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intRoduction
Susceptibility Weighted Imaging (SWI) and Quantitative 
Susceptibility Mapping (QSM) generate image contrast 
from differences the magnetization that is induced in 
tissues, i.e. their magnetic susceptibility, when placed 
in the strong external magnetic field of an MRI system. 
Differences in tissue susceptibility help identify mate-
rials in which the susceptibility is negative, such as 
diamagnetic calcification, and highly positive such as 
paramagnetic haemorrhage,1,2 or paramagnetic exog-
enous contrast agents like gadolinium or superpara-
magnetic iron oxide nanoparticles (SPIONs).3–6 The 
methods can also give information on elevated iron 
content and myelin content and venous blood oxygen 
saturation.1,2,7–9

SWI combines magnitude and phase information to qual-
itatively display tissue magnetic field variations, while 
QSM quantifies the underlying magnetic susceptibilities 
that create these field variations. The quantitative nature of 
QSM allows for longitudinal monitoring of disease progres-
sion, across subjects, and potentially imaging centres whilst 
limiting observer bias. However, QSM requires a series of 
sophisticated post-processing steps which are based on 
understanding the relationship between magnetic suscepti-
bility, magnetic field and MR signal, which will be described 
below.

whAt iS MAGnetic SuScePtiBility?
Magnetic susceptibility ( χ  ) is a material property that 
describes the response of an object to being placed within 
a magnetic field. When brought into the static magnetic 
field of an MRI scanner with magnetic flux density  B0  and 
magnetic field intensity H  , a material gains a magnetization 
(M  ), defined as the quantity of magnetic dipole moment 
per unit volume, proportional to its magnetic susceptibility, 
i.e.  M = χH  .

10,11 Paramagnetic materials have a positive 
susceptibility value that leads to their magnetic moments 
being aligned parallel to  B0  , whilst diamagnetic materials 
have a negative susceptibility and their magnetic moments 
align anti parallel to  B0 .10,11 This tissue magnetization leads 
to the generation of a magnetic field. Figure  1 shows the 
field generated by a magnetic unit dipole, i.e. a microscopic 
bar magnet. Note that this dipole field becomes zero at an 
angle of 54.7° to the direction of  B0  . This is often referred 
to as the “magic-angle” and is responsible for the spurious 
increase in  T2  relaxation time and hence signal when highly 
structured tissues such as tendons happen to be aligned at 
this angle to the direction of  B0 .12 Since there are a huge 
number of magnetic dipoles in a given tissue, the field at 
any point within a given region of interest (ROI) is made up 
of contributions from all surrounding dipoles.13 The total 
tissue dipole field  ∆B

(
x, y

)
  generated within an ROI, can 

be described by a mathematical operation called convolu-
tion, represented by the mathematical operator  ⊗ , between 
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ABStRAct

Quantitative Susceptibility Mapping (QSM) and Susceptibility Weighted Imaging (SWI) are MRI techniques that measure 
and display differences in the magnetization that is induced in tissues, i.e. their magnetic susceptibility, when placed in 
the strong external magnetic field of an MRI system. SWI produces images in which the contrast is heavily weighted by 
the intrinsic tissue magnetic susceptibility. It has been applied in a wide range of clinical applications. QSM is a further 
advancement of this technique that requires sophisticated post-processing in order to provide quantitative maps of 
tissue susceptibility. This review explains the steps involved in both SWI and QSM as well as describing some of their 
uses in both clinical and research applications.

https://doi.org/10.1259/bjr.20181016
mailto:pprr2@cam.ac.uk


2 of 13 birpublications.org/bjr Br J Radiol;92:20181016

BJR  Ruetten et al

the susceptibility values within the ROI, known as the suscep-
tibility map  

(
χ
(
x, y

))
 , and the unit dipole field, also referred to 

as the unit dipole kernel  
(
d
(
x, y

))
 , scaled by the static magnetic 

field strength  B0  10,13–15:

 ∆B = B0
(
χ⊗ d

)
  [1]

By applying a Fourier Transform, we can change  χ
(
x, y

)
 ,  

 d
(
x, y

)
 , and  ∆B

(
x, y

)
  into  X

(
k
)
 ,  D

(
k
)
 , and  ∆B

(
k
)
 , which corre-

spond to a decomposition into their spatial frequencies  k . This is 
like the relationship between MRI raw data acquired in k-space to 
which an inverse Fourier transform is applied to reconstruct MR 
images. This relationship simplifies the mathematics since a convo-
lution in image space corresponds to a multiplication in k-space. 
Therefore, we can Fourier transform all the variables, and simply 
multiply them in Fourier space:

 ∆B
(
k
)
= B0

(
X
(
k
)
D
(
k
))

  [2]

This means that field map can be calculated by applying the 
inverse Fourier transform 10,13–15:

 ∆B
(
x, y

)
= IFFT

(
∆B

(
k
))

  [3]

In other words, the field map depends on the magnitude and 
orientation of the static magnetic field and the shape, value and 
distribution of the susceptibility sources.

SuScePtiBility eFFectS in MRi
In addition to these field inhomogeneities created by the mate-
rial, there are also inhomogeneities in the static, i.e. MR system, 
magnetic field ( B0 ) and those due to the interactions between 
neighbouring spins (spin–spin interactions). These magnetic 
field inhomogeneities cause the protons to precess at different 
frequencies and therefore mutually dephase with time. This 
results in an exponential decay of the MR signal with a time 
constant given by  T∗2   . The spin–spin interactions are usually 

characterized by the  T2  relaxation time whilst the additional 
susceptibility and  B0  inhomogeneity differences can be charac-
terized by a relaxation time known as  T

′
2  . Together their relaxivi-

ties, i.e. their reciprocal values, add to give the  T∗2   value, i.e.

 
1
T∗2

= 1
T2 + 1

T′2   [4]

A gradient echo pulse sequence can be used to acquire multiple 
gradient echoes following the initial radiofrequency excitation 
pulse. This allows us to sample the  T∗2   decay at different echo 
times and the  T∗2   relaxation time can be calculated by fitting an 
exponential decay to the measured signals:

 S
(
t
)
= Soe

− t
T∗2   [5]

A map of  T∗2   -values, or its reciprocal  R∗2 = 1/T∗2   , provides a 
quantitative measure of the amount of dephasing caused by all 
field inhomogeneities (Figure 2).

However, this  T∗2   -mapping method only considers the magni-
tude of the MRI signal. Raw MRI data, is acquired as a complex-
valued signal, i.e. each voxel has real and imaginary components 
from which the signal magnitude and phase angle can be calcu-
lated (Figure  3). In most MRI, only the magnitude image is 
reconstructed, and the phase information is discarded. However, 
when properly processed, the phase of the signal contains very 
useful information. The phase primarily arises from the average 
field inhomogeneity measured within a voxel ( ∆B

(
x, y

)
 ) due to 

susceptibility effects, whereas spin–spin interactions ( T2 ) have a 
negligible effect.16 The phase of the MR signal increases linearly 
with time (t) with a slope proportional to  ∆B

(
x, y

)
  . Whilst the 

 T∗2   -value indicates the presence of local dephasing, the size of the 
phase shift and its sign yields more information about  ∆B

(
x, y

)
  , 

and therefore about the underlying material susceptibility.1 SWI 
combines both magnitude and phase data, which allows for a 

Figure 1. (a) Magnetic field lines of a magnetic dipole (b) Magnitude of the magnetic dipole field in the direction of ↑ B0. The values 
along the magic angle (Θ = 54.7◦ ) are zero and there are lobes of positive and negative field strength, indicated as areas of relative 
hyper- and hypointensity respectively.
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distinction between materials with different susceptibilities, e.g. 
between paramagnetic iron in haemorrhage and diamagnetic 
calcification.

SWI requires pre-processing of the data, as shown in Figure 4. 
The phase data is high-pass filtered to remove the slowly varying 
(across the image) background field, originating, e.g. from air 
tissue interfaces. This background phase can potentially obscure 

the phase information from the desired local susceptibility 
sources.7 The filtered phase data is used to create a mask to selec-
tively reduce the signal intensity from paramagnetic or diamag-
netic susceptibility sources. In order to emphasize negative phase 
shifts, e.g. those created by deoxyhaemoglobin in deoxygenated 
blood, the mask is set to one in voxels containing a positive phase 
value and negative phase values are then normalized to be within 
the range of zero to one:

Figure 2. This figure illustrates T2
*/R2

*-mapping: (a) Magnitude images of the brain acquired at four increasing echo times; the sig-
nal intensity in areas with a large susceptibility variation (in this example haemorrhage) decreases more rapidly than in the rest of 
the brain as indicated by the circle. (b) The time constant T2

* is estimated by fitting an exponential decay to the magnitude signal 
intensity variation of every voxel over time; here we consider a sample from a high SNR ROI to illustrate the exponential shape of 
the signal decay. (c) The curve fitting results in a map of T2

*, where the haemorrhage appears hypointense. (d) Sometimes a map 
of its reciprocal R2

* is used instead, where the haemorrhage appears hyperintense. ROI,region of interest; SNR, signal-to-noise-
ratio.

Figure 3. (a) The signal from the precessing proton spins which is acquired by the MR receiver is represented as a complex number 
with real (R) and imaginary (I) components from which a pixel-by-pixel signal magnitude and phase can be calculated. (b) Recon-
struction of the real component of the magnetization. (c) Reconstruction of the imaginary component of the magnetization.(d) 
The calculated magnitude signal. (e)The calculated phase signal.
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Mask

(
x, y

)
=




π+ϕ
(
x,y

)
π ; if ϕ

(
x, y

)
≤ 0

1; if ϕ
(
x, y

)
> 0   [6]

The mask is subsequently multiplied n times with the magnitude 
image:

 SWI = Mag×Maskn  [7]

The number of multiplications is chosen to optimize the contrast-
to-noise ratio (CNR) in SWI and may be chosen depending on 
the magnitude of the phase shift within the structures of interest 
and therefore the echo time (n = 4 is commonly chosen). To 
improve the visualization of the venous vasculature a minimum 
intensity projection (mIP) through the stack of slices may be 
employed.7

Both  T∗2   weighted images, quantitative  T∗2   mapping, and SWI 
depict variations in magnetic field inhomogeneity, which are 
non-local, which means that they extend beyond the region of 
the susceptibility change, causing blooming artifacts that depend 
on tissue geometry and orientation. QSM can remove these 

effects by directly displaying the underlying material properties 
which are independent of the external field.11,16

QuAntitAtive SuScePtiBility MAPPinG
QSM requires several image processing steps to extract the 
tissue susceptibility from the phase information. These steps are 
described below and illustrated in Figure 5. Firstly, ∆B  is esti-
mated from the phase of a gradient echo acquisition. Secondly, 
field inhomogeneities generated by sources outside the ROI are 
eliminated, so that finally an inversion operation is performed to 
derive the susceptibility map.

From phase to field
As described above, the phase of the MR signal increases linearly 
with time:

 ϕ
(
t
)
= ϕ0 − 2πγ∆Bt   [8]

 t  is the echo time,  ϕ0  the initial phase offset at the centre of the 
excitation pulse ( t = 0 ), and  γ  is the gyromagnetic ratio.17,18 The 
slope of the phase variation is proportional to the field inhomo-
geneity in the direction of  B0 , ∆B , which can be estimated for 
each voxel (Figure 6). In a multiecho gradient echo acquisition 
this can be done using a least-square algorithm, that weights 

Figure 4. SWI consists of the processing of complex gradient echo MRI data, i.e. its phase (a) and magnitude components (b). 
Here, we used the fourth echo from a multi echo gradient echo acquisition (TE = 26.7 ms, TR = 32.0 ms, voxel size = 0.65×0.65×1.4 
mm3). The phase (a) is high-pass filtered in order to remove the background phase (c). Contrast is generated by variations in the 
magnetic field generated by local susceptibility sources only. We can note that paramagnetic materials (haemorrhage, venous 
blood) appear as negative phase shifts, while diamagnetic materials (calcification) appear as positive phase shifts. The filtered 
phase data is further processed to generate a phase mask (d) that only darkens areas where the phase shift is negative. The 
magnitude image is subsequently multiplied n times (here n = 4) in order to generate the SWI (e). The phase mask was chosen 
to suppress signals from negative phase shifts only, so that the visibility of both haemorrhages and the venous vasculature was 
enhanced. A mIP may be employed to further emphasize paramagnetic venous vasculature across the stack of slices (f). mIP,min-
imum intensity projection; SWI, Susceptibility Weighted Imaging; TE, echo time; TR, repetition time.
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data-points from early echoes more heavily than from later 
echoes because of their higher signal-to-noise ratio (SNR).17–19 
Other implementations have also successfully estimated the 
phase from a single echo.2,17 It is important to carefully choose 
the reconstruction algorithm that generates the phase informa-
tion, in particular when combining information from multiple 
coil elements in order to avoid artifacts and preserve relevant 
phase information. An excellent review of the technical consid-
erations can be found in.20

In other parts of the body, the linear relationship between  ϕ  and 
 ∆B  does not hold anymore and the signal can be more accurately 
described by:

 S ∝
(
W + Fe−i2π∆fchemTE

)
e−i2πγ∆BTE

  [9]

This equation incorporates the signal from fat which differs in 
precession frequency from water by  ∆fchem  . Therefore, water–fat 

Figure 5. QSM consists of the processing of complex gradient echo MRI data, i.e. its phase (a) and magnitude components (b). 
Here, we used a multiecho gradient echo acquisition (TE1 = 6.5 ms, echo spacing = 6.744 ms, #echoes = 4, TR = 32.0 ms, voxel size 
= 0.65×0.65×1.4 mm3). A map of field inhomogeneities ΔB is estimated from the phase data (c). Subsequently contributions from 
background fields are removed to extract a map of field inhomogeneities generated by susceptibility sources inside the ROI only, 
 ∆Bint  (d). A dipole field inversion operation is performed on  ∆Bint  to calculate the susceptibility map  χ  (e). ROI, region of interest; 
QSM, Quantitative Susceptibility Mapping; TE, echo time; TR, repetition time.

Figure 6. In order to estimate ∆B , the variation of the phase images (a) acquired from four increasing echo times (6.50, 13.24, 
19.99, 26.73 ms) are monitored over time. By fitting a linear function to the multiecho phase data, phase wraps between subse-
quent echoes can be estimated and removed to estimate the slope of the phase variation over time and the corresponding value 
of ΔB (b). This is done for every voxel in the acquisition in order to generate a map of temporally unwrapped ΔB values scaled by 
a factor of  γ2π∆TE  (c).

http://birpublications.org/bjr
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separation techniques can be used to estimate the fat fraction 
and ∆B  within each voxel.21

Since phase is an angle it can only be represented in the range 
 
[
−π, π

)
 . However, the actual phase shift may be greater than 

this range due to, for example, large susceptibility differences 
or large echo spacings. The phase can then become “wrapped” 
or “aliased” into this  

[
−π, π

)
  range. This phase wrapping can be 

corrected by the use of algorithms that add an integer multiple  k  
of  2π  to the acquired phase  ϕw  :

 ϕuw = ϕw + k2π  [10]17–19

First, the aliasing between echoes is removed in the temporal 
domain. Phase wraps in between echoes are removed 
during the estimation of ∆B  and a scaled version of ∆B , i.e. 
 ∆ϕ = 2πγ∆TE∆B  is estimated. The remaining phase wraps are 
corrected by spatial phase unwrapping algorithms (Figure 7).11

Subsequently, a mask is applied in order to select a ROI that 
contains an area of sufficient SNR, since noise on the phase 
image can lead to severe errors when estimating ∆B  and then 
propagate.22

Background field removal
The map of field inhomogeneities measured inside the ROI 
( Btotal ) is made up of fields generated from magnetized suscep-
tibility sources located inside ( Bint  ) and outside the ROI ( Bext  ). 
For instance, large susceptibility differences between air/tissue 
and air/cortical bone create large, spatially slowly varying, fields 
that extend into the brain, which may obscure the comparatively 
small  Bint   generated by local changes in susceptibility that we 
wish to investigate. In order to extract the susceptibility map, it is 
important to consider only  Bint   , and remove  Bext  .23

A great deal of the research activity associated with QSM is based 
upon methods for background field removal and the associated 
algorithms are heavily mathematical. A detailed discussion is 
therefore beyond the scope of this article. Instead, we will high-
light some of the principles applied in frequently used techniques. 

An excellent review that illustrates the underlying physical and 
mathematical principles in more detail can be found in Schweser 
et al.16,24

The algorithms generally make assumptions about the mathe-
matical properties of  Bext   and  Bint   to separate them. The simplest 
approach, often applied in SWI, assumes that  Bext   varies at a much 
lower spatial frequency than  Bint   and can be removed by applying 
a high pass filter to  Btotal  . While this removes slowly varying 
field components of  Bext   some of its components may remain and 
some desired components of  Bint   may be suppressed.7,11,23,25,26 
One improved method is geometry-dependent artifact correc-
tion, in which magnitude images are segmented into areas of air 
and tissue. After assigning susceptibility values to the segments, 
a calculation can be performed to estimate the field induced by 
the air–tissue interface.27

 Bext  can be better characterized as a mathematical entity known 
as a harmonic function13,28–30 or by the observation that  Bext   and 
 Bint   are approximately orthogonal to each other within the ROI.31 
The Sophisticated Harmonic Artifact Reduction (SHARP) algo-
rithm makes use of the spherical mean value (SMV) property 
of harmonic functions.29 This method improves the separation 
of  Bext   and  Bint   but results in a shrinking of the area of the ROI 
since the algorithm cannot be applied near the edges of the ROI 
(Figure 8a). Other methods, based on the SMV property, that aim 
to improve the SHARP algorithm have also been proposed.32,33 
Another method using the Laplacian Boundary Value algorithm 
makes use of another mathematical property of harmonic func-
tions in order to set up a system of partial differential equations 
that can be solved in order to estimate  Bint   and  Bext  .30 The solu-
tion of this problem requires that  Bext   is much larger than  Bint   
at the boundary and violations of the boundary conditions may 
lead to artifacts on the estimate of  Bint   originating at the ROI 
boundary (Figure 8b).30

An alternative approach is the Projection onto Dipole Fields 
(PDF) method, which estimates the susceptibility distribution 
within the field of view but outside the ROI, to estimate  Bext   . A 

Figure 7. The map of ∆B  values scaled by a factor of  γ2π∆TE  (a) includes phase wraps that are outlined by dashed lines. Phase 
unwrapping algorithms identify these areas and add integer multiples of  2π  ( k2π ) onto them. Here, bright areas indicate phase 
shifts of  2π , dark areas  −2π  and the rest is equal to zero (b). In the resulting unwrapped field map, all of the wrapping artifacts 
have been removed (c).

http://birpublications.org/bjr
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minimization problem can be formulated based on  Bint   and  Bext   
being orthogonal to each other. Since this assumption is valid 
only to within close proximity of the boundary, it may cause 
some minor boundary artifacts but performs well inside the ROI 
(Figure 8c).31

Dipole field inversion
We have previously explained that the local field inhomogeneity 
can be estimated as  ∆B

(
k
)
= B0

(
X
(
k
)
D
(
k
))

 . This equation 
can be solved and the susceptibility map estimated by decon-
volving  Bint   with the inverse of the dipole kernel, which corre-

sponds to a division in k-space: 
 
X
(
k
)
= 1

B0

(
B
(
k
)

D
(
k
)
)

 
.

However,  D
(
k
)
  in the direction of  B0  is defined as:

 
D
(
k
)
= 1

3 − k2
k2z

for k ̸= 0
  [11]

The spatial frequencies where  D
(
k
)
= 0  are located at the magic 

angle β =±54.7° relative to  B0  forming a cone surface. Estimating 
the values of  X

(
k
)
  for these spatial frequencies, is difficult to 

solve, since 
 
1

D
(
k
)
 
 results in a divide-by-zero which is undefined. 

Furthermore, the values of  D
(
k
)
  decrease in the proximity to the 

zero-cone-surface and the division by such small values ampli-
fies noise in this region of  X

(
k
)
 , degrading the quality of the 

QSM.11,26,34 Furthermore, D(0) is either undefined35 or defined 
to be zero16,36 so that there is a lack of knowledge about the 
resulting  X

(
0
)
 . The calculated susceptibility values are therefore 

relative rather than absolute and need to be referenced to specific 
tissue regions, such as cerebrospinal fluid or white matter.37

To overcome this magic angle problem, the most accurate solu-
tion in terms of image quality, SNR, and CNR is provided by 
imaging the subject from multiple orientations. This approach, 
known as Calculation Of Susceptibility through Multiple Orien-
tation Sampling (COSMOS) acquires images at least three times, 
each image rotated by a sufficiently large angle. In cerebral QSM, 
e.g. the patient must tilt their head. Therefore, the zero-value 
cones from at most two orientations overlap in the same loca-
tion, so that at least one acquisition always provides the missing 
information. Whilst very accurate, it is not feasible in clinical 
applications because it requires significant patient compliance 
and an increase in acquisition time by a factor of three.34

Instead, a variety of different approaches have been proposed 
to limit the number of scans to a single acquisition. A detailed 
discussion of the highly mathematical algorithms that are used 

Figure 8. This figure shows the differences between the internally  Bint  (a–c) and externally generated field inhomogeneities  Bext  
(d–f), as estimated by the algorithms SHARP (a, d), LBV (b, e), and PDF (c, f).  Bext  (d–f) is a large, slowly varying field compo-
nent, that obscures the small local  Bint  (a–c). Due to different assumptions for the boundary conditions of the Background Field 
Removal algorithms we can see that there are some differences near the boundary indicated by the black circles on the LBV and 
PDF images. Furthermore, we can see that the field estimated by SHARP is reduced due to erosion (a, d). LBV, Laplacian boundary 
value; PDF,Projection onto Dipole Field; SHARP, Sophisticated Harmonic Artifact Reduction.

http://birpublications.org/bjr
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is beyond the scope of this article and further information can 
be found in Wang and Liu and Schweser et al.11,16 Instead, we 
will review some of the principles of commonly used techniques.

Some approaches attempt to solve the problem in k-space and 
others by using image space. In order to solve the problem in 
k-space, the inverse filter  1/D

(
k
)
  is regularized by replacing 

the values close to the position of the zero cone surface, where 
 |D

(
k
)
|  is smaller than a certain threshold, on  1/D

(
k
)
  with zero38 

or with a constant value (Figure 9a,b,e,f).26 The advantage of this 
method is the relatively low complexity and high time efficiency. 
However, it is limited by its image quality. If the threshold value is 
too small then the noise on ∆B  is amplified and results in cone-
shaped streaking artifacts on  χ

(
x, y

)
 . A higher threshold value 

widens the modified region in k-space, limiting noise amplifi-
cation and streaking artifacts, while simultaneously decreasing 
the contrast in  χ

(
x, y

)
 , which leads to an underestimation of the 

susceptibility differences.26,38

Image space-based approaches estimate susceptibility maps by 
finding a solution that minimizes the difference between the 
measured ∆B  and the estimated  B0

(
χ⊗ d

)
 , so that they do not 

need to solve the divide-by-zero problem. Typically, a regular-
ization term is added to minimize streaking artifacts using prior 
information. An example is the Morphology Enabled Dipole 
Inversion (MEDI) algorithm. It assumes that tissue compart-
ments found on magnitude images have relatively uniform 
susceptibility values. The added regularization minimizes all 
edges that are present on the susceptibility map but not the 
magnitude image. This aims at eliminating streaking artifacts 
or noisy voxels.35,36,39,40 It is important to carefully choose the 
amount of regularization to suppress artifacts sufficiently while 
avoiding an overly smooth susceptibility map with underesti-
mated susceptibility values (Figure 9c,d,g,h).

clinicAl APPlicAtionS
SWI and QSM have been applied to numerous pathologies, such 
as neurodegenerative, oncological, and cardiovascular. While 
most of the initial susceptibility-contrast applications have been 
developed for cerebral imaging, as shown in Figure 10, further 
development has shown a lot of promise in the rest of the body. 
In the following, we will describe several susceptibility-based 
applications to show their promise and the potential improve-
ments that could be offered by QSM.

Cerebral imaging
Variations in cerebral myelin and iron concentration, which are 
more diamagnetic and paramagnetic than water respectively 
are dominant sources of susceptibility contrast. QSM-detected 
iron concentrations correlate well with relaxation rate mapping 
MRI techniques, previously published post-mortem iron values, 
X-ray fluorescence, inductively coupled plasma mass spectrom-
etry and are consistent with histological analysis.37,41,42 When 
compared to traditional contrast weightings, T2

*-mapping, and 
SWI, QSM provides a superior CNR43 while providing a quan-
titative measurement of iron and myelin without dependence of 
orientation or geometry of the ROI and non-local effects.9,42,44 
The resulting, highly detailed, anatomical maps of the brain 
have shown many structures consistent with histology, which 
other MRI techniques could not display.37,44,45 The imaging of 
cerebral substructures may improve patient specific neuro-
surgical planning, for example to find targets for deep brain 
stimulation.37,43,45 While utility of susceptibility based contrast 
weightings has been demonstrated,46 it has been suggested that 
QSM may further improve results due to the high quality of the 
anatomical maps.37,43

Accurate and quantitative anatomical mapping of brain tissue 
may also serve to identify and track changes of cerebral tissue. 

Figure 9. The figure shows the susceptibility maps generated by different dipole field inversion algorithms in axial (a–d) and 
sagittal (e–h) view. The susceptibility maps estimated using the TKD algorithm with a low threshold value (a, e) exhibits the char-
acteristic streaking artifacts. By increasing the threshold value, we can see an improvement in image quality, but the contrast is 
reduced along with the streaking artifact (b, f). The MEDI algorithm is able to improve image quality even further, (c, g) and (d, 
h). By varying the regularization parameter, the susceptibility map gets smoother while the contrast is reduced (d, h). MEDI, Mor-
phology Enabled Dipole Inversion; TKD, Truncated K-space Division.

http://birpublications.org/bjr
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Multiple sclerosis is associated with demyelination and cerebral 
iron accumulation. An increase in iron levels has been shown 
using T2

*-mapping47 and SWI.48 QSM is more sensitive than 
T2

*-mapping9 to tissue changes caused by the disease, since iron 
accumulation and demyelination both increase magnetic suscep-
tibility relative to the surrounding tissue while having opposing 
effects on the T2

*-value, i.e. iron accumulation shortens T2
* whilst 

demyelination prolongs T2
*.9,49 Therefore, QSM is suitable to 

detect early stages of the disease which are associated with demy-
elination in addition to iron accumulation9,50,51 and has been 
used to directly compare healthy and diseased tissue at various 
stages.50,52 Susceptibility-based imaging has detected changes in 
demyelination and iron accumulation and has also been shown 
to correlate with disease duration and clinical disability.47,53 
Mapping of transverse relaxation rates, phase imaging and SWI, 
have also been used to find elevated iron levels in the brains 
of patients with Parkinson's disease (PD)54,55 and Alzheimer’s 
disease.56 These techniques have allowed for monitoring signifi-
cant variations in iron levels over the course of PD57,58 and were 
used to correlate iron levels with disease severity in terms of 

motor symptoms, suggesting its use as a biomarker for disease 
progression.59–61 In both PD62–64 and 65,66Alzheimer’s disease 
patients, QSM has shown to be feasible as a means to quantify 
iron levels.

Cerebral haemorrhage
Haemorrhages contain different blood products, such as deoxy-
haemoglobin, methaemoglobin, and/or haemosiderin, which are 
paramagnetic.2,67 Susceptibility-based techniques have a higher 
lesion contrast and sensitivity that leads to improved detection 
of cerebral haemorrhages when compared to conventional and 
magnitude-based techniques and/or CT.68,69 QSM provided 
quantitative susceptibility measures and more accurate blood 
product volume estimates,70–72 and has made the differentiation 
of haemorrhages from veins easier.73 Haemorrhages, accom-
pany a variety of medical conditions such as stroke,71 cerebral 
cavernous malformations,70 and Traumatic Brain Injury (TBI).73 
QSM has allowed for accurate quantitative assessment of lesion 
size, frequency, location, and/or iron content which could 
improve the understanding of the role of haemorrhages in these 
conditions, assess their role as a biomarker for disease severity 
or determine treatment response.70–73 Studies using SWI, e.g. 
have suggested that microbleeds could serve as an indicator of 
the severity of injury, because coma scores correlated with higher 
occurrence and volume of haemorrhages.69

Blood oxygenation and venography
Due to deoxyhaemoglobin being paramagnetic, SWI is 
frequently used to image cerebral venous vascular networks.7 
QSM removes non-local effects and sequence/scanner depen-
dencies from the venograms,25,74 while also providing quantita-
tive estimates of oxygen saturation in venous blood vessels due to 
the linear relationship between susceptibility and deoxyhaemo-
globin content.25,74–76 From the susceptibility values, sometimes 
in combination with flow measurements, different values such 
as oxygen extraction by tissue or the cerebral metabolic rate of 
oxygen can be estimated75,76 so that normal physiological levels 
of deoxyhaemoglobin74 could be monitored along with changes 
following CO2 inhalation76 or caffeine administration.75 In clin-
ical applications QSM has been used to evaluate local venous 
oxygen saturation in stroke patients.77

Mapping changes in blood oxygen levels dynamically may 
yield information about cerebral functional activity. This has 
been widely applied in blood oxygen level dependent (BOLD) 
contrast-based functional Magnetic Resonance Imaging (fMRI), 
which relies on the T2

*-effect on magnitude images.78 Recent 
studies have used the phase information to generate suscepti-
bility maps at multiple time points, that could display neuronal 
activity more directly while removing geometry dependence and 
non-local effects.79–81

Susceptibility-based contrast in neuro-oncology
Susceptibility-based imaging has also demonstrated promise 
in neuro-oncology. SWI has shown to enhance tumour visi-
bility,82 image small vessels and micro-haemorrhages with high 
sensitivity,83 differentiating them better from calcifications, 
necrosis and artifacts84 than conventional multicontrast MR 

Figure 10. The following demonstrates the application of the 
discussed susceptibility-based contrast to image anatomy 
and pathology in the brain: (a) T2

*-weighted images indi-
cate all susceptibility differences as hypointensities, such as 
calcifications (diamagnetic,  χ < 0 , indicated by the dotted 
region), haemorrhages (paramagnetic,  χ > 0 , indicated by 
the solid line region), iron rich structures (Putamen and Glo-
bus Pallidus, paramagnetic,  χ > 0 , indicated by dashed line 
region) and deoxygenated blood in the venous vasculature 
(paramagnetic,  χ > 0 ) (b) R2

*-mapping, the reciprocal of the 
T2

*-value, shows all the above as signal hyperintensities. (c) 
A susceptibility-weighted image employing a phase mask to 
reduce signal intensity for negative phase shifts only darkens 
areas of paramagnetic susceptibility. We have indicated the 
iron rich structures, haemorrhages, and veins. (d) A suscepti-
bility-weighted image employing a phase mask to reduce sig-
nal intensity for positive phase shifts only emphasizes areas 
of diamagnetic susceptibility. We have indicated the calcifica-
tions by the dotted region. (e) A minimum intensity projection 
of the stack of susceptibility weighted images (c) improves 
visualization of the venous vasculature. (f) The susceptibility 
map is able to differentiate between regions where  χ  has neg-
ative and positive values, as areas of hypo- and hyperintensi-
ties, respectively.
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protocols. Appearances have correlated well with pathology.82,83 
The resulting images have been used to grade tumours,83 
distinguish between types of tumours85 and metastases,86 
which is promising for initial cancer screening, cancer diag-
nosis, continued monitoring, and for deciding on a treatment 
strategy.83–86 QSM improved differentiation between blood 
deposits and calcifications,87 which may help in characterizing 
tumours and monitoring treatment responses.

Susceptibility-based contrast outside the brain
QSM has also been demonstrated to be feasible in MR imaging 
outside the brain. SWI and QSM have both been used to detect 
calcifications in breast tissue21,88 and QSM has shown promise in 
prostate cancer imaging.89,90 Changing iron concentration in the 
liver may give more information about liver disease. Therefore, 
SWI has been used for staging liver fibrosis which is associated 
with increased iron content and collagen deposition,91,92 and for 
identifying iron deposits in siderotic nodules in cirrhotic livers.93 
QSM has been used to monitor liver iron concentration since it has 
shown good correlation with T2

*-mapping and biomagnetic liver 
susceptometry.94,95

Due to the linear relationship between contrast agent concentra-
tion and susceptibility, QSM also serves as an ideal tool to detect 
and quantify contrast agent uptake, such as paramagnetic gado-
linium-based contrast agents and (ultrasmall) superparamag-
netic iron oxide ((U)SPIO) particles. Gadolinium-based contrast 
agents have been used to perform cerebral perfusion imaging 
using QSM and to create dynamic three-dimensional suscep-
tibility maps.3,4 SPIOs and USPIOs have been used to measure 
inflammation in the liver and spleen5 and monitor micro-vas-
culopathy for example in cerebral amyloidosis,6 where it was 
suggested to be more sensitive for vascular leakage in vivo, than 
dynamic contrast-enhanced (DCE) imaging.6

concluSion
QSM and SWI combine gradient echo-based imaging data with 
prior knowledge about the relationships between magnetic 
susceptibility, magnetic fields, and MRI signals to display 
detailed information about the magnetic susceptibility of tissues. 
This allows for an accurate mapping of the brain architecture, the 
venous vasculature and for detecting and differentiating between 
haemorrhages and calcification. Furthermore, it has shown 
promise in functional imaging of blood oxygenation levels and 
contrast agent uptake, as well as, longitudinal imaging of struc-
tural changes such as iron accumulation or demyelination. SWI 
is gaining importance in cerebral applications and increasingly 
finding applications in other body areas. For QSM, there is 
a large amount of well validated software available online and 
QSM has shown its promise in a wide range of research settings. 
The direct mapping of tissue properties may offer new insights in 
disease development and diagnostics.
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