are further split
into inter-exam and intra-exam properties. In this thesis, we have investigated ATS from
three different types of meta property. We gave an introduction to the thesis in Chapter
1 and reviewed the related work in Chapter 2. In Chapter 3, we built the baseline ATS
model across different datasets, and from Chapter 4 to Chapter 7, we have investigated
a number of meta properties not fully studied in previous work:

• In Chapter 4, we investigated authorship knowledge as an example of an exam-
independent property. We injected authorship knowledge into ATS by score fusion
and feature fusion, and we demonstrated that adding authorship knowledge can
improve model performance in most cases. We also chose extra two datasets
to demonstrate that this improvement is not merely a result of modelling and
remembering the human examiners’ bias if this bias exists.

• In Chapter 5, within the same exam, we investigated different intra-exam properties
behind a text and how they affect our ATS grader. Three properties were identified
including prompt, genre and task. We experimentally showed that modelling
properties explicitly and passing them into an ATS grader could be helpful in
some cases. We then suggested some reasons why sometimes modelling these
properties might not give us a significant improvement or could even lead to
performance degradation.

• In Chapter 6, we studied automated assessment on an inter-exam property. We
did experiments across different exams, and utilising datasets from other sources
can benefit model performance for all the datasets we have. We proposed a
new two-stage model, which achieved the best performance on four out of six
development sets in terms of root-mean-square error. The transfer-learning model
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we tuned on each development set always performed better than the baseline on
the corresponding test set.

• In Chapter 7, we combined the outputs from Chapter 4 to 6 together by ensemble
learning. We showed that this combined model is more consistently better than
the baseline model compared to using any single approach from Chapter 4 to 6 in
terms of the permutation significant test.

Although this thesis studies the ATS for non-native English speakers on the English
exam products from Cambridge Assessment, we think the findings in this thesis could
be generalised to other automated assessment applications for different languages,
because meta-properties also exist in the texts written for other language exams, which
could use the methods we explored in this thesis.

This thesis is only a starting point for studying meta properties in ATS, and we are
aware that this thesis has its limitations. Some meta properties are not fully explored,
such as formality or sentiment (Section 5.2), and some methods exist in the fields of
multi-domain learning (Chapter 5), transfer learning (Chapter 6) and ensemble learning
(Chapter 7) which might give us a better performance improvement. We can even design
new features for the existence of some meta properties. This thesis is a proof-of-concept
to demonstrate whether modelling meta properties can affect ATS, and based on the
results from Chapter 4 to Chapter 7, we can conclude that modelling meta properties
can improve the performance of an ATS system, although there is not a simple method
which works for every dataset.

8.1 Future Work

The future work of this thesis can include:

• In Chapter 4, we can extend our work from two responses to multiple to study
further how user behaviour affects grader performance in more detail. For example,
Andersen et al. (2013) developed a tutoring software, Cambridge English Write
and Improve, which makes it easier to collect more writing from a learner to have
a more accurate profile describing the learner.

In automated speech scoring (such as van Daalen et al. (2015)), it is easy to get
multiple responses from the same learner in one exam session, and the outcome of
Chapter 4 could be applied to automated speech scoring to study how it differs
from ATS in using multiple responses from the same learner.

• In Chapter 5, we can label more intra-exam properties, such as the topic behind
each text. Furthermore, Cummins et al. (2016a) and Malinin et al. (2017) explicitly
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modelled the content of each prompt to improve the performance of prompt
relevance detection in learners’ responses. Their approaches are a possible
direction for our work in order to model to what extent texts from two different
prompts/genres/tasks should share their parameters.

• In Chapter 6, we notice that some exams are more similar than others regarding
target proficiency levels, and this might also be reflected in the difficulty level of
the writing tasks. In the future, we might add proficiency levels into our model to
encourage our grader to share more parameters for datasets with similar target
proficiency levels.
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Appendix A

FCE-PUB Example Prompt

1 <?xml version="1.0" encoding="UTF-8"?><xml><exam m="6" x="0100" y="2000">

2 Part 1

3

4 You must answer this question.

5

6 <q n="1">

7 You recently entered a competition and have just received this letter from the

organiser.

8 Read the letter, on which you have made some notes.

9 Then, using all the information in your notes, write a suitable reply.

10

11 Congratulations!

12 You have won first prize in our competition --- two weeks at Camp California in the U.

S.A.

13 All accommodation and travel costs are paid for, including transport to and from the

airport.

14 We now need some further information from you:

15

16

17 When would you like to travel?

18 only July because...

19

20 Accommodation at Camp California is in tents or log cabins, which would you prefer?

21 say which and why

22

23 You will have the chance to do two activities while you are at the Camp.

24 Please choose two from the list below and tell us how good you are at each one.

25 tell them!

26

27 Basketball

28 Swimming

29 Golf
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30 Painting

31 Climbing

32 Singing

33 Sailing

34 Tennis

35 Photography

36 Surfing

37

38 Is there anything you would like to ask us?

39 clothes, money ...?

40

41 Yours sincerely

42 Helen Ryan

43 Competition Organiser

44

45 Write a letter of between 120 and 180 words in an appropriate style on the opposite

page.

46 Do not write any postal addresses.

47 </q>

48

49 Part 2

50

51 Write an answer to one of the questions 2 - 5 in this part.

52 Write your answer in 120 - 180 words in an appropriate style on the opposite page.

53 Put the question number in the box at the top of page 5.

54

55 <q n="2">

56 Your English class is going to make a short video about daily life at your school.

57 Your teacher has asked you to write a report, suggesting which lessons and other

activities should be filmed, and why.

58

59 Write your report.

60 </q>

61

62 <q n="3">

63 You have recently had a class discussion about shopping.

64 Now your English teacher has asked you to write a composition, giving your opinions on

the following statement:

65

66 Shopping is not always enjoyable.

67

68 Write your composition.

69 </q>

70

71 <q n="4">

72 Last month, you enjoyed helping at a pop concert and your pen friend, Kim, wants to
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hear about your experience.

73 Write a letter to Kim, describing what you did to help and explaining what you

particularly liked about the experience.

74

75 Write your letter.

76 Do not write any postal addresses.

77 </q>

78

79 <q n="5">

80 Answer one of the following two questions based on your reading of one of these set

books.

81 Write (a) or (b) as well as the number 5 in the question box, and the title of the

book next to the box.

82 Your answer must be about one of the books below.

83

84 Best Detective Stories of Agatha Christie --- Longman Fiction

85 The Old Man and the Sea --- Ernest Hemingway

86 Cry Freedom --- John Briley

87 Wuthering Heights --- Emily Bront

88 A Window on the Universe --- Oxford Bookworms Collection

89

90 Either

91 <qq nn="a">

92 ’Sometimes the bad characters in a story are more interesting than the good ones.’

93 Is this true of the book you have read?

94 Write a composition, explaining your views with reference to the book or one of the

short stories you have read.

95 </qq>

96

97 Or

98 <qq nn="b">

99 ’This is such a marvellous book you will want to read it again.

100 Write an article for your college magazine, saying whether you think this statement is

true of the book or one of the short stories you have read

101 </qq>

102 </q>

103 </exam></xml>
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Appendix B

Example Prompts of the FCE-PUB
dataset

B.1 First Prompt of 0102 2002 6.xml

You recently had a week’s holiday in London.
During your stay you went to the theatre to see a musical show and had a very

disappointing evening.
Read the advertisement for the show and the notes you have made. Then, write a

letter to the manager of the theatre, explaining what the problems were and asking for
some money back.

The Circle Theatre Presents:
OVER THE RAINBOW
London’s newest and best musical show
Starring:
Danny Brook and Tina Truelove
no! different actor — disappointing
Times:
14.30 and 19.30
started 20:15!
Tickets:
£10, £15 and £20
Discounts available
Visit our theatre restaurant after the show.
no!
Your perfect evening out!
it wasn’t — ask for money back
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Write a letter of between 120 and 180 words in an appropriate style on the opposite
page.

Do not write any postal addresses.

B.2 First Prompt of 0102 2001 3.xml

Next month, Pete, an English friend who lives in London, will be on holiday in New
York for two weeks.

You have agreed to look after his flat for him while he is away.
Read the extract from his letter and your notes.
Then, using all your notes, write a letter to Pete.
I’ve told my neighbours that you’ll come to pick up the keys at 5 o’clock on 4th July.
No!
4 o’clock on 5th
OK?
While you’re staying please use anything of mine you need.
Computer, CD player...?
I’m really looking forward to seeing you when I get back on the 20th.
in time for dinner?
To thank you for looking after the flat, I’d like to bring you back something from the

USA. Please let me know what you’d like.
Thanks — I’d like...
Write a letter of between 120 and 180 words in an appropriate style on the opposite

page.
Do not write any postal addresses.
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