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ABSTRACT 

 

Internal erosion of water retaining structures (such as earth embankment dams, levees 

and dykes) is a major geotechnical problem. Contact erosion is a specific type of internal 

erosion that occurs at the interface between fine and coarse soils, for instance along the 

downstream edge of the core-filter interface, and can lead to earth dam failure due to 

internal erosion. Although in new dams this may be avoided by fulfilling the filter criteria 

or with the construction of barriers, retrofitting older structures often entails significant 

design and construction costs due to the uncertainties surrounding their materials and 

behaviour. In this context, microbially induced calcite precipitation (MICP), a bacteria-

induced bio-mineralisation process capable of binding soil particles in situ, provides a 

cost-effective alternative for contact erosion control. However, it is necessary to establish 

a solid understanding of how biogenic cementation occurs at the interface between fine 

and coarse sands and its influence on the erosion and hydro-mechanical characteristics.  

 

This paper studies the erosion of MICP treated fine sand and coarse sand combinations 

with flow parallel to the surface of the fine-grained fraction. For this purpose, an Erosion 

Function Apparatus (EFA) has been built and tested. Water flows through a rectangular 

flume and erodes the soil specimen, which protrudes 1 mm above the bottom of the 

flume. Results identify the patterns of biomineralisation and provide insight into which 

parameters have a first-order effect on the erosional behaviour and shear strength profile 

of fine-grained cemented sands. By comparing these results with typical critical shear 

stress values encountered in real dams, it is recognised that different optimal 

improvement thresholds to previous biocementation works published in the literature are 

necessary in the dam sector. 

 

INTRODUCTION 

 

Internal erosion is a major cause of dam incidents, causing almost 50% of all 

embankment dam failures (ICOLD 2016). Although embankment dam engineering has 

increasingly evolved over the last century, it remains very difficult to assess the long-

term performance of existing dams that do not meet modern design criteria as they may 

have significant deficiencies in regards to material capability. This is the case of the 

downstream granular filters of older structures, which, if at all existent, may not 

necessarily reflect current filter design practice and could be susceptible to contact 

erosion (CE). This phenomenon develops at the interface between two soils with different 

grain sizes and permeabilities due to the shear stress of interface-parallel flow and can 
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thus occur at the downstream edge of the core-filter interface and along the core-

foundation boundary. Indeed, although the hydraulic gradient in both layers is 

approximately the same, the difference in permeability will cause the velocity in the 

coarse layer to be much higher than that in the fine one. This velocity gradient will 

induce a shear stress on the upper particles of the fine layer, triggering detachment. If 

these particles find an unfiltered exit, erosion will initiate. CE is, therefore, the result of 

the coupling of two mechanisms: a mechanical instability and a hydraulic instability. 

 

ICOLD (2016) distinguishes two different approaches to control internal erosion: filters 

and barriers. While they are both sensible methods to reduce the risk of internal erosion, 

in the long term, filter effectiveness within the dam may be reduced and new pathways 

may open up around these barriers. While for new dams these problems may be avoided 

with proper design, retrofitting older structures often entails significant design and 

construction costs, as well as service interruption. Within this context, microbially 

induced calcite precipitation (MICP), a bio-mediated soil improvement technique, is 

emerging as a viable alternative. The current study focuses on MICP using the bacterium 

Sporosarcina pasteurii to hydrolyse urea. This process raises the pH of the system and 

results in the availability of carbonate ions, which, in the presence of calcium, trigger the 

precipitation of calcium carbonate (calcite). The precipitated calcite binds soil particles 

together and improves the erodibility of sand.   

 

The focus of this study was to examine the effect of biological treatment on the contact 

between two sands with different grain sizes and permeabilities and to determine the 

effects of MICP on the critical shear stress and the mechanism of particle movement with 

horizontal flow in a laboratory flume situation. Details of specimen preparation, 

characterisation methods, and shear stress resistance facilitate the examination of the 

degree to which MICP may provide additional opportunities over other existing 

technologies.  

 

MATERIALS AND METHODS 

 

Specimen Preparation 

 

Control of MICP on an interface between fine and coarse sands was examined in the 

context of a series of 100 ml one-dimensional flow sand column experiments, as shown 

in Figure 1. This experimental setup was previously described by Rebata-Landa (2007) 

and Al Qabany (2011). Syringes were dry packed with Fraction A overlying Fraction D 

or E silica sand (resulting in a relative density ranging between 90 and 95%) and 

connected to plastic tubing to allow nutrient circulation. A filter was placed at the bottom 

to avoid fine particles from being washed-out by the solution and electrical tape was used 

to avoid leakage. Specimens were then flushed with deionised (DI) water to establish 

their pore volume (PV), or pore space, as well as to remove air pockets and ensure a 

controlled flow field. The total injection volume of DI water was 2 PV to ensure 

complete saturation.   
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Figure 1. One-dimensional flow sand column experiments: (left) specimen preparation; 

(right) specimens during retention time. 

 

Bacterial and Cementation Solutions 

 

Sporosarcina pasteurii ATCC 11859, formerly Bacillus pasteurii, is the bacterial strain 

that was chosen for this study, because it is ubiquitous in soil, non-pathogenic, and does 

not require processing before use. Bacteria were harvested and inoculated under sterile 

conditions in a NH4-YE medium that contained: 20 g/l of yeast extract, 10 g/l of 

ammonium sulphate, and 0.13 M of Tris buffer (Table 1). These components were used 

to regulate the pH of the solution and to offer a source of carbon and energy (Dawoud 

2015). All ingredients were autoclaved separately in a sterilizer for 20 minutes and left to 

cool down prior to mixing and introducing the concentrated bacterial colonies. This 

solution was then placed in a shaking incubator for 24 hours. 

 

Many different formulations for the cementation solution are available in the literature, 

which primarily differ in the calcium chloride (CaCl2) concentration, the molar ratio 

between urea and CaCl2, and the retention time3 (DeJong et al. 2006; Rebata-Landa 2007; 

Whiffin et al. 2007; Al Qabany 2011). Al Qabany 2011 examined the effect of different 

urea-CaCl2 concentrations and retention times (6, 12 and 24 hours) on the precipitation 

pattern. He created three different nutrient solutions containing an equimolar amount of 

urea and CaCl2 (0.25, 0.5 and 1 M), 3 g of nutrient broth, 2.12 g of sodium bicarbonate 

(NaHCO3) and 10 g of ammonium chloride (NH4Cl) per litre of distilled water. Results 

showed that the use of lower chemical concentrations in injections results in a better 

distribution of calcite precipitation and recommended using normalised loading rates4 of 

less than 0.042 M/l/h. Rebata-Landa 2007 used the same nutrient treatment formulation, 

but varied the ratio of [Urea]:[CaCl2]. Results suggested that calcium carbonate (CaCO3) 

content increases with the nutrient concentration, however, reported efficiencies were 
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very low. A possible explanation for this is that, for high CaCl2 concentrations, urea was 

always the limiting factor, hindering the ATP generation and, consequently, the 

hydrolysis of urea. The effects of urea to calcium ratio on the ureolysis and calcite 

precipitation were also studied by Martinez et al. (2013) and concluded that recipe 

formulations should be designed with a ratio greater than 1. Therefore, a cementation 

solution with a molar ratio of [Urea]:[CaCl2] = 3:2 was used.  

 

Additionally, Al Qabany (2011) reported that the main chemicals required for MICP are 

urea (carbonate source) and CaCl2 (calcium source), and that the use of some chemicals 

such as NH4Cl and NaHCO3, which act as pH stabilisers, is not crucial for the process. 

On this basis, two different samples treated with cementing solutions with and without 

NH4Cl were created and the pH of the outflow solution was measured every 24 hours. It 

was found that, for the nutrient concentrations used in this study, 2.12 g/l of NaHCO3 

were enough to stabilise the pH. From this point onwards, the term urea-CaCl2 medium 

will be used to refer to the chemical solution that contains all the constituents listed in 

Table 1. 

 

Table 1. Summary of microbial induced cementation treatment formulations. 

 

Solution Constituent Concentration 

Initial biological 

treatment 

Yeast extract 

Ammonium sulphate 

Tris buffer 

S. pasteurii 

20 g/l 

10 g/l 

0.13 M/l 

OD600 = 0.8-1.2 

Urea-CaCl2 

medium 

Urea* CO(NH2)2 0.375 M/l 

Calcium chloride* CaCl2 0.25 M/l 

Sodium bicarbonate NaHCO3 2.12 g/l 

Nutrient broth  3 g/l 

*A nutrient solution with a molar ratio of [Urea]:[CaCl2] = 3:2 was used. 

 

MICP Treatment Program 

 

The MICP treatment was divided into two stages. In the first (biological phase), 1 PV of 

the bacteria solution was injected from the top by gravity and left to set within the 

specimen for 24 hours to allow for microbes to attach to the particles (DeJong et al. 

2006). In the seconds (cementation) phase, 1 PV of the nutrient solution (Table 1) was 

injected in the same way and the old solution was allowed to drain out of the specimen. 

To ensure that the sample remained saturated between injections, the plastic tubing was 

put up and a solution overhead was left at the top, as shown in Figure 1. This process of 

injection-retention of the nutrient solution was repeated every 24 hours until the desired 

level of calcite cementation was attained.  

 

The termination of each test involved draining all the remaining liquid solution and 

flushing with DI water to remove excess material. After removing the specimen from the 

syringe, it was oven dried to stop the metabolism. 
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CHARACTERISATION METHODS/EXPERIMENTAL METHODS TO ASSESS 

CEMENTATION EFFECTS 

 

Monitoring of MICP induced changes in the mechanical and hydraulic properties of 

sands included spatial and temporal measurements of the calcite content, the hydraulic 

conductivity, and the shear strength. 

 

Calcium Carbonate Content 

 

Calcium carbonate content was measured after treatment completion by mixing 30 ml of 

hydrochloric acid with 30 g of dried sample in an enclosed cylinder, called calcimeter. 

This reaction leads to the dissolution of calcite and the release of carbon dioxide, 

resulting in a pressure increase proportional to the calcite content of the sample.   

 

Hydraulic Conductivity 

 

Hydraulic conductivity was also analysed after treatment using a falling head test for the 

column setup in Figure 1.  

 

Specimen Shearing 

 

A new Erosion Function Apparatus (EFA), shown in Figure 2, was built to measure the 

erodibility of MICP treated sands. A similar experimental setup was proposed by Briaud 

et al. (1999) for estimating the erosion of soil at bridge piers and was classified as a 

potential method for assessing the susceptibility of soils to CE by Fell & Fry (2005).  

 

Specimens were placed through a circular opening in the bottom of a rectangular cross-

section flume (70 mm by 25 mm in cross section and 1 m long). Tap water was poured 

into a water tank and was driven into the flume by a pump. Water flowed into the flume 

through a pipe and a flow meter was used to measure the flow rate. A flow straightener 

was placed close to the inlet to avoid a water jet effect. The specimen was placed in an 

acrylic mould and leveled with the bottom of the rectangular flume. An extruding screw 

at the bottom end of the specimen was used to push the soil until it protruded 

approximately 1 mm into the flume (Figure 3). A laser was installed on top of the flume 

to measure the height of sample eroded throughout the test, and a camera, taking a frame 

of the surface of the sample every 4 minutes, was installed to identify erosion patterns.  
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Figure 2. EFA experimental setup. 

 

 
 

Figure 3. Side view of the 1 mm protrusion into the flow. 

 

RESULTS AND DISCUSSION 

 

Calcium Carbonate Distribution 

 

Controlling MICP on an interface between fine and coarse sands requires spatial 

knowledge of the cementation. For this purpose, the calcite content of two specimens 

(after 6 and 14 injections of urea-CaCl2 medium) was measured at seven different points 

along their height. Results are shown in Figure 4. In both cases, calcite concentration was 

highest near the interface between coarse and fine particles. However, the calcite profile 



Copyright © 2018 U.S. Society on Dams. All Rights Reserved. 7 

evolved from relatively asymmetric for 6 injections, where a lower concentration was 

measured in the Fraction A sand, to a more symmetric one for 14 injections. Given that 

the permeability of the Fraction A sand is significantly higher than that of the Fraction D 

sand, the former acts as a filter causing the urea-CaCl2 medium to flow straight into the 

Fraction D, cementing it first. After precipitation, the pore space of the Fraction D is 

reduced, partially interrupting the chemical transport in this fraction and causing it to 

remain within the Fraction A sand. Such a restraint of the urea-CaCl2 medium favours the 

cementation of the Fraction A sand at later stages of the treatment.  

 
 

Figure 4. Effect of the interface on the calcite cementation: (left) specimen after 6 

injections; (right) specimen after 14 injections of the urea-CaCl2 medium. 

 

The preferential cementation near the interface, approximately 2-times greater than in the 

bulk material, could be attributed to the spatially varying attached bacteria distributions 

along the specimen. Ford & Harvey (2007) recognised the role of chemotaxis for the 

migration of bacteria towards “increasing concentrations of chemicals that they perceive 

as beneficial to their survival.” During the first injections, the urea-CaCl2 medium is 

accumulated at the interface due to the hydraulic constraint imposed by the Fraction D 

sand (the velocity of urea-CaCl3 medium is significantly reduced when flowing from a 

high to a low permeability material). Since bacteria are able to sense through receptor 

molecules, they respond to this chemical gradient and preferentially attach to the soil 

grains located at the interface (Ford & Harvey 2007). 

 

It is worth noting, however, that this preferential cementation along the interface offers 

an additional advantage for CE control in that it allows to selectively attain high calcite 

concentrations along the target zone with a low number of injections. Most MICP 

investigators to date have focused on achieving spatial uniformity of cementation 

(Martinez et al. 2013; Al Qabany & Soga 2013; Dawoud 2015), thus, these results reveal 

that the important parameters for the application of MICP for CE control are yet to be 

evaluated. 

 

Changes to Hydraulic Conductivity 

 

In order to avoid leakage, the hydraulic conductivity was measured before removing the 

specimen from the syringe for the measurement of the calcite content. Therefore, it is 
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clear that in a one-dimensional specimen this was controlled by the zone in the finer 

material with the highest calcite content, i.e. the interface. Figure 5 shows that the 

hydraulic conductivity decreased during the MICP treatment as a result of void space 

reduction. Although the measurements varied even for specimens subject to the same 

treatment, it was found that a rapid reduction of permeability occurred at the beginning of 

the treatment (less than 2 injections), with permeability then remaining constant until 6-8 

injections, after which permeability decreased sharply. This trend provided insight into 

the calcite distribution within the pore space and agreed with previous studies reported in 

the literature (Jiang 2016).  

 

 
Figure 5. Effect of the number of injections of urea-CaCl2 medium on the hydraulic 

conductivity. 

 

Microbes have a general preference for positioning themselves in the pore throats 

(DeJong et al. 2006). Therefore, for a low number of injections, calcite links soil particles 

through bridging and leaves the large pores relatively open so that the change in 

hydraulic conductivity is rather small. As the number of injections increases, calcite 

interparticle connections grow in thickness and become interconnected, reducing the pore 

throat space and, consequently, the hydraulic conductivity. Therefore, if a low number of 

injections are needed for CE control, MICP offers the advantage of cementing the grains 

at pore constrictions while hardly influencing the water flow.   

 

Shear Stress at Soil-Water Interface 

 

Measurements of the surface movement of the eroding sample were made with a laser 

reflecting on the soil surface in the flume. The progress of erosion could hence be 

monitored as the flow velocity was increased. The cumulative height eroded (𝑐ℎ𝑒) versus 

the velocity was the result of the EFA tests conducted. In order to investigate the shear 

strength profile a new parameter called erodibility, 𝑆 = 𝑑(𝑐ℎ𝑒)/𝑑𝑣, was defined, which 

represents the rate of change of the 𝑐ℎ𝑒 with the velocity. Indeed, the area under this 

curve is equal to the probability density function of particles eroded. For example, the 
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cumulative percentage of particles eroded for a velocity  is equal to the area below the 

erodibility function comprised between 0 and 𝑦. This is schematically shown in Figure 6. 

Evidently, the erodibility curve can also be obtained in terms of the shear stress applied 

by the water at the bottom of the flume.   

 

 
Figure 6. Conceptual diagrams of the EFA data analysis: (left) cumulative height eroded 

versus velocity curve; (right) erodibility curve. 

 

Four different Fraction D samples with different degrees of cementation were tested and 

the results are shown in Figures 7-9, in order of lowest to highest calcite concentrations. 

Generally speaking, MICP treatment triggered an increase in the critical velocity 𝑣𝑐 

required to initiate erosion and reduced the 𝑐ℎ𝑒 beyond that point. For instance, the 𝑐ℎ𝑒 

beyond 𝑣𝑐 = 0.167 m/s reached 0.22 for a sample with 1.06% of CaCO3 (Figure 7), while 

for a sample with 3.31% of CaCO3 it only reached 0.036 mm (Figure 10). Therefore, by 

tripling the soil calcite content, the 𝑐ℎ𝑒 decreased by a factor of 10. 

 

 
 

Figure 7. Specimen with 1.06% of CaCO3. 

 

y
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Figure 8. Specimen with 1.76% of CaCO3. 

 

 
 

Figure 9. Specimen with 2.34% of CaCO3. 

 

 
 

 Figure 10. Specimen with 3.31% of CaCO3. 
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While the most common shape of the erodibility function for untreated fine-grained soils 

agrees with the concept introduced in Figure 6 (Briaud et al. 1999), the scenario for 

MICP treated sands was quite different. In order to explain what initially seemed like 

unusual behaviour, one needs to understand how the binding of particles degrades with 

loading. Under shear hydraulic loading, specimens may be eroded as a result of a fracture 

within the precipitated calcite or due to the detachment of uncemented particles (DeJong 

et al. 2010). At lower shear stresses there is no breakage of calcite-calcite bonds and only 

uncemented or very weakly cemented particles erode. This suggests that MICP treatment 

caused specimens to have two discontinuous shear strength profiles, one associated with 

the uncemented or weakly cemented particles (𝐴𝑤) and the other with the calcite bonds 

(𝐴𝑠), as shown in Figure 11. Predictably, a weakly cemented specimen will not only have 

a big 𝐴𝑤, but also a second bell shape curve which is smaller and shifted to the left (as 

there is a smaller proportion of calcite-calcite bonds). This results in two curves with 

boundaries that become progressively less clear as the CaCO3 content of a specimen 

decreases – which is the case of Figure 8 and justifies its high erodibility values.  

 

 
Figure 11. Conceptual diagram of the strength profile for MICP treated sands. 

 

IMPLICATIONS FOR FIELD IMPLEMENTATION 

 

Implementation of laboratory-tested techniques in the field not only depends on 

understanding how the modification of soil characteristics may provide additional 

opportunities over other existing technologies (such as grouting), but also on identifying 

the level of improvement required for CE control in earth dams. 

 

The critical hydraulic gradient at which local heave from the base material into the pores 

of the filter material occurs is (Perzlmaier 2005): 

 

 𝑖𝑐 = {0.7 to 0.8}
(1−𝑛)(𝛾𝑠−𝛾𝑤)

𝛾𝑤
 (1) 
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𝛾𝑤 being the specific weight of water and 𝛾𝑠 − 𝛾𝑤 that one of soil under uplift. For a 

typical porosity 0.25 ≤ 𝑛 ≤ 0.48 and a specific weight of the particles of 26 kN/m2, the 

critical gradient ranges between 0.58 ≤ 𝑖𝑐 ≤ 0.96 (Perzlmaier 2005). Khilar et al. (1985) 

found a relationship between critical pressure gradient 𝐽 and critical shear stress 𝜏𝑐 

required to initiate erosion: 

 

 𝐽 =
𝜏𝑐

2.828
(

𝑛0

𝜅0
)

1

2
 (2) 

 

where 𝑛0 is the porosity before erosion and 𝜅0 is the permeability of the soil. Real 

embankment dams are generally built with materials with a hydraulic conductivity 

ranging between 10-4 m/s (well graded sands and gravels) and 10-8 m/s (clays and silts), 

giving typical values ranging between 0.0008 ≤ 𝜏𝑐 ≤ 0.172 N/m2. In comparison to 

previous biocementation works performed at a sample scale where the objective was to 

produce sandstone like masses to carry loads, the shear strength increase necessary on 

interfaces potentially vulnerable to CE in the field is very low. It is predicted that calcite 

contents varying between 2.5% and 3% will be enough for this purpose (cf. Figure 9 and  

Figure 10). Additional consideration of the interface effect discussed previously could 

further reduce these values.  

 

CONCLUSIONS 

 

First, control of MICP on an interface between fine and coarse sands was examined in the 

context of a series of 100 ml one-dimensional flow sand column experiments. This study 

confirmed that the distribution of microbes plays a fundamental role for achieving a 

uniform calcite precipitation. However, hydraulic constraints associated with the local 

interruption of the transport of urea-CaCl2 medium across the interface causes bacteria to 

exhibit chemotactic responses, yielding calcite concentrations approximately 2-times 

higher in the interface than in the rest of the specimen. It is clear, then, that this zone 

controls the measurements of the hydraulic conductivity. Results enabled to identify two 

phases of behaviour. During the first phase, no significant changes in the hydraulic 

conductivity were observed. However, during the second phase, a significant reduction 

was observed; this was attributed to the thickening and subsequent interconnection of the 

calcite bonds.  

 

A new Erosion Function Apparatus (EFA) was built and tested to measure the erodibility 

of MICP treated sands. Results revealed that MICP causes sands to have a discontinuous 

strength profile in the shape of a double bell curve, where the relative distance between 

the two peaks decreases as the calcite concentration decreases. Thus, it seems that a 

threshold exists between transient erosion, linked to initial particle by particle surface 

washing, and steady erosion, linked to a block by block erosion process. Although the 

definition of this threshold is still unclear, it was found that its determination may require 

the mobilisation of very high shear stresses (in the range of the hundreds of kN/m2).    

 

From a practical standpoint, the experiments conducted in this research enabled the 

identification of a suitable improvement threshold for CE control, which was found to be 
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much lower than the one needed for other biocementation applications studied in the 

literature. For the typical shear stresses encountered in real dams, results suggested that a 

calcite content ranging between 2.5-3% would be sufficient. This, together with the 

retention of the hydraulic conductivity, and the preferential attachment of bacteria along 

the interface zone, make MICP very attractive for CE control and could have significant 

implications to dam safety risk reduction.  

 

To date, no field trials using MICP in water-retaining structures have been reported in the 

literature. However, two successful bioclogging attempts to reduce the hydraulic 

conductivity of ‘leaking’ dykes were reported in the Netherlands and Austria (Blauw et 

al. 2009). Although bioclogging differs from MICP in that natural microbes are 

stimulated rather than injected into the soil, similar injection techniques to the ones used 

to inject the nutrient-rich solution could be adopted. These include the use of a screen of 

injection wells in the crest of the structure or releasing both the bacteria and nutrient 

solutions in the upstream reservoir. While cost estimates for MICP treatment vary widely 

(from US$25 – 75/m3 to about US$500/m3), studies have shown that the major cost is in 

delivery (Dejong et al. 2013). Hence, if this can be done economically, strong potential 

exists. However, to better understand its durability and performance over the structure’s 

service life and the potential implementation constraints that could lead to additional 

costs, MICP treatment still requires further development. This should involve larger scale 

laboratory testing and extending to field trials.  
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