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ABSTRACT
Measurements of exoplanetary masses and radii have revealed a population of massive
super-Earths — planets sufficiently large that, according to one dimensional models,
they should have turned into gas giants. To better understand the origin of these
objects, we carry out hydrodynamical simulations of planetary cores embedded in a
nascent protoplanetary disk. In this first paper of a series, to gain intuition as well
as to develop useful diagnostics, we focus on two-dimensional simulations of the flow
around protoplanetary cores. We use the pluto code to study isothermal and adiabatic
envelopes around cores of sub- to super-thermal masses, fully resolving the envelope
properties down to the core surface. Owing to the conservation of vortensity, envelopes
acquire a substantial degree of rotational support when the core mass increases be-
yond the thermal mass, suggesting a limited applicability of one-dimensional models
for describing the envelope structure. The finite size of the core (relatively large for
super-Earths) also controls the amount of rotational support in the entire envelope.
Steady non-axisymmetric shocks develop in the supersonic envelopes of high-mass
cores, triggering mass accretion and turbulent mixing in their interiors. We also ex-
amine the influence of the gas self-gravity on the envelope structure. Although it only
weakly alters the properties of the envelopes, the gas gravity has significant effect on
the properties of the density waves triggered by the core in the protoplanetary disk.

Key words: planets and satellites: gaseous planets, formation – hydrodynamics –
methods: numerical

1 INTRODUCTION

The Kepler survey has revealed that about 50% of Sun-like
stars host at least one planet with radius between 1.25−4R⊕
and orbital period less than 145 days — the so-called super-
Earths (Batalha et al. 2013; Fressin et al. 2013). Measure-
ments of both the mass and radius of these exoplanets show
that their density decreases as their size increases beyond
1.5R⊕ (Weiss & Marcy 2014). This density decrease is as-
sociated with the presence of gaseous atmospheres (Rogers
2015), with volatile masses reaching several percent of the
mass of the solid core (Lopez & Fortney 2014; Wolfgang &
Lopez 2015).

In the standard paradigm of planet formation (Safronov
1969; Kusaka et al. 1970), solid cores of protoplanets grow
by accreting planetesimals (Nakagawa et al. 1983; Wetherill
& Stewart 1989) and, possibly, pebble-sized grains (Ormel &
Klahr 2010; Lambrechts & Johansen 2012). This scenario is
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supported by the observed distributions of exoplanet masses
and radii (Matsuo et al. 2007; Howard et al. 2012; Mordasini
et al. 2012). While embedded in a circumstellar disk, the
growing core is surrounded by a dense and extended envelope
(Perri & Cameron 1974; Rafikov 2006). The observed atmo-
spheres are most likely remnants of such primitive envelopes,
modified during later stages of photoevaporation (Owen &
Jackson 2012; Owen & Wu 2013), impact erosion (Inamdar
& Schlichting 2016; Yalinewich & Schlichting 2018) and out-
gassing (Chachan & Stevenson 2018).

As the core grows by accretion of solids, the mass of its
hydrostatic envelope increases faster than the mass of the
core. Quasi-static envelopes contract and accrete gas as fast
as radiative cooling permits (Lee & Chiang 2015). Hydro-
static and thermal equilibrium cannot be sustained beyond
a critical core mass, triggering a runaway cooling and accret-
ing phase (Mizuno et al. 1978; Pollack et al. 1996). At orbital
separations 0.1 − 1AU, the “runaway gas accretion” phase is
triggered above a critical core mass 5−20M⊕ (Rafikov 2006),
even for vigorously accreting cores. Higher-mass cores are
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2 W. Béthune & R. R. Rafikov

expected to turn into gas giants over the lifetime of the disk
(Rafikov 2011), according to one-dimensional models. Owing
to their masses, many super-Earths should thus have turned
into gas giants (Lee et al. 2014). That this did not happen
is a puzzle.

Various mechanisms have been proposed to moderate
or prevent the runaway growth of gaseous envelopes. Exam-
ples include the ambient pressure drop following disk clear-
ing (Owen & Wu 2013; Ginzburg et al. 2016), the tidal
(or internal) heating of close-in atmospheres (Ginzburg &
Sari 2017; Ginzburg et al. 2018) or the enhanced opacity of
dust-enriched disks (Lee et al. 2014). Hydrodynamic mech-
anisms have also been studied, primarily under simple ther-
modynamic assumptions. Due to conservation of the poten-
tial vorticity (alias vortensity), two-dimensional envelopes
should become rotationally supported (Miki 1982). If rota-
tional support becomes dominant, a circumplanetary disk
should form and regulate gas accretion (Rivier et al. 2012;
Tanigawa et al. 2012). The formation of such disks depends
on the efficiency of radiative cooling against heating pro-
cesses, either viscous (Ayliffe & Bate 2009) or shock-induced
(Szulágyi et al. 2016).

Ormel et al. (2015b) pointed out the possible impor-
tance of atmospheric recycling — dynamic exchange of mass
between the envelope and the surrounding disk — for pre-
venting the transition of the super-Earths into a gas giant. A
notable feature of their model is the inclusion of a spatially
resolved inner boundary in the simulations domain, mimick-
ing the presence of a solid core. Most previous studies have
represented the core via a smoothed gravitational potential
(e.g., D’Angelo & Bodenheimer 2013) and/or a mass sink
(e.g., Machida et al. 2010), focusing on the properties of
the flow on the scale of the disk thickness. However, Ormel
et al. (2015a) showed the influence of this boundary on the
global properties of two-dimensional planetary envelopes.

This paper is the first in a series of numerical studies of
super-Earth atmospheres, with increasing degree of realism
and complexity. Its goal is to go beyond the work of Ormel
et al. (2015a) and to provide detailed 2D exploration of the
atmospheres of massive (super-thermal, see section 2) cores,
which would be capable of triggering runaway gas accretion
according to 1D models (Mizuno 1980). We investigate the
role of envelope recycling, with a specific care taken of the
core boundary. In doing this we pay particular attention
to the balance of pressure versus rotational support in the
envelope, and to the mixing properties of the flow.

The plan of the paper is the following. We present our
model and its numerical implementation in section 2. Two
appendices complete this section with a series of tests. Sec-
tion 3 contains the results of isothermal, adiabatic, and fi-
nally self-gravitating simulations. Section 7 provides a dis-
cussion of our results in light of previous studies, and sum-
marize our main conclusions in section 8.

2 METHOD

2.1 Physical setup

We consider a solid core orbiting a star on a circular trajec-
tory in the midplane of a protoplanetary disk. In this pa-
per, we focus on the two-dimensional properties of the flow

around the core, with simple assumptions about the ther-
modynamics of the gas. The gas self-gravity is included in
some cases, see section 6.

Let rc be the radius of the core, mc its mass, a its semi-
major axis, and Ω = (Gm?/a3)1/2 its Keplerian frequency
around the central star of mass m?. The sound speed of the
gas cs is linked to the hydrostatic pressure scale height of
the disk h = cs/Ω. Another important lengthscale of the
problem is the Bondi radius1 rB = Gmc/c2

s .
We define the dimensionless ratios H ≡ h/rc and B ≡

rB/rc , and evaluate their typical values for a super-Earth
core orbiting a Solar-mass star:

H ≈ 60
( a

0.1AU

) (
h/a
5%

) (
rc

2r⊕

)−1
, (1)

B ≈ 14
( a

0.1AU

) (
mc

10m⊕

) (
rc

2r⊕

)−1 (
m?
m�

)−1 (
h/a
5%

)−2
. (2)

For an Earth-like planet at 1AU, both H and B would be
much larger than these numerical estimates. However, for
characteristic super-Earth-like core masses and separations
from the star, B can be of order unity and rc can reach sev-
eral percent of h. As a result, the physical core size might be
able to influence the flow structure on scales ∼ h. This is an
important characteristic of super-Earths that distinguishes
them from e.g. the cores of gas giants at 5-10 AU.

From (2) and (2) one can form the dimensionless ratio

B
H
=

mc

mth
≈ 0.24

(
mc

10m⊕

) (
m?
m�

)−1 (
h/a
5%

)−3
, (3)

which is independent of the core radius. This ratio is equiv-
alent to the ratio of the core mass mc to its ‘thermal mass’
(Rafikov 2006):

mth =
c3
s

ΩG
= m?

(
h
a

)3
≈ 40m⊕

(
m?
m�

) (
h/a
5%

)3
(4)

At this important mass scale the perturbations induced by
the core in the surrounding disc (e.g., density waves) be-
come non-linear. Also, mc = mth corresponds to rB = h, and
both scales are approximately equal to the core’s Hill radius
defined as rH = a (mc/3m?)1/3 (up to a factor 31/3).

Note that h and rB are defined with respect to the tem-
perature of the disk. If the disc is non-isothermal, then any
heating process occuring near the core will increase the effec-
tive pressure scale and decrease the effective Bondi radius.
In this work we use either isothermal (P = ρc2

s ) or adia-
batic (P ∝ ργ) equation of state for the gas. The isother-
mal limit would correspond to instantaneous radiative heat-
ing/cooling, while the adiabatic limit assumes that no ra-
diative losses occur. In the adiabatic case, we prescribe the
exponent γ = 7/5, as would be appropriate for a diatomic
gas in three dimensions (even though we use a 2D setup in
this work). For simplicity, chemical effects such as thermal
dissociation and reactions between different species are not
taken into account. Also, unlike Kley (1999), we consider
only inviscid flows in which momentum dissipation should
be limited to shocks (Lubow et al. 1999).

1 The Bondi radius is often defined with the Keplerian escape

velocity rB = 2Gmc/c2
s , twice larger than our definition.
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2.2 Numerical setup

We aim at resolving scales ranging from a fraction of the
core radius to several pressure scales h. Since H � 1, the
envelope should isolate the core from the global dynamics of
the disk. We follow the core along its orbit around the star in
‘the local approximation’ (Hill 1878). Let (x, y) be Cartesian
coordinates with the origin at the center of the core, with x
axis pointing from the star to the core and y along the orbit
of the core. The total gravitational potential Φ is split into
three components: the core potential Φc , the gas self-gravity
Φg, and the tidal potential of the star in the co-orbiting
frame. In the local approximation, this decomposition reads

Φ = Φc + Φg + qΩ2x2, (5)

where q ≡ Ω−1∂xvy,0 is the dimensionless shear rate of the
background flow vy,0 (unperturbed by the core). We set the
shear rate to its Keplerian value q = −3/2 throughout this
paper.

For simplicity, we neglect the head-wind experienced
by the core in sub-Keplerian disk (its effect was previously
examined by Ormel et al. (2015a)). If the midplane pressure
P ∝ r−n, then the core faces a head-wind with Mach number
v/cs ' (n/2)(h/a), i.e. a few per cent for typical values of the
opening angle h/a ≈ 5%.

A key aspect of our model is the inclusion of the core
as a physical boundary. Matter should not be able to cross
the boundary, allowing the accumulation of mass and angu-
lar momentum on top of the core. However, resolving the
core comes at a cost. At spatial scales smaller than the core
size, hydrodynamic fluctuations evolve on time scales shorter
than rc/cs = (ΩH)−1 � Ω−1. Following the dynamics on
scales ∼ rc over several orbits is computationally affordable
only for moderate values of H. Luckily, the time required to
restore a quasi-static equilibrium is the sound crossing-time
∼ Ω−1 (see Miki 1982, and Appendix A). For this reason, we
focus on time intervals of a few tens of orbits only, short rel-
ative to disk clearing or planet migration timescales (Gorti
et al. 2016; Fung & Lee 2018). In this sense, we look at the
quasi-instantaneous state of the envelope in this work.

We call ρ the gas (surface) density, v the velocity, e the
internal energy per unit mass, P the thermal pressure, Φ

the gravitational potential from (5) and E ≡ ρ
(
e + v2/2 + Φ

)
the total energy density. With these notations, the equations
describing the dynamics of mass, momentum and energy are:

∂t ρ + ∇ · [ρv] = 0 , (6)

∂t [ρv] + ∇ · [ρv ⊗ v + P I] = −ρ∇Φ − 2ρΩ × v , (7)

∂tE + ∇ · [(E + P) v] = 0. (8)

We close this system with either an isothermal (P = ρc2
s ) or

adiabatic (P = (γ − 1) ρE) equation of state. In the isother-
mal case, only (6) and (7) are actually integrated.

2.2.1 Integration scheme

We use the finite-volume code pluto (Mignone et al. 2007)
to integrate (6)−(8) in conservative form. The primitive vari-
ables (ρ, v, P) are estimated at cell interfaces by linear re-
construction with Van Leer’s slope limiter (Van Leer 1979).
Godunov fluxes are then computed via the Roe approximate

Riemann solver (Roe 1981). A shock-flattening strategy is
set to stabilize the solver in regions of strong pressure con-
trast. If the relative pressure variations between neighboring
cells exceed a factor of 5, we locally switch to the MINMOD
slope limiter and to the HLL approximate Riemann solver
(Van Leer Van Leer). The time-stepping is performed via an
explicit second-order Runge-Kutta scheme; a Courant num-
ber of 0.3 is used for CFL stability.

Specific care is taken of the Coriolis acceleration: to en-
sure the local conservation of angular momentum, the equa-
tions are discretized in a frame rotating with angular ve-
locity Ω around the core axis (Kley 1998; Mignone et al.
2012). When taking the gas self-gravity into account, the
gas potential Φg is obtained by solving Poisson’s equation
as described in Appendix B.

2.2.2 Computational domain

We use polar coordinates (r, ϕ) centered on the core, with ϕ =
0 along the axis from the star to the core. The computational
domain is (r, ϕ) ∈ [rc, 128rc] × [0, 2π]. The radial interval is
meshed with 512 logarithmically spaced grid cells, and the
azimuthal interval is uniformly meshed by 640 cells. This
corresponds to 73 cells over [r, 2r] for any r. The convergence
of most diagnostics was tested for resolutions ranging from
64 to 512 radial cells (see Appendix A).

The logarithmic grid spacing allows a fine spatial reso-
lution near the core at the expense of computational time.
The CFL constraint is dominated by sound waves in the
innermost grid cells. For moderate values of H = 16, approx-
imately 5×104 time steps are required to integrate one orbit
of the core; this number increases linearly with H in isother-
mal simulations. The timestep constraint is even more de-
manding in adiabatic simulations because the sound speed
increases near the core. We therefore focus our analysis on
H ≤ 32 simulations; according to (2), this parameter range
is most relevant to large cores at small orbital separations
in thin disks.

2.2.3 Initial and boundary conditions

The initial conditions consist of the unperturbed shear flow

of the disk
(
ρ, vx, vy, P

)
=

(
ρ0, 0,−3Ωx/2, ρ0c2

s

)
. To avoid a

violent relaxation towards the core, the potential of the core
Φc is gradually introduced, increasing linearly over the first
two orbits (see Appendix A).

We impose periodic boundary conditions in the az-
imuthal direction. In our local setup we cannot capture cer-
tain features of the global dynamics of the disk (e.g., the
opening of a gap by the core) without ad-hoc prescriptions
at the outer radial boundary. The shear flow is supersonic
with respect to the boundary for |x | > 2h/3, so unless filter-
ing out the characteristic waves that propagate inward, any
density/velocity perturbation reaching the boundary should
generate discontinuities inside the computational domain.
For simplicity, we impose the initial conditions of an un-
perturbed shear flow at the outer radial boundary. Because
of the sustained perturbations induced by the planet on the
flow, a velocity discontinuity appears at the outermost radial
grid cells in the portion of the flow leaving the computational
domain. We expect no influence of this discontinuity in the

MNRAS 000, 1–17 (2019)
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inner regions close to the core. As a precaution, the outer
regions r > 64rc are always be excluded from our analysis.

At the inner radial boundary, we require that mass
should not flow through it. This is achieved by the adequate
symmetrization

[ρ, vr, P,Φc] (rc − x) = [+ρ,−vr,+P,+Φc] (rc + x). (9)

The even symmetry of Φc across the boundary effectively
cancels the gravitational acceleration at the interface. The
residual mass flux through the boundary is always monitored
in our simulations.

There is not a unique acceptable boundary condition
for the azimuthal velocity vϕ at the core surface. This choice
will likely affect the long term behavior of our simulations
by injecting or extracting angular momentum from the en-
velope. Let ω ≡ ∇× v be the vorticity, and $z ≡ (ωz + 2Ω) /ρ
be the vertical vortensity of the flow. In the inviscid case
this component should remain constant in the absence of
shocks (see Ormel et al. 2015a, and section 7.2). We use this
property to design a stress-free inner boundary. Since vr is
already set by the zero-mass-flux condition, we can impose
ωz (and therefore $z) by setting the derivative ∂r vϕ . The
velocity vϕ(r) in the ghost cells is estimated by first-order
integration from the active domain, followed by 8 implicit
Jacobi iterations. The desired vortensity $z is thus main-
tained to better than 1% accuracy. Since vortensity is not
conserved around high-mass cores (see section 3.3), we im-
pose the azimuthally-averaged value of the vortensity on top
of the core instead of the background $0.

We emphasize that the system (6)-(8), along with
the prescribed boundary conditions, admits an infinity of
steady two-dimensional solutions. In the absence of mixing,
whether viscous or turbulent, isothermal solutions can be
parametrized by a radial profile of vortensity near the core,
and adiabatic solutions admit the entropy profile as an addi-
tional degree of freedom. By slowly introducing the potential
of the core, we are studying the class of solutions having a
constant vortensity and entropy away from shocks.

2.2.4 Gravitational potential of the core

In this simplified study, we neglect the vertical dimension of
the protoplanetary disk: the flow is constrained to evolve in
the midplane of the disk, where the core lies. If this model is
meant to represent a three-dimensional disk in some average
sense, then the gravitational potential of the core Φc should
be averaged correspondingly.

It is customary to smooth the gravitational potential
of the core in order to avoid singularities when the core
size is unresolved at the grid scale (Müller et al. 2012). Let
ΦNewton = −Gmc/r be the Newtonian potential of a point
mass mc ; the most common smoothing technique (Plummer
1911) includes a smoothing length ε via Plummer potential

ΦPlummer(r) = −Gmc/
√

r2 + ε2. To avoid spurious mass fluxes
through the core boundary of their three-dimensional sim-
ulations, Ormel et al. (2015b) used a potential ΦOrmel that
is force-free (∂rΦOrmel = 0) near the core surface (see their
equation 2). As indicated above, we prevented such mass
leaks by full symmetrization of the ghost cells at the inner
boundary.

In this work we opted to integrate the Newtonian po-

1 2 4 8
r/rc

0.7

0.8

0.9

1.0

|Φ
/Φ

N
ew

to
n
|

ΦPlummer

ΦOrmel

Φc

Figure 1. Different softening methods for the gravitational po-

tential of the core: Plummer potential ΦPlummer (dotted blue),

force-free potential ΦOrmel (dashed green, see text), and vertically
averaged potential Φc used in this study (solid red), normalized

by the Newtonian potential ΦNewton of an identical mass.

tential −1/
√

r2 + z2 over the height of the core z ∈ [±rc] to
obtain the softened potential

Φc(r) =
Gmc

2ε
log

(√
r2 + ε2 − ε
√

r2 + ε2 + ε

)
, (10)

with the smoothing length ε = 2rc . Figure 1 illustrates these
different smoothing techniques. In all cases, the smoothing
becomes apparent only near the core radius. Our poten-
tial Φc nearly coincides with ΦPlummer(ε = rc) for r > rc
so we expect no significant difference with a Plummer type
of smoothing.

2.2.5 Units and conventions

From now on, we set the gravitational constant G = 1. We
take the orbital frequency Ω and the core radius rc as fre-
quency and distance units. With this choice, the isothermal
sound speed of the disk cs = Ωh = H and the core mass
mc = rBc2

s = B H2. Without self-gravity, we take the back-
ground disk density ρ0 as density unit; this value is tuned
in the self-gravitating case, see section 6.

We label each simulation run by its equation of state (I
for isothermal, A for adiabatic), its pressure scale height H#
and its Bondi radius B#. Spatial averages are represented by
brackets 〈·〉, taken in the azimuthal dimension ϕ by default.

3 RESULTS FOR THE FIDUCIAL
ISOTHERMAL SIMULATION

We present our results by first examining in detail the out-
comes of a single (fiducial) run. We take the run IH16B16

as such a reference isothermal simulation. With B = H, the
core mass equals its thermal mass (Rafikov 2006), delimit-
ing the transition from low-mass to high-mass cores. This
simulation is integrated for a total of twenty orbital periods
of the core.

Figure 2 shows the steady flow obtained in IH16B16 after
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Figure 2. Time-averaged flow in the reference isothermal simu-
lation IH16B16: density relative to its background value ρ0 (color

map) and velocity field (green arrows, orientation only); the

dashed cyan circle markes the pressure scale r = h, and the grey
circles mark every 4rc ; only the inner r < 2h are shown here.

time-averaging over 5 orbits (ten snapshots). As described
by Miki (1982), the flow can be partitionned into several dis-
tinct regions: the background shear flow (leftmost and right-
most parts), the co-orbiting gas on horse-shoe orbits (lower
and upper parts), and closed streamlines around the core.
The fluid on closed streamlines has a prograde orientation
vϕ > 0. The pressure scale height h demarcates the dense en-
velope from the background shear flow. Spiral density waves
are launched near the edge of the envelope and saturate in
stationary shock waves. These shock waves extend out to the
outer boundary of the computational domain. They main-
tain a near-parabolic shape due to the background shear;
the amplitude of the density jump increases at first as a re-
sult of angular momentum injection by the planetary torque
(Goodman & Rafikov 2001) before saturating at ∆ρ/ρ0 ≈ 2
away from the core due to numerical dissipation.

3.1 Radial momentum balance

In a steady and non-accreting state, the azimuthally-
averaged velocity 〈vr 〉 ' 0 (as supported by our numerical
results), so that we can express radial momentum balance
as

− ∂rΦ︸︷︷︸
gravity

− ∂rP/ρ︸ ︷︷ ︸
pressure

+
(
2Ω + vϕ/r

)
vϕ︸             ︷︷             ︸

inertial support

= 0. (11)

These contributions are drawn on Figure 3 and compared to
the Keplerian acceleration aK ≡ mc/r2. The gravitational ac-
celeration is sub-Keplerian at small radii due to the smooth-
ing of the core potential Φc . The gravitational acceleration
changes sign at the Hill radius

rH ≡
(

mc

3Ω2

)1/3
, (12)

separating the core-dominated potential from the tidally-
dominated potential. The shock waves form near this tran-
sition, causing the steep increase in pressure support. The

2−4 2−3 2−2 2−1 20

r/h

−1.0

−0.5

0.0

0.5

1.0

a
r
/a

K

sum

gravity

pressure

inertia

1 2 4 8 16
r/rc

Figure 3. Azimuthally-averaged radial accelerations compared to

the Keplerian acceleration aK = mc/r2 in the fiducial run IH16B16;

the total acceleration (solid black) is split into gravity (dotted
green), pressure gradient (dashed red), and inertial terms (dashed

blue). The total acceleration is close to zero in the inner part of

the envelope, justifying (11).

total radial acceleration is negligible inside r < rH, so the
envelope is indeed in steady state. The gravitational accel-
eration is balanced by inertial (Coriolis + centrifugal) and
pressure support in roughly equal proportions, so the enve-
lope deviates significantly from a hydrostatic solution.

3.2 Rotational support

The departure from a hydrostatic equilibrium can be mea-
sured by comparing the density to its hydrostatic value. For
isothermal flows with azimuthal symmetry, the hydrostatic
density profile is

ρhs(r) = ρ0 exp
[
−Φ(r)

c2
s

]
, (13)

depending only on the local potential Φ and sound speed cs.
In the opposite limit of no presure support, a flat density
profile can be sustained by fully rotational support if the
azimuthal velocity equals2 vK ≡

√
r∂rΦ.

The density and angular velocity profiles of run IH16B16

are drawn on Figure 4, respectively normalized by ρhs and
vK. The density always increases near the core surface, but
not as fast as predicted by (13); the density at the core sur-
face reaches only 4 × 10−3 of its hydrostatic value in this
run. The importance of rotational support is signified by
vϕ/vK reaching up to 70% in the envelope. The azimuthally-
averaged gravitational acceleration is outward outside ap-
proximately one Hill radius (see Figure 3) because of Keple-
rian shear in the disk, so there can be no rotational support
beyond.

2 We neglect the contribution of the Coriolis acceleration to the
total inertial support; this term is always small near the core of

rotationally supported envelopes, see section 7.2.
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2−4 2−3 2−2 2−1 20

r/h

10−3

10−2

10−1

100

ρ
/ρ

h
s

0.0

0.2

0.4

0.6

0.8

v ϕ
/v

K

ρ/ρhs

vϕ/vK

1 2 4 8 16
r/rc

Figure 4. Azimuthally-averaged profiles in the fiducial run
IH16B16: density relative to the hydrostatic profile ρhs (solid blue,

left axis) and angular velocity relative to fully rotational support

vK (dashed red, right axis); note that there can be no rotational
support beyond the Hill radius rH (which is not too different from

h in this run).

3.3 Vortensity conservation and generation

Rotationally supported envelopes form in our simulations
as a result of vortensity conservation. In inviscid barotropic
flows, the vortensity $ ≡ (∇ × v + 2Ω) /ρ evolves according
to

∂t$ + v · ∇$ = $ · ∇v. (14)

In two dimensions, the axial component $z can vary only
at shocks (e.g., Dong et al. 2011); it is otherwise conserved
along streamlines. This quantity determines the amount of
rotational support achieved in the envelope (see Ormel et al.
2015a, and section 7.2).

In the regime B & H, the stationary shock waves visible
in Figure 2 allow vortensity generation. Figure 5 reveals sub-
stantial deviations from the Keplerian vortensity value $0 in
run IH16B16. Vortensity is generated at the shocks and ad-
vected downstream. The shock fronts extend upstream of the
core into the co-orbital region (lower left and upper right).
This material gains a significant amount of vorticity despite
the shocks being weak there (∆ρ/ρ→ 0, see Figure 2).

The flow obtained in this simulation is not strictly
steady, and Figure 5 reveals filamentary patterns along the
shock front in the post-shock medium. These filaments are
only resolved by a few grid cells, but they do not vanish
upon time averaging. They appear in simulations with B ≥ H
and always develop along the shock front, with no clear sig-
nature in the density distribution. With a local shear rate
comparable to the rotation rate of the flow, it is tempting
to interpret these filamentary patterns as marginally stable
sheared waves; a detailed stability analysis is however be-
yond the focus of this paper. No such features appear in the
low-mass regime B/H < 1, for which the flow is stationary
in agreement with Ormel et al. (2015a).

3.4 Mass and momentum transport

In our simulations the flow features small-scale fluctuations
over a quasi-steady state. This scale separation allows us to

Figure 5. Time-averaged vortensity fluctuations ($z − $0)/$0
in run IH16B16; the concentric circles mark every 4rc (solid grey),

the pressure scale h (dashed-cyan) and the Hill radius rH (dotted
green). The shock front, at which vortensity is generated, extends

further away from the core compared to Figure 2.

represent a flow variable X as a laminar component X (mov-
ing average over time) plus short-timescale fluctuations X ′.
Under this decomposition, the radial mass transport obeys

∂t 〈ρ̄〉 = −
1
r
∂r

[
r
〈
ρ̄ v̄ + ρ′v′r

〉]
, (15)

where the second term in the right-hand side comes from
correlations of density and velocity fluctuations. These two
contributions to mass flux are respectively labeled as ‘lam-
inar’ and ‘turbulent’. We estimate the time-averages X by
stacking 21 snapshots spanning 10 orbits in the quasi-steady
state of run IH16B16. We compute the fluctuations by sub-
tracting X ′ = X − X in each snapshot; we then compute
the correlations between fluctuating terms and average them
over the same set of snapshots.

The laminar and turbulent mass fluxes are drawn on the
upper panel of Figure 6. The turbulent mass flux is negligible
inside the envelope. The laminar mass flux is oriented toward
the core and causes mass accumulation near the core surface.
The mass contained inside the Bondi radius increases by only
0.2% over ten orbits, so the flow is quasi-steady to a high
degree. This increment corresponds to the mass flux passing
through the Bondi radius, there is no measurable mass loss
into the core through the inner radial boundary.

The same analysis can be performed for the radial trans-
port of angular momentum, as seen in the non-inertial frame:

∂t
〈
rρvϕ

〉
= −

〈
ρ ∂ϕΦ + 2Ωrρvr

〉
− 1

r
∂r

〈
r
(
rρvϕ

)
vr

〉
. (16)

The first bracket includes gravitational tides and the Coriolis
acceleration. The second bracket corresponds to the radial
flux of momentum advected by the flow. We decompose this
flux into one laminar and three turbulent components:

ρvr vϕ = ρ̄ v̄r v̄ϕ + ρ̄ v
′
r v
′
ϕ + ρ

′v′r v̄ϕ + ρ′v
′
ϕ v̄r . (17)

The different terms of (16) are shown on the lower panel of
Figure 6. Inside the envelope, the derivative ∂t

〈
rρvϕ

〉
fluctu-

ates around zero with amplitudes small relative to
〈
Ωrρvϕ

〉
.
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Figure 6. Time- and azimuthally-averaged radial profiles in run

IH16B16. Upper panel : radial mass flux decomposed into lami-
nar (dotted green) and turbulent (dashed red) components in

the right-hand side of (15). Note that the mass flux at the inner

boundary is counterbalanced from the ghost cells, so that no mass
is lost from the computational domain into the core. Lower panel :

evolution of the angular momentum density due to gravitational

torques ρ∂ϕΦ (‘tides’, dashed blue) plus laminar and turbulent
components of the momentum flux (remaining terms in (16)).

The angular momentum of the envelope is thus conserved
to a good approximation. The turbulent momentum flux is
small at all radii. At the envelope boundary r ≈ h, the grav-
itational torque induced by the star excites density waves
that carry angular momentum away from the core.

Since the net torque inside the envelope is negligible,
mass accretion is driven by momentum losses at the enve-
lope boundary. Numerical dissipation induces negligible ac-
cretion rates at the current resolution (cf. Appendix A), so
the isothermal shocks are responsible for momentum dissipa-
tion. This accretion mechanism differs from viscously-driven
accretion (e.g., Kley 1999) and primarily concerns massive
cores in 2D (see Lubow et al. 1999, and section 4.3).

3.5 Envelope recycling

One of the goals of this study is to characterize the recycling
of the envelope material for different core masses. As recy-
cling represents the exchange of mass between the envelope
near the core and the adjacent parts of the disc, unbound
to the core, we need to come up with ways of characterizing
this exchange. Here we describe two such methods, utilizing
a passive tracer section 3.5.1 and gravitational binding of
the envelope section 3.5.2, and illustrate their application in
our fiducial run.
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Figure 7. Tracer concentration over 10 orbits since injection in
run IH16B16; the plateau 〈n〉 = 1 at small radii corresponds to

the region of closed streamlines around to the core. The vertical

dotted line marks the Hill radius.

3.5.1 Tracer fluid

To examine the mixing properties of the flow, we follow the
transport of a passive tracer in run IH16B16. We let the flow
evolve toward a quasi-steady state over eight orbits after
the core potential has been fully introduced; we then inject
a tracer with concentration n = 1 inside the Bondi disk. The
tracer concentration is then advected by the flow, obeying

(∂t + v · ∇)n = 0. (18)

We set the tracer concentration to zero in the radial ghost
cells, so the boundaries can only absorb the traced fluid.

Figure 7 shows the evolution of the tracer concentra-
tion over 10 orbits since injection in run IH16B16. At small
radii r/rB . 1/2, the tracer concentration remains unity,
meaning that this region does not exchange matter with the
outer envelope. This region is defined by having only closed
streamlines in the time-averaged (‘laminar’) flow, confirming
that turbulent velocity fluctuations do not contribute to gas
mixing in the inner envelope. The tracer concentration drops
by more than three orders of magnitude near r/rB ≈ 1/2, be-
yond which it is advected away from the core in less than
two orbits. Recycling thus appears to be either switched on
or off, depending on the topology of the time-averaged flow
alone. In principle, the fluid orbiting on closed streamlines
around the core could radiate its internal energy, and even-
tually remain bound to the core by gravity. To determine the
extent of such a gravitationally bound envelope, we move on
to an energetic arguments below.

3.5.2 Gravitationally bound envelopes

If the nebula in which the core is embedded were to disperse
with time, the envelope would expand to match the reduced
ambient pressure (Owen & Jackson 2012). For the core to
keep a gravitationally bound atmosphere, the energetic con-
tent of the gas must not allow it to escape the potential well
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Figure 8. Bernoulli number in run IH16B16, split into its kinetic

(v2/2, dotted blue), internal (enthalpy, dashed green) and gravi-
tational (Φ, dashed red) contributions.

of the core. The critical energy barrier ΦH is the total poten-
tial (5) evaluated at one Hill radius. Whether the envelope
is gravitationally bound can be assessed via the Bernoulli
number

B ≡ v2

2
+H + Φ − ΦH, (19)

where the enthalpy is H ≡ c2
s log ρ in isothermal flows. We

verified that B is accurately conserved along streamlines in
the time-averaged flow of our simulations. A gravitationally
bound streamline should therefore satisfy B < 0.

Figure 8 represents the radial distribution of Bernoulli
number and its different contributions in run IH16B16. The
kinetic term is smaller than the enthalpy contribution de-
spite the flow orbiting the core at sonic velocity vϕ/cs ≈ 1.
The Bernoulli number becomes negative inside r/rB . 1/5,
corresponding to approximately 3rc in this case. Since the
flow is immediately maintained to its initial temperature,
neither adiabatic compression nor shocks can heat the en-
velope. Isothermal envelopes represent the coldest solutions
given a background disk temperature, so they provide an up-
per bound on the size of the gravitationally bound region.
As long as the kinetic contribution is small, the Bernoulli
number is only a function of rB/r inside the Hill radius; the
radius at which B = 0 should therefore be a fraction of the
Bondi radius. We consistently find this radius near rB/5 in
every isothermal simulation, regardless of B/H. If the disk
were to disperse, we would expect the outer parts of the en-
velope r/rB & 1/5 to expand and escape the gravity of the
core. This region includes closed streamlines, unaffected by
recycling under the current pressure confinement from the
disk onto the envelope.
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Figure 9. Azimuthally-averaged density normalized to the hy-
drostatic density (13) for H = 16 (upper panel) and H = 32 (lower

panel) and for different values of B (see legend).

4 PARAMETER EXPLORATION:
ISOTHERMAL SIMULATIONS

We now examine how the outcomes found in a fiducial case
change as we vary B and H in a series of isothermal simu-
lations. This corresponds to changing the mass of the core
mc = B H2 (in units of mth) and its radius relative to the disk
scale height rc/h = H−1.

4.1 Pressure versus rotational support

Figure 9 displays the radial profiles of density relative to
the hydrostatic value ρhs in a series of isothermal simula-
tions. For a fixed H (upper or lower panel), increasing B
(the planet mass) leads to progressively higher densities at
the same radius. However, the density does not increase as
fast as predicted for a hydrostatic profile (13); the ratio ρ/ρhs
decreases with B, as Figure 9 shows. Comparing the two
panels, we see that curves with the same B but different H
are essentially identical but offset by a factor 2 horizontally.
The amount of pressure support ρ/ρhs thus depends on B
and on the distance to the core surface, but only weakly on
H. In other words, the ratio of B/H, independent of rc , does
not uniquely determine the amount of pressure support as
a function of r/h.

As ρ/ρhs decreases, the amount of rotational support
vϕ/vK increases toward unity. Therefore, the amount of ro-
tational support in the entire envelope also depends on rc/h.
We show in section 7.2 that this dependence on the core ra-
dius is expected to vanish in the limit H →∞.

4.2 Tracer fluid

After the potential of the core is introduced, we let the flow
settle to a quasi-steady state over eight orbits in simulations

MNRAS 000, 1–17 (2019)
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Figure 10. Azimuthally-averaged tracer concentration after ten

orbits in isothermal runs with H = 16 (upper panel), H = 32
(lower panel), and different values of B (see legend).

with different values of H and B. We then inject a passive
tracer fluid with concentration n = 1 inside the Bondi disk,
and let it evolve over ten orbits. The final tracer distributions
are drawn on Figure 10.

As in section 3.5.1, every simulation features a concen-
tration plateau below a critical radius, so tracer mixing is
inefficient in the direct vicinity of the core. Comparing both
panels one notes that, for a fixed value of H, this critical
radius remains near rH/3 as long as B ≤ H, i.e. mc ≤ mth.
For larger values of B > H the critical radius moves much
closer to the core, meaning that most of the envelope was
recycled by the disk flow over the duration of the simulation.
Closed streamlines are still present in the time-averaged flow
of every simulation, but a fraction of these streamlines have
a reduced tracer concentration. We therefore attribute re-
cycling to time-dependent fluctuations. Figure 10 suggests
the onset of turbulent tracer transport beyond a critical core
mass B/H > 1.

4.3 Mass and tracer transport around massive
cores

We recall that in run IH16B16 the envelope displays an ex-
tended tracer plateau (Figure 10) and essentially no turbu-
lent mass flux (Figure 6). However, with a core twice more
massive, run IH16B32 features tracer mixing much deeper
in the envelope. We examine the radial mass fluxes in run
IH16B32 on Figure 11.

The net mass flux is oriented towards the core, with an
amplitude ∼ 103 larger than in the fiducial case IH16B16. The
mass contained within the Bondi disk increases by 40% over
ten orbits, corresponding to the mass flux passing through
the Bondi radius. The mass flux through the inner radial
boundary fluctuates around zero with amplitudes at the level
of ±10−6mc per orbit, negligible compared to mass accretion
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Figure 11. Average radial mass flux in run IH16B32 (solid black),

split into laminar (dotted green) and turbulent (dashed red) com-

ponents as in (15); compare with the fiducial (non-turbulent) case
on Figure 6.

Figure 12. Time-averaged vortensity fluctuations ($z −$0)/$0
in run IH16B32; the circles mark every 4rc (solid grey), the
pressure scale h (dashed cyan) and the Hill radius rH (dotted

green). Shocks in the rotating envelope produce a ring of increased

vortensity near the core; compare with the fiducial case on Fig-
ure 5.

rate of the envelope. Compared to run IH16B16, there is
now a significant turbulent mass flux inside the envelope,
reaching amplitudes larger than 10% of the laminar one.
The turbulent mass flux of (15) allows mass to flow across
the time-averaged velocity field. It allows the mixing of the
envelope with the background flow, regardless of momentum
transport.

Figure 12 shows the time-averaged vortensity distribu-
tion in run IH16B32. Compared with IH16B16 on Figure 5,
we see that stationary shocks emerge inside the Hill radius.
These shocks alter the vortensity distribution in the rotat-
ing envelope, the sign of the vortensity jump being sensitive
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to the geometry of the shock (Kevlahan 1997). The core
is surrounded by a low-vortensity disk extending to . 4rc ,
and delimited by a high-vortensity ring near 5rc . The low-
vortensity region encloses the remaining tracer fluid visible
in Figure 10. The shock locations are also correlated with the
presence of a turbulent mass flux in Figure 11. We therefore
attribute the envelope recycling to the formation of steady
shocks in the circulating flow within the Hill sphere of the
core.

Momentum dissipation at these shocks also drives the
laminar mass flux toward the core. As vortensity decreases
near the core, the role of rotational support decreases (see
Ormel et al. 2015a, and section 7.2). To maintain radial mo-
mentum balance, the envelope must increase its pressure
support by accreting mass. Without including the gas grav-
ity, this accretion process cannot produce envelopes more
massive than the hydrostatic limit given by Equation 13.
On long time scales, the asymptotic distribution of vorten-
sity (rotational support) will be sensitive to the viscous pro-
cesses at play (e.g., turbulence) and cannot be uniquely de-
termined a priori in an inviscid context.

5 PARAMETER EXPLORATION:
NON-ISOTHERMAL SIMULATIONS

Having explored the characteristics of the flow in isothermal
setup, we now change our thermodynamic assumptions and
simulate the flow with a adiabatic equation of state P ∝ ργ.
The energy equation (8) is integrated conservatively, and
the entropy per unit mass s is conserved along streamlines
as long as the flow does not shock. This situation can be
relevant in the optically thick limit, when the heat due to
adiabatic compression is not efficiently radiated away. The
exponent is γ = 7/5 everywhere and at all time, neglecting
chemical and ionization effects. Fresh gas with the entropy
of the background disk is continually supplied at the outer
radial boundary. We still expect convergence to quasi-steady
states, as no energy losses are allowed and entropy produc-
tion at the shocks is rather slow. The control parameters
H and B (which depend on temperature) now represent the
thermodynamic properties of the background disk flow.

5.1 Adiabatic versus irreversible heating

As the core mass is progressively introduced in our adia-
batic runs, the envelope contracts and heats adiabatically,
the temperature of the gas T ≡ P/ρ increasing as ργ−1. Once
the gravitational potential of the core is set, the gas still
heats and cools adiabatically as it passes by the core. In
addition to adiabatic heating, the shocks forming at the en-
velope boundary induce irreversible heating, changing en-
tropy s of the gas (Rafikov 2016). To measure the amount
of irreversible heating at shocks, we compute the potential
temperature

Θ ≡ T
(

P0
P

)(γ−1)/γ
∼ exp (s) . (20)

This quantity represents the temperature that a fluid ele-
ment would have if its pressure were adiabatically relaxed
to the background disk pressure P0. Being only a function
of the local entropy, Θ(s) is also conserved along streamlines

Figure 13. Time-averaged deviations of potential temperature

Θ relative to the background disk temperature T0 in run AH16B32;
the circles mark every 4rc (solid grey), the pressure scale h

(dashed cyan) and the Hill radius rH (dotted green). Shocks

induce irreversible heating at the envelope boundary, but the
shocked flow does not reach the vicinity of the core.

and increases at shocks. We normalize it to the background
disk temperature T0 = H2.

Figure 13 shows the distribution of potential tempera-
ture in the quasi-steady state of run AH16B32. Compared to
the isothermal equivalent (see Figure 12), the incoming gas
shocks further away from the core in the adiabatic case, so
the envelope spans a larger area. The potential temperature
increases by up to 10% at the envelope boundary; it is then
passively advected inside and out of the envelope. The ab-
sence of irreversible heating near the core implies that the
shocked gas never blends into the inner envelope.

The upper panel of Figure 14 shows the radial profiles of
temperature in a series of adiabatic simulations. The tem-
perature always decreases with radius and increases with
the mass of the core. The temperature at the surface of the
core is up to seven times larger than its background value in
run AH32B32. The temperature profiles of runs AH16B16 and
AH32B32 are nearly superimposed as a function of r/h. Un-
like isothermal envelopes, the radial structure of adiabatic
envelopes apparently depends only on B/H and not on the
core radius. This behavior is expected if rotational support
is small and if the entropy remains close to its background
value (e.g., equation 52 of Rafikov 2006).

The lower panel of Figure 14 shows the radial profiles
of potential temperature in the same series of adiabatic sim-
ulations. We observe irreversible heating for B & H, but the
potential temperature variations remain below 10% for the
range of parameters considered. The shock-induced heating
is small compared to the total heating (see the upper panel of
Figure 14), so these envelopes can be considered as isentropic
to a good approximation. In runs AH16B8 and AH16B16, the
spiral shocks do not extend upstream of the core into the
co-orbital flow, as is the case on Figure 13. The shocked ma-
terial is advected away without mixing into the envelope, so
the heat deposition is localized near r ≈ h. In runs AH16B32

and AH32B32, the shocked gas blends into the envelope and
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Figure 14. Azimuthally-averaged profiles of temperature T (up-
per panel) and deviations of the potential temperature Θ (lower

panel) relative to the background temperature T0 in four adiabatic

simulations (see legend).

mildly increases its entropy down to r & h/8. Inside r . h/8,
the potential temperature keeps its initial value, implying
that the shocked gas never enters the innermost regions of
these envelopes.

5.2 Envelope recycling

To examine the efficiency of envelope recycling, we inject a
tracer fluid in the quasi-steady state of each adiabatic sim-
ulation. The tracer concentration n = 1 inside the Bondi
disk and zero outside, and it is passively advected over ten
orbits. The final concentration profiles are drawn on Fig-
ure 15. Recycling affects the envelope inside the Hill radius
in every case. Every run except AH16B8 features a concentra-
tion plateau near the core. The radial extent of this plateau
shows no obvious scaling with B or H. Both runs AH16B16

and AH32B32 feature a concentration plateau extending to
≈ rH/4. Their concentration profiles are also similar to the
isothermal equivalent IH16B16 (see Figure 10). Contrarily to
their isothermal analogues, there is no concentration plateau
near the core in run AH16B8, and there is an extended plateau
in run AH16B32.

In run AH16B8, the envelope is rotationally supported at
only vϕ/vK ≤ 3%, instead of 30% in the equivalent isothermal
run IH16B8. Only the innermost streamlines circulate around
the core, so most of the envelope is recycled by the shear flow
on orbital timescales. In run AH16B32, the envelope is rota-
tionally supported at vϕ/vK ≈ 30%, instead of 70% in run
IH16B32. Because of the temperature increase, the circulat-
ing flow remains subsonic in run AH16B32, with vϕ/cs . 60%
instead of vϕ/cs ∈ [1, 3] in run IH16B32. We showed that sta-
tionary shocks develop in the circulating flow of run IH16B32

(see Figure 12), and we correlated these shocks to turbulent
mixing (see Figure 11). Because the envelope of run AH16B32
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Figure 15. Tracer concentration ten orbits after injection of
tracer fluid inside the Bondi radius in adiabatic simulations; com-

pare with the isothermal equivalent on Figure 10.

remains subsonic, no shocks develop and turbulent tracer
transport does not operate. Laminar and circular stream-
lines extend up to r . rH/3, corresponding to the extent of
the tracer plateau visible on Figure 15.

6 PARAMETER EXPLORATION:
SELF-GRAVITATING DISKS

As the gas density near the core increases, the mass of the
envelope could become comparable to the mass of the core.
The gravitational acceleration induced by the gas could then
alter the structure of the envelope even when background
disk is not susceptible to a gravitational instability. We test
the sensitivity of our previous results to inclusion of the gas
self-gravity in a series of isothermal simulations.

Gravitational instability is expected to occur in massive
disks, when the Toomre parameter

Q
Keplerian
≡ Ωcs

πGΣ

≈ 2.83 × 102
(

h/a
5%

) (
m?
m�

) (
Σ

500 g cm−2

)−1 ( a
1AU

)−2 (21)

is below unity. In an isothermal, hydrostatic and non-self-
gravitating disk, the midplane density ρ0 is linked to the
surface density Σ via ρ0 = Σ/h

√
2π. We sample values

of Q ∈
[
101/2, 102

]
by tuning the background density ρ0.

Whether realistic or not in the context of super-Earths for-
mation (Chiang & Laughlin 2013), such low values of Q are
required to reveal gas-gravity effects in the envelope.

Given the gas density distribution, we solve Poisson’s
equation to obtain its gravitational potential. The specific
method and its validation are presented in Appendix B.
Characteristics of self-gravitating simulations are listed in
Table 1, where the labels are appended by the correspond-
ing value of Q.

6.1 Self-gravitating envelopes

In the limit Q→∞, the gravity of the gas is negligible com-
pared to the gravity of the core, so the density distribution
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Table 1. List of isothermal self-gravitating simulations with their
label, pressure scale H , Bondi radius B, Toomre parameter Q, and

Bondi mass mB relative to the core mass.

Label H B log10 Q mB/mc

IH16B16Q100 16 16 2 6.7 × 10−4

IH16B16Q10 16 16 1 7.2 × 10−3

IH16B16Q3 16 16 1/2 3.9 × 10−2

IH32B4Q3 32 4 1/2 3.2 × 10−3

IH32B8Q100 32 8 2 1.9 × 10−4

IH32B8Q10 32 8 1 2.1 × 10−3

IH32B8Q3 32 8 1/2 7.0 × 10−3

2−3 2−2 2−1 20

r/rH

0.0

0.2

0.4

0.6

0.8

v ϕ
/v

K

IH16B16

2−3 2−2 2−1 20

r/rH

IH32B8

Q
∞
102

101

101/2

Figure 16. Radial profiles of rotational support vϕ/vK in isother-

mal simulations with different values of the Toomre parameter Q

(see legend); left panel : massive core with H = B = 16; right panel :
low-mass core with H = 32 and B = 8.

should scale linearly with the background density ρ0. If we
decrease Q (increase ρ0) while maintaining the distribution
of ρ/ρ0, then the mass of the envelope increases relative to
the mass of the core and adds up to it. Self-gravitating en-
velopes are therefore expected to pull more gas toward the
core and become more massive.

We integrate the mass mB inside the Bondi disk and
find that it remains below 4% of the mass of the core at
the end of every two-dimensional simulation presented here
(see Table 1). To measure the contribution of the gas grav-
ity, we compare mB to the mass m0 ≡ π(r2

B − r2
c )ρ0 of the

background disk over the same area. The ratio mB/m0 in-
creases by less than 30% when decreasing Q in our sample
of simulations. Run IH32B8Q3 has a density corresponding
to 10−1/2 ≈ 32% of the critical density for gravitational frag-
mentation, which is 103/2 ≈ 32 times larger than the density
of run IH32B8Q100, yet the ratio of mB/m0 is only 16% larger.
As in their non-self-gravitating analogues, runs IH32B32Q100
and IH32B32Q10 feature mass accretion onto the core due to
steady shocks inside their rotating envelope. The mass accre-
tion rate normalized by Ωm0 is 25% larger in run IH32B32Q10

compared to the less massive case IH32B32Q100.
We previously demonstrated the importance of rota-

tional support for the envelope dynamics. We now examine
how the radial momentum balance of the envelope is affected
by the gas self-gravity. We draw on Figure 16 the radial pro-
files of vϕ/vK measured in the time-averaged flow of a series

Figure 17. Time-averaged flow in the self-gravitating simulation

IH32B4Q3: the color map shows the density relative to the back-
ground density, and the arrows are tangent to the local velocity

field; the circles mark every 4rc (solid grey), the pressure scale h

(dashed cyan)and the Hill radius rH (dotted green).

of self-gravitating simulations. Note that vK ≡
√

r∂rΦ in-
cludes the mass of the enclosed gas. We find that the degree
of rotational support vϕ/vK decreases with Q, i.e. it increases
with the mass of the envelope. The gas gravity affects the
envelopes of low and high-mass cores similarly with respect
to their rotational support. The ratio vϕ/vK increases by less
than 10% in every case considered. This is to be expected
given the < 4% envelope mass increase measured inside the
Bondi radius. We conclude that for the range of core masses
considered here, two-dimensional envelopes are only moder-
ately affected by their self-gravity.

6.2 Self-gravitating density waves

We find that in our self-gravitating simulations the mass in
the spiral density waves can become comparable to the mass
enclosed inside two-dimensional envelopes. We illustrate this
by showing the density distribution of run IH32B4Q3 on Fig-
ure 17. With B = 4, the density at the surface of the core
is only 26 times larger than the background disk density,
corresponding to 29% of its hydrostatic value from (13).
As previously, stationary shock waves are launched into the
disk around one pressure scale h away from the core. These
shocks extend in the co-orbiting (horse-shoe) region beyond
2h upstream of the core. Such extended shocks appeared
only around high-mass cores in non-self-gravitating simula-
tions; see Figure 12 for example. The core of run IH32B4Q3

is embedded in a homogeneously shocked medium, with cir-
culating streamlines restricted to the innermost r . rH/2.
The rest of the shocked gas is recycled on orbital timescales.

Given the density distribution of Figure 17, the gravi-
tational potential Φg solution of Poisson’s equation is rep-
resented on Figure 18. The iso-potential contours are elon-
gated along the axis of the shocked and dense region. The
potential of the gas remains deeper than 50% of Φc(rc) over
an area several times larger than the Hill disk. The poten-
tial of the gas effectively dominates over the potential of
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Figure 18. Gravitational potential of the gas Φg relative to the

potential of the core Φc (rc ) in run IH32B4Q3, corresponding to the
density distribution shown on Figure 17. Both potentials reach

approximately zero at the outer radial boundary.

the core outside the Hill radius, competing with the tidal
potential of the star. Run IH32B4Q3 thus illustrates how
a low-mass core can launch self-gravitating density waves
into a massive protoplanetary disk. The density perturba-
tions, although not as pronounced as around massive cores,
are amplified by their self-gravity beyond one pressure scale
away from the core. With stronger shocks spanning a larger
area, self-gravity could significantly alter the observational
signatures of even the relatively low-mass planetary cores
(Dong et al. 2015).

7 DISCUSSION

7.1 Comparison with previous studies

Despite the difference in computational power, our simula-
tions reproduce most of the flow properties already identified
by Miki (1982) in two-dimensional inviscid simulations. The
flow pattern can be divided into three distinct regions: the
background shear, the co-orbital (horse-shoe) flow, and an
inner region where streamlines circulate around the core.
As a result of vortensity conservation, the innermost re-
gions become rotationally supported (with a prograde ori-
entation) when the envelope mass increases. The radial mo-
mentum balance of envelopes forming around massive cores
may therefore be far from hydrostatic, contrary to the usual
assumption of one-dimensional models (e.g., Mizuno et al.
1978; Pollack et al. 1996; Rafikov 2006).

Contrarily to Kley (1999) and Nelson et al. (2000), we
do not include any explicit viscosity and we do not re-
move mass at the location of the core. Our setup allows
steady envelopes to form with no mass accretion toward
the core. However, we do observe mass accretion in a sub-
set of simulations with massive cores, satisfying rH/h & 1
(mc & mth). Shocks form in this regime (Korycansky & Pa-
paloizou 1996; Lubow et al. 1999) on scales previously under-
resolved. Shocks break vortensity conservation. The sign of
the vortensity jump depends on the geometry of the shock
(Kevlahan 1997); we find that the inner envelope generally

loses vortensity. With a reduced vortensity, the envelope is
less rotationally supported. To maintain radial momentum
balance, the envelope must increase its pressure support by
accreting mass, so shocks effectively lower the ‘centrifugal
barrier’ around sufficiently massive cores in two dimensions
(Ormel et al. 2015a). In the low-mass regime B/H < 1, our
results agree with those of Ormel et al. (2015a) in terms of
vortensity conservation and resulting rotation profiles (see
section 7.2 below).

In addition to momentum dissipation, shocks drive tem-
poral variability in the envelope. The ‘turbulent’ mass flux
is always small compared to the laminar one, but it allows
the mixing of material from the different regions of the flow.

Recycling the envelope material with fresh gas from the
disk is a possible way to counteract the radiative cooling of
the envelope (Ormel et al. 2015b). We postpone the discus-
sion of recycling to later three-dimensional results, noting
that the strength of the shocks should be significantly re-
duced in three-dimensions (e.g., Bate et al. 2003).

The main caveat of our 2D model is the local approx-
imation. Planets in the parameter range B/H & 1 are ex-
pected to open a gap in the disk (Kley & Nelson 2012),
which we cannot capture without ad-hoc boundary condi-
tions. Global models are also necessary to capture the accu-
mulation of vortensity in the co-orbiting flow, which could
affect the migration rate of the planet (Ward 1991; Koller
et al. 2003; Paardekooper & Papaloizou 2009) and that of
dust grains through the orbit of the planet (Weidenschilling
1977).

7.2 Global sensitivity to the core radius

Results of section 4 demonstrate the sensitivity of the flow
structure to the core size rc . To gain insight into the origin
of this dependence, we analyze a simplified model for the
envelope structure to examine its dependence on the size of
the core. As mentioned in section 3.3, in barotropic flows the
vortensity $z ≡ (ωz + 2Ω) /ρ is constant along streamlines.
Assuming that the $z has kept its initial value $0 every-
where, we integrate the vorticity flux over the disk of radius
r around the core and apply Stokes theorem:

Γ ≡
∫
D(r)
(∇ × v + 2Ω) · dS ' πr2$0 〈ρ〉D (22a)

=

∮
C(r)
v · d` + 2Ωπ(r2 − r2

c ) ' 2πr
〈
vϕ +Ωr

〉
C . (22b)

We have neglected the contribution from the inner radial
boundary at r = rc and assumed a purely circular flow in
(22b). This relation links the velocity on a contour to the
mass enclosed inside this contour. It is accurately satisfied
in our simulations, from the inner radius up to the envelope
boundary at r ' h. In the hydrostatic limit, the mass con-
tained in the isothermal envelope πr2 〈ρ〉D diverges when
the inner radius rc → 0. The amount of rotational support
in such an envelope should therefore depend on the size of
the core.

The azimuthal velocity vϕ must increase with the mass
of the envelope, eventually becoming positive (prograde,
Miki 1982). Assuming axisymmetry, we can compute the
structure of an isothermal envelope in radial momentum bal-
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Figure 19. Rotational support vϕ/vK solution of (23)-(24) for

H = 64, each curve corresponding to a different rB/h ≤ 1.

ance:

∂ log ρ
∂ log r

=
v2
ϕ

c2
s

+
2Ωr
cs

vϕ

cs
− rB

r
, (23)

1
r
∂r

[
rvϕ

]
= $z ρ − 2Ω, (24)

where $z is the z-component of the vortensity, assumed to
be fixed. Ormel et al. (2015a) examined the same system
omitting the Coriolis acceleration in (23). The Coriolis term
is always negligible around rotationally supported envelopes,
but we keep it for the sake of completeness.

We solve this system numerically by imposing vϕ(rc) =
0, ρ(h) = 1, and the Keplerian vortensity $z = $0 ≡ Ω/2ρ0
everywhere. The solutions are in good agreement with those
obtained from direct simulations (see Figure 4). Our purpose
here is not to reproduce exactly the two-dimensional results,
but to capture the main features of the equilibrium, which do
not depend on the exact choice of ρ(h). Given the density and
velocity profiles, we can compare the pressure to the inertial
support against gravity at every radius in (11). We focus on
the profiles of vϕ/vK in the prograde (vϕ > 0) portion of the
envelope; the angular velocity vϕ smoothly takes negative
values outside of this inner region.

First, we set the core size via H ≡ h/rc = 64 according
to (2) and we compute solutions for different core masses
by varying rB/h. This family of solutions is represented on
Figure 19. The amount of rotational support, as measured
by vϕ/vK, increases in the entire envelope as a function of
rB/h. In this case, the threshold vϕ/vK = 50% is attained for
B ≡ rB/rc & 8. The radial extent of the prograde envelope
also increases with rB/h and approaches the outer boundary
r = h as rB/h increases. Solutions with rB/h > 1 are not rep-
resented because they become excessively stiff and require
higher resolutions.

Next, we set the ratio of B/H = 2.4 × 10−2 as estimated
in (3), and we vary the core radius relative to the local pres-
sure scale via H. With this parametrization, the ratio rH/h
remains constant, the mass of the core increases as mc ∝ H3

so the Keplerian velocity vK ∝ H3/2. This family of solutions
is represented on Figure 20. The envelope becomes more ro-
tationally supported as H increases, i.e. as the core radius
rc decreases with respect to h. All the simulations presented
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Figure 20. Rotational support vϕ/vK solution of (23)-(24) for

B/H = 2.4 × 10−2 and different values of H ≡ h/rc .

in this paper fall in this regime sensitive to the core radius.
However, the curves appear to converge to an asymptotic
profile of vϕ/vK over the whole envelope. We conclude that
for sufficiently small cores, the amount of rotational support
in the envelope should eventually become independent of the
core radius.

8 SUMMARY

We performed two-dimensional inviscid hydrodynamic sim-
ulations of embedded protoplanetary cores in a local model
of Keplerian disk. We focused on the properties of the dense
envelope surrounding the core in a regime where its Bondi
radius spans across the hydrostatic pressure scale of the
disk (i.e. as the core mass is varied from sub-thermal to
super-thermal). The core was included as a spatially resolved
boundary, and gas was treated as either isothermal or adi-
abatic. We also implemented a Poisson solver in the pluto
code in order to include the gas self-gravity in a subset of
simulations. Our main conclusions are the following.

(i) Vortensity is conserved in two-dimensional flows
around low (sub-thermal) mass cores, so the amount of ro-
tational support in the envelope depends on the mass inside
the envelope and, a priori, on the size of the core. This de-
pendence is expected to vanish in the limit of cores small
relative to the pressure scale of the disk, which is computa-
tionally more challenging to simulate.

(ii) Stationary shocks form inside the envelope of massive
cores, when the circulating flow becomes supersonic. By al-
tering the vortensity distribution, these shocks allow mass
accretion and effectively break the centrifugal barrier. They
also drive a turbulent mixing of the envelope material with
the background disk. Stationary shocks also form in the co-
orbital flow, far upstream of massive cores.

(iii) Adiabatic envelopes are more pressure-supported
than their isothermal analogues; they are more efficiently
recycled around low-mass cores but less susceptible to shock-
induced mixing in the high-mass regime. The shock-induced
(irreversible) heating is small compared to the adiabatic
heating due to gas compression in every case studied.
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(iv) The self-gravitating potential of the gas is most sen-
sitive to the large-scale density waves launched into the
disk. Self-gravity affects primarily the extent and intensity
of these large-scale shock waves, whereas the properties of
the inner envelope only weakly depend on the Toomre pa-
rameter Q of the disk.

The extension of this study to three-dimensions, with
a focus on the recycling properties of the flow, will be the
subject of the subsequent work.
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APPENDIX A: CONVERGENCE STUDY

We performed a series of isothermal 2D simulations with H =
16 and B = 8 to evaluate the spatial resolution required for
convergence of most diagnostics. The radial domain r/rc ∈
[1, 128] is meshed by either 64, 128, 256 or 512 logarithmically
spaced cells.

Figure A1 shows the temporal evolution of the surface-
averaged density inside the Bondi disk. The average density
increases during the first two orbits as the potential of the
core is progressively introduced. It takes two more orbits
for the envelope to adjust to the final potential and reach
a quasi-steady state. The envelope mass varies by less than

MNRAS 000, 1–17 (2019)

http://dx.doi.org/10.1111/j.1365-2966.2009.15002.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15002.x
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://dx.doi.org/10.1088/0067-0049/204/2/24
http://adsabs.harvard.edu/abs/2013ApJS..204...24B
http://dx.doi.org/10.1046/j.1365-8711.2003.06406.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06406.x
http://adsabs.harvard.edu/abs/2003MNRAS.341..213B
http://dx.doi.org/10.3847/1538-4357/aaa459
http://adsabs.harvard.edu/abs/2018ApJ...854...21C
http://dx.doi.org/10.1093/mnras/stt424
http://adsabs.harvard.edu/abs/2013MNRAS.431.3444C
http://dx.doi.org/10.1088/0004-637X/778/1/77
http://dx.doi.org/10.1088/0004-637X/741/1/57
http://adsabs.harvard.edu/abs/2011ApJ...741...57D
http://dx.doi.org/10.1088/2041-8205/809/1/L5
http://adsabs.harvard.edu/abs/2015ApJ...809L...5D
http://dx.doi.org/10.1088/0004-637X/766/2/81
http://adsabs.harvard.edu/abs/2013ApJ...766...81F
http://dx.doi.org/10.3847/1538-4357/aabaf7
http://adsabs.harvard.edu/abs/2018ApJ...859..126F
http://dx.doi.org/10.1093/mnras/stw2637
http://adsabs.harvard.edu/abs/2017MNRAS.464.3937G
http://dx.doi.org/10.3847/0004-637X/825/1/29
http://adsabs.harvard.edu/abs/2016ApJ...825...29G
http://dx.doi.org/10.1093/mnras/sty290
http://adsabs.harvard.edu/abs/2018MNRAS.476..759G
http://dx.doi.org/10.1086/320572
http://adsabs.harvard.edu/abs/2001ApJ...552..793G
http://dx.doi.org/10.1007/s11214-015-0228-x
http://adsabs.harvard.edu/abs/2016SSRv..205..125G
http://dx.doi.org/10.2307/2369430
http://dx.doi.org/10.1088/0067-0049/201/2/15
http://adsabs.harvard.edu/abs/2012ApJS..201...15H
http://dx.doi.org/10.3847/2041-8205/817/2/L13
http://adsabs.harvard.edu/abs/2016ApJ...817L..13I
http://adsabs.harvard.edu/abs/1998A%26A...338L..37K
http://dx.doi.org/10.1046/j.1365-8711.1999.02198.x
http://adsabs.harvard.edu/abs/1999MNRAS.303..696K
http://dx.doi.org/10.1146/annurev-astro-081811-125523
http://adsabs.harvard.edu/abs/2012ARA%26A..50..211K
http://dx.doi.org/10.1086/379032
http://adsabs.harvard.edu/abs/2003ApJ...596L..91K
http://dx.doi.org/10.1086/192311
http://adsabs.harvard.edu/abs/1996ApJS..105..181K
http://dx.doi.org/10.1143/PTP.44.1580
http://dx.doi.org/10.1143/PTP.44.1580
http://adsabs.harvard.edu/abs/1970PThPh..44.1580K
http://dx.doi.org/10.1051/0004-6361/201219127
http://adsabs.harvard.edu/abs/2012A%26A...544A..32L
http://dx.doi.org/10.1088/0004-637X/811/1/41
http://adsabs.harvard.edu/abs/2015ApJ...811...41L
http://dx.doi.org/10.1088/0004-637X/797/2/95
http://adsabs.harvard.edu/abs/2014ApJ...797...95L
http://dx.doi.org/10.1088/0004-637X/792/1/1
http://adsabs.harvard.edu/abs/2014ApJ...792....1L
http://dx.doi.org/10.1086/308045
http://adsabs.harvard.edu/abs/1999ApJ...526.1001L
http://dx.doi.org/10.1111/j.1365-2966.2010.16527.x
http://dx.doi.org/10.1086/517964
http://adsabs.harvard.edu/abs/2007ApJ...662.1282M
http://adsabs.harvard.edu/abs/2007ApJ...662.1282M
http://dx.doi.org/10.1086/513316
http://adsabs.harvard.edu/abs/2007ApJS..170..228M
http://dx.doi.org/10.1051/0004-6361/201219557
http://adsabs.harvard.edu/abs/2012A%26A...545A.152M
http://dx.doi.org/10.1143/PTP.67.1053
http://adsabs.harvard.edu/abs/1982PThPh..67.1053M
http://dx.doi.org/10.1143/PTP.64.544
http://adsabs.harvard.edu/abs/1980PThPh..64..544M
http://dx.doi.org/10.1143/PTP.60.699
http://dx.doi.org/10.1143/PTP.60.699
http://adsabs.harvard.edu/abs/1978PThPh..60..699M
http://dx.doi.org/10.1051/0004-6361/201118464
http://adsabs.harvard.edu/abs/2012A%26A...547A.112M
http://dx.doi.org/10.1051/0004-6361/201118737
http://adsabs.harvard.edu/abs/2012A%26A...541A.123M
http://dx.doi.org/10.1016/0019-1035(83)90234-8
http://adsabs.harvard.edu/abs/1983Icar...54..361N
http://dx.doi.org/10.1046/j.1365-8711.2000.03605.x
http://adsabs.harvard.edu/abs/2000MNRAS.318...18N
http://dx.doi.org/10.1051/0004-6361/201014903
http://adsabs.harvard.edu/abs/2010A%26A...520A..43O
http://dx.doi.org/10.1093/mnras/stu2101
http://adsabs.harvard.edu/abs/2015MNRAS.446.1026O
http://dx.doi.org/10.1093/mnras/stu2704
http://adsabs.harvard.edu/abs/2015MNRAS.447.3512O
http://dx.doi.org/10.1111/j.1365-2966.2012.21481.x
http://adsabs.harvard.edu/abs/2012MNRAS.425.2931O
http://dx.doi.org/10.1088/0004-637X/775/2/105
http://adsabs.harvard.edu/abs/2013ApJ...775..105O
http://dx.doi.org/10.1111/j.1365-2966.2009.14511.x
http://adsabs.harvard.edu/abs/2009MNRAS.394.2283P
http://dx.doi.org/10.1016/0019-1035(74)90074-8
http://adsabs.harvard.edu/abs/1974Icar...22..416P
http://dx.doi.org/10.1093/mnras/71.5.460
http://adsabs.harvard.edu/abs/1911MNRAS..71..460P
http://dx.doi.org/10.1006/icar.1996.0190
http://adsabs.harvard.edu/abs/1996Icar..124...62P
http://dx.doi.org/10.1086/505695
http://adsabs.harvard.edu/abs/2006ApJ...648..666R
http://dx.doi.org/10.1088/0004-637X/727/2/86
http://adsabs.harvard.edu/abs/2011ApJ...727...86R
http://dx.doi.org/10.3847/0004-637X/831/2/122
http://adsabs.harvard.edu/abs/2016ApJ...831..122R
http://dx.doi.org/10.1051/0004-6361/201218879
http://dx.doi.org/10.1051/0004-6361/201218879
http://dx.doi.org/https://doi.org/10.1016/0021-9991(81)90128-5
http://dx.doi.org/10.1088/0004-637X/801/1/41
http://adsabs.harvard.edu/abs/2015ApJ...801...41R
http://dx.doi.org/10.1093/mnras/stw1160
http://dx.doi.org/10.1088/0004-637X/747/1/47
http://adsabs.harvard.edu/abs/2012ApJ...747...47T
http://dx.doi.org/10.1093/mnras/180.1.57
http://adsabs.harvard.edu/abs/1977MNRAS.180...57W
http://dx.doi.org/10.1088/2041-8205/783/1/L6
http://adsabs.harvard.edu/abs/2014ApJ...783L...6W
http://dx.doi.org/10.1016/0019-1035(89)90093-6
http://adsabs.harvard.edu/abs/1989Icar...77..330W
http://dx.doi.org/10.1088/0004-637X/806/2/183
http://adsabs.harvard.edu/abs/2015ApJ...806..183W
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Figure A1. Surface-averaged density in the Bondi disk as a func-
tion of time for different resolutions; the first two orbits are used

to progressively introduce the gravitational potential of the core.
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Figure A2. Time and azimuthally-averaged radial mass flux in
the same series of resolution tests as on Figure A1.

10% depending on the spatial resolution. After that, the en-
velope mass evolves on much longer timescales: the doubling
time ranges from 104 to over 105 orbits from the lowest to the
highest resolution. It corresponds to the timescale of kinetic
energy dissipation by numerical viscosity in the envelope.

On Figure A2, we examine how the mass accretion flux
depends on the grid resolution. This flux is estimated from
the time and cell-averaged primitive variables (ρ, vr ). There
is a clear convergence with resolution toward a flat profile
with zero mass flux in the envelope: the mass flux in the en-
velope goes down by almost a factor ten every time the reso-
lution is doubled. We choose to use 512 radial cells to make
such mass fluxes insignificant. The measured mass flux is
oriented inward at the core surface, outward in the envelope
and inward out of the envelope. This suggests mass deple-
tion near the core surface and accumulation at the envelope
boundary. In reality, the inner radial boundary condition
cancels the mass flux through the core surface.

We emphasize that the pluto code uses a reconstruc-
tion scheme to estimate the primitive variables at the cell
interfaces before converting to conservative variables such
as the mass flux. Unfortunately, the mass flux actually used
by the code is not easily accessible during computations.
To confirm the absence of mass losses through the inner ra-
dial boundary, we measured the increase rate of the mass
contained inside r < h. Independently, we averaged the in-
tegrated mass flux 2πrρvr inside r/h ∈ [1/4, 1]. These two
diagnostics match to 10−2 accuracy when there is a net mass
flux through the envelope as in Figure 6 or Figure 11.

APPENDIX B: SELF-GRAVITY IN PLUTO

B1 Implementation

The gravitational potential Φg satisfies Poisson’s equation

∆Φg = 4πρ (B1)

in the entire computational domain with appropriate bound-
ary conditions. The structures and routines used for the rep-
resentation and resolution of the parallel problem of solving
this equation come from the PETSc library (Balay et al.
1997, 2018). The Laplacian operator is discretized via second
order finite difference. Boundary conditions are applied in
the appropriate rows of the operator matrix. Given a density
distribution, the linear problem for Φc is solved iteratively
via a biconjugate gradient method (Yang & Brent 2002).
By construction, the potential Φg is defined at cell centers;
the interface values used by the hydrodynamic solver are
computed by linear interpolation. Note that the boundary
conditions are applied in the first active cell of the domain,
and not at the boundary nor in the ghost zones.

We implemented and tested this Poisson solver in carte-
sian, cylindrical and spherical geometries as described in the
following sections. In the case of two-dimensional cylindrical
geometry, the Green’s function of the Laplacian operator is
the potential of an infinite line Φg(r) ∼ log(r). Instead, we
use the spherical representation of the Laplacian operator
over the cylindrical coordinates (r, ϕ), so that the potential
of a point mass varies as the three-dimensional Newtonian
potential ∼ 1/r.

The boundary conditions in the angular directions re-
spect the topology of the domain (periodic in the azimuthal
angle ϕ). The potential is set to Φg = 0 at the outer radial
boundary, so as to fix a reference value. By doing so, we
enforce an axial symmetry of the gas potential at large dis-
tances from the core. We keep this choice for simplicity, since
we cannot know a priori the boundary values Φg (rout, ϕ)
for non-axisymmetric density distributions. The condition
∂rΦg = 0 is imposed at the inner radial boundary, consis-
tent with the absence of gas below the core radius rc . Any
other choice would also favor an unwanted mass flux through
the inner boundary.

The parallel Poisson solver can significantly affect the
performances of the code depending on the spatial resolu-
tion and dimensionality of the problem. In 3D spherical ge-
ometry, with a resolution of [128 × 80 × 160] on (r, θ, ϕ) ∈
[1, 128] × [0, π] × [0, 2π], the Poisson solver takes the equiv-
alent of 2.3 hydrodynamic timesteps to determine Φg for a
constant density distribution and Dirichlet radial boundary

MNRAS 000, 1–17 (2019)
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Figure B1. Absolute value of the gravitational potential ob-

tained from the Poisson solver (solid blue) and theoretical solu-
tion (dashed green) in our standard cylindrical setup containing

a cylinder ρ(r) = 1 inside r/rc < 4.

conditions. This computational overhead can reach a fac-
tor 25 in high-resolution cylindrical (2D) simulations. Since
the large-scale structures of the density distribution do not
evolve on short timescales near the core, it is reasonable
to solve (B1) for Φg every n = 4 hydrodynamic timesteps,
which we opted to do in our simulations (see section B3).

B2 Static tests

The Poisson solver was tested in static configurations for
cartesian, cylindrical and spherical geometries, in two and
three dimensions. In these static tests, the mass distribu-
tion ρ is not allowed to evolve in time. Simple prescriptions
for the source term ρ allow comparing Φg with analytical
solutions of Poisson’s equation.

In 1D, imposing a constant density ρ = 1 on the interval
x ∈ [0, 1] with homogeneous Dirichlet conditions, the exact
solution is Φ(x) = 2πx(x − 1). Because the boundary condi-
tions are imposed at the center of the first active cells and
not at their boundaries, the approximate Φg is offset with
respect to the exact one by a constant. After subtracting this
constant, the residual error oscillates between ±10−7, so the
first and second derivatives of Φg are accurately captured.

We perform a similar test within our standard cylindri-
cal setup by prescribing ρ(r) = 1 for r < 4rc and ρ(r) = 0
beyond. The numerical and theoretical profiles of |Φg(r)| are
in excellent agreement as shown on Figure B1. The relative
error on Φg is less than 1% inside r ≤ 32 and reaches 2% at
r = 92rc .

To test the proper implementation of the boundary con-
ditions, additional static tests were performed with an asym-
metric source term. For fully periodic domains, the compat-
ibility condition3 ∫

ρ = 0 over the whole domain is enforced
by subtracting the volume-averaged density in (B1).

3 In Fourier space, the zeroth-order (constant) component of (B1)

must reduce to zero.
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Figure B2. Amplitude of density fluctuations following Jeans’

instability for `J/L = 3/4 when solving Poisson’s equation (B1)
at every hydrodynamic timestep; the analytical prediction for the

linear phase (dashed red) matches the simulation data (solid blue)

to 4 × 10−3 accuracy.

B3 Dynamic test: Jeans instability

We verified that our implementation performs well in dy-
namic situations by reproducing Jeans’ instability in Carte-
sian geometry with periodic boundary conditions. The do-
main (x, y) ∈ [0, 1] × [0, 2] is meshed with 64 × 128 cells, the
fluid is initialized with zero velocity, and the density ρ = 1+ε
is flat with a white noise of amplitude ε = 10−6. The Jeans
length is set to `J = 3/2, so harmonic perturbations are un-
stable only in the y direction.

We start by computing Φg at every timestep of the
Runge-Kutta 2 integrator (every two substeps). The linear
mode with length L = 2 has an expected growth rate s =

2π (cs/L)
√
|1 − (L/`J)2 | ≈ 5.54 (cs/L). As demonstrated on

Figure B2, the measured growth rate 5.520 ± 0.001 matches
the theoretical one to 4 × 10−3 accuracy in this configura-
tion. We reproduced Jeans’ instability by solving (B1) every
n = 4 and n = 10 timesteps, and measured relative errors of
2% and 5% on the growth rates respectively.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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