
Words are Vectors, Dependencies are Matrices: Learning Word
Embeddings from Dependency Graphs

Paula Czarnowska, Guy Emerson and Ann Copestake
Department of Computer Science and Technology

University of Cambridge
{pjc211, gete2, aac10}@cam.ac.uk

Abstract

Distributional Semantic Models (DSMs) construct vector representations of word meanings based
on their contexts. Typically, the contexts of a word are defined as its closest neighbours, but they can
also be retrieved from its syntactic dependency relations. In this work, we propose a new dependency-
based DSM. The novelty of our model lies in associating an independent meaning representation, a
matrix, with each dependency-label. This allows it to capture specifics of the relations between words
and contexts, leading to good performance on both intrinsic and extrinsic evaluation tasks. In addi-
tion to that, our model has an inherent ability to represent dependency chains as products of matrices
which provides a straightforward way of handling further contexts of a word.

1 Introduction

Within computational linguistics, most research on word-meaning has been focusing on developing Dis-
tributional Semantic Models (DSMs), based on the hypothesis that a word’s sense can be inferred from
the contexts it appears in (Harris, 1954). DSMs associate each word with a vector (a.k.a. word embed-
ding) that encodes information about its co-occurrence with other words in the vocabulary. In recent
work, the most popular DSMs learn the embeddings using neural-network architectures. In particular,
the Skip-gram model of Mikolov et al. (2013) has gained a lot of traction due to its efficiency and high
quality representations. Skip-gram embeddings are trained with an objective that forces them to be sim-
ilar to the vectors of their words’ contexts. The latter, context-word vectors, are a separate parameter
of the model jointly learned along with the main target-word vectors. Like most DSMs, Mikolov et al.
(2013)’s model derives contexts of a word from a pre-defined window of words that surround it.

An alternative way of defining contexts in Skip-gram was explored by Levy and Goldberg (2014),
who altered the model to accept contexts coming from a different vocabulary to that of the target-words.
The contexts were retrieved from targets’ syntactic dependency relations and were a concatenation of the
word linked to the target and the dependency-label. Each context type was associated with an indepen-
dent vector representation. In contrast to Skip-gram, which captures relatedness1, Levy and Goldberg
(2014)’s embeddings exhibited a more intuitive notion of similarity. For example, the former regards the
vector for abba, a popular Swedish pop group, as close to that for agnetha – a name of the group’s mem-
ber, while the latter considers it close to the vectors for other pop group names. But Levy and Goldberg
(2014)’s method of constructing contexts prevented their model from directly capturing how dependency
types affect relations between target and context-words, as the labels were not associated with indepen-
dent representations. At the same time it intensifies the problems associated with data sparsity due to the
large and fine-grained context-vocabulary.

In this work, we address the shortcomings of Levy and Goldberg (2014)’s approach by introducing
the dependency-matrix model – a DSM which associates meaning with each type of dependency. Instead

1Turney (2012) refers to relatedness as domain similarity and highlights its differences from function similarity that quanti-
fies the degree to which words share similar functional roles.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/226940953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: A graphical representation of Skip-gram displaying its parameters (left) and how P (C =
1|V2, V3) and 1− P (C = 1|V2, V5) are calculated for the real and a negative context, respectively. N is
the embedding dimensionality.

of simply appending the labels to context-words, they are promoted to a separate parameter of the model.
They become matrices, acting as linear maps on the context-word vectors and trained alongside the em-
beddings. We hypothesised that this approach will lead to higher-quality representations, as it allows the
model to capture important interactions between all three: labels, contexts and targets, while diminishing
the data sparsity problem at the same time.

2 Background

2.1 The Skip-gram Model

We now give a short formal overview of the Skip-gram model, since we will build on this to specify our
dependency-matrix model in Section 3.

Skip-gram was based on the feed-forward neural probabilistic language model of Bengio et al.
(2003). It is trained to predict the context-words of a given target-word, where the contexts are the
immediate neighbours of the latter and are retrieved using a window of an arbitrary size n (by capturing
n words to the left of the target and n words to its right). During training the model is exposed to vast
amounts of training data pairs (Vt, Vc), where V is the vocabulary and t, c ∈ {1, ..., |V |} are indices of
a target-word and one of its contexts. The objective of negative-sampling Skip-gram, as introduced by
Mikolov et al. (2013), is to differentiate between the correct training examples retrieved from the corpus
and the incorrect, randomly generated pairs. For each correct example the model drawsm negative ones,
with m being a hyperparameter. These incorrect samples hold the same Vt as the original, while their
Vc is drawn from an arbitrary noise distribution. Mikolov et al. (2013) recommend setting the noise
distribution to the unigram distribution raised to the power 0.75 and we used this setting in this work.

Following Goldberg and Levy (2014), let D be the set of all correct pairs, D′ denote a set of all
negatively sampled |D| × m pairs and P (C = 1|Vt, Vc) be the probability of (Vt, Vc) being a correct
pair, originating from the corpus. The last is calculated using the sigmoid function:

σ(u) =
1

1 + e−u
(1)

where u = Et ·Oc

Here, E ∈ R|V |×N stands for an input-embedding matrix, holding representations of target-words and
O ∈ R|V |×N stands for the output-embedding matrix, holding context representations (see Figure 1).
Given this setting, the negative-sampling objective is defined as maximising∑

(Vt,Vc)∈D

log σ(u) +
∑

(Vt,Vc)∈D′
log σ(−u) (2)

The model is trained using stochastic gradient ascent, with the learning rate changing throughout the
training process and being proportional to the number of remaining training examples.

2.2 Dependency-based Embeddings

Since word meaning is closely related to syntactic behaviour, a feasible alternative to the window-method
is to extract the contexts from the word’s syntactic relations. This can be achieved by constructing the
context vocabulary V C through pairing all word types with labels of relations they can participate in.
For instance, among the contexts composed from dog would be dog/nsubj and dog/dobj. Alternatively,
one can keep the vocabulary unchanged and adjust the context selection method to disregard the labels
and only pick words in relation with the target. The first approach was taken in some of the earliest
works incorporating syntactic information into the count-based DSMs. Grefenstette (1994) used V C

that consists of tokens such as subject-of-talk and his vectors held binary values denoting whether the
target-word has co-occurred with the contexts in V C . This approach was later extended by Lin (1998)
who replaced the binary values with frequency counts. Even more methods for incorporating syntactic
information were introduced in the general frameworks of Padó and Lapata (2007)’s and Baroni and
Lenci (2010). Baroni and Lenci (2010) represented corpus-extracted frequencies of (word, link, word)
tuples as a third order tensor and, through its matricisation, generated various matrix-arrangements of the
data. In particular, as an alternative to the standard word by (link, word) matrix, the framework allows
the focus to be placed on links (which can be dependencies) and represent them in terms of the words
they connect through a link by (word, word) matrix.

More recently, Levy and Goldberg (2014) modified Skip-gram to use contexts of the form context-
word’s form/label. The context-word can be either the head or a modifier of the target, with the first role
causing the dependency to be marked as inverse. For example, if we take the sentence ‘I like rain’:

I like rain.

nsubj dobj

for rain we obtain like/dobj−1 context, marked with −1 to reflect the relation’s inverse nature.
One weaker side of this model is that it does not directly capture how the dependency type affects

the relation between the head and the dependent. For instance, during training it does not recognise that
the nsubj dependency in both sentences

Harry danced. Kate laughed.

nsubj nsubj

is in fact a relation of the very same type and cannot make use of the available subjecthood information
– a good indicator of words’ agentivity or animacy. In fact, it does not provide any mechanisms for
indicating that the contexts danced/nsubj−1 and laughed/nsubj−1 have anything in common, apart from
the fact that they will likely be contexts of similar words. Naturally, the latter is strongly informative
in its own right, but associating meaning with specific types of dependencies could further improve the
model’s performance. One benefit of such a solution is the increased informativeness of rare context-
words in cases when they appear in common relations.

Another disadvantage of Levy and Goldberg (2014)’s context creation is that it intensifies data spar-
sity issues. Many of the fine-grained contexts are likely to be relatively uncommon, and thus less infor-
mative. The rarest are excluded from V C , which potentially leads to the loss of relevant information. In
particular, this problem applies to when the model is trained on smaller corpora. The model’s extensive
V C also means it cannot be extended to handle chains of dependencies, as it would be infeasible to ad-
ditionally incorporate further contexts, such as I/dobj−1/nsubj. This limits the model to using a small
number of contexts per target, since a word typically participates in few relations.

Figure 2: A representation of our model displaying its parameters (left) and how P (C = 1|V2, V3, V L
3)

and 1− P (C = 1|V2, V5, V L
3) are calculated for real and negative contexts, respectively.

3 Dependency-matrix model

In the dependency-matrix (DM) model each type of dependency is associated with its own meaning
representation – a matrix, which embodies the characteristics of words it typically links. The target and
context-words are as in the original Skip-gram, drawn from the same vocabulary and represented as
vectors of equal dimensions. The difference lies in how we define u from Eq. 1. It is no longer the dot
product of target and context-word vectors, but the dot product of the target-word vector and the context-
vector, with the latter being the result of multiplying the context dependency-matrix by the context-word
vector, where the dependency-matrix is a representation of the relation linking the target to its context.
An important feature of the model is its inherent ability to represent chains of dependency relations – it
can be easily extended to handle contexts coming from further dependencies of the target by multiplying
the context-word vector by a number of matrices, as further explained in Section 4.2.

The dependency-matrices modify meanings captured in the context-word vectors. In this behaviour,
they are similar to representations of relational words, such as verbs or adjectives, in Compositional Se-
mantic Models based on tensor products. For instance, Baroni and Zamparelli (2010) represent adjectives
as matrices that enhance information encoded in the noun vectors with adjective-specific characteristics.
Another example is the model of Paperno et al. (2014) in which each relational word is associated with
a vector encoding its core meaning and a number of matrices – one for each argument the word takes.
The matrices act as linear maps on the corresponding arguments’ vectors, altering those depending on
the role they play with respect to the predicate. At its core, this role corresponds to the type of depen-
dency linking these words. This is closely aligned with the approach taken in this work, with the main
difference lying in the granularity of representations.

3.1 Training

The model’s training objective closely resembles that of Skip-gram (Eq. 2).∑
(Vt,Vc,V L

d)∈D

log σ(u) +
∑

(Vt,Vc,V L
d)∈D′

log σ(−u) (3)

As before, D is a set of all positive training examples and D′ consists of those negatively sampled. The
model is trained on triples (Vt, Vc, V L

d), where V L is the label vocabulary and d is an index to the label of
the relation between Vt and Vc. Given that in the DM model the final context representations are products
of two independent components: word-form vectors and dependency-matrices, we redefine u as

u = Et · Td Oc (4)

where T ∈ R|V L|×N×N is a third order tensor holding the matrices, while E and O, as before, hold the
input and output-embeddings (see Figure 2).2

The following table gives an example of training triples obtained for the sentence ‘I like rain’. Note
that, as in Levy and Goldberg (2014), we create two training examples for each dependency relation.

target (Vt) context-word (Vc) label (V L
d)

I like nsubj−1

like I nsubj

like rain dobj

rain like dobj−1

It is important to note here that the incorporation of V L
d does not influence the negative-sampling proce-

dure. For each positive example the system samples m triples, which all share the same Vt and V L
d as

the original – the labels are not sampled.

4 Evaluation

We compared the performance of our model to that of Skip-gram (SG), Levy and Goldberg (2014)’s
model (LG) and Skip-gram for which the contexts are retrieved from the target’s syntactic relations but
the labels are disregarded (SGdep). Our primary evaluation involved a number of standard word similar-
ity datasets, as well as the RELPRON dataset (Rimell et al., 2016). In addition, we tested our model’s
performance on the task of differentiating between similarity and relatedness relations and evaluated it
qualitatively, by manually inspecting the types of captured similarities. We also conduct experiments on
three extrinsic tasks: dependency-parsing, chunking and part-of-speech tagging. Previous findings have
shown the dependency embeddings are well suited for these tasks (Bansal et al., 2014; Melamud et al.,
2016) so our primary objective here was to compare the performance of DM to that of LG.

All models were trained on the WikiWoods corpus (Flickinger et al., 2010), which contains a 2008
Wikipedia snapshot, counting approximately 1.3M articles. Throughout this work we used Universal
Dependencies (Nivre et al., 2016; Schuster and Manning, 2016) with all training examples for the depen-
dency models generated from WikiWoods parsed with the Stanford Neural Network Dependency parser
(Chen and Manning, 2014). Because words typically participate in only a few relations, the number of
training data instances obtained from the parses was a third of the number obtained for Skip-gram.

We tuned the embedding dimensionality for all tasks and the number of negative samples for REL-
PRON and word similarity. For the extrinsic tasks we experimented with dimensions 50, 100 and 200,
while for RELPRON and word similarity we experimented with setting m to 5, 10 and 15, and consid-
ered dimensions of 50, 100, 200 and 300. In the case of word similarity we based the hyperparameter
choice on the SimLex-999 results, as the similarity datasets do not provide standard development sets.
In all training conditions we removed all tokens in the target and context vocabularies with frequencies
less than 100. For Skip-gram, we used the dynamic window of size n = 5.

Following the original word2vec tool3, we sampled the initial values of the input-embeddings from
a uniform distribution over the range (-0.5, 0.5) and divided them by the embedding dimensionality. We
initialised the output-embeddings with zeros and dependency-matrices as identity matrices. The models
were trained in an online fashion using stochastic gradient updates, with the learning rate initially set to
0.025 and linearly decreased during training, based on the number of remaining training examples. All
of the models shared the same code-base, to ensure reliable comparison.

2One can also view Td as a bilinear map combining the elements of the input and the output-embedding vector spaces.
3https://code.google.com/archive/p/word2vec/

DM LG SG SGdep

SimLex-999 0.423 0.414 0.398 0.411

RW 0.361 0.324 0.285 0.323
SimVerb-3500 0.301 0.257 0.242 0.259
WS353 (sim) 0.751 0.730 0.732 0.742
WS353 (rel) 0.457 0.441 0.532 0.46
MEN 0.679 0.613 0.728 0.688

Table 1: Word similarity evaluation results, the values are Spearman’s correlation coefficients.

4.1 Word Similarity Datasets

Word similarity evaluation is one of the most common methods of testing vector space semantic models.
The similarity datasets consist of word-pairs associated with human-assigned similarity scores. The task
is to measure how well the model’s scores, obtained using the learned embeddings, correlate with the
gold-standard. After the scores are computed for each pair, typically using the cosine similarity measure,
the pairs are ranked by these values. This ranking is then compared to the gold-standard ranking using
Spearman’s rank correlation coefficient.

The datasets used for this evaluation included Agirre et al. (2009)’s relatedness and similarity splits
of WordSim353 (WS353) (Finkelstein et al., 2001), MEN (Bruni et al., 2014) which consists of 3000
similar and related pairs, the Rare Word (RW) collection (Luong et al., 2013), incorporating 2034 pairs
of infrequent and morphologically complex words, SimLex-999 (Hill et al., 2016) consisting of 999
similar word pairs and SimVerb-3500 (Gerz et al., 2016) which includes 3500 similar verb-only pairs.

The models performed best using 300 dimensional embeddings and 20 negative samples (apart from
SG, which performed best with 15 samples). As reported in Table 1, DM outperformed LG on all
benchmarks and SGdep on all similarity datasets. The latter demonstrates that the labels are a valuable
information source and our model’s superiority over LG should not be attributed solely to decreasing
data sparsity. Despite being trained on three times less training examples than SG, DM and SGdep
managed to beat SG on all datasets but MEN and WS353 (rel). Importantly, both of these datasets
measure relatedness rather than similarity.

4.2 RELPRON

RELPRON was introduced by Rimell et al. (2016) as an evaluation dataset for semantic composition. It
consists of term-property pairs, with each term matched to up to ten properties. Each property takes the
form of a hypernym of the term, modified by a simple relative clause. For example, the term dog has the
property mammal that people walk. The full dataset consists of 1087 properties and 138 terms, with a
test set of 569 properties and 73 terms and a development set of 518 properties and 65 terms. The task
is to determine matching properties for all terms. This is framed as an information retrieval task – for
each term the properties are ranked according to their similarity to that term and the matching properties
should have the highest ranks. The correctness of the rankings is assessed using Mean Average Precision
(MAP). An alternative task is to determine the correct term for each property. Here, the evaluation
measure becomes Mean Reciprocal Rank (MRR), as each property has only one matching term.

In RELPRON evaluation we sought to investigate the utility of the dependency context representa-
tions for semantic composition. Since each property contains the term’s hypernym, it is easy to determine
the relations between the term and the words in the property. For both MAP and MRR rankings, we con-
structed a vector for each property, and then used cosine similarity between term vectors and property
vectors. We experimented with two approaches to constructing property vectors, both based on weighted
vector addition, which Rimell et al. (2016) showed to perform well as a composition method, despite
its simplicity. The first, simple-sum (SS), is the sum of the words’ input-embeddings. The second,
enhanced-sum (ES), makes use of the dependency structure.

DM LG SG SGdep

Development set

MAP (SS) 0.390 0.354 0.451 0.418
MAP (ES) 0.472 0.426 0.485 0.497
MRR (SS) 0.525 0.489 0.567 0.523
MRR (ES) 0.612 0.592 0.614 0.587

Test set

MAP (SS) 0.324 0.292 0.436 0.371
MAP (ES) 0.400 0.315 0.475 0.439

MRR (SS) 0.465 0.444 0.549 0.501
MRR (ES) 0.557 0.509 0.574 0.543

Table 2: Results of MAP and MRR evaluation on the test and development sets of RELPRON.

Simple-sum composition

Simple-sum composes a property representation by summing the input-embeddings of the agent a, verb v
and patient p in a phrase4. The final similarity metric is the cosine between the resulting vector and the
term’s input-embedding:

cos(Et, Ea + Ev + Ep)

Enhanced-sum composition

The motivation behind the enhanced-sum formula is to compose semantic representations of phrases
based on a dependency graph, with a focus on one specific word – in this case, the head noun, which is
the term’s hypernym.

There are two ways that we can view the head noun: as a target word, or as a context. Viewing
the head noun as a target word, the verb acts as a context, and the other noun acts as a further context.
To represent the phrase, we therefore want to sum the head noun’s input embedding, the verb’s context
embedding, and the other noun’s further context embedding. This composed vector should be close to
the term’s input embedding.

Viewing the head noun as a context, the verb acts as the target word, and the other noun also acts
as a context. To represent the phrase, we therefore want to sum the head noun’s context embedding, the
verb’s input embedding, and the other noun’s context embedding. This composed vector should be close
to the term’s context embedding.

Because of these two ways that we can view the head noun, in all of the following formulae, there are
two cosines. The exact formulae differ across the models, as each model represents contexts differently.
For the dependency models, the formulae also depend on the semantic role of the head noun (agent or
patient), as it determines which dependency-matrices are used. Below, we present the formulae for the
case where the hypernym is the agent, as in fuel: material that supplies energy. The case where the
hypernym is the patient is analogous, but with different labels for the dependencies.

material (fuel) supplies energy.

nsubj
dobj

4We ignore the relative pronoun in the property representation as its contribution to semantics in RELPRON is indicating
semantic dependencies between content words. In fact, in many relative clauses, there is a semantically equivalent ‘bare
relative’ (Sag, 1997). E.g. ‘mammal that people walk’ has meaning equivalent to ‘mammal people walk’. In addition, adding a
vector for “that” would result in applying exactly the same semantic shift to every property and would not affect their ranking.

For Skip-gram and SGdep, the dependency labels are not used. There is no way to represent a further
context (a path of multiple dependencies) except as a normal context, so the enhanced-sum uses the
following (note Op for the further context p):

cos(Et, Ea +Ov +Op)

+ cos(Ot, Oa + Ev +Op)

For LG, the context word and dependency are combined. There is no way to represent a further
context. Unlike for Skip-gram, it would be problematic to use Op/dobj , because the head noun would
never have been observed with a dobj context during training. We instead use the input embedding Ep:

cos(Et, Ea +Ov/nsubj−1 + Ep)

+ cos(Ot/nsubj , Oa/nsubj + Ev +Op/dobj)

For DM, we have a principled way to represent the further context, through the multiplication of two
dependency matrices. The input embedding Ep is mapped by T T

dobj−1 to the output embedding space,
and then mapped by Tnsubj−1 to the input embedding space.5 This composition method (multiplying
dependency matrices, and summing over words) can be applied to any possible dependency graph:

cos(Et, Ea + Tnsubj−1Ov + Tnsubj−1T T
dobj−1Ep)

+ cos(TnsubjOt, TnsubjOa + Ev + TdobjOp)

For RELPRON evaluation, DM and SGdep performed best using 300 dimensional embeddings and
m, the number of negative samples, set to 20. SG used 300 dimensions and m=15, while LG 200
dimensions and m=5. The results in Table 2 demonstrate that the DM model is once again superior
to LG, outperforming the latter on both MAP and MRR evaluation. Overall, Skip-gram is the best
performing model. As discussed by Emerson and Copestake (2017), models capturing relatedness can
perform well on RELPRON, as they directly recognise the association between the term and the other
argument of the verb (fuel and energy from the previous example).

All models benefit from ES, which proves our proposed composition method is viable. Notably, the
enriched similarity metric is particularly beneficial for DM, which experiences the highest performance
increase: on the development set DM’s MAP (ES) and MRR (ES) scores are competitive to that of
SG. This demonstrates the information encoded in DM’s dependency-enhanced contexts is valuable for
this task and the proposed representations of further contexts work well. Training the model on longer
dependency paths could further increase its performance, but we leave this for future work.

The general performance drop on the test set, also observed by Emerson and Copestake (2017) and
Rimell et al. (2016), could be attributed to a number of factors, including the test set being ∼10% larger
than the development set and containing more generic properties, ranked highly by many terms. For
example, in DM evaluation it contained 26 properties which appeared in the top 15 ranking of 7 or more
terms (out of 73). In comparison, the development set had only 9 such properties.

4.3 Similarity vs Relatedness

To test the model’s ability to distinguish between similarity and relatedness relations we evaluated it
on the task of ranking similar word-pairs above related ones. For this evaluation, following Levy and
Goldberg (2014), we incorporated WS353 and Chiarello et al. (1990)’s dataset that Turney (2012) used
for differentiating between functional and domain similarities. For both datasets we plotted precision-
recall curves based on the rankings and calculated the AUC values. In the case of WS353, we disregarded
the pairs that appear in both similarity and relatedness splits, which constituted the majority of pairs with
scores equal or lower than 5 (out of 10). Figure 3 demonstrates that all dependency models are superior
to SG on this task and there is not much difference in their performance.

5More precisely, the model is trained to maximise Ep · Tdobj−1Ov , so we expect TT
dobj−1Ep to be close to Ov . The model

is also trained to maximise Ea · Tnsubj−1Ov , so we expect Tnsubj−1Ov to be close to Ea. Combining these two results, we
expect Tnsubj−1TT

dobj−1Ep to be close to Ea.

Figure 3: Precision-recall curves showing the results on ranking similar pairs above the related ones.

DM LG SG SGdep
dolphin whale, shark,

sailfish, porpoise
porpoise, giraffe,

seahorse, orca
bottlenose, tursiops,

stenella, delphis
whale, seahorse,
shark, porpoise

voldemort hordak, soth,
sidious, ganondorf

saruman, darkseid,
hordak, melkor

dumbledore, horcrux,
hagrid, dementors

melkor, xykon,
hordak, ganondorf

abba sizzla, tvxq,
mecano, cascada

roxette, a-ha,
t.a.t.u., n.w.a.

agnetha, fältskog,
lyngstad, eban

roxette, a-ha,
n.w.a, tider

cycling swimming, skiing,
speedskating,
motorcycling

bicycling, biking,
yachting, wakeboarding

bicycling, cyclo-cross,
bicycle, biking

biking, motorcycling,
luge, snowboarding

Table 3: Examples of word similarities learned by the models.

4.4 Qualitative Evaluation

To inspect the types of similarities captured by the models we made a selection of four words from the
vocabulary and analysed their closest neighbours according to each model. The examples presented in
Table 3 confirm Levy and Goldberg (2014)’s findings, with SG capturing both similarity and related-
ness and the dependency models demonstrating a bias towards similarity. Good examples of that are
the neighbours of abba or voldemort. For the first SG selected words such as agnetha or lyngstad –
the names of members of the Swedish pop group ABBA. The dependency models, on the other hand,
associated abba with other music bands, such as A-ha, Roxette or Sizzla. For voldemort, a villain from
the Harry Potter series, the dependency models considered other fictional villains as most similar, while
SG returned mostly names of characters from the books.

4.5 Dependency Parsing

In this experiment we used the input-embeddings of DM, LG and SG to initialise word representations
of the Stanford Neural Network Dependency parser (Chen and Manning, 2014). The parser was trained
and tested on the English Penn Treebank; sections 2–21 of WSJ were used for training, section 22 for
development, while section 23 was reserved for testing. We trained the model for 20000 iterations using
the default hyperparameters6. The embeddings were fine-tuned to the task during training. In addition to
initialising the parser with input-embeddings, for the DM model using 50 dimensions we experimented
with concatenations of the input and output-embeddings. We refer to this setting as DMio. Note that this
could not be done for LG, as it only provides a single representation for each word.

DM and SG performed best with 100 dimensions, while LG used 50. Table 4 presents the results
6https://nlp.stanford.edu/software/nndep.shtml

DM LG SG DMio
Dependency Parsing

UAS 91.49 91.40 91.33 92.01
LAS 90.02 89.99 89.82 90.66

POS Tagging (accuracy)
tuned 95.58 95.69 95.53 95.69
fixed 95.25 95.28 94.30 94.71

Chunking (accuracy)
tuned 92.66 93.11 92.68 92.84
fixed 92.45 92.06 92.28 92.57

Table 4: Results of the dependency parsing, part-of-speech tagging and chunking evaluation.

achieved by the models measured with the unlabeled (UAS) and labeled attachment scores (LAS). Al-
though all models performed well on this task, DM proved to be the best input-embedding initialisation.
DMio performed overall best, demonstrating that utilising information encoded in the output-embeddings
can be more beneficial than simply increasing the dimensionality of the embeddings.

4.6 Part-of-speech Tagging

For the POS tagging we made use of the publicly available word embedding evaluation framework,
VecEval (Nayak et al., 2016). VecEval’s word-labelling model resembles the one introduced by Collobert
et al. (2011). First, it constructs the representation of the token’s context by concatenating embeddings
of the surrounding words and then passes it through two neural network layers, followed by a softmax
classifier. We trained and tested this model using the same WSJ splits used for the dependency parsing
task. We initialised the model with the embeddings of DM, LG and SG and experimented with two
settings: one that allows fine-tuning the embeddings to the task through backpropagation (tuned) and
one that keeps the embeddings fixed (fixed). For POS tagging DM and SG performed best with the same
embedding dimensions as for the dependency parsing, while best LG model used 100 dimensions. Table
4 demonstrates that in the tuned setting all models achieve comparable performance, while in the fixed
setting, both dependency models outperform SG, with LG reaching overall best performance.

4.7 Chunking

We evaluated SG, DM and LG on the chunking CoNLL’00 shared task (Tjong Kim Sang and Buchholz,
2000), which uses WSJ sections 15–18 for training and section 20 for testing. Similar to POS tagging,
we employed the VecEval’s model based on that of Collobert et al. (2011) and experimented with fixed
and tuned settings. The best performing models followed the same hyperparameter setting as for POS
tagging. The results presented in Table 4 show that in the tuned setting LG reaches the best perfor-
mance, while in the fixed setting, which allows us to investigate information inherently present in the
embeddings, DM outperforms the other models.

5 Conclusion

We introduced the dependency-matrix model (DM) – a novel Skip-gram-based DSM that represents
words’ contexts as products of dependency-label matrices and context-word vectors, both of which are
independent parameters of the model. Such handling of the labels allows DM to fully exploit the in-
formation encoded in the word-context relations and provides a straightforward way to handle further
contexts of a word by representing chains of dependencies as products of matrices – one for each depen-
dency in a chain. Our model proved to be superior or on par with Levy and Goldberg (2014)’s model, an
alternative DSM incorporating the labels, across all evaluation benchmarks. It was also the overall best
performing model on word similarity and dependency parsing evaluation.

References

Agirre, E., E. Alfonseca, K. Hall, J. Kravalova, M. Pas, and A. Soroa (2009). A study on similarity and
relatedness using distributional and WordNet-based approaches. Human Language Technologies: The
2009 Annual Conference of the North American Chapter of the ACL (June), 19–27.

Bansal, M., K. Gimpel, and K. Livescu (2014). Tailoring continuous word representations for depen-
dency parsing. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 809–815. Association for Computational Linguistics.

Baroni, M. and A. Lenci (2010). Distributional memory: A general framework for corpus-based seman-
tics. Computational Linguistics 36(4), 673–721.

Baroni, M. and R. Zamparelli (2010). Nouns are vectors, adjectives are matrices: Representing adjective-
noun constructions in semantic space. In Proceedings of the 2010 Conference on Empirical Methods
in Natural Language Processing, pp. 1183–1193. Association for Computational Linguistics.

Bengio, Y., R. Ducharme, P. Vincent, and C. Jauvin (2003). A neural probabilistic language model.
Journal of machine learning research 3(Feb), 1137–1155.

Bruni, E., N.-K. Tran, and M. Baroni (2014). Multimodal distributional semantics. Journal of Artificial
Intelligence Research 49, 1–47.

Chen, D. and C. D. Manning (2014). A fast and accurate dependency parser using neural networks.
In Proceedings of the 2014 Con- ference on Empirical Methods in Natural Lan- guage Processing
(EMNLP), pp. 740–750.

Chiarello, C., C. Burgess, L. Richards, and A. Pollock (1990). Semantic and associative priming in
the cerebral hemispheres: Some words do, some words don’t... sometimes, some places. Brain and
language 38(1), 75–104.

Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa (2011). Natural language
processing (almost) from scratch. Journal of Machine Learning Research 12(Aug), 2493–2537.

Emerson, G. and A. Copestake (2017). Semantic composition via probabilistic model theory. In Pro-
ceedings of the 12th International Conference on Computational Semantics (IWCS).

Finkelstein, L., E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin (2001).
Placing search in context: The concept revisited. In Proceedings of the 10th international conference
on World Wide Web, pp. 406–414. ACM.

Flickinger, D., S. Oepen, and G. Ytrestøl (2010). WikiWoods: Syntacto-semantic annotation for English
Wikipedia. 7th International Conference on Language Resources and Evaluation.

Gerz, D., I. Vulić, F. Hill, R. Reichart, and A. Korhonen (2016). SimVerb-3500: A large-scale evaluation
set of verb similarity. In EMNLP.

Goldberg, Y. and O. Levy (2014). word2vec explained: Deriving Mikolov et al.’s negative-sampling
word-embedding method. arXiv preprint arXiv:1402.3722.

Grefenstette, G. (1994). Explorations in Automatic Thesaurus Discovery. Norwell, MA, USA: Kluwer
Academic Publishers.

Harris, Z. S. (1954). Distributional structure. Word 10(2-3), 146–162.

Hill, F., R. Reichart, and A. Korhonen (2016). Simlex-999: Evaluating semantic models with (genuine)
similarity estimation. Computational Linguistics.

Levy, O. and Y. Goldberg (2014). Dependency-based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics, Volume 2, pp. 302–308.

Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceedings of the 17th interna-
tional conference on Computational linguistics-Volume 2, pp. 768–774. Association for Computational
Linguistics.

Luong, T., R. Socher, and C. D. Manning (2013). Better word representations with recursive neural
networks for morphology. In CoNLL, pp. 104–113.

Melamud, O., D. McClosky, S. V. Patwardhan, and M. Bansal (2016). The role of context types and
dimensionality in learning word embeddings. In HLT-NAACL.

Mikolov, T., K. Chen, G. Corrado, and J. Dean (2013). Efficient estimation of word representations in
vector space. ICLR Workshop.

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013). Distributed representations of
words and phrases and their compositionality. pp. 3111–3119.

Nayak, N., G. Angeli, and C. D. Manning (2016). Evaluating word embeddings using a representative
suite of practical tasks. In Proceedings of the 1st Workshop on Evaluating Vector-Space Representa-
tions for NLP, pp. 19–23.

Nivre, J., M.-C. de Marneffe, F. Ginter, Y. Goldberg, J. Hajic, C. D. Manning, R. McDonald, S. Petrov,
S. Pyysalo, N. Silveira, R. Tsarfaty, and D. Zeman (2016). Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016). European Language Resources Association (ELRA).

Padó, S. and M. Lapata (2007). Dependency-based construction of semantic space models. Computa-
tional Linguistics 33(2), 161–199.

Paperno, D., N. The Pham, and M. Baroni (2014). A practical and linguistically-motivated approach to
compositional distributional semantics. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics, pp. 90–99. Association for Computational Linguistics.

Rimell, L., J. Maillard, T. Polajnar, and S. Clark (2016). RELPRON: A relative clause evaluation data
set for compositional distributional semantics. Computational Linguistics 42(4), 661–701.

Sag, I. A. (1997). English relative clause constructions. Journal of linguistics 33(2), 431–483.

Schuster, S. and C. D. Manning (2016). Enhanced English universal dependencies: An improved repre-
sentation for natural language understanding tasks.

Tjong Kim Sang, E. F. and S. Buchholz (2000). Introduction to the conll-2000 shared task: Chunking.
In Proceedings of the 2Nd Workshop on Learning Language in Logic and the 4th Conference on
Computational Natural Language Learning - Volume 7, ConLL ’00, pp. 127–132. Association for
Computational Linguistics.

Turney, P. D. (2012). Domain and function: A dual-space model of semantic relations and compositions.
Journal of Artificial Intelligence Research 44, 533–585.

