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Abstract

The paper proposes a game of weighted network formation in which

each agent has a limited resource to form links of possibly different

intensities with other agents and to use for private purposes. We show

that every equilibrium is either “reciprocal” or “non-reciprocal”. In

a reciprocal equilibrium, any two agents invest equally in the link

between them. In a non-reciprocal equilibrium, agents are partitioned

into “concentrated” and “diversified” agents and a concentrated agent

is only linked to diversified agents and vice versa. For every link, the

concentrated agent invests more in the link than the diversified agent.

The unweighted relationship graph of an equilibrium, in which two

agents are linked if they both invest positively in each other, uniquely

predicts the equilibrium values of each agent’s network investment

and utility level, as well as the ratio of any two agents’ investments in

each other. We show that equilibria are not pairwise stable and not

efficient due to the positive externalities of investing in a link.

Keywords weighted networks, network formation, link-specific in-

vestment

JEL Classification Codes D85, L14, Z13, C72

2



1 Introduction

A network is a graph which describes the relations between the network’s

members. A link between two members of a network can represent, for

example, friendship, co-authorship, trade or communication between them.

Most of the literature on network formation, following the seminal papers

by Jackson and Wolinsky (1996) and Bala and Goyal (2000), assumes that

an agent decides whether or not to form a link, but does not determine its

intensity. However, in many situations agents must choose not only with

whom to interact but also the intensity of that interaction.

We analyze a symmetric game in which each agent has a limited resource

that she can keep for herself (self-investment) and invest in forming links

with other agents. A strategy of an agent specifies an allocation of her

resource across all agents (including herself). We say that two agents are

linked if they both invest positively in each other. An agent’s utility is the

sum of her benefits from self-investment and from each of her relationships.

The benefit from self-investment is represented by an increasing and strictly

concave function. The benefit from her relationship with another agent is

increasing and strictly concave in the two agents’ investments in each other

and is represented by a function which exhibits strategic complementarity

and is homogenous of degree one.

In the main analysis, we investigate the game’s Nash equilibria. Special

attention is devoted to the (unweighted and undirected) relationship graphs

which are induced by equilibria and which include a link between two agents

if they both invest positively in each other.

We show that every equilibrium is of one of two types: reciprocal or

non-reciprocal. In a reciprocal equilibrium, any two linked agents invest the

same amount in the link between them, and all agents choose the same self-

investment and derive the same utility. Using a result from graph theory,

we characterize the full set of relationship graphs associated with reciprocal

equilibria. This set includes, for example, graphs in which every agent is

linked to more than half of the other agents, or in which every agent has the

same number of links. The set excludes, for example, graphs in which there
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is an agent with only one link. It is possible that two agents have a different

number of links and that an agent has links of varying intensities.

In a non-reciprocal equilibrium, agents are partitioned into two sets: the

set of concentrated agents and the set of diversified agents. Links only exist

across the sets and never within a set. For all links, the concentrated agent

invests more in the link than the diversified agent. The ratio between the

investment of a concentrated agent and that of a diversified agent in their

link is the same across all links (and denoted by qt). All concentrated agents

choose the same level of self-investment which is higher than the level of self-

investment chosen by all diversified agents. Diversified agents derive greater

utility than concentrated agents. The ratio of the number of concentrated

agents to the number of diversified agents is positively correlated with qt.

We show that the relationship graphs of reciprocal and non-reciprocal

equilibria are entirely distinct. Thus, only knowing the equilibrium relation-

ship graph is sufficient to determine whether the equilibrium is reciprocal or

non-reciprocal. Furthermore, the relationship graph of a non-reciprocal equi-

librium uniquely determines the partition into concentrated and diversified

agents, the value of qt, and each agent’s level of self-investment and utility.

However, the relationship graph does not always pin down the equilibrium

investments in a link. We demonstrate that many equilibria with different

levels of investment in links can induce the same relationship graph.

We examine the comparative statics of equilibria when relationships be-

come more valuable relative to self-investment and when each agent’s resource

endowment increases. In view of the multiplicity of equilibria, we restrict

ourselves to investigate how the equilibrium values which are uniquely deter-

mined by the relationship graph and the model parameters change when the

corresponding model parameter is varied and the relationship graph is held

fixed.

Additionally, we show that equilibria are not stable against pairwise de-

viations and are not efficient, in the sense that they do not maximize the

sum of agents’ utilities. This is due to the positive externality of an agent’s

investment in a link that benefits the other agent in the link. We characterize

efficient networks and find that in an efficient network, any two agents invest

4



the same amount in each other, but choose a lower self-investment than in

a reciprocal equilibrium. We show that nevertheless the set of relationship

graphs of efficient networks coincides with the set of relationship graphs of

reciprocal equilibria.

Related literature. This paper adds to the literature on network for-

mation with weighted links.

The most closely related articles are Salonen (2015), Griffith (2017), and

Brueckner (2006) which analyze the formation of weighted social networks,

and Goyal et al. (2008) which analyze a two-stage game in which firms first

form weighted links in R&D networks and then compete in a market. These

authors focus on symmetric equilibria. Restricting the analysis in this way

limits the possibility of differences in link intensities in equilibrium. We

extend to beyond symmetric equilibria and identify asymmetric equilibrium

structures.

Bloch and Dutta (2009) and Deröıan (2009) analyze the formation of com-

munication networks, in which agents also derive utility from indirect links,

with budget constraints and without self-investment. Thus, the amount in-

vested in the network is determined exogenously and is the same for all

agents. The possibility of self-investment in our model gives rise to equilib-

ria in which agents choose different levels of network investment. Another

difference is our assumption that two agents’ investments in their link are

strategic (imperfect) complements. For the main part of their analysis, Bloch

and Dutta (2009) assume that link quality is an additively separable func-

tion of two agents’ investments in their link. Deröıan (2009) assumes that

an agent’s link investment benefits herself but not her link partner.

Rogers (2006) suggests a different type of network formation game in

which agents invest in links in order to pursue a higher status. An agent’s

status is increasing in the status of agents she is linked to and in the intensity

of those links.

Finally, Golub and Livne (2010), Cabrales et al. (2011), Durieu et al.

(2011) and Galeotti and Merlino (2014) assume that agents can choose one

parameter (quality, effort or investment level) which then affects the inten-
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sities of all their links equally. Such a constraint limits the set of weighted

networks that can form in equilibrium.

Roadmap. Section 2 introduces the model. Section 3 presents the equi-

librium analysis and is divided into the following subsections: Section 3.1

characterizes the equilibrium investment strategy profiles and utility levels;

Section 3.2 analyzes the relationship graphs of reciprocal and non-reciprocal

equilibria; Section 3.3 discusses the multiplicity of equilibria; and Section 3.4

presents comparative statics results. Section 4 discusses the pairwise stabil-

ity of equilibria and characterizes the efficient networks.

2 The Model

There is a set of agents N = {1, ..., n}. Each agent i possesses resource T > 0

which she can invest in relations with other agents and in private activity. Her

investment in a relation with agent j 6= i is denoted by tij and her investment

in private activity (self-investment) by tii. An investment strategy of agent

i is ti = (ti1, ..., tin) such that tij ≥ 0 for all j and
∑

j tij ≤ T . The analysis

is restricted to pure strategies. A strategy profile is represented by a matrix

t = [tij]i,j and can be interpreted as a weighted directed graph, with tij being

the weight on the link from i to j. We will also refer to strategy profile t as

network t.

Agent i’s utility given network t is the sum of her utilities from relations

with others and from self-investment:

ui(t) =
∑
j 6=i

av(tij, tji) + f(tii)

where av(tij, tji), a > 0 is i’s utility from her relation with j and f(tii) is

her utility from self-investment. The parameter a determines the value of

relationships relative to the value of self-investment.

The relationship utility v is differentiable. The partial derivative of v with
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respect to argument k = 1, 2 is denoted by vk, and the second-order partial

derivative of v with respect to arguments k = 1, 2 and l = 1, 2 is denoted by

vkl. Apart from differentiability, v satisfies the following properties:

P1 v(x, 0) = v(0, y) = 0 for all x, y ≥ 0.

A relationship yields zero benefit if one agent does not invest in the

relationship.

P2 For all x, y > 0, v(x, y) is increasing and strictly concave, and limx→0 v1(x, y) =

∞ for all y > 0.

Agent i’s utility from her relationship with j is increasing and strictly

concave in i’s and j’s investments. Marginal utility is infinite if i’s

investment goes to zero and j invests positively.

P3 v12(x, y) > 0, v21(x, y) > 0 for all x, y > 0.

Two agents’ investments in their relationship are strategic comple-

ments.

P4 v(γx, γy) = γv(x, y) for all γ > 0.

The relationship utility v is homogenous of degree 1 and exhibits con-

stant returns to scale. P4 implies that vk is homogenous of degree

0.

For example, a Cobb-Douglas function v(x, y) = xβ y1−β with β ∈ (0, 1)

satisfies P1-P4.

The utility function from self-investment, f , is increasing, strictly concave

and differentiable, with limx→0 f
′(x) =∞ and limx→T f

′(x) = 0.

A network t induces an unweighted and undirected (relationship) graph

g(t) on N which describes the relationships with mutual positive investments

in t. That is, agents i and j are linked in g(t) (link ij ∈ g(t)) if tij > 0 and

tji > 0.

We introduce some graph-related definitions that are necessary for the

analysis of the game. In what follows, graph always means an unweighted
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and undirected graph. Consider a graph g on N . Agent i’s set of neighbors

is Ni := {j|ij ∈ g}. A walk between agents i and j is a sequence of links

i1i2, i2i3, ..., iK−1iK such that ik−1ik ∈ g for all k = 2, ..., K and i1 = i and

iK = j. Two agents are connected if there exists a walk between them,

and g is connected if all agents in N are connected. A component of g

is a maximal connected subgraph of g. This means that all agents in one

component are connected to each other and not linked to any agent outside

the component. An agent without any links (component of size 1) is called an

isolated agent. To avoid unnecessary complications, we will often refer to the

links, components, etc. of a network t, when we mean the links, components,

etc. of its graph g(t).

3 Equilibrium Networks

The analysis focusses on the Nash equilibria of the network formation game

in which all agents simultaneously choose their investment strategies. A

strategy profile t is a Nash equilibrium if no agent i can strictly increase her

utility by deviating to another strategy, given all other agents’ strategies.

In Section 3.1, we show that every equilibrium is either reciprocal or

non-reciprocal. In a reciprocal equilibrium, any two agents invest the same

amount in each other, and all agents have the same self-investment and

utility level. In a non-reciprocal equilibrium, agents can be partitioned into

two sets C (concentrated agents) and D (diversified agents). Links only exist

between the sets, and never within them. For every link, the concentrated

agent invests more in the link than the diversified agent. The ratio between

the concentrated agent’s investment in the link and the diversified agent’s

is the same across all links. All agents within same set have the same self-

investment and utility level.

In Section 3.2, we characterize the relationship graphs of equilibria. We

show that simply by observing an equilibrium relationship graph we can

uniquely determine each agent’s equilibrium self-investment and utility level

as well as the ratio of any two agents’ equilibrium investments in each other.

In particular, the graph can be used to determine whether the equilibrium

8



that induced it is reciprocal or non-reciprocal.

In Section 3.3, we discuss the multiplicity of the equilibria. A given

relationship graph can induced by many equilibria, which feature different

link investments. We propose a simple mechanism by which we can construct

multiple equilibria from a given equilibrium.

In Section 3.4, we investigate the comparative statics of equilibria for the

case that relationships become relatively more valuable (i.e. increase in a)

and for the case that the total resource endowment increases (i.e. increase

in T ). Given the multiplicity of equilibria, we restrict ourselves to analyze

the change in the equilibrium values which are uniquely determined by the

relationship graph and the model parameters when the corresponding model

parameter is varied and the relationship graph remains the same.

3.1 Investment Strategy Profiles and Utility Levels

Note that tij = 0 is the unique optimal choice of agent i if agent j chooses

tji = 0 because self-investment is always utility-enhancing and v(tij, 0) = 0

for all tij. Thus, a trivial equilibrium is the empty network where all agents

only invest in themselves. More generally, a network is an equilibrium if

and only if the investment choices of the agents in each component of the

network are an equilibrium of the network formation game reduced to the

agents in that component. Therefore, in order to characterize the full set

of equilibrium networks, we restrict the analysis from now on to connected

equilibrium networks with n > 1.

The next proposition requires the following definitions: Let σ : R>0 →
(0, T ) be the function defined by the equation f ′(σ(x)) = av1(x, 1). Note

that the properties of f guarantee that the function σ is well defined. Let

µ : R>0 → R be the function defined by µ(x) = (T −σ(x))av(1, 1
x
)+f(σ(x)).

Lemma 1. The function σ is strictly increasing and the function µ is strictly

decreasing.

The proof of Lemma 1 is relegated to the appendix.
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Proposition 1. For every equilibrium t, there exists qt ≥ 1 such that for

every i ∈ N , there exists qi where qi ∈
{
qt, 1

qt

}
and

tij
tji

= qi for all j ∈ Ni,

tii = σ(qi) and ui(t) = µ(qi). Thus, every equilibrium t is either

(i) reciprocal (qt = 1) where qi = 1 for all i ∈ N .

or

(ii) non-reciprocal (qt > 1) where there is a bipartition (C,D) of N such

that if i is linked to j, then i and j are in different sets. For all i ∈ C
and j ∈ D, qi = qt and qj = 1

qt
.

Proof. We start with a lemma that establishes necessary and sufficient con-

ditions on t for it to be a Nash equilibrium.

Lemma 2. A network t is a Nash equilibrium if and only if, for all i ∈ N
and all j 6= i,

a)
∑

k tik = T ,

b) if tji = 0, then tij = 0,

c) if tji > 0, then tij > 0 and av1(tij, tji) = f ′(tii).

The proof of Lemma 2 is immediate from the standard conditions on each

agent’s utility maximization problem given all other agents’ strategies and

is omitted. In any equilibrium, each agent i invests her entire resource and

invests positively in j if and only if j invests positively in i. An agent’s

positive investment levels are such that her marginal utility from investing

in any of her links is equal to her marginal utility from self-investment.

Now consider an equilibrium t and i ∈ N . Note first that v1(tij, tji) =

v1

(
tij
tji
, 1
)

for all j ∈ Ni by P4. By Lemma 2c, v1

(
tij
tji
, 1
)

= v1

(
tik
tki
, 1
)

for

all j, k ∈ Ni. Thus,
tij
tji

= tik
tki

for all j, k ∈ Ni because v is strictly concave.

Hence, there is qi > 0 such that
tij
tji

= qi for all j ∈ Ni. Then, qj = 1
qi

for all

j ∈ Ni. Let qt = max
{
qi,

1
qi

}
. Since all agents are connected, qk ∈

{
qt, 1

qt

}
for all k ∈ N .
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By Lemma 2c, it then follows with regard to agent i’s self-investment

that f ′(tii) = av1(qi, 1) and hence tii = σ(qi). Regarding agent i’s utility,

observe that ui(t) =
∑

j 6=i av(tij, tji) + f(tii) =
∑

j 6=i tijav(1,
tji
tij

) + f(tii) =

(T − tii)av(1, 1
qi

) + f(tii) = µ(qi) because v is homogenous of degree 1 and

tii = σ(qi).

In the case of a reciprocal equilibrium in which qt = 1, obviously qk = 1

for all k ∈ N . In the case of a non-reciprocal equilibrium with qt > 1, there

exists an agent i ∈ N for whom qi = qt. For all j ∈ Ni, qj = 1
qi

= 1
qt

, and

so on. Thus, because qi = 1
qj

for all i and all j ∈ Ni, there exists a partition

(C,D) of N in which all i with qi = qt are in C and all j with qj = 1
qt

are in

D, and there are only links across the sets.

It is worthwhile summarizing the observations about equilibria which fol-

low from Proposition 1. Every equilibrium t is associated with a number qt

which we call the investment ratio of t. In equilibrium t, for any link which

agent i has, the ratio of i’s investment to her neighbor’s investment in the

link is equal to qi. This ratio qi is either qt or 1
qt

. Agent i’s equilibrium self-

investment level is a strictly increasing function of qi while her equilibrium

utility level is a strictly decreasing function of qi.

In any reciprocal equilibrium, every agent’s qi is equal to one, and every

agent chooses the same level of self-investment and derives the same level of

utility. We call the agents in a reciprocal equilibrium balanced and denote

their self-investment and utility by tbb := σ(1) and ub := µ(1), respectively.

In any non-reciprocal equilibrium t, there exists a partition of N into two

sets C and D such that links only exist between agents in different sets. We

call the agents in C concentrated and the agents in D diversified. For every

concentrated agent i, qi = qt and for every diversified agent i, qi = 1
qt

. This

means that, for any link, the concentrated agent invests more in the link than

the diversified agent. Moreover, all agents in the same set choose the same

level of self-investment and derive the same level of utility. We denote the

self-investment of concentrated agents and diversified agents by tcc := σ(qt)

and tdd := σ( 1
qt

) and their utility by uc := µ(qt)and ud := µ( 1
qt

), respectively.
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Since σ is strictly increasing and µ is strictly decreasing, the equilibrium

levels of self-investment and utility are unambiguously ordered for different

values of qi. For any reciprocal equilibrium t and any non-reciprocal equilib-

rium t′, t′dd < tbb < t′cc, and u′d > ub > u′c. In other words, diversified agents

have the lowest self-investment and highest utility, concentrated agents have

the highest self-investment and lowest utility, and balanced agents have both

a self-investment and utility somewhere in between. Note that the ordering

of self-investment levels trivially imposes an ordering on agents’ total equi-

librium network investment. A diversified agent chooses the highest total

network investment, a concentrated agent the lowest and a balanced agent

chooses somewhere in between.

The divergence of t′dd and t′cc from tbb is strictly increasing in qt
′
, as is the

divergence of u′d and u′c from ub. Thus, for any equilibrium t, the investment

ratio qt is an indication of the overall degree of inequality between agents

in t. The differences in two agents’ investments in the link between them,

in agents’ self-investment levels and in agents’ utility levels are all strictly

increasing in qt.

Example 1 illustrates a reciprocal equilibrium and two non-reciprocal

equilibria with different investment ratios for a specific configuration of the

model.

Example 1. Let n = 5, T = 2, and ui(t) =
∑

j 6=i t
β
ijt

1−β
ji + tβii with β ∈ (0, 1).

By Lemma 2, in equilibrium, agent i’s marginal utilities from investing in

link ij and from self-investment are equal:

av1(tij, tji) = f ′(tii) ⇔ βtβ−1
ij t1−βji = βtβ−1

ii ⇔ tii =
tij
tji
.

Thus, in every reciprocal equilibrium t, tbb = 1 and ub = 2. Figure 1 shows

an example of a reciprocal equilibrium t.

In every non-reciprocal equilibrium t, tcc = qt, tdd = 1
qt

, uc = (T −

qt)
(

1
qt

)1−β
+ qt

β
and ud = (T − 1

qt
)qt

1−β
+
(

1
qt

)β
. An example of a non-

reciprocal equilibrium t where qt = 3
2
, C = {1, 2, 3, 4} and D = {5} is shown
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Figure 1: A reciprocal equilibrium t. Bold numbers indicate the identity of
each agent (node), and the number at link ij is tij = tji.

in Figure 2a. An example of a non-reciprocal equilibrium t′ with a lower

degree of inequality where qt
′
= 8

7
, C ′ = {1, 3, 5} and D′ = {2, 4} is shown in

Figure 2b.

(a) qt = 3
2

(b) qt
′
= 8

7

Figure 2: Two non-reciprocal equilibria t and t′ with different investment
ratios. Bold numbers indicate the identity of each agent (node), and the
number next to agent i at link ij is tij.

3.2 Relationship Graphs

In this section, we investigate the graphs of equilibrium networks where a link

between two agents means that both invest positively in each other. We will

show that simply by observing the graph of an equilibrium we can uniquely

determine qi, tii and ui(t) for each agent i, without any other information

about the investment profile.

Let GR = {g | g = g(t) for some reciprocal equilibrium t}, that is, GR is

the set of all graphs that are induced by some reciprocal equilibrium, and let

GNR = {g | g = g(t) for some non-reciprocal equilibrium t}, that is, GNR is

the set of all graphs that are induced by some non-reciprocal equilibrium.

13



We first provide a full characterization of GR.1 Let g [N\U ] with U ⊆ N

be the subgraph induced in g by N\U . Denote by W (U) the set of isolated

agents in g [N\U ] and by |X| the cardinality of a set X.

Proposition 2. A connected graph g on N is in GR if and only if for every

U ⊆ N ,

1) |U | > |W (U)|, or

2) |U | = |W (U)| and for every link ij ∈ g, if i ∈ U , then j ∈ W (U).

Proposition 2 states that a connected graph g is induced by some recipro-

cal equilibrium if and only if for every U ⊆ N either 1) the number of agents

in U is strictly larger than the number of isolated agents in g [N\U ], or 2)

the number of agents in U and of isolated agents in g [N\U ] are the same,

and in g, agents in U are only linked to agents in W (U). We will refer to

Condition 1 and 2 of Proposition 2 as Condition 2.1 and 2.2.

Proof of Proposition 2: Necessity. Let a connected graph g be in GR and let

t be a reciprocal equilibria t such that g(t) = g.

The total network investment by agents in U is |U |(T −tbb) and by agents

in W (U) is |W (U)|(T − tbb). In g, every i ∈ W (U) is only linked to agents

in U , otherwise i ∈ W (U) would not be isolated in g [N\U ]. Thus, the total

network investment by agents in W (U) must be fully reciprocated by agents

in U . Then either |U |(T − tbb) > |W (U)|(T − tbb) which means |U | > |W (U)|,
or |U |(T − tbb) = |W (U)|(T − tbb) which means |U | = |W (U)| and agents in

U must be linked only to agents in W (U) in g. Otherwise, the network

investment by agents in U would not be sufficient to fully reciprocate that

by agents in W (U).

The sufficiency proof of Proposition 2 relies on an existence result for a

particular type of matching in a graph in Schrijver (2004, p. 584). Because

it is largely technical, the proof is relegated to the appendix and only a short

outline is provided here. We show first that a reciprocal equilibrium t with

g(t) = g exists if a perfect b-matching for the connected graph g exists and

1Proposition 2 was established with the help of Henning Bruhn-Fujimoto.
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second that a perfect b-matching for g exists if g is connected and is such

that, for every U ⊆ N , Condition 2.1 or 2.2 is satisfied.

Proposition 2 provides a tool to determine whether a connected graph

g is induced by some reciprocal equilibrium. For this, it is sufficient to

determine whether Condition 2.1 or 2.2 is satisfied when |U | < n
2

+ 1, since

for |U | ≥ n
2

+ 1, Condition 2.1 is trivially satisfied. Some straightforward

graph properties simplify this task, as shown below in Corollary 1.

An agent is a leaf in graph g if she has only one link. A graph g is

bipartite or has a bipartition if there exists a bipartition (A,B) of N such

that if ij ∈ g, then i and j are in different sets of the bipartition.

Corollary 1.

Let g be a connected graph on N .

a) If |Ni| > n
2

for all i ∈ N , then g ∈ GR.

b) If |Ni| = d > 0 for all i ∈ N , then g ∈ GR.

c) If n > 2 and g contains a leaf, then g /∈ GR.

d) If g is bipartite with |A| 6= |B|, then g /∈ GR.

Proof.

a) Given g, |U | > n
2

is necessary to have at least one isolated agent in

g[N\U ]. Hence, |U | > |W (U)| for all U and g ∈ GR by Proposition 2.

b) Given g, every agent in W (U) is linked to d agents in U and thus

there exist d|W (U)| links between U and W (U). If every i ∈ U is

only linked to agents in W (U), then d|U | = d|W (U)| and Condition

2.2 is satisfied. If not every i ∈ U is only linked to agents in W (U),

then d|U | > d|W (U)| and Condition 2.1 is satisfied. Thus, g ∈ GR by

Proposition 2.

c) Given g, let i be a leaf. Take U = Ni. Then, |W (U)| ≥ |U | and the

only neighbor of agent i is not only linked to i but also to other agents

because n > 2. Thus, g /∈ GR by Proposition 2.

15



d) Given g where w.l.o.g |A| > |B|, take U = B. Then, W (U) = A and

|W (U)| > |U |. Thus, g /∈ GR by Proposition 2.

Hence, by Corollary 1a and 1b, any connected graph that is “dense” or

“regular” is induced by some reciprocal equilibrium. By Corollary 1c and 1d,

graphs which contain leaves (for example, trees), or graphs that are bipartite

with two unequally sized sets are never induced by a reciprocal equilibrium.

We next turn to analyze GNR. In Proposition 3, we present necessary con-

ditions for a graph to be in GNR. Let ρ : R>1 → R>1 be the function defined

by ρ(x) = x
T−σ( 1

x
)

T−σ(x)
. Given that σ is strictly increasing, it is straightforward

to show that ρ(x) > 1 for all x and that ρ is strictly increasing.

Proposition 3. If g ∈ GNR, then g has a unique bipartition (A,B). W.l.o.g.

let |A| ≥ |B|. For any non-reciprocal equilibrium t with g(t) = g, |A||B| =

ρ(qt) > 1, for every i ∈ A, qi = qt, and every j ∈ B, qj = 1
qt

and |Nj| > 1.

Proposition 3 makes several statements. Consider any g ∈ GNR. The

graph g has exactly one bipartition and the two sets in that bipartition

are of unequal size. For any non-reciprocal equilibrium that induces g, all

concentrated agents are in the larger set of the bipartition and all diversified

agents are in the smaller one. Any leaf is in the larger set and thus is a

concentrated agent. There is a strictly increasing correspondence between

the investment ratio qt and the ratio of concentrated to diversified agents.

Proof of Proposition 3. Let g be in GNR and let t be an equilibrium with

g(t) = g. By Proposition 1, each link is between a member of C (concentrated

agents) and a member of D (diversified agents). Thus, (C,D) is a bipartition

of g. Since g is connected, a standard result from graph theory implies that

the bipartition of g is unique.

For all i ∈ C and j ∈ D,
tij
tji

= qt if ij ∈ g by Proposition 1. Thus∑
i∈C,j∈D tij = qt

∑
i∈C,j∈D tji which is equivalent to

∑
i∈C(T−tii) = qt

∑
j∈D(T−

tjj). Hence |C|(T − tcc) = qt|D|(T − tdd) and |C|
|D| = qt T−tdd

T−tcc = qt
T−σ( 1

qt
)

T−σ(qt)
=

ρ(qt).
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Suppose to the contrary that agent i is a leaf and is in D. Then i’s only

link is with some j ∈ C. This implies, using Lemma 2 and Proposition 1,

that tii + tij = T < tjj + tji and j’s resource constraint is violated.

The fact that each g ∈ GNR is bipartite implies that there exists no graph

in GNR which includes an odd cycle.2 Proposition 3 also provides further

insight regarding the investment strategies of concentrated and diversified

agents in a non-reciprocal equilibrium: A diversified agent has on average

more links than a concentrated agent, since the network is connected and

|C| > |D|.
The next result shows that a reciprocal equilibrium and a non-reciprocal

equilibrium never induce the same graph. Moreover, some graphs cannot be

induced by any equilibrium.

Proposition 4. For every n ≥ 2, GR∩GNR = ∅, and for every n ≥ 4, there

exists a connected graph g on N such that g /∈ GR ∪GNR.

Proof. By Corollary 1d, there exists no g ∈ GR with a bipartition where the

two sets of the bipartition are of unequal size. By Proposition 3, every g ∈
GNR has a bipartition with the two sets of unequal size. Thus, GR∩GNR = ∅.

Let n ≥ 4 and consider the following graph. Agents 1, 2, and 3 form a

triangle. Every other agent is only linked to agent 1. Thus, g includes an odd

cycle and hence g /∈ GNR. Moreover, g contains a leaf and hence g /∈ GR.

Another family of graphs (in addition to the one described in the proof

above) that cannot be induced by any equilibrium is one in which two leaves

are connected via an odd number of links: If such a graph were in GR, it

would not include a leaf, and if it were in GNR, both leaves would be in C

and thus would have to be connected via an even number of links.

Proposition 3 and 4 imply that the information about the graph g induced

by an equilibrium t is sufficient to determine qi, tii, and ui(t) for all i in

equilibrium t. If g has a bipartition (A,B) where A and B are of unequal

2An odd cycle is a sequence of links i1i2, ..., iK−1iK where ij 6= ik for k /∈ {1,K},
i1 = iK and K > 2 is even.
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size and w.l.o.g. |A| > |B|, then any equilibrium t that induces g is non-

reciprocal where qt = ρ−1
(
|A|
|B|

)
and for all i ∈ A, qi = qt, and for all i ∈ B,

qi = 1
qt

. Otherwise, any equilibrium that induces g is reciprocal, and qi = 1

for all i. Self-investment and utility levels follow from Proposition 1.

3.3 Equilibrium Multiplicity

We now turn to equilibrium multiplicity. Based on the previous section,

equilibria that induce the same graph must feature the same values of qi, tii

and ui(t) for all i because the equilibrium graph uniquely determines those

values. However, equilibria that induce the same graph may feature different

levels of investments in links and those are therefore not uniquely determined

by the graph. We capture the multiplicity with a simple mechanism that

derives an equilibrium t′ from an equilibrium t. The mechanism relies on

appropriately shifting link investment levels in t on an even-lengthed cycle.

Proposition 5. Let n ≥ 4 and let t be an equilibrium with g(t) = g. Then,

the following strategy profile t′ is also an equilibrium.

First, let S be a sequence of distinct agents i1, i2, ..., iK−1 and iK = i1

such that K > 4 is an odd integer, ikik+1 ∈ g for odd k, and if qt > 1,

then ik ∈ C and ik+1 ∈ D for odd k. Second, let t′ be equal to t, except for

t′ikik+1
= tikik+1

+ x > 0 and t′ikik−1
= tikik−1

− x > 0 for all k ∈ {1, ..., K − 1}
where x = −h if k is odd, x = l if k is even, and h

l
= qt.

Proof. Consider agent ik. The only change in agent ik’s strategy from t to t′ is

a shift of her investment by an amount x between agents ik−1 and ik+1. Thus,

agent ik’s budget constraint remains binding in t′. The only investments by

other agents in agent ik that have changed from t to t′ are those of agents

ik−1 and ik+1. Thus, t′ikj = t′jik = 0 if ikj /∈ g(t) and
t′ikj

t′jik
= qik if ikj ∈ g(t)

for all j 6= ik−1, ik+1. We next show that
t′ikj

t′jik
= qik also for j = ik−1, ik+1. If

k is odd and j = ik+1, then qik = qt and

t′ik,ik+1

t′ik+1,ik

=
tik,ik+1

− h
tik+1,ik − l

=
qt
(
tik,ik+1

− h
)

qt
(
tik+1,ik − l

) =
qt
(
tik,ik+1

− h
)

tik,ik+1

tik+1,ik
tik+1,ik − h

l
l

= qt
tik,ik+1

− h
tik,ik+1

− h
= qt.
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Similarly, for j = ik−1 and then also for even k.

For any agent i not in the sequence S, t′i = ti and the investments in i

are the same in both t′ and t. Thus, t′ is an equilibrium by Lemma 2.

In Example 2, we apply the mechanism provided in Proposition 5.

Example 2. Consider the environment of Example 1. In Figure 3, t is

a reciprocal equilibrium, and in Figure 4, t is a non-reciprocal equilibrium

with qt = 8
7
. In both, t′ is an equilibrium obtained from t by applying the

mechanism described in Proposition 5.

Figure 3: Deriving a reciprocal equilibrium t′ from the reciprocal equilibrium
t.

Figure 4: Deriving a non-reciprocal equilibrium t′ from the non-reciprocal
equilibrium t.
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3.4 Comparative Statics

In this section, we present the comparative statics of the equilibria for the

following changes: (i) when the investment in a relationship becomes more

valuable relative to self-investment (i.e. an increase in a) and (ii) the total

resources available for investment increase (i.e. an increase in T ). Given

the multiplicity of equilibria, we limit ourselves to the following comparative

statics exercise: Consider a particular graph induced by an equilibrium. As-

suming that the graph remains unchanged, what is the effect of a change in

the model parameters on those equilibrium values of the strategy profile that

are uniquely determined by the graph and the parameters?

Note that previously we assumed for simplicity that limx→T f
′(x) = 0 in

order to guarantee that every agent chooses a self-investment less than T

in any equilibrium. Keeping this assumption and altering T would change

the function f and render the comparative statics for T impossible. In this

section, we assume that f is fixed and that all values of T satisfy f ′(T ) <

v1(n − 1, 1). That is, f ′(T ) is low enough to guarantee equilibrium self-

investments less than T for all T .

Proposition 6.

a) Consider a < â. Let t be an equilibrium given a, and let t̂ be an

equilibrium given â where t and t̂ induce the same graph (g(t) = g(t̂)).

If qt = 1, then q̂t = 1 and tbb > t̂bb.

If qt > 1, then q̂t > 1, |C||D| = |Ĉ|
|D̂| , tcc > t̂cc, and tdd > t̂dd.

b) Consider T < T̂ and suppose that f = f̂ with f ′(T ) < v1(n− 1, 1). Let

t be an equilibrium given T , and let t̂ be an equilibrium given T̂ where

g(t) = g(t̂).

If qt = 1, then q̂t = 1 and tbb = t̂bb.

If qt > 1, then qt < q̂t, |C||D| = |Ĉ|
|D̂| , tcc < t̂cc, T − tcc < T̂ − t̂cc and

tdd > t̂dd.

Before presenting the proof, it is worthwhile restating Proposition 6. Con-

sider part a). Unsurprisingly, since investment in a relationship is more valu-
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able under â than under a, the self-investment of all types of agents is lower

under â than under a. If t is a non-reciprocal equilibrium, then the ratio of

concentrated to diversified agents remains the same, and the effect on the

investment ratio is not uniquely determined.

Consider part b). As the resource endowment increases, the self-investment

level of balanced agents remains the same and therefore their network invest-

ment increases. If t is a non-reciprocal equilibrium, then the concentrated-

to-diversified-agents ratio remains unchanged. Both a concentrated agent’s

self-investment and her network investment are increasing in the resource

endowment, whereas a diversified agent’s self-investment decreases and thus

her network investment increases by a larger amount than the increase in the

resource endowment. An increase in the resource endowment also increases

the ratio of a concentrated agent’s investment to that of a diversified agent

in the link between them.

Proof of Proposition 6, part a). (The proof for part b) proceeds similarly and

is relegated to the appendix.)

Consider qt = 1. Then, g(t) ∈ GR. The set GR is independent of a by

Proposition 2. Therefore, g(t̂) ∈ ĜR and q̂t = 1. By Proposition 1, f ′(tbb) =

av1(1, 1). Then, by the implicit function theorem, ∂tbb
∂a

= v1(1,1)
f ′′(tbb)

which is

strictly negative because f is strictly concave and v is strictly increasing.

Thus, tbb > t̂bb.

Next consider qt > 1. Then g(t) = g(t̂) /∈ GR = ĜR and thus q̂t >

1. By Proposition 3, the bipartition of g(t) is unique, and thus |C||D| = |Ĉ|
|D̂| .

By Proposition 1 and 3, t̂ is such that i) f ′(t̂cc) = âv1(q̂t, 1), ii) f ′(t̂dd) =

âv1( 1
q̂t
, 1), and iii) |C||D| = q̂t T−t̂dd

T−t̂cc
, and the analogous conditions hold for t.

Suppose by contradiction that t̂cc ≥ tcc. Then q̂t > qt by i). This implies

that t̂dd < tdd by ii). Then |C|
|D| < q̂t T−t̂dd

T−t̂cc
, contradicting iii). The proof that

t̂dd < tdd proceeds analogously.
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4 Stability and Efficiency

In this section, we will show that Nash equilibria are not “stable” if pair-

wise deviations are allowed, and are not efficient, in the sense that they do

not maximize the sum of agents’ utilities. This is due to the positive ex-

ternalities of an agent’s network investment on her neighbors, which are not

incorporated into an agent’s individual utility maximization.

4.1 Equilibrium Stability

Following Bloch and Dutta (2009), we say that a strategy profile t is strongly

pairwise stable if it is a Nash equilibrium and if there are no two agents (i, j)

who would both be strictly better off by a joint deviation from (ti, tj) to

(t′i, t
′
j), given all other agents’ strategies.

Proposition 7. No strategy profile t is strongly pairwise stable.

Proof. We will show that for any equilibrium, there exist two agents who

gain from reducing their self-investment and establishing or intensifying a

reciprocal relationship among them. Suppose t is an equilibrium. Consider

any i ∈ N and any j 6= i. If i reduces her self-investment by c > 0, and i

and j each invest c in order to intensify or establish a reciprocal link between

them, then i’s change in utility is ∆ui(c) = f(tii − c)− f(tii) + cav(1, 1). If

i is a balanced or concentrated agent, then there is c > 0 such that ∆ui(c)

is positive because ∂∆ui
∂c

(0) = −f ′(tii) + av(1, 1) and f ′(tii) < av(1, 1) =

a(v1(1, 1)+v2(1, 1)) for tii ∈ {tbb, tcc}. If qt = 1, then there exist two balanced

agents, and if qt > 1, then there exist two concentrated agents, and therefore,

in each case there is a pair with a strict incentive to jointly deviate.

4.2 Efficient Networks

Following Jackson and Wolinsky (1996), we say that a strategy profile t is

efficient if t maximizes
∑

i∈N ui(t) such that
∑

j tij = T for all i.

We will see that the set of efficient networks and the set of equilibrium

networks do not intersect. However, there is no distinction between the set
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of all graphs that are induced some efficient network and the set of all graphs

that are induced some reciprocal equilibrium.

Proposition 8. A network t is efficient if and only if tij = tji,
∑

k tik = T

and f ′(tii) = av (1, 1) for all i and all j 6= i. A graph is induced by an

efficient network if and only if each of its components is induced by some

reciprocal equilibrium of the network formation game reduced to the agents

in that component.

Proposition 8 states that in every efficient network any two agents invest

the same amount in each other. Moreover, any agent’s self-investment is such

that her marginal utility from self-investment equals the marginal increase

in the sum of her own and her neighbor’s utility from her investment in

their reciprocal link. Thus, the efficient level of self-investment accounts

for the positive externalities from network investment and is lower than the

level of self-investment in a reciprocal equilibrium. Since every agent’s self-

investment is less than T (as implied by the assumptions on f), there is no

isolated agent in an efficient network. In particular, the set of all graphs of

efficient networks is identical to the set of all graphs of equilibrium networks

which only consist of reciprocal equilibrium components.

Proof of Proposition 8. Let t be efficient. Then every agent’s resource con-

straint is binding, since self-investment is always beneficial. Moreover, for

all i and j 6= i, tii > 0, and tij = 0 if and only if tji = 0. By the first-

order conditions on t to maximize the sum of utilities, any positive link

investments tii, tij and tji must satisfy f ′(tii) = av1 (tij, tji) + av2 (tji, tij) =

av1

(
tij
tji
, 1
)

+ av2

(
1,

tij
tji

)
for all j ∈ Ni and all i. In other words, agent i’s

investment in her link with agent j is such that its marginal impact on the

sum of utilities equals agent i’s marginal utility from self-investment.

We next show that any link is reciprocal, that is tij = tji for all tij, tji > 0.

Suppose to the contrary that link ij is non-reciprocal and w.l.o.g
tij
tji

> 1.

Hence, f ′(tii) = av1

(
tij
tji
, 1
)

+av2

(
1,

tij
tji

)
< f ′(tjj) = av1

(
tji
tij
, 1
)

+av2

(
1,

tji
tij

)
by the concavity of v and tii > tjj by the concavity of f . Since tij + tii >

tji + tjj and i’s resource constraint must bind, j must have another link to
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some agent k 6= i. By efficiency and the strict concavity of v,
tji
tij

=
tjk
tkj

< 1,

and tkl
tlk

= tim
tmi

> 1 for all l ∈ Nk and m ∈ Ni which implies that i and k are

not linked and tik = tki = 0. Now consider strategy profile t′ 6= t where the

self-investment of both i and k is reduced by c and a reciprocal link between

them is established with an investment of c by each. As in the proof for

Proposition 7, we can show that there is c > 0 such that ui(t
′) − ui(t) > 0

and uk(t
′) − uk(t) > 0. Moreover, ul(t

′) = ul(t) for all l 6= i, k and no

agent’s resource constraint has been affected by moving from t to t′. Hence,

a non-reciprocal link cannot exist in an efficient network.

Thus, tij = tji for all i and j, and av1 (1, 1)+av2 (1, 1) = av (1, 1) = f ′(tii)

for all i who have a link. It remains to show that every agent has a link.

Assume there exist at least two isolated agents i and j. Then, tii = tjj = T

by efficiency. However, by the same argument as in the proof of Proposition

7, the sum of utilities can be increased if their self-investment is decreased

and a reciprocal link between them is established.

Assume there exists only one isolated agent i. Let agents j and k be

linked to each other. In this case, the sum of utilities can be increased as

follows: Decrease i’s self-investment by 2ε > 0 and the investments by j and

k in their link jk by ε each and establish the reciprocal links ij and ik, with

t′ij = t′ji = t′ik = t′ki = ε. For ε small enough, i’s utility strictly increases and

the utility of no other agent changes, by v’s homogeneity of degree 1.

Let t be such that tij = tji,
∑

k tik = T and f ′(tii) = av (1, 1) for

all i and all j 6= i. Then, agent i’s utility is ui(t) =
∑

j 6=i av(tij, tji) +

f(tii) =
∑

j∈Ni
av(tij, tji)+f(tii) =

∑
j∈Ni

atijv(1,
tji
tij

)+f(tii) =
∑

j∈Ni
a(T−

tii)v(1, 1) + f(tii). Thus, the sum of utilities for any such t is the same and

hence any such t is efficient. This concludes the first part of the proof of

Proposition 8.

To prove the second part, first observe that we know from the first part of

Proposition 8 that in an efficient network, every agent belongs to a component

of at least two agents who are connected via reciprocal links.

The result then follows from the observation that a connected graph g

is induced by an efficient network if and only if g is induced by a reciprocal
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equilibrium: Let t be an efficient network that induces a connected graph g.

Thus, tij = tji > 0 for all ij ∈ g, tij = tji = 0 for all ij /∈ g,
∑

j∈Ni
tij =

T − tii for all i and f ′(tii) = av(1, 1). Then, the following t′ is a reciprocal

equilibrium that induces g. Let t′ be such that t′ij = t′ji = tij
T−t′ii
T−tii for all

ij ∈ g, t′ij = t′ji = 0 for all ij /∈ g, and f ′(t′ii) = av1(1, 1).

Let t′ be a reciprocal equilibrium that induces a connected graph g. Thus,

t′ij = t′ji > 0 for all ij ∈ g, t′ij = t′ji = 0 for all ij /∈ g,
∑

j∈Ni
t′ij = T − t′ii

for all i and f ′(t′ii) = av1(1, 1). Then, the following t is a connected efficient

network that induces g. Let t be such that tij = tji = t′ij
T−tii
T−t′ii

for all ij ∈ g,

tij = tji = 0 for all ij /∈ g, and f ′(tii) = av(1, 1).

5 Concluding Comments

We analyzed a game of weighted network formation in which agents simul-

taneously decide how to allocate a limited budget between building links

of possibly different intensities with other agents and self-investment. Ex-

panding the discussion of network formation from unweighted to weighted

networks enlarges the strategy space of agents. Nevertheless, we obtained

results about the structure of the game’s equilibria. In particular, we showed

that an equilibrium must have one of two structures, i.e. either reciprocal or

non-reciprocal, and we characterized their properties.

Some of the results are consistent with empirical findings. First, note

that in both reciprocal and non-reciprocal equilibria two agents’ investments

in the link between them are predicted to be positively correlated. Griffith

(2017) finds support for this property in his analyis of a weighted social

network among school girls. He shows that the weights assigned by two girls

to their relation are positively (though not perfectly) correlated.

The presence of reciprocal and non-reciprocal relations is investigated in

Wang et al. (2013). They find that in a mobile phone communication net-

work, 72% of all links are such that the two linked agents call each other with

significantly different probabilities. They further suggest that the presence of

reciprocal relations is more likely when the total network investment (num-

ber of calls made) by an agent is positively correlated across linked agents.
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This is in line with our theoretical findings: In a reciprocal equilibrium, each

agent chooses the same total network investment which is thus predicted to

be perfectly and positively correlated across agents, while in a non-reciprocal

equilibrium, the level of total network investments by a concentrated agent

is negatively correlated with that by a diversified agent.

We also characterized the properties of the graphs for reciprocal and non-

reciprocal equilibria. We showed, for example, that any sufficiently “dense”

graph, where density is measured by the number of links in the graph, or a

“regular” graph, in which every agent has the same number of neighbors, is

only induced by reciprocal equilibria (Corollary 1a and 1b). Some empirical

studies provide evidence for a positive correlation between reciprocity and

network density and/or regularity (for example, Kovanen et al. (2010) and

Wang et al. (2013) for mobile phone communication networks). We also

found that in graphs of non-reciprocal equilibria, diversified agents have on

average more links than concentrated agents. This again resonates with

Wang et al. (2013) who suggest that “networked systems that induce anti-

correlation in the number of neighbors of each vertex [agent] in a dyad [link]

should all else being equal be characterized by high levels of non-reciprocity”.

On an anecdotal level, the three types of agents that arise in our model’s

equilibria can perhaps be observed in real life. Diversified agents are more

popular and outgoing, they more actively network and free-ride on the efforts

of other agents. Concentrated agents rely more on themselves, are more in-

troverted, provide greater effort in relationships, and are exploited. Balanced

agents are in give-and-take relationships and share responsibilities equally.

An avenue for further research would be to introduce heterogeneity be-

tween agents and to investigate how this affects the existence and properties

of reciprocal and non-reciprocal equilibria. A first step could be to differen-

tiate between two types of agents, where linking to one of the types is more

profitable than linking to the other.
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Appendix

Proof of Lemma 1. Since f and v are both increasing and strictly concave,

it immediately follows that σ is strictly increasing.

We next show that ∂µ
∂x

is strictly negative.

∂µ

∂x
= −σ′(x)av

(
1,

1

x

)
− (T − σ(x))av2

(
1,

1

x

)
1

x2
+ f ′(σ(x))σ′(x) (1)

= −σ′(x)av

(
1,

1

x

)
− (T − σ(x))av2

(
1,

1

x

)
1

x2
+ av1(x, 1)σ′(x) (2)

= −(T − σ(x))av2

(
1,

1

x

)
1

x2
+ σ′(x)

[
av1(x, 1)− av

(
1,

1

x

)]
(3)

= −(T − σ(x))av2

(
1,

1

x

)
1

x2

+ σ′(x)

{
av1

(
1,

1

x

)
− a

[
v1

(
1,

1

x

)
+

1

x
v2

(
1,

1

x

)]}
(4)

= −(T − σ(x))av2

(
1,

1

x

)
1

x2
− σ′(x)a

1

x
v2

(
1,

1

x

)
(5)

< 0 (6)

To get from (1) to (2), we use f ′(σ(x)) = v1(x, 1); from (3) to (4), we use

Euler’s Theorem and that v1 is homogeneous of degree 0; and from (5) to

(6), we use σ′(x) > 0.

Sufficiency proof of Proposition 2. In the following we prove that

there exists a reciprocal equilibrium t with g(t) = g and hence g ∈ GR if g is

connected and is such that for every U ⊆ N Condition 2.1 or 2.2 is satisfied.

For the proof, we draw on Theorem 35.1 in Schrijver (2004, p. 584),

which states necessary and sufficient conditions for a perfect b-matching to

exist for a graph g. A perfect b-matching for g is a function which assigns

a value to each link such that the sum of the values of links incident at one

node is equal to the b-value of that node.

We will first show that if a perfect b-matching for a connected graph g
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exists, then a reciprocal equilibrium t with g(t) = g exists, and second, that

if g is connected and is such that for all U ⊆ N either condition 2.1 or 2.2

is true, then a perfect b-matching for g exists (for the second part, we use

the theorem in Schrijver (2004)). This will prove sufficiency for Proposition 2.

Consider a graph g on N . Let Eg be the set of all links in g and let

Eg[X, Y ] be the set of links xy ∈ g with x ∈ X ⊆ N , y ∈ Y ⊆ N and

X ∩ Y = ∅. Let Eg[Y ] be the set of links ij ∈ g with i, j ∈ Y ⊆ N . Denote

by δ(i) the set of links incident at node i ∈ N . Let g[Y ] be the subgraph

induced in g by Y ⊆ N . For every vector w ∈ RY with vector components

wy, let w(U) :=
∑

y∈U wy for any U ⊆ Y . The set of integers is denoted by

Z.

Considering just a special case, Theorem 35.1 in Schrijver (2004, p. 584)

can be reduced to the following statement.

Special case of Theorem 35.1 in Schrijver (2004, p. 584). Let g

be a graph on N and let b ∈ ZN and c ∈ ZEg
with every cij > 1. Then,

there exists an x ∈ ZEg
such that (i) 1 ≤ xij ≤ cij for all ij ∈ Eg and (ii)

x(δ(i)) = bi for all i ∈ N if and only if for each partition {T, V, Y } of N , the

number of components K of g[T ] with

(35.2) b (K) + c (Eg[K,Y ]) + |Eg[K,V ]|

odd is at most

(35.3) b (V )− 2 |Eg[V ]| − |Eg[T, V ]| − b (Y ) + 2c (Eg[Y ]) + c (Eg[T, Y ]) .

Let every cij = γ with γ extremely large and every bi = β with β suf-

ficiently large. If g is connected and x given g exists, then a reciprocal

equilibrium t with g(t) = g is such that tij = tji =
xij
β

(T − tbb) for all ij ∈ Eg

and tij = tji = 0 for all ij /∈ Eg.

Let g be connected and such that for all U ⊆ N , with W (U) being the

set of isolates in g [N\U ], either
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1. |U | > |W (U)|, or

2. |U | = |W (U)| and for every link ij ∈ Eg, if i ∈ U , then j ∈ W (U).

We will next show by contradiction that x exists given g.

Suppose x does not exist. Then, by the theorem in Schrijver (2004, p.

584), there must be a partition {T, V, Y } of N such that the number of

components K of g[T ] with (35.2) odd is greater than (35.3); otherwise x

would exist.

For any partition with Eg[Y ] 6= ∅ and/or Eg[T, Y ] 6= ∅, the number of

components K with (35.2) odd is always smaller than (35.3) because γ is

extremely large and the number of components K is finite. Then, there must

be a partition with Eg[Y ] = Eg[T, Y ] = ∅ with a number of components K

with (35.2) odd greater than (35.3).

For every partition {T, V, Y } with Eg[Y ] = Eg[T, Y ] = ∅, it must be true

that every i ∈ Y has links to nodes in V only and that every i ∈ Y has at

least one link to nodes in V because g is connected. Then, Y is a subset

of the set of isolates in g [N\V ]. Hence, Y ⊆ W (U) for U = V . We know

that in g for all U ⊆ N either 1. |U | > |W (U)|, or 2. |U | = |W (U)| and for

every link ij ∈ Eg, if i ∈ U , then j ∈ W (U). This implies that, for any V ,

either 1. |V | > |Y |, or 2. |V | = |Y | and for every link ij ∈ Eg, if i ∈ V ,

then j ∈ Y . Thus, there does not exist a partition {T, V, Y } of N for which

Eg[Y ] = Eg[T, Y ] = ∅ and |V | < |Y |.
Then, there must be a partition {T, V, Y } of N for which Eg[Y ] =

Eg[T, Y ] = ∅ and |V | ≥ |Y | such that the number of components K with

(35.2) odd is greater than (35.3).

For any partition with Eg[Y ] = Eg[T, Y ] = ∅ and |V | > |Y |, the number

of components K with (35.2) odd is always smaller than (35.3) because β is

chosen sufficiently large.

For any partition with Eg[Y ] = Eg[T, Y ] = ∅ and |V | = |Y |, we know

that for every link ij ∈ Eg, if i ∈ V , then j ∈ Y . (The reason is that if |U | =
|W (U)|, then for every link ij ∈ Eg with i ∈ U it is true that j ∈ W (U), and

for U = V in this case W (U) = Y .) Then, Eg[V ] = Eg[T, V ] = Eg[T, Y ] = ∅.
This implies that T = ∅. If T were not empty, nodes in T would not be
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connected to either V or Y , and g would not be connected, a contradiction.

From T = ∅, it follows that the number of components K is zero. (35.3) is

also zero. Hence, the number of components K is not greater than (35.3).

Thus, there does not exist any partition {T, V, Y } of N such that the

number of components K with (35.2) odd is greater than (35.3). This is a

contradiction and therefore x must exist. Thus, there also exists a reciprocal

equilibrium t with g(t) = g.

Proof of Proposition 6. Proof of part b).

First, suppose that qt = 1. Then g(t) ∈ GR. The set GR is independent

of T by Proposition 2. Thus g(t̂) ∈ ĜR and q̂t = 1. By Proposition 1,

f ′(tbb) = av1(1, 1). Thus, tbb is independent of T and therefore, tbb = t̂bb.

Second, suppose that qt > 1. Then, g(t) = g(t̂) /∈ GR = ĜR and thus q̂t >

1. By Proposition 3, the bipartition of g(t) is unique, and therefore |C||D| = |Ĉ|
|D̂| .

By Proposition 1 and 3: i) f ′(t̂cc) = av1(q̂t, 1), ii) f ′(t̂dd) = av1( 1
q̂t
, 1), and

iii) |C||D| = q̂t T̂−t̂dd
T̂−t̂cc

. The analogous conditions hold for t. Applying the implicit

function theorem to the equation |C|
|D| = qt T−tdd

T−tcc , we get:

∂qt

∂T
= −

(T−σ(qt))−(T−σ( 1
qt

))

(T−σ(qt))2

T−σ( 1
qt

)

T−σ(qt)
+ qt

σ′( 1
qt

) 1

qt2
(T−σ(qt))+(T−σ( 1

qt
))σ′(qt)

(T−σ(qt))2

.

It is straightforward to show – keeping in mind that σ is strictly increasing

– that the numerator is negative and the denominator positive and therefore
∂qt

∂T
> 0.

Thus, q̂t > qt, t̂cc > tcc by (i) and t̂dd < tdd by (ii). Hence T̂− t̂dd > T−tdd.
From q̂t > qt, it follows that

T̂ − t̂cc
T̂ − t̂dd

>
T − tcc
T − tdd

and therefore T̂ − t̂cc > T − tcc.
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Deröıan, F. (2009), ‘Endogenous link strength in directed communication

networks’, Mathematical Social Sciences 57(1), 110–116.

Durieu, J., Haller, H. and Solal, P. (2011), ‘Nonspecific networking’, Games

2(1), 87–113.

Galeotti, A. and Merlino, L. P. (2014), ‘Endogenous job contact networks’,

International Economic Review 55(4), 1201–1226.

Golub, B. and Livne, Y. (2010), ‘Strategic random networks and tipping

points in network formation’. Unpublished working paper.
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