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Abstract

Low-emission vehicle technologies are needed to mitigate rising greenhouse gas

emissions from passenger light-duty vehicles (PLDVs). Policy incentives send a

signal to consumers and car manufacturers to influence purchasing decisions and the

adoption of low-emission vehicles. In this thesis, an innovative model formulation

is developed to represent consumer group diversity by capturing di↵erent vehicle

technologies and engine types. This thesis contributes to the existing literature

by modelling and quantifying the impact of di↵erent policy measures across five

countries, the US, the UK, Japan, China and India. I first explore how policy

instruments, such as the annual registration tax, EV subsidy, fuel tax, EV mandate

and fuel economy regulations, impact the di↵usion of various PLDV technologies

and CO2 emissions at di↵erent levels. Subsequently, by studying the interactions

between policy instruments, I uncover the trade-o↵ e↵ect and reinforcement e↵ect

between the di↵erent policy incentives, and how the interactions between policy

incentives influence the e↵ectiveness and e�ciency of policy instruments in reducing

PLDV CO2 emissions in di↵erent countries. This research explores how income

changes in di↵erent countries impact PLDV choice and the e↵ectiveness of each

policy instrument in reducing PLDV emissions.

The findings of this research indicate that policy instrument e↵ectiveness varies

between countries and specifically depends on the levels of incentive, the design of

the policy incentives and the existing markets for low emission vehicles. Financial

incentives such as taxes and EV subsidies are more e↵ective in China and the UK.

Fuel economy regulation is more e↵ective in the US, where, on average, engine sizes

for conventional cars are large. While I find that there is a general trade-o↵ e↵ect

between the financial incentives (i.e. the annual registration tax, fuel tax and EV

subsidies), there is also a reinforcement e↵ect between the EV mandate programme

and all other policy incentives. Overall, I find that the income e↵ect leads to a

small increase in cumulative emissions from PLDVs in the UK, the US, Japan and

India, due to the di↵usion of luxury vehicles at the expense of small vehicles. In

the case of China, I find that cumulative emissions from PLDVs decrease as income

increases due to EV di↵usion.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Paris Agreement and the role of the transport sector

In 2015, the Paris Agreement was adopted under the United Nations Framework

Convention on Climate Change (UNFCCC). The overarching climate goal of the

Paris Agreement is to hold ‘the increase in the global average temperature to well

below 2�C above the pre-industrial levels and to pursue e↵orts to limit the tempera-

ture increase to 1.5�C above pre-industrial levels’. Existing climate studies find that

about two-thirds of the available carbon budgets for keeping the warming to below

2�C has already been emitted (Millar et al., 2017). A decline in global emissions

is urgently required to keep within a 2�C-compatible budget (Rogelj et al., 2016,

2018; Grubler et al., 2018).

To achieve the goals set out by the Paris Agreement, all parties are required to

undertake e↵orts towards reaching global peaking of greenhouse-gas (GHG) emis-

sions as soon as possible. Under the agreement, all governments that have ratified,

including the US, China, India and the EU, carry an obligation to achieve the goals

that are determined by their country individually and called ‘nationally determined

contributions’ (NDC). Each country sets its own emissions-reduction targets ‘with

the view to achieving the goal of the Paris Agreement’. For example, the EU com-

mitted to a target of ‘at least 40%’ domestic emissions reduction below 1990 levels

by the year 2030 (EC, 2014a). China agreed to cut the overall CO2 emissions per

unit of GDP by 40%-45% below 2005 levels by the year 2020, and to peak its CO2

emissions by 2030 at the latest (Climate Tracker, 2016).
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Participating countries will have to adopt di↵erent pathways and determine the

exact climate policies that will achieve the NDC goals. Transport accounts for a

significant share of global fossil fuel combustion-related emissions, producing 7 Gt

CO2 eq of direct GHG emissions in 2010, and was responsible for around 23% of

total energy-related CO2 emissions (IPCC, 2014, p426). Today, among the end-

use sectors, transport is the largest CO2 emitter and the most heavily reliant on

fossil fuels. If unabated, the sector’s emissions will grow faster than emissions in

other energy-related sectors. The large contribution to emissions from the transport

sector justifies its important role in significantly reducing emissions and meeting the

ambitious climate change goal set by the Paris Agreement, especially in countries

where the demand for passenger transport is growing rapidly.

The rapid growth in the transport sector is driven by emissions from the road

sector, which have increased by 52% since 1990. In particular, the Passenger Light-

Duty Vehicle (PLDV) fleet is projected to expand from 900 million in 2012, to over

1.7 billion in 2035 (IEA, 2012). Following the definitions found in IEA (2017b),

this thesis includes among PLDVs passenger cars, SUVs and passenger light trucks,

but excludes two-wheelers, three-wheelers and low-speed/low-power four-wheeled

vehicles, despite India and China being two of the largest two-wheeler markets in

the world.

Following the Paris Agreement, some countries have proposed a policy frame-

work or a target to cut emissions from the transport sector, particularly concerning

PLDVs. For example, EU legislation sets mandatory emission-reduction targets for

new cars. The European Strategy for low-emissions mobility suggests a number

of measures aimed at reducing emissions from the transport sector by 60% below

1990 levels by the year 2050 (CarbonBrief, 2015), and PLDV contributions play an

important role in emissions reduction from the transport sector. By 2021, phased

in from 2020, the EU regulations stipulate that the fleet average that all new cars

must achieve is 95 grams of CO2 per kilometre (EC, 2015). China has announced

that it will finalise next-stage fuel-e�ciency standards for passenger vehicles and

implement them in 2019; thus, the new standards represent an improvement in fuel

economy of 6.2% per year between 2016 and 2020 (Feng, 2016).

Policy incentives send consumers and car manufacturers a signal intended to in-

fluence purchasing decisions and the adoption of low-emissions vehicles. The levels

and the structure of incentives could be used to influence the adoption and devel-

opment of new-car technologies. The design, level and structure of the instruments

determine the e↵ectiveness of the policies and achieving the emissions-reduction
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targets in the long run. The objective of this thesis is to find the e↵ectiveness

and e�ciency of several existing, commonly used policy incentives, including the

vehicle-registration tax, fuel tax, electric-vehicle (EV) subsidies, fuel-economy reg-

ulation and the EV mandate at di↵erent levels of stringency in the UK, the US,

Japan, China and India, until 2050.

Because policies are almost always introduced simultaneously, this research anal-

yses the interactions between policy incentives. The inclusion of more e↵ective poli-

cies in the policy mix allows a less stringent policy to be set than would otherwise

be the case to achieve a given level of abatement. Alternatively, the e↵ectiveness

would be greater for a given tax level (IEA, 2011b). The aim is to find the rein-

forcement e↵ect and the trade-o↵ e↵ect between policy incentives when they are

introduced in di↵erent countries.

1.1.2 Fossil fuel dependency and energy security

The transport sector was responsible for over 60% of global oil consumption in

2012 (GlobalPetrolPrices, 2015). Fossil fuel dependency and high demand for oil

raise significant concerns for national energy security. Historically, volatile oil prices

have been responsible for economic downturns and recessions. For example, in the

US, of the 11 post-war recessions, 10 were preceded by sharp increases in oil prices

(Grubb, 2014). Conversely, a low oil price may lead to stranded fossil fuel assets

(SFFA) in oil-producing countries. Historically, the high prices of fossil fuels have

damaged the economy of oil-consuming countries by raising the price of transporting

people and goods, while the economy for the oil-producing countries su↵ers from

low oil prices. With much of the world’s petroleum reserves located in politically

volatile countries, most major oil-consuming countries, such as the US and China,

are vulnerable to price spikes and face energy security concerns. This provides

incentives for governments to encourage energy e�cient vehicles to reduce reliance

on oil.

1.1.3 Technological transitions

The di↵usion of new energy technology vehicles (e.g. electric vehicles) into the mar-

ketplace, and the improvement in fuel economy of the existing petrol cars, determine

technological trajectories that are critical in emissions reductions and combating cli-

mate change (Kemp, 2000). As stated in IPCC (2014) (p 647), ‘understanding how
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low-carbon transport and energy technologies will evolve (via experience curves and

innovation processes) is not well developed’, and assessing this gap remains chal-

lenging for the PLDV sector.

Technological transitions (TT) are defined as major technological transforma-

tions in the way societal functions are fulfilled (Geels, 2002). TT involves both

changes in technologies and changes in user practices, regulations, infrastructure,

and symbolic meaning and culture (Geels, 2002). Regarding the PLDV sector,

auto-mobility is embedded in lifestyles and stabilised through sunk investments

and existing practices. Although new energy technologies, such as hybrid vehicles

and EVs, are more fuel e�cient and generate lower emissions, these technologies

have barriers to deployment, including vehicle cost, the electric driving range, long

battery-charging times and the restricted choice of vehicle models. Compared with

EV, the incumbent technologies have a distinct advantage because they are more

widely used and dominant, causing a technological lock-in.

The barrier to technological innovation and transitions in the automotive sector

is that there are lock-ins in the process of technological di↵usion. A technological

lock-in can be defined as positive feedback or increasing returns for the adoption of

selected technologies, as a result of social influence and the economies of scale in

the car manufacturing sector (Arthur, 1994; Unruh, 2000). Regarding the PLDV

sector, the main lock-in mechanisms are learning e↵ects, economies of scale, network

externalities and collective action (Klitkou et al., 2015). On the production side,

through technological breakthroughs and learning, manufacturers improve vehicle

features, increase fuel e�ciency and reduce costs of the car technologies. In a

co-evolutionary framework, as vehicles become more popular, producers use their

profits to expand their production capacity and encourage further purchases by the

consumers of PLDV technologies.

On the demand side, consumer choices and their behaviours drive the demand

process for transport technologies. Consumer heterogeneity partly determines the

rate of adoption of clean technologies. Rogers (2010) illustrates that the diversity of

consumers (early adopters, early majority, late majority and laggards) determines

the scaling of the typical S-shape profile of di↵usion. In terms of the di↵usion for

zero-emissions vehicles, in contrast to the late adopters, the first group of consumers

willing to adopt new technologies is often willing to pay a premium for innovations

and may be less risk averse (Carley et al., 2013). The diversity of consumers deter-

mines the elasticities of technology substitution (Mercure and Lam, 2015).
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1.1.4 The role of the passenger light-duty vehicle (PLDV)

technologies

Technology innovation is a major driving force behind the improvements in trans-

port fuel economy to reach emission-reduction targets. For instance, advanced

technology, such as the start-stop system, reduces average fuel consumption and

has been incorporated into many new vehicles by manufacturers to meet the strin-

gent policy regulations. The use of radical technologies, such as electric vehicles,

would make it possible to reduce dependency on fossil fuels, as well as decarbonise

and reduce emissions in the transport sectors (ETP, 2012)(p102). This section

sets the historical context for the present research on the process of technological

di↵usion for passenger vehicles.

Petrol cars

By the end of the 19th century, the automobile had emerged as a radically new

transport option. Since steam engines and electric motors had been developed,

early automobiles were constructed by adding electric engines and steam engines to

existing coaches to replace horses. The problem with the early EV of that period

was that compared with petrol cars, EVs were limited by the energy content of

the lead-acid battery, and hence could not o↵er a long range or high speed, which

were already established as prominent performance criteria for automobiles (Geels,

2005b). These criteria led to the development by Karl Benz, in 1886, of the world’s

first purpose-built car powered by an Internal-combustion engine. However, the

Benz model was not a↵ordable for the general public. In 1908, Ford’s Model T was

introduced as the first a↵ordable car model that was su�ciently robust, built with

a speed of up to 40 miles an hour. Ford’s Model T established a large market for

automobiles, and the sales of petrol cars increased rapidly, overtaking EVs.

As a result of strong technological lock-in and path dependence, petrol cars have

continued to gain market share, and the shares of other alternative-fuel vehicles

(e.g. hybrid cars, EVs) have remained low, although several historical incidents

have sparked interest in developing and facilitating the take-up of alternative-fuel

vehicles. For instance, the interest in EVs re-emerged in the 1960s and 1970s,

triggered by the 1965 Clean Air Act in the US. However, due to poor performance

and price compared with their gasoline counterparts, less than 4,000 EVs had been

produced worldwide by the end of the 1970s (Dijk et al., 2012).

The continued reliance on petroleum as the main fuel for vehicles has raised con-
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cerns regarding national energy security and global climate change. For instance,

in the case of China, between 2000 and 2014, the dependence rate on oil imports

increased from 30.2% to 59.6% as a result of the increased demand for private pas-

senger vehicles (BP, 2016). This heavy dependence on oil imports causes concerns

over national energy security and impedes economic growth when oil prices are

high. Thus, China has been looking to diversify its energy resources, and encour-

age the growth of alternative-fuel cars. Besides national energy security concerns,

under the Paris Agreement, several countries (e.g. China, EU) are taking steps to

strengthen the existing fuel economy standards. The fuel e�ciency of new gasoline

vehicles has continued to improve with advanced engine technologies, such as Start-

Stop and Variable Valve Timing, which have been incorporated into the latest car

models.

Diesel cars

The first diesel cars were made by Citroen in 1933. However, compared with petrol

cars, diesel cars have been less popular for passenger vehicle use but more popular

for heavy-duty vehicles. During the oil crisis, the market shares for diesel cars

increased significantly in Europe. In particular, after the second oil crisis in 1979,

car companies started to develop diesel versions of gasoline engines. In the 1990s,

with the purpose of cutting GHG emissions, the EU nations promoted low CO2

emission diesel cars by imposing a heavier tax on petrol cars, subsidising diesel cars

and improving diesel car technologies.

However, diesel cars generate more pollution than petrol cars through the pro-

duction of particulate matter and nitrogen oxides. Several cities, including Madrid,

Paris, Mexico City and Athens are implementing a ban on diesel cars to improve air

quality. Starting in 2019, diesel car owners will be required to pay an extra GBP

12.50 to enter central London. Thus, the future sales of diesel cars will be a↵ected

by global air pollution concerns.

Battery electric vehicles (BEV)

Since 2005, there has been a revived interest and momentum for EV as a result

of climate change concerns, urban pollution concerns and fossil fuel dependency

for national governments. Without technological advancement, EVs had previously

faced several barriers, such as high cost and range anxiety (i.e. consumers’ concern

about the shorter driving range), making it di�cult for EVs to compete with petrol
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cars in the marketplace. High risk and cost of investment in EVs mean that car

manufacturers have been reluctant to invest in EVs unless they believe there is

a market for them. Tesla was the first company to produced automobiles with

a lithium-ion battery. To overcome range anxiety, the company produced EVs

with a range of over 270 miles (Straubel, 2014). Other car manufacturers, such

as General Motors (GM) and BYD, have also invested in EV battery improvement

and manufacturing, making EV more a↵ordable, more durable and capable of longer

ranges (up to 250 miles) than the previous EV models.

Some policymakers have used climate concerns to develop regulatory frameworks

and promote the di↵usion of EVs. Concerns about climate and air pollution have

motivated some governments (e.g. UK, China) to demand that the car industry de-

crease emissions. Policies have also been established in some countries to encourage

consumers to purchase cleaner and lower-emission vehicles in some countries. These

incentives motivate car manufacturers to invest in EV production and development,

which will create a more competitive environment that drives the cost of EVs down

through learning. Doing so makes EVs more accessible to the market.

As a result of the incentives to support the penetration of EVs, globally, there

were more than one million EVs worldwide in 2015 (IEA, 2012). In some countries,

the market shares for EVs are very high, such as Norway and the Netherlands.

Market shares for new EVs have reached 23% in Norway and nearly 10% in the

Netherlands (IEA, 2012).

Fuel cell electric vehicles (FCEVs)

A fuel-cell vehicle is a type of electric vehicle that uses electricity generated from the

electrochemical reactions of hydrogen and oxygen, with water being the by-product.

Unlike petroleum, hydrogen is not an energy resource by itself but is produced from

natural resources, such as gas wells or by electrolysis of water. Around the world,

Japan is the leading country for commercialising fuel-cell electric vehicles (FCEVs),

with Toyota and Honda both having put FCEVs on the road. FCEVs have a

significant barrier to entry due to their high purchase prices and the high cost of

fuel cells, hydrogen tanks and hydrogen filling stations. For example, a Mirai car

costs twice the price of a comparable EV (59,000 USD), and therefore, there were

only around 2,000 FCEVs in Japan (until 2017) (Chasan, 2018).

So far, the body of research on consumer perceptions and the future di↵usion

of FCEVs is very limited. Because of a lack of historical data and the very niche
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status of the FCEV, it is not included the FCEV in this analysis.

Ethanol cars

In 1973, global oil prices doubled when oil-producing countries created a cartel

and restricted oil supplies (Grubb, 2014). The oil-price shock encouraged the pro-

duction of more e�cient smaller vehicles and gave rise to flex-fuel cars in Brazil.

First-generation bioethanol is produced from renewable resources, such as sugar

cane, corn, rice and other grains. Although the biofuel produced from renewable

resources could help minimise burning fossil fuel and CO2 production, it is been ar-

gued that there may be substantial conflict between the production of biofuel and

food production (Searchinger et al., 2015). Second-generation biofuel is made from

lignocellulosic biomass (plant matter that is not food), woody crops or waste, and

thus, has a lower impact on food prices. Compared with first-generation biofuel,

second-generation biofuel can be grown on marginal lands instead of in direct com-

petition with food for land use. However, presently, second-generation biofuels are

much less e�cient, and large-scale production is not economically feasible, although

lignocellulosic ethanol production from biomass may become more promising in the

future.

Brazil introduced a pioneering programme for the introduction of ethanol as a

fuel for automobiles in the 1970s. The programme involved supply infrastructure,

and developed technologies for ethanol-fuelled vehicles by government research cen-

tres and Brazilian automakers (Seraphim, 2009). The demand for ethanol collapsed

during the 1980s when oil prices fell and the price of sugar increased (Grubler and

Nemet, 2013). In 2003, the creation of flex-fuel vehicles that can run on any com-

bination of ethanol and gasoline gave consumers the flexibility of choosing between

fuels, especially when prices for the commodities fluctuated. The Brazilian govern-

ment encouraged the di↵usion of flex-fuel cars by introducing a lower tax rate on car

purchases of 14% for flex-fuel cars, compared with 16% for petrol cars. Beginning

in 2003, the number of flex-fuel cars in Brazil continued to increase, and by 2016,

more than 80% of new cars sold in Brazil were flex-fuel vehicles. The fuelling in-

frastructure for ethanol is very well developed in Brazil, and flex-fuel vehicles allow

consumers to choose between petrol fuel and ethanol fuel.

Outside Brazil, the US has the second largest flex-fuel fleet in the world, with

around 20 million flex fuel vehicles in use in 2018 (EIA, 2018). However, in reality,

the use of ethanol fuel is limited in the US due to a lack of E85 refuelling infras-
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tructure. Up to 2013, about 2,800 of the 110,000 fuel stations in the US reported

o↵ering E85, with a great concentration of E85 stations in the Corn Belt states

(Seraphim, 2018). The scarcity of fuel stations o↵ering E85 is a major obstacle to

the expansion of ethanol consumption through E85 (Pouliot and Babcock, 2017).

Hence, despite the fact that around 5% of the fleet in the US are flex-fuel cars, the

actual usage of these flex-fuel cars remains much lower because only 2.5% of fuelling

stations in the US have an ethanol filling facility (Seraphim, 2018).

Hybrid cars

Hybrid cars started to gain market share in several developed countries, such as the

US, the UK and Japan. Niche innovations do not necessarily compete with existing

technologies, but may enter into a ‘new combination’ with them (Geels, 2002).

Hybrid cars consist of a combination of a battery and an internal-combustion engine.

The Prius I was launched in 1997 in Japan and the Prius II in 2000 in California.

Toyota managed to sell more than one million units of the Prius worldwide between

1997 and 2007. In countries such as Japan, there are already five million hybrid

cars on the road, accounting for around 25% of the market share.

For consumers, the advantages of hybrid cars over EVs is that they do not need to

be plugged in with a charging station and do not require a change in driving habits.

Compared with conventional petrol cars, hybrid cars use less gasoline and have

lower CO2 emissions. Depending on the model, hybrid cars have the potential to

cut emissions by more than 50% compared with conventional petrol cars. Therefore,

hybrid cars will cut fossil fuel consumption and reduce emissions from passenger

vehicles.

Natural gas vehicles (NGV)

An alternative fuel to petrol and diesel fuel is natural gas, which has certain advan-

tages over oil as a transportation fuel. Natural-gas vehicles (NGVs) are considered

an alternative that produces lower levels of CO2 emissions (around 25% lower than

gasoline) and emissions of other pollutants, such as carbon monoxide, when com-

pared with most oil-fuelled vehicles. In terms of price, natural gas is generally less

costly than petroleum fuels on an energy equivalent basis, with less price volatility

(Nersesian, 2016).

Liquid petroleum gas (LPG) provides 8% more energy per unit weight than

petrol (Ristovski et al., 2005). LPG cars are purposely built or converted from
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petroleum cars. The fuel system for compressed natural gas (CNG) cars is very

similar to the LPG systems. Further, CNG cars can be converted from petrol cars

with an average cost range from 1,640 USD to 2,190 USD (ETSAP, 2010). The

number of NGVs has increased significantly in China, from 6,000 in 2000 to 3 million

NGVs by 2013 1. NGVs emit 20% fewer GHG emissions than conventional cars and

have been popular with long-distance drivers and taxi drivers. Moreover, NGVs

provide an opportunity for China to achieve its air pollution mitigation and carbon

emissions targets under the Paris Agreement in the near and medium term within

the transport sector.

Despite their advantages, concerns surrounding CNG cars include fuel storage

and the availability of fuelling infrastructure. Compared with conventional gasoline

vehicles, the availability of CNG cars for purchase is much less than the conventional

PLDVs. Because the performance of CNG cars is lower than that of conventional

cars, CNG car models mostly o↵er small to mid-size engines (less than 2000 cc)

worldwide.

Autonomous vehicles (AV)

Automated vehicles are defined as those in which at least some of the safety critical

control functions (e.g. steering, braking) occur without direct driver input (NHTSA,

2013). Although there are no fully automated fleets at the moment, new car models

have increasingly included partial automation and conditional automation, which

allow cars to drive themselves on the road in the presence of a human driver.

AVs represent a potentially disruptive technology that changes the transportation

system in various dimensions, including road safety, congestion and travel behaviour

(Fagnant and Kockelman, 2015). Around the world, several countries (or states)

have taken steps to legalise AVs, including California, Singapore, the UK and the

Netherlands. Some manufacturers (e.g. Nissan, Volvo) have also announced their

intentions to have commercially viable autonomous-driving capabilities by 2020 in

several vehicle models. Some studies have suggested that vehicles would be capable

of full automation on urban and highways by 2025-2030 (Underwood, 2014).

However, there are still several barriers to the large-scale adoption of autonomous

vehicles, including the costs of AV platforms and consumer acceptance of this

driverless technology. Several studies have examined the possible implications of

autonomous vehicles on future energy consumption and emissions, but very few

1Many NGVs are used for public transportation such as buses, not PLDVs.
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studies were able to quantify the potential carbon impact of AVs in the long run.

For example, Anderson et al. (2014) and Grubler et al. (2018) suggest that the

AV reduces energy consumption and emissions per kilometre by smoothing tra�c,

while the annual distance per vehicle may increase as a result. Wadud et al. (2016)

finds that a shift over time from privately owned vehicles to a shared-use system

with some automation might decrease energy, vehicle travel and emissions; however,

the extent to which that could occur depends on the levels of automation. When

the vehicles are fully automated, they can o↵er on-demand mobility services and

would allow shared vehicle ownership based on the drivers’ preferred travel patterns

(Wadud et al., 2016).

Because AVs are mostly still in the testing phase, this means it is very challenging

to predict the exact outcomes and implications of AVs on future travel demand,

energy consumptions and emissions. This thesis excludes the autonomous vehicles

from its scenario analysis.

Summary

Historically, the technological transitions of automobiles have been characterised by

social and technical regimes, such as changes in consumer preferences, technologi-

cal breakthroughs, cost of technologies, cost of commodities and policy incentives

(Geels, 2005a). Over the past 100 years, alternative-fuel vehicles have elicited public

interest and led to interest in the stability of the auto-mobility regime. Nonetheless,

the strong lock-in mechanism has meant that unless there is a significant techno-

logical breakthrough and a continued interest from consumers and governments in

favour of alternative-fuel cars, novel technologies will keep facing significant barriers

to entry.

1.1.5 Other transport technologies and the scope of the the-

sis

This study only focuses on the policy incentives and the technological di↵usion of

Passenger Light Duty Vehicles (PLDV). However, motorcycles are popular in India

and China, with nearly 14 million units in India and more than 90 million units

in China in 2019 (Marklines, 2017). The large number of motorcycles in India and

China could result in fuel consumption and CO2 emissions from motorcycles in

developing countries potentially contributing significantly to CO2 emissions. How-
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ever, this is outside the scope of this thesis, due to availability of data on the market

shares for di↵erent motorcycle technologies.

On the other hand, in the more developed countries, Heavy Duty Vehicles

(HDVs) will increasingly play a role in transport-sector emissions. In fact, emis-

sions growth from the HDVs is higher than from any other transport sector, with a

2.4% increase annually since 2000, mainly due to trucks that account for more than

90% of the growth in energy consumption (IEA, 2017a). Since studying the freight

sector requires a radically di↵erent behaviour analysis, it is outside the scope of this

thesis.

Within the passenger transport sector, the aviation sector is one of the largest

global CO2 emitters, with emissions expected to rise dramatically by mid-century.

Emissions from the international aviation sector rose 54% from 1990 to 2015 and

are projected to increase as much as 4.3% annually over the next 20 years (ICSA,

2010). Policy measures that address emissions from aviation are an important area

of study, but one that requires a completely di↵erent field of research.

Globally, maritime transportation plays an important role in international ship-

ping, connecting roads and inland waterways through ocean routes (Eyring et al.,

2010). As a complement to other modes of transportation, maritime transportation

plays an important role in international shipping that connects roads, railways, and

inland waterways through ocean and coastal routes (Eyring et al., 2010). Glob-

ally, maritime transport emits around 1,000 million tonnes of CO2 annually and

is responsible for about 2.5% of global GHG. International maritime shipping is

not included in the Paris Agreement, but regulations that limit the sector0s CO2

emissions have been established and implemented. This PhD thesis excludes the

maritime sector from analysis.

1.1.6 The role of policy incentives

Particular challenges accompany designing successful and e↵ective policies for re-

ducing PLDV emissions, because of the dynamics of technological transition and

consumer behaviour. Designing e↵ective policy instruments requires improved knowl-

edge of the mechanisms that facilitate the di↵usion of new car technologies. Despite

the need to meet the legislated GHG targets, there is a gap in predicting the carbon-

emissions reduction e↵ects of individual policy instruments and their costs. It is

important to determine the relationship between policy instruments and the rate

of adoption for low- or zero-emissions vehicles.
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Niche automotive technologies, such as EVs, have several disadvantages in the

marketplace, including their additional monetary cost, range anxiety, lack of charg-

ing infrastructure and consumer risk aversion. In other words, without policy in-

centives to support the niche technology, EVs will have a higher monetary cost and

non-monetary cost (e.g. risk aversion) than petrol cars, which have higher average

emissions than EVs (McCollum et al., 2016). However, the negative perceptions and

risk aversion may change over time as the technology becomes more wide spread.

Government policies will be critical in the development and adoption of new car

technologies. Under the Paris Agreement, some countries (e.g. Japan) have elab-

orated the breakdown targets based on the energy mix with concrete policies and

measures.

These policy choices, levels and combinations are necessary to achieve the CO2

emissions target, while considering the economic goals (e.g. costs of subsidies and

taxation revenues). Fiscal incentives for reducing emissions from PLDVs can be

broadly divided into two categories: policies that a↵ect the choice of vehicles (e.g.

size of the vehicle fleet, vehicle engine e�ciency and shifts to new energy technology

PLDVs) and policies that influence vehicle usage. The former includes policies such

as vehicle purchase tax, EV subsidies, annual registration taxes, fuel consumption

regulations and EV mandates. The latter includes charges based on distance (e.g.

tolls), although fuel taxes a↵ect both the choice of vehicles and the vehicle usage.

For this thesis, we focus on the analysis of policies that a↵ect vehicle choices for

two reasons. First, the tool developed for this thesis (the FTT-Transport model,

see section 1.2) is a model of technological di↵usion that is useful in studying how

policy instruments a↵ect the dynamical change of vehicle technologies based on

market price competition and technological competition. Second, while existing

studies have examined or evaluated the impact of various policy instruments on

a↵ecting the uptake of technologies in di↵erent countries in the short run or as

a case study, there is a lack of understanding of how various policy instruments

a↵ect the rate of technological di↵usion and the medium- to long-term impact of

the policy instruments on the cumulative CO2 emissions.

The following sections review the key policies for reducing PLDV emissions that

exist in the UK, the US, Japan, China and India. We have excluded vehicle pur-

chase tax from the analysis, and included EV subsidies and the annual registration

tax. This is because the EV subsidies are regarded as a negative vehicle purchase

tax, and the annual registration tax is charged on ownership (like vehicle purchase

tax) but imposed annually (with EVs paying a lower rate of annual registration
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tax). Note that we only discuss policies that we have included in the analysis,

and policies that are excluded from the analysis, such as toll charges, driving priv-

ileges and exemptions to parking restrictions, cannot be easily modelled with the

FTT-Transport model and are outside the scope of this PhD thesis.

Annual registration tax

Annual registration tax or annual circulation tax, commonly known as road tax

in the UK, is an annual tax imposed on PLDVs for a vehicle to be allowed on the

registry. Typically, the levels of annual registration tax are charged based on vehicle

characteristics, such as engine sizes, weight, power or fuel consumption. In many

countries, the annual registration tax is reduced or exempt for high-e�ciency cars.

The e↵ectiveness of the annual registration tax is largely dependent on the level

of the charge required to influence the consumer’s decision (Brand et al., 2013).

Past studies have used surveys to understand the levels of annual registration tax

required to change consumer behaviour in the UK, Denmark and Austria (Lane,

2005; Mabit and Fosgerau, 2011; Gass et al., 2014). However, these studies have

not examined the long-term e↵ect of the annual registration tax on technological

adoption and CO2 emissions. In addition, while annual registration tax exists in

some developing countries, such as China, its e↵ect on the adoption of low-emissions

vehicles has not been examined. It is also important to highlight the di↵erences in

the e↵ectiveness of the annual registration tax due to varying tax levels and vehicle

markets between countries (Mercure and Lam, 2015).

EV subsidies

EV subsidies are a one-o↵ payment to EV purchasers when the vehicle is registered.

The EV subsidy is not only used to reward buyers of vehicles that produce zero

emissions but also to compensate for the price di↵erence between petrol car models

and comparable EV models. At comparable performance, EVs tend to have much

higher upfront costs due to the price of lithium-ion batteries. Moreover, in most

countries, EV charging stations are still scarce and the EV range is generally lower

than that of the range of petrol cars at a comparable price.

In reality, EV subsidies have existed in many countries, including the UK, the

US, Japan and China, to support the di↵usion of EVs. For example, in the UK,

an EV subsidy is o↵ered in the amount of up to 35% of the purchase price, or up

to a maximum of 4,500 GBP (5,900 USD) (UK Government, 2017a). For the US,
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the Federal Internal Revenue Service (IRS) tax credit is from 2,500 USD to 7,500

USD per new EV purchased, with the level of credit depending on battery capacity

(IRS, 2015). However, the EV subsidy has proved very expensive in countries such

as Norway, where the EV subsidy cost 1.07 billion USD over the period of 2010

through the first quarter of 2017 (Brooks, 2018). For less wealthy countries, this

makes ensuring budget neutrality di�cult, so other policy measures may be required

until EVs gain a substantial market share.

Fuel tax

Fuel taxes are imposed upon fuel purchase, the cost of which is linked to the amount

of fuel consumed while driving a vehicle. The levels of fuel tax a↵ect the fuel costs

of driving and, therefore, could achieve significant emissions reduction by reducing

fuel consumption. Fuel prices vary substantially across countries due to the large

di↵erences in taxes and subsidies levied on gasoline. For example, after fuel tax,

countries such as Norway and Hong Kong have the highest prices for gasoline in

the world, at a price of more than 1.7 USD per litre (April 2018 prices), while the

gasoline price in the US stands at around 0.7 USD (IRS, 2016).

Studies have found that countries with higher gasoline prices tend to consume

less gasoline within their road sectors, and vice versa (Sterner, 2007; Soltani-Sobh

et al., 2015). The higher fuel e�ciency of PLDVs reduces emissions from PLDV

transport by reducing demand for PLDV services and shifting consumers to more

fuel-e�cient PLDVs. Even when gasoline prices are similar, gasoline consumption

varies between countries, depending on income and population density (Burke and

Nishitateno, 2013). An econometric analysis is required to find out the relationship

between the sociodemographic variations and fuel consumption, given the oil prices.

The e↵ectiveness of the fuel tax on total CO2 emissions from PLDVs depends on

the fuel e�ciency of vehicles and the price elasticity of gasoline demand in each

country.

Fuel consumption regulations

Fuel economy regulations are among the most common types of environmental regu-

lations in the PLDV sector. These fuel economy standards require manufacturers to

report the fuel economy of the car models and regulate the average fuel e�ciency of

vehicles on sale by imposing a penalty on the manufacturers if they fail to meet the

standards. Doing so creates incentives to improve vehicle fuel e�ciency and reduce
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CO2 emissions from PLDVs. Fuel economy standards have been implemented in

many developed nations, including the UK, the US, Japan and China. For example,

in the US, the Corporate Average Fuel Economy (CAFE) standards are regulations

set by the National Highway Tra�c Safety Administration (NHTSA) and the US

Environmental Protection Agency (EPA) to improve the average fuel economy of

cars and light trucks (NHTSA, 2018). The EU requires the fleet average, to be

achieved by all new cars, of 95 grams of CO2 per kilometre by 2021 (EC, 2014b).

Although fuel-economy regulations encourage the production of more e�cient ve-

hicles, manufacturers have been caught manipulating their reported fuel-economy

values, which led to an important court case (McGee, 2018). The e↵ectiveness of

fuel economy standards over the long term depends on several factors, including the

extent to which the fuel-economy regulations a↵ect driver’s travel demands and car

turnover rates.

EV mandate

Electric vehicle mandates (EV mandates) include direct requirements for automak-

ers to sell zero-emissions vehicles, thus incentivising automakers to make EVs more

appealing to consumers (Sykes and Axsen, 2017). Most notably, the California Zero

Emission Vehicle mandate sets mandatory targets for EV sales. Similarly, Chinese

policymakers have established a new energy vehicle (NEV) credit system that tar-

gets 10% of the conventional passenger vehicle market in 2019 and 12% in 2020

(ICCT, 2018). These supply-focused policies stimulate automakers to increase the

availability of zero-emissions vehicles. Furthermore, this type of technology-forcing

regulation has been widely adopted across the US and Canada.

The advantage of EV mandates is that they force firms to be innovative and

reach a certain sales target. Then, as the number of fleet EVs increases, the rate

of di↵usion increases faster based on the technological di↵usion theory and social

influence (McShane et al., 2012). On the other hand, claims have been made that

firms will not simply comply with mandates through innovation or investment in

the new technologies; instead, they actively prevent the regulation through lobbying

activities (Wesseling et al., 2015).

1.1.7 Energy models

Energy models have emerged as a useful methodology, which are aimed at evalu-

ating future energy options and generating insights for policy design (Giannakidis
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et al., 2015). Although arguably all energy models indicate large quantitative un-

certainty, models are critical for supporting policy decisions in PLDV sector, where

the interdependence of consumers, producers and social institutions is the main

determinant for technological transitions. In particular, the energy models can be

used to assess the e↵ectiveness of policy strategies and the possible impact of the

policy incentives before they are implemented. In typical policy cycles (e.g. at the

European Commission), quantitative analysis of the e↵ectiveness of policy strategy

using models will be carried out at the impact assessment stage.

Many national energy models exist for the purpose of analysing transport emis-

sions within their own countries. The global Integrated Assessment Models (IAMs)

that can be used to advise on policies for many countries have several advantages

over the national energy models. First, the global IAMs are useful for calculat-

ing global emissions and assessing whether emissions targets are met globally (i.e.

staying within the 2� C target). Second, the global IAMs can be used by many coun-

tries for advising on policies in the transport sector. In particular, the global IAMs

are useful for assessing the e↵ectiveness of policies across countries and carrying

out comparative studies. By covering 59 global regions, the E3ME-FTT-GENIE1

model has been used to assess policy proposals of many governments, notably the

European Commission 1.

System dynamics (SD) and agent-based modelling (ABM) overcome some of the

shortcomings of the optimisation model by allowing agent heterogeneity. However,

both methods have scalability challenges to integrating them into IAM analysis.

For example, while ABMs have clear advantages in terms of modelling consumer

decisions and agent diversity, ABMs typically apply only to one particular study

area, or to only a few cities, due to the limitations of the input data for ABMs at

national levels or above.

The FTT-Transport models technological di↵usion dynamically based on market

price competition and technological competition. Instead of taking a representative

agent approach, the FTT-Transport model assumes the presence of a diverse market

with heterogeneous agents and PLDV technologies. This is done with a probabilis-

tic treatment of consumer decision-making by using a distribution of cost values

for each technology category and establishing three technological subcategories for

each car technology. In the FTT-Transport model, we model technological di↵u-

sion with a set of logistic di↵erential equations of the Lotka-Volterra family, which

1The E3ME-FTT has been used by the EC and soon will be used by East Asia (i.e. Japan,
Korea, China and Taiwan) for policy analysis
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represent gradual technological substitution processes. Consistent with the theory

of technological di↵usion and replicator dynamics, in the FTT-Transport model,

consumers are more likely to choose a technology that has a higher market share

as a result of social influence and path dependence theory.

1.1.8 The E3ME-FTT-Transport model

During my PhD, a model of technological transition for simulating the evolution of

PLDV for 59 countries has been developed, in collaboration with my supervisor, Dr

Jean-Franois Mercure (see work division in the Appendix B). As a sub-module of the

E3ME-FTT-GENIE1 integrated assessment model, the FTT-Transport model cal-

culates global emissions and is coupled with the climate model GENIE 1 (Holden

et al., 2013, 2018), making it a fully detailed IAM. E3ME is a non-equilibrium

macroeconometric simulation model based on a demand-led Post-Keynesian struc-

ture (Pollitt et al., 2007; Pollitt and Mercure, 2017).

The FTT-Transport model is fully integrated into E3ME with a dynamic feed-

back to global macroeconomic simulation. E3ME calculates global fuel use and

combustion emissions, where fuel use for electricity generation is simulated using

the FTT-Power model (Mercure et al., 2014). The E3ME model (integrated with

the FTT-Transport model and the FTT-Power model) can be used by policymak-

ers as a tool to answer important questions related to climate policy and energy

dependency in the transport sector. For example, the model has been used to cal-

culate the macroeconomic implications of future Stranded Fossil Fuel Assets under

the projected technological trajectory and under climate policies pursuing the 2 �C

target (Pollitt et al., 2018). The model has been used by policymakers to examine

the e↵ect of EV di↵usion on the demand for electricity and its implications for the

climate policies required to achieve the target set by the Paris Agreement.

FTT is a family of models consisting of FTT-Power, FTT-Transport and FTT-

Heat. The FTT model makes use of a dynamic set of coupled logistic equations,

similar to replicative dynamics and Lotka–Volterra equations (Lotka, 1956; Volterra,

1939), which were originally used to study biological systems, and have been com-

monly used in evolutionary economics that are representative of market competi-

tion and technological transition in energy sectors (Safarzyńska and van den Bergh,

2013). The Lotka-Volterra competition equations are known to produce S-shaped

di↵usion curves, consistent with the behaviour of the technological di↵usion curve.

For the purpose of the thesis, the FTT-Transport model is decoupled from the
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E3ME model to analyse the impact of each individual policy incentive on the dif-

fusion of PLDV technologies, for three reasons. First, the E3ME is a top-down

model that covers 59 regions, and it is less accurate in terms of the estimation of

the PLDV demand for individual countries. Second, to use the E3ME-FTT model,

it would have been necessary to update the data to 2016 for all 59 regions, and this

was not possible within the time frame of this thesis. Rather, it would be more

productive to focus on five countries, including the USA, the UK, Japan, China

and India, with more up-to-date data.

The five selected countries are all unique in representing major car markets in

di↵erent global regions. China and the USA are selected because they have the

largest vehicle fleet numbers in the world. With the second largest car fleet in Asia,

Japan also has the largest number of hybrid vehicles in the world (Rutherford, 2014).

With only 20 people out of 1,000 owning a car and the second largest population

worldwide (after China), India enjoys the largest increment in future PLDV stock

(Antich, 2015). More than one million plug-in EVs had been registered in Europe

by June 2018. Within Europe, the UK has the largest number of plug in EVs among

the European countries and the highest market shares of EVs besides Norway and

Sweden (EC, 2018). Arguably, Brazil is one of the largest vehicle markets in the

world, with the largest alternative-fuel fleet in the world (as of 2018). We exclude

Brazil from the current studies because of limited data availability for a Brazilian

flex-fuel PLDV market.

Third, as discussed above, as an integrated assessment model, the E3ME model

covers many other energy sectors, including the power sector and the heating sector.

Although the changes in oil prices in the future may be linked to the demand in

other sectors, such as the power sector, it is impossible to present all the assumptions

behind such a complicated model in this thesis. Lastly, as a large and complex IAM,

the E3ME-FTT model involves work that was done by others, so it is more practical

and clearer for the PhD thesis to use a model created entirely by myself.

1.2 The contribution of the PhD thesis

1.2.1 Research question and contributions

During my PhD, I built a simulation model of technological change for PLDVs

(FTT-Transport model) for 59 regions of the world. The model was built as a

sub-module of a global IAM, the E3ME-FTT-GENIE model. Because policies for
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the PLDVs emissions are national, it is not necessary to apply the global analysis

capacity of the E3ME-FTT-GENIE IAM, even though it is useful for other purposes,

such as assessing the impact of the PLDV sector on global climate change (see recent

publications using the E3ME-FTT-GENIE IAM (Pollitt et al., 2018; Holden et al.,

2018).

For the purpose of policy analysis in this PhD thesis, I will focus on five major

countries, namely, the UK, the US, Japan, China and India. The FTT-Transport

model was built within the Future Technology Transformation (FTT) framework,

which uses a dynamic set of coupled logistic equations similar to those used in

ecology for simulating competing species to simulate the di↵usion of PLDV tech-

nologies (Safarzyńska and van den Bergh, 2013). The demand for PLDV services is

estimated with regressions for each country and coupled with the FTT-Transport

model to calculate the cumulative emissions from the PLDVs (2016-2050).

Financial incentives such as EV subsidies, road tax and fuel tax have been

adopted by all the countries in this study (i.e. the UK, the US, Japan, China

and India). A large amount of research on the incentives for low emissions ve-

hicles relates to financial incentives and taxation (Holtsmark and Skonhoft, 2014;

Sierzchula et al., 2014; Gass et al., 2014), typically employ a consumer choice model

to simulate the e↵ect of the cost factors on the choice of new low emissions vehicles.

Besides financial incentives, fuel economy standards require automakers to design

more e�cient vehicles or to shift sales toward more e�cient models. To boost the

population of zero emissions vehicles, a cap-and-trade EV mandate has been intro-

duced in some states in the US and China, and this has the potential to rapidly scale

EV manufacturing and adoption (Chen et al., 2018; Axsen and Wolinetz, 2018).

Hence, using the FTT-Transport model, I ran several scenario analyses with

five policy instruments, namely, annual registration tax, fuel tax, EV subsidy, EV

mandate programmes and fuel economy regulations for each country, to address

four key research questions:

1) How will each of these policy measures at di↵erent levels impact the di↵usion

of various PLDV technologies and emissions from the PLDVs in the UK, the US,

Japan, China and India?

2) What is the cost for each policy incentive at di↵erent levels of stringency, and

how does the e�ciency of each policy instrument vary as it becomes more stringent?

3) Are there trade-o↵ or reinforcement e↵ects between any two policy instru-

ments related to the di↵usion of PLDVs in each of the five countries?

4) How will the changes in income impact the e↵ectiveness of the individual
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policy instruments for reducing emissions from PLDVs?

1.3 Scenario analysis and summary of the main

results

Using the FTT-Transport model, we have developed a methodology that examines

the e↵ectiveness and e�ciency 1 of five policy incentives and the interactions be-

tween any two policy mixes. In this thesis, policy formulations take five possible

forms: fuel economy standards, road taxes, vehicle subsidies, fuel tax and EV man-

date. In the first part of the analysis, there are four scenarios for policy incentives,

at four di↵erent levels of stringency. For example, in the baseline scenario, we as-

sume that there is no policy incentive in place. In the current scenario, we assume

that tax levels are consistent with the current levels of incentives. In the high fuel

tax scenario, we assume that fuel tax is 50% higher than the current fuel-tax level

in each country, and in the very-high-fuel-tax scenario, we assume that the fuel tax

is 100% higher than the current fuel-tax levels.

Overall, we find that the e↵ectiveness of policy incentives on PLDV emissions

varies between countries, depending on the technology mix in the current passenger

car markets and the current tax levels/structure of each country.

Comparing the tax incentives, we find that fuel economy regulation is among

the most e↵ective policy incentives in reducing emissions in some countries. For the

US, fuel economy regulation is the most e↵ective policy incentive and fuel tax is

the least e↵ective in reducing emissions. This is because there is a large number of

luxury and high-emissions PLDVs in the US. Similarly, we find that fuel-economy

regulation is the most e↵ective policy incentive among the five policy incentives

in reducing CO2 emissions in China, leading to 13% emissions reduction if the

current petrol cars are phased out by 2030 and gradually replaced with petrol cars

that are 35% more e�cient. Di↵erent from the US and the UK, as a result of the

phase-out mechanism, in Japan we find that emissions fall by less than 1%. This

is because Japan is the only country with very low petrol car-fleet shares in the

baseline scenario, due to existing large shares of hybrid cars.

In the case of India, we find that the financial incentives (e.g. EV subsidy,

1E↵ectiveness is defined as the extent to which policies are achieving the policy goal. E�ciency
is defined as the change in the cumulative emissions as a result of the policy incentive divided by
the total cost of the policy incentive (see Chapter 7 for definitions).
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annual registration tax and fuel tax) are less e↵ective in reducing the cumulative

emissions from PLDVs than the regulatory measures (e.g. EV mandates). This is

because the fleet shares for EVs are very low (less than 0.1%) for India. The rates

of technological di↵usion increase with shares for the technologies (see Chapter 3

for explanations). While financial incentives increase the sales for low emissions

vehicles, the rates for EV penetrations increase more rapidly in the presence of the

EV mandates in countries where shares for EVs are very low.

After analysing the policy incentives one at a time, we study the interactions

between all five policy incentives by carrying out scenario analysis and pairing any

two policy incentives in a group (i.e. 10 scenarios). This exercise enables us to

understand the complexity and interactions of the policy mix. Overall, we find that

the sum of e↵ectiveness of two policies individually can be either smaller (trade-

o↵ e↵ect) or larger (reinforcement e↵ect) than two policies implemented at the

same time, depending on the structure and levels of policy incentives. As such, we

conclude from the scenario analysis two main observations. First, there is a trade-

o↵ e↵ect between all the financial incentives under this analysis, as the degree of

the trade-o↵ e↵ect depends on the stringency of individual policy incentives in each

country. Second, there is a reinforcement e↵ect between EV mandates and other

policy incentives.

Considering the income e↵ect (i.e. the e↵ect of income change on PLDV choices),

we find that the income e↵ect influences consumers’ choices di↵erently in each

country, depending on the rate of income increases, the distribution of car engine

sizes in the market and the market shares for low-emissions vehicles. Overall, we

find that the willingness to pay for cars increases with income. After implementing

the income e↵ect in the FTT-Transport model, we find that as income increases,

emissions increase slightly (less than 5%) in the baseline scenario for all countries

(i.e. the income e↵ect has a small impact on the cumulative emissions) except for

China, where an increase in income leads to an increase in the shares for EVs (see

Chapter 8). The income e↵ect can be partially mitigated by some policy incentives,

in particular, the policy incentives taxing/regulating luxury PLDVs.

1.4 Work division

Given the quantity of work needed for the project, Dr J.-F. Mercure and I have col-

laborated on some parts of the model development, including coding for the model in
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MATLAB and developing a platform for the scenario analysis. Appendix B provides

an overview of the collaborative work, with the respective degree of responsibility.

The E3ME model is developed and maintained by Cambridge Econometrics and

the connection between the E3ME model and the FTT-Transport model has been

accomplished by Dr J.-F. Mercure. The project on the income e↵ect and car emis-

sions was carried out as part of a pilot project funded by the ReCoVER programme,

in collaboration with the University of East Anglia (UEA), coordinated by Dr J.-F.

Mercure and Dr Charlie Wilson, and carried out by myself in collaboration with Dr

Pettifor. Details of the work division for this project can be found in Appendix B.



Chapter 2

Literature Review

2.1 Overview of the chapter

The purpose of this review is to show that

1) The modelling of technological di↵usion can be improved in the existing IAMs;

2) Social influence and ‘realistic consumer behaviour’ are absent in most global

IAMs. IAMs typically model aspirational scenarios (optimisation), and have lim-

ited information concerning real consumer behaviour;

3) The income e↵ect is absent in the existing global IAMs;

4) There is a gap in understanding the cumulative carbon emission reduction e↵ects

of individual vehicle tax policies over the medium and long term, with comparisons

between di↵erent countries.

5) While interaction is a central feature of the existing policy mix, few studies have

explicitly analysed the interactions between vehicle policy incentives.

In light of the Paris Agreement, policy makers need to know the impact of

policy options and their e↵ectiveness in significantly reducing emissions in individual

countries. The existing IAMs tend to focus on emissions trading and carbon price

instruments, while in the Emissions Trading System (ETS), the PLDV sector is

never included. In reality, the PLDV sector is normally covered with a number of

policy instruments other than carbon pricing, including fuel economy regulations,

car purchase tax and car registration tax. Specifically, the policy incentives for the

PLDV sector are often introduced at the national or local level, influenced by the

political environment and the existing car market in each of the individual countries

and regions. The goal of this chapter is to identify gaps in the existing literature
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and to find the position of this thesis among existing studies.

2.2 Review of integrated assessment models

IAM is defined as any model that combines the scientific and socio-economic aspects

of climate change, primarily for the purpose of assessing policy options (Kelly and

Kolstad, 1999). IAMs describe many of the complex relations between environmen-

tal, social and economic systems that determine the e↵ectiveness of climate policy.

They are important tools to compare the costs and benefits of di↵erent emissions

scenarios (see Hof et al. 2012; Nordhaus 2010; Weyant et al. 1996).

Further, IAMs vary widely according to the policy options available to the mod-

eller, the complexity of the economic and climate sectors and the treatment of

uncertainty. Examples of IAM approaches are DICE (Nordhaus, 1992), WIAGEM

(Kemfert, 2002), FUND (Tol, 1999) and IMAGE (Bouwman and Kram, 2006).

Overviews of the development of IAMs can be found in Dowlatabadi (1995); van

Vuuren et al. (2011).

A variety of modelling techniques have been utilised in energy and emission

projections in various sectors. They di↵er in terms of data requirements, technol-

ogy specifications and computing demands. Following several existing studies (see

e.g. Nakata et al. 2011; Grubb et al. 2002; Herbst et al. 2012; Löschel 2002), we di-

vide energy system models into five main categories, including system optimisation,

macroeconomic models, system dynamics models and agent based models according

to their underlying methodologies. This is summarised in Table 2.1.

2.2.1 System optimisation

Energy-oriented models are designed to consider the energy sector and emissions

from energy production and consumption in detail (Grubb et al., 2002). One of the

most commonly used approaches in modelling in the energy sector is optimisation.

The most well-known examples that utilise the optimisation approach include

MARKAL and MESSAGE. Both have been employed extensively to model trans-

port energy systems (McCollum et al., 2013; Gül et al., 2009; Yeh and McCollum,

2011). MARKAL is a linear programming optimisation model developed by the En-

ergy Technology Systems Analysis (ETSAP) of the IEA (ETSAP, 2015). Related

to MARKAL, the TIMES Model (The Integrated MARKAL-EFOM System) is a

bottom-up technology and rich optimisation model generator (Loulou et al., 2005).
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MESSAGE is a dynamic linear programming model that calculates cost minimal

supply and demand structures over a given time horizon (Messner, 1995). It pro-

vides core inputs for major international assessment and scenario studies, such as

the Intergovernmental Panel on Climate Change (IPCC), the World Energy Council

(WEC) and the Global Energy Assessment (GEA).

Other examples of energy sector models that operate in an optimisation frame-

work include LEAP (Heaps, 2012), REDGEM70 (Takeshita and Yamaji, 2008),

MERGE (Kypreos, 2005), REMIND (Leimbach et al., 2010), BEAP (Grahn et al.,

2007), GET (Grahn et al., 2007) and PRIMES (Capros et al., 2009).

The strength of optimisation frameworks and general equilibrium lies in their

ability to inform the modellers of feasible and desirable scenarios from a system

cost perspective. However, the optimisation frameworks seek to identify desirable

configurations of the energy system (e.g. how many wind turbines, how many coal

plants, how many power lines, which kinds of cars, according to constraints) rather

than seeking to describe actual system behaviour with a high degree of realism as

impacts of specific policies.

2.2.2 Macroeconomic models

Macroeconomic models are models that use a macro-economic methodology to focus

on the entire economy of a society, considering the energy sector as one part of the

economy. Macroeconomic models are usually top-down models that have higher

sectoral aggregation and better characterisation of impacts of economic growth

(Hourcade, 1993). Although they reflect greater details regarding macroeconomic

feedbacks, they have been criticised by Edenhofer et al. (2006) for not providing a

detailed description of future technology.

Many macroeconomic models take a general equilibrium approach (CGE), in-

cluding GEM-E3 (General Equilibrium Model for Energy-Economy-Environment

interactions, Capros et al. 1997), CIMS (Canadian Integrated Modelling System,

Navius 2010), GREEN (General Equilibrium Environmental Model, Burniaux et al.

1992), NEMS (National Energy Modelling System, NEMS 2018).

Traditional macroeconomic models used to assume the existence of an autonomous

energy e�ciency improvement (AEEI), and therefore, technological change was ex-

ogenous to the model (Grubb et al., 2002). However, the exogenous technical-growth

assumption with AEEI has been criticised for neglecting the interactions between

policy options and technological change (see Weyant and Olavson 1999; Köhler
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et al. 2006; Gillingham et al. 2008). Representations of ETC were explored exten-

sively in the ‘Innovation Modelling Comparison Project’ (Edenhofer et al., 2006).

The authors found that the absence of Endogenous Technical Change (ETC) can

significantly bias policy assessments. ETC can be represented by a learning-by-

doing curve that generates cost reduction stemming from an increasing return. The

concept of learning goes back to the aircraft industry in the 1920s, when it was

observed that the number of hours needed to manufacture decreased at a uniform

rate as the production quantity increased (Yelle, 1979; Alchian, 1963). This shows

that the cost of a product falls by a certain percentage every time the total quantity

manufactured doubles. Empirical findings suggest that as more units of a technol-

ogy are produced, the cost for the technology falls, which triggers further sales and

increasing returns to scale.

In the past, the experience-curve concept attracted much attention by deter-

mining the future potential of new car energy technologies, and it has become a

well-known tool in energy-system modelling (Messner, 1997). In particular, many

energy-system models have incorporated features of endogenous technical learn-

ing. For example, compared to models where technological change is exogenously

determined, a model incorporating endogenous technical learning should generate

higher overall technological change if the sectors that expand as a result of a policy

intervention enjoy more spillovers or faster increasing returns (as a result of cost re-

ductions) (Köhler et al., 2006). Considering that cost is dynamically linked with the

quantity of production, the incorporation of learning curves into modelling creates

complexity and a stronger path dependence within the system.

In response to criticisms of modelling technological change, WITCH (World

Induced TechnicalChangeHybrid) accounts for technological change endogenously

with a detailed energy input component (bottom-up) and a neoclassical optimal

growth structure (top-down) (Bosetti et al., 2006). Several modelling teams have

explored the development of hybrid models that draw on both the technological

details of a bottom-up model and the macroeconomic top-down models. Hybrid

models bridge the gap between conventional top-down and bottom-up modelling

approaches (Hourcade et al., 2006). Examples of hybrid models include MESSAGE-

MACRO and MARKAL-MACRO, MERGE (Kypreos and Bahn, 2003; Kypreos,

2005) and REMIND-D (Leimbach et al., 2010). Instead of using an optimisation

approach, E3ME is a non-equilibrium macro-econometric simulation model based

on demand-led post-Keynesian structure. In the post-Keynesian world, models are

simulations, and productivity change takes place endogenously through knowledge
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accumulation, with investment endogenous to the economic context (Mercure et al.,

2016).

2.2.3 Simulation models

Simulation models suggest that economic trajectories are in constant transforma-

tion shaped by institutions, history and political choices, without a ‘preferred equi-

librium state’ (Mercure et al., 2016). Well known examples of simulation models

include POLES (Criqui et al., 1999) and TREMOVE for the transport sector in

the EU (Van Herbruggen and Logghe, 2005). This section discusses two major

approaches in simulation modelling: system dynamics and agent-based modelling.

Systems dynamics approach

System dynamics (SD) is ‘the study of information-feedback characteristics of in-

dustrial activity to show how organisational structure, amplification and time delays

interact to influence the success of an enterprise’ (Forrester, 1961).

SD combines technology and market-behaviour frameworks into one holistic

framework to represent the causal structure of the system (Martinsen and Krey,

2008), and it is used to analyse the wider impacts of each policy being tested (Fer-

nandez, 2013). While SD o↵ers clear benefits to modelling energy systems charac-

terised by a large number of interactions between several variables (Armenia et al.,

2010), it is not widely applied to energy-system models. With few exceptions, IM-

AGE/TIMER (The Targets IMage Enervy Regional, De Vries et al. 2002) analyses

the long-term dynamics of the energy system. With a focus on transport, both AS-

TRA (ASsessment of TRAnsport Strategies, Fiorello et al. 2010) and GLADYSTE

(Global Scale System Dynamic Simulation Model for Transport Fermi and Territorio

2010) are system-dynamic models on a European scale for the strategic assessment

of policy scenarios. Pasaoglu et al. (2016) analysed future technological transitions

for passenger transport in Europe with a system-dynamic simulation model.

Also involving systematic feedback, amplification and time delays, the FTT:

Transport is a simulation model, and the technology transition pathways are sup-

ported by evolutionary theory. While system-dynamics models, such as ASTRA,

take into account path dependence and technology variation, they do not take into

account the heterogeneity in the reservation price for cars and for sociodemographic

heterogeneity within the population.
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Agent-based approach

Social science often involves heterogeneous human agents with diverse choices.

Agent based modelling (ABM) is a computerised simulation of a number of in-

teracting decision-makers. Each assesses his/her situation and makes decisions on

the basis of a set of rules (Bonabeau, 2002). Since an agent-based model treats the

heterogeneity of actors well, there are a number of agent-based models for the trans-

port sector. Transportation And Production Agent-based Simulator (TAPAS) is

a micro-level model for the assessment of di↵erent types of transport-related poli-

cies (Holmgren et al., 2012). Eppstein et al. (2011) developed an ABM of vehicle

consumers that incorporates spatial and social e↵ects. Further, Köhler et al. (2009)

studied the penetration of fuel cell cars in the UK with the ABM.

While ABMs have advantages in terms of modelling consumer decisions and

agent diversity, ABMs typically apply only to one particular study area, or to only

a few cities. However, like system dynamics models, the agent-based models have

not yet been integrated into IAM scale analysis, or into global macro models due

to computation and scalability challenges.

2.2.4 Gap in existing energy models

Global-scale energy policy modelling approaches mostly use representative con-

sumers with a cost optimisation framework (McCollum et al., 2013; Takeshita and

Yamaji, 2008). In the standard equilibrium and optimisation-based models, agents

are assumed to be fully rational and the aggregate behaviour is expressed in terms

of individual (i.e. non-interacting) utility-maximising representative agents. How-

ever, in the vehicle market, it has been shown empirically that choices are made

through visual influence within social groups or geographical areas (McShane et al.,

2012; Dahl et al., 2001). Social influence happens when agents interact with each

other. Thus, the stock of knowledge for each individual becomes heterogeneous.

System dynamic models and agent based models improved on the traditional

optimisation models and GEM in terms of the role of agents and their interactions

with each other. These models o↵er the possibility of modelling individual het-

erogeneity and allow the gradual adoption of a new technology. However, studies

using the system dynamic models and the agent based models have either focused

on the transitions of one particular technology or on one region. The reason for this

is that agent based models can be extremely computationally intensive and time

consuming depending on the size and purpose of the models. Due to the complexity
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of human behaviour and limitation of data, the models have rarely been built for

energy technology transitions at a global scale or integrated into IAM.

Compared to SD models and ABM models, using the di↵erential equations ap-

proach is less computationally intensive. Existing studies have argued that tech-

nological transitions are closely related to the evolutionary process of species and

replicator dynamics. However, currently, no global energy-systems model has used

the evolutionary approach (or equivalently, replicator dynamics) to model techno-

logical transitions in the energy sector on a global scale. Replicator dynamics (taken

by the FTT-Transport model) have the advantage of considering complexity in the

process of sociotechnical transitions.

2.3 Applying evolutionary theory to study tech-

nology transitions

2.3.1 Theory of technological change

Historically, economic models have incorporated technological change as an impor-

tant driver for growth (Aghion and Howitt, 1998; Mankiw et al., 1990; Samuelson

and Solow, 1956). In neoclassical economics, technology is conceptualised by means

of the production function (Birky, 2008). Neoclassical theory assumes that all tech-

nological options and alternatives are known perfectly and are perfectly accessible,

through the optimisation behaviour of firms. Under this framework, technological

change is a shift in the production function, as a result of exogenously determined

innovation. The problem of neoclassical economics remains that it has little to say

about the process of technological di↵usion.

The concepts of technology di↵usion provide insights into the key dynamics

involved in transitions (Rogers, 2010). Technology di↵usion is a process by which an

innovation is communicated through certain channels over time among members of

a social system (Rogers, 2010). According to Rogers, the four categories of adopters

are early adopters, early majority, late majority and laggards. When considering

successive groups of consumers adopting new technologies, the technology di↵usion

is described by the S-shaped logistic (sigmoid) curves.

S-curves illustrate the fact that technology di↵usion is gradual, with a slow initial

growth rate, followed by accelerated growth as new markets are reached, followed by

slower growth again (Barreto and Kemp, 2008). One of the earliest classic studies
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was conducted by Griliches, who found that the penetration of corn seeds followed

S-shape logistic curves (Griliches, 1957). Fisher and Pry then proposed the ‘tech-

nological substitution model’, which describes the penetration of new technologies

replacing old ones in S-shaped curves (Fisher and Pry, 1972).

Analysis of the historical replacement of old by new technologies has shown that

most of the innovation processes can be described by simple rules that are captured

in the logistic substitution model (Marchetti, 1979). Marchetti et al. (1980) ex-

panded the Fisher-Pry model into a model involving more than two technologies,

with Nakicenovic (1986) specifically focusing on transport. Empirical analysis found

that di↵usion and substitution of transport technologies historically follows the S-

shaped logistic curves (see e.g. Wilson et al. 2012; Grubler 1990; Bass 1969).

Critically, the traditional Integrated Assessment Models are based on the op-

timisation approach. While the diversity of the car market is known to strongly

influence the rate of adoption of innovation (Rogers, 2010), the standard optimisa-

tion models assume that a representative agent who will lead to the instantaneous

adoption of attractive innovations; yet, this is not consistent with the ‘S-shaped’

technology di↵usion. Models built for the purpose of informing climate policies need

to realistically estimate the impact of the policies by providing a representation of

technological di↵usion in the IAM. Therefore, it is necessary to build a model that

takes into account the diversity and heterogeneity of the car market, linking to a

global Integrated Assessment Model (IAM).

2.3.2 Technological transition in the PLDV sector

The socio-technical system describes systems that involve complex interactions be-

tween humans, machines and the environment (Baxter and Sommerville, 2011). A

transition of socio-technical regime (STT) is a set of processes that lead to a fun-

damental shift in the social-technical system (Kemp, 1994; Geels and Schot, 2007).

STT involves technological changes, user practices, regulations, and industrial net-

works, with a range of actors and over a period of time (Geels, 2005c).

The modern automobile industry is deeply embedded in legal, social, cultural

and economic practices. These lock-in mechanisms imply that sociotechnical regimes

are extremely rigid in the automobile market. There are substantial sunk invest-

ments in plants for internal-combustion (IC) engines, skills and fuel infrastructure.

Personal mobility practices have also become dominated by petrol-based cars, in

turn shaping urban infrastructure. The majority of cars on the street have IC en-
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gines and there are strong path dependencies on automobile consumption (Geels

et al., 2011). Thus, consumers do not only optimise cost when they choose a car;

they also take into account the social trends, the availability of infrastructure and

the models available in the market that match their preferences when they purchase

a car (Tanaka et al., 2014).

2.3.3 Evolution theory and technological transitions

Evolutionary theory treats the technology di↵usion process as continuous, while

changes are path dependent. ‘Evolutionary economics’ was first proposed by Ve-

blen (1919), who upheld that economics should embody the insights of evolution-

ary economics. Discussing the foundation of economic theory, Schumpeter argues

that economic explanations are not legitimate without the consideration of history

(Schumpeter, 1927, 1942a). This reasoning was dominated in the change of busi-

ness cycles, or by an ‘industrial mutation’ that revolutionised economic structure.

He further argues that capitalism is a result of ‘creative destruction’ (Schumpeter,

1934). One of the first applications in the economics of an evolutionary process

has been found in ‘An Evolutionary Theory of Economic Change’ by Winter and

Nelson (1982), which is a pioneering work on the change of economic knowledge as

it applies to technology and production.

The evolution paradigm of technological change has its root in Schumpeter’s

theory, which analyses innovation as a historical process and technological sub-

stitution as a process of ‘creative destruction’ of prior technologies (Schumpeter,

1942b; Levinthal, 1998). To use an analogy with biology, when an invasive species

proves to be better fitted to the environmental conditions, this species may domi-

nate at the expense of others. Similarly, the growth of any technology depends on

its fitness. The intrinsic growth rate is an exponential process, while competition

is dependent on the population size of the competing technologies (Saviotti and

Mani, 1995). In the context of the vehicle market, through trends and fashion, the

di↵usion of a product reinforces its own ability to di↵use and interact with other

technologies (Mercure, 2017). As we discuss in Chapter 3, this can be shown to

be satisfactorily described by the replicator dynamics or Lotka-Volterra systems of

equations.

Several studies have shown that the Lotka-Volterra competition (LVC) equa-

tions, a set of logistic di↵erential equations, can be applied to model technological

transition (Saviotti and Mani, 1995; Grubler, 1990; Marchetti et al., 1980; Bhar-
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gava, 1989; Morris and Pratt, 2003) and organisation change (Lee et al., 2009).

The LVC equations model the competition between various technologies, propor-

tional to market share, and produce logistic substitution curves. Similar to the

evolution of ecosystems, technologies compete in the marketplace, and the growth

rate increases as the share of the technology rises, resulting in an S-shaped curve

of technological di↵usion. This can be derived using the LVC equations. Thus,

technology di↵uses gradually into the market, with the rate proportional to the

market shares for the technology. In the PLDV sector, it has been found empir-

ically that di↵usion and substitution of PLDV technologies historically follow the

S-shaped logistic curves (Grubler, 1990; Wilson, 2012; Marchetti et al., 1980). Lo-

gistic growth describes an initial period of di↵usion as a technology is introduced

into the system, moving then through a rapid exponential growth before reaching a

saturation level (Grübler, 2003). Based on a realistic representation of the technol-

ogy di↵usion model, when a policy incentive is imposed, the e↵ectiveness of policy

incentives depends not only on the cost, but also on the dynamic competition be-

tween technologies and the rate of technological di↵usion endogenously, which is

not often absent in the existing IAMs.

2.4 Social influence and consumer choices

Social influences and consumer choices are consistently found to be important in em-

pirical work. Within the PLDV sector, behaviour adaptation, network interactions

and diversity of consumer preferences are central to the understanding of technol-

ogy adoption (Mueller and de Haan, 2009a; McShane et al., 2012). As such, the

rate of technological update is influenced by the diversity of the agent’s perceptions

of car purchases. Di↵erences between consumer choices drive competition between

product varieties, leading to a selection process that determines the rate of techno-

logical change (Basalla, 1988). Based on Rogers (2010), diversity is responsible for

the gradual adoption of innovations and technology di↵usion.

Within the PLDV sector, consumer choices for certain vehicle technologies take

place within contexts of distributed income that span several orders of magnitude

(Mercure and Lam, 2015). The fact that consumers are diverse implies that car

technologies will not di↵use into the market instantly in the presence of a change

in price or policy reform. Instead, car technologies di↵use gradually according to

consumers’ choices and the heterogeneity within the population.



Literature Review 34

Behavioural aspects and heterogeneity significantly impact the e↵ectiveness of

market-based policies (Knobloch and Mercure, 2016). However, general equilibrium

and partial equilibrium (optimisation) models may not su�ciently account for the

purpose of modelling the e↵ectiveness of specific policy instruments (Mercure et al.,

2016). People and firms are usually represented by an agent with rational expec-

tations and there may be various inherent limits to informing policy making if the

model does not take into account agent heterogeneity.

Existing studies have shown the important influence of behavioural assumptions

on policy-relevant outcomes in the di↵usion of low-emissions vehicles (Mau et al.,

2008; Li, 2017). This is because individual decisions are strongly a↵ected by social

norms and customs when choosing a car (McShane et al., 2012). Instead of instan-

taneous change in shares when an incentive is imposed, technology di↵usion will be

shaped by incentives leading to a new technological trajectory.

Capturing ‘behavioural realism’ in consumer preferences for passenger cars in

global IAM may increase its usefulness to policy makers. Thus, modellers have

attempted to incorporate some ‘behavioural realism’ into the existing global IAMs.

For instance, Wilson et al. (2015) and Grubler et al. (2018) represent heterogeneous

consumer groups for vehicle choices with varying preferences for vehicle range and

variety in the MESSAGE model.

The socio-MARKAL model integrates technological, economic and behavioural

contributions to the environment in a few cities (e.g Nyon) (Nguene et al., 2011).

Similarly, Daly et al. (2014) incorporate travel behaviour into the TIMES model by

accounting for individual travel budget constraints for Canada and Ireland. Ramea

et al. (2018) incorporate behavioural content from MA3T (Market Acceptance of

Advanced Automotive Technologies) into the TIMES model. The MA3T simulates

vehicle market behaviour over time, where the core behavioural model is a nested

multinomial logit discrete choice model that yields market shares of competing

technologies for a large number of consumer segments.

While the above research does improve the ‘behavioural realism’ of the global

IAMs, it is possible to improve further on the representation of consumer behaviour

with the FTT-Transport model. Firstly, the FTT-Transport model is an attempt

to model consumer preferences changes over time as a result of changes in trends

and social influence. Secondly, in the FTT-Transport model, consumer diversity

is captured by including di↵erent variants of vehicle type (e.g. economy, mid-

sized, luxury), fuels (e.g. gasoline, diesel), and consumer preferences based on

PLDV price distributions. Essentially, the model resembles the Rogers dynamics of
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technology di↵usion by considering consumer diversity. Thirdly, with an improved

representation of consumer behaviour, the model allows a higher number of policy

levers in the model for the analysis of detailed policy incentives.

2.5 Income e↵ect on the choices of passenger cars

Several studies have examined the relationships between vehicle ownership and

growth in GDP per capita. For instance, Wu et al. (2014) forecast vehicle own-

ership in China through 2050 against a background of increasing energy use and

CO2 emissions, based on a Gompertz function of per capita GDP. Gately and Dar-

gay (1999) make projections of the growth in cars and total vehicle stocks to the year

2015, considering the historical patterns in the growth of car and vehicle ownership

relative to growth in per capita income.

The income e↵ect is the change in vehicle preferences and consumption habits

caused by a change in consumer income. Since income is almost always unevenly

distributed, it is one of the most important sources of consumer heterogeneity in

many markets. The relationship between income and consumption has been known

and discussed in many studies (Hogg and Michell, 1996; Dittmar, 1992; Lunt and

Livingstone, 1992; Fine and Leopold, 1993; Piacentini and Mailer, 2004). Douglas

and Isherwood (1978) argue that consumers use consumption to give themselves

a sense of belonging as well as an a�nity with others similar to them. According

to Belk (1988), who referred to as the extended self, our possessions are a major

contributor to and reflection of our identities. Therefore, it is likely that cars reflect

the identity and income of their owners, as demonstrated by McShane et al. (2012).

A large body of marketing research has been carried out on the extent to which

identity can be expressed by the consumption of luxury products (Dubois and

Duquesne, 1993; Vickers and Renand, 2003; Han et al., 2010). Froud et al. (2005)

show how income and space variability are connected with fuel consumption. Sow-

den and Grimmer (2009) find that individuals engage in the process of social iden-

tification based on car ownership to locate themselves in society. They also suggest

that individuals who use cars to enact their social identity will purchase cars with

symbolic meaning. Hogg and Michell (1996) suggest that image-laden messages

communicated by car brands are important. Symbols are used to communicate

social identity and establish membership in social groups. In economics and con-

sumer choice theory, a rise in income will induce people to change car models. As
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car buyers seek to display their social identity, and thus social-group characteristics,

the price that one is able to pay for a car may be an indicator of one’s income and

social identity (Douglas, 1978).

Empirical studies have found that consumers’ willingness to buy particular types

of cars is determined by their incomes, gender and other social demographic char-

acteristics. For instance, Hidrue et al. (2011) find that both high income and being

a multi-car household both reduced the likelihood of purchasing EV in Califor-

nia. Furthermore, Liu et al. (2014) find that the higher the income, the higher

the gasoline prices, while living in an urban area increases a consumer’s preference

for hybrid cars in the US. Potoglou and Kanaroglou (2007) find that interactions

between vehicle prices and household income reveal how certain income groups per-

ceive vehicle prices in California. Some studies have witnessed an upward spiral

in consumer preferences in purchasing more powerful cars, o↵setting fuel e�ciency

gains from technological advances. For example, Mercure and Lam (2015) find that

vehicle prices are related to engine size and power, but in a manner that depends

on specific countries, suggesting that income enables one to fulfil a preference for

vehicle power.

Shifts in consumer choice from small PLDVs to bigger PLDVs obstruct the

improvement of fuel e�ciency (Kok, 2015; Kwon, 2006; Cuenot, 2009). Purchasing

trends toward larger size cars can considerably o↵set the improvements in technical

e�ciency of individual car models (Ó Gallachóir et al., 2009). Therefore, it becomes

necessary to introduce stricter fiscal policies (such as a carbon price) that either

encourage the shifts to less powerful cars or lower emission (more e�cient) cars.

Studies suggest that the design of the incentives is an important determinant of

behavioural responses toward the e↵ectiveness of tax incentives (Gneezy et al.,

2011; Brand et al., 2013; Mueller and de Haan, 2009b). Appropriate policy design

is crucial in mitigating the shifts of consumer car preferences in the presence of the

income e↵ect. However, no existing studies have applied the income e↵ect on car

demands to the models of technological transitions or global IAMs.

2.6 PLDV market research and global IAM

The heterogeneity of the car market is known to both researchers and car manu-

facturers (Mercure and Lam, 2015), and market research methods start from the

premise that there is little point in addressing the average consumer (Anable, 2005).
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The heterogeneity of the car market implies that consumers will react di↵erently to

policy incentives depending on social well-being (e.g. income) and preferences (e.g.

brand, engine size, technology). Further, there is a large body of market research

on consumer car preferences (Brand et al., 2017; Shende, 2014; Biswas et al., 2014;

Raj et al., 2013). Some researchers have looked at the impact of policy incentives

on the penetration of vehicles based on marketing segmentation and preferences

(Brand et al., 2017; Reynaert, 2014; Rogan et al., 2011), mostly for one country.

These studies find that brand e↵ects and di↵erences in consumer preferences lead

to car market segmentation in five di↵erent countries.

Existing studies show that capital costs and operating costs only represent part

of a great variety of determinants that drive consumer energy-related decisions.

Thus, the vehicle markets are socially constructed (Bijker et al., 2012) and markets

are socially embedded (Rip and Kemp, 1998). For example, vehicle attributes, such

as maximum speed, power, image, engine noises and household characteristics, are

important determinants of car type choices. Through car market surveys, many

studies have looked at the car features that are important for consumer choices

(Hoen and Koetse, 2014; Train and Winston, 2007; Tanaka et al., 2014; Liao et al.,

2017; Wang and Zhang, 2016; Sierzchula et al., 2014) and their willingness to pay

for specific car characteristics (also called intangible costs, Hackbarth and Madlener

(2016); Shin et al. (2015); Liu (2014); Hackbarth and Madlener (2013)). For exam-

ple, using choice experiments, Hoen and Koetse (2014) explore the car attributes

that a↵ect willingness to pay for cars in the Netherlands. Further, Train and Win-

ston (2007) examine the influence of vehicle attributes, brand loyalty and product

line characteristics on consumer vehicle choice in the US.

Although it appears important to link car market research for individual coun-

tries to a global IAM for informing policies, market research has not played a

major role in these global IAMs. Since these behavioural parameters are di�cult

to quantify, few attempts have been made to include intangible costs, such as those

included in energy system models. With few exceptions, SOCIO-MARKAL mod-

elled behaviour through sociological surveys is used to capture the perception of

the population regarding energy consumption (Nguene et al., 2011). Similarly, the

CIMS model user can specify an intangible cost factor to characterise estimated

real-world consumer preferences (Jaccard et al., 2003). These models generally fo-

cus their study on a particular city or country, since intangibles are usually obtained

from surveys, and it is not realistic to perform the surveys across many countries

for a global IAM.
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2.7 The role of policy incentives in reducing emis-

sions from the PLDV sector

Energy models are useful for policy makers to assess the impact of policy incentives

on the emissions from the PLDV sector over the long term. In order for the global

IAM to be useful for policy assessment, it is crucial to feature a good part of the

full diversity of policy instruments used in climate policy to realistically represent

the real world climate policy. While in reality, in the PLDV sector, climate policies

feature a wide range of di↵erent types of incentives, most IAMs feature a few, or

sometimes a single, policy lever for decarbonisation, as well as a carbon price that

is applied to all sectors targeted by the climate policy (McCollum et al., 2016). As

argued by Grubb (2014), it is likely that carbon price alone will not be su�cient

to achieve the climate target. At a national level, a number of models have been

applied to analyse the e↵ectiveness of policy incentives other than carbon pricing

on emissions reduction in individual countries.

Table 2.2 summarises the studies that analyse the mid to long term impacts of

individual policy instruments on the CO2 emissions from the PLDV sector using

energy models. Note that all of the studies have focused on the analysis of the

policy instruments in one developed country. Most studies have only examined the

impact of various taxes (e.g. carbon tax, fuel tax, vehicle acquisition tax) on long

term CO2 emissions. For instance, Kloess and Müller (2011) investigate the e↵ect

of various tax incentives and technological progress on the Austrian passenger car

fleet. Using the UK Transport model, Brand et al. (2013) assess the long term

scenario of several low carbon fiscal policies, such as vehicle purchase tax, road tax

and scrappage program, as well as their e↵ects on CO2 emissions from the PLDVs.

Since the zero-emissions vehicle (ZEV) mandates have existed only in the US

and some regions in Canada, Sykes and Axsen (2017) examine the impact of the

ZEV mandate on the long term sales in North America using CIMS-ZEV. Karplus

et al. (2013) study the cost and e↵ectiveness of fuel economy standards, alone and

in conjunction with economy-wide policies that constrain GHG emissions. Morrow

et al. (2010) analyse fuel taxes, continued increases in fuel economy standards, and

purchased tax credits for new vehicle purchases, as well as the impact of combining

these policies for reducing GHG emissions and oil consumption in the US trans-

portation sector. Outside North America, all studies have only analysed the impact

of various financial incentives in developed countries.
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While several studies have used logit models to represent consumer choices,

almost all have taken the prices of the representative car models instead of con-

sidering the distribution of car prices to reflects the diversity of consumers and

the willingness of consumers to pay car prices. In the FTT-Transport model, we

capture consumer preferences by segmenting consumers into groups based on car

engine sizes and prices paid by consumers. This approach improves the behavioural

realism of models, which substantially a↵ects the analysis of climate change policies

(Mattauch et al., 2016).

Indeed, while it is beneficial to understand why some policies have been e↵ec-

tive only in certain countries, very few studies have compared policy e↵ectiveness

between countries using simulation models. He and Bandivadekar (2011) evaluate

fiscal policies for passenger cars that potentially influence vehicle CO2 emissions

in eight di↵erent countries, including the UK, the US, France, Germany, Brazil,

India and Japan. He and Bandivadekar (2011) analyse the existing fiscal policies

statistically without applying the data to a simulation model. As such, it is not

their goal to analyse the long term e↵ectiveness of these fiscal policies on CO2 mit-

igation. Both Michielsen et al. (2015) and Tietge et al. (2016) study the impact of

fiscal policies related to EV within Europe. Mercure and Lam (2015) examine the

e↵ectiveness of policy incentives across six global regions, including the USA, the

UK, Japan, China, India and Brazil. However, existing studies have not applied

the data to a dynamic model in order to examine the e↵ectiveness of the policies

over a long period of time.

Thus, we identify three main gaps in the existing studies for the analysis of

policy instruments on long term CO2 emissions. Firstly, there is a gap in under-

standing the carbon emission reduction e↵ects of individual policy incentives in

many of the developing countries, although many policy incentives have already

been implemented. Secondly, while many studies have analysed the e↵ectiveness

of various tax instruments, very few studies have compared the e↵ectiveness of tax

instruments against regulations or ZEV mandates. Although it is acknowledged

that the ZEV mandates exist only in North America and China, it is useful to carry

out scenario analysis and assess the potential impact of ZEV on di↵erent countries

if this were introduced. Thirdly, existing models have not captured the variants

of both vehicle size and fuel types for PLDVs, which is essential in representing

consumer segments and pace of di↵usion. Fourthly, existing studies, as we have

illustrated, have focused on studying policies for only one country or region. While

this approach is useful in understanding the impact of policy incentives for one



Literature Review 40

country, results cannot be compared across di↵erent countries to provide answers

as to why and under what conditions (e.g. in what countries) would the policies be

e↵ective and cost e�cient.

To fill the gaps in the existing literature, this study explores the e↵ectiveness of

five policy measures, including the annual registration tax, fuel tax, EV subsidy, fuel

economy regulations and the EV mandate on the long term emissions from passenger

vehicles for five di↵erent countries, including the UK, the US, Japan, China and

India. As we have emphasised, this study models technological change using the

FTT-Transport model, which is a dynamic simulation model that captures three fuel

types (Econ, Mid, Lux) for eight PLDV technologies (petrol, advanced petrol, diesel,

advanced diesel, CNG, flex-fuel, hybrid, EV), with the rate of technology di↵usion

determined by market price competition and technology competition. The model

allows interactions between policy intervention, consumer choices and technological

di↵usion, crucial in analysing policies that facilitate the technological transitions

for passenger cars (Mercure and Lam, 2015).

2.7.1 The interactions between policy incentives in mitigat-

ing emissions from the PLDV sector

As we have discussed above, many studies on policy instrument analysis tend to

focus on studying the impact of one instrument in a particular country (Giblin and

McNabola, 2009; Mabit, 2014; McCollum et al., 2018). Even when studies consider

the impact of several policy instruments, they tend to focus on the collective impact

of the policy instruments on CO2 emissions (Shafiei et al., 2018; Morrow et al.,

2010), but ignore the interactions among the policy instruments on the emissions

of PLDVs. While it is important to examine the overall impact of a group of

policy incentives, the interactions among the policy instruments are a central feature

of any policy mix because of their influence on the e↵ectiveness and e�ciency of

instruments in the mix (Ŕıo, 2009; Mir-Artigues and Del Rı́o, 2014; Rogge and

Reichardt, 2015).

When various policy incentives are combined, they can be mutually reinforcing

or working against one another, depending on how they are designed and imple-

mented (IEA, 2011a). In other words, there are synergies and interferences between

instruments that are actually implemented, and it is useful to understand the e↵ect

of policy interactions between them. Several studies have discussed the possible

impact of policy synergies and policy mixes on the e↵ectiveness and the e�ciencies
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of the policies on emissions reductions in the energy sector (Rogge and Reichardt,

2015; IEA, 2011a). As such, few studies go beyond qualitative statements. An

exception is Viguié and Hallegatte (2012), which provides a multicriteria analysis

on the trade-o↵s and synergies of various urban climate policies, such as zoning and

public transport subsidies. Fischer and Fox (2009) carry out scenario analysis on

carbon tax and the rebate on mitigating carbon leakage. However, none of these

studies examine the interactions between policy incentives within the PLDV sector.

Hence, the interactions among multiple policy instruments are often not well under-

stood, which can lead to policies undermining each other, reducing the e↵ectiveness

and e�ciency of the policy package (IEA, 2011a).

This present study fills the gap in the existing literature by carrying out scenario

analysis on the e↵ectiveness of policy combinations in comparison to the e↵ective-

ness of policy incentives when they are introduced individually. If the e↵ectiveness

of the policy combinations is lower than the sum of the e↵ectiveness of the policies

introduced individually, then there is a trade-o↵ e↵ect between policy incentives,

because adding one policy incentive essentially undermines the e↵ectiveness of an-

other policy. Otherwise, if the e↵ectiveness of combined policies is greater than

their sum, a synergy e↵ect takes place and there is a reinforcement e↵ect between

policy incentives occurs.
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Table 2.1: Examples of major energy models

Model name Type Methodology/tools
MARKAL, TIMES, GET,
MESSAGE, REDGEM70,
BEAP, REMIND, LEAP

Energy sector model Linear optimization

PRIMES Energy sector model Non-linear optimisation

TREMOVE, WEM Simulation model Simulation and optimisation

IMAGE/TIMER, ASTRA,
CIMS, GLADSTE

Simulation model System dynamic and non-
optimisation

POLES Simulation model Simulation and partial equi-
librium

TAPAS Simulation model Agent-based model

MESSAGE-MACRO,
MARKAL-MACRO,
RICE, DICE, GEM-E3

Macroeconomic model Optimization framework

E3MG Macroeconomic model Non-optimizing dynamic
simulation approach

CIMS, GREEN, NEMS,
GEM-E3, WITCH

Macroeconomic model Equilibrium structure
(CGE), TIAM

MERGE, FUND, CETA,
WIAGEM

Integrated assessment
model

Optimization hybrid models
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Table 2.2: Studies for the impacts of individual policy instruments on the CO2

emission reductions from the PLDV sector using energy models.

Title Authurs Countries Policy instru-

ments considered

Model

Modelling the impacts of a carbon
Emission-di↵erentiated vehicle tax
system on CO2 emissions intensity
from new vehicle purchases in Ire-
land.

Giblin and McN-
abola (2009)

Ireland Carbon tax COWI cross-
country car
choice model

Analysis of policies to reduce oil
consumption and greenhouse-gas
emissions from the US transporta-
tion sector.

Morrow et al.
(2010)

US Fuel economy regu-
lations, purchase tax
credits, CO2 tax

National En-
ergy Mod-
elling System
(NEMS)

Simulating the impact of policy,
energy prices and technological
progress on the passenger car fleet
in Austria.

Kloess and Müller
(2011)

Austria Fuel tax, vehicle ac-
quisition tax

Simulation model

Accelerating the transformation to
a low carbon passenger transport
system: The role of car purchase
taxes, feebates, road taxes and
scrappage incentives in the UK.

Brand et al. (2013) UK Vehicle purchase
tax, road tax, ve-
hicle scrappage
scheme

UK Transport
Carbon Model

Should a vehicle fuel economy
standard be combined with an
economy-wide greenhouse gas
emissions constraint? Implications
for energy and climate policy in
the United States.

Karplus et al. (2013) US Fuel economy stan-
dard, cap and trade

Emissions Pre-
diction and
Policy Analysis
(EPPA) model

Vehicle type choice under the influ-
ence of a tax reform and rising fuel
prices.

Mabit (2014) Denmark Vehicle registration tax Mix logit model

A system dynamics based mar-
ket agent model simulating future
powertrain technology transition:
Scenarios in the EU light duty ve-
hicle road transport sector.

Pasaoglu et al.
(2016)

EU EV subsidy, fuel
economy standards

the system dy-
namic approach

The vehicle purchase tax as a cli-
mate policy instrument.

Fridstrøm and
Østli (2017)

Norway Vehicle purchase tax Nested Logit
Model

No free ride to zero-emissions: Sim-
ulating a region’s need to imple-
ment its own zero-emissions vehi-
cle (ZEV) mandate to achieve 2050
GHG targets.

Sykes and Axsen
(2017)

US,
Canada

Zero-emissions vehi-
cle (ZEV) mandate

CIMS-ZEV

Car fleet policy evaluation: The
case of bonus-malus schemes in
Sweden.

Habibi et al. (2018) Sweden Bonus-malus
schemes

Nested logit
model

Macroeconomic e↵ects of fiscal in-
centives to promote electric vehi-
cles in Iceland: Implications for
government and consumer costs.

Shafiei et al. (2018) Iceland Vehicle tax, fuel tax,
feebates

System dy-
namic approach
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Methodology

3.1 Theoretical framework of FTT-Transport

The future technology transformation (FTT) is a framework that models techno-

logical di↵usion dynamically and is based on market price competition and tech-

nological competition. Prior to the FTT-Transport model, the FTT model existed

to model decision making by investors in power generation technology. As a mem-

ber of the FTT framework, the FTT-Transport model aims to model technology

di↵usion dynamically in the PLDV sector based on a decision making module that

represents choices made by diverse agents facing restricted information and access

to technology for consumers. Currently, the model is available only for PLDVs,

which are the focus of this thesis. Note that Dr. Mercure and myself worked col-

laboratively during the development of the theoretical framework (details of the

collaborative work can be found in Appendix B). The following paragraphs discuss

the conceptual framework for the FTT-Transport model.

The modelling of technological transition requires consideration of agent di-

versity and consumer choices in the transport sector. Meanwhile, economic and

cost change (through learning and technological advancements) will interact with

consumer decisions, R&D, and long-term technological transitions. This requires

a model of technological di↵usion that describes consumer decisions, R&D, and

macroeconomic conditions endogenously within a model.

Instead of taking a representative agent approach, the FTT-Transport model

assumes the presence of a diverse market with heterogeneous agents. This is done

using a probabilistic treatment of consumer decision making and using a distribution

of cost values. We assume that the cost distribution corresponds to the heterogene-
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ity of consumer choices as a result of revealed preferences. The cost distributions

are related to whether the consumers are early adopters, an early majority, a late

majority, or laggards, which drives the adoption and di↵usion of technology, as sug-

gested by (Rogers, 2010). Agent heterogeneity is represented by introducing a cost

distribution over agent perspectives with the discrete choice theory.

As a result of increasing returns to adoption (Arthur, 1989), technologies gains

higher market shares as more consumers adopt and use the technology for the

following reasons. Firstly, people makes choices based on the visibility and acces-

sibility of a technology. For example, people like to behave in a ‘socially desirable

way’ and purchase low-emissions vehicles in order to boost their images within their

own social groups (Liao et al., 2017). Secondly, many studies find that consumers

have a ‘wait and see’ attitude when choosing new technologies, in particular, new

automobile technologies (Chanaron, 1998; She et al., 2017). This attitude is preva-

lent because consumers are risk averse and low-carbon vehicles present uncertainty

(e.g., range anxiety, availability of charging stations, and so forth) when users are

inexperienced. Thirdly, consumers may have a particular preference towards one

range of car models (e.g., brand, engine size, style). If their preferences are not

satisfied by the available EV models, the technology (e.g., EV) will not match the

preference for this group of consumers. However, when EVs become more popu-

lar with consumers, this encourages the manufacturer to boost the number of EV

models and charging infrastructure available, which will further boost EV sales.

Thus, the FTT framework is a model designed to reproduce observed S-shaped

di↵usion curves by modelling competition in the market. The di↵usion processes

are path dependent and involve positive feedbacks that are captured by the FTT

framework. The FTT models of technological di↵usion are consistent with the

‘bandwagon e↵ect’ 1. It is implied that decisions are recursive and self-reinforcing

by assuming that social trends play an important role in the di↵usion of technology.

In other words, if a group of consumers purchase a new technology through the

‘bandwagon e↵ect’, it is more likely that people around this group of consumers

will follow, leading to path dependence for a technology.

The technological di↵usion rate is proportional to the market shares of technolo-

gies (i.e. the ‘bandwagon e↵ect’). In additional to quantifiable costs (e.g., capital

costs, fuel taxes), the model considers the non-quantifiable costs of consumer choices

(e.g., comfort, luxury e↵ect) with an empirical factor that is added to the quan-

1The bandwagon e↵ect is a phenomenon whereby the rate of uptake of technologies, fads and
trends increases as more of them are adopted by others.
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tifiable costs (see Section 3.4 for the determination of this value). A learning rate

is incorporated in order to take into account the falling cost as production of the

technology increases. Di↵erences in the cost distributions is one of the key factors

in facilitating future technological di↵usion. Further, it is assumed that cost dis-

tributions correspond to population heterogeneity, driving technological di↵usion

through cost comparisons.

In the FTT-Transport model, the transport demand is determined based on

econometric analysis, which is presented in Chapter 5.

3.2 Modelling heterogeneity with discrete choice

theory

In consumer behaviour theory, consumers are most likely to make purchases accord-

ing to their own experiences with the technology or the consumption experiences

of their peers gained through social interaction (Douglas, 1978) and visual influ-

ence (demonstrated by McShane et al. (2012) in the US). It is also likely that the

choices of consumers are influenced by their peers through the ‘bandwagon e↵ect’

(McCollum et al., 2018). The cost distributions reflect the diversity of consumers

in terms of choices, taste, and income. The diversity of sales in terms of cost distri-

bution reflects the diversity of agents (Mercure, 2015a). The rates of technological

di↵usion are related to the heterogeneity among the agents who adopt technologies

at di↵erent times (see the Rogers Adoption Curve, Rogers (2010)).

In the FTT-Transport model, consumer decisions are modelled with chains of

binary logits. In discrete choice theory (Ben-Akiva and Lerman, 1985; McFadden,

1973), choices are made in a probabilistic fashion, which means that unobserved

factors, such as taste variation and interpersonal heterogeneity, are taken into ac-

count in the discrete choice model. In the binary logit model, decision making

uses pairwise comparisons of cost distributions, as shown in Figure 3.1. We assume

that consumers are choosing between technology i and technology j with cost dis-

tributions f(x) and g(x), respectively. The probability that a consumer chooses

technology j over technology i depends on the instances in which the cost of tech-

nology j falls below the cost of technology i . The comparison of cost distributions

captures the heterogeneity of consumer choice in the FTT-Transport model.



Methodology 47

Generalised Cost (LCOT)

F
re

q
u

e
n

cy

Xf Xg

f(x)
g(x)

θf

θg

Figure 3.1: The cost distributions f(x) and g(x) for two technologies i and j . The
probability that a consumer chooses one technology over another depends on the
width of the technology as well as the average cost of the technology.

3.3 Shares equation

3.3.1 Initial market shares

Market shares for vehicle technologies in the FTT-Transport are defined as

Sj(t) = Nj(t)/Ntot(t)dt, (3.1)

where Nj(t) is the number of technology units of technology j at time t, and

Ntot is the total number of cars on the road, with

Nj(t) =

Z 0

1
✏j(t� a)lj(a)da, (3.2)

where a is the vehicle age, and la is a measure of the survival function 1 for

technology j and ✏j is the car sales time series.

For vehicles, maintenance costs increases with age. Vehicles come to the end of

their useful life through accidents and scrappage decisions. The survival function

is typically a monotonically decreasing function that declines from 1 to 0 as age

increases and represented by a Weibull distribution (see Zachariadis et al. (1995)).

1The survival function is defined as the proportion of vehicles of a given model still in operation
at a given age. It provides the fraction of vehicles that survive up to a certain age and is the key
parameter used to simulate the dynamics of vehicle turnover (Huo and Wang, 2012).
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The determination of vehicle survival rates normally requires substantial histor-

ical information about vehicle fleets, and it is also country dependent (as shown in

Huo and Wang (2012)). However, it is unrealistic to develop survival functions for

all five countries. For this research, the survival function is taken from the existing

studies, as will be discussed further in Chapter 4.

3.3.2 Technology di↵usion equation

The FTT framework models technology transitions with the Lotka-Volterra compe-

tition (LVC) equations. The LVC equations are a set of coupled logistic di↵erential

equations that models the interactions of biological species competing for the same

resources (Lotka, 1956) and are described by:

dNi/dt = r↵iNi(1�Ni/K) (3.3)

where Ni is the size of the population, r is the growth rate of the population

and K is the maximum population size of the species (i.e., the carrying capacity).

The equation above is equivalent to the replicator dynamic of the evolution-

ary game theory. A number of studies have shown that L-V equations can be

applied to model technological di↵usion (Saviotti and Mani, 1995; Grubler, 1990;

Marchetti et al., 1980). Furthermore, there is a strong analogy between technology

competition and evolution in biology (Safarzyńska and van den Bergh, 2010). In

particular, the competition between technologies in the marketplace is analogous to

the evolution of genotype frequencies in biology (Hodgson and Huang, 2012).

Considering two technologies, Marchetti et al. (1980) present data with a substi-

tution process in the road transport system over 80 years. The substitution of cars

for horse and carriage follows a logistic transition between the two technologies:

S1(t) = 1/(1 + exp(↵12(t� t0)) (3.4)

and

S2(t) = 1/(1 + exp(↵21(t� t0)), (3.5)

where S1(t) and S2(t) are the shares for Technology 1 and Technology 2, respec-

tively. Here, ↵12 and ↵21 determine the rate of technological di↵usion.

Thus, we have

dS1/dt = ↵12S1S2 (3.6)
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and

dS2/dt = ↵21S1S2 (3.7)

In reality, there will always be more than two car technologies competing in the

marketplace. Based on the deduction above, we obtain:

dSn/dt = ↵1nSnS1 + ↵2nSnS2 + ↵3nSnS3, (3.8)

hence,

dSi/dt =
X

↵ijSiSj (3.9)

The equation suggests that the rate of technology substitutions is dependent on the

changes in the shares of the competing technologies i and j, and a constant ↵ij.

This is equivalent to the replicator dynamics in the evolutionary game theory, as

stated above. The equation is central to the FTT-Transport model and is referred

to as the replicator dynamics equation.

Empirical research has shown that peoples’ attitudes and decisions to adopt

new technologies are influenced by their social environment and network (see e.g.

McShane et al. (2012) ). Regarding the PLDV sector, consumers are forced to choose

among the available models that fit their preferences. If they are risk averse, they

will choose the car models that are widely driven and have infrastructure readily

available. Thus, we assume that shares for car technologies replicate at a rate

proportional to the shares for that technology in society. In the FTT-Transport

model, although the availability of infrastructure is not explicitly modelled, it is

assumed that as the shares for EVs increase, the investment in infrastructure will

follow; otherwise, consumers will be reluctant to purchase EVs.

The rate of technological di↵usion is determined by the gradient of the tech-

nology di↵usion curve (↵ij). Mercure (2015b) presents details regarding the ↵ij

constant in the context of technology di↵usion. Investments and penetrations of

technologies are dependent on the choices of consumers or investors facing a variety

of options in the presence of incomplete information or based on the assumption

of bounded rationality. This is equivalent to a natural selection carried out by

consumers who choose the innovation that matches their tastes, and products that

do not win the market competition will be ruled out through the natural selection

process. The rate of technological substitution hinges on the relative birth rate, the

turnover rate and the death rate of technologies over time. Thus, the birth rate

and the death rate determine the timing of the technology di↵usion phase.
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In the context of the PLDV sector, the decision to buy, substitute or scrap a

passenger car is a choice made by each consumer on the basis of various financial,

socio-economic, and technological parameters. The di↵usion of a car technology is

based largely on consumer decisions, which depend on a number of factors, such as

family income, car prices, personal preferences, cultural di↵erences, demographics,

and lifestyles. We assume that shares flow from technology j to technology i when

cars using technology j are ‘dead’. The death of a vehicle can be caused by failure

or the economic decision to scrap it due to the increased cost of maintenance with

time. The turnover rates of cars could be the results of policies that encourage the

scrappage of cars or the purchase of new cars for both economic and environmental

reasons. The number of cars belonging to technology j, replaced by technology i,

depends on the number of cars with technology j being scrapped and the number of

consumers that choose car technology i over j after their old cars using technology

j are scrapped.

The growth and fall of the share for a technology is determined by the pairwise

consumer choice matrix Fij (see discussions in Section 3.4), which specifies the

probability of one technology being chosen over another according to perceived

costs. The number of units of car technologies flowing from technology j to i is a

fraction of its own shares, and thus, proportional to market share Sj times a time

constant Aij.

The time constant for technological substitution is determined by a birth and

death function. The death function is a strictly decreasing survival function, as

we have discussed. . On the other hand, the birth function is defined as the total

production from one unit of capital during its lifetime. Mercure (2015b) provides

a detailed mathematical derivation of the relationships between the birth function,

the death function and the constants for technological substitution. The generalised

form of the time constant is:

Aij = (⌧̄ t̄/⌧itj)/⌧̄ (3.10)

where ⌧i is the life expectancy derived from the survival function, and tj is

the fastest possible growth rate in terms of the re-investment rate. In terms of

transport, ⌧i would be the vehicle survival function, and tj is the fastest growth

rate for vehicles. Note that since tj and ⌧i appear as ratios with their averages ⌧̄

and t̄, respectively, the common scaling factors cancel out (Mercure, 2015b). Hence,

it is not the absolute value of ti that determines the rate of technology uptake, but
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the ratios for the death and birth rates. Thus, the rate of technology substitution

is determined by the rate at which a technology is filling the market in comparison

with other technologies.

In terms of PLDV technologies, the rate of relative technology turnover rate

depends on the frequency of consumer decision making, which is arguably lower

than the survival rate of cars. For instance, the rate of technology substitution is

related to the payment schedules for cars, ranging from one year to seven years

(Montoya, 2018), depending on interest rates and the resale value. Therefore, for

vehicle technologies, the turnover rate is determined by:

Aij = 1/⌧̄ (3.11)

The car turnover rate in this model is defined as the number of years before

buyers of new cars decide to sell their cars back to the dealer or to the second-

hand car markets. In other words, it is the frequency of car-buying decisions by

car drivers. In most countries, it is similar to the payback period for new cars.

Note that the turnover rate also depends on the income level of a country and the

existing policy frameworks that supports the sale of new cars.

For modelling purposes, we have to distinguish between the survival rate/scrappage

rate and the turnover rate defined in this section. The survival rate, as its name

implies, considers the exit of cars from the market due to car scrappage (death of

a technological unit) only, while car turnover rate includes cars that are put onto

the second-hand car market. The turnover rate could be much smaller than the

scrappage rate, especially if people do not tend to hold onto their new vehicles for

very long.

There are a number of reasons behind the di↵erences in turnover rates in dif-

ferent countries as well as the fact that turnover rates tend to vary between years,

depending on social economic factors and government policies. Contributing fac-

tors include family incomes, depreciation rates, motor vehicle inspection costs, and

whether it is legal to export second-hand cars from the country. For instance, in

Japan, new cars must be tested three years after purchase and then every two years

thereafter. This means that owning and maintaining a car beyond three years is

much more costly. On the other hand, if incomes fall after an economic crisis, such

as in the US, it becomes less a↵ordable to take out a loan for a car.

Meanwhile, the number of agents choosing technology i is a subset of all agents

that have access to information concerning car technology i, which is proportional
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to the market shares for technology i. This assumption is supported by consumer

theory, where choices are made through visual influence within social groups (Mc-

Shane et al., 2012). Consumers are more likely to choose a technology that has a

higher market share as a result of social influence. When given a choice between two

technologies i and j, the fraction of consumers that choose technology i is denoted

Fij, while the remaining consumers (denoted Fji) choose technology j, with:

Fij + Fji = 1 (3.12)

The flow of market share from technology j to technology i is

�Sj!i = SiSjAijFij�t (3.13)

and the flow of market shares from technology i to technology j is:

�Si!j = SjSiAjiFji�t (3.14)

The market shares for technology i as a result of the flow of market shares is:

�Si(t) =
NX

j=1

(AijFij � AjiFji)SiSj�t, (3.15)

Then we have:

�Si(t) =
NX

j=1

(Fij � Fji)SiSj
1

⌧
�t, (3.16)

Equation 3.16 is also called a Lotka-Volterra equation, which is strongly path

dependent. The rate of technology di↵usion is equal to (Fij � Fji)/⌧̄ , which is a

logistic di↵usion function. This equation is equivalent to the replicator dynamics

equation and is central to technological di↵usion modelling in the FTT-Transport

model.

3.4 Consumer decision matrix

3.4.1 Consumer probabilistic choice

Consumers in the vehicle market are heterogeneous and choices are made in a proba-

bilistic fashion (Mercure and Lam, 2015). We assume that the market heterogeneity
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can be derived from consumers? ‘revealed preferences’ (i.e., their vehicle choices)

since consumers make purchases based on the availability of car models in the mar-

ket. As such, the car manufacturers attempt to match consumers? preferences.

In discrete choice theory, consumers have heterogeneous taste and place di↵erent

utility weights on di↵erent product characteristics.

In this model, we assumed that consumers make decisions based on a chain

of binary logits. Hence, consumers compare two technologies at a time based on

generalised costs and preferences. We denote the average generalised cost 1 (see

discussions on generalised cost in Section 3.4.2) of technology i as Ci, with a stan-

dard deviation �. The frequency distribution for consumer choices is represented

by fi(C � Ci) and the cumulative distribution Fi(C � Ci). Fij(�Cij) denotes the

fraction of agents that prefer technology i over j based on the di↵erence in the gener-

alised costs of technologies i and j, and the cost di↵erence between two technologies

i and j is denoted as: �Cij(= Cj � Ci).

The Fij can be approximated by the following equation:

Fij(�Cij) =

Z �1

1
Fj(C)fi(C ��Cij)dC (3.17)

and

Fji(�Cij) =

Z �1

1
Fi(C)fj(C ��Cji)dC (3.18)

Then we have:

dFij

dCij
= �

Z �1

1
fi(C � �Cij)fj(C)dC = �fij(�Cij) (3.19)

Equation 3.19 generates a new frequency distribution. Following the standard

discrete choice theory, the fi is a Gumbel distribution with standard deviation

�i. We have that fi = e
�e(C�Ci)/�i . Therefore, the convolution of two Gumbel

distributions is a logistic equation. Hence, we have:

Fij = �
Z �1

1
(fi ⇤ fj)dC

=
1

(1 + e�Cij)

1The generalised cost is the sum of quantifiable costs (e.g., car capital costs, fuel costs, taxes)
and non-quantifiable costs (e.g., comfort, safety).
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We approximate a cumulative distribution by an error function.The consumer

choice matrix (Fij) is a logistic function approximated by the error function (erf):

Fij =
1

dFij

p
2⇡

Z Cj

1
e
�(x�Ci)2/(2�2)

dx

= 0.5 ⇤ (1 + erf((Cj � Ci)/dFij)

Where

dFij = 1.414 ⇤
q
�2
i + �2

j (3.20)

3.4.2 The generalised cost of transportation

It is challenging to determine exactly what quantitative evaluations are carried out

by vehicle consumers when choosing vehicles. The generalised cost of the vehicle

is defined as the willingness of the consumers to pay for cars. Studies (Baltas

and Saridakis, 2013; Shende, 2014; Choo and Mokhtarian, 2004) show that capital

and operating costs only represent two of many determinants (e.g., comfort, brand

e↵ect, safety) that drive consumer energy-related decisions.

The generalised cost for consumers is therefore defined as the monetary cost

paid by the consumers and a personal value assigned by the consumers based on

the extent to which cars satisfy their needs. The generalised cost for the car is the

price of the car, the cost of driving the car, as well as the cost of comfort and safety

that is assigned by individual consumers. Therefore, the generalised cost (C) is

distributed and is made up of two components; a quantifiable cost component, such

as the capital cost and operating cost, and a non-quantifiable cost component, such

as comfort and safety.

Levelised Cost of Transportation

For the quantifiable cost, we assume that vehicle purchasers make decisions using

a net present value approach 1. For modelling purposes, we assume that the econo-

metric equations for car purchases are separated from the costs for the transport

services. The purpose of this approach is to find the discounted cost of generating

transport services for each car purchase that can then be compared across options.

1Since we know that consumers have a time preference, it would be misleading not to include
discounting, even if consumers may not calculate a Net Present Value (NPV) every time they
make a vehicle purchase.
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As such, quantifiable costs should take into account a number of components,

including the initial down payment for the vehicle (or loan), the maintenance costs,

the fuel costs incurred for the lifetime of the technology, and the costs of policy

incentives. We define a levelised cost of transport (LCOT ), which represents the

constant unit cost ($/km) of service and has the same present value as the total

cost of running the car over its lifetime. LCOT is the cost of one km of driving

when accounting for discounted costs over the lifetime of a PLDV. The LCOT is

defined as:

LCOTi =

Ii

CFi
+
P

t

Fi ⇤ FEi +MRi + FPi

(1 + r)t

P
t

1

(1 + r)t

, (3.21)

where Ii, Fi, MRi and FPi are the mean capital costs (in USD), fuel cost (in

USD/litre), maintenance cost (in USD/km) and fiscal pricing (i.e. tax or subsidy)

(in USD/km), respectively. FEi is the fuel consumption (in litre/km). CFi is the

capacity factor, in km/y. r is the consumer discount rate.

As shown in Mercure and Lam (2015), car prices are distributed due to the het-

erogeneity of technology and consumer preferences. Maintenance costs are related

to car technology and price volatility, so they are distributed as well. Further, the

fuel price distribution is determined by its volatility. We define the width of LCOT

by �LCOT ,

�LCOTi =

P
t

p
Dist+ FP 2

i

(1 + r)t

P
t

1

(1 + r)t

. (3.22)

where
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�I
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2
i
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i +�F

2
i FT

2
i +

�MR
2
i

FF 2
i

+
MR

2
i

FF 4
i

�FF
2
i (3.23)

�Ii, �Fi and �MRi are the widths (standard deviations) for the car price, fuel

price, and maintenance cost distributions, respectively. The �LCOTi represents

the cost distributions for cars in real space.
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Intangible variable

We define intangible variables as factors that determine the consumer’s generalised

cost, beyond quantifiable costs. Thus, the intangibles include the components that

are valued by consumers to satisfy in terms of personal needs (e.g., comfort, speed).

An intangible cost is calculated by minimising the di↵erence in slopes between the

projected market shares and the historical market shares. The historical shares

for vehicle technologies are calculated by a survival function and new sales for

cars across the previous 25 years. In the FTT-Transport, �i is defined as the

‘di↵erence between generalised cost, which leads to observed di↵usion, and the

LCOT calculated’. The �i represents the factors in the consumer0s decision that

cannot be easily quantified. The �i parameter accounts for the fact that there could

be very large cost di↵erences between engines, which are compensated by benefits

to the user that are intangible (e.g., an expensive, powerful engine is compensated

by the satisfaction of the user in terms of acceleration). The �i adjusts the vehicle

price distributions so that the di↵usion process is consistent with history, even when

large vehicle price di↵erences are observed across categories.

Figure 3.2 shows that when a set of �i values are chosen, our projections from

2016 to 2025 follow the trends from 2009 to 2016. The �i values are adjusted and

fed into the model to calculate the shares for all technologies for the first nine years

from 2016. Note that adjusting the �i value for one technology will a↵ect the slopes

for all other technologies dynamically. Thus, we need to adjust the values for �i

until the sum of the di↵erences between the projected shares and the historical

shares for all technologies is minimised. In the case that other capital costs remain

unchanged, �i is a constant value, i.e., it only has to be found once, and independent

of the scenario assumptions.

3.4.3 Cost comparison

The comparison of costs in the binary logit model is made in logarithmic space.

This is because car prices are typically log-normally distributed (as observed in

Mercure and Lam (2015)). For simplicity, we compare costs in lognormal space

via means and a standard deviations using the following transformation equations

(equation 3.25)

LGLCOT = log(
LCOT

2

p
�LCOT + LCOT 2

) + �i (3.24)
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Figure 3.2: Historical and projected shares of petrol cars in China (as a demonstra-
tion for how �i values are derived). The historical shares of di↵erent car technologies
are shown on the left side of the black dash lines, with the projected shares of these
car technologies shown on the right. The set of constants are adjusted so that the
projected shares follow the historical trends.

and

dLGLCOT =
p

log(1 +�LCOTi/(LCOT 2)) (3.25)

where LCOT and �LCOT are the mean and standard deviation in the normal

dollar (USD) space. The details for the transformation from a standard space to

log normal space and can be found in Mathworks. Note that �i is found in the

lognormal space.

3.4.4 Vehicle prices and learning

The FTT-Transport model uses learning curves and capital costs for vehicle tech-

nologies (Ii(t)) fall by a certain percentage (learning rate bi) every time the total
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quantity manufactured Wi(t) doubles:

Ii(t) = I0,i

✓
Wi(t)

W0,i

◆�bi

, (3.26)

The learning rate is the cost reduction achieved for a doubling of the cumulative

installed capacity. For niche technologies, the existence of technological learning

implies that prices for the new technologies (e.g., electric cars) will fall as the

quantity of production increases. Note that the learning rates for niche technologies

are subject to great uncertainty (Tom Hazeldine and Deller, 2010; McDowall, 2012;

Weiss et al., 2012) as the result of di↵erent methods of estimation. Additionally, for

some technologies, specific learning curves and product ratios have been observed

in the past, but the ratio may not be applicable in the future since learning rates

may change over time (Sagar and Van der Zwaan, 2006). The learning rates are not

very di↵erent between countries as a result of knowledge di↵usion across countries

through big car corporations. Mass production has existed for conventional cars

since 1910 and the Ford Model T, so the range of learning rates is small and will

not have a significant e↵ect on the long-term prices.

To account for the uncertainties regarding learning rates, a sensitivity analysis is

presented in the Appendix A, where we examine the extent to which the di↵erence

in learning rate creates uncertainties for the model. Future studies may consider

using a stochastic model formulation, which can calculate the impact of the learning

rate uncertainties in a rigorous manner.

3.4.5 Spillover matrix

Knowledge spillovers occur when investments in knowledge creation by one party

produce external benefits via facilitating innovation by other parties (Jafie et al.,

2000). In fact, knowledge spillovers happen between firms and technologies. The

category of knowledge accumulation does not necessary correspond to vehicle cate-

gories, which means that knowledge spillovers take place between categories. This

is because learning happens on a component level rather than a technology level and

may be used in more than one type of technology; therefore, sales in one technology

category may induce learning in other categories. For instance, reductions in the

cost of the lithium-ion battery will benefit both hybrid cars and EVs. The lithium

battery delivers twice the power compared to similar- sized cells. Further, enlarg-

ing the capacity of the battery enables hybrid cars to store energy more e�ciently
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during deceleration. Hence, we have

Wi(t) =
X

j

Bij

Z 0

t

Rj(x)dx, (3.27)

where Wi is the total quantity of technology i manufactured and Bij is the

spillover matrix, and Rj(x) is the number of new cars of technology j registered.

3.5 Energy use and emissions calculation for PLDVs

In the FTT-Transport model, the PLDV service demand and the fleet number are

estimated and projected with regressions in Chapter 5. The projections for the

service demand (in km per year) and the car ownership projections (total car fleet)

for each country are used to calculate energy use and emissions as below.

We start with the equation calculating energy use, which is dependent on the

fuel consumption factor, in the units MJ/seat-km, and the services provided by

all vehicles on the road. The total service generated by a particular technology

is equal to the product of PLDV service demand (in km per year multiplied by

the occupancy rate) and the transport capacity of the technology, defined as the

number of seats in PLDV; thus, we have:

Gi = Ui ⇤ CFi ⇤ Pi (3.28)

where G is the service generated by a PLDV technology, in pkm/year, CF is

the km per car in km/fleet, and Pi is the filling factor/occupancy rate (i.e. how

many people on average in each car). U is the PLDV fleet number by technology,

defined as:

Uk,t = Sk,t ⇤ Utott (3.29)

where Sk,t is the share of technology k at time t, and Utot is the size of the PLDV

fleet on the road at time t, projected in Chapter 5 and based on the Gompertz

function.

For new cars, the fuel consumption factor is obtained from the car manufactur-

ers. Note that the CO2 emissions from the new cars are lower than those of the car

fleet on the road as the result of policy incentives and technological development.

However, the data for on- road fleet emissions for each country is not available.
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The energy consumption equation is calculated from fuel consumption per kilo-

metre and the services that the vehicles provide while considering the filling factor

FFk
1,

Jk,t = Gk,t ⇤ EGk,t/(FFk, ⇤NSeatsk) (3.30)

where NSeatsk is the number of seats in cars (i.e., NSeatsk=4 in most cases),

J is energy consumption in MJ/year, EG is the energy consumption factor in

MJ/seat-km as calculated by a fuel consumption factor 2 multiplied by the energy

densities 3 for petrol/diesel/ethanol. CO2 emissions from passenger vehicles are

closely related to energy consumption. Emissions are defined as:

Ek,t = Gk,t ⇤ CO2k,t/(FFk, ⇤NSeatsk) (3.31)

where Ek,t is the fleet emissions in GtCO2/yr and CO2k,t is the emissions factor.

In the FTT-Transport model, the fuel consumption factor is collected from the

car manufacturers for new cars (see Chapter 5). The indirect fuel consumption

of EVs is calculated by dividing battery capacity (in Wh) by the range (in km)

provided by the battery, both obtained from the car manufacturers. Note that

this is only an estimation of energy consumption factors for EVs because the real

energy consumption is associated with trips under consideration. The way in which

we obtain the energy consumption of a battery is only accurate in situations in

which the battery depletion rate per unit distance is constant across the di↵erent

levels of the batteries.

In the FTT-Transport model, we account for the indirect emissions from the

EVs (i.e., power sector CO2 emissions due to the electricity demand on the part

of EVs). The emission factors for EVs are found by dividing the projected CO2

emissions of the power sector in each country by the total energy demand in the

power sector (Mtoe), which are based on the projections in the New Policy Scenario

provided by the IEA (IEA, 2017c). The data for this work is presented in Chapter 4.

Note that CO2 emissions from EVs vary according to decarbonisation scenario in

the power sector. However, the scenario analysis on CO2 emissions from the power

1The filling factor is the fraction of seats occupied, on average, when a particular vehicle is in
use. We assume that all passenger cars are four-seaters, i.e., FFi=occupancy/4.

2This factor is collected from car manufacturers published as the ‘fuel consumption factor’ or
‘fuel economy’, in miles per gallon, litres per km, and so forth. See Chapter 5 for details regarding
data collection.

3Energy density is defined as energy in MJ per unit of mass of fuel.
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sector is outside the scope of this thesis.



Chapter 4

Data

In the context of this research, following the definitions found in IEA (2017b),

PLDVs include passenger cars, SUVs, and passenger light trucks but exclude two-

wheelers, three-wheelers and low-speed/low-power four-wheeled vehicles. In the

FTT-Transport model, SUVs and light trucks are treated like other forms of PLDVs

(e.g., passenger cars) and are categorised based on their engine sizes. We argue

that this is a valid assumption because people choose cars based on their prices and

utilities. The SUVs and light trucks in the US di↵er from the passenger cars only in

terms of their sizes (e.g., interiors and engine sizes) and prices. Hence, we assume

that the SUVs are one type of PLDVs, with functions and utilities similar to those

of normal passenger cars.

Table 4.1 shows the scope of the PLDVs in the context of the five di↵erent

nations used in this study. The vehicle categories we specified are consistent with car

classifications in the dataset provided by each of the national government statistical

agencies on automobile fleet numbers. Other than in the US, private passenger

vehicles mainly consist of 4-seater passenger cars, SUVs, and light vans, while, in

the case of the US, light trucks are included in the analysis.

Table 4.1: The scope of the PLDVs in our research

Country Car types

UK 4-seaters private passenger cars, SUVs
US 4-seaters private passenger cars, SUVs,

light trucks
Japan 4-seaters private passenger cars, SUVs
China 4-seaters private passenger cars and SUVs
India 4-seaters private passenger cars, SUVs
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4.1 Data requirements

For the present study, an original database detailing the technological profile of

cars and populations was built, as required by the methodology. Table 4.3 shows

the data required to run the FTT-Transport model. Columns two to four are

dedicated primarily to the scope and level of detail required, including the selected

time periods and the resolution of the data.

Consistent with the Eurostat definition, PLDVs are divided into three engine

sizes categories: Econ (1400cc), Mid (>1400cc and <2000) and Lux (�2000cc).

Eight passenger car technologies are considered in the model, including petrol cars,

diesel cars, CNG cars, flex-fuel cars, hybrid cars, electric cars, advanced petrol

cars and advanced diesel cars. The advanced categories are defined as cars that

use advanced technologies (e.g., variable valve timing, a stop-start system) and are

more e�cient than the models on the market in 2016.

Electric vehicles were classified according to price (Econ :  20000 USD, Mid:

between 20000 USD and 40000 USD, Lux: above 40000 USD). These car technolo-

gies are considered to be the most commonly found technologies in the US, the UK,

Japan, China, and India.

4.2 Data sources for car prices, engine sizes and

fuel economy

As shown in Table 4.4, car prices, engine sizes, and fuel economy data for each

car model listed in Marklines were collected from various sources, including car

manufacturers, car sales websites, car industry market reports, and government

institutions, and matched to the car models listed in the Markines data. Note that

the prices obtained are the list prices for 2016. Car fuel economy data was collected

from the manufacturers’ websites, when available. Otherwise, it was much faster to

obtain the car specifications and prices from one single car research website where

these data were readily available. To ensure the reliability of the data outside the

manufacturer’s website, we checked the price, engine sizes and fuel economy data

from these car sales research websites and government institutions against the data

obtained from the manufacturers.

In many cases, each car model had several car price and fuel economy values,

depending on its options. We usually took the mid-value for prices and engine sizes,
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unless it was known that a particular vehicle option/alternative was very popular.

The data sources are listed in Table 4.4.

4.3 Summary statistics

Table 4.5 shows the means, medians and standard deviations (S.D.s) for car price,

engine size and fuel economy. The di↵erences in mean and median car price, engine

size, and fuel economy show the skewness of the distributions in the consumer

market regarding the car price, engine sizes and fuel economy. The S.D.s show the

diversity in consumer markets among the five countries.

The summary statistics given in Table 4.5 shows that among the five countries,

the average engine sizes are the largest in the US and smallest in India. Regarding

the car prices, the UK has the highest average car prices, while India has the lowest

car prices. Regarding the fuel economy, on average, cars are the most e�cient in

Japan compared to the other countries. The S.D.s for car price, engine size, and

fuel economy show the width and variation for each of the parameters. We observe

that the S.D. for price and engine size S.D.s are the smallest in India and the largest

in the US.

4.4 Market shares

We purchased the annual car sales data from the Marklines website, which is an

automotive industry portal that consists of motor vehicle market data. Marklines

provides the total car sales by car model and brand for 63 countries from 2004

onwards. Hence, it is possible to find the sales for each car model for an individual

country. Marklines car sales numbers were checked for reliability against total sales

given by a number of data sources (including o�cial data published by the transport

departments of various nations). We concluded that the total sales numbers in

the Marklines dataset are consistent with the o�cial data. This implies that the

Marklines data cover all the models available for sale in each country.

We found the fleet and market shares for di↵erent car technologies via a survival

function:

N(t) =
X

a

Sales(t� a)Surv(a), (4.1)

where N(t) is the number of cars, Sales(t) is the number of sales in year t
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and Surv(a) is the survival ratio of vehicles at age a. The survival function gives

the fraction of vehicles that survive up to a certain age. It is typical represented

typically as a monotonically decreasing function that declines from 1 to 0 as the age

increases. Specifically, in Zachariadis et al. (1995), the survival rates were simulated

using a Weibull distribution, defined as:

f(x) = e
�(x+b

T )b
, (4.2)

where T parameterises the vehicle lifetime and b is the parameter that a↵ects

the shape of the survival function.

4.4.1 Survival function

The determination of vehicle survival rates requires substantial historical informa-

tion on stock and scrappage. Three approaches could be used to find the survival

function. Firstly, survival functions for some countries (e.g., China, Japan) were

taken directly from existing literature (Figure 4.1, see Hao et al. (2011); Goel et al.

(2013)). Secondly, when the survival function was not readily available, we could

derive a survival function by generating a survival profile based on the survival

function derived for the UK (using data obtained from DVLA (2012)). Doing so

is based on the assumption that the reliability functions of mechanical systems for

vehicles are similar between countries for the first few years of their lifetime. This

is a reasonable assumption since the reliability of vehicles is not necessarily related

to political borders, since most firms sell internationally. Instead, di↵erences in

survival functions between countries are related to weather and tra�c contexts.

Further, the assumption is largely consistent with existing empirical evidence (Huo

et al., 2012). Then we constantly adjusted the survival values until the di↵erences

between total sales and total stock became approximately equal.

When neither total sales nor stock were available, we had to borrow survival

functions derived for other countries. The variation in survival patterns for cars

between countries can be attributed mainly to the di↵erences in scrappage policies in

di↵erent countries, vehicle management, and improved technologies. For instance,

China has mandatory scrappage standards for cars. Survival patterns should be

more similar between countries sharing similar scrappage policies. While it could

be argued that technology is more advanced in the UK than in India, vehicle makers

are largely multinational, so technology spillovers can occur. A sensitivity analysis

was carried out to examine the e↵ects of the uncertainties introduced by survival
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function approximation.
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Figure 4.1: Left Survival function for cars in China. Data source: Hao et al. (2011).
Right Survival function for cars in India. Data source: Goel et al. (2013).

4.4.2 The assumptions for fleet shares

As stated in Chapter 3, the intangible value �i is derived empirically so that the

slopes at the beginning of simulations are consistent with the historical rate of

di↵usion. In order to find �i, it is necessary to find the historical shares of di↵erent

car technologies. With a survival function and historical market sales obtained from

Marklines (using with the method described in Section 4.4), it is possible to find

historical shares by a convolution of historical sales and survival functions. The

historical sales data is matched to vehicle technologies and engine categories based

on car specification data collected from the manufacturers. For new technologies

such as EVs and HEVs, the market shares are the sum of historical sales data (from

Marklines).

Tables 4.6, 4.7, 4.8, 4.9 and 4.10 present the assumptions for PLDV fleet shares

for the UK, the US, Japan, China, and India, respectively. Specifically, in the case of

India, petrol cars are predominantly Econ cars, while diesel cars are primarily mid-

size. Diesel engines are more e�cient and have more torque than gasoline engines.

Therefore, diesel engines are more commonly found among larger and mid-sized

cars. On the other hand, petrol engines are commonly found among smaller/more

fuel e�cient cars because of their lower initial costs and relative lower weights.

The historical fleet shares are used to calibrate the �i values for each country,
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and the fleet shares in 2016 are used in the FTT-Transport model as the starting

shares to simulate the di↵usion of PLDV technologies.

4.5 Fuel economy and emission factor assump-

tions

In this research, we assume that the fuel economy (in l/100km) is constant over

time for one technology. We consider the improvement of a technology over time by

assuming the existence of an advanced petrol car or an advanced diesel car (more

e�cient technology).

The following sections discuss the fuel economy assumptions we have made for

all vehicle technologies assumed in the FTT-Transport model and the data sources.

Further, this section discusses the assumptions for the emission factors for conven-

tional cars and EVs (indirect emissions) in the five countries.

4.5.1 Fuel economy and fuel prices at the pump for conven-

tional cars

This section presents the assumptions for fuel consumption and fuel prices at the

pump for conventional cars in the five countries. The values for fuel economy (in

l/100km) were collected from the o�cial manufacturers’ websites. The fuel economy

values shown in Tables 4.11, 4.12, 4.13, 4.14 and 4.15 are the weighted average fuel

economies for a car technology/range in the UK, the US, Japan, China, and India,

respectively. Although this approach enables us to consider the fuel economy for

the entire PLDV population in a country, the limitation of this approach is that the

fuel economy values published on the manufacturers’ websites may not reflect the

on- road fuel consumption of cars because fuel economy for PLDVs varies according

to speed and driving habits. With new technologies that improve the e�ciency of

petrol/diesel cars (Chatain, 2017), the fuel economy for ?advanced? petrol/diesel

cars improves over time. While many countries have adopted mandatory or volun-

tary standards, the stringency and structure of these standards vary widely across

the world. Table 4.2 shows the adopted standards for fuel e�ciency in the EU,

Japan, the US, China, and India.

The adopted fuel economy standards in the UK, the US, Japan, China, and India

are shown in Table 4.2. Following the current fuel economy standards (Yang and
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Bandivadekar, 2017b), in the FTT-Transport model, the ‘advanced’ petrol/diesel

car categories represent the fuel e�ciency improvements by assuming that the fuel

economies for the next generation of petrol/diesel cars will be 35% more e�cient

than the 2016 new cars in China, 30% more e�cient than the 2016 new cars in the

EU, and 20% more e�cient than the 2016 new cars in the US, Japan, and India,

with fuel economy regulations introduced in the year 2030 in the ‘current phase-out

scenario’ (see Section 7.4.5 for further details on scenario analysis).

For the FTT-Transport model, we assume that there will be no further improve-

ment for petrol/diesel cars beyond the ‘advanced’ cars for the following reasons.

Firstly, on one hand, in the US, Trump is freezing Obama’s fuel economy stan-

dards, but, on the other hand, a number of EU countries (e.g., the UK, France, and

Germany) seek to ban the sale of new gasoline and diesel cars. We acknowledge

that enormous uncertainty remains around the fate of the standards. It is unclear

how stringent the fuel economy standards will be beyond 2025 or 2030. Secondly,

with further improvements in petrol cars, the fuel economy of petrol/diesel cars will

be very close to that of the fuel economy of the hybrid cars.

Some technologies are not readily available in a country. For example, flex-fuel

cars are very rarely found in the UK, Japan, China, and India, partly because there

are very few E85 fuelling stations in these countries. Similarly, since NGVs are very

rare in the UK, the US, and Japan, the weighted average fuel economy for NGVs

is not available for these countries.

The data for petrol and diesel prices at the pump were collected from the World

Bank Data (World Bank, 2016). The price for E85 ethanol in the US was col-

lected from E85 Prices (E85Prices, 2018), and the price for LPG was collected

from Global Petrol Prices (GlobalPetrolPrices, 2017). The last column of Ta-

ble 4.11, 4.12, 4.13, 4.14 and 4.15 show the fuel prices paid by the consumers,

excluding fuel tax, and these are the prices we assumed in the baseline scenario.

This assumption was made in order to capture the e↵ect of fuel taxes in the alter-

native scenarios.

4.5.2 EV fuel economy and emissions factor

An e↵ective mitigation of climate change requires the parallel large-scale di↵usion of

sustainable technologies in the PLDV sector and power generation. The emissions

reduction from EVs depends largely on the carbon intensity of the power sector (i.e.,

the indirect emissions from EVs). Hence, the decarbonisation challenge lies in the
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Table 4.2: Adopted fuel economy standards in selected regions (Yang and Bandi-
vadekar, 2017b).

Country Baseline
model
year

Implementation
period

Reduction in average
CO2 rate (gCO2/km)

UK 2021 2021-2030 30%
US 2015 2017-2025* 49%
Japan 2010 2020 16%
China 2012 2016-2020 35%
India 2010 2018-2022 18%

*Proposed freezing standards at model year 2020 through 2025

co-evolution of technologies driven by interdependent policies and social dynamics.

For example, GHG emissions from electric driving depend directly on the fuel type

used in the generation of electricity for charging.

Armed with Marklines’s data on EV sales, we selected the most popular EV

model in each of the three price ranges and collected their battery pack capacities

from o�cial manufacturers0 websites. Table 4.16 shows the battery capacities of the

three selected EV models for each country. For modelling purposes, in countries

where an EV range is not readily available, we have taken the battery capacities

of the most popular model in the given price range. For example, in India, there

are a very small number of EVs on the road, so we have used the average battery

capacities in China. Similarly, for the US, there is no small EV model on sale, so we

have assumed the small EV battery capacity in China for the US. Table 4.17 shows

the average fuel energy consumption per kilometre driven assumed in the model,

calculated using the published battery capacity and the range achievable. The

limitation of this approach is that energy consumption and car range vary if the car

is driven under di↵erent road conditions and at di↵erent speeds. Unfortunately, the

average battery fuel consumption is not readily available from the manufacturers’

websites.

The average CO2 emissions from EVs (CO2/Mtoe) (indirect emissions) were

calculated by dividing the projected CO2 emissions from the power sector by the

total energy demand from the power sector (Mtoe). The total CO2 emissions from

the power sector depends on the future renewable energy mix in power generation.

Since the analysis of the future power sector evolution is outside the scope of this

thesis, we took the projected energy demand and CO2 emissions in the power sector
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from the IEA New Policies Scenario (as presented in Table 4.18 and Table 4.19).

Since the IEA (2017c) report does not have the total emission and energy con-

sumption data for the UK, we have taken the projected EU average values for the

UK. Table 4.21 shows the emissions per kilometre driven (gCO2/km), calculated

by multiplying the energy consumption factor (MJ/km) by the CO2 emissions per

unit of energy (gCO2/Mtoe).

4.6 Cost assumptions

Tables 4.22, 4.23, 4.24, 4.25, 4.26 show the car price, fuel cost per km and op-

erational and maintenance (O&M) cost assumptions used in the FTT-Transport

model. Column 1 shows the weighted average car prices, with sales data collected

from Marklines, and price data for each car model collected from the car manufac-

turers. Column 2 shows the fuel cost per kilometre, calculated by multiplying fuel

price per litre by the fuel consumption per km. The sensitivity of our results to oil

prices is presented in Appendix A. For EVs specifically, the fuel cost per km was

calculated by taking the product of fuel consumption per km (see Table 4.17) and

the electricity price (2016) for each country (see Table 4.20). Column 3 shows the

O&M costs, with data collected from the IEA/ETSAP Energy Technologies Data.

Note that since country-specific O&M cost data is not readily available, we have

assumed the same O&M costs across di↵erent countries. We argue that the as-

sumption will not a↵ect the simulation results significantly because the O&M costs

are small compared to fuel costs and car prices.

We assume that the long-term average prices for the conventional cars remain

constant over time and that the car prices for EVs and hybrid cars change over

time, depending on the learning rates (see Section 4.7 for further discussion on the

learning rates). For the developed countries, we do not expect the weighted average

car price for the conventional cars to change significantly because the car markets

are relatively mature compared to those in the developing countries. On the other

hand, in the developing countries, it is possible for the weighted average car prices

to change over time as income increases. This is considered in Chapter 8, where

we take into account the income e↵ect on the changes in motor vehicle choices over

time.
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4.7 Assumptions for the baseline parameters

Tables 4.27, 4.28, 4.29, 4.30 and 4.31 present the parameters used in the FTT-

Transport model, including lifetimes, car occupancy rates, turnover rates, and learn-

ing rates for the five countries. We assume that the discount and learning rates are

the same across the five countries for modelling purposes. To consider the un-

certainties regarding the discount and the learning rates, we have carried out a

number of sensitivity analyses to examine whether the simulations are a↵ected by

the uncertainties in these parameters (see Appendix A).

In this research, the turnover rate is di↵erent from the mechanical survival

rate, as the survival rate considers the exit of cars from the market due to car

scrappage (death of a technological unit) only, while the car turnover rate considers

average rates at which people purchase new cars. Hence, the average turnover rate

is dependent on the economic development/income of a country and the extent to

which the car market is mature. For the more developed countries (i.e., the UK,

the US and Japan), without specific car scrappage incentives, we assumed that the

turnover rate is eight years, consistent with the average turnover rate in Japan

(Hancock, 2015). For the developing countries (China and India), we assume that

the population-wide turnover rate is much smaller because there are many first-

time car buyers. Indeed, consistent with our expectations, we find that the average

turnover rate in China was five years in 2017 (California EPA, 2019) and that it is

valid to assume that the turnover rate is five years in India (Nandi, 2015).

The last columns of Tables 4.27, 4.28, 4.29, 4.30 and 4.31 show the � values

assumed in the model. The � value is defined as the non-pecuniary cost found by

calculating the di↵erence between the historical fleet share and the projected fleet

share in each of the countries. We assume the � values for the advanced petrol cars

and the advanced diesel cars are the same as those for the conventional petrol and

diesel cars. This assumption is based on the non-pecuniary costs of the advanced

petrol and diesel cars being the same as those for the conventional petrol and diesel

cars of the same engine sizes. Note that for PLDV technologies that were not readily

available (e.g., NGV and flex-fuel cars in the UK), we assumed that the � values

were zero since there a lack of su�cient data to determine them.
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4.8 Assumptions for the biofuel mandate

In this thesis, we assume that under all scenarios, the biofuel mandate increases

gradually until it reaches 10% to 20%. Higher volume blends, such as E85, are

restricted for use only in a limited number of flex-fuel vehicles. Following the

estimations in IEA (2014), Figure 4.2 shows the assumptions for the biofuel mandate

in all five countries. Note that, in this study, we have not studied the e↵ect of

more stringent biofuel mandates in the five countries for two main reasons. Firstly,

except for in the US, there are very few flex-fuel cars and ethanol filling stations

available. According to our data, flex-fuel cars are not readily available in the UK,

Japan, China, and India. As a result, there are very few E85 filling stations in

these countries. Based on the theory of technological di↵usion, if the share for a

niche technology is nearly zero, the technology will take a very long time to gain a

significant market share. In the case of the US, some manufacturers do not advertise

their cars as a flex-fuel cars (according to our search of manufacturers’ websites);

hence, our data for fleet market shares show that there are very few flex-fuel cars

(less than 1% of the market share). Although our data may not reflect the true

number of flex-fuel vehicles in the US market, most flex-fuel car are not fuelled by

ethanol in practice because E85 is distributed to only 1% of the US fuelling stations

(Aguilar et al., 2015), leading to a scenario in which the ethanol blend continues to

grow in market share until it has met current limits acceptable for ethanol blends

in standard vehicle engines (E10, E15), which has been referred to as the ‘blend

wall’ (Aguilar et al., 2015; Zhang et al., 2010).

Secondly, to account for the fuel consumption and emissions under a higher

biofuel mandate, a model for biofuel and land-use change is required to account

for the true e↵ect of a higher biofuel mandate on global land use and emissions.

However, this is beyond the scope of this PhD thesis. Also, the fuel consumption

factor advertised on car manufacturers0 websites generally does not take into con-

sideration the use of E85, so there is an uncertainty regarding the average fuel use

of a flex-fuel car in the US. Considering the e↵ect of a higher biofuel mandate for

the US, therefore, requires a separate study on consumption of E85 in the US and

the e↵ect of E85 on land use changes and emissions.
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Figure 4.2: Biofuel mandate assumptions in the FTT-Transport model.
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Table 4.3: Data sources for the main variables

Variable Year Di↵erentiated
in 5 countries?

Data source

Car sales (di↵erentiated by
engine size and technology)

2016 Yes MarkLines

Car price 2016 Yes Car manufacturers0 websites
and car sales websites (see de-
tails in Table 4.4)

Fuel cost 2016 Yes Fuel use data are collected
from car manufacturers0 web-
sites, and fuel price per litre
is collected from the World
Bank

Fuel economy 2016 Yes Car manufacturers0 websites
and car sales websites (see de-
tails in table 4.4)

Discount rate 2013 No E.g., Inderwildi and King
(2012); Zhuang et al. (2007);
Harrison et al. (2010)

Learning rate 2012 No E.g., Tom Hazeldine and
Deller (2010); Weiss et al.
(2012); IEA (2013); McDowall
(2012)

Mechanical survival rate 2004 No E.g., DVLA (2012); NHTSA
(2008); Hao et al. (2011);
Singh et al. (2004)

Car turnover rate 2012 No IEA-SMP, ARTEMIS

Filling factor 2004 No IEA-SMP, ARTEMIS
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Table 4.4: Summary of data sources.

Country Car price Engine size fuel economy

UK Car prices are collected from
http://www.carpages.co.uk/ for
both new models and outdated
models.

The car engine sizes are collected
from http://www.carpages.co.uk/,
along with car prices and fuel econ-
omy.

The fuel economy for
cars is collected from
http://www.carpages.co.uk/,
along with car prices and car
engine sizes.

US O�cial websites of car manufac-
turers in the US for the existing
models. For the old/outdated
models, the price data were ob-
tained from car dealers, such as
http://www.autonews.com/section/prices

O�cial websites of car manufactur-
ers in the US. For the outdated/old
models, engine size data were
obtained from car dealers, such as
http://www.autonews.com/section/prices

O�cial websites of car manufactur-
ers in the US. For the outdated/old
models, fuel economy data were ex-
cluded from the calculation.

Japan O�cial websites of car manufac-
turers in Japan for the existing
models. The price data for cars
sold historically were obtained from
http://toyota.jp/service/dealer/

O�cial websites of car manufactur-
ers in Japan for the existing models.
The engine size data for cars sold
historically were obtained from
http://toyota.jp/service/dealer/spt
, along with the price data and the
fuel economy.

O�cial websites of car manufactur-
ers in Japan for the existing models.
The engine fuel economy data for
cars sold historically were obtained
from http://toyota.jp/service/,
along with the price data and
engine size data.

China Car price data (both new cars
and old models) were obtained
from commercial dealer web-
sites, such as China Auto Home
(http://www.autohome.com.cn/)
and Sohu Auto
(http://auto.sohu.com/).

Engine size data
were collected from
http://www.autohome.com.cn/
and http://auto.sohu.com/, along
with price and fuel economy data.

Fuel economy data
were collected from
http://www.autohome.com.cn/
and http://auto.sohu.com/, along
with price and engine size data.

India Car price data were obtained from
the o�cial car manufacturers0

websites for India. For old models,
we have obtained prices data from
http://www.carwale.com/new/ and
http://www.zigwheels.com/newcars

Engine size data were obtained
from the o�cial car manufacturers0

websites for India, alongside price
data. Similarly, for old models,
engine size data were obtained from
http://www.carwale.com/new/ and
http://www.zigwheels.com/newcars

If available, fuel economy data
were obtained from the o�cial
manufacturers0 websites for In-
dia. For some new models (where
fuel economy data are not avail-
able from the manufacturers)
and outdated models, fuel econ-
omy data were obtained from
http://www.carwale.com/new/ and
http://www.zigwheels.com/newcars

Table 4.5: The means, medians and standard deviations for car prices, engine sizes
and emissions in the UK, the US, Japan, China, and India.

Country P(USD) Engine
sizes (cc)

Fuel
economy
(l/100km)

Mean Median S.D. Mean Median S.D. Mean Median S.D.

UK 28990 30200 10599 1720 1600 594 6.03 5.88 2.03
USA 25953 27339 13090 2880 2400 1332 8.32 8.72 2.28
Japan 19300 14291 12499 1310 1400 733 4.91 5.47 1.88
China 18768 16423 12330 1691 1600 459 6.81 6.5 1.57
India 11312 9748 8985 1260 1200 423 5.05 5.52 1.66
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Table 4.6: PLDV fleet shares for the UK (%)

UK 2009 2010 2011 2012 2013 2014 2015 2016

Econ 31.23 31.33 30.17 29.83 32.20 32.50 33.24 34.20
Petrol Mid 32.97 31.45 28.64 27.41 29.30 32.18 33.40 36.10

Lux 6.84 6.49 5.77 5.48 5.56 6.00 5.97 6.50

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Petrol Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 1.37 1.53 2.16 1.30 1.00 0.80 0.20 0.10
Diesel Mid 19.39 21.93 25.01 25.23 21.60 20.90 19.20 15.60

Lux 6.59 6.93 7.85 8.32 7.72 6.90 6.00 5.20

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Diesel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.04 0.04 0.03 0.03 0.00 0.00 0.00 0.00
CNG Mid 0.04 0.04 0.03 0.03 0.00 0.00 0.00 0.00

Lux 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flex fuel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.01 0.02 0.03 0.03 0.05 0.05 0.05 0.04
Hybrid Mid 0.12 0.16 0.21 0.28 0.76 1.19 1.22 1.51

Lux 0.04 0.04 0.04 0.04 0.58 0.60 0.60 0.62

Econ 0.00 0.00 0.00 0.00 0.01 0.02 0.13 0.21
Electric Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.01 0.00 0.02 0.04 0.10
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Table 4.7: PLDV fleet shares for the US (%)

US 2009 2010 2011 2012 2013 2014 2015 2016

Econ 0.05 1.00 1.29 1.46 1.76 2.17 2.45 2.69
Petrol Mid 8.66 12.00 12.46 13.00 13.43 13.67 14.04 14.23

Lux 91.29 85.45 84.61 83.54 82.52 81.76 80.92 80.38

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Petrol Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Diesel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Diesel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CNG Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flex fuel Mid 0.00 0.00 0.00 0.20 0.30 0.30 0.40 0.40

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.03 0.04 0.05 0.05 0.05 0.05 0.05
Hybrid Mid 0.00 0.98 1.04 1.14 1.23 1.26 1.28 1.32

Lux 0.00 0.54 0.54 0.57 0.60 0.61 0.62 0.63

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Electric Mid 0.00 0.00 0.01 0.05 0.10 0.15 0.18 0.22

Lux 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.10
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Table 4.8: PLDV fleet shares for Japan (%)

Japan 2009 2010 2011 2012 2013 2014 2015 2016

Econ 33.44 36.23 38.77 41.20 43.35 45.10 46.33 47.36
Petrol Mid 38.97 36.82 34.80 32.37 30.02 28.09 26.64 25.26

Lux 25.79 24.25 22.85 21.24 19.86 18.43 17.26 16.10

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Petrol Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Diesel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.09 0.09 0.10 0.11 0.11 0.12 0.13 0.14

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Diesel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CNG Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flex fuel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.23 0.39 0.65 0.98 1.26 0.00 2.22 2.72
Hybrid Mid 1.19 1.77 2.27 3.36 4.38 0.00 5.92 6.72

Lux 0.30 0.44 0.52 0.67 0.90 0.00 1.31 1.44

Econ 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.05
Electric Mid 0.00 0.01 0.03 0.07 0.10 0.00 0.15 0.17

Lux 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.03
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Table 4.9: PLDV fleet shares for China (%)

China 2009 2010 2011 2012 2013 2014 2015 2016

Econ 35.00 32.02 29.67 29.48 28.66 27.59 25.68 23.67
Petrol Mid 48.05 49.97 51.61 52.40 53.66 55.23 57.36 59.17

Lux 16.92 17.89 18.59 17.85 17.47 16.99 16.49 16.24

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Petrol Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Diesel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Diesel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.01 0.03 0.08 0.06 0.04 0.03 0.02
CNG Mid 0.04 0.06 0.10 0.15 0.00 0.01 0.01 0.01

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flex fuel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hybrid Mid 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.05

Lux 0.00 0.00 0.00 0.01 0.02 0.02 0.03 0.03

Econ 0.00 0.00 0.01 0.03 0.04 0.06 0.15 0.19
Electric Mid 0.00 0.00 0.00 0.02 0.03 0.08 0.22 0.49

Lux 0.00 0.00 0.00 0.01 0.01 0.02 0.06 0.12
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Table 4.10: PLDV fleet shares for India (%)

India 2009 2010 2011 2012 2013 2014 2015 2016

Econ 31.13 36.50 40.38 43.85 46.77 49.39 52.05 54.34
Petrol Mid 1.12 1.31 1.53 1.79 1.94 1.96 1.90 1.80

Lux 1.82 1.79 2.06 2.24 2.37 2.48 2.55 2.60

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Petrol Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 10.61 9.65 8.99 8.56 8.04 7.48 7.05 6.92
Diesel Mid 52.53 48.21 44.61 41.21 38.58 36.16 33.79 31.53

Lux 2.79 2.56 2.42 2.34 2.29 2.54 2.67 2.79

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Adv Diesel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CNG Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Flex fuel Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Hybrid Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

Econ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Electric Mid 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Lux 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 4.11: Assumptions for fuel consumption for PLDVs in the UK (l/100km) and
fuel prices (USD/litre). N/A indicates that the technology is not readily available.

UK Fuel con-
sumption
(l/100km)

Fuel price
at the pump
(2016)
(USD/litre)

Fuel price
(without
fuel tax)
(USD/litre)

Econ 4.97 1.46 0.86
Petrol Mid 5.18 1.46 0.86

Lux 6.27 1.46 0.86

Econ 3.98 1.46 0.86
Adv Petrol Mid 4.15 1.46 0.86

Lux 5.02 1.46 0.86

Econ 3.41 1.50 0.90
Diesel Mid 4.55 1.50 0.90

Lux 5.30 1.50 0.90

Econ 2.73 1.50 0.90
Adv Diesel Mid 3.64 1.50 0.90

Lux 4.24 1.50 0.90

Econ N/A N/A N/A
NGV Mid N/A N/A N/A

Lux N/A N/A N/A

Econ N/A N/A N/A
Flex fuel Mid N/A N/A N/A

Lux N/A N/A N/A

Econ 1.89 1.46 0.86
Hybrid Mid 2.65 1.46 0.86

Lux 4.28 1.46 0.86
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Table 4.12: Fuel consumption for PLDVs in the US (l/100km) and fuel prices
(USD/litre). N/A indicates that the technology is not readily available.

US Fuel con-
sumption
(l/100km)

Fuel price
at the pump
(2016)
(USD/litre)

Fuel price
(without
fuel tax)
(USD/litre)

Econ 8.00 0.71 0.66
Petrol Mid 8.40 0.71 0.66

Lux 10.00 0.71 0.66

Econ 6.40 0.71 0.66
Adv Petrol Mid 6.72 0.71 0.66

Lux 8.00 0.71 0.66

Econ 7.20 0.65 0.60
Diesel Mid 7.56 0.65 0.60

Lux 9.00 0.65 0.60

Econ 5.76 0.65 0.60
Adv Diesel Mid 6.05 0.65 0.60

Lux 7.20 0.65 0.60

Econ N/A N/A N/A
NGV Mid N/A N/A N/A

Lux N/A N/A N/A

Econ 9.36 0.42 0.42
Flex fuel Mid 9.83 0.42 0.42

Lux 11.70 0.42 0.42

Econ 2.00 0.71 0.66
Hybrid Mid 2.40 0.71 0.66

Lux 2.50 0.71 0.66
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Table 4.13: Fuel consumption for PLDVs in Japan (l/100km) and fuel prices
(USD/litre). N/A indicates that the technology is not readily available.

Japan Fuel con-
sumption
(l/100km)

Fuel price
at the pump
(2016)
(USD/litre)

Fuel price
(without
fuel tax)
(USD/litre)

Econ 5.56 1.10 0.60
Petrol Mid 5.88 1.10 0.60

Lux 6.67 1.10 0.60

Econ 4.88 1.10 0.60
Adv Petrol Mid 5.52 1.10 0.60

Lux 6.80 1.10 0.60

Econ 5.49 0.88 0.38
Diesel Mid 6.21 0.88 0.38

Lux 7.65 0.88 0.38

Econ 4.39 0.88 0.38
Adv Diesel Mid 4.97 0.88 0.38

Lux 6.12 0.88 0.38

Econ N/A N/A N/A
NGV Mid N/A N/A N/A

Lux N/A N/A N/A

Econ N/A N/A N/A
Flex fuel Mid N/A N/A N/A

Lux N/A N/A N/A

Econ 2.00 1.10 0.60
Hybrid Mid 2.48 1.10 0.60

Lux 2.70 1.10 0.60
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Table 4.14: Fuel consumption for PLDVs in China (l/100km) and fuel prices
(USD/litre). N/A indicates that the technology is not readily available.

China Fuel con-
sumption
(l/100km)

Fuel price
at the pump
(2016)
(USD/litre)

Fuel price
(without
fuel tax)
(USD/litre)

Econ 6.1 0.96 0.9
Petrol Mid 6.9 0.96 0.9

Lux 8.5 0.96 0.9

Econ 4.88 0.96 0.9
Adv Petrol Mid 5.52 0.96 0.9

Lux 6.8 0.96 0.9

Econ 5.49 0.81 0.75
Diesel Mid 6.21 0.81 0.75

Lux 7.65 0.81 0.75

Econ 4.39 0.81 0.75
Adv Diesel Mid 4.97 0.81 0.75

Lux 6.12 0.81 0.75

Econ 4.39 0.40 0.34
NGV Mid 4.97 0.40 0.34

Lux 6.12 0.40 0.34

Econ N/A N/A N/A
Flex fuel Mid N/A N/A N/A

Lux N/A N/A N/A

Econ 2.00 0.96 0.90
Hybrid Mid 2.48 0.96 0.90

Lux 2.7 0.96 0.90
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Table 4.15: Fuel consumption for PLDVs in India (l/100km) and fuel prices
(USD/litre). N/A indicates that the technology is not readily available.

India Fuel con-
sumption
(l/100km)

Fuel price
at the pump
(2016)
(USD/litre)

Fuel price
(without
fuel tax)
(USD/litre)

Econ 4.55 0.97 0.47
Petrol Mid 6.67 0.97 0.47

Lux 10.00 0.97 0.47

Econ 3.64 0.97 0.47
Adv Petrol Mid 5.33 0.97 0.47

Lux 8.00 0.97 0.47

Econ 4.00 0.81 0.31
Diesel Mid 5.88 0.81 0.31

Lux 7.14 0.81 0.31

Econ 3.20 0.81 0.31
Adv Diesel Mid 4.71 0.81 0.31

Lux 5.71 0.81 0.31

Econ 4.392 0.2 0.2
NGV Mid 4.968 0.2 0.2

Lux 6.12 0.2 0.2

Econ N/A N/A N/A
Flex fuel Mid N/A N/A N/A

Lux N/A N/A N/A

Econ 2 0.97 0.47
Hybrid Mid 2.48 0.97 0.47

Lux 2.7 0.97 0.47
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Table 4.16: EV battery capacity (KWh)

US UK Japan China India

EV Econ 16 16 16 22 22
EV Mid 30 30 30 30 30
EV Lux 100 100 100 100 100

Table 4.17: EV energy consumption(MJ/km)

US UK Japan China India

EV Econ 0.48 0.48 0.48 0.54 0.54
EV Mid 0.79 0.74 0.74 0.76 0.76
EV Lux 0.94 0.94 0.94 0.94 0.94

Table 4.18: Projected CO2 emissions from power generation (MtCO2) under the
IEA New Policy Scenario. Source: IEA (2017c)

2000 2015 2016 2025 2030 2035 2040

US 2433 1967 1855 1755 1733 1705 1664
EU 1692 1454 1403 1168 1049 918 866
China 1449 4395 4394 4478 4544 4493 4337
Japan 460 555 543 394 370 349 330
India 1449 4395 4394 4478 4544 4493 4337
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Table 4.19: Projected energy demand in the power sector (Mtoe) under the IEA
New Policy Scenario. Source: IEA (2017c)

2000 2015 2016 2025 2030 2035 2040

US 933 881 868 857 865 873 885
EU 837 836 834 810 795 787 796
China 380 1272 1303 1558 1700 1805 1871
Japan 229 185 186 192 195 198 202
India 459 1065 1149 1449 1656 1843 2009

Table 4.20: Average electricity prices by country under the New Policy Scenario.
Source: IEA (2017c)

Dollars per MWh 2016 2040

EU 240 270
US 120 120
China 70 130
Japan 220 210
India 60 100
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Table 4.21: The average indirect CO2 emissions factor (gCO2/100km) from EVs in
the five di↵erent countries, derived from the projected CO2 emissions from power
generation (MtCO2) under the New Policy Scenario (Table 4.18) and the estimated
average EV energy consumption (Table 4.17).

2000 2015 2016 2025 2030 2035 2040

US
EV Econ 34 29 28 26 26 25 24
EV Mid 47 41 39 37 36 35 34
EV Lux 59 50 48 46 45 44 42

UK
EV Econ 26 22 22 19 17 15 14
EV Mid 37 31 30 26 24 21 20
EV Lux 45 39 38 32 30 26 24

Japan
EV Econ 26 39 38 26 24 23 21
EV Mid 36 54 53 37 34 32 30
EV Lux 45 67 65 46 42 39 37

China
EV Econ 49 45 44 37 34 32 30
EV Mid 69 62 61 52 48 45 42
EV Lux 85 77 75 64 60 56 52

India
EV Econ 41 53 49 40 35 31 28
EV Mid 57 75 69 56 50 44 39
EV Lux 71 92 86 69 61 55 48
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Table 4.22: The cost assumptions for the UK. Column 1 shows the average PLDV
price assumptions, column 2 shows the fuel cost assumptions (without tax), and
column 3 shows the O&M cost assumptions taken in the baseline scenario.

UK Car price
(USD/vehicle)

fuel cost
without
fuel tax
(USD/km)

O&M cost
(USD/km)

Econ 16927 4.46 0.04
Petrol Mid 31795 4.64 0.05

Lux 40594 5.62 0.06

Econ 20312 3.57 0.04
Adv Petrol Mid 38153 3.72 0.05

Lux 48712 4.49 0.06

Econ 22931 3.68 0.04
Diesel Mid 32758 4.91 0.05

Lux 38483 5.73 0.06

Econ 27517 2.95 0.04
Adv Diesel Mid 39310 3.93 0.05

Lux 46180 4.58 0.06

Econ N/A N/A N/A
CNG Mid N/A N/A N/A

Lux N/A N/A N/A

Econ N/A N/A N/A
Flex fuel Mid N/A N/A N/A

Lux N/A N/A N/A

Econ 25224 1.91 0.04
Hybrid Mid 36034 2.67 0.05

Lux 47767 4.31 0.06

Econ 22931 0.02 0.05
Electric Mid 32758 0.03 0.06

Lux 51656 0.04 0.07
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Table 4.23: The cost assumptions for the US. Column 1 shows the average PLDV
price assumptions, column 2 shows the fuel cost assumptions (without tax), and
column 3 shows the O&M cost assumptions taken in the baseline scenario.

US Car price
(USD/vehicle)

fuel cost
without
fuel tax
(USD/km)

O&M cost
(USD/km)

Econ 17939 5.28 0.04
Petrol Mid 20749 5.54 0.05

Lux 29744 6.60 0.06

Econ 21527 4.22 0.04
Adv Petrol Mid 24899 4.44 0.05

Lux 35693 5.28 0.06

Econ 21527 4.32 0.04
Diesel Mid 24899 4.54 0.05

Lux 35693 5.40 0.06

Econ 30998 3.46 0.04
Adv Diesel Mid 35855 3.63 0.05

Lux 51398 4.32 0.06

Econ 17939 NA NA
CNG Mid 20749 NA NA

Lux 29744 NA NA

Econ 17939 3.93 0.04
Flex fuel Mid 20749 4.13 0.05

Lux 29744 4.91 0.06

Econ 23958 1.32 0.04
Hybrid Mid 28795 1.58 0.05

Lux 34007 1.65 0.06

Econ 29744 0.01 0.05
Electric Mid 30707 0.02 0.06

Lux 90229 0.02 0.07
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Table 4.24: The cost assumptions for Japan. Column 1 shows the average PLDV
price assumptions, column 2 shows the fuel cost assumptions (without tax), and
column 3 shows the O&M cost assumptions taken in the baseline scenario.

Japan Car price
(USD/vehicle)

fuel cost
without
fuel tax
(USD/km)

O&M cost
(USD/km)

Econ 12936 2.20 0.04
Petrol Mid 21321 2.48 0.05

Lux 27991 3.06 0.06

Econ 15523 1.76 0.04
Adv Petrol Mid 25585 1.99 0.05

Lux 33589 2.45 0.06

Econ 15523 1.15 0.04
Diesel Mid 25585 1.30 0.05

Lux 33589 1.61 0.06

Econ 18628 0.92 0.04
Adv Diesel Mid 30702 1.04 0.05

Lux 40307 1.29 0.06

Econ N/A N/A N/A
NGV Mid N/A N/A N/A

Lux N/A N/A N/A

Econ N/A N/A N/A
Flex fuel Mid N/A N/A N/A

Lux N/A N/A N/A

Econ 19513 0.72 0.04
Hybrid Mid 22735 0.89 0.05

Lux 45303 0.97 0.06

Econ 18985 0.01 0.03
Electric Mid 31288 0.02 0.04

Lux 40200 0.02 0.05
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Table 4.25: The cost assumptions for China. Column 1 shows the average PLDV
price assumptions, column 2 shows the fuel cost assumptions (without tax), and
column 3 shows the O&M cost assumptions taken in the baseline scenario.

China Car price
(USD/vehicle)

fuel cost
without
fuel tax
(USD/km)

O&M cost
(USD/km)

Econ 8901 2.20 0.04
Petrol Mid 16780 2.48 0.05

Lux 41177 3.06 0.06

Econ 10681 1.76 0.04
Adv Petrol Mid 20135 1.99 0.05

Lux 49412 2.45 0.06

Econ 10681 1.15 0.04
Diesel Mid 20135 1.30 0.05

Lux 49412 1.61 0.06

Econ 12817 0.92 0.04
Adv Diesel Mid 24163 1.04 0.05

Lux 59295 1.29 0.06

Econ 8901 1.76 0.03
NGV Mid 16780 1.99 0.04

Lux 41177 2.45 0.05

Econ N/A N/A N/A
Flex fuel Mid N/A N/A N/A

Lux N/A N/A N/A

Econ 20000 0.72 0.04
Hybrid Mid 24019 0.89 0.05

Lux 39960 0.97 0.06

Econ 9575 0.01 0.03
Electric Mid 27073 0.02 0.04

Lux 42424 0.02 0.05
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Table 4.26: The cost assumptions for India. Column 1 shows the average PLDV
price assumptions, column 2 shows the fuel cost assumptions (without tax), and
column 3 shows the O&M cost assumptions taken in the baseline scenario.

India Car price
(USD/vehicle)

fuel cost
without
fuel tax
(USD/km)

O&M cost
(USD/km)

Econ 8897 2.14 0.04
Petrol Mid 20545 3.13 0.05

Lux 30097 4.70 0.06

Econ 10676 1.71 0.04
Adv Petrol Mid 24654 2.51 0.05

Lux 36116 3.76 0.06

Econ 12132 1.24 0.04
Diesel Mid 17920 1.82 0.05

Lux 22743 2.21 0.06

Econ 14559 0.99 0.04
Adv Diesel Mid 21504 1.46 0.05

Lux 27291 1.77 0.06

Econ 8897 0.88 0.03
NGV Mid 20545 0.99 0.04

Lux 30097 1.22 0.05

Econ N/A N/A N/A
Flex fuel Mid N/A N/A N/A

Lux N/A N/A N/A

Econ 10676 0.94 0.04
Hybrid Mid 68192 1.17 0.05

Lux 54189 1.27 0.06

Econ 9575 0.04 0.03
Electric Mid 27073 0.04 0.04

Lux 42424 0.05 0.05
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Table 4.27: The parameters used in the FTT-Transport model, including the dis-
count rates, learning rates, turnover rates, and � values for the UK.

UK Car size Discount
rate

Learning
rate

Turnover
rate

� value

Econ 0.15 0.01 8 0.45
Petrol Mid 0.15 0.01 8 0.20

Lux 0.15 0.01 8 0.40

Econ 0.15 0.05 8 0.45
Adv Petrol Mid 0.15 0.05 8 0.20

Lux 0.15 0.05 8 0.40

Econ 0.15 0.01 8 0.80
Diesel Mid 0.15 0.01 8 0.90

Lux 0.15 0.01 8 1.00

Econ 0.15 0.05 8 0.80
Adv Diesel Mid 0.15 0.05 8 0.90

Lux 0.15 0.05 8 1.00

Econ 0.15 0.01 8 0.00
NGV Mid 0.15 0.01 8 0.00

Lux 0.15 0.01 8 0.00

Econ 0.15 0.01 8 0.00
Flex fuel Mid 0.15 0.01 8 0.00

Lux 0.15 0.01 8 0.00

Econ 0.15 0.1 8 1.00
Hybrid Mid 0.15 0.1 8 0.30

Lux 0.15 0.1 8 0.10

Econ 0.15 0.1 8 0.00
Electric Mid 0.15 0.1 8 0.00

Lux 0.15 0.1 8 -0.60
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Table 4.28: The parameters used in the FTT-Transport model, including the dis-
count rates, learning rates, turnover rates, and � values for the US.

US Car size Discount
rate

Learning
rate

Turnover
rate

� value

Econ 0.15 0.01 8 -0.72
Petrol Mid 0.15 0.01 8 -0.06

Lux 0.15 0.01 8 0.42

Econ 0.15 0.05 8 -0.72
Adv Petrol Mid 0.15 0.05 8 -0.06

Lux 0.15 0.05 8 0.42

Econ 0.15 0.01 8 0.00
Diesel Mid 0.15 0.01 8 0.00

Lux 0.15 0.01 8 0.00

Econ 0.15 0.05 8 0.00
Adv Diesel Mid 0.15 0.05 8 0.00

Lux 0.15 0.05 8 0.00

Econ 0.15 0.01 8 0.00
CNG Mid 0.15 0.01 8 0.00

Lux 0.15 0.01 8 0.00

Econ 0.15 0.01 8 0.00
Flex fuel Mid 0.15 0.01 8 0.00

Lux 0.15 0.01 8 0.00

Econ 0.15 0.1 8 0.00
Hybrid Mid 0.15 0.1 8 -0.12

Lux 0.15 0.1 8 -0.06

Econ 0.15 0.1 8 -0.12
Electric Mid 0.15 0.1 8 -0.40

Lux 0.15 0.1 8 -1.90
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Table 4.29: The parameters used in the FTT-Transport model, including the dis-
count rates, learning rates, turnover rates, and � values for Japan.

Japan Car size Discount
rate

Learning
rate

Turnover
rate

� value

Econ 0.15 0.01 8 0.76
Petrol Mid 0.15 0.01 8 0.52

Lux 0.15 0.01 8 0.40

Econ 0.15 0.05 8 0.76
Adv Petrol Mid 0.15 0.05 8 0.52

Lux 0.15 0.05 8 0.08

Econ 0.15 0.01 8 0.00
Diesel Mid 0.15 0.01 8 0.00

Lux 0.15 0.01 8 0.00

Econ 0.15 0.05 8 0.00
Adv Diesel Mid 0.15 0.05 8 0.00

Lux 0.15 0.05 8 0.00

Econ 0.15 0.01 8 0.00
CNG Mid 0.15 0.01 8 0.00

Lux 0.15 0.01 8 0.00

Econ 0.15 0.01 8 0.00
Flex fuel Mid 0.15 0.01 8 0.00

Lux 0.15 0.01 8 0.00

Econ 0.15 0.1 8 0.00
Hybrid Mid 0.15 0.1 8 -0.32

Lux 0.15 0.1 8 -0.72

Econ 0.15 0.1 8 0.00
Electric Mid 0.15 0.1 8 -0.30

Lux 0.15 0.1 8 -0.60
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Table 4.30: The parameters used in the FTT-Transport model, including the dis-
count rate, learning rates, turnover rates, and � values for China.

China Car size Discount
rate

Learning
rate

Turnover
rate

� value

Econ 0.15 0.01 5 0.78
Petrol Mid 0.15 0.01 5 0.00

Lux 0.15 0.01 5 -0.72

Econ 0.15 0.05 5 0.78
Adv Petrol Mid 0.15 0.05 5 0.00

Lux 0.15 0.05 5 -0.72

Econ 0.15 0.01 5 0.90
Diesel Mid 0.15 0.01 5 0.90

Lux 0.15 0.01 5 1.00

Econ 0.15 0.05 5 0.90
Adv Diesel Mid 0.15 0.05 5 0.90

Lux 0.15 0.05 5 0.60

Econ 0.15 0.01 5 0.00
CNG Mid 0.15 0.01 5 0.00

Lux 0.15 0.01 5 0.00

Econ 0.15 0.01 5 0.00
Flex fuel Mid 0.15 0.01 5 0.00

Lux 0.15 0.01 5 0.00

Econ 0.15 0.1 5 -0.72
Hybrid Mid 0.15 0.1 5 -1.00

Lux 0.15 0.1 5 -0.84

Econ 0.15 0.1 5 -0.60
Electric Mid 0.15 0.1 5 -0.90

Lux 0.15 0.1 5 -1.30
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Table 4.31: The parameters used in the FTT-Transport model, including including
the discount rates, learning rates, turnover rates, and � values for India.

India Car size Discount
rate

Learning
rate

Turnover
rate

� value

Econ 0.15 0.01 5 0.38
Petrol Mid 0.15 0.01 5 0.06

Lux 0.15 0.01 5 -0.48

Econ 0.15 0.05 5 0.38
Adv Petrol Mid 0.15 0.05 5 0.06

Lux 0.15 0.05 5 -0.48

Econ 0.15 0.01 5 0.40
Diesel Mid 0.15 0.01 5 0.80

Lux 0.15 0.01 5 -0.20

Econ 0.15 0.05 5 0.40
Adv Diesel Mid 0.15 0.05 5 0.80

Lux 0.15 0.05 5 -0.20

Econ 0.15 0.01 5 0.12
CNG Mid 0.15 0.01 5 -0.08

Lux 0.15 0.01 5 -0.20

Econ 0.15 0.01 5 0.00
Flex fuel Mid 0.15 0.01 5 0.00

Lux 0.15 0.01 5 0.00

Econ 0.15 0.1 5 0.00
Hybrid Mid 0.15 0.1 5 -0.80

Lux 0.15 0.1 5 -1.10

Econ 0.15 0.1 5 0.00
Electric Mid 0.15 0.1 5 -0.08

Lux 0.15 0.1 5 -0.20



Chapter 5

Demand for PLDV service

5.1 Introduction

The change in the demand is a major factor a↵ecting future energy consumption

and GHG emissions in the passenger light-duty vehicle (PLDV) sector globally.

In particular, in developing countries, rapid increases in energy demand from the

PLDV sector have raised concerns over local air pollution and CO2 emissions, and

there is broad consensus that the PLDV sector will continue to grow in coming

decades as incomes rise.

Transport demand is driven by income, population, urban density, family struc-

ture and other demographic factors (Karathodorou et al., 2010; Kim and Brown-

stone, 2013; He et al., 2005; Grote et al., 2016). Studies have also found induced

and rebound e↵ects on the demand for passenger car transport (Chai et al., 2016).

More specifically, they find that the demand for transport increases with economic

and infrastructure development (e.g., road and railway development). For exam-

ple, Noland and Lem (2002) find that the enhancement of road capacity in the US

and Britain impacts tra�c demand. Improvements in the infrastructure, such as

highway development, generate new consumption of fossil fuels and CO2 emissions,

known as the induced e↵ect. Improvements in energy e�ciency in vehicles may lead

to an increase in the service demand for PLDVs and thus o↵set the e�ciency gains

from technological di↵usion, known as the rebound e↵ect. Hence, it is important

to consider the elasticity of demand for transport in relation to fuel price, energy

e�ciency and road accessibility in the estimation and projection for the demand for

PLDV services.

This chapter is divided into three sections. The first section involves the econo-
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metric analysis of aggregate time-series data on PLDV service demand, GDP per

capita, oil prices per litre, road mileage, urbanisation, urban density and fuel econ-

omy in the UK, the US, Japan, China and India.

In the second section, we project the future demand for PLDV services using

the projections for future oil prices, urban density, urbanisation, fuel economy, road

mileage and GDP per capita obtained from government/IEA reports and existing

literature. In the third section, we make projections for the growth in the car and

total vehicle stock to the year 2050 for the US, the UK, Japan, China and India

using an existing car ownership model. A sensitivity analysis is performed to access

the e↵ect of uncertainties regarding several parameters, such as oil price and income

growth, on the PLDV service demand in the countries used in this analysis.

5.2 Historical pattern in the growth of transport

demand

Figure 5.1 shows the total car fleet in use in the UK, US, Japan, China and India be-

tween 1970 and 2014. The car fleet data were collected from national transportation

bureaus and international data sources, such as US Highway Statistics, Eurostat,

the China Statistical Yearbook, the Japan Automobile Manufacturers Association

(JAMA), and the Government of India. The total energy consumption from road

transportation was collected from IEA energy statistics. As shown in Figure 5.2,

total energy consumption from road transport in China and India has been increas-

ing since 1970, while total energy consumption in the UK and Japan has stabilised

since 1995.

5.3 PLDV service demand estimation

The demand estimation in this chapter consists of two parts. The first part is the

construction of an econometric model which predicts the demand for PLDVs (in

km per vehicle) using fuel prices, income, urbanisation, road infrastructure, urban

density, and fuel economy. Then we use the econometric model to predict the future

private passenger vehicle transport demand (per vehicle). In the second part, we

develop a model for vehicle stock and project future car ownership, which is then

used to make projections for the total demand for PLDVs.
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Figure 5.1: Size of the car fleet in use in the UK, the US, Japan, China and India
between 1970 and 2015. Source: Eurostat, US Highway Statistics, China Statistical
Yearbook, Japan Automobile Manufacturers Association, and the Government of
India.
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Figure 5.2: Total energy consumption for road transportation in the UK, US, China,
Japan, and India between 1970 and 2015. Source: IEA Energy Statistics.
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5.3.1 Methodology

Empirical model specification

The empirical model specifies kilometres per PLDV in country i as a function of

GDP per capita (Y ), fuel cost (in terms of oil price) (FP ) and a group of variables,

including urbanisation (U), lengths of roads (M), urban density (UD), and fuel

economy (FE). We estimate the dynamic model because e�ciency improvements

and fuel price changes take time, and static models may not capture adequately the

long-run adjustments of transport demand. The dynamic model we specify captures

the historical trend of passenger vehicle travel demand.

(5.1)lnKMit = �0 + �1lnKMit�1 + �2lnYit + �3lnFPit

+ �4lnMit + �5lnUit + �6lnUDit + �7lnFEit

The interpretation for each variable is indicated in Table 5.1. The following

section summarises the rationale for each variable in equation 5.1.

Income

Income is known to drive transport demand, and it is recognised as the main driver

of transport demand growth per capita income (Small and Van Dender, 2007) since

higher incomes allow individuals to spend more on travel. Studies have found that

while there exists a positive correlation between income and transport demand, the

income elasticity for transport demand may decline as a country becomes richer.

For example, Goodwin et al. (2004) surveyed the literature on transport demand

elasticities and found that income elasticity declined over the last forty years in the

US. Similarly, for the UK, Fouquet (2012) finds that income and price elasticities of

passenger transport demand were very large in the mid-nineteenth century and have

declined since then. In India, on the other hand, it has been found that gasoline

demand is likely to increase significantly for a given increase in income and the

e↵ect is larger in the long run than in the short run (Ramanathan, 1999).

Fuel price

Since fuel prices a↵ect the share of fuel costs in the total cost of driving, we expect

that a fall in fuel prices will increase the transport distance due to the rebound

e↵ect. A large number of studies have examined the elasticities of gasoline prices

in transport fuel demand. Price elasticities are almost always negative: an increase
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in price leads to lower demand, and vice versa. Dahl (2012) examines 240 gaso-

line demand studies for more than 70 countries. She found that the elasticities of

gasoline prices vary significantly between countries and are related to income, in-

frastructure, and culture. For example, in the US, the price elasticity of gasoline is

currently estimated to be in the range of -0.02 to -0.04 in the short term, meaning

that it takes a 25% to 50% decrease in the price of gasoline to raise automobile

travel by 1%.

Urbanization

With the gradual increase in the proportion of the population living in urban areas

and higher urbanisation rates, over half of all people were living in urban areas by

2012 (Chakwizira et al., 2014). With a higher urbanisation level and as a result

of economic of agglomeration, it becomes easier for people to access shops and

restaurants. As urbanisation progresses, cities become more congested, making

it is less convenient to use private cars. With improved public transportation and

better accessibility for all the aspects of urban life, the average distance travelled by

cars declines. Studies have found that as a region becomes more urbanised, vehicle

kilometres per person fall (Karathodorou et al., 2010; Small and Van Dender, 2007).

Urban density

Travel distances are often shorter in cities which have greater density due to con-

gestion and the presence of public transport networks. A number of studies have

found that travel demand decreases with increased urban density. Karathodorou

et al. (2010) find that there is a negative relationship between passenger car fuel

consumption and urban density. Similarly, Newman and Kenworthy (1989) report a

strong negative correlation between fuel consumption per capita and urban density.

Road mileage

The relationship between accessibility to destinations and the demand for transport

can be measured as an induced e↵ect. In both the UK and US, Nolan and Lem

(2001) conclude that the expansion in road capacity has a positive impact on tra�c

demand. In the case of China, Chai et al. (2016) find that when road accessibility

(measured in mileage) is increased by 1%, road tra�c demand increases by 1.26%.

They also find that the long-term e↵ect of road accessibility on the tra�c demand is
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stronger than the short-term e↵ect. Hence, we expect to find a positive relationship

between total road mileage in a country and distance travelled per vehicle.

Fuel intensity and fuel economy standards

As fuel economy improves, the average fuel cost per km falls, and the demand for

passenger transport increases as a result of the income e↵ect. The rebound e↵ect

is expressed as the percentage of the forecasted reduction in energy use that is lost

due to consumer and market responses (Gillingham et al., 2016). Over time, as the

cost of travel by cars becomes cheaper, we expect a positive correlation between

fuel economy standards and distance travelled per vehicle and a negative correlation

between fuel consumption per km and the distance travelled per vehicle per year.

Table 5.1: Interpretation and units of indicators

Type Variable Symbol Unit

Explained PLDV kilometres per
year

lnKMit km/year

Explanatory GDP per capita lnYit USD

Oil price per litre lnFPit USD/litre

Road length lnMit km

Urbanization lnUit N/A

Urban density lnUDit population/km2

Fuel economy lnFEit litre/100km

5.3.2 Data

5.3.3 Data sources

This present study encompasses data obtained from the UK, the US, Japan, China

and India. The variables in the dataset consist of the passenger kilometres of PLDVs

per annum (km/year), the price of fuel at the gas pump (USD/litre), urbanization
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(% of population living in cities), GDP per capita, road length (in km), population

density, and fuel e�ciency in litres/100km. The data sources and definitions are

listed in Table 5.2.

The data were obtained from diverse o�cial sources, including national statisti-

cal yearbooks, energy statistics bureaus, car industry yearbooks, the World Bank,

and some estimates were obtained from existing literature when data were not

readily available. In China and India, the demand for PLDV services in terms of

passenger cars is not readily available. The China Statistical Yearbook and the

World Bank only provide data for road passenger transport demand, but not pas-

senger cars specifically. Similarly, in the case of India, only data for road passenger

transport are readily available from the World Bank. Therefore, it was necessary

to find the proportion of passenger vehicle transport attributed to the demand for

PLDVs in China and India. For China, we have taken the modal split between cars

and buses from the results of Zhang et al. (2007), who build a modal split model

maximising spatial welfare constrained by time and travel budgets. Singh (2006)

estimates the tra�c mobility data from 1950 to 2001 in India based on the assump-

tions taken from studies such as NTDPC (2014). They build projections of the

modal shares from the year 2001 onwards until 2021 based on the Indian mobility

trend. For the US and UK, it is possible to obtain passenger car kilometres per

year from the National Highway Statistics dataset and Department of Transport

Statistics, respectively.

GDP per capita is taken as an indicator for income and collected from the

World Bank. The data for urbanisation, urban density and oil price at the pump

are readily available from the World Bank. We filled in the missing data with the

data collected from national statistics whenever the data were unavailable from the

World Bank. For example, in the case of India, there are gaps in the oil price data

between 1990-2015. The gaps were filled using the oil price indices collected from

the Ministry of Petroleum and Natural Gas.

It is challenging to obtain fuel e�ciency data for all countries before 1990 be-

cause new car fuel consumption was not routinely recorded in many countries. The

fuel economy standard data for all five countries after 2004 was collected from the

International Council on Clean transportation (ICCT). In the case of the UK, the

US and Japan, new car fuel consumption was taken from o�cial statistics, when

available. Otherwise, we have taken the data for new car fuel e�ciency from Clerides

and Zachariadis (2008), who analyse the evolution of fuel economy and consump-

tion over time (1980-2010) in 18 countries. We extrapolated new car fuel e�ciency
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between 1970 and 1980 based on the evolution of fuel e�ciency between 1980 and

1995. 1. We assumed that average slope for new car fuel e�ciency between 1990

and 2005 is flatter than the trend between 2005 and 2012. We argue that this as-

sumption is valid due to two reasons. Firstly, the fuel economy standards for cars

did not take e↵ect in India until 2016, so the average fuel e�ciency between 2005

and 2012 is related to new technological improvements, but not by any new stan-

dards. Secondly, the average fuel e�ciency between 2005 and 2012 has improved

faster in developed countries (e.g., EU countries) than it did between 1990 and 2005

due to the fuel economy standards introduced in the mid-1990s as a result of the

auto industry’s voluntary agreement with the European Commission.

Table 5.2: Data definitions and sources

Variables US UK Japan China India

Period 1970-2015 1970-2015 1970-2011 1990-2015 1990-2015

PLDV kilome-
tre per vehicle

US Highway
Statistics

Department
for Transport
Statistics

Japan Sta-
tistical Year-
book

China Statisti-
cal Yearbook

World Bank
and Singh
(2006)

GDP per capita World Bank World Bank World Bank World Bank World Bank

Oil price per
litre

World Bank Department for
Business, Energy
and Industrial
Strategy

World Bank World Bank World Bank

Road length US Highway
Statistics

Department
for Transport
Statistics

Japan Sta-
tistical Year-
book

China Statisti-
cal Yearbook

Transport Re-
search Unit,
MORTH, India

Urbanization World Bank World Bank World Bank World Bank World Bank

Urban density World Bank World Bank World Bank World Bank World Bank

Average fuel
economy
standard

National
Highway
Tra�c
Safety Ad-
ministration

Department
for Transport
Statistics

ICCT ICET China ICCT

1Based on the analysis of Clerides and Zachariadis (2008), new car fuel e�ciency begins to
fall more significantly after 1995 as a result of standards introduced in the late 1990s in the EU
and Japan.
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5.3.4 Regression results

Pooled OLS results

The results for the pooled OLS estimates are presented in Table 5.3. A country

dummy variable is added to account for the unobserved e↵ect. We test whether it

is valid to pool the data with the Bresch-Pagan test. The null hypothesis H0 for the

Bresch-Pagan test is that the variance of the unobserved fixed e↵ects is zero (i.e., it

is possible to use the pooled OLS model). As the test results show, we fail to reject

the null hypothesis, meaning that the random e↵ects regression is not appropriate.

This implies that a pooled OLS model is superior to the Random E↵ects Model.

As Table 5.3 shows, the adjusted R-squared indicates that the model has strong

explanatory power (R-sq=0.89). Consistent with existing studies, the results show

that oil prices, urbanisation, road mileage, population density, and fuel e�ciency

have a significant e↵ect on the road tra�c demand. Income does not significantly

a↵ect the distances travelled by car per year, probably because as income increases,

people purchase more vehicles instead of travelling more in each car. The coe�cient

results show that road accessibility has an attractive e↵ect on road tra�c demand,

while travel demand decreases by 1.5% when the oil price increases by 10%. As

countries become more urbanised, people take advantage of the public infrastructure

when they are in cities. Hence, we find that distance per car falls as countries

become more urbanised and distance per car increases as more roads are built

(induced demand). Fuel e�ciency improvements will result in a tra�c increase,

although the e↵ect is small (travel demand increases by 0.3% when fuel e�ciency

improves by 10%).

The problem with the pooled OLS model is that the outcome variable (travel de-

mand) depends on explanatory variables which are not observable but are correlated

with the observed explanatory variables. We conduct the Hausman test to validate

the suitability of the Fixed E↵ects (FE) Model. For the static models, we hypothe-

sise that the best model is the Fixed E↵ects model and test this with the Hausman

test. Table 5.3 shows that fixed e↵ects should be used since the chi-square test

statistic is 35.02 and has a p-value of 0.00. Hence, we dismiss the Random E↵ects

Model. However, only three variables are significant in explaining the variability

in the tra�c demand. Consistent with the findings in the OLS regression, we find

that oil prices and urbanisation decrease travel demand, while population density

increases travel demand. The total significance of the model is not very strong,

with an R
2 of 0.45. There are two main reasons for this. Firstly, unlike what is
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observed in the OLS model, the FE model removes the non-observable fixed e↵ects.

Secondly, there is a significant trend in the time series, which can be captured only

with a dynamic panel model.

In order to account for the dynamic e↵ect in the panel data, we use the Arellano-

Bond estimator with the General Method of Moments (GMM), which includes the

lagged dependent variable as one of the explanatory variables. For dynamic speci-

fication, the GMM estimator of Arellano and Bond, which is estimated in the first

di↵erences with instruments in levels, is required to remove the unobservable indi-

vidual specific e↵ects. The Arellano-Bond estimator controls the fixed e↵ects by

first di↵erencing and assuming that the idiosyncratic error is serially uncorrelated.

We carry out the regressions with the GMM in one step with robust standard errors.

Table 5.3 shows the results for the GMM regressions. All variables are significant at

either the 5% or 10% levels. Note that the signs for the coe�cients of the variables

in the GMM estimations are consistent with the OLS pooled estimation and FE

model. In order to validate the assumptions of the Arellano-Bond GMM estimator,

we carry out the Sargen test, which yields a result of 145 with a p-value of 0.6308.

Hence, we cannot reject the null hypothesis of over-identified restrictions.

Table 5.3: Regression results for the Pooled OLS model, the Fixed E↵ects (FE) model, and
the Arellano-Bond GMM model

OLS FE

model

Arellano-

Bond GMM

Variable Coe�cient S.E. t-stat Coe�cient S.E. t-stat Coe�cient S.E. t-stat

PKM lag 1 0.56*** 0.05 10.46 0.74*** 0.06 12.30
Country 0.07*** 0.01 6.22
ln(P) -0.15*** 0.03 -4.55 -0.14*** 0.05 -3.17 -0.08** 0.03 -2.46
ln(U) -0.01** 0.00 -2.42 -0.02*** 0.00 -5.37 -0.01*** 0.00 -2.93
ln(Y) 0.03** 0.03 2.11 -0.01** 0.03 -2.03 -0.01** 0.02 -2.41
ln(M) 0.02** 0.01 2.15 0.02 0.03 0.90 0.05** 0.02 2.28
ln(UD) -0.02*** 0.03 5.20 -0.04*** 0.22 6.69 -0.02** 0.19 2.56
ln(FE) -0.03*** 0.01 -2.86 -0.02 0.14 -0.15 -0.14** 0.10 -2.09
Const 3.46*** 0.01 -3.48 3.72 1.24 3.01 0.78 0.96 0.82

Bresch-Pagan test 1.58 (0.21)
Hausman test 35.02(0.00)
Sargen test (P-value) 0.63

N 166 166 158
Adjusted R-squared 0.93 0.45

**Means at the 5% significance level
*** Means at the 1% significance level
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5.4 Car population projection

Car ownership models are used to forecast transport demand, energy consumption

and emission levels. Jong et al. (2004) make a comparison of a number of existing

car ownership models. They identify nine model types, including aggregate time

series models, aggregate cohort models, aggregate car market models, heuristic

simulation models, static disaggregate ownership models, indirect utility models of

car ownership, static disaggregate car choice models, panel models, and dynamic car

transactions models. Among the di↵erent model types, one of the most well-known

approaches is an econometric estimation of an income-car stock model based on a

logistic function.

Historically, GDP growth and economic development are associated with an

increase in vehicle ownership. Past studies have made projections of passenger

car ownership based on GDP (Meyer et al., 2012; Bouachera and Mazraati, 2007).

Gately and Dargay (1999) examine trends in the growth of vehicle stocks for a

large sample of countries and employed the Gompertz function to estimate the

relationship between the number of vehicles and per capita income. Meyer et al.

(2012) also estimate car stock based on the Gompertz function in 11 world regions.

Following the previous studies, we estimated car stock with a Gompertz model:

Vi,t = V
?
i e

↵e�EFi,t
(5.2)

which is equivalent to

ln(ln(Vi,t/V
?
i,t)) = ln(↵) + �EFi,t (5.3)

where i denotes the country, t denotes the year, Vi,t represents the vehicle own-

ership (vehicles per 1000 people) of country i in year t, V ?
i is the saturation level and

EFi,t is the per capita income. The parameter ↵ determines car stock demands at

zero income levels, and the parameter � determine the shape of the S-shape curve.

We find the ↵ and � by regressing ln(ln(Vi,t/V
?
i,t)) against EFi,t.

Specification of a saturation level is important for determining future vehicle

ownership. A higher urbanisation level and a greater population density would

reduce the travel demand as a result of the availability of public transport and a

lower need for vehicles (Dargay et al., 2007). In this chapter, the saturation rates

for di↵erent countries are extracted from existing literature (Huo and Wang, 2012;

Dargay et al., 2007; Arora et al., 2011; Meyer et al., 2012; Wu et al., 2014). Note
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that the saturation levels vary under di↵erent scenario and studies. Table 5.4 shows

the saturation levels, the data sources and the values for ↵ and � based on GDP per

capita and the saturation levels. The stock of road PLDVs is derived from various

data sources, such as US Highway Statistics, the UK Department for Transport

Statistics, the Japan Statistical Yearbook, the China Statistical Yearbook and the

Statistical Yearbook of India. The passenger car stock per 1000 people is derived

from the total PLDVs in a country divided by its population, as obtained from the

World Bank data.

Table 5.4: The saturation levels, data sources, and values for ↵ and �.

Country V* Data sources for V* ↵ �

UK 550 Dargay et al. (2007) -3.07 -0.000138
US 800 Dargay et al. (2007) -17.85 -0.000207
Japan 500 Wu et al. (2014) -28.30 -0.000177
China 300 Huo and Wang (2012) -2.05 -0.000735
India 400 Arora et al. (2011) -5.73 -0.000478

5.5 PLDV demand projections

In this section, we project the PLDV demand using the Arellano-Bond GMM esti-

mations and the projected trends for the explanatory variables are discussed below.

The future trends for oil price, GDP per capita, urbanization, road mileage, urban

density and fuel economy were projected using government/IEA report, existing

literature (Nakicenovic, 2007) and developing trends in the industry (Yang and

Bandivadekar, 2017a).

5.5.1 Oil price

Figure 5.3 shows the oil price projections until 2040 from the IEA New Policy

Scenario. Over half of the pump prices for petrol and diesel are made up of excise

duties and value-added tax (VAT). For instance, in the UK, the petrol price at the

pump is made up of the cost of oil, government excise duty, and retail/ex-refinery

spread (UKPIA, 2017). To find the di↵erence between the oil price and the pump

price, we took the pump price from Q3 2016 in the five countries and found the
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di↵erence between the pump price and the crude oil price in Q3 2016 1.

To account for uncertainty regarding the oil price, we created 10 oil price sce-

narios in additional to the baseline scenario (see Figure 5.3), as follows:

Scenario 1: Assumed that the oil price is 5% above the baseline oil price.

Scenario 2: Assumed that the oil price is 10% above the baseline oil price.

Scenario 3: Assumed that the oil price is 15% above the baseline oil price.

Scenario 4: Assumed that the oil price is 20% above the baseline oil price.

Scenario 5: Assumed that the oil price is 25% above the baseline oil price.

Scenario 6: Assumed that the oil price is 10% below the baseline oil price

Scenario 7: Assumed that the oil price is 25% below the baseline oil price.

Scenario 8: Assumed that the oil price is 30% below the baseline oil price.

Scenario 9: Assumed that the oil price is 40% below the baseline oil price.

Scenario 10: Assumed that the oil price is 50% below the baseline oil price.

5.5.2 Population

The World Bank has population simulations and projections from 1960 to 2050.

We used the population projection data provided by the World Bank Data Bank

(World Bank, 2018).

5.5.3 Urban density

Urban density is calculated by dividing a country’s area by its population. The

projected urban density up until 2050 is estimated by dividing the country’s area

by the projected population provided by the World Bank Data Bank (Section 5.5.2).

5.5.4 Fuel economy

The historical trends for fuel economy standards are obtained from the Yang and

Bandivadekar (2017a) and government transport statistics (as shown in Figure 5.4).

The future fuel economy for a car fleet is extrapolated to the future based on the

historical trends. For the US, we have taken into account the possibility of weakened

fuel economy standards enacted by the Trump administration. The projections for

the fuel economy standards for the US are revised based on analyses provided by

1The pump price data were collected from the World Bank. Crude Oil prices were collected
from NASDAQ (2018).
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Plumer and Popovich (2018) and Ingraham (2018). The extrapolation for the fuel

economy standards is subject to the introduction of fuel economy standards and

the progress of technological breakthroughs in low-emission vehicles in the future.

5.5.5 GDP per capita

The projected GDP data in our study was retrieved from the IIASA’s SSP database.

The SSP database makes projections based on Shared Socioeconomic Pathways

(SSPs). The GDP projections are based on the assumptions used for the inter-

pretation of the SSP storylines in terms of the main drivers of economic growth

(Leimbach et al., 2017).

We consider three SSP scenarios obtained from Cuaresma (2017). Table 5.5

shows the world GDP per capita projections by income group. Based on the World

Bank definition, the US, the UK, and Japan belong to the high-income countries,

while India and China belong to the lower and higher middle-income countries,

respectively. As observed in Table 5.5, growth in GDP is higher in the middle-

income group than in the high-income group, and the GDP growth slows down

after 2040. GDP per capita is calculated by dividing the growth in GDP by the

projected population.

Table 5.5: World GDP per capita projections by income group, based on the Shared
Socioeconomic Pathways.

Period World High income
countries

Middle income
countries

Low income
countries

SSP1 2010-2040 3.20% 1.70% 4.80% 4.10%
2040-2100 1.50% 1.30% 1.50% 2.70%

SSP3 2010-2040 1.90% 1.60% 3.90% 1.70%
2040-2100 0.30% 1.10% 0.50% 0.70%

SSP5 2010-2040 3.50% 1.90% 5.20% 4.60%
2040-2100 2.20% 1.70% 2.20% 3.50%

5.5.6 Urbanization

The urbanisation from 2016 to 2050 is extrapolated from the historical trend. As

shown in Figure 5.5, all the countries have become more urbanised over time. We

assume that in countries which are already urbanised, such as Japan, the UK, and
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the US, urbanisation will stabilise over the next 30 years, while, in China and India,

urbanisation will continue to increase following the historical trend until it reaches

over 80%.

5.5.7 Projections of the demand for PLDV services

The transport distance for a PLDV per year is estimated with equation 5.1, and

the projections for future oil prices, urban density, urbanisation, fuel economy, road

mileage, and GDP per capita are based on Arellano-Bond GMM estimation.

To account for the oil price uncertainties, the travelled distance per car each year

is estimated under the ten oil price scenarios in additional to the baseline scenario.

The baseline scenario oil price is taken from the projection made in the IEA New

Policy Scenario. Scenarios 1 to 5 assume that there is a gradual increase in oil price

until the oil price is consistent with the IEA0s current policy. Scenarios 6 to 10

assume that there is a gradual decrease in oil price until it is consistent with the

IEA0s 450 scenario.

The projections for car distance per year under di↵erent oil price scenarios are

shown in Figure 5.6. For the US, the UK, China, and India, notice that the car

distance projected tends to decrease between 2020 and 2030 but starts to increase

between 2040 and 2050. As shown in Figure 5.3, it is assumed that oil prices will

increase more steeply between 2020 and 2030 compared to between 2040 and 2050.

On the other hand, fuel economy keeps improving for all countries, although the

e↵ect is smaller for the US as a result of Trump’s decision to freeze the Obama

standards. Between 2020 and 2030, when the e↵ect of the increase in oil price is

stronger than the e↵ect of fuel economy standards improvements on the car distance

travelled, we find the distance travelled by cars falls. Between 2030 and 2040, when

the e↵ect of the increase in oil price on the distance travelled is smaller than the

e↵ect of fuel economy on the distance travelled, we find that the distance travelled

by cars increases. Hence, the projections for car distance per year appear to be

U-shaped for all countries except Japan. While the e↵ect of increase in oil prices

and the improvement in fuel economy standards are present in Japan, from the

historical trend, car distance travelled per year has been falling since 1990, and this

trend is reflected in the projections for between 2020 and 2050.

The solid black line is the average distance travelled per car per year, as collected

from the national transportation agencies. The dashed blue lines are projections

for oil prices assumed in the New Policy Scenario. The dashed black lines represent
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projections for the average distance travelled by car per year when oil prices in-

crease. The dashed green lines represent the projections for travel distance per year

assuming that oil prices decease gradually (scenarios 6 to 10). As expected, the

higher the oil price, the lower the average distance is found to be in all countries,

and vice versa. We find that as fuel economy improves, the rebound e↵ect leads to

an increase in the demand for PLDV services. The rebound e↵ect can be mitigated

by the higher oil price scenarios.

5.5.8 Vehicle fleet projections

Figure 5.7 shows the historical fleet sizes for the five countries (solid black lines).

Vehicle stock projections were done on the basis of equation 5.2 with the parameters

shown in Table 5.4 . The dashed lines in Figure 5.7 show the car fleet size projections

between 2016 and 2050 under three GDP assumptions, namely, the SSP1, SSP3,

and SSP5 assumptions (see Table 5.5 for details).

For high-income countries, it is assumed that the GDP increases by 1.3% under

SSP3 and 1.9% under SSP5 between 2020 and 2040. For the middle-income coun-

tries, it is assumed that the GDP increases by 3.9% under SSP3 and 5.2% under

SSP5 between 2020 and 2040. For the US, the UK, and Japan, the di↵erence in

GDP assumptions does not a↵ect the car fleet size projections significantly. How-

ever, in China and India, the size of the car fleet projected under SSP5 is much

larger than that under SSP3, reflecting the higher GDP growth projections under

SSP5 than SSP3 for China and India.

5.5.9 Discussion

This chapter presents the methodology, data, and projection results for PLDV

services. We found that a number of socio-economic factors, such as oil price, urban

density, urbanisation, road mileage, and fuel economy are significant for predicting

the demand for PLDVs. We used the estimates of the Arellano-Bond model to

project the demand for PLDV services and the Gompertz model to project the

car populations for the UK, the US, Japan, China, and India. To account for

uncertainties in oil prices and GDP per capita, we created ten oil price scenarios for

each country. We found that the demand for PLDVs falls as oil prices increase, with

the impact varying between countries, depending on the rebound e↵ect (improved

fuel economy), induced e↵ect (more roads), and the urbanisation rate. For instance,
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the rebound e↵ect as the fuel economy improves is largest in the UK and lowest in

China among the five countries. Although we find that the fuel economy improves

faster in China, the rapid urbanisation rate in China counterbalances the rebound

e↵ect of improved fuel economy. The impact of the uncertainty in oil prices is

discussed in the sensitivity analysis (see Appendix A).

This section provides regionalised projections of car stocks in the UK, the US,

Japan, China, and India. The car stock is a convenient measure of the PLDV

demand because consumption activities are based on both the car stock and distance

driven by each car. Following the previous studies, we analyse the relationship

between car ownership and income until 2050 using the sigmoid Gompertz function.

We find that, with the exception of Japan, the car stock increases steadily until 2050,

with the rate of increase highest in India under the SSP5 scenario since, in a low

income-country like India, income is projected to increase more rapidly compared

to in a middle-income country like China. Also, the population projection is greater

for India than China (see the World Bank projections in Section 5.5.2). The main

limitation of this approach is the uncertainty regarding the car saturation levels, as

saturation may well be di↵erent for di↵erent regions due to population densities,

distributions of populations in urban and rural areas, and various transport policies.

The uncertainties are more prominent in developing countries, such as China and

India, than in developed countries, such as the UK, the US, and Japan, because

most studies suggest that as incomes continue to increase, the numbers of vehicles

will grow faster. Although the uncertainties regarding the saturation levels are not

the focus of this study, for future studies, it is important to look into the impact of

fiscal policies on the car saturation levels and emissions.
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Figure 5.3: World oil price by scenario. The darker red dashed line is the oil price
assumed in the New Policy Scenario in (IEA, 2016).
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Figure 5.6: Average travel distance travelled by a car per year under GDP per
capita assumption SSP1. The solid black lines are the historical trend for the
distance travelled by cars. The dashed green lines represent the distance travelled
per car as oil prices decrease (i.e., the lower the oil prices, the lighter the dashed
green lines). The dashed black lines represent the distance travelled per car as oil
prices increase (i.e., the higher the oil prices, the lighter the dashed black lines).
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Chapter 6

The current policy framework

This chapter reviews existing policy incentives to reduce emissions from PLDVs in

five major countries (the US, the UK, Japan, China and India). The purpose for this

chapter is threefold. Firstly, the discussions present a background and context for

the existing policies that aim to reduce emissions from passenger vehicles. Secondly,

to examine policies that reduce emissions further, we design policy scenarios in

Chapter 7 and test them in the FTT-Transport model. Studying current policies

enables us to design possible scenarios for each country based on existing policy

frameworks. Thirdly, the current policy frameworks form the assumptions that

underpin the baseline scenario.

6.1 EU and UK

Climate change mitigation and energy security are the UK’s primary energy goals.

In 2013, the UK greenhouse gas (GHG) emissions covered by the Kyoto Protocol

were estimated to be the CO2 equivalent of 568.3 million tonnes (MtCO2) (DECC,

2013). Domestic transport accounted for 21% of this total in 2013, almost entirely

through CO2 emissions. Road transport is the most important source of emissions

in the transport sector passenger cars, in particular.

Existing and planned UK support for low-emission vehicles takes place within

the framework of the EU’s strategy to reduce CO2 emissions from new cars (Lane,

2011). The EU has taken three main approaches to encourage the di↵usion of

low-emission vehicles. The EU first established a law requiring that new cars regis-

tered in the EU emit no more than an average of 130 grams of CO2 per kilometre

(gCO2/km) by 2015 (EC, 2015). By 2021, the average fleet target for new cars is
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95 grams of CO2 per kilometre. Emissions for each car type are set according to

mass, using a limit value curve. The limit value curve is set in such a way that the

average CO2 emissions target is achieved in the EU as a whole, with heavier cars

allowed higher emissions than lighter cars (EC, 2015). Equation shows the limit

value curve displayed in Annex I of the Regulation (EC) No 443/2009.

CO2 = 130 + ax(M �M0) (6.1)

where:

M = Mass in kg

M0 = 1290

a = 0.0457 (the slope of the ‘limit value curve’)

Note that for these targets to be reached, the emissions cap will be phased in

over several years. For instance, to reach the 2015 emissions target, 65% of each

manufacturer’s newly registered cars had to comply by 2012, 75% by 2013, 80% by

2014 and 100% by 2015. As of 2012, if a manufacturer’s fleet exceeds its limit value,

the company has to pay an excess emissions premium for each car registered. From

2019 onwards, the cost will be 95 EUR (80 GBP) per gCO2/km for each gCO2/km

above the compliance level (EC, 2015).

The EU’s second strategy is to ensure that consumers are armed with the right

information about the new cars they purchase. This includes providing fuel con-

sumption and CO2 emissions data at the point of car sales (Lane, 2011). Along

these lines, UK legislation requires the label to be displayed at the point of sale.

The third strategy consists of fiscal measures designed to influence purchasing be-

haviour and car use. These measures can be implemented through various taxation

schemes, as discussed in the following paragraphs.

In the UK, the 2008 Climate Change Act established a legally binding target

to reduce the UK’s GHG emissions by at least 80% below base year levels by 2050

(HMGovernment, 2011). The UK has a long history of demand- and supply-side

policies that have a↵ected new vehicle fuel economy. Starting from 1993, the fuel

duty escalator was introduced with the mitigation of CO2 as a major objective.

Then, in 1999, the vehicle excise duty was structured to include environmental

considerations and set based on car engine sizes.

The Vehicle Excise Duty (VED) is an annual tax levied on vehicles to use public

roads. Typically, it is levied based on vehicle characteristics such as engine size,
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weight or power. The VED was restructured in 2001 when new cars were divided

into four VED bands depending on their carbon intensity. More recently, the CO2-

graded VED was recalibrated with higher band resolution and slightly higher duties

as well as the introduction in 2010 of a high first-year VED rate for more heavily

polluting cars, akin to a purchase tax (Brand et al., 2013). For cars registered

since 1 March 2001, tax rates have increased with CO2 emissions, and all cars with

CO2 emissions up to 100 g/km pay no tax in the first year and standard rate car

tax thereafter. For vehicles registered after 1 April 2017, CO2 emissions levels are

divided into 13 bands (see Table 6.1) and applied to the first-year tax cost. As

Table 6.1 shows, zero-emission cars pay no VED unless the car costs more than

40,000 GBP. Thus, from 2017 onwards, only zero-emission cars will be VED tax

free.

Although the rate of the VED depends on CO2 emissions in the UK, some

evidence suggests that the VED is not a su�ciently strong price signal to incentivise

the purchase of lower CO2 cars (Lane, 2011). The band di↵erential and the tax levels

have a relatively small impact on purchasing behaviour.

In addition to the exemption from the VED, in the UK, the electric car (plug-in

car) grant intends to incentivise electric car purchases by using a subsidy. The

grant o↵ers 35% towards the purchase cost of an electric car (plug-in car) on a

given list, up to a maximum of either 3662 GBP for cars or 6592 USD for cars with

CO2 emissions below (UK Government, 2015). Table 6.2 shows the criteria for the

subsidy.

Many company cars are on the road. The figures reveal that 950,000 employees

paid the company car benefit-in-kind (BIK) tax in 2011 (Robers, 2017). Prior to

2002, employees were taxed at a rate of 35% of the price of the car for having

the vehicle for personal use. Since 2002, company and employee company car taxes

have been based on a percentage of the o�cial price of the car, the percentage being

primarily determined by the car’s CO2 emissions (Lane, 2015). Given that company

cars make up a large share in the new vehicle market, variations in the company

car tax depending on CO2 emissions could have an impact on carbon emissions and

fuel economy. Table 6.3 shows the BIK rates for 2015-2020. Notice that the tax

rate increases over a number of years, depending on the car’s fuel economy and fuel

use.

Other than fiscal policies, a vehicle scrappage scheme was established in 2009

(for one year). New car purchasers receive a subsidy of 2,000 GBP if the car to be

replaced is older than 10 years. The scrappage scheme was introduced relatively late,
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and the UK government only allocated 300 million GBP to the scheme. The fact

that the scrappage scheme is weak in the UK may be a result of the relatively weaker

position of the UK motor industry (Aldred and Tepe, 2011), so the government does

not have the incentive to encourage fast turnover rates for cars because many cars

are imported. Also, unlike other EU countries, such as Spain and Italy where

there are emissions criteria linked to the scrappage scheme, in the UK, the primary

purpose of the scrappage scheme is to stimulate new car sales, i.e., emissions were

not the main concern when it was written (Aldred and Tepe, 2011).

Besides the direct financial benefits, as in the other countries, there have been

indirect financial incentives for BEVs. For instance, BEVs are exempted from the

London Congestion Charge and, by owning electric cars, a saving of over 2,000 GBP

per year can be realised by regular commuters driving in the charging zone (Lane,

2011). Owners will also benefit from free street parking and will be entitled to a

‘free residential parking permit’ in major London areas. In addition, EVs can access

on-street recharging points and pay much lower fuel costs compared to petrol cars.

Table 6.1: Vehicle excise duty rate for the UK (in GBP).

CO2 emissions (g/km) First-year
rate

Standard rate
(year two on-
wards)

Standard rate (year two on-
wards) for a car costing
more than 40,000 - payable
for five years

0 0 0 310
1-50 10 140 450
51-75 25 140 450
76-90 100 140 450
91-100 120 140 450
101-110 140 140 450
110-130 160 140 450
131-150 200 140 450
151-170 500 140 450
171-190 800 140 450
191-225 1,200 140 450
226-255 1,700 140 450
More than 255 2,000 140 450

Source: UK Government (2017b)
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Table 6.2: UK EV grant.

CO2 emissions Zero emission range Grant Maximum grant (in
GBP)

Under 50g/km At least 70 miles 35% of cost 4,500 (6592 USD)
Under 50g/km 10 to 69 miles 35% of cost 2,500 (3662 USD)
50 to 75g/km At least 20 miles 35% of cost 2,500 (3662USD)

Source: UK Government (2017a)
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Table 6.3: UK company car Benefit-in-Kind (BIK). In every column, the figures on
the left show the BIK rates (%) for petrol cars, and the figures on the right show
the BIK rates (%) for diesel cars.

Vehicle
CO2 g/km

2015-16 2016-17 2017-18 2018-19 2019-20

1-50 5 7 9 13 16
51-75 13 16 15 18 17 20 19 22 22 25
95-99 14 17 16 19 18 21 20 23 23 26
100-104 15 18 17 20 19 22 21 24 24 27
105-109 16 19 18 21 20 23 22 25 25 28
110-114 17 20 19 22 21 24 23 26 26 29
115-119 18 21 20 23 22 25 24 27 27 30
120-124 19 22 21 24 23 26 25 28 28 31
125-129 20 23 22 25 24 27 26 29 29 32
130-134 21 24 23 26 25 28 27 30 30 33
135-139 22 25 24 27 26 29 28 31 31 34
140-144 23 26 25 28 27 30 29 32 32 35
145-149 24 27 26 29 28 31 30 33 33 36
150-154 25 28 27 30 29 32 31 34 34 37
155-159 26 29 28 31 30 33 32 35 35 37
160-164 27 30 29 32 31 34 33 36 36 37
165-169 28 31 30 33 32 35 34 37 37 37
170-174 29 32 31 34 33 36 35 37 37 37
175-179 30 33 32 35 34 37 36 37 37 37
180-184 31 34 33 36 35 37 37 37 37 37
185-189 32 35 34 37 36 37 37 37 37 37
190-194 33 36 35 37 37 37 37 37 37 37
195-199 34 37 36 37 37 37 37 37 37 37
200-204 35 37 37 37 37 37 37 37 37 37
205-209 36 37 37 37 37 37 37 37 37 37
210-214 37 37 37 37 37 37 37 37 37 37
215-219 37 37 37 37 37 37 37 37 37 37
220-224 37 37 37 37 37 37 37 37 37 37
225-229 37 37 37 37 37 37 37 37 37 37
230 or
above

37 37 37 37 37 37 37 37 37 37

Source: Lane (2015)
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6.2 USA

In the US, more than 1400 MtCO2 are generated from road transport annually,

accounting for 20% of global CO2 emissions from road transport. Within the trans-

port sector, light-duty vehicles (including passenger cars and trucks) were by far

the largest contributors to CO2 emissions, with 61% of GHG emissions. The US is

the largest consumer of oil in the world, burning 20.5 million barrels of oil per day

(EIA, 2019). Nearly 70% of oil use in the US is for transportation, and more than

65% of that amount is for private passenger transport (Looney, 2012).

The first nationwide US light-duty vehicle emissions standard was implemented

in 1968 and has been reviewed every couple of years. Since 2011, the federal govern-

ment has o↵ered an income tax credit to fuel-e�cient vehicles, ranging from $2,500

to $7,500 per vehicle. The amount to which income tax credits can be claimed de-

pends on the tax liability of the purchaser. Brought on by the American Recovery

and Reinvestment Act of 2009, the incentive provides full tax credits to the first

200,000 eligible plug-in hybrids and electric vehicles sold per manufacturer.

The Energy Tax Act of 1978 requires car companies to pay a ’gas guzzler’ tax

on the sale of cars (excluding light trucks and SUVs) with exceptionally low fuel

economy. Manufacturers of new cars that fail to meet the minimum fuel economy

level of 22.5 miles per gallon (mpg) have to pay a gas guzzler tax. Since 1980,

passenger vehicles have been subject to the gas guzzler tax if they fail to reach

a minimum fuel economy requirement of first 15 mpg and then 22 mpg after two

decades. The tax is intended to discourage the production and purchase of fuel

ine�cient vehicles. However, the gas guzzler tax has remained at the same level for

over 20 years. Table 6.4 shows the rate the manufacturer or importer must pay for

each vehicle that does not meet the minimum requirements.

The Corporate Average Fuel Economy (CAFE) establishes the minimum average

fuel economy limits for each manufacturer’s new car fleet nationwide 1. CAFE

standards were enacted to improve the average fuel economy of cars and light trucks

in 1975. The original objective of the law was to reduce US dependence on foreign

oil during the oil crises of the late 1970s and through the 1980s. Two standards

existed when it was first established, one for cars and a less stringent standard for

light-duty trucks. Manufacturers are subject to a fine if they have not met the

CAFE standards. The stringency of the CAFE standards increased rapidly each

1If the average fuel economy of a manufacturer’s annual fleet is below the requirement, the
manufacturer must pay CAFE credits or pay a penalty.
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year through to about 1985 for cars, and then they stayed almost constant for 20

years from 1990 to 2010 (McConnell, 2013). Table 6.5 shows the historical CAFE

standards between 1978 and 2014.

During the Obama administration, the NHTSA was required by Congress to set

the CAFE standards for no more than five years at a time (McConnell, 2013). The

reformed standards were established jointly by the NHTSA and EPA, which issued

final standards for model years 2017 to 2021 and presented non-final standards for

years 2022-2025. Under Obama’s standards, the auto industry is required to double

the fuel economy of vehicles to an average of about 54 miles per gallon by 2050.

However, more recently, under the Trump administration, the EPA is considering

freezing the fuel-e�ciency targets at 2020 levels. This proposal would freeze the

increase of average fuel economy standards after 2021 at about 37 miles per gallon

(Davenport, 2018).

State and local governments o↵er a wide variety of incentives beyond what the

federal government requires. Note that incentives vary substantially by state, model

and time (Gallagher and Muehlegger, 2011). The incentives take many forms,

including rebates, income tax credits, sales tax exemptions, and fee exemptions.

The next sections summarise the incentives for some of the individual states that

o↵er generous incentives. Table 6.6 shows a summary of the levels and timing of

the incentives for hybrid cars and electric cars.

As shown in Table 6.6, Colorado is among the states that o↵er the most generous

tax credits for electric cars and plug-in hybrids. In Colorado, the Department of

Revenue o↵ers a tax credit for the purchase of a hybrid electric vehicle (HEV) up

to 4,713 USD. Between 2012 and 2016, the cap on PHEV conversions increased to

7,500 USD. Colorado uses a formula that multiplies the battery capacity in kilowatt

hours by the vehicle purchase price, deducts the federate tax credit amount, and

then divides the results by 100 to arrive at the tax credit amount (DeShazo, 2016).

Thus, financial incentives vary on the basis of battery capacity and car models.

Instead of o↵ering tax credits to EVs and PHEVs, some states o↵er rebates

to buyers of EVs and PHEVs. The di↵erence between rebates and income tax

credits is that the Clean Vehicle Rebate is a single payment to EV/PHEV buyers,

while income tax credits depend on the tax liability of purchasers. For example, in

Maryland, the rebate is calculated by multiplying $125 by each kilowatt hour. In

Delaware, a rebate of $2,200 is o↵ered to purchasers of new EVs.

According to the California Air Resources Board (CARB), California’s Zero

Emission Vehicle (ZEV) programme requires battery, fuel cell, and plug-in hybrid
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electric vehicles to account for at least 15% of California’s new vehicle sales by 2025.

California emission standards have been more stringent than the EPA requirements.

For vehicles purchased after 2010, the state gives anyone who buys a zero-emission

or plug-in vehicle up to 5,000 USD and will do so until the funding runs out. Plug-in

hybrids qualify for rebates of up to 3,000 USD.

Starting in 2015, to encourage low-income consumers to scrap old vehicles, Cali-

fornia began issuing rebates based on income to increase access to EVs and HEVs to

as many consumers as possible. Thus, the very rich (individuals earning more than

$250,000) are not eligible for the Clean Vehicle Rebate Project (CVRP) rebates.

Individuals choosing to scrap old vehicles receive 1,500 USD under an existing pro-

gramme run by the Bureau of Automotive Repair. Rebate amounts for consumers

with household incomes less than or equal to 300% of the federal poverty level are

$10,000 per rebate, up from $7,500 (Berman, 2010). Table 6.7 shows the EV and

HEV rebates for consumers in di↵erent income bands.

Several states in the US provide a sales and use tax exemption for ZEVs. Note

that in most cases, tax exemptions do not apply to partial emissions reduction

vehicles, such as hybrid cars. Car registration and use taxes vary between states

and car models, but they are comparatively low relative to the car price (lower than

200 USD) and hence have a limited e↵ect on consumers’ purchasing decisions (US

Department of Energy, 2015).

Compared to the car registration tax, the sales tax waiver is much more attrac-

tive, mainly because sales taxes are far more significant. States such as New Jersey

and Washington o↵er sales tax waivers to EV and PHEV buyers. Vehicle sales

taxes vary by state and often vary by counties, cities, municipalities, and localities

within each state.

High-Occupancy Vehicle (HOV) lanes manage tra�c and encourage more peo-

ple to share a single car. Thus, these lanes are a way to reduce emissions from cars

and tra�c congestion. Several states (e.g., Florida, California, New York, and so

forth) have allowed low-emission vehicles to be driven in HOV lanes at any time.

Although not a monetary benefit, this privilege can result in considerable time sav-

ings for commuters who purchase hybrid cars and electric cars. Other non-monetary

incentives that encourage the adoption of low- or zero-emission vehicles include an

exemption from insurance surcharges, free parking, and free home-charging equip-

ment, as shown in Table 6.6.
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Table 6.4: US Gas Guzzler tax (in USD).

Combined fuel economy of Amount

at least 22.5 mpg No tax

At least 21.5, but less than 22.5 mpg $1000

At least 20.5, but less than 21.5 mpg $1300

At least 19.5, but less than 20.5 mpg $1700

At least 18.5, but less than 19.5 mpg $2100

At least 17.5, but less than 18.5 mpg $2600

At least 16.5, but less than 17.5 mpg $3000

At least 15.5, but less than 16.5 mpg $3700

At least 14.5, but less than 15.5 mpg $4500

At least 13.5, but less than 14.5 mpg $5400

At least 12.5, but less than 13.5 mpg $6400

less than 12.5 mpg $7700

Source: National Highway Tra�c Administration and Performance (NHTSAP).
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Table 6.5: Historical CAFE standards.

Model Year Passenger cars (combined)
in miles per gallon

Light trucks (combined)
in miles per gallon

1990 27.5 20

1991 27.5 20.2

1992 27.5 20.2

1993 27.5 20.4

1994 27.5 20.5

1995 27.5 20.6

1996 27.5 20.7

1997 27.5 20.7

1998 27.5 20.7

1999 27.5 20.7

2000 27.5 20.7

2001 27.5 20.7

2002 27.5 20.7

2003 27.5 20.7

2004 27.5 20.7

2005 27.5 21

2006 27.5 21.6

2007 27.5 22.2

2008 27.5 22.4

2009 27.5 23

2010 27.5 23.4

2011 30.2 24.3

2012 30.5 25

2013 32 27

2014 34 28

2015 34.5 28.5

2016 35 29.5

Source: NHTSAP (National Highway Tra�c Administration and Performance)
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Table 6.6: Existing incentives to encourage the di↵usion of alternative-fuel vehicles
with year of launch and the expiration date for individual states in the US. N/A
indicates that the expiration date is unknown.

State Incentives Launch date/ funding
limit

Expiration date

California HOV access for zero-emissions BEVs and
PHEVs

2011 2019

CVRP provides up to $2500 for BEVs and
$1500 for PHEVs

N/A N/A

Free parking in any metered parking space in
Sacramento for max amount of time allowed
by that meter

N/A N/A

Colorado Income tax credit up to 75% of the cost pre-
mium for a BEV or PHEV purchase up to
$6000

2014 2021

Connecticut Up to $3000 per vehicle for battery electric,
fuel-cell electric and plug-in-hybrid electric

For the first 325 vehicles N/A

Free metered parking for hybrid and EVs 2005 N/A

Florida HOV incentives N/A N/A

EVs are exempt from insurance surcharges N/A N/A

Maryland Rebates equal to $125 per kilowatt-hour, not
to exceed $3000

N/A N/A

Rebate for installing EV charging stations up
to $900

N/A N/A

Excise tax credit up to $1000 N/A N/A

New York Emissions test exemption N/A N/A

Free access to HOV lanes N/A N/A

Electric vehicle recharging property tax
credit ($5000 for each installation)

N/A N/A

New Jersey Zero-emission vehicles are exempt from sales
and use taxes

2004 N/A

Qualify for access to carpool lane N/A N/A

Arizona Lower licensing fees for BEVs N/A N/A

Free carpool lane access N/A N/A

Tax credit up to $75 for EV charging outlet N/A N/A

Delaware A rebate of $2200 toward the purchase or
lease of a new EV

2015 N/A

Hawaii Allows access to HOV lanes N/A N/A

Free parking N/A N/A

Previous rebates have expired N/A N/A

Illinois Covers 80% of cost premium, capped at
$4000

N/A N/A

Washington BEVs exempt from 6.5% sales tax N/A N/A

Louisiana Tax credit equalling 36% of cost premium for
BEV/PHEV purchases

N/A N/A

Pennsylvania O↵ers $2000 rebates for PHEVs (battery
10kWh or over)

N/A N/A

$1000 rebate for any PHEV or EV (bat-
tery¡10 kwh)

N/A N/A

Indiana O↵ers a credit of up to $1650 to purchase
and install residential EVSE

N/A N/A

Free plug-in electric vehicle charging during
o↵-peak hours

N/A N/A

Source: US Department of Energy (2015).
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Table 6.7: Income tax rebate for low-emission car purchasers (Clean Vehicle Rebate)
in California (in USD).

Eligible vehicles must be less than 8
years old

Hybrid 20
MPG+

Hybrid 35
MPG+

Plug-in Hy-
brid

EV

Low income ( 225% of the federal
poverty level)

$6500 $7000 $10000 $9500

Moderate income (226% - 300% of
federal poverty level)

$5000 $9000 $10000

Above Moderate Income (301% -
400% of federal poverty level)

$6000 $8000

Source: US Department of Energy (2015)

6.3 Japan

Japan has the third-largest automobile market in the world, and Japan-headquartered

automakers account for the vast majority of global hybrid and electric cars sales

(ICCT, 2014). Toyota is the largest Japanese car manufacturer, with an approxi-

mate 43% market share, and Nissan and Honda are the second and third largest,

with 17% and 15% market shares, respectively. More than 90% of cars sold in Japan

are Japanese-made (Kitano, 2013). Under the Paris Agreement, the government of

Japan pledged to reduce its national GHG emissions by 26% from 2013 levels by

2030.

Japan is one of the very first countries that engaged in research and policies for

energy- e�cient products. In 1998, Japan initiated the Top Runner Approach to

encourage the energy e�ciency of end-use products. The scope was reviewed every

few years and, by 2012, 23 products had been included. As part of the Energy

Conservation Law, the program identifies the most fuel-e�cient automobile in each

weight class and designates it as the ‘top runner’.

The program then sets mandatory e�ciency standards or target values for auto-

mobiles based on the most e�cient standard products (‘top runners’) in the market.

All vehicles are required to exceed the new target values for their weight class within

three to ten years. Manufactures need to ensure that in each financial year, the av-

erage fuel economy of their vehicles in each weight category meets the standard.
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The government of Japan issues warnings to those companies that do not meet their

fuel economy standards.

As a result of the Japanese top runner program, Japanese fuel economy for new

vehicles has improved significantly over the past 20 years. Overall, the fuel economy

has improved by more than 80% since 1995 and has averaged a 6% annual improve-

ment over the past five years (ICCT, 2015). Table 6.8 shows the fuel e�ciency

target values for 2015 and 2020, respectively.

With increasing concern over the e↵ects of car usage on energy security and

the environment, low-energy car buyers are exempted from some fees and taxes

charged for conventional cars. In 2009, the Japanese government introduced an

eco-car promotion policy as a part of its FY 2009 tax reform legislation (Ministry of

Finance, 2015). Around $2.1 billion in tax reductions was granted to ‘eco-cars’ and

around US$3.7 billion dollars in subsidies were granted to consumers who purchased

‘eco-cars’ during the 2009 fiscal year (Iino and Lim, 2010). The Japanese eco-car

policies encourage the di↵usion of not only non-conventional electric and hybrid

cars, but also conventional petrol cars with low energy use and emissions. Eco-cars

could benefit from various tax reductions depending on the emission levels. The

lower the emission levels, the higher the tax reduction. The next sections summarise

the car tax framework in Japan and the tax reductions for low-emission cars.

There are nine di↵erent taxes for owning cars in Japan, including acquisition,

consumption, tonnage, automobile, mini-vehicle, gasoline, regional gasoline exer-

cise, diesel handling, LPG and in-use consumption taxes. In addition, the gasoline

and diesel oil delivery taxes are imposed when purchasing fuel (Iino and Lim, 2010).

Tax breaks are available for three automobile taxes: acquisition, tonnage and own-

ership. For the acquisition tax (paid once, upon purchase), in the absence of eco-car

tax incentives, the tax rate amounts to 5% of the vehicle purchase price. After the

FY2015 taxation revision, the fuel e�ciency criteria was raised, and the reduction

rates were divided into five categories: no tax, 80%-cut, 60%-cut, 40%-cut and

20%-cut (JAIA, 2015). Table 6.9 shows the acquisition tax reductions for eco-cars.

The tonnage tax is assessed for every year of vehicle ownership based on ve-

hicle weight but is imposed only every two years at the time of mandatory ve-

hicle inspection. The tax rate for private vehicles is 2500 Yen/0.5t/year, with

a tax cut/exemption for cars meeting certain environmental requirements (see Ta-

ble 6.10). After the FY 2015 taxation revision, the fuel e�ciency criteria were raised

(linked to 2020 fuel economy standards instead of 2015 fuel economy standards) and

the reduction rates were divided into more categories to support a smooth shift to
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stricter fuel e�ciency standards (JAIA, 2015). Table 6.11 shows the tonnage tax

reductions/cuts for eco-cars after the tonnage tax reform.

The automobile tax (during ownership) is imposed as a property tax and road

maintenance charge. It is a local tax levied by various prefectures. Depending on

whether the car is for personal or company use, it is paid annually and increases

with the engine0s displacement. It is not levied in the initial year of a new vehicle

purchase. Table 6.12 shows the automobile tax rates for cars with di↵erent engine

displacements for private and company uses. Table 6.13 shows the automobile tax

reductions available for eco-cars.

In addition to tax reductions, the Japanese government passed a green vehicle

purchasing promotion measure in 2009. The programme has two features: one

for consumers replacing an old passenger car with a new one, and one for those

purchasing a new eco-car without an older car to replace. Under the car replacement

scheme, a consumer is eligible for a subsidy of 250,000 Yen (USD 2,176) if he or she

replaces the old car (registered for the first time at least 13 years previously) with

a new, eco-friendly car. The subsidy is 125,000 Yen (USD 1,088) if the car being

replaced is a lightweight car (JAMA, 2015). In addition to the provision of tax

exemptions/reductions, the Japanese government o↵ers subsidies to purchasers of

eco-cars even without old cars to replace. By using a non-replacement programme,

the consumer can get up to 100,000 Yen (870 USD) through the subsidy, which is

two-thirds of the price di↵erence between an EV and a comparable gasoline car.

Despite the fact that eco-car incentives have increased the sales of new energy

technology cars, there are criticisms that the tax reduction and subsidy programmes

have led to some larger passenger vehicles qualifying for the benefits despite their

lower fuel e�ciency rate. Additionally, many cars on the market have cleared the

fuel e�ciency standards to be eligible for a tax reduction due to the competitive

culture of Japanese car manufacturers.
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Table 6.8: Fuel e�ciency targets for passenger cars.

Kerb weight (kg) 2015 Fuel economy tar-
get (km/l)

2020 Fuel economy tar-
get (km/l)

 600 22.5 22.5

601-740 21.8 21.8

741-855 21.0 24.5

865-970 20.8 23.7

971-1080 20.5 23.4

1081-1195 18.7 21.8

1196-1310 17.2 20.3

1311-1420 15.8 19

1421-1530 14.4 17.6

1531-1650 13.2 16.5

1651-1760 12.2 15.4

1761-1870 11.1 14.4

1871-1990 10.2 13.5

1991-2100 9.4 12.7

2101-2270 8.7 11.9

� 2271 7.4 10.6

Source: JAIA (2015)
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Table 6.9: Automobile acquisition tax reductions in Japan.

Compliance Automobile acqusition tax
EV/FCV/PHV/Clean Diesel Vehicles/Natural Gas Vehicles Exemption
Compliant +20% (compared to 2015 FES) Exemption
Compliant +10% (compared to 2015 FES) 80% reduction of tax rate
Compliant with 2015 FES 60% reduction of tax rate

Source: JAIA (2015)

Table 6.10: Automobile tonnage tax before tax reform.

Compliance Before reform

EVs/FCVs/PHVs/Clean Diesel
Vehicles/Natural Gas Vehicles

Exemption

Compliant +20% (compared to
2015 FES)

Exemption

Compliant +10% (compared to
2015 FES)

75% reduction of tax
rate

Compliant with 2015 FES 50% reduction of tax
rate

Source: Oka (2014)
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Table 6.11: Automobile tonnage tax after tax reform.

Compliance After reform

EVs/FCVs/PHVs/Clean Diesel
Vehicles/Natural Gas Vehicles

Exemption

Compliant +20% (compared to
2020 FES)

Exemption

Compliant +10% (compared to
2020 FES)

75% reduction of tax
rate

Compliant with 2020 FES 50% reduction of tax
rate

Compliant +5% (compared to
2015 FES)

25% reduction of tax
rate

Source: Oka (2014)

Table 6.12: Automobile tax rate in Japan.

Engine displacement (ED)
(Litre)

Automobile
tax for pri-
vate use
(USD)

Automobile tax
for company use
(USD)

ED  1 245 62
1< ED 1.5 286 71
1.5<ED  2 328 79
2<ED 2.5 374 115
2.5<ED 3 423 130
3<ED  3.5 481 149
3.5<ED  4 552 170
4<ED  4.5 635 196
4.5<ED  6 730 225
6<ED 921 338

Source: JAIA (2015)
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Table 6.13: Automobile tonnage tax after tax reform.

Reductions 1st
year

EVs/FCVs/PHVs/Clean
Diesel Vehicles/Natural
Gas Vehicles

75%

Compliant +20% (com-
pared to 2020 FES)

75%

Compliant +10% (com-
pared to 2020 FES)

50%

Compliant with 2020 FES Not eligibility

Source: Oka (2014)
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6.4 China

Urbanisation and industrialisation have caused increasing pressure in passenger

transport demand. From 1991 to 2012, total annual vehicle production grew from

about 700,000 units to 9.35 million units, and total sales of passenger cars has grown

more than 20 times since 1990 (China Statistical Yearbook, 2012). By the end of

2012, there were more than 116 million cars on the road. In terms of the passenger

car fleet per 1,000 people, China was measured at 34 in 2009 (World Bank, 2013),

which is still much lower than in the developed countries. Hence, he potential for

future growth remains large.

As a result of increased demand from passenger cars, energy demand increased

from 25 Mtoe in 1990 to 236 Mtoe in 2013 (WEO, 2017). In the face of volatile oil

prices, rapid growth in passenger car demand put pressure on energy security and

urban air quality. In terms of GHG emissions, under the Paris Agreement, China

has pledged to cut emissions in relationship to GDP to 60%-65% of 2005 levels by

2030 (CarbonBrief, 2015). The central government is taking steps to curb China’s

oil consumption and GHG emissions by introducing various policy measures and

incentives that encourage the di↵usion of low- emission vehicles.

At the national level, to reduce its dependency on foreign oil and encourage

more fuel-e�cient vehicle technologies, China has subjected the passenger vehicle

market to fuel economy standards since 2004. Fuel economy limits for passenger

cars are divided into 16 categories based on vehicle weight. The phase I and phase

II standards require each individual vehicle model to comply with fuel consumption

regulations before entering the market. As China continues to reduce fuel con-

sumption limits, Phase III (from 2012 to 2015) standards requires the average fuel

consumption level of new Chinese passenger vehicles to be 7l/100km in 2012 (MIIT,

2015).

Phase IV fuel consumption standards for passenger vehicles are currently under

development. In 2014, the Chinese Ministry of Industry and Information Technol-

ogy (MIIT) released a fuel consumption standard for passenger cars. Compared

to the Phase III standard, the new consumption standard would fall to 5l/100km,

representing an overall reduction of 28% between 2015 and 2020. Table 6.14 shows

the fuel consumption targets based on weight class.

Similar to developed countries, in an attempt to increase demand for energy-

e�cient and environmentally friendly vehicles, energy-e�cient cars, such as plug-

in hybrid cars and electric cars, are exempt from car exercise duties and annual
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registration taxes. Before 2010, car exercise duty rates were based on engine size,

with small engine cars enjoying a lower tax rate. However, the excise duty is 10%

before the value-added-tax (17%) irrespective of car engine sizes. Registration tax

is paid annually based on engine sizes and established by individual provinces or

cities. Table 6.15 shows the range for the car registration tax in China.

To reduce dependency on foreign oil, a fuel tax was introduced in 2009 to curb

oil consumption in the auto sector. Taxes on fuels can be used to encourage car

buyers to purchase more fuel-e�cient vehicles. After the fuel tax reform in 2009, the

new fuel tax replaced existing types of fees that were previously levied for road and

waterway maintenance and management. In 2015, the tax on petrol was increased

to 1.52 RMB (0.2 USD) per litre from 1.4 RMB (0.25 USD) (Xinhuannet, 2016).

Because EVs o↵er an opportunity to address oil security, local pollution and

GHG emissions, EV deployment is used by the central government as an essential

strategy in tackling local pollution. China launched the EV Subsidy Scheme (EVSS)

in 2009, followed by an update in 2013. In the beginning, the subsidy was only

available for public procurement, mostly of transit buses and taxis. In 2010, the

subsidy was extended to include private purchases. The phase I EVSS ended at the

end of 2012. Phase II was announced in 2013 and continued through 2015. Under

phase I of the EVSS, subsidies for private purchase of PHEVs and BEVs were based

on battery capacity, with a subsidy intensity of 3000 RMB/kWh. Under phase II,

subsidies for private purchase of PHEV and BEV were based on the vehicle0s electric

range. Vehicles with electric ranges of 250 km or higher, between 150-250 km and

between 80-150 km qualified for 60,000 RMB (USD 7,647), 50,000 RMB (7,400

USD) and 5,353 RMB (797 USD) subsidies, respectively (Hao et al., 2014).

For both phases of EVSS, there were subsidy phase-out mechanisms (SPM).

Under the phase I EVSS, the SPM was never triggered since no vehicle manufac-

turers sold more than 50,000 PHEVs and BEVs. Under the phase II EVSS, the

SPM required that the subsidy for all EVs should be reduced by 10% and 20% in

2014 and 2015, respectively (Hao et al., 2014).

In 2009, the Chinese government initiated the Ten Cities, Thousand Vehicles

programme to stimulate electric vehicle development through large-scale pilots in

ten cities. The goal was to kick-start the purchase of EVs with public funds. Ini-

tially, the programme targeted the deployment of electric vehicles for government

fleets. The programme has since expanded to 25 cities and includes consumer in-

centives in six cities, Beijing, Shanghai, Hanzhou, Hefei, Changchun and Shenzhen

(Gong et al., 2013).
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By 2015, 40 cities and provinces had also introduced incentives to encourage the

sales of low-emission cars. In addition to the central government0s fixed-amount

subsidies (EVSS), local governments o↵er additional incentives or subsidies to EV

purchasers. For instance, on top of EVSS, many cities or provinces o↵er additional

subsidies that are equivalent to the central government subsidies. The Shanghai

municipal government o↵ers up to 40,000 Yuan (6,500 USD)/vehicle for an EV and

30,000 Yuan (5,000 USD)/vehicle for a PHEV (TynCar, 2014). In addition, some

districts in Shanghai o↵er additional benefits for new energy vehicles 1. Table 6.16

provides an overview of the local incentives for purchasing new electric vehicles in

China.

Many countries worldwide have considered vehicle restriction policies and lotter-

ies to curb air pollution and tra�c congestion. For instance, in 1989, Mexico City

implemented a driving restriction programme that banned drivers from using their

vehicles one weekday per week, based on the last digit of the licence plate (Davis,

2008). In 1990, the vehicle quota system (VQS) was introduced in Singapore. Un-

der this system, prospective owners of new vehicles must bid for a certificate of

entitlement that is valid for 10 years (Davis, 2008).

China first implemented driving restrictions during the 2008 Olympic and Para-

lympic Games in Beijing. The success in improving air quality and easing congestion

led to a series of road space rationing policies in Beijing after the games. Major

policies that impact on passenger car CO2 emissions include driving restrictions and

a car licence plate lottery. In Beijing, for example, a licence plate lottery has been

used since 2011. For example, to control the total vehicle population at six million

by the end of 2017, a new vehicle lottery scheme was implemented from 2014 to

2017 (Beijing Government, 2013). The new quota will decrease from 240,000 to

150,000. Sixty-thousand quotas will be released for four years, including 430,000

regular gasoline vehicles and 170,000 full electric vehicles. This implies that the

chance of obtaining a licence plate is much larger for electric vehicles compared

with regular gasoline vehicles. New energy cars are also exempt from the day-of-use

rationing system, and this non-financial incentive encourages the purchase of new

energy vehicles.

Many countries worldwide have considered vehicle restriction policies and lotter-

ies to curb air pollution and tra�c congestion. For instance, in 1989, Mexico City

implemented a driving restriction program that banned drivers from using their

1New energy vehicles include cars that are battery electric, fuel cell, hybrid and hydrogen cars.
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vehicles one weekday per week, based on the last digit of the licence plate (Davis,

2008). In 1990, the vehicle quota system (VQS) was introduced in Singapore. Un-

der this system, prospective owners of new vehicles must bid for a certificate of

entitlement which is valid for 10 years (Davis, 2008).

China first implemented driving restrictions during the 2008 Olympic and Para-

lympic Games in Beijing. The success in improving air quality and easing congestion

led to a series of road space rationing policies in Beijing after the Games. Major

policies that impact on passenger car CO2 emissions include driving restrictions

and a car licence plate lottery. In Beijing, for example, a licence plate lottery has

been used since 2011. For example, In order to control the total vehicle population

at six million by the end of 2017, a new vehicle lottery scheme was implemented

from 2014 to 2017 (Beijing Government, 2013). The new quota will decrease from

240,000 to 150,000. Sixty-thousand quotas will be released for four years, including

430,000 regular gasoline vehicles and 170,000 full electric vehicles. This implies that

the chance of obtaining a licence plate is much larger for electric vehicles compared

with regular gasoline vehicles. New energy cars are also exempt from the day-of-use

rationing system and this non-financial incentive encourages the purchase of new

energy vehicles.

Six other cities in China that restrict vehicle registration include Shanghai,

Guangzhou, Guiyang, Shijiazhuang, Tianjin and Hangzhou, and they have also

introduced a licence plate lottery or auction to control air pollution and congestion.

For instance, while licence plates for conventional cars in Shanghai are auctioned,

Tianjin and Guizhou have a hybrid system. The bidding prices for the licence plates

have been very high due to the limited number released for auction. To illustrate,

the average bidding price for a licence plate in Shanghai is 80,020 Yuan (12,380

USD), which is more expensive than a small car. The benefit of purchasing new

energy vehicles is that these vehicles are allowed to bypass the auction. Given that

a vehicle registration plate in Shanghai was worth 12,300 USD in July 2015, the

e↵ective subsidy provided to each battery EV consumer in Shanghai could be worth

over 12,300 USD (TynCar, 2014).

Although some incentives have been o↵ered to purchasers of new energy cars,

many existing policies and incentive programmes create subsidies only for locally

produced vehicles, which may be warding o↵ investors from other Chinese regions or

international automakers (Masiero et al., 2016). Di↵erent cities still take di↵erent

approaches to favour local automakers and exclude foreign car makers from the

list. For instance, until 2014, Shanghai allowed only EV models manufactured in
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Shanghai to be eligible to receive local subsidies. Similarly, Beijing excluded plug-in

hybrid cars from the list it will support because no Beijing-based company produces

plug-in hybrids (until 2014) (Feng, 2016).

Table 6.14: Fuel consumption standards in China.

Kerb mass in kg Phase I limits in
l/100km

Phase II limits in
l/100km

Phase III limits in
l/100km

CM 750 7.2 6.2 5.2

750<CM 865 7.2 6.5 5.5

865<CM 980 7.7 7.0 5.8

980<CM 1090 8.3 7.5 6.1

1090<CM 1205 8.9 8.1 6.5

1205<CM 1320 9.5 8.6 6.9

1320<CM 1430 10.1 9.2 7.3

1430<CM 1540 10.7 9.7 7.7

1540<CM 1660 11.3 10.2 8.1

1660<CM 1770 11.9 10.7 8.5

1770<CM 1880 12.4 11.1 8.9

1880<CM 2000 12.8 11.5 9.3

2000<CM 2110 13.2 11.9 9.7

2110<CM 2280 13.7 12.3 10.1

2280<CM 2510 14.6 13.1 10.8

CM>2510 15.5 13.9 11.5

Source : Chinese Ministry of Industry and Information Technology (MIIT).
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Table 6.15: Annual registration tax in China.

Engine sizes (cc) Registration tax
(USD)

<1000 10-57

1000-1600 48-86

1600-2000 58-106

2000-2500 106-192

2500-3000 192-384

3000-4000 384-576

>4000 576-864

Source: TynCar (2014).
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Table 6.16: Subsidies for new energy vehicles in major Chinese cities.

City Subsidy and incentive (USD)

Shanghai 40000 Yuan/vehicle for BEVs and 30000 Yuan/vehicle for
hybrid cars.

Beijing Local subsidies equivalent to central government EVSS. The
sum of national subsidies and local subsidies must not be
higher than 60% of the car prices.

Tianjin Local subsidies equivalent to central government EVSS.

Xian For a private new energy car purchaser, the government of-
fers a subsidy worth 10000 Yuan/vehicle and covers 100%
the cost of compulsory insurance. For purchasers who
scrapped their old cars for new energy cars, the government
of Xian o↵ers a 3000 Yuan/vehicle subsidy, on top of scrap-
page subsidy (2000 Yuan-6000 Yuan/vehicle).

Fujian Local subsidies equivalent to the central government EVSS.

Hunan Local subsidies equivalent to the national EVSS. The sum
of national subsidies and local subsidies must not be higher
than 60% of the car prices.

Guangzhou Local subsidies equivalent to the central government EVSS.

Qingdao Local subsidies equivalent to the central government EVSS.

Jiangsu O↵ers 24000 Yuan/vehicle for BEVs with lengths longer
than 2.45 m and 18000 Yuan/vehicle for passenger cars
shorter than 2.45m. The subsidy is 11000 Yuan/vehicle for
BEVs shorter than 2.2m. For plug-in hybrid cars, the gov-
ernment o↵ers subsidies of up to 14000 Yuan/vehicle.

Shenzhen Local subsidies are equivalent to the central government
EVSS. For purchasers of new energy cars, the subsidies also
cover the cost of charging, cost of installation and compul-
sory insurance.

Chongqing Local subsidies are equivalent to the central government
EVSS.

Source: TynCar (2014)
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6.5 India

India has experienced a sustained period of rapid economic growth since 1991, and

the economy grew at an average rate of 7.5% in 2015, faster than the 6.9% growth

in China (World Bank, 2015). This rapid economic growth has led to significant

growth in the motor vehicle population. India has one of the world’s fastest growing

car markets. New car sales rose impressively from 1.3 million in 2004 to about 3.6

million in 2012. As a result, the population of motor vehicles has increased eight-

fold, from 21 million in 1991 to nearly 160 million in 2012 (Chhibber and Shemar,

2012). The growth in the vehicle population is likely to cause a substantial increase

in GHG emissions and fossil fuel use unless the fuel economies of future vehicles

are enhanced. According to the IEA, India’s share of oil imports could grow from

70% of oil demand in 2006 to over 90% in 2030 (IEA, 2015). Early adoption of fuel

e�cient policies in India will have a direct e↵ect on national energy security and

global oil consumption.

Gasoline and diesel are the most common automobile fuels in India. As in many

European countries, diesel cars constitute a significant share of Indian passenger

vehicles because diesel cars have been taxed at a lower rate than petrol cars his-

torically. The lower fuel costs for diesel cars have resulted in lower per kilometre

operating costs, increasing their popularity with respect to petrol cars. However,

more recently, the air pollution levels in India have become a serious issue that

threatens public health. Greenpeace research noted that India’s air pollution level

overtook China0s in 2015, with PM 2.5 concentrations exceeding those found in

China (Jamrisko, 2017). To control emissions levels and curb serious air pollu-

tion, sales of new diesel cars with engine sizes above two litres were banned by the

Supreme Court in Delhi.

Low-emission cars, such as hybrid and electric cars, are still facing major obsta-

cles in India. The country has taken some steps over the last few years to promote

EVs, mainly in the form of subsidies. For instance, in 2008, the Ambient Air Fund

account was opened by the Delhi Pollution Control Committee (DPCC). This pro-

gramme aims to provide subsidies for battery-powered cars by allowing a 30% cost

reduction for battery-powered vehicle buyers. In 2010, the Indian government an-

nounced a subsidy scheme for vehicle manufacturers for the production of BEVs

and HEVs. Through 2012, the scheme subsidised up to Rs. 4,000 (USD 60) for

low-speed two-wheelers, Rs. 5,000 (USD 76) for high-speed two-wheelers and Rs.

100,000 (USD 1,523) for four-wheeled vehicles. The production cap was set at
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300,000 two-wheelers and 140 electric cars (Bansal and Bandivadekar, 2013).

To promote eco-friendly vehicles, the Indian government launched the Faster

Adoption and Manufacturing of Hybrid and Electric vehicles (FAME) to incentivise

HEV and EV purchases. Under FAME India, the Indian government will provide

incentives from Rs. 1,800 (USD 25) to Rs. 29,000 (USD 440) for two-wheelers and

Rs. 1.38 Lakh (USD 2,000) for every electric car sold. For passenger cars shorter

than four metres in length, incentives start at Rs. 13,000 (USD 198) for a mid-HEV

with conventional battery in Level 1, and go up to Rs. 124,000 (USD 1,888) for a

BEV with an advanced battery in Level 2, as shown in Table 6.17.

In addition to subsidies for new energy technologies, excise duties are levied

depending on the sizes, engine types, and whether the vehicles are new energy

technology vehicles. For cars shorter than four metres, the excise duty is set at 8%

for conventional cars, and the excise duty increases for cars longer than four metres

and with larger engine sizes, going up to 24% for cars with engine sizes more than

1,500 cc (as shown in Table 6.18). For EVs, India has reduced the excise duty from

8% for conventional cars to 4% for EVs (Bansal and Bandivadekar, 2013).

Di↵erent states also have their own incentives for energy-e�cient vehicles. For

example, Delhi, Rajasthan, Uttarakhand, and Lakshadweep do not levy taxes on

EV sales. Delhi also o↵ers subsidies and rebates adding up to nearly 29.5% of the

cost of EV purchases (Bansal and Bandivadekar, 2013). More recently, in 2015,

the New Delhi government began to introduce a round of two-week car restrictions,

and cars will be allowed on streets only on alternate days, in response to the rise in

public health concerns.

India has not introduced a fuel economy standard for passenger cars, although

that will change in the next few years. However, before the formal announcement

by the government of India, it is unclear what exact standard will be set in the next

few years.

India has not introduced a fuel economy standard for passenger cars, although

that will change in the next few years. However, before the formal announcement

by the Government of India, it is unclear what the exact standard will be that will

be set in the next few years.

In 2001, India began a 5% ethanol blending pilot programme, and, in 2003,

nine states in India made E5 gasoline available for the first time in India (Bansal

and Bandivadekar, 2013). In 2006, the mandate was expanded to include almost

the entire country (except for a few northern states). In 2008, E10 was mandated

throughout India. At the same time, the government of India approved a policy
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that seeks to mandate 20% blending of ethanol throughout the country by 2017

(Abdi, 2019).

As discussed in this section, although some incentives are in place in India, the

incentive programme comes very late compared to those of other countries. Also,

there is no fuel economy standard yet in India, which implies that the government

of India has not had a clear policy framework and a road map for reductions in CO2

emissions.

Table 6.17: Incentives for passenger cars.

Length not exceeding 4 me-
tres

Level 1 (Rs) Level 2 (Rs)

Mid HEV (Conventional Bat-
tery)

13,000 (USD194) 16,000 (244USD)

Mid HEV (Advanced Bat-
tery)

19,000 (USD284) 23,000 (350USD)

Strong HEV (Advanced Bat-
tery)

59,000 (USD881) 71,000 (1081USD)

Plug-in HEV (Advanced Bat-
tery)

98,000 (USD1463) 118,000 (1797USD)

BEV (Advanced Battery) 76,000 (USD1135) 124,000 (1889USD)

Source: Batra (2015)

Table 6.18: Excise duty for passenger cars.

Condition 1 Less than 4 me-
tres and

More than 4 me-
tres and

More than 4 me-
tres and

More than 4 me-
tres and

Condition 2 Less than 1,200
cc (petrol cars)/
Less than 1,500 cc
(diesel cars)

Less than 1,200
cc (petrol cars)/
Less than 1,500 cc
(diesel cars)

More than 1,500
cc (petrol cars) /
more than 1,500
cc (diesel cars)

More than 1,500
cc and ground
clearance more
than 170 mm

Excise Duty on
such cars

8% 20% 24% 24%

Source: Batra (2015).



Chapter 7

Scenario analysis

This chapter explores the e↵ectiveness and e�ciency of various policy instruments

in cutting global emissions from passenger transport in five nations, namely, the UK,

US, Japan, China and India. Fiscal incentives such as EV subsidy, if su�ciently

high to o↵set cost di↵erences between EVs and conventional cars, are the most

important reason to buy an EV in Norway (Bjerkan et al., 2016). Fuel tax is

e↵ective in decreasing fuel consumption and demand for more e�cient vehicles

in some countries (Xiao and Ju, 2014; Antweiler and Gulati, 2016). Moreover,

regulatory instruments such as fuel economy standards and EV mandates have

been widely implemented. It is also worth studying the impacts and e�ciency of

such regulatory instruments and comparing them to the three most commonly used

financial instruments-fuel tax, EV subsidies and road tax.

Therefore, in this thesis, policy formulations take five possible forms: annual

registration taxes, EV subsidies, fuel tax, EV mandate and fuel economy standards.

With a diversity of instruments, we analysed the policy interactions and synergies of

policies explicitly. By analysing the e�ciency and e↵ectiveness of individual policy

instruments or combinations of policy instruments, this chapter aims to answer

three main research questions:

1. How will policy measures at di↵erent levels impact the di↵usion of various

PLDV technologies and emissions from the PLDVs in each of the individual coun-

tries, including the UK, US, Japan, China and India? (Section 7.4)

2. What is the cost for each policy incentive at di↵erent levels of stringencies, and

how does the e�ciency for each policy instrument vary as it becomes more strin-

gent? (Section 7.4 and Section 7.5)

3. Are there trade-o↵ or reinforcement e↵ects between any two policy instruments
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on the di↵usion of PLDVs in each of the five countries? (Section 7.5)

7.1 Definition of policy instruments

This section defines the policy instruments discussed in the chapter. Table 7.1

provides the definition for each policy, how these incentives were modelled and

examples of the policy in real terms. As we have discussed in Chapter 6, these policy

incentives represent some of the most commonly found existing policy instruments

in the UK, the US, Japan, China and India.

Table 7.1: Definition of policy incentives

Policy incentives Model representation Examples of the real-
world policy

Annual registration
tax

Added to the annual costs
summed to get the LCOT

UK Road tax

EV subsidies Subtracted from the capital cost
at the time of car purchases

EV rebates

Fuel tax Added to the fuel cost Fuel tax (e.g. petrol tax,
diesel tax)

EV mandate A certain percentage of sales
(and hence fleet shares) must be
EV

The Zero Emission Vehicle
(ZEV) program in Califor-
nia

Fuel economy stan-
dards

Fuel economy of cars is improved US CAFE standards

7.2 Modelling of policy instruments in the FTT-

Transport model

In this section, we present how we model the five policy instruments identified in

the FTT-Transport model. We divide the policy incentives into two major types:

policies that take the form of financial incentives (applied either at the time of car

purchase or throughout car ownership) and policies that do not (e.g. fuel economy

regulation and EV mandate). The pecuniary incentives can be described by looking

at the equation of the LCOT , while regulation and EV mandates are related to the

fleet share values instead of LCOT .
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7.2.1 Pecuniary incentives

Here, we reproduce the LCOT (see equations 7.1 in Chapter 3) , with added policy

parameters:

LCOTi =

Ii � EV Si

CFi
+
P

t

RTi(t)

CFi
+ (Fi(t) + FTi(t)) ⇤ (FEi(t)) +MRi(t)

(1 + r)t

P
t

1

(1 + r)t

, (7.1)

where Ii, Fi, MRi are the mean capital costs (in USD), fuel cost (in USD/litre)

and maintenance cost (in USD/km), respectively. EV Si represents EV subsidies,

paid to car purchasers (and therefore, negative cost) at purchase. FTi is the fuel

tax in USD/litre. The fuel cost depends on the fuel consumption (FEi(t)) and

the distance travelled each year (Distt). RTi(t) is the annual registration tax,

vehicle/class-specific, paid by car owners once per year. CFi is the capacity factor,

km/y.

The policy incentives fall into two types: those that are paid once (e.g. EV

subsidy), and those that are paid yearly (annual registration tax, fuel tax). The

di↵erence in impact is that the yearly policies are discounted, while the one-o↵

policies are not. It is possible to model other financial incentives (e.g. vehicle

purchase tax, parking fee exemption) by adding the cost to the LCOT equation for

future studies.

We assume that fuel tax a↵ects the demand for PLDV in the FTT-Transport

model, as well as the LCOT . According to our analysis in Chapter 4, we find that

a 10% increase in oil price leads to a 0.8% fall in average distance driven by PLDV

per year.

7.2.2 Fuel economy regulation and EV mandates

Many policies in the real world (as we discussed in Chapter 6) do not take the form

of financial incentives. This can be regulatory in nature and apply to manufacturers.

In the FTT-Transport model, this is modelled by influencing the flow of value of

shares, in particular, in the technology category. In the presence of a fuel economy

regulation, we assume that there are no new market shares gained in the categories

being phased out. In the FTT-Transport model, the flow of market shares from
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technology j to technology i is

�Sj!i = SiSjAijFij�t (7.2)

In the case when conventional petrol cars are phased out, we assume that Fij is

0, so there no longer can be any gain in market share for conventional petrol cars.

Instead, there can be a gain in market share for advanced petrol cars and any other

technologies (such as hybrid cars or EVs). Existing conventional petrol cars live to

the end of their lifetimes.

For the EV mandate, in the FTT-Transport model, it is assumed that the poli-

cies exogenously change the shares of vehicle types at a specific point in time.

We assume that market shares flow from conventional cars j to EVs i by assign-

ing exogenous shares to �SEj!i. For example, if we assume that x% of the new

car sales have to be EVs, then

�SEj!i = x% ⇤NewSales/F leet (7.3)

Then �SEj!i is added to the shares of EVs (i) and removed from shares of

conventional cars (j). Essentially, in this way, we model the exogenous change in

market share in terms of sales.

This approach models mandates with targets that require certain percentages of

EV sales. However, this approach is not exactly the same as some of the real-world

EV mandates, in which the government sets an EV production quota (e.g. China

New Energy Vehicle (NEV) mandate and the California ZEV mandate programme)

or assigns a NEV credit, under which each NEV is assigned a specific number of

credits depending on metrics, including electric range and energy e�ciency (ICCT,

2018). While companies are required to make a certain number of EVs, this does

not mean that car manufacturers are able to sell all of their EV productions.

7.3 Definition of policy e↵ectiveness and policy

e�ciency

7.3.1 Policy e↵ectiveness

By definition, the e↵ectiveness of public policies is defined as the extent to which

policies are achieving the policy goal. In this context, the e↵ectiveness of a given
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policy on CO2 emissions is defined as the amount of abatement achieved by a given

policy.

Effectiveness =
X

i

Z 2050

2016

(Et,i � E0,i)dt (7.4)

where Et,i is the sum of the emissions over all technologies between the year 2016

and 2050 when policy incentives are imposed. E0,i is the sum of the emissions over

all technologies between the year 2016 and 2050, without any policy incentives in

the baseline scenario. The e↵ectiveness index captures the possible e↵ect of a policy

incentive across technologies and the cumulative emissions reduction achieved by a

particular policy incentive.

7.3.2 The cost of policies and policy e�ciency

In practice, while it is important to have an e↵ective policy that reduces emissions

significantly, a policy needs to be e�cient so that it is cost e↵ective and feasible. The

e�ciency of a policy option is defined as the cumulative CO2 abatement divided

by the cost of the options. We consider the cost as the cost to the consumers

(ConsumerCost) as a result of taxes, the cost to the Exchequer (i.e. EV subsidies)

(ExchequerCost) and the cost to manufacturers (MCost), such as the fuel economy

standards and EV mandates. We assume that the costs are positive to individual

parties/groups. For example, we assume that annual registration tax is a positive

cost to car owners and not a negative cost to the government. This approach

captures how the costs of policies vary as a result of the di↵erent levels of policy

incentives. Hence, we have:

TotCost = ConsumerCost+ ExchequerCost+MCost

We assume the costs of policies are zero in the baseline scenario because we

assume that there is no new policy added in the baseline scenario. In the FTT-

Transport model, changes in policies are modelled with respect to the baseline

scenario.

7.3.3 Policy e�ciency

The e�ciency of a policy incentive is equal to the change in the cumulative emissions

as a result of the policy incentive (Effectiveness) divided by the total cost of the
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policy incentive (TotCost). Note that we have not included any discounting in the

cost calculation. Hence, we have

Efficiency =

P
i

R 2050

2016 (Ei,t � E0i,t)dt

TotCost

The next sections discuss how the costs for each policy instrument were calcu-

lated.

7.3.4 Registration tax

We assume that the registration tax is paid by consumers annually over the lifetime

of the car. The total cost of the annual registration tax to the consumers in a

country each year is equal to the total fleet number multiplied by the registration

tax. In this research, we assume that the rate of the registration tax is dependent

on the PLDV technologies and engine sizes.

TotalRT =
X

i

Z 2050

2016

(RTi,t ⇤ Si,t ⇤ Fleett)dt

where TotalRT is the total annual registration tax paid by the consumers be-

tween 2016 and 2050. RTi,t is the annual registration tax (in USD per unit) paid

by owners of technology i in year t. Si,t is the share for PLDV technology i in year

t, and Fleett is the total car fleet at time t.

7.3.5 Fuel tax

We assume that fuel tax is paid by the consumers based on the car’s fuel consump-

tion. Hence, the cost of the fuel tax to each consumer is calculated by multiplying

the distance travelled by each consumer, the average fuel consumption factor PLDV

and the levels of fuel tax in each country. The total cost of fuel tax to consumers

in a country is the product of the total fleet number in a country and the cost of

the fuel tax for each PLDV.

TotalFT =
X

i

Z 2050

2016

(FTi,t ⇤ FEi,t ⇤Distt ⇤ Si,t ⇤ Fleett)dt (7.5)

where TotalFT is the total fuel tax paid by the consumers between 2016 and

2050. FTi,t is the fuel tax (in USD per litre) paid by owners of technology i in year

t. FEi is the average fuel consumption (in litre/km) for each PLDV technology.
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Si,t is the shares for technology i in year t, Fleett is the total car fleet in at time t

and Distt is the average distance travelled by average fleet.

7.3.6 EV subsidies

We assume that EV subsidies are paid directly by the government to the new EV

purchasers. In reality, the levels of EV subsidies depend on a number of factors,

including battery sizes (e.g. China) or as income credits to car buyers (e.g. US).

For modelling purposes, we assumed that the levels of EV subsidies increase with

prices of EVs (see assumptions in Table 7.20).

TotalSub =
X

i

Z 2050

2016

Subi,t ⇤ EVi,tdt (7.6)

where TotalSub is the total EV subsidies paid by the government between 2016

and 2050. Subi,t is the subsidies (in USD per unit) paid by the government to EV

car owners. EVi,t is the number of new EVs of size i at time t.

7.3.7 EV mandates

We assume that the costs for the EV mandates are paid by car manufacturers 1 or

the consumers. We assume that the total costs of the EV mandates equal the dif-

ference in the prices of EVs and conventional cars, multiplied by the number of new

EV sales as a result of the EV mandates. For example, if the EV mandate requires

10% of new car sales to be EVs in 2020, then the total cost of the EV mandate

programme is the di↵erence between the average price of EV and conventional cars

multiplied by the 10% of new car sales.

TotalKS =

Z 2050

2016

(EV Costt � AvgCostt) ⇤NewEVtdt (7.7)

TotalKS is the cost of the EV mandate programme to the manufacturer or to

the consumers between the years 2016 and 2050. We assume the cost is equal to the

di↵erence between the price of EV (EV Costt) and the price of an average petrol

car (AvgCostt) multiplied by the number of new EV sales (NewEVt) under the EV

mandate programme.

1We assume that the car manufacturers may decide to subsidise EVs to sell them.
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7.3.8 Fuel economy standard

While fuel economy standards have the benefit of reducing fuel consumption for

consumers, fuel economy standards have imposed costs on car manufacturers and

consumers. In this study, we assumed that the costs of fuel economy standards

(FEcost) are partly absorbed by car manufacturers and the costs are 3% (Siegel,

2017) of the gross car sales with fuel savings enjoyed by the consumers. Consistent

with our cost assumptions, we assume that the costs of advanced cars are, on

average, 20% 1 more expensive than conventional petrol cars:

FEcost = MC � FuelSavings+

Z 2050

ti

(NewCart ⇤ AvConvPrt) ⇤ 20%dt (7.8)

where

MC = 3% ⇤
Z 2050

2016

NewCart ⇤ AvPricei,tdt (7.9)

and

FuelSavings =

Z 2050

2016

(FEadv � FEconv) ⇤ FPt ⇤Disttdt (7.10)

Here, MC is the cost of fuel economy standards (FEcost) borne by car man-

ufacturers, which is equal to 3% of the gross sales. NewCari,t is the number of

new cars (advanced petrol cars/advanced diesel cars) sold in time t, AvPricet is

the average car price at time t, AvConvPrt is the average price for the conventional

cars, FEadv and FEconv are the fuel economy (in litre/km) for the advanced petrol

cars and conventional petrol cars. FPt is the fuel price in USD/litre. Distt is the

average distance travelled per year by car owners. ti is the time when fuel economy

regulation is introduced.

7.4 Scenario analysis

In this section, we present the results for the scenario analysis under various policy

assumptions. The scenario analysis consists of two parts. The first part analyses

1We find that the price di↵erence between several powertrain specifications (including VVT,
turbocharging and direct injection) within one car model ranged from 10% to 30% of the car
price (from the o�cial car manufacturer’s website). We take 20% to represent the price di↵erence
between conventional cars and advanced cars.
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the e↵ectiveness of each of the policy incentives when they are imposed one at a

time at four di↵erent levels. The aim of the exercise is to unveil the impact of each

policy incentive on PLDV emission reductions in each country. The second part

studies the interactions between policy incentives by grouping two policy incentives

and examining the interactions among instruments by highlighting the trade-o↵

e↵ect and the reinforcement e↵ect among the five policy instruments.

While it is important to have an e↵ective policy that significantly reduces emis-

sions, a policy needs to be e�cient so that it is cost e↵ective. The costs for the

policy incentives to consumers and governments may be significant. The total

costs, average costs per year and average e�ciency for annual registration tax, EV

subsidy, fuel tax, EV mandate and fuel economy regulation are shown in Tables

7.3, 7.5, 7.7, 7.9 and 7.11.

7.4.1 Registration tax (RT)

Consumers are required to pay an ownership tax annually in all five nations. To

encourage the purchasing of low emissions PLDVs, there is a reduction or exemption

of the annual registration tax for consumers who purchase low emissions PLDVs in

many countries. In this section, we study the e↵ect of the annual car registration

tax on the future di↵usion of low-emissions car technologies.

In the current registration tax (RT) scenario, we assume that the current annual

registration tax is consistent with the tax levels stated in Chapter 6. Then, in the

high RT scenario and the very high RT scenario, we assume that the registration

tax is increased by 50% and by 100% from the current registration tax level for each

country, respectively. This approach enables us to understand the e↵ect of the three

di↵erent levels of annual registration tax on the PLDV technological transition.

We also assume in the high RT scenario and the very high RT scenario that EVs

are exempt from the annual registration tax. This enables us to understand the

outcome of the annual registration tax in di↵erent countries when the incentives

are at reasonably high levels. Tables 7.15, 7.16, 7.17, 7.18, 7.19 show the

registration tax assumptions for the UK, US, Japan, China and India, respectively,

taken in baseline scenario, current RT scenario, high RT scenario and very high RT

scenario. We assume that the tax levels will remain the same until 2050 to capture

the e↵ect of policy stringency in di↵erent scenarios.

Figure 7.1 shows the PLDV services generated in the UK, US, Japan, China and

India as a result of di↵erent levels of annual registration tax. The total costs, average
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costs per year and average e�ciency for annual registration tax are presented in

Table 7.3. Under the baseline scenario, the model projects that the share for hybrid

cars will reach around 90% in Japan, while in China, the fleet market share for EVs

will reach 30% by 2050. When the current annual registration tax is introduced

(current RT scenario), cumulative emissions fall by 7% in the US and more than 6%

in China as a result of EV di↵usion. Compared with China and the US, cumulative

emissions fall only by 2% in Japan as a result of continued penetrations by hybrid

cars. As a result of high cost and small e↵ectiveness of the registration tax, under

the current scenario, the average costs of emission reductions from the registration

tax are the highest for Japan, amounting to over 20,000 USD per tonne CO2, and the

lowest for China, amounting to 855 USD per tonne CO2. The lack of penetration of

EVs and continued penetration of hybrid cars are partly explained by the fact that

hybrid cars are already gaining shares in Japan under the baseline scenario and that

according to equations of the replicator dynamics, PLDV technologies with larger

fleet shares are likely to di↵use faster in the market than PLDV with lower fleet

shares (see Chapter 3, Section 3.3).

The current registration tax alone in India has a very small e↵ect on the di↵u-

sion of clean energy PLDVs in India, leading to around 2% cumulative emissions

reduction in India and costing Indian consumers 11 billion USD annually. There

are two reasons for this. First, the shares for EVs and hybrid cars are very small

in India. Based on the replicator dynamics equations in the FTT-Transport model

(see Chapter 3, Section 3.3), when the shares for PLDV technologies are small, the

rate of di↵usion for the technology is small because many people do not have access

to (or do not have a choice of) the technology, or they do not trust the technology.

Second, the registration tax incentives are lower in India compared with the UK,

US, Japan and China, as demonstrated in Table 7.19.

When the annual registration tax is increased by 50%, the e↵ect of the tax incre-

ment on technological di↵usion is small for all countries, as observed in Figure 7.1.

Hence, we find that the 50% registration tax increment has a very small e↵ect on

the total PLDV emissions. As we observed in Column 4 of Figure 7.1, when the reg-

istration tax is twice the current level for conventional cars (and EV is exempt from

the registration tax), cumulative emissions from PLDVs do not change significantly

for any of the countries. Hence, emissions reductions of 6.7% cost 36 billion USD

for Japan, and this is equivalent to 36,000 USD per tonne CO2. Only by doubling

the levels of the annual registration tax do we find that emissions fall significantly

for the UK. This is because hybrid cars pay significantly less annual registration
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Table 7.2: Cumulative emissions from PLDVs (MtCO2 emissions) as a result of the
registration tax (upper section) and change in cumulative emissions as a result of
annual registration tax (lower section).

Country Baseline
scenario

Current RT High RT Very high RT

UK 1447 1428 1428 1352
US 29873 27749 27740 27441
Japan 1862 1828 1828 1828
China 16346 15290 15398 15246
India 8532 8363 8363 8363

UK -1.34% -1.34% -6.58%
US -7.14% -7.14% -8.14%
Japan -1.82% -1.82% -1.83%
China -6.47% -6.73% -6.73%
India -1.97% -1.97% -1.97%

tax than petrol cars in the UK compared with the US, Japan, China and India (see

Table 7.15). However, in the case of the UK, when the annual registration tax is

twice the current level, the annual registration tax costs 37 billion USD per year,

and this averages to around 14,000 USD per tonne CO2 emission reductions. For

all countries, the more stringent annual registration tax comes at even higher costs

per tonne of emissions reduction. Hence, the e�ciency of annual registration tax

falls as the policy incentives become more stringent.
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Figure 7.1: PLDV service demand by six energy technologies in Tpkm/year for the
following five countries, namely, the UK, US, Japan, China and India. The first
column shows the PLDV technology mix in the baseline scenario. Column 2 shows
the PLDV technology mix under the current RT scenario. Column 3 shows the
PLDV technology mix under the high RT scenario. Column 4 shows the PLDV
technology mix under the very high RT scenario.
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Table 7.3: The total cost, annual cost and e�ciency of the annual registration tax

Total cost (billion USD) Current scenario High RT
scenario

Very high
RT scenario

UK 567 851 1258
US 4189 6283 8064
Japan 683 1025 1222
China 904 1293 1898
India 387 593 703

Average cost per year (USD)

UK 17 25 37
US 123 185 237
Japan 20 30 36
China 27 38 56
India 11 17 21

E�ciency (USD/tCO2)

UK 9019 13470 14158
US 1917 2875 3270
Japan 20118 30155 35950
China 855 1176 1726
India 2301 3525 4175

7.4.2 EV subsidy (EV Sub)

Among the five countries, EV subsidies exist in the UK, US, China and India to

encourage the di↵usion of EVs. In this section, we first study the e↵ects of current

EV subsidies on the future di↵usion of low-emissions car technologies. The levels

of the EV subsidies for individual countries and states were discussed in Chapter 6.

For the US, we have taken the EV income tax rebate in California as an example,

and for China, as discussed in Chapter 6, EV subsidies are composed of the Central

Government Subsidy (EVSS) and the local government subsidy. For illustration

purposes, we have taken the EV subsidy in Shanghai as an example of the local

government subsidy. For Japan, where the EV subsidies were absent, we assume

the EV subsidies are consistent with the US in the baseline scenario for illustration

purposes. Then, in the high EV subsidy and very high EV subsidy scenarios, we

assume that the EV subsidies are increased by 50% and by 100% from the current

EV subsidy levels.
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Table 7.20 shows the EV subsidy assumptions for the UK, US, Japan, China

and India, taken in this section. Under the current EV subsidy scenario, we assume

that the EV subsidy is introduced for 10 years (between 2020 and 2030), and then

the EV subsidy is removed. Under the high EV subsidy and the very high EV

subsidy scenarios, we assumed that the subsidy levels will remain the same until

the fleet shares for EVs are above 50% to facilitate the di↵usion of EVs. Table 7.5

shows the total costs, average costs per year and average e�ciency for EV subsidy.

Figure 7.2 and Table 7.4 show the fleet shares for EVs and the total emissions

from PLDVs as a result of the EV subsidy. In the baseline scenario, among the five

countries, only China has a significant number of EVs projected in 2050, reaching

more than 10% of fleet market shares. Furthermore, a very small number of EVs is

projected in India in 2050.

Under the current EV subsidy levels, the shares for EVs increase in all five

countries, as shown in Figure 7.2. The numbers of EVs increase further when the

EV subsidy is increased by 50% and 100%. Under the current EV subsidy scenario,

the EV subsidy costs China 3 billion USD per year and the US 630 million USD per

year. However, because the fleet shares for EVs in the baseline scenario are very

small in all countries except China, the rate of di↵usion for EVs remains small, and

the shares for EVs remain small (under 15%), as a result of the replicator dynamics

equation. If the shares for the EVs are small, the rate of technological di↵usion is

small because consumers are less exposed to EVs and there are fewer EV models

available (see Chapter 3, Section 3.3). Hence, the e�ciency for EV subsidy alone

remains low, making the average cost of reduction for EVs around 145 USD per

tonne CO2 for China and 217 USD per tonne CO2 for the US.

The di↵usion of EVs as a result of EV subsidies has a small e↵ect on the total

emissions in the PLDV sector (Table 7.4). In particular, in Japan and India, we see

a negligible e↵ect of the EV subsidies on the total emissions from passenger cars.

For India, this is because the shares for EVs are still very small (less than 1.5%)

despite the presence of the EV subsidies, which is the lowest among all countries.

Hence, the e�ciency for EV subsidy is very low in India, costing 145 USD per tonne

CO2 emissions reductions.

For Japan, we find that although the shares for EVs reach 9% when the levels of

EV subsidies double, emissions are reduced by less than 0.3%, EVs replace hybrid

cars in Japan, and under our assumptions, there is only a 10% di↵erence between

EV (indirect) emissions and hybrid car emissions in Japan (see Chapter 4 for fuel

economy assumptions). Although EV subsidies alone are insu�cient to meet climate
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Table 7.4: Cumulative emissions (MtCO2 emissions) from PLDVs as a result of the
EV subsidies (upper section) and change in cumulative emissions as a result of the
EV subsidies (lower section).

Country Baseline scenario Current EV sub High EV sub Very high EV sub

UK 1447 1437 1425 1420
US 29873 29721 29657 29550
Japan 1862 1860 1859 1858
China 16346 15605 15432 15382
India 8532 8526 8522 8521

Country

UK -0.7% -1.53% -1.42%
US -0.51% -0.72% -1.08%
Japan -0.10% -0.17% -0.24%
China -4.54% -5.59% -5.90%
India -0.07% -0.11% -0.12%

targets, this does not mean that an EV subsidy as a policy has no e↵ect. EV

subsidies can play an important role in combinations with other policies.

For all countries, if an EV subsidy is introduced alone, as the EV subsidy be-

comes more stringent, the cost of reduction per tonne CO2 increases. For example,

in the case of China, due to the large amount of EV di↵usion, the EV subsidy costs

146 USD per tonne CO2 reductions and increases up to 1005 USD per tonne CO2

reductions when the level of EV subsidy doubles. Similarly, for India, the cost of

reductions from EV subsidy increases from 174 USD per tonne CO2 to 546 USD

per tone CO2 reductions when EV subsidy is twice the current level.
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Figure 7.2: The fleet shares for EVs as a result of EV subsidies in the UK, US,
Japan, China and India. The blue lines show the fleet shares for EVs in the baseline
scenario. The red lines show the fleet shares for EVs under the current subsidy level.
The black lines show the fleet shares for EVs when the EV subsidies are increased by
50%. The green lines show fleet shares for EVs when the subsidies level is increased
by 100%.



Scenario analysis 167

Table 7.5: The total cost, annual cost and e�ciency of EV subsidies.

Total cost Current scenario High
EV Sub
scenario

Very high EV
Sub scenario

UK 2.21 5.22 6.74
US 21.54 55.44 117.26
Japan 1.97 4.50 9.25
China 108.00 579.37 969.17
India 1.04 3.52 5.60

Average cost per year (billion USD)

UK 0.07 0.15 0.20
US 0.63 1.63 3.45
Japan 0.06 0.13 0.27
China 3.18 17.04 28.50
India 0.00 0.10 0.16

E�ciency (USD/tCO2)

UK 217.12 235.09 247.94
US 136.81 250.01 355.25
Japan 1030.66 1415.79 2072.34
China 145.69 633.82 1005.10
India 173.70 387.19 545.71
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7.4.3 Fuel tax (FT)

Table 7.21 shows the fuel tax assumptions for the UK, US, Japan, China and India,

respectively. Since petrol cars are the dominant technology, we study the e↵ect of

current petrol tax levels on the di↵usion of low emissions car technologies. Under the

current FT scenario, we assume the current petrol tax level in individual countries.

The current fuel levels are obtained from di↵erent sources, including government

websites and various sources. Then, in ‘High FT scenario’ and in ‘Very High FT

scenario’, we assume that the fuel tax levels are increased by 50% and by 100%

from the current fuel tax levels, respectively. We assume that fuel tax will remain

at the same level from 2016 to 2050.

Figure 7.3 and Table 7.21 show the PLDV services generated by PLDVs and the

total emissions from PLDVs as a result of the fuel tax assumed in Table 7.21. The

total costs, average costs per year and the average e�ciency for annual registration

tax are presented in Table 7.9.

Our scenario analysis shows that the current fuel tax does not have any signifi-

cant e↵ect on the technological mix because we find only a small di↵erence in the

technology mix by changing the fuel tax levels (Figure 7.3). In fact, as observed in

Figure 7.3, we do not see a significant change in the technological mix even when

the fuel tax is doubled, largely because the cost of the fuel tax is too small to cause

a significant change in technological shares over the long term. To illustrate, typi-

cally, a petrol car consumes 5 litres of petroleum per 100 km, assuming that cars are

driven an average 10000 km per year. This amounts to 500 litres of petroleum per

year and will cost consumers an additional 150 USD per year, assuming that the

fuel tax is increased by 0.3 USD/litre. This cost is smaller compared with the levels

of annual registration tax for a typical mid-size car. However, because fuel tax is

charged on the distance travelled by households, fuel tax costs nearly 4 billion USD

per year in Japan and nearly 12 billion USD in China under the baseline scenario.

This is equivalent to 885 USD per tonne CO2 reductions for Japan and 585 USD

per tonne CO2 reductions in China. The e�ciency of fuel tax in reducing CO2

emissions does not necessarily increase or decrease with its stringency, as Table 7.7

shows. The reason is that the costs of policies do not always increase linearly with

the e↵ectiveness of policies. For China, the cost per tonne CO2 emissions reduc-

tions falls as fuel tax increases, while for the US, the cost per tonne CO2 emissions

reductions decreases when fuel tax is 50% higher than the baseline scenario and

increases when the fuel tax is 100% higher than the baseline scenario.
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Table 7.6: Cumulative emissions from PLDVs (MtCO2 emissions) as a result of fuel
tax (upper section) and change in cumulative emissions as a result of fuel tax (lower
section).

Country Baseline scenario Current FT High FT Very high FT

UK 1447 1416 1406 1394
US 29873 29748 29669 29589
Japan 1862 1810 1792 1772
China 16346 16106 15953 15807
India 8532 8336 8271 8232

UK -2.13% -2.86% -3.69%
US -0.42% -0.68% -0.95%
Japan -2.81% -3.76% -4.82%
China -1.47% -2.40% -3.40%
India -2.29% -3.06% -3.51%

Although an increase in fuel tax is not su�cient to change the vehicle0s techno-

logical mix over the long term, an increase in fuel cost reduces the PLDV service

demand, as we have discussed in Chapter 5. We find that a 10% increase in oil price

will lead to 0.8% decrease in driving distance per year in Chapter 5. Depending on

the particular countries, under the very high FT scenario, we find that the e↵ec-

tiveness of fuel tax in reducing CO2 emissions from PLDV is the highest in Japan

(4.82%) and the lowest in the US (0.95%) due to low fuel tax in the US and high

fuel tax in Japan (see Table 7.21). Typically, the e↵ectiveness of fuel tax in reduc-

ing CO2 emissions depends on consumer discount rates. Fuel tax is less e↵ective at

higher discount rates than lower discount rates because agents pay less attention

to future costs (such as fuel cost) and more attention to present costs (such as car

price).
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Figure 7.3: PLDV service demand by five energy technologies in Mpkm/year for
the five nations, namely, the UK, US, Japan, China and India. The first column
shows the transport technology mix in the baseline scenario. Column 2 shows the
transport technology mix under the current FT scenario. Column 3 shows the
transport technology mix under a high FT scenario. Column 4 shows the transport
technology mix under a very high FT scenario.
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Table 7.7: The total cost, annual cost and e�ciency of fuel tax.

Total cost (billion USD) Current scenario High FT
scenario

Very
high FT
scenario

UK 28.60 38.30 51.31
US 33.07.62 45.12 65.07
Japan 46.27 61.98 83.02
China 140.52 188.23 252.13
India 22.73 30.45 40.79

Average cost per year (billion USD)

UK 2.38 3.19 4.28
US 2.76 3.76 5.42
Japan 3.86 5.17 6.92
China 11.71 15.69 21.01
India 1.89 2.54 3.40

E�ciency (USD/tCO2)

UK 928.51 924.06 960.24
US 264.56 221.18 218.56
Japan 884.61 887.12 925.95
China 584.66 479.12 467.75
India 116.14 116.67 144.99

7.4.4 EV mandate programme (EVM)

As we have discussed in the previous sections, countries with low EV shares tend

to have a lower EV di↵usion rate due to technological path dependency in the

replicator dynamics equation (Chapter 3 Section 3.3). In a consumer world, tech-

nology di↵usion occurs as a result of consumer and social influence (Wood and

Hayes, 2012). Because EVs are still relatively new and unfamiliar to most people,

consumers’ preferences are expected to evolve along with technological progress, fa-

miliarity with EVs, market penetration and social influence. The higher the shares,

the more dealers sell this type of car, and the more people see them on the streets

(assume that dealers do not stock PLDVs that do not sell at all). The more dealers

stock these types of cars, the more models are available in the market and the more

likely people will buy them. Hence, the adoption rate for a preferred vehicle is

proportional to its market share (please see details in Chapter 3 Section 3.1).
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The EV mandate programme requires a particular percentage of new sales of

PLDVs to be zero-emission PLDVs. An example of this is the Zero Emission Ve-

hicle Mandate (ZEV), which requires 5 million electric cars on California’s roads

by 2030. China’s New Vehicle Energy Mandate (NEV) is a modified version of the

ZEV, which establishes that NEV0s credit targets 10% of the conventional passenger

vehicle market in 2019 and 12% in 2020. As we have discussed in section 7.2.2, it is

not possible for the FTT-Transport model to capture the more complicated mech-

anisms of the NEV credits, under which range and car e�ciency both contribute

to NEV credit targets. In the FTT-Transport model, we capture the e↵ect of an

EV mandate by assigning exogenous shares (calculated based on sales targets) to a

given year (see details in Section 7.2.2) 1.

In the baseline scenario, we assume that no incentives are in place. Under a

low EV mandate scenario, we assume that 5% of new car sales are EVs in the year

2025, which are half of the levels that China proposed. Under an EV mandate

mid-scenario, we assume that 10% of new car sales are EV, consistent with the

level China proposed starting from the year 2019, and this costs China 24 billion

USD. Under an EV mandate high scenario, we assume that 15% of new car sales

are EV, higher than the level China proposed, and this costs 48 billion USD for

China. However, in term of e�ciency, we find that the EV mandate is the most

e�cient.

Since the EV mandate is absent in the UK, India and Japan, we assume that

the levels of the EV mandates are the same for other countries as in China, for

scenario analysis purposes.

Figure 7.4 and Table 7.8 show the PLDV services generated by EVs and the total

emissions from PLDVs as a result of the current 5% kick-start, 10% EVmandate and

15% EV mandate. The EV mandate increases the numbers of EVs in all countries.

The total costs, average costs per year and average e�ciency for EV mandate at

di↵erent stringencies are presented in Table 7.7.

As a result of the EV mandate, we find that emissions fall in all countries, with

the e↵ect being more significant in India and China than in the UK, US and Japan.

For example, we find that the 15% EV mandate programme leads to 4% emissions

1According to the equation of replicator dynamics, if a PLDV technology has a share of zero,
in the model, it remains zero by definition. Hence, for countries in which we record a very small
number of EVs, not using an EV mandate would mean that there would hardly be any EVs. The
mandate implies someone somewhere kick-starting the market by buying the first few, with other
people following suit afterwards. It also implies that someone is investing in the infrastructure,
because otherwise, no one would buy EVs without infrastructure.
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Table 7.8: Cumulative emissions (MtCO2 emissions) from PLDVs as a result of
EV mandate (upper section) and change in cumulative emissions as a result of EV
mandate.

Country Baseline scenario EV mandate
low

EV mandate
mid

EV mandate
high

UK 1447 1435 1423 1413
US 29873 29774 29714 29338
Japan 1862 1853 1850 1841
China 16346 16045 15890 15681
India 8532 8408 8415 8215

UK -0.86% -1.70% -2.35%
US -0.33% -0.53% -1.70%
Japan -0.47% -0.66% -1.12%
China -1.84% -2.79% -4.07%
India -1.45% -2.54% -3.71%

reduction in China and 3.7% emissions reduction in India, compared with 2.35%

and 1.7% emissions reduction in the UK and the US, respectively. Compared with

other policy incentives, we find that the EV mandates are the most e↵ective policy

incentives in reducing emissions and encouraging the di↵usion of EVs in India.

Because there are more first-time car buyers in India, we assume that there are

more new cars in India, and the average lifetime (or what we call the turnover rate)

in India is, therefore, shorter than in the developed countries (see the turnover

rate assumptions in Chapter 5). We expect the process of technological di↵usion

to happen faster with a lower turnover rate. As a result, the cost of EV mandate

is generally lower annual registration tax and EV subsidy for most countries. For

example, under the baseline scenario, the average cost of reductions is equivalent to

around 138 USD/tonne CO2 reductions and only 80 USD per tonne CO2 reductions

for China. As an EV mandate becomes more stringent, the e�ciency of an EV

mandate can either increase or decrease, depending on specific countries/policy

levels. For instance, in the case of China and Japan, e�ciency falls as the EV

mandate becomes more stringent, while in the case of US, the cost per tonne of

CO2 reductions is lower (139 USD/tCO2 reductions) under the high EV mandate

scenario, compared with the current scenario (82 USD/tCO2 reductions).
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Figure 7.4: Transport demand by six energy technologies in Mpkm/year for five
countries, namely, the UK, US, Japan, China and India. The first column shows the
transport technology mix in the baseline scenario. Column 2 shows the transport
technology mix under the current FT scenario. Column 3 shows the transport
technology mix under a high FT scenario. Column 4 shows the transport technology
mix under a very high FT scenario.
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Table 7.9: The total cost, annual cost and e�ciency of EV mandate.

Total cost (billion USD) Current scenario EV mandate high EV man-
date very
high

UK 1.72 3.58 5.16
US 14.25 25.91 42.75
Japan 3.88 7.77 11.65
China 24.09 48.19 72.28
India 10.50 21.00 31.50

E�ciency (USD/tCO2)

UK 138.32 145.36 151.82
US 139.09 158.33 82.39
Japan 447.39 634.85 561.02
China 80.10 105.57 108.70
India 84.96 215.18 99.50

7.4.5 Fuel economy regulations (Reg)

As we discussed in Chapter 4, several countries and regions, such as the EU, US,

Japan and China, have introduced mechanisms that phase out less e�cient car

models. Following COP24 in Poland, which reiterated the urgent progress needed to

cut emissions from the transport sector, the European Parliament proposed setting

a fuel economy target for reducing EU fleet-wide emissions for new cars by 2030 of

40% (year of reference 2021) (Mihov, 2018). On the other hand, for the US, while

the Obama Administration and Environmental Protection Agency (EPA) set out to

raise the average fleet’s fuel economy to 54.5 mpg in 2025 (from 35.5 mpg in 2016),

the Trump Administration proposed to freeze the mpg standards for cars and light

trucks after the 2020 model year. Following the proposals by the EU and US, in

the ‘current phase-out scenario’, we assume that the current petrol cars and diesel

cars are phased out in 2030, replaced by advanced petrol cars and advanced diesel

cars. We assume that the fuel economy for the advanced petrol and diesel cars is

40% higher than the current petrol cars in the UK and 20% higher in the US.

Because the long-term fuel economy standards (up to 2030) for Japan, China

and India have not been published, we take the historical fuel economy assumptions

in our analysis. The adopted fuel economy standards (2010-2020) are presented in

Table 4.2 in Chapter 4. Following the adopted fuel economy standards, in the
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’current phase-out scenario’, we assume that the current petrol cars and diesel cars

for China, India and Japan are phased out in 2030, replaced by advanced petrol

and diesel cars that are 35% more e�cient than the current petrol cars in China,

and 20% more e�cient in Japan and India. We assume that the penetration of

advanced petrol and diesel cars starts (from the beginning of the simulation) before

the implementation of the phase-out regulations because manufacturers respond to

fuel economy regulations by introducing more e�cient cars gradually.

In the ‘stringent phase-out scenario’, we assume that current petrol cars and

diesel cars are phased out in 2025, and the fuel economy standards are consistent

with the the ‘current phase-out scenario’, for comparison purposes. Table 7.24

shows the assumptions for fuel economy standards under the ‘baseline phase-out

scenario’, ‘current phase-out scenario’ and ‘stringent phase-out scenario’.

Figure 7.5 and Table 7.10 show the mixes of car technologies and the total

emissions from PLDVs under the baseline scenario, the ‘current phase-out scenario’

and the ‘stringent phase-out scenario’. The total costs, average costs per year and

the average e�ciency for ‘current phase-out scenario’ and the ‘stringent phase-out

scenario’ are presented in Table 7.11.

We observe that the advanced petrol cars and the advanced diesel cars penetrate

into the market as we expected, replacing the conventional petrol cars and diesel

cars. In the ‘current phase-out scenario’, emissions fall by 13% in China and 9%

in the UK. As a result of the ‘stringent phase-out scenario’, we find that emissions

fall by more than 17% in China and around 11% for the UK. This costs China 1.2

billion per year and the UK 50 millions USD per year.

For China and the US, fuel economy regulations lead to increases in the shares

for advanced petrol cars and higher EV shares. For the UK, Japan and India, fuel

economy regulations lead to increases in the shares for advanced petrol cars. By

phasing out the conventional petrol cars, it becomes more expensive to purchase

petrol cars (prices for advanced petrol cars are 20% higher), so the price di↵erences

between advanced petrol cars and electric cars/hybrid cars are lower after the intro-

duction of fuel economy regulations. This leads to higher EV fleet shares or hybrid

car fleet shares in the US, China, UK and Japan.

The e↵ectiveness of fuel economy regulations in China and the UK is stronger

than the US, Japan and India because the current fuel economy regulations are

assumed to be more stringent in China and the UK (see Table 7.24). Among the

US, Japan and India, we find that the fuel economy regulation is more e↵ective in

the US. This is because there are a large number of Lux petrol cars (i.e. engine size
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� 2000cc) in the baseline scenario in the US. However, the fuel economy regulation

costs the US 1.36 billion USD per year under the ‘current phase-out scenario’ and

1.92 billion USD under the ‘stringent phase-out scenario’.

On the other hand, the e↵ectiveness of fuel economy regulation is the lowest in

Japan (emissions are reduced by less than 3% as a result of fuel economy regulation).

This is because Japan has the lowest petrol car fleet shares projected in the baseline

scenario, with less than 10% petrol fleet shares projected in 2050 in the baseline

scenario. Hence, fuel economy standard is least e�cient in Japan, costing 27 USD

per tonne CO2 reductions under the ‘baseline phase-out scenario’ and increasing

to 29 USD per tonne CO2 reductions under ‘stringent phase-out scenario’. The

e�ciency of fuel economy standard is the highest in the UK, equivalent to around

9 USD per tonne CO2 reductions under the ‘current regulation scenario’. However,

as the policy becomes more stringent, the tighter EV mandate comes at ever-higher

costs per tonne of emissions reductions, although the e↵ect of the more stringent

fuel economy regulations on the e�ciency of the fuel economy regulation is not

significant. Compared with other policy incentives such as the annual registration

tax, EV subsidy, fuel tax and EV mandate, we find that the e�ciency of the fuel

economy standard is among the highest.

Table 7.10: Cumulative emissions from PLDVs (MtCO2) as a result of fuel economy
regulation (upper section) and change in cumulative emissions as a result of fuel
economy regulation (lower section).

Country Baseline scenario Current phase-out scenario Stringent phase-out scenario

UK 1447 1316 1287
US 29873 28090 27379
Japan 1832 1761 1747
China 16346 14158 13553
India 8532 8169 7882

Country

UK -9.05% -11.06%
US -5.97% -8.35%
Japan -3.88% -4.64%
China -13.39% -17.09%
India -4.25% -7.62%
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Current phase-out scenario Stringent phase-out scenario
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Figure 7.5: PLDV service demand by eight energy technologies in Tpkm/year for
five countries, namely, the UK, US, Japan, China and India with fuel economy reg-
ulation. The first column shows the PLDV technology mix in the baseline scenario,
with fuel economy regulation. Column 2 shows the transport technology mix in the
‘current phase-out scenario’ and the third column shows the PLDV technology mix
in the ‘stringent phase-out scenario’.
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Table 7.11: The total cost, annual cost and e�ciency of fuel economy regulation.

Total cost
(billion
USD)

Current regulation
scenario

Stringent regulation
scenario

UK 1.14 1.86
US 46.10 65.33
Japan 1.94 2.50
China 31.50 40.39
India 17.86 23.77

Average
cost per
year (billion
USD)

UK 0.03 0.05
US 1.36 1.92
Japan 0.06 0.07
China 0.93 1.19
India 0.53 0.70

E�ciency (USD/tCO2)

UK 8.70 11.61
US 25.27 25.57
Japan 27.23 29.38
China 14.40 14.46
India 16.80 17.61

7.4.6 Summary and discussions

This section discusses the policy implications derived from our simulation results

in the previous sections. For the UK, we find that the annual registration tax is

comparatively more e↵ective than the other financial incentives, while the EV sub-

sidy is less e↵ective than other financial incentives and policy incentives in reducing

CO2 emissions. This is due to the structure of the annual registration tax in the

UK, where annual registration tax is much lower for hybrid cars than for conven-

tional cars (hybrid cars pay around 50% of the annual registration tax in the UK).

However, the cost of annual registration tax is very high in the UK. Under the ‘very

high RT scenario’, the annual registration tax costs around 240 billion USD per

year, and this is equivalent to 3270 USD per tonne CO2 emissions reductions in the
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baseline scenario.

On the other hand, the EV subsidy alone is not su�cient to cut emissions

significantly. This is because the fleet shares for EVs are still very low (less than

0.5% in 2016) for the UK and the rate of technological di↵usion is slow when the fleet

shares are low as a result of the replicator dynamics equation. Hence, the e�ciency

of the EV subsidy is around 217 USD per tonne CO2 emissions reductions in the

current scenario, and this increases to around 250 USD per tonne CO2.

For the US, fuel economy regulation is comparatively more e↵ective than other

policy incentives, and fuel tax is less e↵ective than other policy incentives in re-

ducing CO2 emissions. This is because there is a large number of luxury and high

emissions PLDVs in the US. By introducing fuel economy standards, consumers

shift from conventional luxury PLDVs to more fuel e�cient luxury PLDVs. Com-

pared with other policy incentives, fuel economy standard is also the most e�cient

policy incentives in the US. Under the ‘stringent regulation scenario’, the marginal

cost of emissions reduction is 26 USD per tonne CO2 emissions reductions. Al-

though fuel tax can potentially reduce service demand by households, the current

fuel tax levels in the US are very low (at 0.05 USD in 2016), and hence, are com-

paratively less e↵ective policy incentives in reducing CO2 emissions under the‘very

high EV sub scenario’.

Similarly, for China, fuel economy regulation is a more e↵ective policy incentive

in reducing CO2 emissions compared with the other incentives, while fuel tax is

relatively weak in reducing CO2 emissions. Under the FTT-Transport model, fuel

economy regulation in China encourages consumers to either choose more expensive

and more fuel-e�cient advanced petrol/diesel cars or EVs and reduce CO2 emissions

subsequently, at a cost of 14 USD per tonne CO2 under the current regulation

scenario. Similarly to the US, fuel tax in China is comparatively low (at 0.06 USD

in 2016), and hence, fuel tax is less e↵ective in reducing emissions than other policy

incentives. For 540 megatons of cumulative CO2 emissions reductions, the marginal

cost of emissions reduction is 468 USD per tonne CO2 emissions reductions in China.

Unlike China and the US, compared with other policy incentives, we find that

fuel tax is a more e↵ective policy incentive in Japan. This is because, consistent

with the current fuel tax levels, the current fuel tax in Japan is around 10 times

higher than the levels in the US and China (at 0.5 USD at 2016). However, the

e�ciency for fuel tax in Japan remains low. For 5% of emissions reductions in Japan

(equivalent to 90 Mega tonne of cumulative CO2 emissions reductions), marginal

cost of emissions reduction is 926 USD per tonne CO2 emissions reductions. On



Scenario analysis 181

the other hand, like the UK, an EV subsidy is a relatively lesser policy incentive

in reducing CO2 emissions in Japan. This is because the fleet shares in Japan are

relatively low (at 0.3% in 2016), while the fleet shares for hybrid cars are much

larger (at 11% in 2016). As a result of the replicator dynamics equation in the

FTT-Transport model, consumers are more willing to adopt hybrid cars than EVs

when the fleet shares for EVs are still much lower. This implies that the e�ciency

for EV subsidy is low in the Japan, costing more than 2000 USD per tonne CO2

emissions reductions as a result of EV subsidy alone, under the ‘very high EV Sub

scenario’.

Unlike other countries, an EV mandate is more e↵ective in reducing CO2 emis-

sions than other policy incentives in India. This is because the rate of technological

di↵usion increases as the fleet shares for the technology increase, based on replicator

dynamics equation in the FTT-Transport model. Thus, it takes longer for the new

energy technologies to di↵use when fleet shares are low. Using the EV mandate,

our calculation suggests that to reduce emissions from PLDVs by about 317 Mt

cumulative emissions would cost around 100 USD per tonne CO2 emissions. We

find that EV subsidy is less e↵ective than other policy incentives in India when

it is introduced alone. This is because the fleet shares in India are very low (less

than 0.03% in 2016). In addition, the current levels of EV subsidy are among the

lowest in the five countries. Without enough financial incentives and availability of

car models and infrastructures for EV, we find that even when the EV subsidy is

twice the current level, the fleet shares for EVs remain very low in India. Hence,

we find that the e�ciency of CO2 emissions from PLDVs as a result of EV subsidy

falls as policy incentives become more stringent. To reduce emissions from PLDVs

by 6 Mt, the marginal cost of emissions reduction is around 174 USD per tonne

CO2 emissions reductions in India. To reduce CO2 emissions further by 11 Mt CO2

emissions, the marginal cost of emissions reduction is around 546 USD per tonne

CO2 emissions reductions in India.

To summarise, the e↵ectiveness of policy incentives varies between countries,

depending on the levels of the incentives, structure of the incentives, and the cur-

rent market shares for certain PLDV technologies (e.g. the shares for hybrid cars

or EVs). Financial incentives are more e↵ective in countries where the levels of in-

centives are high and the shares for niche technologies (e.g. EVs or hybrid cars) are

also relatively high. Fuel economy regulation is more e↵ective in countries where

on average, engine sizes for conventional cars are large. When the shares for niche

technologies are low, based on the theory of technological di↵usion and the replica-



Scenario analysis 182

tor dynamics equation in the FTT-Transport model, the rates of di↵usion for niche

technologies will remain low unless some parties (e.g. government or consumers)

kick-start the market by buying certain numbers of EVs and thus, EV mandates

will be e↵ective in the countries where shares for EVs are very low. Hence, the ef-

ficiency for the EV mandate is higher than the financial incentives in the countries

where the shares for EVs are low, such as in India.

Overall, in terms of cost, we find that for some policies such as the annual

registration tax and EV subsidy, the costs of emissions reduction increase further

when policies become stricter (i.e. cost per tonne CO2 reductions increases as the

tax levels increase), consistent with existing findings (Rivers et al., 2018; McCollum

et al., 2018). The e�ciency of the annual registration tax and EV subsidy varies

between countries, depending on the rate and e↵ectiveness of the policy incentive.

Our research also reflects that the cost of CO2 emissions reductions can be extremely

high (equivalent to 10,000 USD per tonne CO2 emissions reductions) if the policy

incentive is not e↵ective in cutting emissions. Although carbon tax in the transport

sector has not been introduced in many countries, existing policy incentives such

as EV subsidy, fuel tax and annual registration tax all play a role in reducing CO2

emissions from the transport sector. However, if not su�ciently e↵ective, these

policy incentives could result in a very high cost per tonne CO2 emission reductions.

Among the policy incentives, if introduced individually, fuel economy regulation is

among the most e�cient policy incentives in all countries, costing only around 26

USD per tonne CO2 emissions reductions for the US. However, the e�ciency of

fuel economy falls as the regulation becomes stringent. For other policies, such as

fuel tax and EV mandates, we find that as policies become more stringent, the

e�ciencies of policies could either increase or decrease, depending on the individual

countries/policy levels. This is because the costs of policies do not always increase

linearly with the e↵ectiveness of policies.

7.5 Policy interaction analysis

The previous sections examine the e↵ectiveness of each of the policy incentives

of di↵erent stringencies while encouraging the di↵usion of low emissions PLDVs.

However, in reality, there are several policies in force at the same time. Because the

FTT-Transport model is a non-linear di↵usion model, we found that strong policy

interactions arise in the model (i.e. each policy influences the e↵ectiveness of the
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others) (Mercure et al., 2018). For example, as we have illustrated, the e↵ectiveness

of EV subsidies is di↵erent between countries, not only as a result of the levels of

the subsidies but also due to the current market shares for EVs (see discussion in

section 7.4.6).

In this section, we study the e↵ectiveness and the e�ciency of all possible com-

binations of the five policy incentives. However, it is not necessary to study the

policies of all stringencies stated above and each of their interactions and synergies.

We picked the most stringent scenario for each policy incentive as an example (e.g.

we analyse the interactions between ‘a very high RT scenario’ and ‘a very high FT

scenario’). Table 7.12 provides the definitions and assumptions for the 10 scenarios.

Table 7.12: Definitions of the scenarios and the assumptions taken in the scenarios.

Scenario Assumptions

1 Registration tax (RT), Fuel tax (FT) Very high RT, Very High FT
2 Fuel tax (FT), EV subsidy (EV sub) Very high EV sub, Very high FT
3 Regulation (Reg), Registration tax (RT) Very high RT, With regulation
4 Fuel tax (FT), Regulation (Reg) Very high FT, With regulation
5 EV subsidy (EV sub), Regulation (Reg) With regulation, With regulation scenario
6 Registration tax (RT), EV mandate (EVM) Very high RT, EV mandate high
7 Fuel tax (FT), EV mandate (EVM) Very High FT, EV mandate high
8 EV subsidy (EV sub), EV mandate (EVM) Very high EV sub, EV mandate high
9 Regulation (Reg), EV mandate (EVM) With regulation, EV mandate high
10 EV subsidy (EV sub), Registration tax (RT) Very high RT, Very high EV sub
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7.5.1 Two policy interaction

In this section, we study how the e↵ectiveness of policy incentives changes when two

policy incentives are combined. Here, we define the interactions between policies

in terms of the total e↵ectiveness (of the two policies) minus the e↵ectiveness of

individual policies:

Int(x1, x2) = Eff(x1, x2)� Eff(x1)� Eff(x2) (7.11)

where Int(x1, x2) is the interaction between two policy incentives, Eff(x1, x2)

is the total e↵ectiveness of two policy incentives, Eff(x1) and Eff(x2) are the

e↵ectiveness of policy incentives x1 and x2 that are introduced independently.

Because the policy incentives interact non-linearly in the FTT-Transport model,

there could be interactions between policy incentives (i.e. Int(x1, x2) does not

necessarily equal zero). Int(x1, x2) is positive if there is a reinforcement e↵ect

between two policy incentives, and Int(x1, x2) is negative if there is a trade-o↵

e↵ect between two policy incentives. If policies do not interact, int(x1, x2)=0 and

Eff(x1, x2)=Eff(x1)+Eff(x2). Figure 7.6 shows the e↵ectiveness of each of the

policy incentives and the interactions between pairs of policy incentives. The red

areas and green areas in Figure 7.6 are the di↵erences between the total e↵ective-

ness and the e↵ectiveness of individual policies (i.e. the interactions between two

policies). The red areas indicate that there are reinforcement e↵ects between two

policy incentives, and the green areas indicate that there are trade-o↵ e↵ects be-

tween two policy incentives. Table 7.14 shows the total cost of policies and their

e�ciencies when two policies are combined.

Overall, we find that the sum of the e↵ectiveness of two policies can be either

smaller (trade-o↵ e↵ect) or larger (reinforcement e↵ect) than two policies imple-

mented on their own, depending on the structure and levels of policy incentives.

Thus, we conclude three main observations from the scenario analysis. First, there

is a trade-o↵ e↵ect between the financial incentives under this analysis (as shown in

the green bars of Figure 7.6), while the degree of the trade-o↵ e↵ect depends on the

stringency of individual policy incentives in each country. The reason is that finan-

cial incentives are charged based on fuel economy (e.g. fuel tax) or engine size (e.g.

annual registration tax). If consumers are incentivised to buy more energy e�cient

PLDVs because of one of the incentives, the e↵ectiveness of pairing incentives will

be lower because the costs (of pairing incentives) for consumers of more e�cient

cars are less than for those consumers of less e�cient cars. For instance, when a car
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buyer chooses a more e�cient vehicle (as a result of the annual registration tax), the

e↵ectiveness of a fuel tax falls as the fuel economy improves. Hence, we find that

in all countries, there is a trade-o↵ e↵ect between annual registration tax, fuel tax

and EV subsidies. As a result of the trade-o↵ e↵ect between two policy incentives,

the e�ciency of two financial incentives when these are introduced simultaneously

is generally lower than when they are introduced independently. For instance, when

fuel tax is combined with the annual registration tax, the costs for the UK are 39

billion, and equivalent to around 11700 USD per tonne CO2 emissions reductions.

Although the e�ciency is higher when EV subsidy is combined with fuel tax in all

countries, it can still cost up to 1300 USD per tonne CO2 emissions reductions for

China.

Second, there is a reinforcement e↵ect between EV mandates and other policy

incentives, as shown in the red bars in Figure 7.6. The size of the reinforcement

e↵ect depends on specific countries and the sizes of the policy incentives. The EV

mandate increases the model0s availability and the visibility of EVs. The higher

availability of EVs enables the other policies to have more of an e↵ect by giving a

broader range of choices to consumers. In particular, we find that there is a strong

reinforcement e↵ect between fuel economy regulation and EV mandates. This is

because consumers are more likely to shift from buying conventional petrol/diesel

cars to EVs when conventional cars are banned and when more EV models are

available in the market. In particular, we find that e�ciencies are the highest

when an EV mandate is combined with fuel economy regulations. Hence, when fuel

economy standard is introduced with the EV mandate, we find that the combination

only costs China around 16 USD per tonne CO2 emissions reductions and 33 USD

per tonne CO2 emissions for the US.

Third, the policy e↵ectiveness is lower among countries with a dominant tech-

nology or that have very low market shares of low emissions PLDVs compared with

countries with relatively larger EV fleet shares. For example, without the EV man-

date, we find that the e↵ectiveness of policy combinations is among the lowest in

India due to the very small number of low-emission PLDVs (see Table 7.13). This

is a result of the technological lock-in e↵ect. Hence, an EV mandate is necessary

to reduce the technological lock-in e↵ect by increasing the rate of technological dif-

fusion for EV and to create a reinforcement e↵ect between EV mandates and other

policy incentives. Without EV mandates, in the case of Japan, where hybrid cars

dominate the market, we find that the cost of abatement goes up to 35900 USD per

tonne CO2 emissions reduction if EV subsidy is imposed with the annual registra-
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tion tax. Overall, we find that the cost of abatement can vary significantly for one

single country. For example, in the case of Japan, the cost of CO2 emissions abate-

ment ranges from 78 USD per tonne CO2 emissions reduction when fuel economy is

combined with EV mandate up to more than 30,000 USD per tonne CO2 emissions

reduction when EV subsidy is combined with the annual registration tax.

In reality, there are likely to be more than two policies combined (i.e. policy

framework includes more than two policies), although this is outside the scope

of this study. It is possible to extend our conclusions for two policy interactions

to the scenarios with more than two policies. Essentially, in the framework of

more than two policy incentives, we are likely to find that there is a trade-o↵ e↵ect

between all financial incentives and a reinforcement e↵ect between EVmandates and

other policy incentives. This is because policies that encourage the uptake of more

e�cient PLDVs weaken the e↵ectiveness of other financial incentives. However, if

EV mandates increase the shares for EVs, this increases the models available for

consumers and further incentivises consumers to choose EVs if they are required

to pay higher taxes for higher emissions PLDVs. As we find in this research, as

a result of the trade-o↵ e↵ect and reinforcement e↵ect between policy incentives,

the cost of abatement can range significantly for one country, depending on the

combinations of policy incentives. In reality, when several policy incentives are

introduced simultaneously, it is possible that the trade-o↵ e↵ect between incentives

will lead to the very high cost of CO2 emissions reductions (as in the case of Japan),

although policy incentives often have multiple objectives.

Although our analysis reveals that the marginal cost of abatement is unique

for each country under di↵erent levels of policy measures, certain trends are ro-

bust across scenarios/countries. If policy measures supporting the di↵usion of low

emissions vehicles fail to materialise (i.e. the e↵ectiveness of the policy measure

is low), then the mitigation potentials of the policy measures for the country are

poor, and we observe a steep curves for CO2 mitigation and emissions are ‘inelastic’

to the stringency of policy measure. On the other hand, certain policy measures

(or combination of policy measures) are more ’elastic’ to the stringency of policy

measures.
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Table 7.13: Upper section: the total e↵ectiveness (Eff(x1, x2)) of policy x1 and x2.
Lower section: the interaction e↵ect between two policy incentives (Int(x1, x2)).
When the interaction e↵ect is positive, there is a reinforcement e↵ect between the
two policy incentives. When the interaction e↵ect is negative, there is a trade-o↵
e↵ect between the two policy incentives.

The combined e↵ectiveness (MtCO2)

Scenario UK US Japan China India

1. FT+RT -7.74% -8.14% -5.42% -8.08% -2.24%
2. FT+ EV sub -3.59% -1.26% -4.89% -5.51% -3.28%
3. Reg + RT -13.52% -9.36% -5.67% -17.81% -8.53%
4. FT + Reg -11.91% -8.82% -4.72% -17.46% -8.05%
5. EV sub + Reg -11.81% -8.91% -4.72% -18.33% -7.68%
6. RT + EVM -9.54% -11.29% -5.69% -14.07% -7.10%
7. FT + EVM -7.53% -2.03% -8.75% -10.40% -7.27%
8. EV sub + EVM -4.42% -3.52% -1.99% -13.03% -4.81%
9. Reg + EVM -15.20% -12.69% -8.11% -29.98% -11.60%
10. EV sub + RT -5.32% -8.83% -1.84% -9.79% -2.04%

The interaction e↵ect (MtCO2)

Scenario UK US Japan China India

1. FT+RT -31 -227 -23 -319 -258
2. FT+ EV sub -21 -9 -3 -603 -11
3. Reg + RT -60 -2180 -13 -982 -91
4. FT + Reg -41 -86 -87 -478 -297
5. EV sub + Reg -16 -159 -2 -762 -5
6. RT + EVM 15 445 51 535 225
7. FT + EVM 22 38 52 496 126
8. EV sub + EVM 27 229 12 501 187
9. Reg + EVM 26 810 45 1442 23
10. EV sub + RT -15 -117 -4 -464 -5
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Figure 7.6: Policy e↵ectiveness (in absolute values) and interactions between policy
incentives. Policy e↵ectiveness is defined as cumulative emissions reductions (be-
tween 2016 and 2050) achieved by a given policy or set of policies. The bar diagram
shows the e↵ectiveness of policy incentives in absolute terms (i.e. CO2 emissions
reductions achieved by the policy incentive(s)). The grey bars show the total ef-
fectiveness of two policy incentives of the corresponding scenarios. The green bar
shows the trade-o↵ e↵ect between the policy incentives in the corresponding sce-
narios. The red bars show the reinforcement e↵ect between two policy incentives in
the corresponding scenarios.
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Table 7.14: The total cost, annual cost and e�ciency of combinations of policy
incentives.

Total cost (Billion USD) UK US Japan China India

1. FT+RT 1310 8212 1305 2150 743
2. FT + EV sub 58 179 92 1221 46
3. Reg + RT 1508 6972 1103 1426 692
4. FT + Reg 61 168 78 214 57
5. EV sub + Reg 9 195 10 804 23
6. RT + EVM 1263 8107 1233 1971 734
7. FT + EVM 56 103 95 324 72
8. EV sub + EVM 12 160 21 1041 37
9. Reg + EVM 6 128 12 80 46
10. EV sub + RT 1265 8182 1231 2867 708

Average cost per year (Billion USD)

1. FT+RT 38.52 241.53 38.38 63.25 21.87
2. FT + EV sub 1.71 5.26 2.71 35.92 1.36
3. Reg + RT 44.34 205.07 32.45 41.95 20.34
4. FT + Reg 1.78 4.94 2.30 6.30 1.68
5. EV sub + Reg 0.27 5.74 0.31 23.65 0.67
6. RT + EVM 37.16 238.45 36.28 57.96 21.59
7. FT + EVM 1.66 3.02 2.78 9.54 2.13
8. EV sub + EVM 0.35 4.71 0.61 30.63 1.09
9. Reg + EVM 0.19 3.77 0.35 2.37 1.36
10. EV sub + RT 37.20 240.64 36.21 84.34 20.83

E�ciency (USD/tCO2)

1. FT+RT 11692 3377 12919 1629 3895
2. FT + EV sub 1116 476 1014 1357 141
3. Reg + RT 7706 2435 10448 490 950
4. FT + Reg 352 62 890 75 83
5. EV sub + Reg 53 72 119 268 35
6. RT + EVM 9155 2348 11636 857 1212
7. FT + EVM 518 170 581 191 100
8. EV sub + EVM 205 122 387 534 90
9. Reg + EVM 29 33 78 16 47
10. EV sub + RT 16428 3027 35878 1792 4071
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Table 7.15: Registration tax assumptions for the UK (in USD). We assumed that
there is no policy instruments introduced in the baseline scenario. The current RT
scenario represents the current registration tax level in the UK. We assumed that
the registration tax is 50% higher than the current level in the High RT scenario
and 100% higher in the very high RT scenario

UK Baseline Current
RT

High RT Very high
RT

Econ Petrol 0 120 180 240
Mid Petrol 0 200 300 400
Lux Petrol 0 1200 1800 2400
Econ Diesel 0 120 180 240
Mid Diesel 0 200 300 400
Lux Diesel 0 1200 1800 2400
Econ CNG 0 120 180 240
Mid CNG 0 200 300 400
Lux CNG 0 1200 1800 2400
Econ FFV 0 120 180 240
Mid FFV 0 200 300 400
Lux FFV 0 1200 1800 2400
Econ Hybrid 0 100 150 200
Mid Hybrid 0 140 210 280
Lux Hybrid 0 500 750 1000
Econ EV 0 60 0 0
Mid EV 0 100 0 0
Lux EV 0 600 0 0
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Table 7.16: Registration tax assumptions for the US (in USD). We assumed that
there is no policy instruments introduced in the baseline scenario. The current
RT scenario represents the current registration tax level in California (taken as a
representative state) . We assumed that the registration tax is 50% higher than the
current level in the high RT scenario and 100% higher in the very high RT scenario.

US Baseline Current RT High RT Very high RT

Econ Petrol 0 290 435 580
Mid Petrol 0 400 600 800
Lux Petrol 0 600 900 1200
Econ Diesel 0 290 435 580
Mid Diesel 0 400 600 800
Lux Diesel 0 600 900 1200
Econ CNG 0 290 435 580
Mid CNG 0 400 600 800
Lux CNG 0 600 900 1200
Econ FFV 0 290 435 580
Mid FFV 0 400 600 800
Lux FFV 0 600 900 1200
Econ Hybrid 0 290 435 580
Mid Hybrid 0 400 600 800
Lux Hybrid 0 600 900 1200
Econ EV 0 0 0 0
Mid EV 0 0 0 0
Lux EV 0 0 0 0
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Table 7.17: Registration tax assumptions for Japan (in USD). We assumed that
there is no policy instruments introduced in the baseline scenario. The current RT
scenario represents the current registration tax level in Japan. We assumed that
the registration tax is 50% higher than the current level in the high RT scenario
and 100% higher in the very high RT scenario. We also assumed that EVs are
exempt from the annual registration tax in the high RT scenario and the very high
RT scenario.

Japan Baseline Current RT High RT Very high RT

Econ Petrol 0 325 488 650
Mid Petrol 0 372 558 744
Lux Petrol 0 480 720 960
Econ Diesel 0 325 488 650
Mid Diesel 0 372 558 744
Lux Diesel 0 480 720 960
Econ CNG 0 325 488 650
Mid CNG 0 372 558 744
Lux CNG 0 480 720 960
Econ FFV 0 325 488 650
Mid FFV 0 372 558 744
Lux FFV 0 480 720 960
Econ Hybrid 0 260 390 520
Mid Hybrid 0 298 446 595
Lux Hybrid 0 384 576 768
Econ EV 0 81 0 0
Mid EV 0 93 0 0
Lux EV 0 120 0 0
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Table 7.18: Registration tax assumptions for China (in USD). We assumed that
there is no policy instruments introduced in the baseline scenario. The current RT
scenario represents the current registration tax level in China. We assumed that
the registration tax is 50% higher than the current level in the high RT scenario
and 100% higher in the very high RT scenario. We also assumed that EVs are
exempt from the annual registration tax in the high RT scenario and the very high
RT scenario.

China Baseline Current RT High RT Very high RT

Econ Petrol 0 80 120 160
Mid Petrol 0 106 159 212
Lux Petrol 0 384 576 768
Econ Diesel 0 80 120 160
Mid Diesel 0 106 159 212
Lux Diesel 0 384 576 768
Econ CNG 0 80 120 160
Mid CNG 0 106 159 212
Lux CNG 0 384 576 768
Econ FFV 0 80 120 160
Mid FFV 0 106 159 212
Lux FFV 0 384 576 768
Econ Hybrid 0 80 120 160
Mid Hybrid 0 106 159 212
Lux Hybrid 0 384 576 768
Econ EV 0 0 0 0
Mid EV 0 0 0 0
Lux EV 0 0 0 0
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Table 7.19: Registration tax assumptions for India (in USD). We assumed that
there is no policy instruments introduced in the baseline scenario. The current RT
scenario represents the current registration tax level in India. We assumed that the
registration tax is 50% higher than the current level in the high RT scenario and
100% higher in the very high RT scenario

India Baseline Current RT High RT Very high RT

Econ Petrol 0 44 67 88
Mid Petrol 0 103 154 206
Lux Petrol 0 150 226 300
Econ Diesel 0 44 67 88
Mid Diesel 0 103 154 206
Lux Diesel 0 150 226 300
Econ CNG 0 44 67 88
Mid CNG 0 103 154 206
Lux CNG 0 150 226 300
Econ FFV 0 44 67 88
Mid FFV 0 103 154 206
Lux FFV 0 150 226 300
Econ Hybrid 0 44 67 88
Mid Hybrid 0 103 154 206
Lux Hybrid 0 150 226 300
Econ EV 0 36 0 0
Mid EV 0 82 0 0
Lux EV 0 120 0 0
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Table 7.20: EV subsidy assumptions for the UK, US, Japan, China and India (in
USD). The current EV subsidy scenario assumes that the levels of EV subsidies are
consistent with the current levels. High EV subsidies assume that the EV subsidy
level is 50% higher than the current level. Very high EV subsidy scenarios assume
that the EV subsidy is 100% higher than the current subsidy levels.

Baseline Current
EV sub-
sidy

High EV
subsidy

Very
high EV
subsidy

UK Econ EV 0 -4000 -6000 -8000
Mid EV 0 -5000 -7500 -10000
Lux EV 0 -7000 -10500 -14000

US Econ EV 0 -5000 -7500 -10000
Mid EV 0 -9000 -13500 -18000
Lux EV 0 -10000 -15000 -20000

Japan Econ EV 0 -5000 -7500 -10000
Mid EV 0 -9000 -13500 -18000
Lux EV 0 -10000 -15000 -20000

China Econ EV 0 -3500 -5250 -7000
Mid EV 0 -8000 -12000 -16000
Lux EV 0 -15000 -22500 -30000

India Econ EV 0 -1334 -2001 -2668
Mid EV 0 -3081 -4622 -6162
Lux EV 0 -4514 -6771 -9028

Table 7.21: Fuel tax assumptions (in USD). The baseline scenario assumes that
there is no policy incentive in place. The current FT scenario assumes that the
levels of petrol tax are consistent with the current levels in individual countries.
The high FT scenario assumes that the fuel tax is 50% higher than the current
levels. Very high FT assumes that fuel tax is 100% higher than the current levels.

Fuel tax Baseline Curent FT High FT Very high FT

UK 0.00 0.60 0.90 1.20
US 0.00 0.05 0.08 0.10
Japan 0.00 0.50 0.75 1.00
China 0.00 0.06 0.09 0.12
India 0.00 0.5 0.75 1.00
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Table 7.22: EV mandate program assumptions

EV mandate Baseline
scenario

EV mandate low EV mandate
mid

EV mandate
high

All countries 0 5\% new sales
are EV

10\% new sales
are EV

15\% new sales
are EV

Table 7.23: Number of new EV sales under the EV mandate program assumptions
(thousands)

Number of PLDVs (thousands) UK US Japan China Inida

EV mandate low (5\%) 115 550 280 950 150
EV mandate mid (10\%) 230 1100 560 1900 300
EV mandate high (15\%) 340 1650 845 2850 450

Table 7.24: Phase-out standards assumptions for the UK, US, Japan, China and
India. The ‘current phase-out scenario’ assumes that the fuel economy standard is
introduced in 2030, followed the historical phase-out standard or phase-out stan-
dards proposed by the UK, US, Japan, China and India. The ‘stringent phase-out
scenario’ assumes that the same phase-out standard is introduced in 2025.

Current phase-out scenario

Reductions in CO2

emissions (%)
Implementation year Reductions in CO2

emissions (%) (year of
reference 2016)

UK 2030 40%
US 2030 20%
Japan 2030 20%
China 2030 35%
India 2030 20%

Stringent phase-out scenario

UK 2025 40%
US 2025 20%
Japan 2025 20%
China 2025 35%
India 2025 20%



Chapter 8

Income e↵ect on scenario analysis

Global economic growth is estimated at 3.1% in 2015 and is projected to be 3.4%

in 2016 and 3.6% in 2017 (IMF, 2016). The trend is projected to continue with a

slowdown in global growth after 2020 (PWC, 2015). In particular, countries such

as China and India are likely to sustain long-term growth despite a slowdown of the

Chinese economy. With rapid economic growth in the fast developing countries, we

are likely to see fast growth in the middle class with rapidly rising incomes.

Consumers’ choices and behaviour are not su�ciently taken into account in

most global IAMs, even though there is extensive evidence that income and social

influence are the key drivers in the di↵usion of vehicles (McCollum et al., 2016).

Consumer preferences, with increasing income, drive choices towards increasingly

carbon-intensive engines (Gallachóir et al., 2009; Zachariadis, 2013). Using his-

torical data on the new vehicle fleet in Ireland, Gallachóir et al. (2009) finds the

purchasing trends towards larger size PLDVs over time have considerably o↵set the

improvements in the technical e�ciency of individual car models. With automo-

bile sales data from Germany in the years 1998-2008, Zachariadis (2013) finds that

German consumers might not choose to buy the same gasoline car they would have

bought a few years earlier; instead, they preferred a more powerful diesel car than

what they might have bought otherwise. Studies on the relationships between in-

come and car prices generally focus on specific areas or countries. It is challenging

to obtain surveys on consumer income and car prices that span several countries.

Climate change mitigation scenarios are increasingly designed to be more ‘re-

alistic’ by incorporating the dynamics of consumer behaviour. While income is a

major determinant for car ownership and car choices, previous global IAMs have

not fully taken that into account. On the one hand, rising income determines the
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demand for PLDVs and the demand for travel, and on the other, rising incomes

can lead consumers to choose vehicles of higher fuel intensity, thus counteracting

the e↵ect of climate policies. The former is normally addressed in most models,

while the latter is rarely considered in models. The income e↵ect on vehicle choice

may become an important consideration when informing policy-making using mod-

els because as income rises, consumers may choose to purchase more expensive and

luxury higher emissions PLDVs and thus counteract the fuel e�ciencies improve-

ment of new PLDVs. The lack of consideration of incomes on car purchases and

emissions in models suggests there are limits to how well current models can inform

climate policy-making in consumer markets, such as vehicle purchases.

In this chapter, we study the relationship between household income and the

household’s willingness to pay for PLDVs in several countries. We are interested in

the following questions:

1. Does an individual0s income explain the price of his/her car purchase? (Sec-

tion 8.3)

2. How can technological di↵usion, energy consumption and emissions be made to

respond to income changes in the FTT-Transport model? (Section 8.4)

3. How will the changes in income impact the e↵ectiveness of the individual policy

instruments for reducing emissions from PLDVs? (Section 8.5)

To achieve the research goal for this chapter, we first collected data regarding

household incomes and household expenditure on car purchases from national sur-

veys for six countries: the US, the UK, China, Korea, Russia and Spain 1. To

find the e↵ects of incomes changes on household expenditure on car purchases (i.e.

household car prices), we regress income changes on household car prices. The prices

paid by households were taken as the consumers’ willingness to pay for PLDVs. We

find that income is a significant factor that positively a↵ects car purchase prices

paid by consumers in all six countries. To extend our results of income changes

on household car prices to countries other than those studied here, we extrapolate

the income e↵ect on the price consumers paid to other countries, including the UK,

US, Japan, China and India. To do this, we regress the income price e↵ect of the

US, UK, China, Korea, Russia and Spain on a cultural index called Hofstede0s in-

dices. Hofstede0s indices describe how a country0s cultural acceptance of unequal

distributions of power strengthens/weakens the relationship between higher income

1These six countries are chosen due to data availability.
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and higher willingness to pay. We find the e↵ect of income changes on car prices in

the UK, US, Japan, China and India using Hofstede0s indices as proxies for which

survey data are not readily available.

Then, the next challenge is to represent the extent to which the income e↵ect

on household car prices (i.e. the e↵ect of income changes on households’ willingness

to pay for PLDVs) in the FTT-Transport model. We find the changes in average

willingness to pay for PLDVs over time based on income change using the income

e↵ect on household car prices found previously. By finding a link between the

average willingness to pay for PLDVs and the change in willingness to pay for

individual PLDV classes in the FTT-Transport model, the changes in willingness

to pay for individual PLDV classes can be identified. These are then added to the

LCOT matrices (the cost matrices of the FTT-Transport model) to reflect change

in the perceived costs when income changes. Last, using the FTT-Transport model,

we find the impact of income changes on the consequent changes in technological

shares and emissions, assuming policy scenarios discussed in Chapter 7. Overall,

we find that although rising income has a noticeable e↵ect on emissions, the e↵ect

is not large but may cancel out existing policies.

This chapter presents the results of a small EPSRC-funded pilot project (through

a research grant programme called ReCoVER) carried out in collaboration with

Charlie Wilson and Hazel Pettifor from the University of East Anglia and led by

myself and Dr Mercure. The work division is indicated in Appendix B.

8.1 Data

To compare the relationship between income and the prices consumers are willing

to pay in a number of countries, we have acquired data from national surveys.

Table 8.1 presents data sources for various national surveys, including survey year,

number of data points and variables available. Due to data availability, survey data

were collected only for the US, the UK, China, Korea, Russia and Spain 1.

1UKUnderstanding Society is the largest panel survey in the world, containing rich information
regarding people’s preference towards PLDVs and driving habits. However, the survey has car
engine size data without car price data. The car price data is derived from our dataset in which
engine sizes and car prices are matched using the MarkLine data.
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Table 8.1: Household survey data sources.

Data source Year Sample size (purchasers
for new vehicles)

UK UK Understanding Society 2011/2012 962
Spain The Survey of Household Finances 2011 364
US Panel Study of Income Dynamics

(PSID)
2010/2011 259

Russia Russian Federation (RLMS-HSE) 2013/2014 122
China China Panel Studies (CFPS) 2010/2012 397
Korea Korea Labour and Income Panel Study

(KLIPS)
2011 272

8.2 Regression methodology

In this section, we find the relationships between income and prices paid by con-

sumers using national survey data and Hofstede’s dimensions of national culture

(see details below). The consumption of luxury or large engine size PLDVs is partly

determined by practicality and partly by self-presentation attitude 1 as consumers

express their individuality and social status (e.g. it is more likely for consumers

to buy luxury PLDVs as they become richer in a society in which social status

is important). Hence, as we find in Mercure and Lam (2015), there is a positive

relationship between car price and engine size.

The purpose of the regression exercise is to test how variations of income a↵ect

purchase prices paid by consumers, both within country and across states, with

cross-sectional data. As we have shown in Table 8.3, we tested how variations

in di↵erent socio-economic factors, in particular household income, a↵ect the car

prices paid by the consumers, thereby predicting the di↵erences for the UK, the

US, Korea, Spain, Russia and China. We then regressed the prices of car purchases

(dependent variable) against income (independent variable) while controlling for

cultural di↵erences and income inequality (control variables).

We first performed within country multivariate Ordinary Least Square (OLS)

regression to capture the e↵ect of consumer incomes on car purchasing prices for the

UK, the US, Korea, Spain, Russia and China, considering various socio-economics

factors such as individual characteristics, household characteristics, driving be-

haviour, stated vehicle preferences and revealed vehicle preferences (see Table 8.3

for details) that a↵ect purchase prices. We have taken and tested all the vari-

ables in the consumers’ survey related to the car preferences and car prices paid

1Self-presentation is behaviour that attempts to convey some information or image about
oneself to other people (Baumeister and Hutton, 1987).
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by consumers. Variables under the stated vehicle preferences section (e.g. comfort,

environmentally friendly) are available in the UK Understanding Society survey,

but not the others. The results for the OLS estimated equation are reported in

Table 8.3.

To capture the e↵ect of income on car prices paid by consumers to countries

outside of the six countries where we have collected survey data, we run a pooled

OLS regression, controlling the di↵erence between countries by the interaction e↵ect

between the incomes and a dummy variable for each country. Here, we evaluate

the extent to which there are significant di↵erences between income and car prices

between countries. To measure the extent to which income e↵ect and country e↵ect

influence car prices, the following model is specified:

(8.1)lnPk,i = �0lnx
0
k,i + �1↵k ⇤ lnYi,t + ✏k,i

with k=UK, US, Korea, Russia, Spain, China and i = Household.

LnPk,i is the log of the car prices paid by household i in country k, the coe�cient �1

captures the interaction e↵ect of country e↵ect (represented by a country dummy

↵k) and household income (lnYi,t) and ✏i,k is the error term. x
0
k,i is the vector of

explanatory variables listed in Table 8.3.

A common approach for measuring national cultural variation on consumer

choice is Hofstede’s five dimensions (Hofstede, 2011). To capture the e↵ect of cul-

tural di↵erences on the income e↵ect on car prices, we performed a meta-regression

model and regressed income e↵ect on prices paid by consumers against Hofstede’s

scores of national culture. Hofstede’s dimensions of national culture is a framework

for cross-cultural communication. (Hofstede, 2011) proposes five dimensions along

which cultural values can be analysed: power distance, individualism, uncertainty

avoidance, masculinity vs femininity and long-term orientation (see definition of

Hofstede’s indices in Table 8.2). They measure the e↵ects of a society’s culture on

the values of its members and how these values relate to social behaviour (Hofstede,

2011). Note that because Hofstede’s dimensions reflect general societal attitudes,

we assume they do not change dramatically over time.

8.3 Regression results

The results indicate that income is a significant factor that positively a↵ects car

purchase prices paid by consumers in all countries studied. This implies that higher

income households tend to purchase more expensive PLDVs than mid/low-income
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Table 8.2: Hofstede’s dimensions of national culture. Source: Hofstede Centre.

Culture dimension Definition
Power distance index The extent to which less powerful members of organisa-

tions and institutions accept and expected that power is
distributed unequally.

Individualism The degree of interdependence a society maintains among
its member.

Masculinity vs Femininity The extent to which the society will be driven by compe-
tition achievement and success, heroism, assertiveness and
material rewards for success.

Uncertainty Avoidance Index The extent to which the members of a culture feel threatened
by ambiguous situations.

Long-term vs Short-term ori-
entation

The degree to which a society has to maintain some links
with its past while dealing with challenges of present and
future.

Indulgence vs Restraint The extent to which people try to control their desires and
impulse.

households. This is consistent with our prior expectations that higher incomes

induce people to buy more expensive PLDVs and that income is a significant factor

explaining the prices of PLDVs purchased by consumers. Depending on the country,

income explains around 31% of variance in price in the UK and 15% in the US, while

24% of the variance in car prices in Russia can be explained by income movement.

Similarly, in China and Korea, income explains 16% and 15% of the price movement,

respectively.

Household characteristics such as household size and number of children under

15 years of age negatively a↵ect the price consumers pay for PLDVs in most of the

countries studied; that is, the larger the size of the household, the less they will

spend on purchasing a car. Together, these factors explain up to 34% of the variance

in the car purchase prices in the UK. The number of bedrooms in the purchasers’

home explains up to 25% and 13% of the variance in the car purchase prices in the

US and Spain, respectively. In terms of driving behaviour, the number of PLDVs

owned by the household is the most significant factor in a↵ecting vehicle choices,

explaining up to 18% of price variance in the UK and Korea.
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Table 8.3: OLS multivariate regression measuring the e↵ects of consumer income
on car prices, evaluating the e↵ects of other household and vehicle attributes, with
the purchase price as the dependent variable. Each group of variables are identified
in the literature as factors that will influence the willingness to pay for PLDVs by
consumers.

Country UK US Korea Russia Spain China

Income (US$2011) 0.09** 0.157* 0.396** 0.476** 0.197** 0.335**

Individual characteristics

gender (female=1) -0.144** -0.054 -0.100 0.144 -0.082 0.037
age 0.082* -0.006 0.002 0.053 -0.046 0.118*

Household characteristics

household size -0.162* n/a -0.023 n/a 0.06 -0.048
number kids under 15 0.183** -0.100 -0.034 n/a -0.019 -0.060
number bedrooms/rooms/floor space 0.103** 0.243** n/a n/a 0.131* n/a
urban/rural location (1=urban) -0.068* n/a n/a -0.010 n/a -0.096
own home (1=yes) -0.029 -0.0161 0.075 0.034 0.091 n/a

Driving behaviour/Vehicle Use

number PLDVs owned by household 0.179** 0.007 -0.132* n/a 0.002 n/a
Use car daily -0.013 n/a n/a n/a n/a n/a
Annual mileage (last year, miles) 0.034 n/a n/a n/a n/a n/a
Use for business n/a -0.1571* n/a n/a n/a n/a

Stated vehicle preferences

Costs (purchase/running/resale value tax/insurance) -0.099** n/a n/a n/a n/a n/a
comfort 0.023 n/a n/a n/a n/a n/a
small engine -0.261** n/a n/a n/a n/a n/a
large engine 0.154** n/a n/a n/a n/a n/a
environmentally friendly/low emissions -0.015 n/a n/a n/a n/a n/a
electric vehicle 0.015 n/a n/a n/a n/a n/a
style/design/image of brand/model 0.051 n/a n/a n/a n/a n/a
interior space/functionality/boot size 0.056 n/a n/a n/a n/a n/a
reliability 0.021 n/a n/a n/a n/a n/a
safety -0.016 n/a n/a n/a n/a n/a
speed/performance 0.044 n/a n/a n/a n/a n/a
other features (cd player, music system etc) 0.054 n/a n/a n/a n/a n/a

Vehicle revealed preferences

make/model year n/a -0.023 n/a n/a n/a n/a

N 962 259 272 122 364 397
Total R2 (explained variance) 0.312 0.1493 0.1472 0.2483 0.0895 0.1552

Adjusted R2 (number explanatory vars and n) 0.1185

*Statistically significant at p<0.001
**Statistically significant at p<0.05

Table 8.4: Meta-analysis testing the PD scores on the income e↵ect on prices. PD
scores explain the di↵erences between countries.

Coe�cient Standard error
Intercept 0.0640 0.2865

PD 0.3640 0.1575
Gini -0.1526 0.8324
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Table 8.5: Interaction e↵ect of country and income on car prices. OLS regression
model examining e↵ect of � income on � price and predicting di↵erences of the UK,
the US, Korea, Russia, Spain and China.

.

Interaction e↵ect (log income US$2011 x country)
UK 0.08
US 0.18
Korea 0.25
Russia 0.31
Spain 0.28
China 0.28
n 2606
Adjusted R2 0.41

Note: both country e↵ects and interaction e↵ects between income and price are significant
for all countries at p0.05

The model shows there are significant di↵erences in the relationship between

income and price for di↵erent countries. We performed a meta-regression model

and regressed income e↵ect on prices paid by consumers against Hofstede’s scores

of national culture. We have tested all of Hofstede’s indices and found that only

the power distance (PD) score has a significant explanatory power on the income

e↵ect on the prices consumers paid. The PD score expresses the degree to which

the less powerful members of a society accept and expect that power is distributed

unequally. Hence, status is deemed more important in the countries with a high

PD score. The stronger the e↵ect of social status (i.e. the stronger the e↵ect of set

hierarchy in a society), the more important the income e↵ect is on the average price

of purchased PLDVs (as shown in Figure 8.1). The estimates from the regression

of the income e↵ect on car prices and the PD scores (with uncertainty) are shown

in Table 8.4. The PD scores are high in Asian countries such as China and Japan,

but relatively low in countries such as northern European countries. Consumers

purchase vehicles to reflect their social status in the countries with high PD scores

(see Table 8.6 for comparisons).

Using the regression results of PD scores on the income car price, we extrapolate

the income e↵ect on the price of PLDVs on each country based on their PD and

GINI scores (see Table 8.6). The results express the mean income e↵ect on price,

estimated from the meta-regression of PD and GINI on the log-income e↵ect on the

log-vehicle-price.
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Figure 8.1: The positive relationship between the income e↵ect on car prices and
the PD score, based on the regression results in Table 8.4
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Table 8.6: The mean income e↵ect on the average car prices extrapolated to 50
countries with PD scores and the GINI coe�cient (see text for details).

Power distance GINI coe�cient Mean income e↵ect on price
1 Belgium 0.65 0.29 0.26
2 Denmark 0.18 0.29 0.09
3 Germany 0.35 0.31 0.14
4 Greece 0.6 0.35 0.23
5 Spain 0.57 0.36 0.22
6 France 0.68 0.34 0.26
7 Ireland 0.28 0.32 0.12
8 Italy 0.5 0.34 0.19
9 Luxembourg 0.4 0.31 0.16

10 Netherlands 0.38 0.29 0.16
11 Austria 0.11 0.30 0.06
12 Portugal 0.63 0.36 0.24
13 Finland 0.33 0.28 0.14
14 Sweden 0.31 0.27 0.14
15 UK 0.35 0.35 0.14
16 Czech Republic 0.57 0.27 0.23
17 Estonia 0.4 0.32 0.16
18 Cyprus NA 0.32 NA
19 Latvia 0.44 0.36 0.17
20 Lithuania 0.42 0.34 0.17
21 Hungary 0.46 0.29 0.19
22 Malta 0.56 NA NA
23 Poland 0.68 0.33 0.26
24 Slovenia 0.71 0.25 0.28
25 Slovakia 1 0.27 0.39
26 Bulgaria 0.7 0.36 0.26
27 Romania 0.9 0.28 0.35
28 Norway 0.31 0.26 0.14
29 Switzerland 0.34 0.33 0.14
30 Iceland 0.3 0.26 0.13
31 Croatia 0.73 0.25 0.29
32 Turkey 0.66 0.39 0.25
33 Macedonia NA NA NA
34 US 0.4 0.41 0.15
35 Japan 0.54 0.32 0.21
36 Canada 0.39 0.34 0.15
37 Australia 0.36 0.35 0.14
38 New Zealand 0.22 NA
39 Russian Federation 0.93 0.41 0.34
40 Rest of Annex NA NA NA
41 China 0.8 0.42 0.29
42 India 0.77 0.34 0.29
43 Mexico 0.81 0.48 0.29
44 Brazil 0.69 0.54 0.23
45 Argentina 0.49 0.45 0.17
46 Colombia 0.67 0.56 0.22
47 Rest of Latin America NA NA NA
48 Korea 0.6 0.31 0.23
49 Taiwan 0.58 NA NA
50 Indonesia 0.78 0.36 0.29
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8.4 Linking the income car price e↵ect to the

FTT

If there exists a positive relationship between income changes and prices, then

consumers0 willingness to pay for more expensive PLDVs increases with income (i.e.

they are willing to purchase more expensive PLDVs when they become richer) and

vice versa. In this section, we demonstrate how we represent changes of willingness

to pay for vehicles of di↵erent types in the FTT-Transport model as income changes.

To understand what e↵ect the changes of engine sizes (i.e. shares for Econ, Mid

and Lux) has as a result of the changes in average income, we need to know how

changes in average income lead to changes in the relative attractiveness of each

vehicle class (i.e. increases in income make Lux vehicles more attractive and Econ

vehicles less attractive). If this information is available, then the income e↵ect on

the relative attractiveness of an individual vehicle class can be derived by adding the

perceived cost changes (as a result of the income e↵ect) to the original car prices.

Since this information is unavailable, the solution is to search for a hypothetical car

price for individual car classes that lead to changes in the average price consistent

with a given change in income through the model’s process of di↵usion.

We define parameter A as the relationship between the average car prices across

all PLDV categories and car prices for individual technologies (i.e. how changes in

the perceived costs of individual PLDV classes lead to changes in the average prices).

The A parameter enables us to find the extent to which change in willingness to

pay for each technology leads to change in the average car price, as follows:

Ai = (loghLCOT i � loghLCOT ibase)/(logLCOT (mi)� logLCOT (mi)
base), (8.2)

where LCOT is the levelised cost for transportation. mi is the PLDV classes (i.e.

Econ, Mid and Lux) where there is a change in the willingness to pay for PLDVs

as a result of income changes, LCOT (mi) is the perceived LCOT with the income

e↵ect on PLDV classes mi at time 0, LCOT (mi)base is the original LCOT without

the income e↵ect of vehicle class mi
1. Note that incomes are calculated using a

log scale in order to be consistent with the LCOT calculations. hi represents an

average of all PLDV classes (e.g. hLCOTi is the average perceived LCOT with

the income e↵ect). Hence, Equation 8.5 shows the extent to which changes in the

1
i=1 for a Econ car, i=2 for a Mid car, i=3 for a Lux car
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average LCOT for each PLDV class leads a change in the average LCOT as the

result of the income e↵ect (assuming that the income e↵ect increases the average

car prices purchased by consumers).

The A value is defined as the model’s response to individual price changes, i.e.

the extent to which the model gives average price changes in response to changes in

individual prices, for each PLDV class. We found these A parameters by imposing

hypothetical price changes and observing the model’s response 1. We then use these

A parameters to disaggregate average price changes 2 to individual price changes.

We assume that the A parameter is neither dependent on time nor income

rate. However, A can be time dependent, particularly when the composition of

vehicle technologies changes significantly, e.g. after 30 years. Hence, the early years

estimation is more accurately calculated than the later years. In principle, it is

possible to find an A parameter for each price change. However, this is very time-

consuming for simulation purposes, especially when there are 59 countries over a

30-year time period.

The changes in average prices paid by consumers in response to changes in

income are derived from Equation 8.1. We take GDP per cap as a proxy for income,

and our GDP projection is retrieved from IIASA’s SSP1 database (see Chapter 5

Table 5.5 for assumptions on GDP per cap).

Let DelPr(i, t) be the change in the perceived LCOT for an individual technol-

ogy (i) with the income e↵ect. Then we have

DelPr(i, t0) =
log(hLCOT i/hLCOT

basei)
Ai

(8.3)

and therefore

DelPr(i, t0) = � ⇤ log(i(t)/i(2012))

Ai
, (8.4)

where i(t) is the income in the year t and hLCOT i is the average LCOT for

technology with the income e↵ect. DelPr(i, t0) is the change in the willingness

to pay for PLDVs in log scale over time, calculated with the log change in the

average car price and the Ai parameter. The e↵ect of income on average car prices

is represented by �.

1A sensitivity analysis was carried out to explore the change in the hypothetical prices changes
on the A values and on the result of the simulations using the FTT-Transport (see Appendix A).

2Averages are applied across technologies weighted by their shares.
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Hence, the new perceived LCOT for each technology mi is

log(LCOT (mi)) = log(LCOT (mi)
base) +DelPr(i, t0), (8.5)

DelPr(i, t0) is added to the log prices of Econ, Mid or Lux PLDVs of all tech-

nologies, depending on the engine size distribution of a particular country. Note

that DelPr is the relative changes in costs as a result of the income e↵ect. Typically,

we find that is positive for Econ PLDVs and negative for Lux PLDVs because Econ

PLDVs become less attractive (and hence more costly) and Lux PLDVs become

more attractive (and hence less costly).

Note that this change of definition in the cost of PLDVs as perceived by buyers

requires us to redefine the � parameters for all vehicle types (see definitions of �

parameters in Chapter 3), which means the set of values for � are not the same in the

presence of the income e↵ect, as compared with those used in Chapter 7 without

the income e↵ect. This is because � values change when one more explanatory

parameter (i.e. income) is added to the Equation 7.1. This will compensate for the

di↵erences between the historical technological shares and the new projected shares

at the beginning of the projections, when DelPr is added to the simulation at every

time step. Hence, if the e↵ect of income on vehicle choice is specified explicitly, then

the definition of � changes, and therefore it needs to be recalculated in comparison

with the model without the income e↵ect.

8.5 Simulations

This section explores the extent to which income e↵ect influences the results of

the scenario analysis in Chapter 7 compared to when there is no income e↵ect,

according to the representation of the income e↵ect explored in this chapter.

8.5.1 Baseline scenario

In the baseline scenario, we assume there is no policy in place, as we assume in

Chapter 7. The purpose of this scenario is to capture the income e↵ect on techno-

logical change, energy use and emissions from PLDVs, and to compare the scenario

without the income e↵ect and with the income e↵ect. Figure 8.2 shows the services

generated by PLDVs in the presence of the income e↵ect in the baseline scenario.

Table 8.7 and Table 8.8 present the emissions from PLDVs with the income e↵ect
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and changes in emissions as a result of the income e↵ect, under the same policy

scenarios assumed in Chapter 7.

Based on our model projections, in the case of UK, we find that as income rises,

the shares for Mid and Lux petrol PLDVs increase at the expense of Econ petrol

PLDVs. In the case of the US, compared with the scenarios without the income

e↵ect, the income e↵ect of which does not lead to a significant change in the market

composition for PLDV technologies in the baseline scenario. Although car owners

in the US may purchase more expensive PLDVs as they become richer (because of

the income e↵ect), this is not captured in the model. This is because based on our

engine size classification (to be consistent with Eurostat), all PLDVs with engine

sizes larger than 2000cc are defined as luxury PLDVs, while in fact most existing

PLDVs in the US are already larger than 2000cc. In the case of Japan, Lux hybrid

PLDVs gain around 5% market share as a result of the income e↵ect compared with

scenarios without the income e↵ect.

Based on our models, consumers purchase large engine vehicles as income in-

creases, the extent depends on the size of the income e↵ect (i.e. income change,

income e↵ect size) on total emissions from PLDVs. Consumers have options to up-

grade their PLDVs to any luxury models that are available in the market. For most

countries, before the di↵usion of low emissions PLDVs, this implies that consumers

will have to choose from more expensive petrol PLDVs and diesel PLDVs. Hence,

we find that in the case of the UK and India, the income e↵ect leads to an increase

in the fleet shares for Lux petrol or diesel vehicles.

Based on the replicator dynamics equation in the FTT-Transport model (see

Section 3.3, Chapter 3), the probability of consumers choosing a Lux hybrid PLDVs

or Lux EVs increases if these vehicles are preferred (i.e. when there are at least

a few models of hybrids and EVs available for consumers to choose from). In the

case of Japan, as income increases, consumers can either choose to upgrade to Lux

petrol car models or Lux hybrid car models.

As we have shown previously, our model projects that there will be around 30%

EV fleet shares in China by 2050 in the baseline scenario. This implies that con-

sumers will likely choose between upgrading their PLDVs to more expensive petrol

PLDVs, hybrid PLDVs or EVs. As Figure 8.2 shows, based our model projections,

some consumers choose to buy Lux petrol PLDVs, while others choose to buy Mid

or Lux EVs. Moreover, we find that the overall shares for EVs increase at the

expense of conventional petrol PLDVs according to the model. The reason is that

as more people choose Mid and Lux EVs, the shares for Mid and Lux EVs increase,
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and the rate of technological di↵usion for EVs increases (because more EV mod-

els become available) as a result of path dependency and the replicator dynamics

equation (see Section 3.3, Chapter 3 ) in the FTT-Transport model. In addition,

without the income e↵ect, based on our model, it is more expensive (in terms of

LCOT) to replace small petrol PLDVs with Mid EVs or Lux EVs than scenarios

with the income e↵ect. As income increases, the perceived cost di↵erence (in terms

of LCOT) between Mid EVs or Lux EVs and small petrol PLDVs decreases. In

the FTT-Transport model, the relative price di↵erence between Mid/Lux EVs and

small/mid petrol PLDVs becomes smaller as a result of the DelPr(t) (see discus-

sions in Section 8.4).

Table 8.8 shows the changes in emissions as result of the income e↵ect, as com-

pared with the emissions levels without the income e↵ect in the baseline scenario.

In the presence of the income e↵ect, we find that emissions increased by less than

5.5% in all countries except China, where emissions fall by more than 1% as a re-

sult of the income e↵ect in the baseline scenario. As observed in Figure 8.2, when

income rises, the shares for Mid PLDVs and the shares for luxury PLDVs (all car

technologies) increase in all countries, consistent with our expectations.
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Figure 8.2: PLDV service demand by PLDV energy technologies in Tpkm/year for
the five countries, including UK, US, Japan, China and India, with and without
the income e↵ect. The first column shows the PLDV technology mix in the base-
line scenario and without the income e↵ect. The second column shows the PLDV
technology mix in the baseline scenario and with the income e↵ect.
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8.5.2 Policy scenarios with the income e↵ect

This section summarises the results we obtained as a result of the income e↵ect,

under the same policy scenarios presented in Chapter 7. Table 8.7 shows the emis-

sions from passenger PLDVs under the registration tax scenario (RT scenario), the

EV subsidy scenario (EV sub scenario), the fuel tax scenario (FT scenario), the EV

mandate and the fuel economy regulation (FE regulation).

Overall, in the UK, the US, Japan and India, we find that EV subsidy and EV

mandate are weaker in counteracting the income e↵ect as compared with the annual

registration tax, fuel tax and fuel economy regulation. We notice that the e↵ect

of EV subsidies on emissions varies between countries, depending on the shares of

EVs as a result of the subsidies. For countries with very small EV shares after

the introduction of EV subsidy, such as the UK, the US, Japan and India, we find

a weak e↵ect of the EV subsidy compared with the income e↵ect, which means

consumers’ preference for PLDVs does not change significantly before or after the

introduction of the EV subsidy in the presence of the income e↵ect (i.e. the presence

of the EV subsidy makes a small di↵erence to the results in the baseline scenario).

Hence, as incomes rise, the subsidy will have to become larger or more expensive

to maintain the same e↵ectiveness.

Similarly, because the fuel tax by itself has a very small e↵ect on the di↵usion

of car technologies, we find that fuel tax has a small e↵ect on emissions and the

income e↵ect. Hence, in the presence of the income e↵ect and the fuel tax, we find

that total CO2 emissions are higher in the presence of the income e↵ect compared

with the CO2 emission levels without the income e↵ect (except for China).

For China, we find that, assuming the same level of EV subsidy (high EV sub

scenario), CO2 emissions from PLDVs are lower with the income e↵ect compared

to the scenarios without the income e↵ect. Similarly, although the e↵ect of fuel

tax is small compared with the income e↵ect, we find that emissions fall further

in the presence of the income e↵ect under the fuel tax scenarios in China. As we

have discussed in the baseline scenario (Section 8.5.1), according to our model, as

income increases, Chinese consumers are more likely to upgrade their PLDVs to

Mid/Lux petrol cars or Mid/Lux EVs when the shares for EVs are high. If the real

price di↵erence (after adding DelPr) between Mid/Lux EVs and small/mid petrol

PLDVs becomes smaller as a result of rising income, then it is more likely that

consumers choose Mid/Lux EVs when their incomes rise. In particular, the price

di↵erence between Econ petrol PLDVs and Mid/Lux EVs falls further when EV
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subsidy is added. Hence, based on our model, emissions are lower in the presence

of the income e↵ect under the EV subsidy scenarios and fuel tax scenarios.

As the EV mandates become stronger, we find that income e↵ect on the total

emissions becomes smaller for all countries, but the e↵ect is not significant. For

example, we find that while emissions are 3.37% higher as a result of the income

e↵ect under a low EV mandate program in India, the emissions from PLDVs as a

result of the income e↵ect are less than 3% higher under a high EV mandate pro-

gramme. Similarly, in the case of Japan, with a very low EV mandate programme,

we find that emissions are around 5.3% higher in the presence of the income e↵ect

as a result of the di↵usion for luxury hybrid PLDVs, and this is 5.2% under a high

EV mandate scenario. Although the income e↵ect can be partly absorbed by the

EV take o↵, this is not su�cient to cut emissions below the scenarios without the

income e↵ect in all countries except for China. In the case of China, the e↵ect of

the EV mandate programme further reinforces the income e↵ect and leads to nearly

a 2% emissions reduction below the scenario without the income e↵ect under the

high EV mandate scenario.

After the introduction of EV mandates, by model construction, the fleet shares

for EVs are higher than the baseline scenario (see model construction for EV man-

dates in Chapter 7 Section 7.2.2). As we have shown in the baseline scenario (Sec-

tion 8.5.1), the shares for EVs reach 30% by 2050 in the baseline scenario without

the income e↵ect for China. After the introduction of the EV mandates, the shares

for EVs increase further to 40% without the income e↵ect. This implies there will be

more EV models available in China than elsewhere, and consumers are likely to be

less sceptical about EVs (as a result of social influence and the replicator dynamics

equation in the FTT-Transport model, see Chapter 3 Section 3.3). Hence, after the

introduction of EV mandates, the shares for EVs increase further as a result of the

income e↵ect.

Since the e↵ectiveness of the EV mandates is not strong enough to lead to a

significant di↵usion for EVs (see results in Chapter 7) for all countries except China,

this still means that less than 20% of fleet shares are EV by 2050 (see discussions

in Chapter 7). When fleet shares for EVs are low, there are likely to be fewer EV

models available in the market (than in the countries where fleet shares for EVs are

relatively higher) due to the replicator dynamics equation in the FTT-Transport

model. We find that EV mandate is not strong enough to reinforce the income

e↵ect and lead to an emissions reduction.

In the presence of the registration tax, we notice that the overall income e↵ect
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is very small on the total emissions, leading to a less than 1% increase in emissions

for the UK, the US and Japan. The income e↵ect partly counteracts the presence of

the registration tax, and the income e↵ect decreases with increasing tax levels. The

e↵ect of the registration tax on the car technological di↵usion dominates, and the

income e↵ect on car composition is smaller than the e↵ect of the registration tax.

Similarly, we find that fuel tax is more e↵ective in mitigating the income e↵ect than

the EV subsidy and EV mandate in the UK, US, Japan and India. For example, we

find that emissions increase by 1.7% with the income e↵ect in the baseline scenario.

Under the high FT scenario, we find that emissions increase by 0.84% for the UK.

We find that the fuel economy regulation is among the most e↵ective measures

in counteracting the income e↵ect, especially in countries where there are many

petrol and diesel PLDVs. For the US, as a result of the income e↵ect, the emissions

from PLDVs increase by only 0.3% in the presence of the stringent regulation,

compared to 1.12% without regulation. Similarly, in the case of India, as a result

of the income e↵ect, we find that emissions increase by only 0.2% in the presence

of the regulation, compared to 3.4% without regulation. This is because while the

income e↵ect leads to an increase in the shares for Mid and Lux petrol and diesel

PLDVs, the phase-out regulations improve the fuel economy of the Mid and Lux

petrol and diesel PLDVs.

Although the presence of the phase-out regulation reduces the emissions caused

by the income e↵ect, the overall emissions as a result of the income e↵ect and in the

presence of regulations are still higher than the scenarios without the income e↵ect

and with ‘stringent regulation scenario (see Table 8.8). This is because while regu-

lations force consumers to adopt a more e�cient technology (e.g. a more e�cient

petrol PLDVs), this is not su�cient to overcompensate for the emissions generated

by the luxury models of the technologies as a result of the income e↵ect.

The e↵ectiveness of the policy incentives in mitigating the income e↵ect depends

on the income projections, although we have only considered one income scenario

(SSP1), to be consistent with our approach in Chapter 7. In reality, it is possible

to see higher income rises than projected. When there is a higher income scenario,

we are likely to find that more Lux PLDVs are bought in all countries. If the

choice for low emissions vehicles (such as EVs) remains limited, we are likely to

find that emissions increase further because of the income e↵ect. If there are many

EV models available, consumers are more likely to find an EV model that matches

their preferences. When income rises further, some consumers may choose Lux EV

models over Lux petrol models, especially when the real price di↵erence between
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Econ petrol PLDVs and Lux EVs becomes smaller.

Table 8.7: Cumulative CO2 emissions (MtCO2) under the baseline scenario, the
annual RT scenarios, EV subsidy scenarios, fuel tax scenarios and fuel economy
regulation scenarios, with the income e↵ect.

With the income
e↵ect

UK US Japan China India

Registration tax

Baseline 1472 29874 1961 16126 8819
Current RT 1389 27559 1838 15004 8490
High RT 1389 27559 1838 14959 8490
Very high RT 1362 28264 1838 14919 8488

EV subsidy

Baseline 1472 29874 1961 16126 8819
Current EV sub 1462 29712 1956 15301 8812
High high EV sub 1448 29647 1954 15074 8808
Very high EV sub 1442 29540 1952 14987 8806

Fuel tax

Baseline 1472 29874 1961 16126 8819
Current FT 1431 29676 1888 15882 8614
High FT 1417 28589 1860 15728 8477
Very high FT 1406 29518 1831 15573 8343

EV mandate

Baseline 1472 29874 1961 16126 8819
Current EV mandate 1458 29775 1956 15824 8689
EV mandate low 1440 29713 1952 15612 8674
EV mandate high 1424 29609 1948 15398 8452

Fuel economy regulations

Baseline 1472 29874 1961 16126 8819
Current regulation scenario 1329 28287 1846 13770 8204
Stringent regulation scenario 1292 27461 1819 13157 7896
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Table 8.8: Change in cumulative CO2 emissions (MtCO2) under the baseline sce-
nario, the annual RT scenarios, EV subsidy scenarios, fuel tax scenarios and fuel
economy regulation scenarios, with the income e↵ect.

Without the income e↵ect UK US Japan China India

Registration tax

Baseline 1.71% 1.12% 5.29% -1.35% 3.37%
Current RT 0.34% 0.46% 0.55% -1.86% 1.52%
High RT 0.34% 0.46% 0.54% -1.89% 1.52%
Very high RT 0.30% 0.46% 0.54% -2.15% 1.49%

EV subsidy

Baseline 1.71% 1.12% 5.29% -1.35% 3.37%
Current EV sub 1.71% 1.09% 5.17% -1.95% 3.36%
High high EV sub 1.63% 1.08% 5.12% -2.32% 3.35%
Very high EV sub 1.57% 1.08% 5.11% -2.57% 3.34%

Fuel tax

Baseline 1.71% 1.12% 5.29% -1.35% 3.37%
Current FT 1.06% 0.88% 4.33% -1.39% 3.33%
High FT 0.82% 0.84% 3.79% -1.41% 2.49%
Very high FT 0.84% 0.67% 3.31% -1.48% 1.76%

EV mandate

Baseline 1.71% 1.12% 5.29% -1.35% 3.37%
Current EV mandate 1.62% 1.12% 5.27% -1.38% 3.34%
EV mandate low 1.22% 1.12% 5.25% -1.75% 3.04%
EV mandate high 0.92% 1.11% 5.23% -1.81% 2.88%

Fuel economy regulations

Baseline 1.71% 1.12% 5.29% -1.35% 3.37%
Current regulation 0.96% 0.67% 4.84% -2.74% 0.43%
Stringent regulation 0.42% 0.30% 4.10% -2.92% 0.18%
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8.6 Discussion

This section examines the income e↵ect on PLDV technological di↵usion and emis-

sions using the FTT-Transport model. We conclude three main findings from this

chapter. Firstly, although rising income has a noticeable e↵ect on emissions, the

e↵ect is not large. The income e↵ect at most cancels that of existing policies. The

size of the income e↵ect mainly depends on the economic development and fleet size

structure/distribution of a country.

Secondly, the income e↵ect can lead to increases or decreases of emissions de-

pending on the availability of luxury low-carbon models in the future. With fast

di↵usion of EVs, the income e↵ect can reinforce the e↵ect of policies that support

the di↵usion of EVs. Hence, it is possible for the income e↵ect to reinforce policy

incentives. This is because as the shares for EVs and hybrid PLDVs increase, the

number of models available in the market increases, and this encourages consumers

to purchase the luxury low-carbon models. The policy implication for this is that

it will be useful to adopt policy incentives early on encourage the fast di↵usion for

EVs.

Thirdly, as income rises, we find that it is more likely for consumers to pur-

chase luxury and higher emissions vehicles, and thus counteract the fuel e�ciency

improvement caused by technological di↵usion and fuel economy improvements.

Policies can be made more stringent to cancel the e↵ect of rising incomes and reach

the same outcomes as without the income e↵ect.



Chapter 9

Conclusion

9.1 Background and motivation

Technology plays a fundamental role in transforming the energy system in the pri-

vate light-duty vehicle (PLDV) sector. Technological substitution in the PLDV sec-

tor enables the replacement of existing technologies with more e�cient, lower emis-

sions technologies. Determined by technological development, consumers’ choices

and social institutions, the rate of technological transitions in the PLDV sector is

the key to significant emissions reduction in the transportation sector. Although

some technologies have become widely available, there is a strong path dependence

in the transition of passenger technological systems due to the stability of current

automotive systems and the dominance of internal combustion engine technology.

Policy interventions are important in the process of technological transitions

because many of the new car technologies are still relatively expensive or are per-

ceived to perform poorly compared with incumbent technologies. Policy incentives

are essential in influencing consumers’ choices through cost reduction (both quan-

tifiable and non-quantifiable costs) and improving the social institutions for niche

technologies.

Despite the importance of low emissions technologies in reaching the long-term

emissions reduction targets, there is a gap in understanding the carbon emissions

reduction e↵ects of various policy instruments. In particular, the interactions be-

tween policy instruments and their e↵ects on the di↵usion of low emissions vehicles

have not been studied in detail.

We developed a model of technological change for the PLDVs termed the Fu-

ture Technology Transformation (FTT)-Transport model. This model describes the
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competition between various car technologies with the Lotka-Volterra competition

(LVC) equations. This approach emphasises the importance of path dependence

in the process of technological transitions as a useful tool for understanding the

dynamic structure of transitions pathways.

Using the FTT-Transport model, in this thesis, we run a number of scenario

analyses to determine the e↵ectiveness and e�ciency of five policy instruments (an-

nual vehicle registration tax, EV subsidies, fuel tax, the EV mandate programme

and the fuel economy standards) at di↵erent levels on the emissions of private

PLDVs in the UK, the US, Japan, China and India. By studying the interactions

among any two policy instruments, we analyse both trade-o↵ and reinforcement

e↵ects between policies in di↵erent countries. The analysis provides useful insights

for policymakers regarding how policies should be designed and combined to max-

imise the e↵ectiveness and e�ciency of the policy instruments in reducing emissions

reductions from passenger cars.

In this chapter, we summarise the main findings of the thesis and the policy

implications of this research. We also discuss the limitations of this thesis and

highlight areas for further study.

9.2 Key research questions

In this thesis, we built a simulation model of technological change for PLDVs (FTT-

Transport model) for five major countries: the UK, the US, Japan, China and

India. The FTT-Transport model was built using the FTT framework. It utilises a

dynamic set of coupled logistic equations, similar to replicator dynamics and LVC

equations, that are used here to represent market competition and technological

transition in the di↵usion of low emissions PLDVs. The demand for PLDV transport

services is estimated with regressions for each country and coupled with the FTT-

Transport model to calculate the emissions from the PLDVs.

Using the FTT-Transport model, we conduct a number of scenario analyses

with five key policies in the UK, US, Japan, China and India, including annual

registration tax, fuel tax, EV subsidy, fuel economy regulations and the EV mandate

programme for each country, to address four key research questions:

1) How will each of these policy measures at di↵erent levels impact the di↵usion

of various private PLDV technologies and emissions from the PLDVs in the UK,

US, Japan, China and India?
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2) What is the cost for each policy incentive at di↵erent levels of stringencies,

and how does the e�ciency for each policy instrument vary as it becomes more

stringent?

3) Are there trade-o↵ or reinforcement e↵ects between any two policy instru-

ments on the di↵usion of private PLDVs in each of the five countries?

4) How will the changes in income impact the e↵ectiveness of the individual

policy instruments for reducing emissions from private PLDVs?

9.3 Key research findings

9.3.1 Scenario analysis without the income e↵ect

Impact of policy incentives in the five countries

This section discusses the results and impact of individual policy incentives on

PLDV technological di↵usion at di↵erent levels and summarises the impact of these

policies in di↵erent countries. Given that policy relevance is defined at the country

level, in this section, we will discuss the meaning of the findings in the context of

each country.

In the UK, many tax signals and incentives (e.g. annual registration tax) are

now directly linked to vehicle emissions and fuel type. However, comparatively, the

shares for EVs and hybrid cars remain low in the UK (less than 10% fleet shares

in 2016). Overall, based on the FTT-Transport model, we find that the current

tax levels are ine↵ective in reducing emissions significantly should these policies

be introduced individually. We find that when used on their own, the annual

registration tax is comparatively more e↵ective than other policy incentives (e.g.

fuel tax or EV subsidies) for the UK and leads to the further di↵usion of hybrid

cars (more than 40% hybrid cars di↵usion), assuming that the annual registration

taxes for petrol and diesel cars are twice the current levels. This di↵erence is due

to the structure of the annual registration tax in the UK, where owners of hybrid

cars pay approximately 50% of the annual registration tax in the UK.

In the US, the fleet is dominated by large petrol engine PLDVs. The current fuel

tax in the US is among the lowest in the world. Hence, based on the FTT-Transport

model, among the financial incentives, we find that the current fuel tax is the least

e↵ective policy incentive in the US, due to the low (current) fuel tax levels there.

We find that fuel economy regulation is one of the most e↵ective policy incentives
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in the US, with cumulative emissions falling by nearly 6% in the US, assuming the

current fuel economy regulation. This reduction is because there are a large number

of large engine PLDVs and emissions are reduced significantly when there is a shift

from conventional luxury vehicles to more fuel e�cient vehicles in the US.

Japan has one of the highest hybrid shares among all countries, and its fuel tax

is also the highest among the five countries in this study. We therefore find that

the fuel tax is a comparatively more e↵ective financial incentive in Japan, leading

to 2.8% cumulative emissions reductions, under the baseline fuel tax scenario. This

di↵erence is due to the baseline fuel tax level in Japan being higher than in other

countries in this study. On the other hand, we find that fuel economy standards that

phase out conventional petrol and diesel cars are the least e↵ective policy incentives

because in the baseline scenario, Japan is the only country with very low petrol car

fleet shares by 2050, due to large shares of hybrid cars projected.

China leads the EV market and has the highest EV fleet shares among the five

countries. We find that fuel economy regulation has comparatively more e↵ective

policy incentives in reducing CO2 emissions in China. We determine that the phase-

out regulations not only encourage the di↵usion of advanced petrol cars but also

promote shifts from conventional petrol cars to EVs because the price di↵erence

between the advanced petrol cars and EVs is smaller and the initial EV shares are

higher in China. If the EV subsidy levels are twice the current levels, EV subsidies

increase the shares for EVs from approximately 35% in the baseline scenario to

more than 60% in 2050, leading to nearly 6% cumulative emissions reductions in

2050. The e↵ectiveness of EV mandates is higher in China than other countries

because China has the highest EV fleet shares (among the five countries), and car

sales as a proportion of the total car fleet are much larger in developing countries,

where the car ownership rates are smaller and many consumers are first-time car

buyers (i.e. decision-making is more frequent).

Compared with other countries, there are very few EVs and hybrid cars in

India. Among the five countries, the current policies (i.e. taxes and EV subsidies)

that encourage low emissions PLDVs are the weakest in India. When policies are

introduced alone, we find that EV mandates are among the most e↵ective policy

incentives in India. We determine that the financial incentives (e.g. EV subsidy,

annual registration tax and fuel tax) are ine↵ective in encouraging the di↵usions of

low emissions vehicles in India, leading to a less than 1% emissions reduction under

the current policy scenarios there. As a result of the replicator dynamics equation,

when the fleet shares for a technology are low, there are fewer models in the market,
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and consumers are more reluctant to choose a technology that is not common (see

Chapter 3 Section 3.3.2 for explanations). When the fleet shares for EVs are very

low (less than 0.1%), financial incentives such as EV subsidies are ine↵ective in

encouraging the fast di↵usion of EVs because the rates of technological di↵usions

increase as the fleet shares for the technology increase, based on the replicator

dynamics equation in the FTT-Transport model (see Chapter 3 Section 3.3).

To summarise, the e↵ectiveness of policy incentives varies between countries,

depending on the levels of the incentives, structure of the incentives and current

market shares for certain PLDV technologies (e.g. the shares for hybrid cars or

EVs). Financial incentives are more e↵ective in countries where the levels of incen-

tives are high and the shares for niche technologies (e.g. EVs or hybrid cars) are

relatively high. Fuel economy regulation is more e↵ective in countries where, on

average, engine sizes for conventional cars are large. When the shares for niche tech-

nologies are low, based on the replicator dynamics equation in the FTT-Transport

model (see Chapter 3 Section 3.3), the rates of di↵usion for the niche technologies

will remain low unless some parties (e.g. government, consumers or manufacturers)

kick-start the market by buying/selling certain numbers of EVs.

In reality, there is always more than one policy in place, and using combinations

of policies is likely to have implications on our results. Hence, we will discuss the

interactions between policy incentives in each country and their implications.

Policy interactions

We examine the interactions between policy incentives by analysing both trade-o↵

and reinforcement e↵ects between any pair of policy instruments. We created ten

scenarios, consisting of all possible pairs of policy combinations of the five policy

incentives.

Overall, we find that there is a trade-o↵ e↵ect with one another with all the

financial incentives because such incentives are charged based on fuel economy (e.g.

fuel tax) or engine size (e.g. annual registration tax). If consumers are incentivised

to buy more energy-e�cient vehicles due to one of the incentives, then the e↵ective-

ness of the pairing incentives will be lower because the total cost (of taxation) for

consumers of more e�cient cars is smaller than the total cost for consumers of less

e�cient cars. Hence, the existence of one incentive weakens the overall financial

incentives of another policy.

On the other hand, there is a reinforcement e↵ect between the EV mandate
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programme and all the other policy incentives. This happens because, based on

the replicator dynamics equation (see definitions in Chapter 3 Section 3.3), the

EV adoption rate increases with the initial EV shares. When there are more EVs

around, there is more choice for consumers, which improves the e↵ectiveness of

taxes on emissions in comparison with situations in which there is less choice.

The size of the reinforcement e↵ect depends on countries. For example, in

the case of the US and China, the reinforcement e↵ect is the largest when the

annual registration tax is combined with the EV mandate. There is also a strong

reinforcement e↵ect between the EV mandate and fuel economy regulations in China

and the US. For the UK and India, the largest reinforcement e↵ect can also be found

between EV mandate and fuel economy regulation. For Japan, there is a relatively

large reinforcement e↵ect between the EV mandate and fuel tax.

The cost of policy incentives

While it is important to have an e↵ective policy framework that reduces emissions

significantly, a policy needs to be cost e�cient to be feasible. Among all policy

incentives, the annual registration tax is one of the most expensive. The cumulative

annual registration tax costs US car owners around 185 billion USD per year and

30 billion USD per year for Japanese car owners under the ‘high RT scenario’. For

all countries, we find that e�ciencies fall when the annual registration tax and

EV subsidy become stricter (i.e. cost per ton CO2 reductions increases as the tax

levels increase). For other policies, such as fuel tax and EV mandates, we find

that the e�ciencies of policies could either increase or decrease as policies become

more stringent. For all countries, we determined that the e�ciencies of the EV

subsidy and EV mandate are higher than the annual registration tax. This result

is particularly the case in countries where the fleet shares for EVs are already

relatively higher than for other countries. When policies are introduced alone,

compared with other policy incentives, we find that fuel economy regulations are

among the most e�cient because, based on our calculations (see methodology in

Chapter 7 for details), the fuel economy regulations cost less than 10 USD/tCO2

emission reductions for all countries.

In most cases, combinations of two policies lead to higher e�ciencies than when

the less e�cient policy is introduced independently. In particular, among all the

two-policy combinations, we find that the e�ciencies are the highest when the EV

mandate is combined with fuel economy regulations, costing less than 30 USD/tCO2
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for the US and China. In reality, there are always more than two policies in place.

The e�ciencies for the policy combinations depend on the interactions (i.e. trade-

o↵ or reinforcement e↵ects) between policy incentives and their costs. We are likely

to find e�cient policy combinations when two policies are reinforced and the costs

for the policy incentives are relatively low.

These findings imply that there is a large range of abatement costs for CO2

emissions reductions from PLDV, depending on the policy instruments, levels of

policy instruments and numbers of EVs in individual countries. This large range is

because in reality, a large number of policy initiatives is taken to reduce emissions

from PLDVs and encourage the di↵usion of low emissions vehicles. Each policy and

combination of policies will bear di↵erent costs and e↵ectiveness as a result of the

structure and goal of the policies.

It is di�cult to compare the costs of abatement found in this study with other

modelling groups. The di↵erence is that in this study, we calculate the costs of

abatements based on instruments and countries, while other studies calculate the

emissions achieved by certain carbon prices (although a carbon tax has rarely existed

in the PLDV sector at a regional or global level).

For example, in the MESSAGE model, at 50 USD/tCO2, it is possible to reduce

the cumulative emissions by 2.5 GtCO2 (2010-2050) globally. In our study, the

relationship between carbon price incentives and cumulative emissions depends on

the instruments we take and how the instruments/combinations of instruments are

implemented. For example, it is possible to achieve 2.5 GtCO2 emissions reductions

in the US with a cost equivalent 3200 USD/tCO2 using the annual registration tax

(at twice the current levels) and fuel tax (at twice the current levels). It is also

possible, however, to achieve 2.5 Gt CO2 emissions reductions with a cost equivalent

to 26 USD/tCO2 based on fuel economy regulations.

The di↵erence in the costs of abatement arises from the di↵erence in the rates

of technology adoptions as a result of various policy incentives. For example, we

find that fuel economy regulations are more e�cient in reducing emissions than

the annual registration tax in many countries. This is because while people may

respond to the annual registration tax di↵erently (e.g. some car buyers may be less

sensitive to the annual registration levels than others), the phase-out regulation

essentially prevents all consumers from buying higher emissions models.

Overall, policy incentives have di↵erent e↵ectiveness and e�ciency as a result of

the market fleet distributions and their stringency and structure (see section 9.3.1).

While existing studies/models tend to focus on pricing externalities and policy opti-
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misation, this study takes real instruments and tests the e↵ectiveness and e�ciency

of these instruments on the dynamic change of PLDV technologies and CO2 emis-

sions reductions.

Note that our finding does not imply that policy-makers should simply choose

one policy over another for cost benefit; the e�ciency of policy incentives may fall

as policy incentives become more stringent. We may find that it is not cost-e�cient

to increase certain taxes (e.g. annual registration tax) for some countries without

altering the tax structure or combining incentives with other policy incentives. In

addition, policies exist for other purposes (besides CO2 emissions reductions), such

as financing road infrastructure. This research suggests that policy-makers should

assess the cost of the policies and e�ciencies of policy incentives based on the

structure of the PLDV market and the e↵ectiveness of policy incentives for the

individual countries.

9.3.2 Scenario analysis with income e↵ect

In this thesis, we perform a series of regression analyses and find a positive rela-

tionship between income changes and the prices consumers are willing to pay for

cars. Because higher prices tend to be associated with more powerful vehicles with

higher emissions (Mercure and Lam, 2015), this association implies that as income

rises, an income e↵ect on vehicle prices would cancel or partially cancel the e↵ects

of policies for decarbonisation. In this study, we perform a series of scenario anal-

yses that assume the presence of the income e↵ect. We find that although rising

income has a noticeable e↵ect on emissions, the e↵ect is small (i.e. less than 5%

emissions increase as a result of the income e↵ect). The income e↵ect a↵ects con-

sumers’ choices di↵erently in each of the countries, depending on the rate of income

increases, the distribution of car engine sizes in the market and the market shares

for low emissions vehicles.

In the case of China, we find that overall emissions from PLDVs fall as income

rises. Although the shares for Lux petrol cars increase in the presence of the income

e↵ect, we find there is an increase in the shares for Mid EVs and Lux EVs in China.

As income increases, the total market shares for EVs increase by 10%, from around

30% to 40%. According to our model, this happens in China because the EV fleet

shares are relatively higher in China compared to other countries. According to

the model of technological di↵usion and the replicator dynamics equation in the

FTT-Transport model, when EV fleet shares become larger and more models of
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EVs are available, consumers are more likely to upgrade their Econ/Mid petrol cars

to Mid/Lux EVs than countries where there are very few EV models in the market.

We find that the income e↵ect leads to further emissions reductions, compared with

the scenario without the income e↵ect, under the same policy incentives. Hence,

with fast di↵usion of EVs, the income e↵ect can reinforce the e↵ect of policies

that support the di↵usion of EVs. This result implies that it is possible for other

countries to achieve further emissions reductions as a result of income increase as

the shares for EVs increase.

For the UK and the US, we determine that including the income e↵ect in the

model does not increase emissions significantly for two reasons. Firstly, in the

US and the UK, the rate of income rise has been slow compared with developing

countries, and thus the income e↵ect for the UK and the US is weaker. In this

case, the preference shifts between technology categories will not be significant

after including the income e↵ect. Secondly, in the case of the US, because people

already own luxury cars according to the classification in the FFT-Transport model,

an increase in incomes will not lead to further upgrades of engine sizes 1.

Then, assuming the presence of the income e↵ect, we test the same scenario

assumptions as in the scenarios without the income e↵ect and tested three di↵erent

levels of the annual registration tax, fuel tax, EV subsidy, EV mandate programme

and phase-out regulation. We examine how the income e↵ect cancels out the e↵ec-

tiveness of policy incentives. Overall, as income rises, we find it is more likely for

consumers to purchase luxury (and thus higher emissions) vehicles and counteract

the fuel e�ciency improvement caused by technological di↵usion and fuel economy

improvements. Policies can be made more stringent to cancel out the e↵ect of rising

incomes and reach the same outcomes as without the income e↵ect.

9.4 Policy implications

9.4.1 Individual incentives

For the UK, we find that the annual registration tax needs to be twice the current

levels (high RT scenario) to allow a 40% di↵usion of hybrid cars and reduce the

cumulative emissions by around 7%. The reason is that there is a financial incentive

to purchase hybrid cars, given that owners of hybrid cars pay approximately 50% of

1Note that this is a model artefact, but we continue to use this because the US is the only
country to have such large engines on average.
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annual registration tax in the UK. In addition, we determine that the current EV

subsidy level in the UK leads to less than 5% EV fleet by 2050 and only results in less

than 1% cumulative emissions reduction (taking into account the indirect emissions

from EVs). It may be more e↵ective to strengthen the EV subsidy in the UK and

introduce fuel economy regulations that gradually phase out both conventional and

hybrid cars.

We also find that in the US, some tax incentives such as the current EV sub-

sidy and current fuel tax are too low to cut emissions significantly (they reduce

cumulative emissions by less than 2%). Among all the policy incentives, we observe

that the fuel economy regulation is the most e↵ective policy incentive because it

encourages the uptake of more e�cient models, given that consumers prefer larger

engines and higher emissions cars in the US. The policy implication is that it is

useful to improve the fuel economy regulations further in the future for the US.

In the case of Japan, to reduce emissions further, it is beneficial to improve

the fuel economy regulations further and to phase out hybrid cars gradually to

encourage the further di↵usion of zero emissions vehicles (e.g. fuel cell cars or EV)

in Japan. As income rises, we find that the fuel economy regulations are the most

e↵ective policy incentives in mitigating the income e↵ect that leads to the increase

in the shares for luxury hybrid cars in Japan.

We note that current policy incentives such as EV mandates and EV subsidies

are more e↵ective in China than in other countries for two reasons. Firstly, there

are already more EVs in China due to some existing policies (e.g. EV license plate

allowances). When there are more EV models available in the market, we expect

people will be more likely to choose EVs given the same policy incentives, as a result

of the replicators dynamics equations in the FTT-Transport model (see Chapter 3

Section 3.3 ). Secondly, there are many first-time car buyers, and therefore the

current turnover rates (or average lifetimes) across the country are lower in China

than in the UK or the US (see assumptions in Chapter 4). However, as income

rises and more people start to own a car, the average turnover rates in China may

increase. Hence, it may be useful to introduce a scrappage policy to incentivise

people to upgrade their old cars for new car models.

For India, we find that current policy incentives, such as the EV subsidy and

annual registration tax, are too weak to significantly cut emissions from PLDVs in

India. This is because the EV fleet shares in India are currently very low (less than

10,000 PLDVs). We find that the most e↵ective policy incentive in India is the EV

mandate, although this policy does not exist in India.
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In reality, in no country would policy-makers use only one policy instrument.

Hence, it is important to understand the interactions between policy instruments

and their policy implications, an issue that is discussed in the next section.

9.4.2 Policy interactions

Overall, we determine that while the EV mandate is not always the most e↵ective

policy incentive to cut emissions significantly when it is introduced individually,

there is a reinforcement e↵ect between EV mandate and financial incentives (e.g.

fuel tax, EV subsidy, annual registration tax). Therefore, it is more e�cient to

introduce financial incentives with the EV mandate (i.e. there is a reinforcement

e↵ect). To increase the e↵ectiveness of financial incentives, it is useful to introduce

regulatory measures that increase the number of EVs on the road (and hence EV

models available and infrastructure), due to the reinforcement e↵ect between the

financial incentives and the EV mandate. As the number of EVs on road increases,

it is possible to achieve further emissions reduction as income rises.

On the other hand, the government should consider the trade-o↵ e↵ect, which

weakens the overall e↵ectiveness of the policy combinations. Our analysis suggests

that more stringent financial incentives have to be introduced to compensate for

the trade-o↵ e↵ect between policy incentives.

9.5 Limitations

This section discusses the main limitations of this research and how these limitations

are mitigated or tested.

In this research, we have identified the available technologies, although new

technologies will emerge in the future. However, it is impossible for this model to

predict technologies that have not penetrated the market. In addition, the data for

the costs of new energy technologies (such as fuel cell cars) are not readily available,

and we can only model what already exists in the market.

Hence, we have not considered fuel cell cars in the model, largely because in

2016 (the starting year), there were very few such cars in any of the global regions.

As technologies continue to improve, there will be next-generation cars in the next

30 years. However, as a result of strong path dependence and turnover rates, car

technologies usually take a relatively long period of time to penetrate the market

and replace the old generation technologies. Therefore, it is less likely that niche
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technologies that are radically di↵erent from existing car technologies will penetrate

the market quickly and gain significant market shares by 2050.

Similar to other energy models, there are parametric uncertainties regarding

the FTT-Transport model. In Appendix A , with sensitivity analysis, we test the

uncertainties about the learning rate, discount rate and oil prices. The model is

more sensitive to variations in learning and turnover rate parameters in the coun-

tries with di↵erent alternative technologies than countries where there are dominant

technologies. However, typically, changes in model outcomes induced by individ-

ual parametric variations are smaller than five times the original variations in the

parameters.

For new cars, the fuel consumption factor is obtained from the car manufactur-

ers. However, it is possible that we underestimate the true fuel use or emissions.

Firstly, the fuel use factors we have taken from the car manufacturers may not accu-

rately reflect the fuel consumption in reality. Secondly, it is challenging to estimate

the emissions from older car models. Thirdly, the on-road fuel use and emissions

from PLDVs depend on a number of other factors, such as driving speed and road

type.

In finding how the income e↵ect impacts the total CO2 emissions from PLDVs,

we translate how average income changes translate into changes of willingness to

pay for di↵erent sizes of PLDVs. However, there have been significant challenges in

determining how income changes a↵ect the willingness to pay for particular engine

sizes and PLDV technologies. We use the A parameter to convert the average

price changes to price changes for individual engine sizes of particular technologies.

We find the A parameters by imposing hypothetical price changes for individual

technologies and observing the model response. Although this methodology is the

best we could find to convert the average price (that consumers are willing to pay) to

prices of individual technologies, A values may change over time, particularly when

the PLDV technological composition changes significantly over time as a result of

policy incentives.

Last, future research can improve the FTT-Transport model with respect to the

following areas. It is useful to include more policy instruments (e.g. parking fees,

congestion charges) to reflect the spectrum of policy incentives in the real world.

By expanding our study to more countries, we may be able to learn lessons from the

success and failure of policies in di↵erent contexts. Future studies could improve

the model by regularly updating this model and its parameters. For example, the

model could include new PLDV technologies when they emerge and update their
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costs and fleet shares.

9.6 Further study - other transportation tech-

nologies

This thesis analyses the impact of policy incentives on the future emissions of pri-

vate PLDVs, while decarbonisation options exist on many di↵erent levels, including

modal shifts from travel modes with high carbon intensity such as aviation or pri-

vate vehicles to transportation with lower carbon intensity buses, trains or ships.

Even though this PhD thesis does not examine the impact of modal shifts on the

PLDV vehicle kilometres travelled per year, this is an important subject of future

research.

Within the passenger transport sector, the aviation sector has experienced rapid

growth as the world economy expands, moving more than three billions. Some stud-

ies suggest that CO2 emissions in the civil aviation section are likely to experience

a three-fold increase between 2000 and 2050 (Horton and Britain, 2006; Berghof

et al., 2005).

As technologically autonomous vehicles evolve, future research should take into

account the extent to which autonomous vehicles could impact passenger transport

demand, congestion and travel behaviour. The shift from privately owned passenger

vehicles to a shared-use system with some degree of automation may decrease energy

use and emissions through travel route optimisation, although there are still large

uncertainties because autonomous vehicles could induce travel demand and attract

new user groups (Wadud et al., 2016). Car sharing allows more passengers to be

carried by each vehicle and thus improves the utilisation factors compared to private

vehicles. This advantage encourages investment in high capital cost and more fuel

e�cient technologies that o↵er lower operating costs per mile (Wadud et al., 2016).

Although freight transport is outside the scope of this thesis, the significance

of freight energy demand and CO2 emissions within the transport sector has been

growing steadily (Eom et al., 2012). In contrast to passenger transport, freight

transport is shaped by the logistics of production and consumptions, linked to the

growth of the economy and trading between regions (Onstein et al., 2018). Within

the freight transport area, truck and the road transport have the largest shares in

many developed countries. In the EU, road transport accounted for over three-

quarters (76.4 %) of total inland freight transport (EC, 2019). In the US, 60% of
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goods were transported by truck in 2015, compared with 18% by pipelines and 9%

by rail. The specific energy e�ciency of heavy-duty trucks has improved slightly,

but road transport still consumes significantly more energy per tonne-kilometre

(tkm) than rail or ship freight transport (Eom et al., 2012). In contrast to road

passenger transport, heavy-duty trucks are more di�cult to electrify, particularly

long-haul trucks.

Globalization and the movement of goods across countries involve roads, rail-

ways, inland waterways, and ocean and coastal routes. As a complement to other

modes of transportation, maritime transportation plays an important role in inter-

national shipping connecting roads, railways, and inland waterways through ocean

and coastal route (Eyring et al., 2010). Maritime transportation is often seen as a

complement or a substitute to other modes of freight transport. Globally, maritime

transport emits around 1,000 million tonnes of CO2 annually and is responsible for

about 2.5% global GHG. Although this is not the largest sector in terms of trans-

port emissions, the emissions are predicted to increase between 50% and 250% by

2050 (Tavasszy and De Jong, 2013).
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(2014), ‘Incorporating travel behaviour and travel time into TIMES energy sys-

tem models’, Applied Energy 135, 429–439.



BIBLIOGRAPHY 239

Dargay, J., Gately, D. and Sommer, M. (2007), ‘Vehicle ownership and income

growth, worldwide: 1960-2030’, The Energy Journal 28(4), 143–170.

Davenport, C. (2018), ‘Trump Administration Unveils Its Plan to Relax

Car Pollution Rules’, https : / /www . nytimes . com/ 2018 / 08 / 02 / climate /

trump-auto-emissions-california.html. 2018-8-02.

Davis, L. W. (2008), ‘The e↵ect of driving restrictions on air quality in Mexico

City’, Journal of Political Economy 116(1), 38–81.

De Vries, B., van Vuuren, D., Den Elzen, M. and Janssen, M. (2002), ‘Targets

IMage Energy Regional (TIMER) Model, technical documentation’, Swiss Society

of Economics and Statistics .

DECC (2013), UK Greenhouse Gas Emissions, Final Figures, Technical report,

Department of Energy & Climate Change.

DeShazo, J. (2016), ‘Improving incentives for clean vehicle purchases in the United

States: challenges and opportunities’, Review of Environmental Economics and

Policy 10(1), 149–165.

Dijk, M., Orsato, R., Kemp, R., Yarime, M. and Geels, F. (2012), The electrification

of automobility. The bumpy ride of electric vehicles towards regime transition,

Springer Science & Business Media.

Dittmar, H. (1992), The social psychology of material possessions: to have is to be,

Harvester Wheatsheaf.

Douglas, M. (1978), The world of goods: towards an anthropology of consumption,

Vol. 6, Psychology Press.

Douglas, M. and Isherwood, B. (1978), The world of goods: towards an anthropology

of goods, London: Allen Lane.

Dowlatabadi, H. (1995), ‘Integrated assessment models of climate change: an in-

complete overview’, Energy Policy 23(4), 289–296.

Dubois, B. and Duquesne, P. (1993), ‘The market for luxury goods: income versus

culture’, European Journal of Marketing 27(1), 35–44.

DVLA (2012), Roadside survey of vehicle observations, UK Inside Government.



BIBLIOGRAPHY 240

E85Prices (2018), ‘E85prices - the first and only site dedicated to covering the prices

of e85’, https://e85prices.com. Accessed: 2017-05-29.

EC (2012), TREMOVE: An EU-wide transport model, Technical report, EC.

EC (2014a), ‘2030 Climate & Energy Framework’, https://ec.europa.eu/clima/

policies/strategies/2030 en. Accessed: 2016-02-05.

EC (2014b), Amending regulation (EC) no 443/2009 to define modalities for reach-

ing the 2020 target to reduce CO2 emissions from passenger cars, Technical report,

European Parliament.

EC (2015), ‘Reducing CO2 emissions from passenger cars’, https://ec.europa.eu/

clima/policies/transport/vehicles/cars en. Accessed: 2017-02-07.

EC (2018), ‘Electric vehicles tracking clean energy progress’, https://www.iea.org/

tcep/transport/evs/. Accessed: 2018-12-05.

EC (2019), Freight transport statistics: Statistics explained, Technical report, Eu-

ropean Commissions.

Edenhofer, O., Lessmann, K., Kemfert, C., Grubb, M. and Köhler, J. (2006), ‘In-
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Appendix A

Sensitivity analysis

Like other dynamical models, there are a number of parametric uncertainties for

the FTT-Transport model. If we take into consideration the possible consequences

of these assumptions, we have to analyse the e↵ect of potential changes of starting

values on the final results by a sensitivity analysis. The sensitivity analysis provides

insight into the e↵ects of uncertainties on our projections.

We carried out a sensitivity analysis of responses of the model to the most im-

portant parameters of the FTT: Transport under the baseline scenario assumptions,

the high RT scenario assumptions, the high EV subsidy scenario assumptions, the

high fuel tax scenario assumptions, the high EV mandate assumptions and the sce-

nario with fuel economy regulations (see assumptions in Chapter 7). The scenarios

with the most stringent policy incentives were chosen to carry out the sensitivity

analysis, for exploratory purpose. Although we could, in principle, carry out a sen-

sitivity analysis for all scenarios, but this would not improve the amount of insight

in comparison with the tables given here.

A.1 Choice of parameters for the sensitivity anal-

ysis

It is important to analyse model responses to variations in key parameters, so that

the model is not highly sensitive to very specific values for any particular parameter.

We chose the parameters that would generate the most changes in emissions and

technological shares. This includes parameters that change the prices/attractiveness

for PLDV (e.g. learning rates, EV prices, discount rates, fuel costs), technical

parameters (turnover rates, A values) and non-pecuniary costs (e.g. � values). The
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sensitivity analysis is carried out for each country because the aim of the sensitivity

analysis is to examine how changes in parameters would a↵ect the projection results

in the previous chapters of this thesis.

The parameters varied here are as follows:

1. Learning rates for the EVs. We did not vary the learning rate for conventional

petrol and diesel cars because the learning for the mature technologies is

insignificant 1;

2. Consumer discount rates; (equal for all vehicle types);

3. The price of electric vehicles;

4. � values for all vehicle types;

5. The rate of vehicle purchase (turnover rate); turnover rates here mean the

rate of acquisition of new vehicle.

6. Oil prices; this a↵ects both the attractiveness of the technologies and the

demand for transportation in the passenger car sector.

7. Ai,k values (see Chapter 8 for definition); this a↵ects how the change in the

average willingness to pay for cars is related to a per unit of change in will-

ingness to pay for cars of individual engine technologies, as a result of the

income e↵ect.

We varied 20 parameters by quantities we consider representative of uncertainty,

according to existing literature and historical data. For example, the range of

learning rates were considered based on Nykvist and Nilsson (2015); Weiss et al.

(2012). We have assumed a low EV learning rate scenario (assumed 5% learning

rate) and a high EV learning rate (assumed 15% learning rate) scenario (previously,

we assumed the learning rate for EV is 10%). We have tested the uncertainties

regarding the EV prices (10% uncertainty). Following EC (2012), we have tested

a low discount rate scenario (5% consumer discount rate) and a high consumer

discount rate scenario (25% discount rate) against the baseline scenario where we

have taken a 15% discount rate (previously, we assumed the discount rate is 15%).

The � values are derived from the historical trends of technological di↵usion

(see definitions for � values in Chapter 3). However, the fitting of � values are only

1Conventional vehicles do not have learning cost reductions because their cumulative produc-
tion numbers are large.
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accurate to a certain extent, which we estimate at between 5% to 20%, depend-

ing on the availability of historical data (e.g. EVs have less historical data than

petrol cars). In the sensitivity analysis, we vary the � values by 10% for every car

technology to explore the e↵ect of uncertainties in � values on the final projections.

In principle, � values are constants derived from historical data; we do not expect

large uncertainties with the � values. Note that it is nonsensical or violates the

model if we vary the � values too much (i.e. above 10%). For example, if we vary

the � values by 30%, then we will find that the di↵usion trajectory is no longer con-

sistent with the historical trends, and this violates the assumptions that � values

are derived (see Chapter 3 Section 3.4.2 for more information).

The turnover rates represent the rate of acquisition of new vehicles, i.e. the rate

of decision-making. In developed countries, the more often people change a new

car, the higher the turnover rate and the younger the average fleet age. The rates of

acquisition vary between car owners, related to their incomes, car loans, reliability

and quality. Here, we tested the scenarios when the turnover rates are 20% and

50% higher than the baseline scenario.

The fluctuations of oil prices have a significant e↵ect on the e�ciency of cars

purchased by consumers and the distance travelled by cars over time. As we have

discussed in Chapter 3, in the FTT-Transport model, oil prices a↵ect total emissions

through the demand equations and through consumer choice over car technologies.

We have assumed four oil price scenarios: a very low oil price scenario (50% lower

than the 2016 oil price level), a low oil price scenario (20% lower than the current

oil price projections), a high oil price scenario (20% higher than the current oil price

scenario) and a very high oil price scenario (50% higher than the current oil price

scenario). Note that it is possible for the oil prices to fall or increase more than

50% of the current oil price projections. The aim of this analysis is to study the

e↵ect of a fluctuation in oil prices on the model projections. The oil price scenarios

take into account the oil price uncertainties under the IEA Current Policy Scenario

and 450 Scenario (see IEA (2016)).

As discussed in Chapter 8, we defined the Ai,k value for each technology category

class as the change in average cost per unit of change in individual willingness to

pay for cars. We assumed there is a linear relationship between prices for individual

car technologies and the average price. To examine whether this will have an e↵ect

on the scenario analysis, we took a di↵erent Ai,k value and implement the new Ai,k

value within the model. To explore the extent to which this assumption impacts on

the total emissions, we varied A value by di↵erent amounts (10%, 30% and 50%)
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to see how this a↵ects the shift in technological shares and CO2 emissions.

A.2 Results of the sensitivity analysis

Results of the sensitivity analysis is presented in Table A.1-A.3 (the ‘baseline sce-

nario’), A.4-A.6 (the ‘high RT scenario’), A.7-A.9 (the ‘high EV sub scenario’),

A.10-A.12 (the ‘high FT scenario’), A.13-A.15 (the ‘stringent phase-out scenario’)

and A.16-A.18 (the ‘high EV mandate’). Numbers shown refer to percent changes

in a scenario in which a parameter variation is imposed against the correspond-

ing scenario without the variation. Changes in shares are in the year 2050, while

changes in emissions are cumulated to 2050. Instead of going through each table,

we focus on the parameters and policy scenarios that have the largest impact on

the projections (i.e. the parameters that generate the largest uncertainties). It is

important to analyse model responses to variations in key parameters to ensure the

model is not ‘highly sensitive’ to very specific values for any particular parameter.

As a benchmark, we adopt the definition that a change of X% of CO2 emissions

that results from a parameter variation of Y% is ‘small’ if X is five times smaller Y

and ‘large’ if X is of the order of Y. This is a reasonable definition because if X%

change is larger than Y% parameter variation, then we may see a large propagat-

ing uncertainty. However, if we have X% much smaller than Y%, then the output

uncertainty is much smaller than the input uncertainty for each parameter. We

conclude this analysis with the following broad findings.

Learning rates, EV prices and discount rates tend to have a small impact on

the results (i.e. less than 1% changes in emissions as a result of 5%, 10% and

10% variation in learning rates, EV prices and discount rates respective) for most

countries. The e↵ects of the learning rates 1 on the scenario analysis is the largest

in the countries with the highest market shares of EV, such as China, where a 2%

decrease in CO2 emissions is the result of a 5% variation (higher) in the learning

rates parameter in the baseline scenario. The e↵ect of learning rate on emissions

increases under the high RT scenario. For example, emissions increase by 4% as a

result of 5% variation (lower) in learning rates.

The e↵ect is negligible in the baseline scenario in the countries where there are

very few EVs on road (i.e. India), where we find that there is no change in emissions

as a result of 5% variation in the learning rates parameter in the baseline scenario.

1Note that learning is a process that is assumed global in the FTT-Transport model.
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Similarly, we find that the e↵ect of EV price uncertainties are the largest in China,

leading to 1% increase in CO2 emissions as a result of 10% variation in the EV

prices in the baseline scenario. On the other hand, in the case of India, we find

that there is no change in emissions as a result of 10% variation in the EV prices in

the baseline scenario. The e↵ects of learning rates uncertainties increase as policies

that encourage EV di↵usion are more stringent.

Similarly, for all countries, we find that there is less than 4% change in CO2

emissions as a result of 20% variation in the � value in the baseline scenario. As

we have expected, changes in � for one technology mostly a↵ects its own pace of

di↵usion. Hence, we find that changes in � values have almost no impact on the

emissions projections when the shares for EVs are under 1%. Overall, the relatively

low impact of varying the � parameters is explained by the fact that the model is

not sensitive to small changes in pecuniary cost for individual technologies. Since

the model has some degree of momentum and inertia in its di↵usion trajectories,

changes in the costs data creates a change in the trajectory, but not an instantaneous

change to the shares.

We find that there is less than 10% change in CO2 emissions as a result of 50%

variation in the oil price in the baseline scenario. The e↵ect of oil prices on car

emissions is more significant in China. This is because of two reasons. First, since

the average turnover rate in China (average lifetimes of cars) is smaller than the

developed countries (see Chapter 4), under the FTT-Transport model, this means

that consumers are allow to choose more frequently and thus react to changes in

oil price. Second, the higher availability of low emissions vehicles (e.g. EVs) means

consumers are more likely to shift to low emissions technologies when there is a

change in oil price.

In the baseline scenario, we find that cumulative emissions increase by 11%

and 12% increase for Japan and China respectively as a result of 50% variation

in the turnover rate parameter in the baseline scenario. In the case of Japan,

shares for hybrid cars are 16% lower as a result of 50% variation in the turnover

rate parameter. The impact of turnover rate is smaller in the countries where the

shares for EV and hybrid cars are smaller in the baseline scenario. For example, for

India, we find that there is 1% increase in emissions as a result of 50% variation in

the turnover rate parameter. As policies become more stringent, we find that the

turnover rates uncertainties have a larger impact on emissions. Among the policy

scenarios, we find that the emissions uncertainty is the largest under the high EV

mandate scenario, with emissions in China increasing by 19% as a result of a 50%
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variation in the turnover rate parameter. This is because the rates of technological

transitions for EVs slow down when turnover rates are 50% higher (i.e. consumers

make decisions to purchase cars less often).

Assuming the presence of the income e↵ect, for all countries, we find that emis-

sions increase by less than 3% as a result of 50% variations in A parameter in the

baseline scenario. This is largely because the income e↵ect has a relatively small

impact on emissions and changes of fleet shares. Hence, in the baseline scenario, we

find the uncertainty is the smallest in the US where the income e↵ect is generally

small, with only around a 1% increase in emissions as a result of 50% variation in

A parameter and largest in Japan, leading to a nearly 3% increase in emissions as

a result of a 50% of variation in A parameter.

We conclude that the model is more prone to change as a result of variations in

EV technological learning rates and turnover rates in China and Japan, under the

baseline scenario and the policy scenarios. The model is more sensitive to variations

in learning and turnover rate parameters in the countries with di↵erent alternative

technologies than countries where there are dominant and conventional technologies.

The model is less sensitive as a result of variations in the consumer discount rates,

� values, oil prices and A values. Except for China and Japan, where there is at

least 30% of EVs and hybrid cars projected, we find that the model is less sensitive

to variations in the learning rates and the turnover rates. As technologies for EVs

evolve, the improvement in the knowledge of EV battery learning rates will reduce

the uncertainties of our results. Note that in the FTT-Transport model, we do not

allow varying of the availability of technologies for the following reasons. Altering

the existing technologies involves introducing new technologies with small market

shares. Hypothetical new technologies with very small shares will take longer than

our projection period (until 2050) to di↵use to any significant degree, even if they

are low cost and enjoy substantial support from governments, due to the di↵usion

dynamics in the FTT-Transport model.
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Table A.1: Sensitivity analysis on key technological parameters under the baseline
scenario (UK and US).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.50 -0.87 -0.03 0.00 0.00 0.90
Learning rate -5% 0.84 0.49 0.01 0.00 0.00 -0.50
EV prices +10% 0.08 0.48 0.00 0.00 0.00 -0.48
EV prices -10% -0.08 -0.54 0.00 0.00 0.00 0.55
Turnover rate +20% 2.56 4.12 0.53 0.00 -3.11 -1.55
Turnover rate + 50% 5.82 7.09 0.68 0.00 -5.32 -2.45
Discount rate +10% 0.33 0.19 0.00 0.00 -0.09 -0.11
Discount rate -10% -0.06 -0.38 0.00 0.00 0.18 0.20

UK All � +20% -0.49 -3.17 0.00 0.00 0.00 3.17
All � -20% 0.27 1.33 0.06 0.00 -0.01 -1.38
EV � +10% -0.45 -0.78 0.71 0.00 1.18 -1.10
EV � -10% 0.22 0.21 -0.11 0.00 0.23 -0.33
Hybrid � +10% 0.19 0.14 0.10 0.00 -0.56 0.32
Hybrid �-10% -0.84 -0.52 -0.11 0.00 1.04 -0.40
Petrol � +10% -0.61 -0.13 0.08 0.00 0.14 -0.10
Petrol � -10% 0.52 0.67 0.24 0.00 -0.38 -0.52
Diesel � +10% 0.36 -0.03 0.03 0.00 0.08 -0.08
Diesel � -10% -0.31 0.03 -0.03 0.00 -0.07 0.07
Oil price +20% -2.58 -0.25 -0.01 0.00 0.45 -0.20
Oil price +50% -3.93 -0.67 -0.03 0.00 0.14 0.56
Oil price -20% 1.03 0.24 0.01 0.00 -0.15 -0.10
Oil price -50% 3.44 1.04 0.03 0.00 -0.83 -0.24
A values +10% 1.04 0.10 0.08 0.00 -0.18 0.00
A values +30% 1.27 0.18 0.10 0.00 -0.28 0.00
A values +50% 1.89 0.20 0.14 0.00 -0.34 0.00

Learning rate +5% -0.54 -0.64 0.00 0.00 0.00 0.64
Learning rate -5% 0.88 0.79 0.00 0.00 0.00 -0.79
EV prices +10% 0.16 0.00 0.00 0.00 0.00 0.00
EV prices -10% -0.23 -0.70 0.00 0.00 0.00 0.70
Turnover rate +20% 1.32 1.50 0.00 0.00 -0.01 -1.49
Turnover rate + 50% 2.93 3.29 0.00 0.00 -0.55 -2.74
Discount rate +10% 0.14 0.16 0.00 0.00 -0.01 -0.15
Discount rate -10% -0.26 -0.40 0.00 0.00 0.13 0.27

US All � +20% -0.69 -1.72 0.00 0.00 0.06 1.66
All � -20% 0.73 0.80 0.00 0.00 -0.06 -0.74
EV � +10% -0.24 -1.07 0.00 0.00 0.00 1.08
EV � -10% 0.03 0.03 0.00 0.00 -0.03 0.00
Hybrid � +10% -0.04 -0.03 0.00 0.00 0.03 0.00
Hybrid �-10% 0.03 0.03 0.00 0.00 -0.03 0.00
Petrol � +10% -0.11 0.14 0.00 0.00 0.00 -0.14
Petrol � -10% 0.12 -0.22 0.00 0.00 0.00 0.22
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -3.64 -0.12 0.00 0.00 0.05 0.07
Oil price +50% -6.08 -0.37 0.00 0.00 0.08 0.29
Oil price -20% 3.12 0.13 0.00 0.00 -0.10 -0.03
Oil price -50% 7.62 0.22 0.00 0.00 -0.01 -0.22
A values +10% 0.76 0.00 0.00 0.00 0.00 0.00
A values +30% 0.88 0.00 0.00 0.00 0.00 0.00
A values +50% 1.31 0.00 0.00 0.00 0.00 0.00
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Table A.2: Sensitivity analysis on key technological parameters under the baseline
scenario (Japan and China).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.10 -0.15 0.00 0.00 0.00 0.15
Learning rate -5% 0.12 0.11 0.00 0.00 0.00 -0.11
EV prices +10% 0.05 0.04 0.00 0.00 0.17 -0.22
EV prices -10% -0.06 -0.04 0.00 0.00 -0.52 0.57
Turnover rate +20% 5.13 8.47 0.02 0.00 -8.62 0.14
Turnover rate + 50% 10.87 16.28 0.02 0.00 -16.42 0.12
Discount rate +10% 0.20 0.22 0.00 0.00 -0.14 -0.08
Discount rate -10% -0.14 -0.17 0.00 0.00 0.15 0.02
All � +20% -1.54 -2.40 0.01 0.00 2.40 -0.01

Japan All � -20% 4.41 8.34 -0.01 0.00 -8.35 0.02
EV � +10% -0.01 -0.01 0.00 0.00 -0.06 0.07
EV � -10% 0.34 0.61 0.00 0.00 -0.71 0.10
Hybrid � +10% -0.29 -0.53 0.00 0.00 0.61 -0.08
Hybrid �-10% 0.34 0.61 0.00 0.00 -0.71 0.10
Petrol � +10% -0.80 -1.18 0.01 0.00 1.16 0.02
Petrol � -10% 1.18 1.88 0.00 0.00 -1.85 -0.03
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -2.28 -0.02 0.00 0.00 -0.09 0.11
Oil price +50% -4.72 -0.05 0.00 0.00 -0.20 0.26
Oil price -20% 2.76 0.02 0.00 0.00 0.11 -0.13
Oil price -50% 6.53 0.05 0.00 0.00 0.30 -0.34
A values +10% 1.86 0.42 0.00 0.00 -0.42 0.00
A values +30% 2.04 0.55 0.00 0.00 -0.55 0.00
A values +50% 2.95 1.02 0.00 0.00 -1.02 0.00

Learning rate +5% -2.31 -2.49 -0.20 -0.10 0.00 2.79
Learning rate -5% 3.41 3.14 0.11 0.00 0.00 -3.25
EV prices +10% 0.99 4.28 0.00 0.03 0.37 -4.69
EV prices +10% -1.10 -4.79 0.00 -0.04 -0.54 5.37
Turnover rate +20% 6.56 10.79 0.00 -0.08 -2.29 -8.41
Turnover rate + 50% 11.94 19.70 0.00 -0.01 -2.98 -16.70
Discount rate +10% 0.62 2.08 0.00 0.01 -0.04 -2.05
Discount rate -10% -0.96 -1.73 0.00 -0.02 0.05 1.70

China All � +20% -1.18 -4.08 0.00 -0.03 0.45 3.67
All � -20% 1.07 4.15 0.00 0.02 -1.01 -3.16
EV � +10% -1.09 -4.80 0.00 -0.04 -0.25 5.08
EV � -10% 0.58 0.33 0.00 0.01 -1.32 0.98
Hybrid � +10% -0.03 -0.21 0.00 0.00 0.81 -0.59
Hybrid �-10% 0.05 0.33 0.00 0.01 -1.32 0.98
Petrol � +10% 0.51 0.76 0.00 0.00 -0.84 0.07
Petrol � -10% -0.46 0.52 0.00 -0.01 -0.02 -0.49
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -5.13 -0.20 0.00 -0.01 -0.02 0.22
Oil price +50% -7.00 -0.35 0.00 -0.01 -0.04 0.53
Oil price -20% 6.42 0.24 0.00 0.01 0.02 -0.24
Oil price -50% 8.83 0.46 0.00 0.02 0.06 -0.64
A values +10% 0.40 -0.64 0.00 0.00 0.21 0.43
A values +30% 0.74 -1.56 0.00 0.00 0.40 1.16
A values +50% 1.03 -2.40 0.00 0.00 0.96 1.44
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Table A.3: Sensitivity analysis on key technological parameters under the baseline
scenario (India).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% 0.00 0.00 0.00 0.00 0.00 0.00
Learning rate -5% 0.00 0.00 0.00 0.00 0.00 0.00
EV prices +10% 0.04 0.21 0.00 0.03 -0.21 -0.21
EV prices -10% -0.03 -0.19 0.00 -0.04 0.19 0.19
Turnover rate +20% 0.44 -1.96 2.96 -0.36 -0.48 -0.16
Turnover rate + 50% 0.99 -2.43 3.50 -0.18 -0.48 -0.41
Discount rate +10% 0.22 0.79 -0.59 0.01 -0.10 -0.10
Discount rate -10% -0.48 -0.85 -0.54 -0.02 1.24 0.17

India All � +20% -1.49 -2.34 2.12 -0.08 0.15 0.15
All � -20% 0.42 0.81 -0.51 0.04 -0.16 -0.19
EV � +10% 0.01 0.04 0.00 0.03 -0.04 -0.04
EV � -10% 0.01 -0.01 0.00 0.01 0.00 0.00
Hybrid � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Hybrid �-10% 0.00 0.00 0.00 0.00 0.00 0.00
Petrol � +10% 0.47 0.65 0.76 0.00 -0.75 -0.67
Petrol � -10% -0.27 -0.81 1.05 -0.01 -0.11 -0.11
Diesel � +10% 0.12 0.72 -0.51 0.00 0.00 -0.21
Diesel � -10% -0.97 0.20 -0.58 0.00 0.00 0.38
Oil price +20% -2.82 -0.24 0.00 0.00 0.11 0.13
Oil price +50% -6.48 -0.61 0.00 -0.01 0.28 0.29
Oil price -20% 1.79 0.26 0.00 0.00 -0.11 -0.14
Oil price -50% 5.97 0.56 0.00 0.01 -0.29 -0.37
A values +10% 0.78 -0.94 0.88 0.00 0.06 0.00
A values +30% 1.44 -2.08 1.70 0.00 0.38 0.00
A values +50% 2.51 -3.02 2.55 0.00 0.47 0.00
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Table A.4: Sensitivity analysis on key technological parameters under the ‘high RT’
scenario (UK and US).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.48 -1.13 -0.04 0.00 0.00 1.17
Learning rate -5% 0.90 0.62 0.01 0.00 0.00 -0.63
EV prices +10% 0.01 0.02 0.00 0.00 0.06 -0.08
EV prices -10% -0.01 -0.02 0.00 0.00 -0.05 0.06
Turnover rate +20% 2.67 4.26 0.61 0.00 -3.25 -1.62
Turnover rate + 50% 6.09 8.12 0.71 0.00 -6.27 -2.56
Discount rate +10% 0.27 0.09 0.00 0.00 -0.08 -0.01
Discount rate -10% -0.41 -0.16 0.00 0.00 0.15 0.02

UK All � +20% -0.59 0.00 0.00 0.00 0.00 0.00
All � -20% 0.66 0.00 0.00 0.00 0.00 0.00
EV � +10% -0.58 -0.34 0.00 0.00 0.03 2.29
EV � -10% 0.24 0.25 -0.12 0.00 0.25 -0.36
Hybrid � +10% 0.17 0.12 0.09 0.00 -0.49 0.28
Hybrid �-10% -0.74 -0.29 -0.10 0.00 0.74 -0.35
Petrol � +10% -0.68 -0.14 0.12 0.00 0.13 -0.11
Petrol � -10% 0.56 0.73 0.26 0.00 -0.42 -0.56
Diesel � +10% 0.33 -0.11 0.10 0.00 0.09 -0.09
Diesel � -10% -0.07 0.08 -0.03 0.00 -0.04 -0.01
Oil price +20% -2.31 -0.22 -0.03 0.00 0.43 -0.18
Oil price +50% -3.53 -0.60 -0.03 0.00 0.13 0.50
Oil price -20% 1.92 0.22 0.01 0.00 -0.13 -0.09
Oil price -50% 3.09 0.94 0.03 0.00 -0.74 -0.22
A values +10% 1.32 0.15 0.10 0.00 -0.25 0.00
A values +30% 1.61 0.23 0.11 0.00 -0.34 0.00
A values +50% 2.42 0.22 0.18 0.00 -0.40 0.00

Learning rate +5% -0.71 -0.65 0.00 0.00 0.00 0.65
Learning rate -5% 0.95 0.88 0.00 0.00 0.00 -0.88
EV prices +10% 0.08 0.37 0.00 0.00 0.02 -0.39
EV prices -10% -0.07 -0.34 0.00 0.00 -0.02 0.35
Turnover rate +20% 2.20 1.61 0.00 0.00 -0.01 -1.59
Turnover rate + 50% 4.89 3.54 0.00 0.00 -0.58 -2.96
Discount rate +10% 0.10 0.13 0.00 0.00 -0.03 -0.10
Discount rate -10% -0.31 -0.21 0.00 0.00 0.05 0.16
All � +20% -0.71 -1.86 0.00 0.00 0.07 1.79

US All � -20% 0.40 0.76 0.00 0.00 -0.07 -0.70
EV � +10% -0.30 -1.22 0.00 0.00 0.00 1.23
EV � -10% 0.04 0.04 0.00 0.00 -0.04 0.00
Hybrid � +10% -0.05 -0.06 0.00 0.00 0.06 0.00
Hybrid �-10% 0.04 0.04 0.00 0.00 -0.04 0.00
Petrol � +10% -0.13 -0.12 0.00 0.00 0.00 0.12
Petrol � -10% 0.14 0.26 0.00 0.00 0.00 -0.26
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -2.36 -0.21 -0.01 0.00 0.40 -0.18
Oil price +50% -3.59 -0.61 -0.03 0.00 0.12 0.51
Oil price -20% 0.84 0.24 0.01 0.00 -0.16 -0.09
Oil price -50% 3.21 0.95 0.03 0.00 -0.82 -0.16
A values +10% 0.64 0.06 0.00 0.00 -0.06 0.00
A values +30% 0.74 0.08 0.00 0.00 -0.08 0.00
A values +50% 1.10 0.11 0.00 0.00 -0.11 0.00
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Table A.5: Sensitivity analysis on key technological parameters under the ‘high RT’
scenario (Japan and China).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.19 -0.11 0.00 0.00 0.00 0.11
Learning rate -5% 0.20 0.13 0.00 0.00 0.00 -0.13
EV prices +10% 0.02 0.00 0.00 0.00 0.54 -0.54
EV prices -10% -0.02 0.00 0.00 0.00 -0.48 0.48
Turnover rate +20% 6.04 9.96 0.02 0.00 -10.14 0.17
Turnover rate + 50% 12.78 19.15 0.02 0.00 -19.31 0.14
Discount rate +10% 0.47 0.00 0.00 0.00 0.06 -0.06
Discount rate -10% -0.10 0.00 0.00 0.00 -0.09 0.09
All � +20% -1.31 0.00 0.00 0.00 0.00 0.00

Japan All � -20% 5.21 0.00 0.00 0.00 0.00 0.04
EV � +10% -0.03 -0.03 0.00 0.00 -0.11 0.13
EV � -10% 0.70 1.27 0.00 0.00 -1.48 0.21
Hybrid � +10% -0.61 -1.10 0.00 0.00 1.26 -0.16
Hybrid �-10% 0.70 0.74 0.00 0.00 -0.87 0.13
Petrol � +10% -1.64 -1.45 0.01 0.00 1.41 0.03
Petrol � -10% 2.46 3.42 0.19 0.00 -3.55 -0.05
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -2.00 -0.02 0.00 0.00 -0.08 0.10
Oil price +50% -4.15 -0.04 0.00 0.00 -0.18 0.23
Oil price -20% 2.43 0.02 0.00 0.00 0.09 -0.11
Oil price -50% 6.14 0.04 0.00 0.00 0.26 -0.30
A values +10% 0.54 0.14 0.00 0.00 -0.14 0.00
A values +30% 0.59 0.19 0.00 0.00 -0.19 0.00
A values +50% 0.85 0.38 0.00 0.00 -0.38 0.00

Learning rate +5% -2.06 -3.21 -0.26 -0.13 0.00 3.60
Learning rate -5% 4.43 3.52 0.14 0.00 0.00 -3.66
EV prices +10% 0.19 0.46 0.00 0.02 0.07 -0.55
EV prices -10% -0.17 -0.41 0.00 -0.01 -0.06 0.49
Turnover rate +20% 7.14 11.75 0.00 -0.09 -2.49 -9.16
Turnover rate + 50% 14.23 20.45 0.00 -0.01 -3.25 -17.19
Discount rate +10% 0.15 0.28 0.00 0.01 0.02 -0.30
Discount rate -10% -0.19 -0.42 0.00 -0.01 -0.02 0.45

China All � +20% -1.77 -4.65 0.00 -0.03 0.46 4.23
All � -20% 1.23 4.48 0.00 0.02 -1.24 -3.26
EV � +10% -1.42 -4.20 0.00 -0.05 -0.32 4.57
EV � -10% 0.65 1.55 0.00 0.01 -0.02 -1.54
Hybrid � +10% -0.05 -0.24 0.00 -0.01 1.03 -0.78
Hybrid �-10% 0.07 0.44 0.00 0.01 -1.73 1.28
Petrol � +10% 0.67 1.25 0.00 0.01 0.01 -1.27
Petrol � -10% -0.55 -0.65 0.00 -0.01 0.00 0.66
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -4.74 -0.18 0.00 0.00 -0.02 0.20
Oil price +50% -6.47 -0.32 0.00 -0.01 -0.04 0.37
Oil price -20% 5.93 0.22 0.00 0.01 0.00 -0.22
Oil price -50% 8.15 0.56 0.00 0.01 0.02 -0.59
A values +10% 1.02 -1.75 0.00 0.00 0.67 1.08
A values +30% 1.88 -3.94 0.00 0.00 1.00 2.95
A values +50% 2.62 -6.13 0.00 0.00 2.47 3.66
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Table A.6: Sensitivity analysis on key technological parameters under the ‘high RT’
scenario (India).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.12 -0.30 0.00 0.00 0.00 0.30
Learning rate -5% 0.14 0.24 0.00 0.00 0.00 -0.24
EV prices +10% 0.03 0.24 0.00 0.02 -0.27 -0.27
EV prices -10% -0.03 -0.22 0.00 -0.01 0.25 0.25
Turnover rate +20% 0.46 -2.05 3.09 -0.38 -0.50 -0.17
Turnover rate + 50% 1.03 -2.54 3.65 -0.19 -0.50 -0.42
Discount rate +10% 0.49 0.55 0.00 0.01 -0.20 -0.37
Discount rate -10% -0.66 -0.81 0.00 -0.01 0.40 0.41

India All � +20% -1.34 -4.21 2.10 -0.08 0.16 0.16
All � -20% 0.52 2.89 -0.96 0.02 -0.68 -1.26
EV � +10% -0.01 -0.01 0.00 0.00 0.00 0.01
EV � -10% 0.01 0.01 -0.05 0.06 0.00 -0.02
Hybrid � +10% -0.01 -0.01 0.00 0.00 0.01 0.00
Hybrid �-10% 0.01 0.01 0.00 0.00 -0.01 0.00
Petrol � +10% 0.56 0.77 -0.08 0.01 0.09 -0.79
Petrol � -10% -0.32 -0.95 0.20 -0.01 0.32 0.45
Diesel � +10% 0.14 1.89 -1.43 0.00 0.00 -0.46
Diesel � -10% -0.76 -0.78 0.48 0.00 0.00 0.30
Oil price +20% -5.01 -0.20 0.00 0.00 -0.02 0.22
Oil price +50% -6.84 -0.33 0.00 -0.01 -0.04 0.39
Oil price -20% 6.27 0.21 0.00 0.01 0.02 -0.24
Oil price -50% 8.62 0.45 0.00 0.01 0.05 -0.52
A values +10% 0.84 -1.11 0.93 0.00 0.18 0.00
A values +30% 1.56 -2.24 1.82 0.00 0.42 0.00
A values +50% 2.97 -3.30 2.79 0.00 0.51 0.00
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Table A.7: Sensitivity analysis on key technological parameters under the ‘high EV
subsidy’ scenario (UK and US).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.44 -0.33 -0.01 0.00 0.00 0.34
Learning rate -5% 0.82 0.48 0.01 0.00 0.00 -0.49
EV prices +10% 0.05 0.43 0.00 0.00 0.00 -0.43
EV prices -10% -0.04 -0.82 0.00 0.00 0.00 0.82
Turnover rate +20% 3.22 5.19 0.67 0.00 -3.91 -1.95
Turnover rate + 50% 7.34 8.93 0.85 0.00 -6.70 -3.08
Discount rate +10% 0.19 0.18 0.00 0.00 -0.09 -0.10
Discount rate -10% -0.24 -0.34 0.00 0.00 0.18 0.16

UK All � +20% -0.49 -3.17 0.00 0.00 0.00 3.17
All � -20% 0.27 1.13 0.06 0.00 -0.01 -1.18
EV � +10% -0.59 -2.18 0.00 0.00 0.00 2.18
EV � -10% 0.36 1.54 0.07 0.00 -0.02 -1.59
Hybrid � +10% -0.66 -0.94 0.85 0.00 1.45 -1.36
Hybrid �-10% 0.26 0.23 -0.13 0.00 0.28 -0.38
Petrol � +10% 0.31 0.07 0.15 0.00 -0.54 0.32
Petrol � -10% -1.01 -0.62 -0.14 0.00 1.24 -0.48
Diesel � +10% -0.73 -0.15 0.12 0.00 0.17 -0.14
Diesel � -10% 0.69 0.80 0.28 0.00 -0.46 -0.62
Oil price +20% -2.49 -0.22 -0.01 0.00 0.43 -0.19
Oil price +50% -3.79 -0.65 -0.03 0.00 0.14 0.54
Oil price -20% 0.99 0.22 0.01 0.00 -0.15 -0.09
Oil price -50% 3.32 1.01 0.02 0.00 -0.80 -0.23
A values +10% 0.88 0.12 0.07 0.00 -0.19 0.00
A values +30% 1.06 0.17 0.07 0.00 -0.24 0.00
A values +50% 1.62 0.21 0.12 0.00 -0.33 0.00

Learning rate +5% -0.63 -0.94 0.00 0.00 0.00 0.94
Learning rate -5% 1.02 1.04 0.00 0.00 0.00 -1.04
EV prices +10% 0.43 1.25 0.00 0.00 0.00 -1.25
EV prices -10% -0.49 -3.01 0.00 0.00 0.00 3.01
Turnover rate +20% 1.43 1.46 0.00 0.00 -0.01 -1.44
Turnover rate + 50% 3.18 3.19 0.00 0.00 -0.53 -2.65
Discount rate +10% 0.15 0.28 0.00 0.00 -0.06 -0.22
Discount rate -10% -0.28 -0.55 0.00 0.00 0.12 0.43
All � +20% -0.64 -1.72 0.00 0.00 0.02 1.70

US All � -20% 0.80 0.32 0.00 0.00 -0.06 -0.26
EV � +10% -0.27 -1.22 0.00 0.00 0.00 1.22
EV � -10% 0.04 0.04 0.00 0.00 -0.04 0.00
Hybrid � +10% -0.05 -0.04 0.00 0.00 0.04 0.00
Hybrid �-10% 0.04 0.04 0.00 0.00 -0.04 0.00
Petrol � +10% -0.14 -0.16 0.00 0.00 0.00 0.16
Petrol � -10% 0.15 0.28 0.00 0.00 0.00 -0.28
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -3.36 -0.13 0.00 0.00 0.06 0.07
Oil price +50% -5.62 -0.35 0.00 0.00 0.07 0.28
Oil price -20% 2.88 0.12 0.00 0.00 -0.09 -0.02
Oil price -50% 6.63 0.24 0.00 0.00 -0.01 -0.23
A values +10% 1.06 0.07 0.00 0.00 -0.07 0.00
A values +30% 1.22 0.12 0.00 0.00 -0.12 0.00
A values +50% 1.83 0.17 0.00 0.00 -0.17 0.00
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Table A.8: Sensitivity analysis on key technological parameters under the ‘high EV
subsidy’ scenario (Japan and China).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.05 -0.10 0.00 0.00 0.00 0.10
Learning rate -5% 0.06 0.09 0.00 0.00 0.00 -0.09
EV prices +10% 0.05 0.06 0.00 0.00 1.26 -1.33
EV prices -10% -0.04 -0.12 0.00 0.00 -3.11 3.24
Turnover rate +20% 6.50 10.72 0.02 0.00 -10.92 0.18
Turnover rate + 50% 13.76 20.61 0.02 0.00 -20.78 0.16
Discount rate +10% 0.02 0.00 0.00 0.00 0.09 -0.09
Discount rate -10% -0.06 -0.01 0.00 0.00 -0.12 0.14
All � +20% -1.66 -2.61 0.01 0.00 2.62 -0.01

Japan All � -20% 4.62 8.98 -0.01 0.00 -9.01 0.04
EV � +10% -0.15 -0.44 0.00 0.00 -0.12 0.56
EV � -10% 0.17 0.61 0.00 0.00 -0.72 0.11
Hybrid � +10% -0.34 -0.57 0.00 0.00 0.66 -0.08
Hybrid �-10% 0.37 0.64 0.00 0.00 -0.75 0.11
Petrol � +10% -0.87 -1.29 0.01 0.00 1.26 0.02
Petrol � -10% 1.29 2.67 0.00 0.00 -1.40 -1.27
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -2.05 -0.02 0.00 0.00 -0.08 0.10
Oil price +50% -4.24 -0.05 0.00 0.00 -0.18 0.23
Oil price -20% 2.48 0.03 0.00 0.00 0.08 -0.11
Oil price -50% 5.86 0.06 0.00 0.00 0.24 -0.31
A values +10% 1.62 0.37 0.00 0.00 -0.37 0.00
A values +30% 1.74 0.48 0.00 0.00 -0.48 0.00
A values +50% 2.59 0.99 0.00 0.00 -0.99 0.00

Learning rate +5% -2.80 -3.02 -0.24 -0.12 0.00 3.38
Learning rate -5% 4.13 3.80 0.13 0.00 0.00 -3.94
EV prices +10% 0.63 3.01 0.00 0.03 0.97 -4.01
EV prices -10% -0.51 -5.63 0.00 -0.06 -2.00 7.68
Turnover rate +20% 8.09 13.31 0.00 -0.10 -2.82 -10.38
Turnover rate + 50% 16.12 23.17 0.00 -0.02 -3.68 -19.48
Discount rate +10% 1.20 1.12 0.00 0.01 -0.04 -1.09
Discount rate -10% -0.95 -1.77 0.00 -0.02 0.06 1.72

China All � +20% -1.09 -3.34 0.00 -0.03 0.10 3.27
All � -20% 1.13 3.49 0.00 0.02 -0.85 -2.65
EV � +10% -2.34 -7.44 0.00 -0.06 0.53 6.96
EV � -10% 1.89 3.52 0.00 0.01 -2.05 -1.48
Hybrid � +10% -0.05 -0.72 0.00 -0.01 1.65 -0.92
Hybrid �-10% 0.07 0.52 0.00 0.02 -1.73 1.19
Petrol � +10% 1.22 1.18 0.00 0.01 -1.30 0.12
Petrol � -10% -0.71 -0.64 0.00 -0.01 -0.03 0.68
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -4.41 -0.18 0.00 0.00 -0.02 0.19
Oil price +50% -6.02 -0.31 0.00 -0.01 -0.04 0.37
Oil price -20% 5.52 0.21 0.00 0.00 0.02 -0.23
Oil price -50% 7.59 0.41 0.00 0.01 0.05 -0.47
A values +10% 1.48 -2.91 0.00 0.00 0.98 1.93
A values +30% 2.74 -5.87 0.00 0.00 1.56 4.30
A values +50% 3.82 -9.81 0.00 0.00 3.60 6.20
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Table A.9: Sensitivity analysis on key technological parameters under the ‘high EV
subsidy’ scenario (India).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% 0.00 0.00 0.00 0.00 0.00 0.00
Learning rate -5% 0.00 0.00 0.00 0.00 0.00 0.00
EV prices +10% 0.05 -0.28 0.00 -0.03 0.03 0.28
EV prices -10% -0.04 0.26 0.00 0.03 -0.03 -0.26
Turnover rate +20% 0.51 -2.07 3.16 -0.42 -0.48 -0.19
Turnover rate + 50% 1.16 -2.84 4.08 -0.21 -0.56 -0.47
Discount rate +10% 0.23 0.66 -0.59 0.01 -0.04 -0.04
Discount rate -10% -1.05 -1.66 1.53 -0.02 0.07 0.07

India All � +20% -0.89 -0.67 0.22 0.00 0.11 0.34
All � -20% 0.95 0.74 -0.50 0.04 -0.12 -0.17
EV � +10% -0.12 -0.78 0.70 -0.03 0.05 0.05
EV � -10% 0.33 0.97 -0.32 0.01 -0.23 -0.42
Hybrid � +10% -0.01 -0.01 0.00 0.00 0.00 0.01
Hybrid �-10% 0.02 0.02 -0.08 0.10 0.00 -0.03
Petrol � +10% -0.06 -0.02 0.00 0.00 0.02 0.00
Petrol � -10% 0.02 0.02 0.00 0.00 -0.02 0.00
Diesel � +10% 0.21 0.28 -0.13 0.01 0.15 -0.31
Diesel � -10% -0.14 -0.87 0.33 -0.02 0.42 0.13
Oil price +20% -2.65 -0.22 0.00 0.00 0.10 0.12
Oil price +50% -6.34 -0.56 0.00 -0.01 0.28 0.29
Oil price -20% 1.73 0.24 0.00 0.00 -0.11 -0.14
Oil price -50% 5.61 0.53 0.00 0.01 -0.27 -0.26
A values +10% 1.46 -1.93 1.62 0.00 0.31 0.00
A values +30% 2.40 -3.45 2.80 0.00 0.65 0.00
A values +50% 3.68 -4.09 3.46 0.00 0.63 0.00
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Table A.10: Sensitivity analysis on key technological parameters under the ‘high
FT’ scenario (UK and US).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.56 -1.00 -0.03 0.00 0.00 1.04
Learning rate -5% 0.92 0.51 0.01 0.00 0.00 -0.52
EV prices +10% 0.06 0.42 0.00 0.00 0.00 -0.43
EV prices -10% -0.06 -0.44 0.00 0.00 0.00 0.44
Turnover rate +20% 2.78 4.45 0.60 0.00 -3.36 -1.68
Turnover rate + 50% 6.33 7.70 0.74 0.00 -5.77 -2.66
Discount rate +10% 0.51 0.40 0.02 0.00 -0.18 -0.24
Discount rate -10% -0.45 -0.70 -0.03 0.00 0.40 0.34

UK All � +20% -0.49 -3.17 0.00 0.00 0.00 3.17
All � -20% 0.29 1.54 0.06 0.00 -0.01 -1.59
EV � +10% -0.53 -3.19 0.00 0.00 0.00 3.19
EV � -10% 0.61 1.34 0.06 0.00 -0.01 -1.39
Hybrid � +10% -0.65 -1.25 0.00 0.00 0.48 0.77
Hybrid �-10% 0.32 0.23 0.33 0.00 -0.23 -0.33
Petrol � +10% 0.15 0.11 0.08 0.00 -0.46 0.26
Petrol � -10% -0.65 -0.30 -0.09 0.00 0.72 -0.33
Diesel � +10% 0.43 -0.13 0.11 0.00 0.14 -0.12
Diesel � -10% 0.52 0.68 0.23 0.00 -0.38 -0.53
Oil price +20% -2.26 -0.20 -0.01 0.00 0.18 0.03
Oil price +50% -3.41 -0.54 -0.02 0.00 0.18 0.39
Oil price -20% 1.89 0.21 0.01 0.00 -0.14 -0.08
Oil price -50% 3.02 0.84 0.02 0.00 -0.67 -0.20
A values +10% 1.67 0.21 0.13 0.00 -0.33 0.00
A values +30% 2.05 0.32 0.12 0.00 -0.43 0.00
A values +50% 3.27 0.29 0.22 0.00 -0.51 0.00

Learning rate +5% -0.46 -0.55 0.00 0.00 0.00 0.55
Learning rate -5% 0.70 0.63 0.00 0.00 0.00 -0.63
EV prices +10% 0.19 0.56 0.00 0.00 0.00 -0.56
EV prices -10% -0.25 -0.92 0.00 0.00 0.00 0.92
Turnover rate +20% 2.14 1.57 0.00 0.00 -0.01 -1.55
Turnover rate + 50% 4.78 3.46 0.00 0.00 -0.57 -2.89
Discount rate +10% 0.22 0.30 0.00 0.00 -0.07 -0.24
Discount rate -10% -0.65 -0.49 0.00 0.00 0.14 0.35
All � +20% -0.73 -1.68 0.00 0.00 0.06 1.62

US All � -20% 0.79 0.14 0.00 0.00 -0.09 -0.05
EV � +10% -0.62 -1.56 0.00 0.00 0.06 1.50
EV � -10% 0.59 0.73 0.00 0.00 -0.05 -0.69
Hybrid � +10% -0.23 -0.97 0.00 0.00 0.00 0.97
Hybrid �-10% 0.03 0.03 0.00 0.00 -0.03 0.00
Petrol � +10% -0.03 -0.03 0.00 0.00 0.03 0.00
Petrol � -10% 0.03 0.03 0.00 0.00 -0.03 0.00
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -2.99 -0.10 0.00 0.00 0.06 0.04
Oil price +50% -4.85 -0.30 0.00 0.00 0.08 0.22
Oil price -20% 2.56 0.11 0.00 0.00 -0.08 -0.02
Oil price -50% 6.25 0.18 0.00 0.00 -0.01 -0.18
A values +10% 0.79 0.00 0.00 0.00 0.00 0.00
A values +30% 0.92 0.00 0.00 0.00 0.00 0.00
A values +50% 1.36 0.00 0.00 0.00 0.00 0.00
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Table A.11: Sensitivity analysis on key technological parameters under the ‘high
FT’ scenario (Japan and China).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.12 -0.19 0.00 0.00 0.00 0.19
Learning rate -5% 0.18 0.00 0.00 0.00 0.07 -0.07
EV prices +10% 0.04 0.02 0.00 0.00 0.33 -0.35
EV prices -10% -0.04 -0.02 0.00 0.00 -0.88 0.90
Turnover rate +20% 5.84 9.61 0.02 0.00 -9.78 0.16
Turnover rate + 50% 12.37 18.53 0.02 0.00 -18.68 0.14
Discount rate +10% 0.30 0.23 0.00 0.00 -0.14 -0.09
Discount rate -10% -0.21 -0.31 0.00 0.00 0.24 0.07
All � +20% -1.59 -2.33 0.01 0.00 2.36 -0.04

Japan All � -20% 2.32 3.14 -0.01 0.00 -3.25 0.11
EV � +10% -0.03 -0.03 0.00 0.00 -0.13 0.16
EV � -10% 0.83 1.49 0.00 0.00 -1.74 0.24
Hybrid � +10% -0.72 -1.29 0.00 0.00 1.49 -0.19
Hybrid �-10% 0.83 0.83 0.00 0.00 -0.98 0.15
Petrol � +10% -1.94 -1.57 0.01 0.00 1.51 0.04
Petrol � -10% 2.90 3.68 0.16 0.00 -3.77 -0.06
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -1.85 -0.02 0.00 0.00 -0.08 0.09
Oil price +50% -3.84 -0.06 0.00 0.00 -0.15 0.21
Oil price -20% 2.25 0.02 0.00 0.00 0.09 -0.10
Oil price -50% 5.32 0.05 0.00 0.00 0.23 -0.28
A values +10% 0.64 0.15 0.00 0.00 -0.16 0.00
A values +30% 0.70 0.25 0.00 0.00 -0.25 0.00
A values +50% 1.01 0.48 0.00 0.00 -0.48 0.00

Learning rate +5% -2.62 -3.26 -0.23 -0.11 0.00 3.60
Learning rate -5% 2.96 2.39 0.11 0.00 0.00 -2.49
EV prices +10% 1.01 4.02 0.00 0.04 0.44 -4.50
EV prices -10% -0.96 -3.70 0.00 -0.05 -0.59 4.33
Turnover rate +20% 6.50 10.72 0.00 -0.08 -2.30 -8.34
Turnover rate + 50% 12.90 18.61 0.00 -0.01 -3.21 -15.38
Discount rate +10% 2.54 4.11 0.00 0.03 -0.05 -4.08
Discount rate -10% -3.66 -5.43 0.00 -0.04 0.18 5.29

China All � +20% -1.26 -4.85 0.00 -0.03 0.68 4.21
All � -20% 1.29 4.56 0.00 0.02 -1.11 -3.47
EV � +10% -1.22 -5.37 0.00 -0.04 -0.28 5.69
EV � -10% 1.35 1.20 0.00 0.01 -0.11 -1.10
Hybrid � +10% -0.04 -0.24 0.00 0.00 0.91 -0.67
Hybrid �-10% 0.05 0.41 0.00 0.01 -1.52 1.10
Petrol � +10% 0.65 0.82 0.00 0.01 -0.94 0.11
Petrol � -10% -0.87 -0.55 0.00 -0.01 0.00 0.56
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -4.24 -0.17 0.00 0.00 -0.02 0.19
Oil price +50% -5.78 -0.29 0.00 -0.01 -0.04 0.33
Oil price -20% 5.30 0.19 0.00 0.00 0.02 -0.22
Oil price -50% 7.29 0.38 0.00 0.01 0.05 -0.44
A values +10% -0.83 -1.19 0.00 0.00 0.30 0.89
A values +30% -1.53 -2.91 0.00 0.00 0.83 2.09
A values +50% -2.17 -4.86 0.00 0.00 1.98 2.87
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Table A.12: Sensitivity analysis on key technological parameters under the ‘high
FT’ scenario (India).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% 0.00 0.01 0.00 0.00 0.00 -0.01
Learning rate -5% 0.00 0.01 0.00 0.00 0.00 -0.01
EV prices +10% 0.04 0.24 0.00 0.04 -0.26 -0.26
EV prices -10% -0.03 -0.20 0.00 -0.05 0.21 0.21
Turnover rate +20% 0.39 -1.75 2.64 -0.32 -0.43 -0.14
Turnover rate + 50% 0.88 -2.17 3.12 -0.16 -0.43 -0.36
Discount rate +10% 1.21 2.97 -2.53 0.03 -0.24 -0.24
Discount rate -10% -1.71 -1.73 1.41 -0.04 0.35 0.00

India All � +20% -1.67 -4.36 3.55 -0.09 0.18 0.71
All � -20% 0.51 0.86 -0.55 0.04 -0.16 -0.19
EV � +10% -0.02 -0.01 0.00 0.00 0.00 0.01
EV � -10% 0.02 0.03 -0.10 0.12 0.00 -0.04
Hybrid � +10% -0.02 -0.02 0.00 0.00 0.02 0.00
Hybrid �-10% 0.02 0.02 0.00 0.00 -0.02 0.00
Petrol � +10% -0.14 -0.07 0.00 0.00 0.07 0.00
Petrol � -10% 0.04 0.07 0.00 0.00 -0.07 0.00
Diesel � +10% 0.19 0.25 -0.12 0.01 0.14 -0.28
Diesel � -10% -0.13 -0.78 0.30 -0.02 0.38 0.12
Oil price +20% -2.25 -0.19 0.00 0.00 0.09 0.10
Oil price +50% -5.37 -0.49 0.00 -0.01 0.22 0.27
Oil price -20% 1.43 0.23 0.00 0.00 -0.09 -0.14
Oil price -50% 5.13 0.51 0.00 0.01 -0.23 -0.29
A values +10% 0.67 -0.83 0.76 0.00 0.07 0.00
A values +30% 1.24 -2.04 1.46 0.00 0.58 0.00
A values +50% 2.16 -2.51 2.19 0.00 0.31 0.00
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Table A.13: Sensitivity analysis on key technological parameters under the ‘strin-
gent phase-out’ scenario (UK and US).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.43 -0.70 -0.02 0.00 0.00 0.72
Learning rate -5% 0.80 0.67 0.01 0.00 0.00 -0.68
EV prices +10% 0.05 0.35 0.00 0.00 0.01 -0.36
EV prices -10% -0.05 -0.41 0.00 0.00 -0.01 0.42
Turnover rate +20% 3.25 5.04 0.76 0.00 -3.87 -1.93
Turnover rate + 50% 7.48 10.20 1.96 0.00 -8.19 -3.97
Discount rate +10% 0.02 0.03 0.01 0.00 -0.02 -0.01
Discount rate -10% -0.03 -0.05 -0.01 0.00 0.03 0.02

UK All � +20% -0.49 -3.17 0.00 0.00 0.00 3.17
All � -20% 0.27 1.33 0.06 0.00 -0.01 -1.38
EV � +10% -0.01 -0.07 0.00 0.00 0.00 0.07
EV � -10% 0.08 0.13 0.19 0.00 -0.20 -0.12
Hybrid � +10% 0.08 0.37 0.01 0.00 -0.38 0.00
Hybrid �-10% -0.08 -0.42 -0.01 0.00 0.43 0.00
Petrol � +10% -0.08 -0.13 0.02 0.00 0.10 0.02
Petrol � -10% 0.08 0.13 -0.02 0.00 -0.09 -0.02
Diesel � +10% 0.02 0.05 -0.08 0.00 0.03 0.00
Diesel � -10% -0.02 -0.06 0.81 0.00 -0.76 0.01
Oil price +20% -1.76 -0.12 -0.01 0.00 0.27 -0.14
Oil price +50% -2.77 -0.45 -0.02 0.00 0.12 0.35
Oil price -20% 0.82 0.14 0.01 0.00 -0.08 -0.07
Oil price -50% 2.55 0.62 0.02 0.00 -0.26 -0.38
A values +10% 1.04 0.10 0.08 0.00 -0.18 0.00
A values +30% 1.27 0.18 0.10 0.00 -0.28 0.00
A values +50% 1.89 0.20 0.14 0.00 -0.34 0.00

Learning rate +5% -0.65 -0.54 0.00 0.00 0.00 0.54
Learning rate -5% 0.92 0.77 0.00 0.00 0.00 -0.77
EV prices +10% 0.24 1.45 0.00 0.00 0.89 -2.34
EV prices -10% -0.36 -0.66 0.00 0.00 -1.38 2.04
Turnover rate +20% 2.46 0.97 0.00 0.00 -0.01 -0.96
Turnover rate + 50% 5.60 2.09 0.00 0.00 -0.34 -1.74
Discount rate +10% 0.26 1.08 0.00 0.00 -0.71 -0.37
Discount rate -10% -0.45 -1.88 0.00 0.00 1.27 0.61
All � +20% -0.86 -1.92 0.00 0.00 0.07 1.85

US All � -20% 0.83 0.91 0.00 0.00 -0.07 -0.84
EV � +10% -0.15 -1.19 0.00 0.00 -0.49 1.68
EV � -10% 0.13 0.21 0.00 0.00 0.20 -0.40
Hybrid � +10% -0.09 -0.40 0.00 0.00 0.48 -0.08
Hybrid �-10% 0.09 0.39 0.00 0.00 -0.46 0.07
Petrol � +10% -0.13 -0.21 0.00 0.00 0.20 0.02
Petrol � -10% 0.24 0.14 0.00 0.00 -0.14 0.00
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -1.82 -0.12 -0.01 0.00 0.30 -0.17
Oil price +50% -2.71 -0.45 -0.02 0.00 0.08 0.38
Oil price -20% 0.64 0.19 0.01 0.00 -0.13 -0.07
Oil price -50% 2.50 0.69 0.02 0.00 -0.58 -0.13
A values +10% 0.34 0.00 0.00 0.00 0.00 0.00
A values +30% 0.40 0.00 0.00 0.00 0.00 0.00
A values +50% 0.59 0.00 0.00 0.00 0.00 0.00
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Table A.14: Sensitivity analysis on key technological parameters under the ‘strin-
gent phase-out’ scenario (Japan and China).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.17 -0.24 0.00 0.00 0.00 0.24
Learning rate -5% 0.13 0.11 0.00 0.00 0.00 -0.11
EV prices +10% 0.03 0.01 0.00 0.00 0.20 -0.21
EV prices -10% -0.02 -0.04 0.00 0.00 0.61 -0.58
Turnover rate +20% 7.31 10.77 0.02 0.00 -10.93 0.18
Turnover rate + 50% 13.86 21.25 0.02 0.00 -21.3 0.19
Discount rate +10% 0.02 0.02 0.00 0.00 0.02 -0.04
Discount rate -10% -0.01 -0.02 0.00 0.00 -0.07 0.09
All � +20% -1.42 -4.46 0.00 -0.03 0.49 4.01

Japan All � -20% 1.13 4.93 0.00 0.02 -1.41 -3.54
EV � +10% 0.00 0.00 0.00 0.00 -0.06 0.07
EV � -10% 0.01 0.01 0.00 0.00 -0.03 0.02
Hybrid � +10% -0.05 -0.15 0.00 0.00 0.23 -0.08
Hybrid �-10% 0.07 0.17 0.00 0.00 -0.28 0.11
Petrol � +10% -0.17 -0.10 0.00 0.00 0.10 0.00
Petrol � -10% 0.24 0.14 0.00 0.00 -0.14 0.00
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -1.52 -0.01 0.00 0.00 -0.05 0.07
Oil price +50% -2.98 -0.10 0.00 0.00 -0.13 0.21
Oil price -20% 1.87 0.02 0.00 0.00 0.06 -0.08
Oil price -50% 4.70 0.04 0.00 0.00 0.19 -0.23
A values +10% 0.47 0.11 0.00 0.00 -0.11 0.00
A values +30% 0.52 0.15 0.00 0.00 -0.15 0.00
A values +50% 0.75 0.33 0.00 0.00 -0.34 0.00

Learning rate +5% -1.94 -1.80 -0.18 -0.02 0.00 2.00
Learning rate -5% 2.12 2.46 0.13 0.00 0.00 -2.59
EV prices +10% 0.70 3.25 0.00 0.10 0.45 -3.80
EV prices -10% -0.06 -2.51 0.00 -0.11 -0.65 3.26
Turnover rate +20% 6.11 9.80 0.00 -0.09 -2.08 -7.63
Turnover rate + 50% 12.16 17.05 0.00 -0.01 -2.74 -14.30
Discount rate +10% 0.25 1.18 0.00 0.05 0.02 -1.24
Discount rate -10% -0.35 -1.85 0.00 -0.08 -0.02 1.95

China All � +20% -1.18 -4.08 0.00 -0.03 0.45 3.67
All � -20% 1.07 4.15 0.00 0.02 -1.01 -3.16
EV � +10% -1.27 -2.19 -0.04 -0.37 2.04 0.56
EV � -10% 0.13 0.49 0.00 0.00 0.00 -0.50
Hybrid � +10% -0.02 -0.12 0.00 -0.01 0.80 -0.67
Hybrid �-10% 0.02 0.13 0.00 0.01 -1.23 1.09
Petrol � +10% 0.13 0.60 0.00 0.00 0.00 -0.60
Petrol � -10% -0.11 -0.43 0.00 0.00 0.00 0.43
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -3.91 -0.17 0.00 0.00 -0.01 0.18
Oil price +50% -5.66 -0.36 0.00 -0.01 -0.03 0.40
Oil price -20% 5.11 0.20 0.00 0.00 0.00 -0.20
Oil price -50% 6.71 0.62 0.00 0.01 0.02 -0.75
A values +10% -2.20 -3.59 0.00 0.00 1.46 2.13
A values +30% -4.08 -8.55 0.00 0.00 2.16 6.38
A values +50% -5.68 -13.30 0.00 0.00 5.36 7.95
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Table A.15: Sensitivity analysis on key technological parameters under the ‘strin-
gent phase-out’ scenario (India).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% 0.00 0.00 0.00 0.00 0.00 0.00
Learning rate -5% 0.00 0.00 0.00 0.00 0.00 0.00
EV prices +10% 0.04 0.17 0.06 0.10 -0.24 -0.24
EV prices -10% -0.04 -0.12 -0.03 -0.11 0.18 0.18
Turnover rate +20% 0.58 -2.59 3.91 -0.48 -0.61 -0.23
Turnover rate + 50% 1.27 -3.17 4.58 -0.24 -0.63 -0.54
Discount rate +10% 2.36 5.40 -4.90 0.05 0.01 -0.55
Discount rate -10% -1.82 -9.75 8.61 -0.08 0.00 1.23

India All � +20% -1.22 -4.84 2.12 -0.08 1.95 0.85
All � -20% 0.62 0.83 -0.51 0.04 -0.20 -0.16
EV � +10% -0.03 -0.03 0.01 0.05 -0.04 0.01
EV � -10% 0.02 0.02 -0.01 0.00 0.01 -0.03
Hybrid � +10% -0.04 0.36 -0.34 -0.01 -0.01 -0.01
Hybrid �-10% 0.03 -0.21 0.19 0.01 0.00 0.00
Petrol � +10% 0.02 0.02 0.01 0.00 -0.01 -0.02
Petrol � -10% -0.02 -0.02 -0.01 0.00 0.01 0.02
Diesel � +10% 0.27 0.36 -0.17 0.01 0.19 -0.40
Diesel � -10% -0.18 -1.12 0.43 -0.02 0.55 0.18
Oil price +20% -2.03 -0.17 0.00 0.00 0.08 0.09
Oil price +50% -4.61 -0.41 0.00 -0.01 0.18 0.24
Oil price -20% 1.30 0.20 0.00 0.00 -0.09 -0.11
Oil price -50% 4.35 0.43 0.00 0.01 -0.15 -0.29
A values +10% 0.38 -0.51 0.47 0.00 0.04 0.00
A values +30% 0.71 -1.16 0.73 0.00 0.43 0.00
A values +50% 1.23 -1.43 1.23 0.00 0.19 0.00
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Table A.16: Sensitivity analysis on key technological parameters under the ‘EV
mandate high’ scenario (UK and US).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.78 -1.23 -0.04 0.00 0.00 1.27
Learning rate -5% 1.41 0.74 0.01 0.00 0.00 -0.76
EV prices +10% 0.79 3.89 0.00 0.00 0.00 -3.90
EV prices -10% -0.89 -4.87 0.00 0.00 0.00 4.87
Turnover rate +20% 4.06 6.73 0.83 0.00 -5.08 -2.48
Turnover rate + 50% 9.47 11.58 1.10 0.00 -8.64 -4.04
Discount rate +10% 0.25 0.23 0.00 0.00 -0.11 -0.12
Discount rate -10% -0.30 -0.42 0.00 0.00 0.22 0.20

UK All � +20% -0.49 -3.17 0.00 0.00 0.00 3.17
All � -20% 0.27 1.33 0.06 0.00 -0.01 -1.38
EV � +10% -0.10 -0.73 0.00 0.00 -0.01 0.74
EV � -10% 0.10 0.66 0.00 0.00 0.01 -0.67
Hybrid � +10% 0.06 0.16 0.00 0.00 -0.16 0.00
Hybrid �-10% -0.07 -0.23 -0.24 0.00 0.44 0.03
Petrol +10% -1.72 -1.83 0.10 0.00 0.35 1.38
Petrol -10% 0.39 1.63 -0.09 0.00 -0.20 -1.35
Diesel +10% 0.02 -0.08 0.00 0.03 0.00 0.05
Diesel -10% -0.02 0.77 0.00 -0.71 0.01 -0.06
Oil price +20% -2.34 -0.22 -0.01 0.00 0.36 -0.13
Oil price +50% -3.57 -0.61 -0.03 0.00 0.13 0.51
Oil price -20% 0.94 0.21 0.01 0.00 -0.14 -0.08
Oil price -50% 3.12 0.95 0.02 0.00 -0.75 -0.22
A values +10% 1.23 0.14 0.09 0.00 -0.24 0.00
A values +30% 1.47 0.29 0.10 0.00 -0.39 0.00
A values +50% 2.29 0.30 0.17 0.00 -0.47 0.00

Learning rate +5% -0.61 -0.65 0.00 0.00 0.00 0.65
Learning rate -5% 1.00 0.75 0.00 0.00 0.00 -0.75
EV prices +10% 0.88 2.71 0.00 0.00 0.02 -2.74
EV prices -10% -0.42 -1.50 0.00 0.00 -0.01 1.51
Turnover rate +20% 3.07 0.92 0.00 0.00 -0.01 -0.91
Turnover rate + 50% 6.76 1.92 0.00 0.00 -0.02 -1.90
Discount rate +10% 0.34 0.35 0.00 0.00 -0.07 -0.28
Discount rate -10% -0.64 -1.82 0.00 0.00 -4.33 6.14
All � +20% -0.65 -0.89 0.00 0.00 0.04 0.85

US All � -20% 0.70 0.75 0.00 0.00 -0.06 -0.69
EV � +10% -0.57 -2.93 0.00 0.00 -0.01 2.94
EV � -10% 0.39 1.33 0.00 0.00 0.01 -1.34
Hybrid � +10% -0.04 -0.03 0.00 0.00 0.03 0.00
Hybrid �-10% 0.03 0.03 0.00 0.00 -0.04 0.01
Petrol � +10% -0.05 0.45 0.00 0.00 0.00 -0.45
Petrol � -10% 0.04 0.54 0.00 0.00 0.00 -0.54
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -2.91 -0.12 0.00 0.00 0.05 0.07
Oil price +50% -4.86 -0.30 0.00 0.00 0.07 0.23
Oil price -20% 2.49 0.10 0.00 0.00 -0.08 -0.02
Oil price -50% 5.73 0.21 0.00 0.00 -0.01 -0.20
A values +10% 0.74 0.07 0.00 0.00 -0.07 0.00
A values +30% 0.86 0.11 0.00 0.00 -0.11 0.00
A values +50% 1.27 0.14 0.00 0.00 -0.14 0.00
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Table A.17: Sensitivity analysis on key technological parameters under the ‘EV
mandate high’ scenario (Japan and China).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% -0.11 -0.20 0.00 0.00 0.00 0.20
Learning rate -5% 0.32 0.13 0.00 0.00 0.00 -0.13
EV prices +10% 0.30 0.25 0.00 0.00 2.84 -3.09
EV prices -10% -0.11 -0.09 0.00 0.00 -1.70 1.79
Turnover rate +20% 0.54 0.74 3.64 -0.44 -2.01 0.00
Turnover rate + 50% 1.12 1.54 7.56 -0.92 -4.16 0.00
Discount rate +10% 0.02 1.78 0.00 0.00 0.78 -2.56
Discount rate -10% -0.52 -6.91 0.00 -0.05 -0.31 7.27
All � +20% -2.24 -2.60 0.01 0.00 2.62 -0.02

Japan All � -20% 4.13 9.12 -0.01 0.00 -9.13 0.02
EV � +10% -0.02 -0.03 0.00 0.00 -0.21 0.24
EV � -10% 0.02 0.03 0.00 0.00 0.13 -0.16
Hybrid � +10% -0.27 -0.50 0.00 0.00 0.78 -0.28
Hybrid �-10% 0.32 6.25 6.84 0.00 -1.04 -12.05
Petrol � +10% -0.79 -1.14 0.00 0.00 1.13 0.00
Petrol � -10% 1.18 1.82 0.00 0.00 -1.80 -0.01
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -1.72 -0.01 0.00 0.00 -0.07 0.09
Oil price +50% -3.57 -0.05 0.00 0.00 -0.16 0.25
Oil price -20% 2.09 0.03 0.00 0.00 0.07 -0.10
Oil price -50% 4.94 0.05 0.00 0.00 0.21 -0.26
A values +10% 1.77 0.40 0.00 0.00 -0.40 0.00
A values +30% 1.95 0.59 0.00 0.00 -0.59 0.00
A values +50% 3.98 0.93 0.00 0.00 -0.93 0.00

Learning rate +5% -3.03 -3.51 -0.26 -0.13 0.00 3.90
Learning rate -5% 3.79 4.13 0.14 0.00 0.00 -4.28
EV prices +10% 1.30 4.19 0.00 0.04 0.72 -4.95
EV prices -10% -1.26 -4.48 0.00 -0.04 -0.82 5.34
Turnover rate +20% 10.10 7.01 0.00 -0.05 -1.94 -5.01
Turnover rate + 50% 18.88 12.34 0.00 -0.09 -3.42 -8.82
Discount rate +10% 1.37 1.87 0.00 -0.01 -0.20 -1.66
Discount rate -10% -2.11 -8.63 1.20 -0.05 2.28 5.20

China All � +20% -2.72 -6.57 0.00 -0.05 1.32 5.30
All � -20% 2.38 6.48 0.00 0.03 -1.22 -5.29
EV � +10% -1.27 -4.62 0.00 -0.04 -0.37 5.04
EV � -10% 1.27 4.67 0.00 0.03 0.32 -5.02
Hybrid � +10% -0.34 -0.15 0.00 0.00 1.08 -0.92
Hybrid �-10% 0.22 0.53 0.00 1.64 -1.36 -0.81
Petrol � +10% 0.48 0.27 0.00 0.00 0.01 -0.29
Petrol � -10% -0.41 -0.48 0.00 -0.01 -0.02 0.50
Diesel � +10% 0.00 0.00 0.00 0.00 0.00 0.00
Diesel � -10% 0.00 0.00 0.00 0.00 0.00 0.00
Oil price +20% -3.81 -0.16 0.00 0.00 0.02 0.14
Oil price +50% -5.01 -0.27 0.00 -0.01 0.04 0.25
Oil price -20% 4.77 0.18 0.00 0.00 0.02 -0.20
Oil price -50% 6.67 0.36 0.00 0.01 0.04 -0.42
A values +10% -1.76 -2.53 0.00 0.00 0.85 1.67
A values +30% -3.25 -5.10 0.00 0.00 1.36 3.74
A values +50% -4.52 -8.52 0.00 0.00 3.13 5.39
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Table A.18: Sensitivity analysis on key technological parameters under the ‘EV
mandate high’ scenario (India).

Country Variations in
Key Parameters

Emissions
(%)

Changes in shares in 2050(%)

CO2 Petrol Diesel CNG Hybrid EV

Learning rate +5% 0.00 0.00 0.00 0.00 0.00 0.00
Learning rate -5% 0.00 0.00 0.00 0.00 0.00 0.00
EV prices +10% 0.83 4.14 0.05 0.04 -4.20 -4.20
EV prices -10% -0.64 -3.16 -0.04 -0.04 3.21 3.21
Turnover rate +20% 2.69 2.00 3.03 -1.31 -2.50 -1.20
Turnover rate + 50% 4.49 3.21 6.11 -2.20 -4.93 -2.19
Discount rate +10% 0.55 1.23 -1.05 -0.01 -0.26 0.09
Discount rate -10% -3.22 -8.63 1.20 -0.05 6.61 0.87

India All � +20% -1.54 -3.15 2.10 -0.08 0.17 0.96
All � -20% 0.80 0.85 -0.51 0.04 -0.22 -0.16
EV � +10% -0.06 -0.09 0.01 -0.04 0.04 0.08
EV � -10% 0.07 0.06 -0.01 0.03 -0.03 -0.05
Hybrid � +10% -0.02 0.02 -0.01 0.00 0.01 -0.02
Hybrid �-10% 0.01 -0.13 0.13 0.00 -0.02 0.02
Petrol � +10% -0.07 -0.08 -0.02 0.00 0.00 0.02
Petrol � -10% 0.02 0.02 0.00 0.00 0.00 -0.02
Diesel � +10% 0.23 0.28 -0.32 -0.17 0.01 0.20
Diesel � -10% -0.15 -0.19 0.00 0.00 -0.02 0.21
Oil price +20% -2.37 -0.25 0.00 0.00 0.14 0.11
Oil price +50% -5.45 -0.50 0.00 -0.01 0.24 0.27
Oil price -20% 1.50 0.22 0.00 0.00 -0.10 -0.12
Oil price -50% 5.02 0.49 0.00 0.01 -0.17 -0.33
A values +10% 1.01 -1.21 1.14 0.00 0.08 0.00
A values +30% 1.86 -2.68 2.19 0.00 0.49 0.00
A values +50% 3.24 -3.90 3.29 0.00 0.61 0.00



Appendix B

Work division

Given the quantity of work needed for this project, Dr Mercure and I have collab-

orated on many stages of the model building, and Dr Hazel Pettifor in the UEA

has contributed to the study of the social influences on the technology di↵usion of

alternative fuel cars. Table B.1 provides an overview of the collaborative work with

the respective degree of responsibility.

Table B.1: Work divisions between Dr. Mercure, Dr Hazel Pettifor and Miss Aileen
Lam

Dr. Mercure Miss Lam Dr Hazel
Pettifor

Methodology
Theoretical framework 50% 50% -
Computation implementation
in MATLAB

50% 50% -

Connection to the E3ME 100% 0% -
Data
Data Collection 10% 90% -
Data analysis 10% 90% -
Studies of Policy Framework 0% 100% -
Scenario analysis 0% 100% -
Sensitivity analysis 0% 100% -
Income e↵ect on emissions pol-
icy

10% 70% 20%


