

Comfort, health and energy-use behavior for homeostasis in informal settlements

Investigating sustainability of the slum rehabilitation process in Mumbai using backcasting approach

Ramit Debnath | Centre for Sustainable Development | rd545@cam.ac.uk

Supervisor: Dr. Minna Sunikka-Blank | Department of Architecture

Overview

Broad scope of this study: SUSTAINABLE GCAL

SDG 11: TARGET 11.1

By 2030, ensure access for all to adequate, safe and affordable housing and basic services.

- India's commitment towards SDG 11 → Housing for All 2022 scheme
- In Mumbai, more than 50% of the 18.41 million people lives in informal settlements like slums.
- Government is addressing this problem through **Slum Rehabilitation Authority** by providing **free housing** to the slum dwellers, called **Slum Rehabilitation Housing**.

Horizontal

Slum Rehabilitation Authority

housing

Problem statement and research questions

1. What causes distress or discomfort (i.e. loss of homeostasis) in slum rehabilitation housing ?

Methodology: Backcasting to investigate the cause of rebound phenomenon

Results: Cause of distress

Survey design

Work in

progress

Initial conclusion

 Lack of social and community spaces in the current rehabilitation housing design leads to social isolation and loneliness. It affect the wellbeing of the occupants.

On - Distress due to the poor built environment contributes significantly to the rebound phenomenon.

- Performing fault tree analysis on the survey results.
- Deriving counter measures based on the fault tree analysis and converting it to policy recommendations for the Slum Rehabilitation Authority.

References

[1] U. Vaid and G. W. Evans, "Housing Quality and Health: An Evaluation of Slum Rehabilitation in India," *Environ. Behav.*, vol. 49, no. 7, pp. 771–790, 2017.
[2] R. Bardhan, R. Debnath, J. Malik, and A. Sarkar, "Low-income housing layouts under socio-architectural complexities: A parametric study for sustainable slum rehabilitation," *Sustain. Cities Soc.*, vol. 41, pp. 126–138, 2018.
[3] M. A. Ortiz, S. R. Kurvers, and P. M. Bluyssen, "A review of comfort, health, and energy use: Understanding daily energy use and wellbeing for the development of a new approach to study comfort," *Energy Build.*, vol. 152, pp. 323–335, 2017.
[4] Y. Kishita, B. C. McLellan, D. Giurco, K. Aoki, G. Yoshizawa, and I. C. Handoh, "Designing backcasting scenarios for resilient energy futures," *Technol. Forecast. Soc. Change*, vol. 124, pp. 114–125, 2017.
[5] M. L. Kern, L. E. Waters, A. Adler, and M. A. White, "A multidimensional approach to measuring well-being in students: Application of the PERMA framework," *J. Posit. Psychol.*, vol. 10, no. 3, pp. 262–271, 2015.

References

Ramit Debnath, Ronita Bardhan, Minna Sunikka-Blank (2019): *Discomfort and distress in slum rehabilitation: Investigating the rebound phenomenon using a backcasting approach*, **Habitat International**, Elsevier; <u>https://doi.org/10.1016/j.habitatint.2019.03.010</u>

Ronita Bardhan, **Ramit Debnath**, Arnab Jana (2019): *Evolution of sustainable energy policies in India since 1947: A review*, **Wiley Interdisciplinary Reviews: Energy and Environment**, Wiley (*Invited paper*); <u>https://doi.org/10.1002/wene.340</u>

Ramit Debnath (2018): *Slum Rehabilitation: Putting the 'home' into 'homeostasis'*, **BlueSci Michaelmas Term**, Cambridge University Magazine; 43., pp 10-11, <u>https://issuu.com/bluesci/docs/bluesciissue43online/12</u>

Ronita Bardhan, **Ramit Debnath**, Jeetika Malik, Ahana Sarkar (2018): *Low-income housing layouts under socioarchitectural complexities: A parametric study for sustainable slum rehabilitation*, **Sustainable Cities and Society**, Elsevier; 41., <u>https://doi.org/10.1016/j.scs.2018.04.038</u>

Ramit Debnath, Ronita Bardhan (2018): Resource Symbiosis Model through bricolage: A livelihood generation assessment of Indian Village. Journal of Rural Studies, Elsevier; 60C., https://doi.org/10.1016/j.jrurstud.2018.03.010

Ronita Bardhan, **Ramit Debnath**, Arnab Jana, Leslie K Norford (2018): *Investigating the local mean age of air with the healthcare-seeking behavior of low-income tenement housing in Mumbai*. **Habitat International**, Elsevier; 71C: 156-168., <u>https://doi.org/10.1016/j.habitatint.2017.12.007</u>

Ramit Debnath, Ronita Bardhan, Rangan Banerjee (2017): *Taming the killer in the kitchen: mitigating household air pollution from solid-fuel cookstoves through building design*. **Clean Technologies and Environmental Policy**, Springer; <u>https://doi.org/10.1007/s10098-016-1251-7</u>

Ronita Bardhan, **Ramit Debnath** (2016): *Towards daylight inclusive bye-law: Daylight as an energy saving route for affordable housing in India:* **Energy for Sustainable Development**, Elsevier; 34:1-9., https://doi.org/10.1016/j.esd.2016.06.005

Ramit Debnath, Ronita Bardhan, Rangan Banerjee (2016): *Investigating the age of air in rural Indian kitchens for sustainable built-environment design*. **Journal of Building Engineering**, Elsevier; 7: 320-333 https://doi.org/10.1016/j.jobe.2016.07.011

Ronita Bardhan, **Ramit Debnath**, Subhajit Bandopadhyay (2016): *A conceptual model for identifying the risk susceptibility of urban green spaces using geo-spatial techniques*. **Modelling Earth System and Environment**, Springer; 2(3)., <u>https://doi.org/10.1007/s40808-016-0202-y</u>

Ronita Bardhan, Ramit Debnath (2018): *Evaluating building material based thermal comfort of a typical low-cost modular house in India*. **Materials Today: Proceedings**, Elsevier; 5:1P1, 311-317, https://doi.org/10.1016/j.matpr.2017.11.087

Ramit Debnath, Ronita Bardhan, Rishee Jain (2017): *A data-driven and simulation approach for understanding thermal performance of slum redevelopment in Mumbai, India*. **15th International Building Performance Simulation** Association (IBPSA), San Francisco. <u>http://www.ibpsa.org/proceedings/BS2017/BS2017_810.pdf</u>

Ronita bardhan, **Ramit Debnath** (2017): Investigating building energy performance with site-based airflow characteristics in wind-driven naturally ventilated conditions in low-income tenement housing of Mumbai. **6th**

International Conference on Advances in Energy Research (ICAER-2017),

Mumbai. https://tinyurl.com/y9jzy3zn

Ronita Bardhan, **Ramit Debnath** (2017): *Building Performance Study of Indira Awas Yojana for Smart Village*. **IEEE International Conference on Energy, Communication, Data Analytics and Soft Computing (ECDS)**, Chennai. <u>https://tinyurl.com/ycal3nj3</u>

Ramit Debnath, Ronita Bardhan, Rishee K. Jain (2016): *A data-driven design framework for urban slum housing: Case of Mumbai*, **3rd ACM Systems for Energy-Efficient Built Environments (BuildSys'16)**, Stanford; https://doi.org/10.1145/2993422.2996406

Ramit Debnath, Ronita Bardhan (2016): *Daylight Performance of a Naturally Ventilated Building as Parameter for Energy Management*. **Energy Procedia**, Elsevier; 90:382-394., <u>https://doi.org/10.1016/j.egypro.2016.11.205</u>

Ramit Debnath, Ronita Bardhan (2016): *Fulfilling SDG-3: DALYs averted in rural kitchens through design*, UNITES-2016 Virtual Conference, https://tinyurl.com/y8rrhnj2

Ramit Debnath, Ronita Bardhan, Rangan Banerjee (2016): Evaluating differences in airflow patterns for similar rural kitchens using CFD. 6th International Congress on Computational Mechanics and Simulation (ICCMS), Mumbai. pp. 391-395. <u>https://tinyurl.com/yaxycqy9</u>