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Abstract—Commodity FPGA boards with advanced network-
ing facilities have great potential in the construction of high-
performance compute clusters that scale. However, low-level
design tools and long synthesis times are major barriers to
productivity for application developers. In this paper, we explore
the potential of a distributed soft-processor overlay, programmed
in software at a high-level of abstraction, to deliver a useful level
of performance for FPGA clusters. In particular, we demonstrate
the use of hardware multhreading to achieve a fast, space-
efficient, high-throughput overlay, and compare a 12-FPGA
instance of it (12,288 RISC-V threads) against a conventional
Xeon cluster on the problem of distributed graph processing.

I. INTRODUCTION

The communication bottleneck is one of the main factors
affecting the scalability of high-performance compute clus-
ters [1]. For example, in the domain of distributed graph pro-
cessing, partitioning graphs among compute nodes can result
in a high proportion of cut edges, and a cost-dominating com-
munication requirement [2]. In this paper, we are interested
in the development of compute clusters that are optimised
for communication, and the potential benefits to distributed
applications.

Efficient communication is one of the primary strengths of
FPGA technology, mainly due to an ability to process network
traffic at line-rate with minimal latency overheads [3]. This
strength has fed the production of commodity FPGA boards
equipped with multiple state-of-the-art network interfaces.
The flexibility of FPGAs also permits other standard I/O
interfaces, such as SATA and PCI Express, to be repurposed
for even greater inter-board communication options [4, 5]. All
this, combined with a general-purpose compute fabric, makes
FPGAs an attractive choice for cluster computing.

However, a major factor blocking the wider adoption of
FPGA-based systems is developer productivity, and the level
of knowledge that is needed to exploit them effectively. It
is therefore helpful for the FPGA community to support
application development through higher-level overlays that can
be targeted without FPGA expertise. In this paper, we explore
the extent to which a distributed soft-processor overlay, pro-
grammed in software at a high level of abstraction, can deliver

a useful level of performance for FPGA clusters. Our main
contributions are:

• A new FPGA-optimised hyperthreaded RISC-V core
called Tinsel, which integrates inter-core communication
at a deep level, and which tolerates the inherent laten-
cies of floating-point operations and off-chip memory
accesses. Tinsel trades single-thread performance for im-
proved area, frequency, and throughput over existing soft-
processor designs.

• A distributed overlay connecting multiple Tinsel cores
within an FPGA, and multiple FPGAs within a cluster,
enabling efficient and reliable messaging between any
two threads in the cluster. Tinsel offers a rich feature set
compared to existing manycore overlays: off-chip memo-
ries, data caches, FPUs, and inter-FPGA communication.

• A hardware-assisted, distributed, termination-detection
primitive, which can also be used as a global synchronisa-
tion barrier, greatly simplifying the programming model
for pure message-passing systems.

• A thin software layer that sits on top of the Tinsel overlay
and provides a high-level vertex-centric programming
API supporting both synchronous and asynchronous ex-
ecution. Architectural details are completely hidden.

• A whole-system evaluation in the domain of distributed
graph processing, showing linear performance scaling to
12 FPGAs (12,288 RISC-V threads), good utilisation of
off-chip memory and communication resources, and an
order-of-magnitude reduction in energy compared to a
Xeon cluster programmed at a similar level of abstraction.

II. DESIGN GOALS

The work described in this paper is part of a larger project
called POETS (Partial Ordered Event Triggered Systems)
looking at hardware support for an event-driven parallel
programming model [6]. In this model, programs are expressed
as graphs in which edges represent communication links along
which messages may be sent, and vertices perform event-
driven computation. This is similar to Google’s Pregel model
[7] and deLorimier’s GraphStep model [8], but allows both
synchronous and asynchronous styles of message-passing;
while the synchronous style is deadlock-free and generally
easier to program, the asynchronous style can enable greater



parallelism and scalability. All this leads to a number of
important design goals for the overlay, outlined below.

G1: Exploit current hardware – While it is desirable for
the overlay to be portable to various FPGA clusters, it is
essential that it can, at least, exploit the main features of our
current cluster, based around the DE5-Net FPGA board, and
detailed in Figure 1. This means support for the three main
off-chip resources on the DE5-Net: DDR3 DRAM, QDRII+
SRAM, and SFP+ interconnect.

G2: Parameterisation – As we intend to support a variety
of applications, it is important that the balance between pro-
cessing resources, memory resources, and communication re-
sources can be tuned appropriately on a per-application basis.
In other words, the overlay needs to be highly-parameterised.

G3: Latency tolerance – Some applications will require
floating-point support, and on the DE5-Net this entails tens
of cycles of latency. Further latency is introduced by off-chip
memory access (to achieve goal G1) and resource sharing (to
achieve goal G2). A key aim of the overlay is therefore to
tolerate latency as cleanly as possible, i.e. in a way that is
efficient in hardware and easy-to-use for programmers.

G4: Asynchronous messaging – The event-driven pro-
gramming model requires our overlay to support efficient,
reliable, and asynchronous sending and receiving of messages
between any pair of cores in the cluster. This includes the
detection and correction of errors on the inherently unreliable
inter-FPGA links. The messaging primitives must support
non-blocking operation, allowing asynchronous applications to
avoid message-dependent deadlock.

G5: Soft multicasting – Some applications will involve
graphs with high fan-in and fan-out, such as neural simulation
and social network analysis, and should be supported by
the overlay. This does not imply support for true hardware
multicasting, which is expensive. However, the overlay should
at least support software-based multicasting through features
for fast message forwarding and forking.

G6: Termination detection – A central problem in dis-
tributed systems is detecting termination, i.e. detecting when
(1) all nodes have finished sending messages, and (2) there are
no undelivered messages in-flight. But this is both difficult and
inefficient to do purely in software, motivating hardware sup-
port in the overlay. Such a capability is useful in asynchronous
applications, for detecting convergence, but it also enables a
globally-synchronous execution model by allowing a new time
step to start each time the system converges.

We are not aware of any existing overlay that meets all of
these goals. We discuss related work in Section VII.

III. TINSEL OVERLAY

Motivated by the design goals set out in the previous section,
we now present Tinsel, our distributed soft-processor overlay.
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Fig. 1. A single POETS box comprising an x86 server and 7× interconnected
DE5-Net FPGA boards. Each DE5-Net supports 2× 4GB DDR3 DRAMs,
4× 8MB QDRII+ SRAMs, and 4× 10G SFP+ ports. One FPGA is used as a
PCIe to SFP+ bridge board, providing a fast connection between the x86 and
remaining six worker FPGAs. The worker FPGAs are arranged as two triplets,
each providing additional inter-FPGA communication links via a custom
PCIe backplane (unused in this paper). In-house power-management boards
allow per-FPGA power switching, power measurement, and fan monitoring.
Multiple POETS boxes are connected together to form the full POETS cluster.

Subsystem Parameter Default value
Core ThreadsPerCore 16
Core BytesPerInstrMem 16384
Core CoresPerFPU 4
Core CoresPerDCache 4
Core CoresPerMailbox 4
Cache DCachesPerDRAM 8
Cache BytesPerBeat 32
Cache BeatsPerLine 1
Cache DCacheSetsPerThread 4
Cache DCacheNumWays 8
NoC MailboxMeshXLen 4
NoC MailboxMeshYLen 4
NoC BytesPerFlit 16
NoC MaxFlitsPerMsg 4
Mailbox MsgSlotsPerThread 16

Fig. 2. A selection of parameters of the Tinsel circuit generator. The default
configuration provides 1024 RISC-V threads per FPGA.

Multithreaded RISC-V core Multithreading is a powerful
tool for tolerating latency (goal G3): it allows a processor
to stay busy by continuing to execute some threads while
others are suspended on the result of a latent (high-latency) in-
struction. We have developed a barrel-scheduled multithreaded
core implementing a large subset of the RV32IMF instruction
set. In our core, floating-point and memory instructions are
examples of latent instructions, as are custom instructions that
block until it is possible to send or receive a message. When a
thread executes a latent instruction, it becomes suspended, and
is automatically resumed when the instruction completes. The
number of threads is controlled by a synthesis-time parameter
ThreadsPerCore, which is 16 by default, as shown in Figure 2,
and can be as high as 32. Thus, instruction latencies of tens
of cycles can be tolerated. The pipeline has 6 logical stages,
shown and described in Figure 3, but uses 8 physical stages to
achieve an Fmax above 450MHz on a lightly-utilised DE5 (<
1% util.), and above 250MHz on a heavily-utilised DE5 (>
60% util.). To execute an instruction on every cycle, there must
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Fig. 3. Tinsel core pipeline. At most one instruction per thread is present in the
pipeline at any time, eliminating all data and control hazards. This results in a
small, high-frequency core with high throughput for multi-threaded workloads.
Latent instructions are suspended in the execute stage and resumed in the
resume stage. Two queues storing ready-to-execute threads are used to avoid
a bottleneck in writeback, where writeback requests can arrive simultaneously
from both execute and resume.

exist at least as many runnable threads as physical pipeline
stages. This may motivate reducing pipeline depth in future,
but our current focus is on high multithreaded throughput.

Instructions are stored in a dual-port block RAM of size
BytesPerInstrMem, which can be shared by up to two cores.
A single floating-point unit is shared by CoresPerFPU cores
(default 4). FPU operations are implemented using Altera IP
blocks and have latencies as high as 14 cycles at 250MHz [9].

Data cache To keep the programming model simple (goal
G3), we have opted to use data caches to optimise access to
off-chip memory rather than DMAing blocks into a scratchpad.
This includes access to the two DDR3 DRAMs and the four
QDRII+ SRAMs on each DE5.

A typical RISC workload will not access memory on every
instruction, motivating the ability for a cache to be shared by
multiple cores, defined by CoresPerDCache. The cache is a
set-associative write-back cache with a pseudo-LRU replace-
ment policy. It is partitioned by thread id, avoiding cache
line aliasing and sharing between threads (message-passing
is intended to be the primary communication mechanism).
It is non-blocking, delivering responses out-of-order so that
requests can be served at full-throughput (one per cycle).

Assuming one memory access every four instructions, a
single DDR3 DRAM can satisfy a maximum of 64 cores
running at 250MHz, provided that programs typically access
all the words of a cache line before it is evicted. However,
100% DRAM throughput is unlikely in practice, so 32 cores
per DRAM is a more realistic figure. This leads to our
default values of four and eight for the CoresPerDCache and
DCachesPerDRAM parameters respectively.

Mailbox The mailbox is the mechanism by which threads
send and receive messages (goal G4). A single mailbox serves
a group of cores, defined by CoresPerMailbox. Mailboxes
are then connected together to form a distributed network on
which any thread can send a message to any other thread. For
flexibility, we support variable-length messages comprising
one or more flits up to MaxFlitsPerMsg (default 4). The flit
size is defined by BytesPerFlit (default 16).

At the heart of a mailbox lies a memory-mapped scratchpad
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Fig. 4. Default configuration of a Tinsel tile. In general, FPUs and caches
can be shared between tiles.

that stores both incoming and outgoing messages. The scratch-
pad is implemented using a mixed-width block RAM, with a
32-bit port on the core side and a much larger flit-sized port
on the network side. The scratchpad is divided into several
message slots per thread, defined by MsgSlotsPerThread (de-
fault 16). As well as holding messages, the scratchpad may be
used as a thread-local general-purpose memory. Sending and
receiving messages is achieved via custom RISC-V control/s-
tatus registers (CSRs) local to each thread. These raw CSR
accesses are abstracted by a very thin Tinsel API, which we
outline below. Each Tinsel API function corresponds to just
one or two single-cycle CSR accesses.

Sending messages To send a message residing in the scratch-
pad, a thread must first ensure that the network has capacity
for it (to ensure deadlock-freedom – goal G4) by calling
bool tinselCanSend();

and if the result is true, the thread can call
void tinselSend(uint32_t dest, volatile void* msg);

where dest is a global thread identifier, and msg is a message-
aligned address in the scratchpad. The message is not guaran-
teed to have left the mailbox until tinselCanSend() returns
true again, at which point data pointed to by msg can safely be
mutated, e.g. by writing a new message. The number of flits
in the message being sent is also stored in a CSR that can be
modified by a call to
void tinselSetLen(uint32_t numFlits);

Receiving messages To receive a message, a thread must
first allocate a slot in the scratchpad for an incoming message
to be stored. Allocating a slot can be viewed as transferring
ownership of that slot from the software to the hardware. This
is done by a call to
void tinselAlloc(volatile void* addr);

where addr is a message-aligned address in the scratchpad.
Multiple slots can be allocated in this way, creating a receive
buffer of the desired size. The hardware may use any one of
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Fig. 5. Default configuration of the Tinsel NoC on a single FPGA. Tiles
are connected together by dimension-ordered routers, and inter-FPGA links
are connected to the NoC rim. Each off-chip RAM blob contains a DDR3
controller and two QDRII+ controllers.

the allocated slots to store an incoming message, but as soon
as a slot is used it will be automatically deallocated. Now,
when a thread wishes to receive a message it can call
bool tinselCanRecv();

to see if a message is available and, if so, receive it by calling
volatile void* tinselRecv();

which returns a pointer to a slot containing a received mes-
sage. If the identity of the sender is required, it must be
included in the message contents. Receiving a message can be
viewed as transferring ownership of a slot from the hardware
back to the software. If multiple slots contain incoming
messages, tinselRecv is free to pick any: we deliberately
avoid guarantees about message ordering, to keep optimisation
opportunities open in the communication subsystem.

Soft multicasting There are two features of the mailbox that
support efficient multicasting in software: (1) a message can
be forwarded (received and sent) without copying and without
passing through the 32-bit core, and (2) once in the scratchpad,
a message can be efficiently sent multiple times (forked).

Network-on-chip Tinsel uses a 2D tiled network-on-chip
(NoC), with each tile containing a single mailbox and some
number of cores, FPUs, and caches. The default configurations
the Tinsel tile and Noc are shown in Figures 4 and 5. We
use separate on-chip networks for message-passing and off-
chip memory access. While it is tempting to create a single
unified NoC for both, this leads to complications. Deadlock
in asynchronous message-passing systems is usually avoided
by ensuring that threads are always ready-to-receive and never
block on a send operation. But this is not possible if, in order
to receive a message, a thread needs to access memory which
would involve sending over the unified NoC. The problem
could be avoided using virtual channel routing [10, 11], but at
the cost of complexity. Another concern with a unified NoC
is congestion: we want to support high communication band-
width and high memory utilisation, which is more obviously
achieved using separate networks.

Subsystem Quantity ALMs % of DE5
Core 64 51,029 21.7
FPU 16 15,612 6.7
DDR3 controller 2 7,928 3.5
Data cache 16 7,522 3.2
NoC router 16 7,609 3.2
QDRII+ controller 4 5,623 2.4
10G Ethernet MAC 4 5,505 2.3
Mailbox 16 4,783 2.0
Interconnect etc. 1 37,660 16.0
Total 143,271 61.0

Fig. 6. Default Tinsel area breakdown on the DE5-Net at 250MHz.

Each tile’s mailbox connects to a dimension-ordered router,
and all routers are connected in a 2D mesh arrangement using
bidirectional half-rate FIFOs. At the edges of the on-chip mesh
are the inter-FPGA reliable links, extending the mailbox mesh
over the entire cluster. The default configuration of Tinsel
contains 1,024 RISC-V threads per FPGA, which is 12,288
threads in total in our current 2-box cluster (3× 4 FPGAs).

Further to the memory and mailbox networks, there is a low-
performance 8-bit debug bus connecting all the cores on an
FPGA. It provides each thread with a virtual UART, i.e. non-
blocking functions for putting and getting bytes. The debug
bus connects to the host x86 server via USB JTAG.

Inter-FPGA links In a large cluster with many inter-FPGA
links, bit errors will be common and therefore must be detected
and corrected (goal G4). On top of a raw link we place
a 10Gbps Ethernet MAC, which automatically detects and
drops packets containing CRC errors. On top of the MAC we
place our own window-based reliability layer that retransmits
dropped packets. Ethernet allows us to use standard and free IP
cores for inter-board communication, and as we use the links
point-to-point, many Ethernet packet fields can be reused for
our own purposes, resulting in little overhead on the wire.

Termination detection This feature (goal G6) allows an
application to observe when all threads in the system have
indicated that they no longer wish to send and there are no
messages in flight. We refer to this as the idle event. It can
be used to detect termination in asynchronous applications
(difficult to do in software) and to advance time in synchronous
applications (inefficient to do in software). The feature is
entirely supported by a single hardware primitive:
int32_t tinselIdle(bool vote);

which blocks until either (1) a message is available to receive,
or (2) all threads in the entire system are blocked on a call
to tinselIdle and there are no undelivered messages in the
system. The function returns zero in the former case and non-
zero in the latter. A return value > 1 denotes that all callers
voted true. The voting mechanism allows termination to be
detected in synchronous applications, e.g. all threads in the
system are stable since the last time step.

Our implementation of tinselIdle is based on Safra’s
distributed termination detection algorithm [12]. We put an



idle detection component on each worker FPGA, which has
two main responsibilities: (1) maintain a 64-bit count of the
number of messages sent by any thread on the FPGA, minus
the number received; and (2) determine when all threads on the
FPGA are in a call to tinselIdle. The idle detection process is
instigated by the master bridge board, broadcasting a token out
to all worker FPGAs. Each worker receives the token, waits
until all threads on that FPGA are in a call to tinselIdle,
and then responds with the 64-bit count. If all the counts sent
back to the master sum to zero, then the idle event is detected
and a barrier release phase is triggered, causing the calls to
tinselIdle on the workers to return non-zero. Otherwise, the
idle detection process is restarted.

Resource utilisation The resource requirements of the default
configuration Tinsel on the DE5-Net (part 5SGXEA7N2F45C2)
are shown in Figure 6. It meets timing at 250MHz.

IV. POLITE API

To provide a truly high-level programming environment, we
need abstractions that hide architectural details. The POETS
project is actively exploring a graph-based event-driven pro-
gramming abstraction as a solution to this problem [6]. To
evaluate the suitability of Tinsel as a target for this abstraction,
we present a basic, lightweight version of it, called POLite.

POLite is a thin C++ layer on top of the Tinsel API
that takes care of mapping arbitrary graphs onto the overlay.
Behaviours of vertices in the graph are defined by event
handlers that update the vertex state when a particular event
occurs, e.g. when a message arrives on an incoming edge, or
the network is ready to send a new message, or termination
is detected. It is similar to the vertex-centric paradigm [7, 8],
but supports both synchronous and asynchronous execution.

Vertices In a POLite application, vertices are defined by
inheriting from the PVertex class:

template <typename S, typename E, typename M>
struct PVertex {

// Vertex state
S* s;
PPin* readyToSend;

// Event handlers
void init();
void send(M* msg);
void recv(M* msg, E* edge);
bool step();
bool finish(M* msg);

};

Fig. 7. Essential structure of a POLite task/vertex. It is parameterised by the
task state type S, the edge weight type E, and the message type M.

Each vertex has access to local state s, and a readyToSend

field whose value is one of:

• No – the vertex doesn’t want to send.
• Pin(p) – the vertex wants to send on pin p.
• HostPin – the vertex wants to send to the host.

// Vertex state
struct SSSPState {
// Is this the source vertex?
bool isSource;
// The shortest known distance to this vertex
int dist;

};

// Vertex behaviour
struct SSSPVertex : PVertex<SSSPState,int,int> {

void init() {
*readyToSend = s->isSource ? Pin(0) : No;

}
void send(int* msg) {
*msg = s->dist;
*readyToSend = No;

}
void recv(int* dist, int* weight) {
int newDist = *dist + *weight;
if (newDist < s->dist) {

s->dist = newDist;
*readyToSend = Pin(0);

}
}
bool step() { return false; }
bool finish(int* msg) {

*msg = s->dist;
return true;

}
};

Fig. 8. Asynchronous single-source shortest paths using POLite.

A pin is an array of outgoing edges, and sending a message
on a pin means sending a message along all edges in the array.
A vertex can have a number of pins. Vertices should initialise
*readyToSend in the init handler, which runs once for every
vertex when the application starts. After that, the other event
handlers come into play.

Send handler Any vertex indicating that it wishes to send will
eventually have its send handler called, unless another handler
(called before the send handler has had chance to run) updates
*readyToSend to No. When called, the send handler is provided
with a message buffer, to which the outgoing message should
be written. The destination is deduced from the value of
*readyToSend immediately before the send handler is called.

Receive handler A message arriving at a vertex causes the
recv handler of the vertex to be called with a pointer to
the message and a pointer to the weight associated with the
incoming edge along which the message has arrived. The edge
weight is passed to the recv handler rather than the send

handler because it is associated with a particular edge, not
a pin capturing multiple edges. For unweighted graphs, the
edge weight type can be declared as PEmpty and ignored.

Step handler The step handler is called when no vertex in
the entire graph wishes to send, and there are no messages in-
flight. The return value indicates whether or not the vertex
wishes to continue executing. Typically, an asynchronous
application will simply return false, while a synchronous one
will do some compute, perhaps requesting to send again, and
return true to start a new time step.



Finish handler If the conditions for calling the step handler
are met, but the previous call of the step handler returned
false at every vertex, then the finish handler is called. The
key point here is that the finish handler can only be invoked
when all vertices in the graph do not wish to continue. At this
stage, each vertex may optionally send a message to the host
by writing to the provided buffer and returning true.

SSSP example To illustrate the PVertex class, Figure 8 shows
an asynchronous POLite solution to the single-source shortest
paths problem. Each vertex maintains an int representing the
shortest known path to it (initially the largest positive integer),
and a read-only bool indicating whether or not it is the source
vertex. When the application starts, only the source vertex
requests to send, but this triggers further iterative sending until
the shortest paths to the all vertices have been determined.
Finally, when the vertex states have stabilised, the finish

handler is called to send the results back to the host. In this
example, a single pin (pin 0) on each vertex is sufficient to
solve the problem.

Graph construction On the host side, i.e. the x86 servers in
our cluster, POLite provides a PGraph type with operations for
adding vertices, pins, edges, and edge weights. For example,
a graph for the SSSP example is declared as:

PGraph<SSSPVertex, SSSPState, int, int> graph;

Using this, an application can prepare an arbitrary graph to
be mapped onto the Tinsel overlay. The initial state of each
vertex can also be specified using this data structure.

Graph mapping The POLite mapper takes a PGraph and
decides which vertices will run on which Tinsel threads. It
employs an hierarchical graph partitioning scheme using the
standard METIS tool [13]: first the graph is partitioned be-
tween FPGA boards, then each FPGA’s subgraph is partitioned
between tiles, and finally each tile’s subgraph is partitioned
between threads. In each case, we ask METIS to minimise
to minimise the edge cut, i.e. the number of edges that cross
partitions. After mapping, POLite writes the graph into cluster
memory and triggers execution. By default, vertex states are
written into the off-chip QDRII+ SRAMs, and edge lists are
written in the DDR3 DRAMs. Once the application is up
and running, the host and the graph vertices can continue to
communicate: any vertex can send messages to the host via
the HostPin or the finish handler, and the host can send
messages to any vertex.

Softswitch Central to our implementation of POLite is an
event loop running on each Tinsel thread, which we call the
softswitch as it effectively context-switches between vertices
mapped to the same thread. The softswitch has four main
responsibilities: (1) to maintain a queue of vertices wanting to
send; (2) to implement multicast sends over a pin by sending
over each edge associated with that pin; (3) to pass messages
efficiently between vertices running on the same thread and on
different threads; and (4) to invoke the vertex handlers when
required, to meet the semantics of the POLite library.

Limitations One of the features of the Pregel framework
[7] is the ability for vertices to add and remove vertices
and edges at runtime – but currently, POLite only supports
static graphs. And multicasting is currently implemented by
sending directly to each destination one-at-a-time. For large
fan-outs, a hierarchical multicast (where messages get forked
at intermediate stages along the way to the destinations) could
reduce communication costs significantly.

V. EVALUATION: MICROBENCHMARKS

In this section, we use software microbenchmarks written
in C++ to test the performance of the default configuration of
the Tinsel overlay under basic conditions, before moving on
to a more substantial POLite-based case study in Section VI.

Memory To measure the off-chip memory performance, we
use a simple microbenchmark in which each thread iterates
over a different array in memory and increments each array
element. We vary the type of off-chip memory and the cache
line size. Here are the measured results from a single DE5-Net,
with 1024 threads accessing memory in parallel:

2×DDR3 2×DDR3 4×QDRII+
(32B lines) (64B lines) (32B lines)

Throughput (GB/s) 7.8 10.2 13.0
Bus utilisation (%) 48.8 63.8 81.3
RAM utilisation (%) 30.3 39.9 90.0

Fig. 9. Memory performance for various memory types and cache line sizes.

Depending on the cache line size, the DDR3 throughput
ranges from 30%–40%. Full throughput is not expected, due
to the somewhat irregular access pattern (all threads accessing
different parts of DRAM at the same time). The QDRII+
SRAMs are not sensitive to the access pattern, and a 90%
throughput is achieved.

Communication For NoC performance, we use a benchmark
in which threads in each tile (Figure 4) exchange messages
with each of the neighbouring tiles (i.e. to the north, south,
east, and west). The throughput of the NoC is limited by
the mailboxes rather than the links connecting tiles together.
Each mailbox scratchpad has one flit-sized port on the network
side, which can either be read or written on each cycle. So
the upper limit on message transmission is the flit size (16
bytes), multiplied by the Fmax (250MHz) divided by two,
multiplied by the number of mailboxes (16), which is 32GB/s.
Our benchmark achieves a lower throughput of 14.4GB/s (44%
of the total), due to contention on the mailbox input port; up to
four neighbours can be sending to the same mailbox at a time,
leading to backpressure and reducing the rate of the senders.

For inter-FPGA performance, we use a similar microbench-
mark, with threads on each FPGA exchanging messages with
up to four neighbouring FPGAs in the 2D mesh. The upper
limit this time is the bandwidth of each link (10Gbps bidirec-
tional), multiplied by the number of links in the 3 × 4 mesh
(17), which is 42.5GB/s. Our benchmark achieves a throughput



of 32.1GB/s (75% of the theoretical limit). Overhead can
be attributed to at least two areas: the use of standard 10G
Ethernet MACs and our custom reliability layer sitting on top.

Synchronisation We can measure the basic performance of
the termination detection primitive by calling tinselIdle in a
tight loop on every thread. With no messages in-flight, this will
result in global synchronisation of all threads on every itera-
tion. Running this benchmark, we see 40,000 synchronisations
per second on a 3× 2 FPGA mesh (6,144 threads), dropping
to 26,000 on a 3 × 4 mesh (12,288 threads). As expected,
performance does not scale due to the global synchronisation
point – indeed this is the motivation for also supporting
asynchronous communication in Tinsel. Nonetheless, these
synchronisation rates are high enough to be useful in real
applications (Section VI).

VI. CASE STUDY: DISTRIBUTED GRAPH PROCESSING

A recent study [14] explores the performance of three dis-
tributed graph processing systems based on Google’s vertex-
centric programming model [7], including the Apache Giraph
system previously used at Facebook [16]. All systems were
evaluated on a conventional 128-machine cluster, and a mod-
ern system called Blogel [17] was declared best performer. In
the remainder of this section, we compare the performance
of Blogel (running on a Xeon cluster) against POLite (our
own vertex-centric programming abstraction from Section IV
running on the Tinsel overlay on top of our FPGA cluster).

Experimental setup We consider four graph processing
algorithms: PageRank for ranking webpages [18] (with equa-
tions implemented using floating-point); SSSP (single-source
shortest paths) for weighted graphs; MSSP (multiple-source
shortest paths) for unweighted graphs; and HashMin for com-
puting weakly-connected components. The POLite and Blogel
versions of each benchmark are synchronous, and essentially
the same. We use a geometric random graph generator to
produce graphs for benchmarking purposes. This generator
allows us to easily vary the amount of locality in graphs, so
we can explore the limits of the communication subsystem.
For the experiments below, we a use geometric random graph
with 2M vertices and over 200M edges. All experimental data
is available in the data package accompanying this paper [15].

Blogel versions of each application were run on an x86
cluster containing six E5-2430L Xeon servers, each with 12
threads, and 10G Ethernet. The POLite versions were run on
our 12-FPGA cluster (Figure 10). The power consumption of a
single busy DE5-Net board is just under 50W, which is around
half that of a single busy Xeon server. So the 12 DE5-Net
FPGAs use the same power as the 6 Xeon servers.

Results Figure 11 shows the scaling characteristics of the
two clusters, as well as the relative performance. The relative
performance of the FPGA cluster is significantly better, con-
suming order-of-magnitude less energy than the Xeon cluster
on the same workload. One of the characteristics of distributed

Fig. 10. Our current FPGA cluster comprising two POETS boxes (12 worker
FPGAs in total, in a 3×4 arragement), each in a standard 4U rack-mountable
case. Refer to Figure 1 for further details about POETS boxes.

Fig. 11. Performance scaling of the FPGA cluster and the Xeon cluster.
Speedup is relative to Blogel performance on a single 12-thread Xeon
machine. The two X axes have been aligned w.r.t. power consumption: one
DE5-Net FPGA board (50W busy) uses half the power of a single Xeon
machine (100W busy); so 12× DE5-Net FPGA boards use the same power
as 6× Xeon machines.

graph processing systems is that a large number of machines is
usually needed to provide a significant advantage over a non-
distributed solution to the same problem [14]. This distribution
overhead does not have such a big affect on the FPGA cluster,
with hardware support for the programming model, along with
efficient networking.

Figure 12 shows performance counters from the POLite
PageRank application running on all 12 FPGAs. We see 38%
utilisation of the 334GB/s total off-chip RAM bandwidth on
12 DE5s, but this limit is very unlikely to be reached in
practice due to irregular memory access. Figure 12 also shows
the performance of an asynchronous version of PageRank
implemented using POLite. The synchronous version offers
slightly better performance as it has fewer software overheads,
but it will be interesting to monitor this comparison in future
as the size of our cluster grows and the cost of global
synchronisation increases.



Metric Sync GALS
Time (s) 0.49 0.59
Data cache hit rate (%) 91.5 93.9
Off-chip memory (GB/s) 125.8 127.7
CPU utilisation (%): 56.4 71.3
NoC messages (GB/s) 32.2 27.2
Inter-board messages (GB/s) 7.3 6.1

Fig. 12. Performance of synchronous and GALS (globally-asynchronous
locally-synchronous) POLite implementations of PageRank on 12 FPGAs.

Feature Tinsel-64 Tinsel-128 µaptive [24]
Cores 64 128 120
Threads 1024 2048 120
Off-chip DRAM 2×DDR3 2×DDR3 None
Off-chip SRAM 4×QDRII+ 4×QDRII+ None
Data caches 16×64KB 16×64KB 0
Flit size (bytes) 16 16 4
NoC 2D mesh 2D mesh Hoplite torus
FPUs 16 16 0
Inter-FPGA comms 4×10Gbps 4×10Gbps None
Termination detection Yes Yes No
Fmax (MHz) 250 210 94
Area (% of DE5) 61 88 ∼100

Fig. 13. Feature set of the Tinsel overlay versus the µaptive overlay [24],
including clock frequencies and area requirements on the DE5-Net board.

VII. RELATED WORK

Kumar et al. have recently developed the 120-core µaptive
overlay [24] which adapts an existing 32-bit MIPS core
(from the Imagination Technologies Academic Program) for
the DE5-Net FPGA, and adds support for lightweight inter-
core messaging over a Hoplite NoC [25]. A side-by-side
comparison against Tinsel is shown in Figure 13. Overall, a
128-core Tinsel configuration uses less area, while clocking at
twice the frequency and adding support for floating-point, off-
chip memory, data caches, reliable inter-FPGA links, and ter-
mination detection. The µaptive overlay implements message-
passing through remote-store instructions, where a sending
core writes directly into to the scratchpad of a receiving core.
This means that control-flow and synchronisation, if desired,
must be implemented in software at some expense. The paper
does not present any run-time performance results.

Another recent overlay is Gray’s GRVI Phalanx [22, 23],
a manycore RV32I fabric supporting message-passing via
a Hoplite NoC. Gray reports that a single 3-stage GRVI
core has an Fmax of 375MHz, uses 320 LUTs, and has a
predicted CPI (cycles per instruction) of 1.6. These numbers
can be summarised by a single figure of 0.7 MIPS/LUT.
By comparison, a single 16-thread pure RV32I Tinsel core
(with tightly-coupled data and instruction memories) uses 500
ALMs, clocks at 450MHz, and has a predicted CPI of 1 (there
are no pipeline hazards due to multithreading), giving a figure
of 0.9 MIPS/LUT. This rough comparison assumes a highly-
threaded workload, and involves Fmax and LUT counts taken
from different FPGA architectures (Virtex Ultrascale versus
Stratix V). Unlike GRVI, Tinsel is not appropriate for single-
threaded workloads.

Gray hand-maps a remarkable 1,680 GRVI cores clocking
at 250MHz onto a modern, large Xilinx XCVU9P FPGA
using relationally placed macros. However, the hand-mapped
approach is quite fragile, and its effectiveness could be off-
set when introducing off-the-shelf IP into the design, e.g.
DRAM/SRAM controllers, Ethernet MACs, FPUs, or custom
accelerators, all of which are likely to reduce regularity.
Off-chip memory access, inter-FPGA communication, and
floating-point are left for future work. Gray also cites high-
level programming support as an important goal for the future,
which we have begun to explore in this paper.

Graph processing has been studied by the FPGA community
as a topic in its own right [8, 26, 27]. GraphStep is the seminal
work [8], pioneering the use of on-chip graph representations
and bespoke graph processing pipelines to achieve high per-
formance. In contrast, we have focused on the case where
performance is limited by off-chip memory and communica-
tion bandwidth. In such cases, processing power can be traded
for greater flexibility, resulting in a more widely-applicable
overlay, without loss of run-time performance, assuming off-
chip resources are saturated. In addition, GraphStep does
not support dynamically-changing graphs or asynchronous
message-passing, both of which are possible in Tinsel.

VIII. CONCLUSIONS AND FUTURE WORK

Tinsel is a feature-rich soft-processor overlay allowing an
adjustable balance between processing, memory, and commu-
nication resources, and is appropriate for distributed appli-
cations with modest compute requirements. Hardware multi-
threading helps tolerate the latencies of floating-point units, ex-
ternal memory, and shared resources while keeping Fmax high,
and hardware termination detection supports both synchronous
and asynchronous programming styles. We have applied a 12-
FPGA version of Tinsel with 12,288 RISC-V threads to the
domain of distributed graph processing, observing a significant
performance improvement over a Xeon cluster programmed at
a similar (vertex-centric) level of abstraction.

Future work In our current design, large numbers of au-
tonomous threads accessing DRAM concurrently leads to a
disorganised (suboptimal) access pattern, at least for small
cache-line sizes. We plan to explore ways to feed threads the
data they need in an order decided by a per-FPGA scheduler,
possibly at the expense of some generality. Other areas for
improvement include more efficient multicasting, and better
transfer rates between the PCs and the FPGAs in our cluster.
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