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Structure, Activity and Function of a Singing CPG
Interneuron Controlling Cricket Species-Specific Acoustic
Signaling

Pedro F. Jacob'? and ©“Berthold Hedwig'
Department of Zoology, University of Cambridge, Cambridge CB2 3E], United Kingdom and 2Champalimaud Neuroscience Programme, Champalimaud
Centre for the Unknown, Lisbon, Portugal

The evolution of species-specific song patterns is a driving force in the speciation of acoustic communicating insects. It must be closely
linked to adaptations of the neuronal network controlling the underlying singing motor activity. What are the cellular and network
properties that allow generating different songs? In five cricket species, we analyzed the structure and activity of the identified abdominal
ascending opener interneuron, a homologous key component of the singing central pattern generator. The structure of the interneuron,
based on the position of the cell body, ascending axon, dendritic arborization pattern, and dye coupling, is highly similar across species.
The neuron’s spike activity shows a tight coupling to the singing motor activity. Inall species, current injection into the interneuron drives
artificial song patterns, highlighting the key functional role of this neuron. However, the pattern of the membrane depolarization during
singing, the fine dendritic and axonal ramifications, and the number of dye-coupled neurons indicate species-specific adaptations of the

neuronal network that might be closely linked to the evolution of species-specific singing.
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ignificance Statement

A fundamental question in evolutionary neuroscience is how species-specific behaviors arise in closely related species. We dem-
onstrate behavioral, neurophysiological, and morphological evidence for homology of one key identified interneuron of the
singing central pattern generator in five cricket species. Across-species differences of this interneuron are also observed, which
might be important to the generation of the species-specific song patterns. This work offers a comprehensive and detailed
comparative analysis addressing the neuronal basis of species-specific behavior.
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Introduction

Behavioral changes in signaling for mate attraction and courtship
are very important in speciation processes (Muller, 1939; Kaneshiro,
1980; Endler and Basolo, 1998; Boughman, 2002; Ritchie, 2007).
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Changes in species-specific behavior can be achieved by altering
the signal type; for example, converting between sound and vi-
bration (ter Hofstede et al., 2015) and modifications of peripheral
structures while keeping the motor patterns (Elsner and Wasser,
1995; Vedenina et al., 2012) or adaptations at the level of the
nervous system that lead to different motor patterns (Katz and
Harris-Warrick, 1999). Comparing identified neurons and net-
work properties in closely related species that just differ in the
motor patterns used to generate sexual communication signals
(Arbas et al., 1991; Crews, 1997; Katz and Harris-Warrick, 1999;
Ritchie, 2007) provides the chance to gain insights into evolu-
tionary specializations of neural circuits.

Two of the most impressive examples of species-specific mo-
tor patterns separating species occur in acoustically communicat-
ing insects on Hawaii within the “picture-winged” Drosophila
species group (Hoy et al., 1988; Hoikkala et al., 1989) and the
crickets of the genus Laupala (Shaw, 1996; Mendelson and Shaw,
2002). In both groups, sister species may be morphologically
identical, but the temporal patterns of the male song, which are
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closely linked to the female signal preferences, drive speciation
(Hoikkala et al., 1994; Mendelson and Shaw, 2005). The temporal
structure of the signal patterns is under the control of the nervous
system, by the activity of central pattern generators (CPGs) (Ca-
pranica, 1992; Chagnaud et al., 2011; Schoneich and Hedwig,
2012). Recently, the neuronal basis for the singing CPG in Dro-
sophila (Clyne and Miesenbock, 2008; von Philipsborn et al.,
2011, 2014, Shirangi et al., 2013; Ding et al., 2016) has been ex-
plored using a genetic approach. Crickets, however, offer advan-
tages given the detailed knowledge of their song circuitry and its
electrophysiological properties (Bentley, 1969; Hennig, 1989;
Kutsch and Huber, 1989, 1990; Schéneich et al., 2011; Schéneich
and Hedwig, 2012). Furthermore, the specific genetic tools in
Drosophila that allow labeling of single neurons are for the most
part limited to one species.

Crickets display species-specific song patterns that are identi-
cal in their role as a far-field communication signal to attract
females. This supports the homology of the acoustic behavior in
crickets (Alexander, 1962; Otte, 1992), offering the opportunity
to identify and compare homologous neurons across species to
gain insights into the neural basis of signaling behavior and its
species-specific neural specializations during evolution.

Male crickets sing by rhythmically opening and closing their
front wings. This movement is generated by the activity of wing-
opener and wing-closer muscles and motoneurons and their ac-
tivity mirrors the species-specific pulse pattern in fictive singing
(Kutsch and Huber, 1989; Poulet and Hedwig, 2003). Songs can
be described by the carrier frequency and the pulse pattern.
Within the temporal domain, each closing movement generates a
short sound pulse and, in a song, these are organized in a species-
specific manner in groups or sequences of pulses: chirps and trills.
Although the wing size and shape can affect sound production
(Montealegre-Z et al., 2011), these parameters are only weakly
correlated with calling song structure (Blankers et al., 2017),
pointing to the importance of the temporal parameters that are
under control of the CPG.

Therefore, to understand how species-specific behaviors arise
in closely related species, we analyzed the abdominal ascending
opener interneuron (A3-AO), an identified singing CPG in-
terneuron, in bi-spotted field crickets, Gryllus bimaculatus (Scho-
neich and Hedwig, 2011, 2012), across different species. We
compared the structure, activity patterns, and effect on singing
motor pattern generation of A3-AO in five cricket species.

Materials and Methods

Animals. We used male crickets of Gryllus bimaculatus DeGeer, Gryllus
assimilis Fabricius, Gryllus rubens Scudder, Teleogryllus oceanicus Le
Guillou, and Teleogryllus commodus Walker. Males were kept individu-
ally in plastic containers at 26 —28°C with a 12 h light/dark cycle and were
used from 7-21 d after ecdysis. A mixture of protein-rich food and water
was provided ad libitum. Experiments were performed at 23-24°C and
complied with the principles of laboratory animal care (ASAB Ethics
Committee, 1997).

Song recordings. Songs of individual males of each species were re-
corded for two to three nights with a PC microphone (Omni type; Ma-
plin Electronics) at a sampling rate of 48 kHz using Cool Edit 2000
software (Syntrillium Software). See Jacob and Hedwig (2016) for details.

Dissection and pharmacological brain stimulation. Before experiments,
crickets were cooled down and placed dorsal side up on a Plasticine block
by restraining all legs with metal clamps. The head was waxed to a metal
holder and opened to access the brain. We accessed the central nervous
system by a dorsal midline incision along the abdomen and thorax and
peripheral nerves to the thoracic and abdominal ganglia were cut, except
for the mesothoracic wing nerve 3A (meso-Nv3A) and the cercal nerves.
See Jacob and Hedwig (2015) for details.
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Exposed nervous tissue was rinsed with saline containing the following
(in mmol 1 7%): NaCl 140, KCI 10, CaCl, 7, NaHCO; 8, MgCl, 1, TES 5,
and p-trehalose dehydrate 4 adjusted to pH 7.4. To elicit fictive singing,
glass capillaries filled with either eserine salicylate (10 % mol 17') for
Gryllus or a mixture of eserine salicylate (10 > mol 1 ™') and nicotine
(10 7% mol 17'; Sigma-Aldrich) for Teleogryllus in saline were inserted
into the ventral protocerebrum and the solution was pressure injected
(Pneumatic PicoPump PV820, WPI). See Wenzel and Hedwig (1999)
and Schoneich and Hedwig (2012) for details. The efficacy of pharmaco-
logical stimulation in Gryllus species was 80%; in Teleogryllus, 50% of
males generated a mixture of all song types and 24% of males generated a
pure calling song (N = 34).

The singing motor pattern was recorded from the meso-Nv3A (for
details, see Jacob and Hedwig, 2015), which contains the axons of the
front wing opener and closer motoneurons (Kutsch and Huber 1989;
Poulet and Hedwig, 2003). During singing, the nerve recording reliably
showed the rhythmically alternating spike activity of these two types of
motoneurons. We identified the opener motoneurons as the one that
were always activated first and followed by the activity of the closer mo-
toneurons. We used a double-hook electrode made from 100 wm plati-
num wire and amplified the signal with a differential AC amplifier
(Model 1700; A-M Systems).

Intracellular recordings of the ascending opener interneuron in the A3
abdominal ganglion. The A3 ganglion was stabilized between a stainless
steel platform and a tungsten ring. Microcapillaries were pulled (DMZ-
Universal Puller, Zeitz Instruments) from thick-walled borosilicate glass
tubes (ID 0.58 mm, OD 1.0 mm; Hilgenberg). Intracellular recordings
were made in bridge mode (SEC10—05LX amplifier; NPI) and sampled
at 40 kHz per channel (Micro1401 mk II, CED). A3-AO interneurons
were recorded at the midline in the posterior region of the A3 ganglion at
a depth of 25-40 um and along the main neurite at a depth of 70—-100
um as measured with an Absolute Digimatic Depth Gauge (Mitutoyo
UK) attached to the micromanipulator.

The neurons identified in this work were considered to belong to the
singing CPG according to criteria established by Marder and Calabrese
(1996), which are as follows: (1) the neurons are active in time with the
singing motor pattern; (2) the neurons initiate, terminate, or change the
expression of the ongoing singing motor activity; and (3) the neurons
have direct or oligosynaptic connections with the relevant motoneurons.

Neuron morphology. Fluorescent dyes were iontophoretically injected
into recorded neurons by constant hyperpolarizing current injection
[0.5-5nA, up to 20 min; for 0.5% Alexa Fluor 568 hydrazide sodium salt,
Invitrogen, or 1% Lucifer yellow (LY), Sigma-Aldrich] or by depolarizing
pulses (2-3 nA, 200 ms duration, 3 Hz, up to 60 min; for 2—4% neuro-
biotin, Vector Laboratories). Histological processing followed conven-
tional protocols (Schoneich et al., 2011; Schoneich and Hedwig, 2012).
The whole-mount preparations were scanned with a confocal laser-
scanning microscope (Leica SP5). The morphology of neurons was re-
constructed from the confocal image stacks using the Simple Neurite
Tracer plugin in ImageJ. All neurons presented here were stained with
neurobiotin unless otherwise stated. Because the neurons are dye cou-
pled, a short 10 min protocol of neurobiotin injection was performed,
which was sufficient to stain the neuron up to T2, but not the dye-
coupled neuron. The images obtained were compared with stainings
obtained with Alexa Fluor 568 and LY (data not shown), which are less
reliable in showing dye coupling between neurons when they are per-
formed for a few minutes. “Ipsilateral” and “contralateral” are used in
relation to the neuron’s cell body. We will refer to the A3-AO homo-
logues of the species as A3-AQj ;. for example, the A3-AO in G. bi-
maculatus will be labeled A3-AOy; ... and in G. assimilis as A3-AO ;.

Data analysis. Neurophysiological recordings were analyzed with CED
Spike2 software and with NEUROLAB (Knepper and Hedwig, 1997). In
case of song recordings for each male, three 10 min time windows with
stable singing activity at the beginning, middle, and end of one overnight
singing period were chosen and the mean and SD (x * SD) of song
parameters were calculated using the burst analysis feature of Spike2
(Jacob and Hedwig, 2016).

For analysis of A3-AO activity, the onsets of wing-opener and wing-
closer motoneuron activity were used as temporal references. In the fic-



98 « J. Neurosci., January 2, 2019 - 39(1):96-111

A

Jacob and Hedwig e Species-Specific Singing (PG

— ! | |
Gryllus Gryllus Gryllus Teleogryllus Teleogryllus
assimilis rubens bimaculatus commodus oceanicus

North American clade

European clade

Australian clade

Phrase Phrase

L
LR
-

b E -
~ — ~

L
I
I\

500 ms

.

| u
Chirp Trill Chirp  Sound Pulse Chlrp Trill Trill Ch|rp
—chire Trill —Chip__ Chirp Trill Trill Chirp

WWWMWM

Ce0e e 08
Opener Closer

Figure 1.

oe0-e 0o O-e

o—e O—e O Oe

A, Phylogenetic relationship of cricket species studied and their natural and fictive calling song patterns. Shown is the simplified cricket phylogenetic tree derived from Huang et al.

(2000), representing the species used in this study. B, Sound recordings of the male calling songs with low (top) and high (bottom) temporal resolution. C, Extracellular recordings of the meso-Nv3A
during fictive singing in the species studied. The wing-opener motoneuron activity is represented by open circles and the wing-closer motoneuron activity by closed circles. The paired wing-opener
and wing-closer activity represents one pulse period; that is, the silent pulse interval and the pulse. In each species, the motor pattern of the fictive calling song reflects accurately the pattern of the

natural calling song.

tive singing motor pattern, the pulse period corresponds to the time
between the first spike of two consecutive wing-closer bursts. The start of
the ramp depolarization before singing episodes was established as the
moment when the membrane potential differed by 1 SD from the mean
resting amplitude for 10 ms subsequently. The duration of the ramp was
measured from its start to the moment when the rising phase of the burst
depolarization of the A3-AO started; the final amplitude of the ramp was
also measured at this point. The rising phase was identified visually by the
much faster membrane potential change of the neuron.

During the rhythmic membrane potential changes, two features of the
neuronal activity were measured: (1) the time from the peak of the hy-
perpolarization to the moment of transition (H-to-T) and (2) the time
from the transition to the first spike of the burst depolarization (T-to-S).
The transition moment was identified based on the speed of the rising
membrane potential of the A3-AO, the arrowheads in the figures mark
the transition point. Given the duration of the T-to-S interval and the
corresponding change in the depolarization, we calculated the rate of
membrane potential change (in millivolts per millisecond) at the start of
a spike burst.

For the rebound depolarization after a hyperpolarization induced by
current injection, the latency was measured between the end of the hy-
perpolarization current pulse and the occurrence of the first spike of the
rebound. The amplitude of the rebound was measured between the rest-
ing membrane potential and the peak of the depolarization.

Normally distributed data are given as x * SD; when normality tests
failed, the median and interquartile range (IQR: 25 th percentile/75 th
percentile) is presented. In pooled datasets, each contributing animal is
equally represented (where N is the number of animals and # is the
number of stimulations or events). For statistical analysis, we used
GraphPad Prism 6 software.

Results

Five cricket species were chosen due to their very distinctive call-
ing song patterns, with pulses grouped in chirps or complex songs

with chirps and trills (Fig. 1). They were selected from the genus
Teleogryllus or Gryllus, with Gryllus species from the European or
North American clade (Huang et al., 2000; Fig. 1A). Recordings
of the calling songs are shown in Figure 1B.

In the calling songs of G. bimaculatus and G. assimilis, sound
pulses with a constant pulse rate are grouped in chirps, which are
repeated regularly. For G. rubens, trills are typical, long sequences
of sound pulses with a constant pulse rate (Fig. 1B). In T. com-
modus, the calling song consists of two subsections, a chirp fol-
lowed by one to four long trills. Also in T. oceanicus, the song has
two subsections: a trill is followed by a series of chirps. In both
species, the pulse rate differs between chirps and trills and the two
different subsections are arranged into a larger repeating unit of
the song called a phrase (Fig. 1B) according to the classification of
song subsections by Bentley and Hoy (1972). A summary of the
song characteristics is presented in Table 1.

During fictive singing, the pulse pattern is revealed in the
rhythmic neuronal activity of meso-Nv3A with alternating bursts
of wing-opener and wing-closer motoneurons (Fig. 1C).

Comparative morphology of the A3-AO

The A3-AQ neuron has a very similar structure in all of the stud-
ied species (Fig. 2). The cell body is located ventrally in the pos-
terior lateral margin of the A3 ganglion (Fig. 2A, arrow 1). The
primary neurite ascends from the cell body to the neuropil 70—
100 wm below the dorsal surface and runs toward the midline and
crosses to the contralateral side (Fig. 2A, arrow 2). At the midline,
an extensive dendritic branching pattern spreads from the pri-
mary neurite anteriorly 25-40 wm beneath the surface (Fig. 24,
arrow 3) and some finer dendrites project posteriorly (Fig. 24,
arrow 4). The axon arises from the primary neurite and bends
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Table 1. Song properties and fictive motor pattern in the cricket species studied

Species (N song/ Pulse duration Pulse period Number of pulses Song/phrase duration® Song/phrase period®

fictive pattern) Song (ms) Fictive (ms)® Song (ms) Fictive (ms)b Song Fictive Song Fictive Song Fictive

G. bimaculatus  18.6 + 3.2 209 =29 382+32 4336 3.8 = 0.5 pulses/chirp 4.5 = 1 pulses/chirp 130 = 24 ms 188 = 5ms 408 = 51 ms 459 = 92 ms
(N=5/5)

G. assimilis 81+13 85+25 167 =15 238+54 6.3 == 1.1 pulses/chirp 6.8 = 1 pulses/chirp 102 = 14 ms 142 = 22 ms 15+04s 1.1+045s
(N=8/8)

G. rubens Mn1+22 148 =3 263+ 4 273+ 6.6 62 == 34 pulses/trill 44 = 19 pulses/trill 15+07s 11+07s 2*x1s  13%07s
(N=8/8)

T.commodus  Chirp:30.4 = 2.4;  Chirp:21.8 £ 5.5;  Chirp:60.9 = 4.5, Chirp:71.1 =11, Chirp: 0.5 = 0.4 pulses/chirp; Chirp: 9.1 == 2 pulses/chirp; ~ Chirp:303 == 38 ms; Chirp:600 = 22ms; 22+ 1s 42+ 17s
(N = 8/4) till 22.4 =2 trill 15.4 = 3.6 trill33.9 £ 1.9 trill42.2 = 7.8 trill 9 == 1.7 pulses/trill 1ril110.3 = 6 pulses/trill trill1.4 =055 trill 611 = 472 ms

T. oceanicus Trill: 29 + 43; Trill: 23.2 = 0.9; Trill: 62.5 = 7.7; Trill: 70.3 = 15; Trill: 5.5 == 0.5 pulses/trill; Trill: 8.8 == 4.3 pulses/trill; Trill: 313 = 49ms;  Trill: 632 *= 75 ms; 2+05s 23*+19s
(N = 8/4) chirp:23.6 £42  chirp:16.8 = 1.2 chirp:39.6 =51 chirp:53.3 £93  chirp:2 = 0.1pulses/chirp  chirp:2 = 1.1 pulses/chirp  chirp: 1.5 £ 055 chirp: 1.5 = 0.7 s

“Time between the start of the wing-opener to the start of wing-closer motoneuron activity.
“Time between the start of two consecutive wing-closer motoneuron activities.
“In species of the genus Teleogryllus, with complex songs, “phrase” corresponds to both sections of the song.
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Figure2. Structure of the abdominal ascending openerinterneuron A3-AQin cricket species. A, Morphology of A3-AO with cell body and dendrites in A3 and axonal projections in thoracic ganglia
T2and T3,,,,, (dorsal view). B, Maximum-intensity projections of confocal image stacks showing the fluorescence-labeled (Bi, LY, green; Bii, Alexa Fluor 568, red) arborizations of the two pairs of
bilateral symmetrical A3-AQ in T. commodus. Both stainings reveal dye coupling between the left and right neurons. The intracellular injection of the two dyes was performed in the same animal in
different regions of the A3 ganglion. The merge (Biii) of the two projections shows a perfect correspondence between the two stainings. Arrows mark the cell bodies. Scale bars, 150 wm. G, In T.
oceanicus, maximum-intensity projections of confocal image stacks of staining a single interneuron with neurobiotin-avidinCy3 revealed the arborizations of two pairs of bilateral A3-AQ interneu-
rons. i, In one animal, two cell bodies occurred unilaterally on the left side and one cell body on the right side. i, Another staining revealed two cell bodies unilaterally on the left side. Arrows mark
the cell bodies. Scale bars, 150 wm.
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laterally toward anterior and projects at the margin of the con-
tralateral connective toward the thoracic ganglia (Fig. 2A, arrow
5). In the metathoracic ganglion complex (T3,,,,,), four to seven
prominent axon collaterals project dorsally toward the midline
(Fig. 2A, arrow 6); in the mesothoracic ganglion (T2), a further
two to five smaller collaterals project in a similar manner (Fig. 2A,
arrow 7). The axon continues to the prothoracic ganglion (T1);
however, details of the structure could not be revealed. In all
Gryllus species, the A3-AO occurs as one bilateral pair of neurons
showing dye coupling.

In addition to these similarities among the A3-AO neurons in
Gryllus, there are also some differences. A3-AOy;,.. (N = 5; Fig.
2A) has a very symmetrical dendritic branching pattern in the
anterior region of the A3 ganglion; however, in the two North-
American species, dendrites are more branched on the contralat-
eral side. In the T3,,,,, the A3-AQO,,, has fewer and finer
dendrites that are restricted to the midline of the ganglion (N = 8;
Fig. 2A). In A3-AO, pens Several axon collaterals in the T34,
project toward the lateral region of the ganglion (N = 8; Fig. 2A).
The extensive dendritic arborization in the A3 ganglion and axon
collaterals in Teleogryllus are very similar to the A3-AOy;,,.- As a
fundamental difference from Gryllus, in Teleogryllus, the number
of A3-AO neurons is higher. In T. commodus, a second pair of
bilateral interneurons was always stained via dye coupling in re-
cordings with neurobiotin (N = 2) or Alexa Fluor 568 and LY
(N =2).Inthree of four T. oceanicus stainings of A3-AQ, ..., with
neurobiotin (N = 2) or with Alexa Fluor 568 (N = 1), three cell
bodies (Fig. 2C, left) were labeled, whereas in one animal, two cell
bodies were labeled on the same side (Fig. 2C, right; Alexa Fluor
568).

Activity of A3-AO interneuron during fictive calling song

The stereotypical pattern of the motor activity allowed an iden-
tification of the corresponding song patterns (Fig. 1C) and to
quantify the features of the singing activity (Table 1). During
fictive singing, the pulse period across the species increased by
4-30%; however, the characteristics and temporal organization
of the fictive calling song corresponded to the natural calling song
of each species (Table 1).

In the genus Gryllus, brain stimulation induces reliably calling
song motor pattern. However, in the genus Teleogryllus, this was
not the case. In T. commodus (N = 17), only four generated
sustained periods of calling song, with 13 male generating mixed
motor patterns; that is, the production of long chirps resembling
the aggressive song or a mixture of calling and courtship songs
(Loher and Rence, 1978; Paripovic et al., 1996). In T. oceanicus,
four of 17 generated sustained periods of fictive calling song.

In all species, the A3-AO interneuron was identified by its
rhythmic activity in phase with the wing-opener motor pattern
(Fig. 3). Before each singing episode (chirps or trills), a gradual
increase in membrane potential (ramp depolarization) occurred
that culminated with the start of the burst depolarization of the
A3-AO (Figs. 3, 4, blue highlight, Table 2). During the intervals
between singing episodes, spiking ceased and there was only weak
synaptic activity. A single opener-closer cycle is characterized by a
rapid depolarization of A3-AO preceding the wing-opener activ-
ity (Fig. 3Aii—Eii, open circles), followed by a hyperpolarization
preceding the wing-closer activity (Fig. 3Aii—Eii, closed circles).
Recordings from the main neurite revealed a burst of spikes of
0.3—-1.2 mV amplitude riding on top of a 10—-18 mV amplitude
depolarization (Fig. 3Aii—Eii, arrowheads). In all species, the la-
tency between the first spike of an A3-AO burst and the subse-
quent wing-opener activity was very short and stable (9-12 ms;
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Table 3). In addition to these general features, the neurons exhibit
species-specific characteristics, which are summarized in Figures
3 and 4 and Tables 2 and 3.

In G. bimaculatus, each chirp is initiated by a gradual ramp
depolarization starting 42 = 6.4 ms before a chirp and reaching
an amplitude of 6 = 0.5 mV at the beginning of the pulse pattern
(Figs. 3Aii, 4Ai, blue highlight; Table 2; N = 5 animals, n = 50
chirps). For each pulse period, the membrane potential oscilla-
tions of A3-AOy; .. (Figs. 3A, 4A) consisted of a 17.5 = 2.1 mV
amplitude depolarization generating a burst of 4—6 spikes fol-
lowed by a 9.2 £ 2.5 mV hyperpolarization (Table 3). H-to-T
took 17 = 6.7 ms and T-to-S took 4.1 = 1.7 ms (N = 5, n = 50;
Table 2); the rise of the membrane potential to the first spike of a
burst occurred with 4.3 mV/ms.

In G. assimilis, the ramp depolarization starts 40 = 7 ms before a
chirp and reaches an amplitude of 4.3 = 1.3 mV (Figs. 3Bii, 4Bi,
Table 2; N = 10, n = 100). During a chirp, the membrane potential
is maintained at 2—4 mV above the resting potential, whereas the
activity of A3-AO, ., (Fig. 3B) varies during the chirp pattern. A
sequence of five to eight pronounced depolarization—repolarization
cycles is superimposed on the elevated membrane potential. The
depolarization amplitude of the first and last pulse is the smallest,
11 = 2 mV and 10.4 = 3.1 mV, respectively (Table 3; N = 10 ani-
mals, n = 100 chirps), whereas the middle pulses have a mean am-
plitude of 14.9 = 4.6 mV (Fig. 3B, Table 3: N = 10, n = 100). The last
burst is terminated by a pronounced transient hyperpolarization of
11.7 = 3.1 mV preceding the final closer activity (N = 10, n = 100;
Table 3). Because the second burst has the most pronounced depo-
larization, its transition phase was analyzed in detail. For this burst,
the H-to-T took 9.1 0.6 ms, the T-to-Swas 1.9 = 0.5 ms (N = 10,
n = 100; Table 2), and the rise of the membrane potential to the first
spike of this burst occurred within 7.6 mV/ms.

In G. rubens, the ramp depolarization begins 21 * 2.1 ms
before a trill and reaches 2.9 = 0.4 mV (Fig. 4Ci, Table 2; N = 10,
n = 70). During a trill, the A3-AQO,;,.,s membrane potential
rhythmically oscillates in phase with the pulse pattern (Fig. 3C).
Preceding each subsequent opener activity, the neuron generates
a10.5 * 4.7 mV amplitude depolarization with 2—4 spikes (Table
3; N = 10, n = 70 trills). Each depolarization is followed by a
hyperpolarization of 8.1 = 3.5 mV (Table 3; N = 10, n = 70)
preceding the following closer activity. H-to-T takes 12 * 3.3 ms
and T-to-S takes 4.7 = 2.3 ms (N = 10, n = 70; Table 2); at the
start of a burst, the membrane potential changes at a rate of
2.3 mV/ms.

In T. commodus (Fig. 3D), the rhythmic activity of A3-
AO mm mirrors the chirp and trill sections. The ramp depolar-
ization starts 101 = 11 ms before a chirp and reaches an
amplitude of 4.1 = 2.2 mV (Fig. 4Di, Table 2; N = 4, n = 40).
During chirps, each depolarization of 16.4 * 4.1 mV (Table 3;
N = 4, n = 40 song phrases) generates 3—7 spikes followed by a
hyperpolarization of 10.1 * 3.2 mV (Table 3: N = 4, n = 40).
During trills, the amplitude of the depolarization is 13.4 * 3.8
mV (Table 3; N = 4, n = 40) with 3-9 spikes, followed by a 6.5 =
2.5 mV hyperpolarization (Table 3; N = 4, n = 40). The H-to-T
is 35 = 4 ms during a chirp and 14 * 2.1 ms during a trill, the
T-to-Sis 7.5 = 0.5 ms during a chirp and 4.5 = 1.2 ms during a
trill (N = 4, n = 40; Table 2). The membrane potential at the
beginning of a burst increases with 2.2 mV/ms during a chirp and
with 3 mV/ms during a trill (N = 4, n = 40).

In T. oceanicus (Fig. 3E) the rhythmic activity of A3-AO,can
clearly reveals the trill and the chirp sections of the song (Fig. 3E).
The ramp depolarization begins 51 = 15 ms before a trill reaching
an amplitude of 2.8 = 0.1 mV (Fig. 4Ei, Table 2; N = 4, n = 40).
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Start ramp Amplitude ramp H-to-T T-to-S Rate of membrane
Species (N animals) depolarization (ms) depolarization (mV) interval (ms) interval (ms) potential change (mV/ms)
G. bimaculatus 4 *+64 6£05 17 £6.7 41x17 43
(N'=5;n = 50 chirps)
G. assimilis 40=x7 43+13 9.1 *=0.6 1905 7.6
(N'=10; n = 100 chirps)
G. rubens 2121 2904 12+33 47+23 23
(N'=10; n = 70trills)
T. commodus Chirp: 101 = 11; Chirp: 4.1 = 2.2; Chirp: 35 = 4; Chirp: 7.5 = 0.5; Chirp: 2.2; trill: 3
(N = 4;n = 40 chirps/trills) trill: 47 = 5.5 trill: 47 = 1.4 trill: 14 == 2.1 trill: 4.5 1.2
T. oceanicus Trill: 51 == 15; chirp: Trill: 2.8 == 0.1; chirp: Trill: 35 = 4; Trill: 4.2 = 0.4; Chirp: 3.7; trill: 3.6
(N'= 4;n = 40 chirps/trills) not analyzed, chirp not analyzed, chirp chirp: 18 = 0.1 chirp:3.8 = 0.2
intervals <100 ms intervals <100 ms
Table 3. Properties of the A3-A0: spike and burst activity
Spikes per Spike delay to wing-opener Depolarization Hyperpolarization
Species (N animals) pulse motoneurons (ms) x = SD amplitude (mV) amplitude (mV)
G. bimaculatus (N = 5;n = 50 chirps) 4-6 104 = 1.2 175 = 2.1 92=*x25
G. assimilis (N = 10;n = 100 chirps) 3-6 8912 151120 1°49.8 =27
Middle: 14.9 = 4.6 Middle: 7.5 =+ 1.4
Last: 10.4 = 3.1 Last: 11.7 = 3.1
G. rubens (N = 10;n = 70 rills) 2-4 98+ 14 105 £ 47 81*35
T. commodus (N = 4; n = 40 chirps/trills) Chirp:3-7 Chirp: 11.6 = 1.4 Chirp: 16.4 = 4.1 Chirp:10.1 = 3.2
Trill: 3-9 Trill: 11.2 =13 Trill: 13.4 = 3.8 Trill: 6.5 = 2.5
T. oceanicus (N = 4; n = 40 chirps/trills) Trill: 4—6 Trill: 0.9 + 2.3 Trill: 15.9 = 5.2 Trill: 9.5 = 3.9
Chirp: 2-5 Chirp: 11.0 = 2.3 Chirp: 13.6 = 4.2 Chirp:7.2 £33

During the trill, the rhythmic depolarization preceding the
opener activity is 15.9 = 5.2 mV in amplitude (Table 3; N = 4,
n = 40 song phrases), generating 4—6 spikes, and each depolar-
ization is followed by a hyperpolarization 0f 9.2 = 3.9 mV (Table
3; N = 4, n = 40). During the chirps, the depolarization has an
amplitude of 13.6 = 4.2 mV (Table 3; N = 4, n = 40), generating
2-5 spikes, followed by a hyperpolarization of 7.2 = 3.3 mV
(Table 3; N = 4, n = 40). H-to-T is 35 = 4 ms during the trill
section and 18 = 0.1 ms during the chirp section. T-to-Sis 4.2 =
0.4 ms during the trill section and 3.8 % 0.2 ms during the chirp
section (N = 4, n = 40; Table 2). At the beginning of a burst, the
membrane potential increases with 3.7 mV/ms in the trills and
with 3.6 mV/ms during the chirps.

Initiation and modulation of singing motor patterns by
intracellular A3-AO stimulation
In all species, injection of depolarizing current (4 nA, 155 ms)
into the main neurite of the A3-AO interneuron elicited oscilla-
tions of the membrane potential (Fig. 5A—E) accompanied by
alternating opener—closer motoneuron activity in the meso-
Nv3A. Motor activity ceased with the end of the current injection.
We analyzed the pulse periods and compared the motor ac-
tivity of the fictive song pattern (blue) with the activity induced
by A3-AO current injection (orange), taking the wing-closer ac-
tivity as a reference (Fig. 5Aiii, inset). In Gryllus species, the pulse
periods of fictive singing as elicited by pharmacological brain
stimulation (see Materials and Methods) were not significantly
different from the pulse periods elicited by A3-AO stimulation.
In G. bimaculatus, the median pulse period during fictive singing
was 42 ms (IQR: 39.2 ms/44.8 ms, N = 4) and for A3-AQ stimu-
lation it was 39.9 ms (IQR: 36.4 ms/45.5 ms; Kolmogorov—Smir-
nov test for equality of distribution functions: p = 0.485, N = 4,
n = 5 stimuli/animal, Fig. 5Aiii). In G. assimilis, the median pulse
period during fictive singing was 20.3 ms (IQR: 16.1 ms/23.8 ms;

N = 4) and during A3-AO stimulation it was 20.3 ms (IQR: 16.8
ms/23.8 ms; Kolmogorov—Smirnov test: p = 0.541, N=4,n =5
stimuli/animal, Fig. 5Biii). For G. rubens, the median pulse pe-
riod of fictive singing was 26 ms (IQR: 25 ms/27 ms; N = 4) and
for A3-AO current injection 24 ms (IQR: 21 ms/26 ms; Kolmogo-
rov—=Smirnov test: p = 0.159, N = 4, n = 10 stimuli/animal, Fig.
5Ciii).

In Teleogryllus species, the fictive calling song elicited by brain
stimulation had a bimodal distribution of pulse periods due to
the generation of chirps and trills (Fig. 5Di—Ei). In both species,
the first peak of the distribution corresponds to the song phrase
with the highest pulse rate (T. commodus: median 41.8 ms [IQR:
37.4 ms/46.2]; T. oceanicus: median 47.3 ms [IQR: 40.7 ms/50.6
ms]; Fig. 5Diii—Eiii, orange; N = 4). The second peak of the
distribution corresponds to the song phrase with the lowest pulse
rate (T. commodus: median 72.6 ms [IQR: 66 ms/79.2 ms]; T.
oceanicus median 70.4 ms [IQR: 66 ms/ 77 ms]; Fig. 5Diii—Eiii,
blue; N = 4). Intracellular A3-AO stimulation induced shorter
pulse periods than either of these: the median pulse period was
28.6 ms (IQR: 25.3 ms/30.8 ms) in T. commodus and 34.1 ms
(IQR: 28.6 ms/42.9 ms) in T. oceanicus. The pulse periods corre-
spond most closely to the faster sections of the fictive song, but
they were significantly shorter (Kolmogorov—Smirnov test: T.
commodus p = 0.002, N = 4, n = 10 stimuli/animal, Fig. 5Diii; T.
oceanicus p = 0.032, N = 4, n = 10 current stimulations per
animal, Fig. 5Eiii).

In the fictive motor pattern, slower song sections in terms of
pulse period always precede the faster sections. We subsequently
tested the response of A3-AO to 3.4 s current pulses of +3 nA to
determine whether both the slow and fast sections of the songs could
be elicited. In both Teleogryllus species, sustained injection of depo-
larizing current in A3-AO induced different pulse periods.

In T. commodus (Fig. 6Ai), three different types of membrane
potential oscillations occurred during long A3-AO depolariza-
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Figure 5. Injection of depolarizing current pulses in A3-A0 elicits singing activity. Ai—Ei, In all species, intracellular injection of +4 nA for 155 ms (red bar, top trace) elicited rhythmic A3-AO

activity (middle trace) with depolarization— hyperpolarization cycles and the corresponding singing motor pattern (bottom trace). Aii—Eii, Response driven by the current pulse at a high temporal
resolution. Aifi—Eiii, Probability distribution of pulse periods as calculated from the start of wing-closer bursts (see inset in Ai). Pulse periods induced by pharmacological brain stimulation are
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tion. The motor pattern started with a fast section composed of
three to six pulses (Fig. 6Aii; see figure legend for details on
median pulse period), followed by a slow section with five to
10 pulses (Fig. 6Aii) and a subsequent continuous fast section
(Fig. 6Aii). The fast sections had a pulse period similar to a trill
section and the slow sections had pulse periods similar to a
chirp section.

Three different types of membrane potential oscillations rep-
resenting the pulse pattern also occurred in T. oceanicus (Fig. 6Bi)
following intracellular A3-AO stimulation. Compared with fic-
tive singing, activity started with an unusually fast rhythm (Fig.
6Bii, see figure legend for details on median pulse period), fol-
lowed by a slower section (Fig. 6Bii), and finally by a section with

an intermediate rhythm (Fig. 6Bii). The intermediate section had
a pulse period similar to a chirp section and the slow sections had
pulse periods similar to a trill section. The fast section elicited by
the current injection is surprising in the context of the calling
song of T. oceanicus. In addition to this, the organization of the
resulting song pattern was different from the fictive calling song
because the silent intervals between the trills and chirps were
lacking (Fig. 6).

Current injection in A3-AO imposes artificial song patterns

Spike activity of A3-AO is sufficient to determine the temporal
structure of song episodes in all five species, as demonstrated by
intracellular injection of +4 nA current of different duration and
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top trace) elicited rhythmic A3-A0 activity (middle trace) and rhythmic singing motor pattern (bottom trace) until the current injection ceased. In T. commodus, three different types of membrane
potential oscillations occurred during long A3-AQ depolarization. The motor pattern started with a fast section composed of three to six pulses (first fast section; median pulse period: 34.9 ms, IQR:
31.7ms/37.6 ms), followed by a slow section with 5—10 pulses (median pulse period:60.5 ms, IQR: 56.6 ms/64.3 ms) and a subsequent continuous fast section (second fast section; median pulse
period: 41.3 ms, IQR: 38.3 ms/44.4 ms). In T. oceanicus, activity started with an unusually fast rhythm (fast section; median pulse period: 27.7 ms, IQR: 25.1 ms/30.5 ms), followed by a slow section
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significantly differed between the sections (Kruskal-Wallis: p << 0.0001; Dunn’s multiple-comparisons test, p << 0.0001; N = 4, n = 10 stimuli/animal).

rates (Fig. 7). In species with short chirps, such as G. bimaculatus
and G. assimilis, depolarization for 1.6 s caused the membrane
potential of A3-AOy; ., and A3-AO, ., to oscillate continuously
in the species-specific pulse pattern accompanied by singing mo-
tor activity. Fictive singing activity, however, was not organized
in chirps; rather, its duration was determined by the current in-
jection pattern (Fig. 7Ai—Bi). In the species with long calling
songs, G. rubens and both Teleogryllus species, short current
pulses (170 ms in G. rubens and T. oceanicus and 300 ms in T.
commodus) elicited A3-AO membrane potential oscillations dur-
ing the current injection, accompanied by short bouts of singing
motor activity that normally would not occur (Fig. 7Ci—Ei).

In all species tested, the duration of singing episodes was con-
trolled by activation of the A3-AO and the intracellular current
pulses set the temporal structure of the singing pattern. Further-
more, in Teleogryllus, the fast and slow sections of the song were
induced by long current injection. These data suggest that the
normal organization of chirps and trills is not determined just by
the A3-AO activity, but also by additional neurons within the
network that control and drive the A3-AQ interneuron.

Reset of chirp pattern
In Gryllus species, depolarizing A3-AO with current pulses (4 nA,
100 and 500 ms duration) during fictive singing modified the

ongoing song pattern (Fig. 8). In G. bimaculatus and G. assimilis,
the stimulation reset the ongoing chirp rhythm (Fig. 8 A, B). In-
jection of 100 ms (G. bimaculatus: N = 5, n = 88; G. assimilis: N =
6,1 =97) and 500 ms (G. bimaculatus: N = 3,n = 30; G. assimilis:
N = 6, n = 53) pulses at different moments of the chirp cycle
revealed a linear relationship between the stimulation phase
within the chirp cycle and the shift of the chirp rhythm (Fig.
8Aii—Bii). In G. rubens, there was a linear relationship between
the stimulation phase and the shift of the trill rhythm for 500 ms
current pulses (N = 5, n = 62 trills), but not for the 100 ms pulses
(N = 6, n = 86 trills; Fig. 8Ci,Cii). In both cases, > was low, which
could be due to the intrinsic variability in the fictive trill pattern
in this species. In Teleogryllus species, current injection altered
the ongoing singing activity (data not shown); however, the vari-
ability of the fictive calling song pattern did not allow us to cal-
culate a reliable phase-response curve.

Response of A3-AO to hyperpolarizing current pulses

In G. bimaculatus, hyperpolarizing current injection in the main
dendrite of A3-AO demonstrated an after inhibitory rebound
that subsequently initiated the generation of singing motor activ-
ity (Schoneich and Hedwig, 2012). We analyzed to what degree
the A3-AO interneuron of the species shared this property.
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In all five species, injections of —5 nA
pulses for 1 s in the main dendrite were
followed by cycles of depolarization and
hyperpolarization accompanied by wing-
opener and wing-closer motor neuron ac-
tivity. The rebound depolarization as
measured from the resting membrane po-
tential to the peak of the rebound had an
amplitude of 3-10 mV (Fig. 9, vertical
arrows) and elicited 1-3 spikes. The sub-
sequent hyperpolarization had an ampli-
tude of 0.5-3 mV (Fig. 9Ai—Ei). However,
the shape and amplitude of the elicited
depolarization-hyperpolarization cycles
were smaller compared with the membrane
potential oscillations during fictive singing.

We measured the latency of the first
spike generated after release from hyper-
polarization by —0.5 nA to —10 nA (Fig.
9Aii—FEii, horizontal arrows) and calculated
the linear regression functions for the data.
In all Gryllus species, the regression func-
tions indicate a tendency for larger-ampli-
tude negative currents inducing longer
rebound latencies (Fig. 9Aii—Cii). In Te-
leogryllus, data were more variable and a
clear tendency cannot be reported (Fig.
9Dii, Eii).

Discussion

We analyzed the structure and function of
the A3-AO neurons in five cricket species
that generate different calling songs to re-
veal if and how species-specific behavior is
reflected at the level of an identified CPG
interneuron.

The study of neuronal homology across
closely related species requires combining
different levels of evidence (Weiss and Kup-
fermann, 1976; Arbas et al., 1991; Katz,
2007, 2016a,b; Niven and Chittka, 2016;
Katz and Hale, 2017). Here, we used com-
prehensive behavioral, neurophysiologi-
cal, and structural data to reveal the
homology of the A3-AO neuron in crick-
ets. Our results suggest that, in all five spe-
cies, the interneuron can be considered to
belong to the singing CPG according to
the criteria for identifying CPG compo-
nents described by Marder and Calabrese
(1996).

Neurophysiological evidence for
homology of function

The A3-AO interneuron showed similar
neurophysiological characteristics across
the five species and at least four shared
features can be surmised.

First, a ramp depolarization of the
membrane potential occurs before the
start of chirps or trills. A gradual ramp
depolarization of the A3-AO preceded the
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stimulation, a stimulus artifact occurs. Aii—Cii, Phase—response diagrams for current pulses of 100 ms (gray circles) and 500 ms (black circles) showing that the shift of the chirp pattern depends
linearly on the stimulus phase and current duration except for the 100 ms current injection in G. rubens. Inset, T,, _, is the chirp period before stimulation; tis the time from the beginning of the chirp
to the time of the current pulse; and T, is the chirp period after stimulation.
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generation of a chirp or trill. This depolarization could be im-
parted by the descending command neurons, driving the singing
CPG with tonic spike activity (Hedwig, 2000) similarly to the
swimming CPG in Tritonia (Frost and Katz, 1996). Alternatively,
the ramp depolarization may be controlled by neurons of the
singing network housed in the posterior ganglia (Jacob and Hed-
wig, 2016), which control the chirp pattern of the songs.

Second, activity is tightly coupled to the calling song pattern.
Depolarization and spike activity precede the wing-opener mo-
toneuron activity followed by a repolarization/hyperpolarization
preceding the wing-closer motoneurons. The depolarization and
spike burst of A3-AO is always in phase with the wing-opener
activity and the hyperpolarization to the wing-closer activity. Ad-
ditionally, the neurons show species-specific characteristics in
terms of the shape of the membrane potential oscillations, the
steepness and amplitude of the start of the bursts, and the number
of action potentials per depolarization. These differences might
be crucial for the timing of the species-specific pulse patterns
because the activity of the A3-AO seems to inhibit the closer
interneurons during the opener phase. This subsequently triggers
the closer interneuron activity (Schoneich and Hedwig, 2012),
which drives the closer motoneurons to produce a sound pulse.

At the current level of analysis, it is impossible to reveal to
what degree the species-specific characteristics of membrane po-
tential changes are due to intrinsic properties of the A3-AO or
due to synaptic inputs driving the neuron. We expect that a com-
bination of specific adaptations of A3-AO conductances and net-
work properties will contribute to the species-specific patterns
(Selverston, 1980).

Third, A3-AO is an element of the singing CPG. Its activity
elicits the species-specific pulse-pattern of the calling song; in
Gryllus it resets the timing of the chirps/trills. Activation of the
interneuron by current injection was sufficient to initiate and
maintain rhythmic activity of the wing motoneurons typical of
the species-specific singing motor pattern and to reset the chirp
pattern in the Gryllus species. In Teleogryllus, three significantly
different pulse periods occurred upon long current injections. In
T. commodus, the structure of the induced motor pattern had a
trill-chirp—trill organization and resembled the courtship song
(Loher and Rence, 1978; Paripovic et al., 1996). Moreover, stim-
ulation of the neuron with sequences of current injections im-
posed an artificial song structure in all species. The A3-AO
interneuron could be a network element that determines the tem-
poral structure of species-specific song patterns. However,
whereas the timing of song episodes is determined by A3-AO
activation, the neuron depends on other synaptic inputs from the
singing network to organize the chirp/trill pattern and stabilize
the normal song pattern. This is consistent with the finding that
the A3 ganglion in G. bimaculatus houses part of the pulse-timer
network for singing, whereas the temporal pattern of the chirps is
controlled by the posterior ganglia (Jacob and Hedwig, 2016).

Fourth, the neuron generates a rebound depolarization after
inhibition. The function of the singing CPG is thought to be
based on a reciprocal inhibitory network (Bentley, 1969; Scho-
neich and Hedwig, 2012). The ion channels involved in driving
the rebound are not yet identified. Our data show that there is a
tendency for the latency of the first spike of the rebound depolar-
ization to become longer with the amplitude of the hyperpolar-
izing current in the Gryllus species; the effect is quite variable and
appears to plateau at —8 nA. Precluding any final conclusion, this
might point to the presence of the transient potassium current I,
(Hartline and Gassie, 1979; Harris-Warrick et al., 1995a,b; Pirtle
and Satterlie, 2004). These currents are known to be involved in
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the modulation of the timing of activity of neurons in several
motor networks (Tierney and Harris-Warrick, 1992; Harris-
Warricketal., 1995a; Pingetal., 2011). The ion channels involved
in driving the rebound will need to be analyzed using voltage-
clamp and pharmacological experiments.

Structural evidence for homology and

functional implications

Homology based on conserved neuron morphology across spe-
cies is common and accepted in invertebrate motor systems (Wil-
son et al., 1982; Arbas, 1983a,b; Schiitze and Elsner, 2001) and
sensory systems; for example, the Omega-neuron 1 in the audi-
tory pathway of crickets (Casaday and Hoy, 1977; Romer et al.,
1988; Stumpner and von Helversen, 2001; Farris et al., 2004). The
shared structural features of the A3-AO neuron support homol-
ogy as the most parsimonious explanation: (1) the conserved
position of the cell body located on the posterior ventral side of
the A3 ganglion, (2) the location and shape of the extensive an-
terior dendritic branches and the small posterior dendrites dor-
sally in A3, (3) the axon projection through the most lateral part
of the contralateral connective toward the prothoracic ganglion,
(4) the axon collaterals present in ganglion T3 and T2, and (5) the
dye coupling that reliably occurs between the left-right neurons.

A comparison of the A3-AO structure indicates that its “ge-
stalt” is the same across species, which must be embedded in the
species-specific organization of the singing network. The neu-
rons are likely subject to a conserved developmental program,
determining the position of the cell body and the shape of the
dendritic and axonal ramifications. Specific differences in this
program may facilitate the evolution of song patterns. A final
proof for homology would require tracing the A3-AO to the same
ganglion mother cell (Bate et al., 1981; Pearson et al., 1985).

In Gryllus species, dye coupling revealed that A3-AO neurons
are present as one pair of bilateral neurons (Schoneich and Hed-
wig, 2011, 2012). Our data also support the presence of a single
pair of bilateral A3-AO neurons; however, due to the nature of
the experiments, the presence of a second pair of A3-AO neurons
cannot be excluded. In Teleogryllus, dye coupling demonstrated
the existence of at least two pairs of A3-AO neurons and we
hypothesize that this might be related to the different song rhythms
in Teleogryllus species, pointing to a difference between the clades of
Gryllus and Teleogryllus (Huang et al., 2000; Desutter-Grandcolas
and Robillard, 2001). The larger number of neurons involved in
pattern generation might be a way of increasing the synaptic strength
to drive postsynaptic neurons, increasing the reliability of song pat-
tern generation, or allowing more flexibility for the generation of
trills and chirps and point to different evolutionary ways to adjust
network properties.

Species-specific differences in the dendritic branching pattern
may reflect the strength of synaptic connectivity (Macagno et al.,
1973; Goodman, 1978; Arbas et al., 1991). Within the singing
network, there is clear evidence for species-specific differences
in the distribution, size, and density of dendrites and axon
collaterals within the neuropil of the A3 and thoracic ganglia,
respectively.

Axon collaterals and activity of the A3-AO interneuron

Across all species, the A3-AO neuron showed characteristic pro-
jections of its axon collaterals toward the midline of the T3,,,,,
ganglion, which may overlap with descending interneurons of the
singing network (Hennig, 1989, 1990; Schéneich and Hedwig,
2012). The arrangement and density of the main axonal collater-
als in the T3 ,,,, have characteristic species-specific differences,
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in contrast to the more similar axonal branching pattern in A3
and in T2. The A3-AO axon gives off small collaterals in the
dorsal neuropil of the T2 ganglion, which are remarkably similar
in the different species. These collaterals could overlap with the
dorsal dendrites of the wing-opener motoneurons (Ewing and
Hoyle, 1965; Bentley and Kutsch, 1966; Hennig, 1989; Kutsch
and Huber, 1989) and A3-AO could be a “premotor” interneu-
ron (Robertson and Pearson, 1983, 1985; Robertson, 1987). Al-
though evidence for synaptic connections has not yet been
obtained, in all species, the latency of the A3-AO spike and the
wing-opener motoneuron activity, as recorded in meso-Nv3A,
was short and stable. This might be an indicator for a direct link
between the A3-AO interneuron and the motoneurons. As at this
stage of processing, the pulse pattern is already determined, an
A3-AO to motoneuron connection could be a highly conserved
part of the singing network with few species-specific adaptations.

Conclusions for species-specific adaptations

underlying singing

In an evolutionary neurobiological approach, significant species-
specific differences between CPG-networks need to be revealed to
understand the evolutionary mechanisms leading to novel motor
patterns. Because the fundamental characteristics of the A3-AO
are conserved, our data indicate that the fine tuning of cellular
and network properties are key to understanding how species-
specific song patterns emerged. This imposes a fundamental
problem of such a network analysis, which will require the com-
bination of neurophysiological and neurogenetic tools to be
achieved.
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