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ABSTRACT

The detections of gravitational waves produced in mergers of binary black holes (BH) and neutron
stars (NS) by LIGO/Virgo have stimulated interest in the origin of the progenitor binaries. Dense
stellar systems — globular and nuclear star clusters — are natural sites of compact object binary
formation and evolution towards merger. Here we explore a new channel for the production of binary
mergers in clusters, in which the tidal field of the cluster secularly drives the binary to high eccen-
tricity (even in the absence of a central massive black hole) until gravitational wave emission becomes
important. We employ the recently developed secular theory of cluster tide-driven binary evolution to
compute present day merger rates for BH-BH, NS-BH and NS-NS binaries, varying cluster potential
and central concentration of the binary population (but ignoring cluster evolution and stellar flybys
for now). Unlike other mechanisms, this new dynamical channel can produce a significant number of
mergers out to cluster-centric distances of several pc. For NS-NS binaries we find merger rates in the
range 0.01 − 0.07 Gpc−3 yr−1 from globular clusters and 0.1 − 0.2 Gpc−3 yr−1 from cusped nuclear
clusters. For NS-BH and BH-BH binaries we find small merger rates from globular clusters, but a
rate of 0.1− 0.2 Gpc−3 yr−1 from cusped nuclear clusters, contributing to the observed LIGO/Virgo
rate at the level of several per cent. Therefore, cluster tide-driven mergers constitute a new channel
that can be further explored with current and future gravitational wave detectors.

1. INTRODUCTION

The detection of gravitational waves (GWs) produced
in mergers of binaries composed of compact objects —
black holes (BHs) and neutron stars (NSs) — by the
LIGO/Virgo collaboration (The LIGO Scientific Collab-
oration et al. 2018; Venumadhav et al. 2019) naturally
raised the question of the origin and evolutionary path-
ways of these systems. While individual NSs and BHs are
the known end states of the collapse of massive stars, the
dominant mechanisms by which they combine into small-
separation binaries and finally merge are still uncertain.
Small separation is the key, since e.g. a circular binary
composed of two 30M⊙ BHs can merge via GW emission
in a Hubble time only if it has an initial semi-major axis
of . 0.2 au.
One possible channel by which small semi-major axis

can be acheived is stellar evolution of binaries composed
of two massive stars, e.g. through a common-envelope
phase (Paczynski 1971; Tutukov & Yungelson 1973; Iben
& Livio 1993; Taam & Sandquist 2000; Kalogera et al.
2007; Belczynski et al. 2016), or through chemically ho-
mogeneous evolution as a result of rapid rotational mix-
ing (Mandel & de Mink 2016). A different channel is
provided by secular dynamics of compact object binaries
in triples (Antonini et al. 2014, 2016; Silsbee & Tremaine
2017; Liu & Lai 2017): an inner binary can be torqued
by its tertiary companion into performing Lidov-Kozai
(LK) oscillations (Lidov 1962; Kozai 1962), forcing it to
very high eccentricity and thereby boosting the rate of
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gravitational wave (GW) emission and shrinking its semi-
major axis.
Dense stellar clusters provide several alternative av-

enues for the formation of compact object binaries.
Three- and four-body encounters in the dense environ-
ments of clusters greatly enhance the binary NS forma-
tion rate dynamically: the abundance per unit mass of
low-mass X-ray binaries is around 102 times higher in
globulars, and 103 times higher in the central parsec of
the Galaxy, than it is in the Galactic field (Katz 1975;
Clark 1975; Generozov et al. 2018). Similarly, BH-BH bi-
naries should form dynamically in cluster cores provided
the BHs are retained in their clusters at birth (Portegies
Zwart & McMillan 2000; O’Leary et al. 2006; Rodriguez
et al. 2016; Antonini et al. 2016). This possibility is
supported by the recent discovery of a detached binary
consitisting of a BH and a main-sequence turnoff star in
the globular cluster NGC 3201 (Giesers et al. 2018).
As the majority of dynamically formed relativistic bi-

naries are too wide to merge via GW emission within a
Hubble time, it is not enough to explain how they form:
one must also explain how they shrink. Frequent stellar
encounters can harden binaries in cluster cores, leading
to eventual mergers that might occur after the binary is
ejected from the cluster (Antonini & Rasio 2016; Leigh
et al. 2018). For binaries in nuclear star clusters, a cen-
tral supermassive black hole (SMBH), if present, can play
the role of the tertiary driving LK oscillations and or-
bital decay (e.g. Antonini & Perets 2012; Petrovich &
Antonini 2017; Hamers et al. 2018), similar to triples in
the field.
However, so far no studies have accounted for the direct

effect of the tidal field of the dense cluster to which the
binary belongs on the evolution of its orbital elements.
Recently in Hamilton & Rafikov (2019a,b) — hereafter
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‘Paper I’ and ‘Paper II’ respectively — we showed that
the smooth tidal potential of a host star cluster can drive
wide binaries to perform LK-like secular eccentricity os-
cillations on timescales that could be relevant for the
production of LIGO sources. In this Letter we explore
the consequences of this mechanism for the merger rate
of compact object binaries (§4), under the simplifying
assumption that they orbit spherical star clusters and
their dynamics are driven only by the smooth, time-
independent cluster potential (i.e. we neglect the effects
of flyby encounters, dynamical friction, etc., which are
discussed in §5).

2. DYNAMICAL FRAMEWORK

We consider a compact object binary with compo-
nent masses m1, m2 orbiting in a fixed smooth back-
ground potential Φ of a spherically symmetric star clus-
ter (globular or nuclear). Spherical symmetry implies
that the binary’s ‘outer’ barycentric orbit is confined to
a plane, which we define as the (X,Y ) plane, and typi-
cally densely fills an axisymmetric annulus in this plane
with inner and outer radii (rp, ra). The binary’s ‘inner’
orbit (i.e. the motion of m1 and m2 around each other)
is described by the usual orbital elements: semi-major
axis a, eccentricity e, inclination i (measured relative to
the outer orbital plane), longitude of the ascending node
Ω (relative to the X axis, which is fixed in the cluster
frame) and argument of pericentre ω.
We showed in Paper I that the dynamical evolution

of the binary’s inner orbital elements is governed by
the secular (‘doubly-averaged’, hereafter DA) perturbing
Hamiltonian4

H =
Aa2

8
(H∗

1 +H∗

GR), (1)

where A is a constant (with units of s−2). Here H∗
1

and H∗
GR are the dimensionless Hamiltonians accounting

for quadrupole-order cluster tides and general relativistic
(GR) pericentre precession, respectively:

H∗

1 = (2 + 3e2)(1− 3Γ cos2 i)− 15Γe2 sin2 i cos 2ω, (2)

H∗

GR = −ǫGR(1− e2)−1/2, (3)

where Γ is a dimensionless parameter discussed below,
and the relative strength of GR precession is measured
by another dimensionless parameter

ǫGR ≡ 24G2(m1 +m2)
2

c2Aa4
(4)

= 0.258×
(
A∗

0.5

)−1 (
M

105M⊙

)−1 (
b

pc

)3

×
(
m1 +m2

M⊙

)2 ( a

20 au

)−4

. (5)

In the numerical estimate (5) we have assumed that the
binary is orbiting a spherical cluster with scale radius b
and total massM and introduced a futher dimensionless
parameter A∗ ≡ A/(GM/b3) (which is a natural scaling
for A, see Paper I).

4 The Hamiltonian is ‘doubly-averaged’ in the sense that it is
derived by integrating first over the inner Keplerian orbit of the
binary components about their common barycentre, and then again
over many outer orbits of the binary itself around its host cluster.
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Fig. 1.— Plots of the parameters Γ and A∗ (see text) assuming
the binary is on a circular outer orbit of radius R in Plummer (red)
and Hernquist (green) potentials each with half-mass radius 1.31pc.
For initial inclinations close to 90◦, high eccentricity excitation is
readily achieved when Γ > 1/5, but is much rarer when Γ < 1/5
(shaded region in panel (a)).

The parameter A (or A∗) measures the strength of the
tidal torque and sets the timescale for secular evolution,
tsec ∼ n/A (Paper II), where n = [G(m1 + m2)/a

3]1/2

is the binary’s mean motion. The value of A∗ is fully
determined by stipulating the cluster potential Φ and
the peri/apocentre (rp, ra) of the binary’s outer orbit. In
Figure 1b we plot A∗(R) assuming a circular outer orbit
of radius R in Plummer (cored) and Hernquist (cusped,
with density ρ ∝ r−1 for r → 0) potentials

ΦPlum(r) = − GM√
b2Plum + r2

, ΦHern(r) = − GM

bHern + r
,

(6)

where M is the total mass of the cluster and bPlum/Hern
are the corresponding scale radii. We choose bPlum =
1pc and bHern = 0.544pc respectively so that the two
potentials have the same half mass radius rh = 1.31pc.
The tidal Hamiltonian (2) differs from the dimen-

sionless LK Hamiltonian only through the parameter Γ,
which is the key characteristic of cluster tide-driven secu-
lar dynamics. Its value is also fully determined (like that
of A) by stipulating Φ and (rp, ra). For binaries in real-
istic spherical clusters we always have 0 < Γ ≤ 1 (Paper
I), while the LK Hamiltonian is exactly recovered when
Γ = 1. Figure 1a shows the profiles of Γ(R) in clusters
with Plummer and Hernquist potentials.
Papers I & II focused almost exclusively on exploring

the dynamics arising from the tidal Hamiltonian (2), ig-
noring GR precession. A key conclusion of these studies
was that high eccentricities can be reached by binaries
sufficiently inclined with respect to their outer orbital
plane for a range of Γ values. However, due to a bifur-
cation in the dynamical phase portrait, very high eccen-
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tricity is much more readily achieved by binaries with
Γ > 1/5 than those with Γ < 1/5. Therefore, according
to Figure 1, high eccentricity should be easier to reach
in cusped (e.g. Hernquist) clusters.
To compute merger rates due to cluster tides the

‘doubly-averaged’ calculations of Papers I & II need to be
extended by accounting for two additional effects. First,
GR precession (embodied in the term (3)) typically acts
to promote faster evolution of ω, quenching the cluster
tide-driven eccentricity oscillations (see e.g. Fabrycky &
Tremaine (2007) for a discussion in the LK limit, Γ = 1).
Reaching high e in the presence of GR precession neces-
sarily requires a sufficiently dense/massive cluster. Em-
pirically, we find that one should not expect high ec-
centricity oscillations to arise whenever ǫGR & 10. This
requirement severely constrains the parameter space of
initial conditions that can lead to GW-assisted mergers.
Second, fluctuations in the tidal torque felt by the bi-

nary on the timescale of its outer orbital period (which
are ignored by double-averaging) can increase a binary’s
maximum eccentricity (Ivanov et al. 2005; Katz & Dong
2012; Luo et al. 2016; Grishin et al. 2018). These short-
timescale fluctuations (sometimes called ‘singly-averaged
effects’) can greatly enhance merger rates. Roughly
speaking, one can think of them as modifying the max-
imum eccentricity reached by the binary from emax to
ẽmax = emax + δe, δe > 0. We take this effect into ac-
count in our calculations (see below).

3. CALCULATION OF THE MERGER FRACTIONS

The main goal of this work is to compute the present
day merger rate induced by cluster tides. Its calculation
in §4 relies on knowledge of the time evolution of the
merger fraction fm(t), which is found by taking a large
ensemble of binaries and computing how many of them
merge in a time Tm < t. Here we outline the details
of the calculation, namely, our merger time prescription
(§3.1), the method used (§3.2), and the results (§3.3).

3.1. Merger time Tm

An isolated binary (in the absence of cluster tides) with
initial semi-major axis a0 and eccentricity e0 ≈ 1 would
merge due to GW emission in a time (Peters 1964):

T iso
m (e0) =

3c5a40
85G3(m1 +m2)m1m2

(1 − e20)
7/2. (7)

However, the torque from the cluster potential causes
the binary’s eccentricity to vary in a cyclic fashion on a
secular timescale tsec, with e → 1 under favorable cir-
cumstances. Because of the steep dependence of T iso

m on
1− e, GW emission occurs in the form of discrete bursts
around the sharp eccentricity maxima. As shown in Pa-
per II (equation (58)), such high-e episodes last for about
∆tmax ≈ tsec(1 − e2max)

1/2, where emax is the maximum
eccentricity obtained in the DA theory. This prolongs the
time to merger (estimated using equation (7) at peak ec-
centricity) by a factor ≈ tsec/∆tmax = (1 − e2max)

−1/2,
see equation (8).
Moreover, as e passes through its peak value it also ex-

periences short-term oscillations due to singly-averaged
effects. These variations periodically take e to its peak
singly-averaged value ẽmax, which is higher than the DA
value emax. Again, because of the sharp dependence of

GW emission on 1 − e, GW losses mainly occur when
e ≈ ẽmax. For this reason, to approximately account
for the singly-averaged effects we set the peak eccentric-
ity determining the intensity of GW emission to ẽmax

(rather than emax) and obtain the following estimate of
the merger time:

Tm≈T iso
m (ẽmax)× (1 − e2max)

−1/2 (8)

=
3c5a40

85G3(m1 +m2)m1m2
ψ(emax, ẽmax) (9)

=1.0Gyr

(
m

1.4M⊙

)−3 ( a0
10 au

)4 ψ(emax, ẽmax)

10−12

=0.5Gyr

(
m

30M⊙

)−3 ( a0
30 au

)4 ψ(emax, ẽmax)

10−12
,

where ψ(emax, ẽmax) = (1 − ẽ2max)
7/2(1 − e2max)

−1/2. In
the numerical estimates we used typical values for NS-NS
and BH-BH binaries with m1 = m2 = m. Note that Tm
is independent of the secular period tsec.
Equation (9) is what we use in this work for Tm; it

provides an estimate of the merger time accurate up to
a factor of order unity (although see the end of §3.2).
A similar result for Tm, but neglecting singly-averaged
effects 5 (i.e. with ẽmax = emax), has been previously
used by several authors to calculate merger times of bi-
naries driven to high eccentricity via the LK mechanism
(Thompson 2011; Antonini & Perets 2012; Liu & Lai
2018; Grishin et al. 2018; Randall & Xianyu 2018).

3.2. Method

To compute the merger fraction fm(t) we draw a large
number6 N = 106 of binaries with initial parameters ran-
domly chosen from appropriate distributions as described
below. We then determine how many of these binaries
merge in a time Tm < t after their birth. For a given
cluster potential, both emax and ẽmax (featured in our
Tm prescription (9)) are functions of eight parameters,
describing the inner (a, e, i, ω) and outer (rp, ra) orbits
of the binary at t = 0 and the binary component masses,
e.g.

emax = emax(rp, ra, a0, e0, i0, ω0,m1,m2). (10)

We obtain emax from equation (55) of Paper II (which
fully accounts for GR precession), setting its right hand
side to zero and solving for j = (1−e2)1/2. Our prescrip-
tion for the amplitude δe of short-timescale fluctuations
entering ẽmax — which is an approximate analytic ex-
pression similar to equation (B14) of Ivanov et al. (2005)
(see also Grishin et al. 2018) — is provided in Hamilton
& Rafikov (in prep.). This fully specifies Tm for a cho-
sen set of binary parameters and allows a computation
of fm(t). We now discuss our parameter choices.
Our compact object binaries come in three flavours:

NS-NS, NS-BH and BH-BH. For the component masses
m1,m2 we always use 1.4M⊙ (NS) and 30M⊙ (BH). We
use three cluster masses: M = 105, 106, 107M⊙. We con-
sider two cluster potentials, the same as in Figure 1: the

5 We examine the impact of neglecting singly-averaged eccentri-
ity fluctuations in Hamilton & Rafikov (in prep.).

6 We checked that a ‘higher resolution’ calculation which sam-
pled N = 107 binaries gave essentially identical results.
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Plummer potential ΦPlum to mimic cored potentials of
globular clusters and the Hernquist potential ΦHern to
approximate cusped nuclear clusters. Each of them is
scaled to have half mass radius rh = 1.31pc.
We randomly sample rp and ra (which characterize

the binary’s outer orbit) from a self-consistent distri-
bution function (DF) constructed as follows. We take

the isotropic self-consistent DF g(Ẽ(rp/b, ra/b), b) that
generates the underlying cluster potential with mass

M and scale radius b, where Ẽ ≡ E/(GM/b) and E
is the specific energy of an orbit in that potential.

Thus, g(Ẽ , bPlum) ∝ b
−3/2
Plum(−Ẽ)7/2 for the Plummer po-

tential, while for the Hernquist potential g(Ẽ , bHern) is
given by equation (4.51) of Binney & Tremaine (2008).
We then draw the orbits of our binaries from a DF
∝ g(Ẽ(rp/b′, ra/b′), b′), where the new scale radius b′

is a parameter that we vary to account for the pos-
sibility of the massive compact object binaries being
more centrally concentrated than the underlying stel-
lar population (we leave the scale radius b of the clus-
ter potential unchanged). We choose three values of b′

such that the corresponding central over-concentration
c ≡ ρ(0, b′)/ρ(0, b) — ratio of the central densities com-

puted from the DFs g(Ẽ , b′) and g(Ẽ , b) — is equal to
1, 10 and 100. Hence for c = 1 the binaries are essen-
tially tracer particles drawn from the underlying stellar
population, while for c ≫ 1 they are much more cen-
trally concentrated. In the Plummer case this requires
b′/bPlum = 1, 10−1/3 and 10−2/3, while for the Hernquist
sphere we must take b′/bHern = 1, 10−1/2 and 10−1. Vari-
ation of c helps to alleviate the observational uncertainty
in the radial distribution of compact object binaries in
clusters.
We assume Opik’s law for the distribution of binary

semi-major axes (dN/da0 ∝ a−1
0 ), sampling it in the

range a0 ∈ (amin, amax). Here amin is the semi-major
axis below which GR precession will suppress cluster
tide-driven evolution; we estimate amin by solving equa-
tion (5) for a with ǫGR = 10 and A∗ = 1.0. We take
amax = 50 au, 100 au, 100 au for NS-NS, NS-BH and BH-
BH binaries respectively, expecting that wider binaries
would be quickly disrupted by stellar encounters.
Initial binary eccentricities are drawn from a ther-

mal distribution (uniform in e20) in the range e0 ∈
(0.01, 0.995), while initial pericentre angles are sampled
randomly from uniform distributions in ω0 ∈ (0, π). As
for initial inclinations, since only binaries that reach
emax → 1 can merge within a Hubble time, one needs
i0 to be close to 90◦, which follows from the conservation
of (1 − e2)1/2 cos i (i.e. the z-component of the binary’s
inner orbital angular momentum, see Paper I). For this
reason, to get faster convergence, we sample cos i from
a uniform distribution not in (0, 1), but (0, κ), where
κ = 0.05, 0.08, 0.1 for NS-NS, NS-BH and BH-BH bina-
ries, respectively7.
When calculating merger fractions fm we account

for the aforementioned truncation of the ranges of

7 The κ values are calculated by putting a0 = amin, Tm = 12Gyr
and 1 − e2max ∼ cos2 i0 in equation (9) and solving for cos i0 (the
approximation 1 − e2max ∼ cos2 i0 is a reasonable one whenever
Γ > 1/5).

a0, e0, ω0, cos i0. In particular we assume that the overall
population of binaries has a minimum semi-major axis
0.2 au (whereas it is only sampled down to amin) while
the maximum semi-major axis is still amax, and weight
the number of merged binaries accordingly. Similarly, in
reality cos i0 ∈ (0, 1), but binaries in (κ, 1) never merge.
The values of fm(t) we quote always reflect the fraction
of the total population that has merged in time t, not
just of the initial N sampled binaries.
Implicit in the derivation of the merger time Tm is the

assumption that the binary undergoes at least one sec-
ular cycle by time t. However, equation (9) sometimes
predicts merger times that are short compared to the sec-
ular timescale tsec. Since binaries must first reach their
maximum eccentricity before they can actually merge,
which on average takes ≈ tsec/2, we account for these
‘fast’ mergers by taking the actual merger time to be
max(Tm, tsec/2).

3.3. Merger fraction results

In Figure 2 we plot the cumulative merger fractions
fm(t) for t ∈ (1Myr, 12Gyr), calculated using the
method of §3.2. We consider NS-NS (left column), NS-
BH (middle column), and BH-BH (right column) bi-
naries, each for M = 105M⊙ (green), M = 106M⊙

(red) and M = 107M⊙ (blue) clusters and concentra-
tions c = 1, 10, 100 (solid, dot-dashed and dashed lines
respectively), for the two potentials (6).

3.3.1. Cored (Plummer) models

Starting with the Plummer models (top row of Fig-
ure 2), we see that fm is largest for the most massive
clusters (M = 107M⊙, blue lines) because the secular
evolution is fastest in such clusters and therefore large
eccentricity oscillations are less easily quenched by GR
precession. For NS-NS binaries with central concentra-
tion c = 1, the final merger fraction is fm(12Gyr) ∼ 10−3

in M = 107M⊙ clusters. The corresponding result for
NS-BH and BH-BH binaries is a factor of a few smaller
because of the stronger GR precession barrier for these
more massive systems. In M = 106M⊙ clusters (red
lines), we again find a non-negligible final NS-NS merger
fraction, fm(12Gyr) ∼ 10−4; however, we find no NS-BH
and BH-BH mergers, because for those (heavy) binaries
the cluster tides are no longer strong enough to beat the
GR precession. For the same reason, fm is negligible in
cored (Plummer) M = 105M⊙ clusters across all binary
flavours.
In all three panels, increasing the central concentra-

tion c reduces the merger fraction because strongly cen-
trally concentrated binaries in cored potentials fall into
the Γ < 1/5 regime (see Figure 1) for which high eccen-
tricity excitation is suppressed (Paper II).

3.3.2. Cusped (Hernquist) models

Cusped clusters represented by a Hernquist potential
(bottom row of Figure 2) exhibit substantially higher fm
values than in the Plummer case. Indeed, even 105M⊙

clusters (green curves) — which produced zero mergers
in the Plummer potential — now have fm(12Gyr) of at
least a few × 10−5 and often as large as ∼ 10−3, depend-
ing on c and the binary type. Moreover, increasing c in
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Fig. 2.— Cumulative merger fraction fm(t) over the domain t ∈ (1Myr, 12Gyr) for NS-NS, NS-BH and BH-BH binaries, each for cluster
masses M/M⊙ = 105, 106, 107 and binary central concentrations c = 1, 10, 100 in the Plummer and Hernquist potentials (see legend).

these potentials increases fm, which is the opposite trend
to the Plummer case.
Both effects are due to the ubiquity of the Γ > 1/5

regime (promoting high e excitation) in the Hernquist
potential, even near the cluster centre (Figure 1) — un-
like in the Plummer case, there is little disadvantage to
binaries being centrally concentrated. Moreover, secular
evolution is fast near the centre of the Hernquist sphere
(tsec ∝ A−1 and the ‘tidal strength’ A diverges, see Fig-
ure 1), and short-timescale fluctuations there are strong.
As a result, increasing c drives more binaries to merge
within a Hubble time. Many binaries that orbit near
the centres of cuspy clusters have tsec < 106yr — hence,
several curves show nonzero fm(10

6 yr).
Also, fm shows a weaker dependence on cluster mass

M than in the Plummer case. This is because of the large
A values in the Hernquist case (see Fig. 1b), which act to
suppress the effect of GR precession: equation (4) then
yields ǫGR → 0, a limit in which emax is independent of
M (Paper II).

4. MERGER RATES

Our results on merger fractions fm(t) allow us to cal-
culate the specific merger rate R, which is the rate of
compact object binary mergers of a given flavour per unit
volume in the local universe, given the birth history of
binaries of that type. The latter is described by the for-
mation rate of such binaries per unit cluster mass W (t),
such that in the interval (t, t + δt), W (t)δt systems are
produced per unit cluster mass. The cumulative number
of mergers from that binary type per unit cluster mass

after time t is then

C(t) ≡
∫ t

0

dt′W (t′)fm(t− t′), (11)

and the corresponding contribution to the specific merger
rate at time t is R = ρcldC(t)/dt, where ρcl is the cluster
mass density in the local universe.
We consider two simple histories of compact object bi-

nary formation. The first takes the form of a burst, so
that at t = 0 each cluster instantaneously forms a pop-
ulation of binaries. If Xborn compact object binaries are
born per unit cluster mass, then W (t) = Xbornδ(t) so
that C(t) = Xbornfm(t) and

R(t) = Xbornρcl
dfm(t)

dt
. (12)

The second model assumes a constant compact ob-
ject binary formation rate W (t) = Yform per unit
cluster mass. Then the cumulative merger number

from that cluster is C(t) = Yform
∫ t

0
dt′fm(t − t′) =

Yform
∫ t

0
dx fm(x), resulting in the specific merger rate

R(t) = Yformρclfm(t). (13)

The results obtained for these two binary formation
histories give an idea of the outcomes of more sophisti-
cated models.

4.1. Merger rates from globular clusters

Globular clusters have cored profiles, so we use fm re-
sults for Plummer spheres (§3.3.1) to represent them.
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Since globulars have a range of masses and fm is a func-
tion of M , appropriate averaging of the rates (12)-(13)
over the cluster mass spectrum is needed. Following Ro-
driguez et al. (2015) we use a log-normal mass function
for the number density of globulars (Harris et al. 2014):

dngc

d lg(M/M⊙)
=

ntot
gc√

2πσM

× exp

[
− (lg(M/M⊙)− µ)2

2σ2
M

]
, (14)

where ntot
gc is the total number density of globular clusters

in the local universe integrated over M , and σM = 0.52,
µ = 5.54. The number density ntot

gc is an uncertain quan-
tity (Portegies Zwart & McMillan 2000; Rodriguez et al.
2015, 2016). In this work, guided by existing estimates,
we adopt ntot

gc = 3Mpc−3.
For simplicity, we do the averaging in an approxi-

mate fashion by splitting the cluster population into
3 mass bins Mmin

i < M < Mmax
i , i = 1, 2, 3, where

Mmin
i = 5 × 103+iM⊙ and Mmax

i = 5 × 104+iM⊙. The
mass density in clusters in each mass bin is then ρgc,i =∫Mmax

i

Mmin

i

Mdngc = (3.9, 14.1, 3.3)× 105(ntot
gc /3 Mpc−3)M⊙

Mpc−3. We assign to each bin the value of fm computed
for Plummer models with M = Mi = 104+iM⊙ (within
the i-th bin). Then averaging of the merger rate over the
distribution of M amounts to replacing ρclfm with

Fm(t) =
3∑

i=1

ρgc,ifm(t;Mi). (15)

We now compute the present day rate R for the two
aforementioned binary birth histories.

4.1.1. Merger rates from globular clusters: a single burst of
compact object binary formation

Globular clusters experience a large starburst at their
formation. Compact objects get produced in supernova
explosions shortly thereafter. If they remain bound and
assemble into binaries on a timescale short compared to
the Hubble time, then the single burst approximation
(12) should characterize the current merger rate R rea-
sonably well.
Motivated by the calculations of Löckmann et al.

(2010), in this work we adopt Xborn = 10−3M−1
⊙ for

the specific birth rate of all compact binary species, sim-
ilar to the value obtained in Rodriguez et al. (2016). We
calculate the total merger rate using equation (12), av-
eraging it over cluster mass via equation (15):

R = Xborn
dFm

dt
= 3× 10−3Gpc−3yr−1 (16)

× Xborn

10−3M−1
⊙

dFm/dt|12Gyr

3 M⊙ Mpc−3Gyr−1 ,

where in the numerical estimate we assumed that the
formation burst happened 12 Gyr ago, and took a value
of dFm/dt characteristic of Plummer models (§3.3.1).

4.1.2. Merger rates from globular clusters: a constant rate
of compact object binary formation

An alternative birth history is the one in which the
assembly of compact objects into binaries in globulars
occured at a steady (slow) rate Yform over the last 12Gyr.
Here we adopt Yform = 10−4M−1

⊙ Gyr−1 so that upon
integration over a Hubble time we reproduce roughly the
specific compact binary occurrence rate Xborn assumed
in §4.1.1 (i.e. Yform × 10 Gyr = Xborn). Then from
equation (13) the merger rate is

R = YformFm = 0.3Gpc−3yr−1 (17)

× Yform

10−4M−1
⊙ Gyr−1

Fm(12Gyr)

3× 103 M⊙ Mpc−3 ,

and again we took Fm(12Gyr) values characteristic of
Plummer models (§3.3.1).

4.2. Merger rates from nuclear clusters

In the case of nuclear clusters we expect compact ob-
ject binaries to be created at a relatively steady rate
due to continuous star formation over long times (Figer
et al. 2004; dynamical assembly due to 3-body processes
is not as important here, although see Muno et al. 2005).
Thus, the constant formation rate assumption is more
appropriate for nuclear clusters, and we again assume
Yform = 10−4M−1

⊙ Gyr−1 for these systems.
For simplicity, we take all nuclear clusters to have

mass Mnc = 107M⊙ and assume nnc = 0.02 Mpc−3

for their number density (Petrovich & Antonini 2017;
Hamers et al. 2018). Then ρclfm =Mncnncfm(Mnc) and
the merger rate becomes (equation (13))

R = YformMncnncfm(Mnc) (18)

= 0.2Gpc−3yr−1 Yform

10−4M−1
⊙ Gyr−1

× nnc

0.02Mpc−3

fm(12Gyr;Mnc)

10−2
,

where for fm(12Gyr;Mnc) we adopted a value character-
istic of cusped (Hernquist) models — see §3.3.2. Cored
nuclear clusters have fm(12Gyr;Mnc) an order of mag-
nitude lower, see §3.3.1.

5. DISCUSSION

In Figure 3 we show present day compact binary
merger rates due to cluster tides in globular and nu-
clear clusters. Rates for globulars use the results we
obtained for Plummer models (for two birth histories,
§§4.1.1-4.1.2), while for nuclear clusters we consider both
Hernquist and Plummer models and a flat binary for-
mation history (§4.2). For NS-NS binaries we consider
only moderate concentrations c = 1, 10, while for (sig-
nificantly heavier) NS-BH and BH-BH binaries we as-
sumed a higher degree of central segregation, c = 10, 100.
The grey regions in Figure 3 show the LIGO rate esti-
mates (The LIGO Scientific Collaboration et al. 2018):
110− 3840Gpc−3 yr−1 and 9.7− 101Gpc−3 yr−1 for NS-
NS and BH-BH mergers in the local universe respec-
tively, while the upper limit on the NS-BH merger rate
is 610Gpc−3 yr−1.
Focusing first on globular clusters, one can see that

their merger rates fall short of providing a substan-
tial contribution to the observed rates. We find
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Fig. 3.— Merger rates R of compact object binaries driven by the tidal fields of (spherical) globular and nuclear clusters. For each binary
type we consider two values of the central concentration c. For globular clusters, modeled as cored (Plummer) systems, we look at two
binary birth histories: single burst (blue) and constant formation rate (red). For nuclear clusters we calculate rates assuming either cored
(Plummer, yellow) or cusped (Hernquist, green) profiles, considering only the constant binary formation history. Grey regions show the
LIGO rate estimates. See text for details.

R ∼ 0.01 − 0.07Gpc−3yr−1 for NS-NS binaries and
. 0.02Gpc−3yr−1 for each of NS-BH and BH-BH bina-
ries in globulars (Figure 3). The primary reason for fewer
NS-BH and BH-BH mergers compared to NS-NS mergers
is that the heavier binaries (i) suffer from stronger GR
precession which cannot be overcome in a cored potential
even at the cluster center, (ii) have higher central con-
centrations which brings them in to the Γ < 1/5 regime,
where high eccentricity excitation is suppressed (higher
c always leads to lower R in globulars). Also, a con-
stant binary formation rate results in higher R because
many binaries merge soon after their birth: fm(t) curves
rise substantially faster during the first 107 − 108 yr, see
Figure 2.
As for nuclear star clusters, if we assume a cusped

density profile (Hernquist model) then R ∼ 0.1 −
0.2Gpc−3yr−1 for NS-NS, NS-BH and BH-BH binaries.
The NS-BH and BH-BH binaries merge slightly more
often than NS-NS binaries because near the centre of
cusped clusters the Γ < 1/5 regime is rare, and the tidal
field is strong which helps to overcome GR precession.
As a consequence, higher central concentration is advan-
tageous (although not dramatically). However, in cored
nuclear clusters the situation is more similar to that in
globulars and R drops appreciably with increasing c.
Overall, we see that NS-BH and BH-BH merger rates

are very similar, assuming they are formed in equal num-
bers. Cusped nuclear clusters dominate the cluster tide-
driven merger rate compared to globulars for all binary
species. Whereas cluster tides acting alone are unlikely
to produce many NS-NS mergers, they can still con-
tribute at the level of several per cent to the observed
NS-BH and BH-BH merger rates, given our assumptions.

5.1. Comparison with existing studies

There are a number of existing estimates of compact
object binary merger rates in globular and nuclear clus-
ters (Antonini et al. 2014; Stephan et al. 2016; Antonini
et al. 2016; Fragione & Bromberg 2019). The studies
which bear closest resemblance to our work consider bi-
naries orbiting SMBHs at the centres of spherical nuclear
clusters (Antonini & Perets 2012; Prodan et al. 2015;

Hoang et al. 2018). Petrovich & Antonini (2017) also
considered the effect of a non-spherical cluster poten-
tial that steadily changes the orientation of the binary’s
outer orbit, allowing the inner binary to reach high in-
clinations with respect to the outer orbit, triggering LK
oscillations and greatly enhancing merger rates. How-
ever, none of these studies accounted for the direct tidal
torque on the inner orbit due to the cluster potential as
we do here. Additionally, in these studies the distribu-
tion of outer orbits of the binaries is typically truncated
at radii of . 0.1pc. We do not rely on the presence of
a central black hole and still find mergers out to much
larger radii by including a cluster potential.
In nuclear clusters our BH-BH merger rate R ∼

0.1 − 0.2Gpc−3yr−1 is comparable to (but typically
slightly smaller than) those of others, e.g. Antonini
& Rasio (2016) (R ∼ 1Gpc−3yr−1 from nuclear clus-
ters without a SMBH), Petrovich & Antonini (2017)
(R ∼ 0.6 − 15Gpc−3yr−1 from non-spherical nuclear
clusters with a SMBH, but they use higher Yform). In
globulars our BH-BH rate R . 0.02Gpc−3yr−1 is signif-
icantly smaller than those of e.g. Rodriguez et al. (2016)
(R ∼ 2 − 20Gpc−3yr−1 from hardening of dynamically
formed binaries), see §4.1.2.
For NS-BH and NS-NS binaries in (cusped) nuclear

clusters our rates, R ∼ 0.1 − 0.2Gpc−3yr−1, are com-
parable to or greater than those of Petrovich & An-
tonini (2017) (R ∼ 0.02 − 0.4Gpc−3yr−1 and R .

0.02Gpc−3yr−1 respectively). Our results are also com-
parable to those of Hamers et al. (2018) who found
a combined merger rate for all compact object binary
flavours in nuclear clusters with SMBHs of R ∼ 0.02 −
0.4Gpc−3yr−1.
Like most other dynamical merger channels, the rates

produced by our mechanism fall short of those observed
by LIGO by at least one order of magnitude.

5.2. Further refinements

Apart from some technical simplifications used in this
study (e.g. our approximation of Tm using equation (9),
simple analytical estimate for δe, etc.), we have also de-
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liberately omitted certain physical ingredients to focus
on mergers arising due to secular effects alone. In par-
ticular, we disregarded the granularity of the cluster po-
tential by ignoring the impact of flyby encounters on the
binary’s orbital elements (Heggie & Rasio 1996; Hamers
2018; Samsing et al. 2019). This is an important ef-
fect that can influence our results in non-trivial ways,
and we will address its role in the future. We also ne-
glected time-dependence of the cluster properties, e.g.
due to core collapse or disk shocking, and ignored the
relaxation of the binary’s outer orbit due to vector res-
onant relaxation (VanLandingham et al. 2016; Hamers
et al. 2018) or dynamical friction. To focus on the tidal
effect of the smooth cluster mass distribution alone, in
this work we ignored the possibility of a central SMBH
which could reside in nuclear clusters. Similarly, we as-
sumed each cluster to be perfectly spherically symmetric,
omitting the effects of possible oblateness on the outer
orbit (Petrovich & Antonini 2017).
Our future work will address many of these issues. In

Hamilton & Rafikov (in prep.) we will explore the sen-
sitivity of our results to variation of the underlying as-
sumptions, and study the impact of the presence of a
central SMBH on the merger rates in nuclear clusters.

5.3. Summary

We explored a new channel for producing compact ob-
ject mergers in dense stellar clusters which relies on the
secular evolution of binaries driven by the cluster’s tidal
gravitational field (a field which is unavoidably present
in any merger model involving clusters). We computed
merger rates due to this mechanism by focusing on con-
ditions in which the binary can be driven to such high
eccentricity that GW emission becomes important, while
fully accounting for the detrimental effect of GR preces-
sion. We showed that stellar systems with cored poten-
tials (e.g. globular clusters) do not produce many merg-
ers, owing to the inefficiency of high-eccentricity excita-
tion in the cluster cores. Cusped nuclear clusters (even
in the absence of a central SMBH) are significantly more
effective and lead to observationally interesting merger
rates. Our merger rates come closest to meeting current
LIGO estimates for BH-BH binaries but still fall short by
more than an order of magnitude. On the other hand, we
note that all current rate estimates — including ours —
have (systematic) error bars of at least an order of mag-
nitude. Our future work will refine these calculations in
many ways.

CH is funded by a Science and Technology Facilities
Council (STFC) studentship.
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