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Abstract 17 

Aim: To determine whether in vitro experimental conditions dictate cellular activation of the 18 

inflammasome by apatitic calcium phosphate nanoparticles. Material and Methods: The 19 

responses of blood-derived primary human cells to in situ-formed apatite were investigated 20 

under different experimental conditions to assess the effect of aseptic culture, cell rest and 21 

duration of particle exposure. Cell death and particle uptake were assessed while IL-1β and 22 

caspase 1 responses, with and without lipopolysaccharide pre-stimulation, were evaluated as 23 

markers of inflammasome activation. Results: Under carefully addressed experimental 24 

conditions, apatitic nanoparticles did not induce cell death or engage the inflammasome 25 

platform although both could be triggered through artefacts of experimentation. Conclusion: 26 

In vitro studies often predict that engineered nanoparticles, such as synthetic apatite, are 27 

candidates for inflammasome activation and, hence, are toxic. However, the experimental 28 

setting must be very carefully considered as it may promote false positive outcomes. 29 

Keywords (6-10): Apatite, nanoparticle, Interleukin-1β, caspase 1, Inflammasome, 30 

experimental conditions. 31 

  32 
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1. Introduction 33 

Human exposure to existing and novel nanostructures, or existing materials that have now been 34 

nano-engineered, is inevitable. A complete assessment of their interactions with the host must 35 

be addressed appropriately. It is well established that properties of the particles themselves (e.g. 36 

size, shape, aspect ratio, dispersion state and rate, composition, surface charge, solubility etc.) 37 

and their interaction at the biological interface (e.g. formation of loose and hard protein corona, 38 

interaction with cell membrane etc.) dictate how particles behave and how they are seen and 39 

handled by cells [1-3]. Nonetheless, despite this heterogeneity in the physicochemical and 40 

biological properties of all that is termed ‘nano’, there are some properties that are more 41 

generally ascribed to nanoparticles than to their soluble or bulk counterparts [2]. One of these 42 

is an ability to activate the cellular inflammasome. In 2006, the late Jurg Tschopp and 43 

colleagues reported on the activation of the inflammasome by uric acid and calcium phosphate 44 

crystals [4]. Since then numerous (engineered) nanoparticles have been attributed as 45 

inflammasome activators including silica, titanium dioxide, aluminium hydroxide and calcium 46 

phosphates [5-10].  47 

Both inflammasome and calcium phosphate are terms that encompass families. First the 48 

inflammasome: when caspase 1 is activated in a cell it has very specific targets. Pro-IL-18 and 49 

the more widely studied pro-IL-1β are cleaved to form the active, and mostly pro-50 

inflammatory, cytokines (mature IL-18 and IL-1β). Canonical activation of caspase 1 is driven 51 

by the inflammasome platform following interactions of inflammasome sensor molecules 52 

(NOD like receptors; NLRP and also the PYHIN family protein AIM2) and the CARD-53 

containing apoptosis associated speck-like protein (ASC) [11, 12]. Thus for IL-1β to be 54 

secreted by cells both the pro-cytokine must be transcribed and translated, and the 55 

inflammasome platform activated. Some molecules activate the inflammasome; some activate 56 
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gene up-regulation of the pro-cytokines and some do both [11, 12]. Nanoparticles and 57 

especially nanominerals have acquired the reputation for inflammasome activation, sometimes 58 

concomitantly activating pro-IL-1β.  59 

Secondly, the calcium phosphates: these vary in structure from fully amorphous calcium 60 

phosphate (ACP), with a primary grain size as small as 9 Å, to fully crystalline forms such as 61 

monetite, tricalcium phosphate and hydroxyapatite. Aside from ACP, all show a degree of 62 

crystallinity and, recently, the biologically-relevant calcium phosphate family members have 63 

been comprehensibly reviewed by Dorozhkin [13]. Synthetic apatites that fairly closely 64 

correspond to biological apatite (i.e. bone mineral) are said to activate the inflammasome and 65 

induce IL-1β secretion by cells [14-17].  66 

Most reports of nanoparticle-induced activation of the inflammasome have provided elegant 67 

detailed molecular biology-based studies characterising the exact inflammasome platform and 68 

the various steps involved in activation. Less attention, however, has generally been paid to 69 

some basic but important particle and cell details. For example, what does the particle carry on 70 

its surface? What might it interact with in the cell culture medium? What is the importance of 71 

the cell activation status? When does particle uptake in culture exceed the in vivo situation 72 

where cells can migrate and be replaced by fresh ones? Here we have partly addressed these 73 

issues, focussing on apatitic nanoparticles which we previously reported could induce cellular 74 

IL-1β secretion [17]. We chose not to undertake molecular studies of the inflammasome but, 75 

rather, to use IL-1β secretion, and in places caspase 1 secretion, as robust markers of 76 

inflammasome activation when experiments are carefully designed. 77 

  78 
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Material and Methods 79 

 80 

Assessment of in vitro particle formation and sizing 81 

 82 

Preparation of calcium chloride solution 83 

A stock solution of 40 mM calcium chloride (CaCl2) was prepared by adding 0.58 g calcium 84 

chloride dihydrate (MW = 147.02 g/mol, AnalaR; BDH, VWR International Ltd, Poole, UK) 85 

into 100 ml 0.9 % sodium chloride solution (saline, Sigma-Aldrich, Poole, Dorset, UK). After 86 

autoclaving, a 20 mM working solution was made up by diluting the stock solution 1:1 with 87 

saline. 88 

 89 

In situ formation of calcium phosphate particles 90 

In this protocol, for the formation of calcium phosphate particles in situ in a tissue culture 91 

medium (TCM), 4 mM (final concentration of additional Ca) CaCl2 was added to supplemented 92 

TCM (namely RPMI 1640 which is naturally rich in phosphate, containing additionally 10 % 93 

heat inactivated fetal calf serum (FCS, PAA), 2 mM L-Glutamine (Sigma), 100 U/ml penicillin 94 

(Sigma) and 100 μg/ml streptomycin (Sigma)) [17]. As such, 250 l of the calcium chloride 95 

solution were added to 1 ml supplemented TCM in 5 ml polystyrene round bottom tubes 96 

(Marathon Laboratory Supplies), yielding an additional concentration of 4 mM Ca2+ and hence 97 

precipitation of calcium phosphate particles which were characterised as below. 98 

 99 

Particle sizing 100 

To investigate the size distribution of calcium phosphate particles that formed in the 101 

supplemented TCM over 24 hours, freshly prepared samples were analysed by three 102 

independent methods namely, nanoparticle tracking analysis (NTA), dynamic light scattering 103 
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(DLS) and static light scattering (SLS) at time points 3, 8 and 24 hours. Consistent with 104 

manufacturer’s guidelines, data for NTA, DLS and SLS are represented as particle number 105 

(106/ml), intensity (%) and volume frequency (%) respectively, as detailed below. 106 

 107 

a-NTA 108 

NTA was performed on a Nanosight NS500 (Nanosight, Amesbury, UK) using NTA2.3 109 

Analytical Software. Particle suspensions were diluted eightfold (25 fold for time point 24 110 

hours) in supplemented TCM before samples were measured in technical triplicates for 60 111 

seconds each and results were averaged. 2 independent experiments were performed, each 112 

consisting of 3 replicate samples per time point. Data are shown as means of the 6 replicates (4 113 

replicates for time point 24 hours). 114 

b-DLS 115 

DLS was performed on a Zetasizer Nano ZS (Malvern Instruments Limited, Malvern, 116 

Worcestershire, UK) using Dispersion Technology Software 4.20. Triplicate measurements 117 

were taken from undiluted particle suspensions applying refractive indices of 1.63 for calcium 118 

phosphate particles and of 1.33 for the dispersant. 3 replicate samples per time point were 119 

performed and data are shown as mean. 120 

 c-SLS 121 

SLS was performed on a Mastersizer 2000 with a Hydro 2000µP Micro Precision sample 122 

dispersion unit (Malvern Instruments Limited). The measurement procedure was adapted to 123 

enhance sensitivity and to preserve the experimental conditions under which the particles were 124 

formed. Baseline correction was carried out with fresh TCM. Subsequently, the dispersion unit 125 

was emptied and refilled with TCM alone or TCM with the additional 4 mM Ca2+ that had been 126 

incubated for 3, 8 or 24 hours. The dispersion unit was run at 500 rpm and great care was taken 127 
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to prevent the formation of bubbles. 3 samples were collected for each time point and each 128 

sample was analysed in triplicate (refractive index: 1.63; absorption 0.01).   129 

 130 

Zeta potential measurements 131 

As an indicator of surface charge, zeta potential measurements of particle suspensions were 132 

carried out, again at time points of 3, 8 and 24 hours, by laser Doppler velocimetry on a 133 

Zetasizer Nano ZS (Malvern Instruments Limited). Electrophoretic mobilities of particles, in 134 

an applied electrical field of 8.16 V/cm (effective voltage of 49.8 V; electrode spacing 61 mm), 135 

were converted into zeta potentials by Dispersion Technology Software 4.20 using Henry’s 136 

equation and the Smochulowski approximation for aqueous media. The experiment was 137 

performed twice, each time with 3 replicate samples per time point. Data are shown as means 138 

of 5 (24 hours) or 6 replicates (3 and 8 hours) with the standard deviations reported. 139 

 140 

Structural and chemical determination of in vitro precipitated particles 141 

Following in situ formation of calcium phosphate particles for 24 hours, the suspensions were 142 

drop cast onto holey carbon support films for transmission electron microscopy (Agar Scientific 143 

Ltd).  The air-dried films were examined in a FEI CM200 field emission gun TEM operating at 144 

197 kV fitted with an Oxford Instruments ultra thin window Si(Li) energy dispersive X-ray 145 

(EDX) spectrometer and a Gatan imaging filter (GIF 200; TEM images were analysed using 146 

Gatan’s Digital-Micrograph Software (version 3.11.2)). 147 

The elemental content of particles was measured in the TEM by quantification of spot- energy 148 

dispersive X-ray (EDX) spectra; the Ca/P ratio was determined from the Oxford Instrument’s 149 

ISIS processing software using virtual standards for Ca and P Kα X-ray peaks, monitored at a 150 

take-off angle of 20° and a specimen tilt angle of 15°. In addition to the above, dried calcium 151 

phosphate particles and control hydroxyapatite nanopowder (<200 nm, Sigma) were analysed 152 
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by FTIR. Spectra were collected using a Golden Gate single reflection diamond ATR accessory 153 

(Specac, Orpington, UK) with a Shimadzu IRPrestige-21 FTIR Spectrophotometer using the 154 

range 4000-750 cm-1 and 2 cm-1 resolution. 155 

 156 

Cellular responses to the calcium phosphate particles: influence of 157 

experimental conditions 158 

The study was approved by the research ethics committee of Cambridge (Reference 03/296). 159 

For the purpose of the entire work, peripheral blood mononuclear cells (PBMC) were isolated 160 

from blood of recruited healthy volunteers, following informed consent, or purchased from the 161 

national blood service (NBS, Addenbrooke’s Hospital site, Cambridge, UK). For each 162 

experimental condition investigated, we used blood cells from 2-4 different subjects unless 163 

otherwise stated. PBMC were isolated by density gradient centrifugation. Upon collection, 20-164 

25 ml heparinised blood was mixed at a 1:1 ratio with HBSS (Sigma, UK). 20-25 ml of the 165 

mixed solution was then carefully layered over 10 ml Lymphoprep (Axis-Shield, Norway) and 166 

centrifuged at 800 g at room temperature for 20 minutes. Separated mononuclear cells were 167 

then washed and re-suspended at 1.106 cells/ml in TCM if used immediately or frozen down 168 

for later use. Following cell stimulation, cell supernatants were collected after centrifugation at 169 

1,500 rpm for 5 minutes. 170 

 171 

Effect of particle purity, cell status and duration of exposure 172 

Here, we aimed to examine whether filtration of TCM and resting of cells before 173 

experimentation would impact on calcium phosphate nanoparticle formation (Hydroxyapatite, 174 

HA) and ensuing cellular responses. To that effect cells were (i) re-suspended in 0.2 μm filtered 175 

or unfiltered TCM, (ii) were rested for 24 hours at 37C in 5 % CO2/95 % air or used straight 176 

after isolation/thawing, and then (iii) stimulated with 250 l 20 mM CaCl2, in 5 ml polystyrene 177 
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round bottom tubes. Following 24 hour stimulation, supernatants were collected and stored at 178 

–70C until analysis. Comparative responses were assessed by concomitantly challenging 179 

rested PBMC with CaCl2 and the microbial associated molecular pattern (MAMP) 180 

lipopolysaccharide (10 ng/ml LPS from E.Coli, Sigma). 181 

To investigate the cellular responses to HA particles over time, 1 ml cell suspensions (n = 2) 182 

were stimulated with 250 l 20 mM CaCl2 in the presence or absence of 10 ng/ml LPS (Sigma) 183 

or equivalent volume of vehicle (0.9 % sodium chloride solution), after 24 hours rest. 184 

Supernatants were then collected after 1, 3, 8 and 24 hours incubation at 37C in 5% CO2/95% 185 

air and stored at -70C until analysis. 186 

 187 

Assessment of calcium phosphate toxicity 188 

To explore the possible effects of calcium phosphate (HA) on cell death, rested PBMC (n = 2) 189 

were stimulated with the in situ formed HA nanoparticles or with equivalent volume of vehicle 190 

for 2 to 24 hours at 37C in 5 % CO2/95 % air. After each time point, cells were washed 3 times 191 

in cold PBS at 400g for 10 minutes at 4C. Following the final wash, cells were re-suspended 192 

in 1x binding buffer (Invitrogen) at 1.106 cells/ml. 100 μl cell suspension was then transferred 193 

to 5 ml polystyrene round bottom tubes where 5 μl annexin V and propidium iodide (PI) (250 194 

ng/ml) were added. After gentle vortexing, the cells were left to incubate for 25 minutes in the 195 

dark at room temperature. Finally 400 μl of 1x binding buffer were added to each tube, and 196 

samples were analysed by flow cytometry. Results are expressed as percentage of monocytes 197 

that stained positively for both PI and annexin V and referred to as % dead monocytes. 198 

 199 

Measurement of calcium phosphate uptake in CD14+ cells by flow cytometry 200 

and flow imaging 201 
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To demonstrate the cellular uptake of calcium phosphate particles over time, fluorescent calcein 202 

(Sigma) was utilised to stain the calcium mineral particles as they formed and thus to identify 203 

particles subsequently taken up by phagocytic cells. 1 μL of 10 mg/mL calcein solution was 204 

added to the PBMC (1.106 cells/ml in TCM) prior to the experimental incubation with either 205 

vehicle or 250 l 20 mM CaCl2.  Following incubation for 1, 3 or 24 hours, cells were washed 206 

and stained with PerCP-Cy 5.5 CD14 antibody (BD Biosciences) for 20 minutes, as per 207 

manufacturer’s protocol, and protected from light thereafter. After washing and fixing in 1 % 208 

para-formaldehyde solution, samples were filtered, split and a minimum of 300,000 events per 209 

sample immediately acquired using a Cyan ADP flow cytometer (Beckman Coulter) with 210 

Summit software for acquisition and analysis. Remaining cells (a minimum of 10,000 events) 211 

were acquired using the ImagestreamX, INSPIRE and IDEAS acquisition and analysis software 212 

(Merck Millipore Amnis). For each instrument, appropriate unstained and single stained 213 

compensation controls were run alongside. 214 

 215 

Cellular responses to calcium phosphate particles using optimised 216 

experimental conditions 217 

To dissect out further the potential involvement of calcium phosphate particles on 218 

inflammasome activation, we applied the optimised experimental conditions to blood cells from 219 

four independent subjects. Since there is limited pro-IL1 β in resting cells, which needs to be 220 

induced via Toll like receptor (TLR) signalling [18], isolated PBMC (1.106 cell/ml) were first 221 

subjected to LPS pre-stimulation (10 ng/ml for 3 hours) and then challenged with peptidoglycan 222 

(Pg) both in a crude (S. Aureus) or soluble (E. Coli) form (both at 10 μg/ml; Sigma and 223 

Invivogen respectively) or with the in situ precipitated calcium phosphate particles. As positive 224 

controls of inflammasome platform activation, cells were also subjected to adenosine 225 

triphosphate (ATP, 1 mM) ± LPS (10 ng/ml) and monosodium urate crystals (MSU, Caltag-226 
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Medsystems Limited; 100 μg/ml). All supernatants were collected following 3 hours 227 

stimulation as well as after 21 hours post challenge. 228 

 229 

Measurement of secreted cytokines and caspase 1 230 

IL-1 and Caspase 1 were measured by commercial ELISA development kits and ELISA 231 

Quantikine kits respectively, following the manufacturer’s protocol (R&D Systems).  232 

Statistics 233 

All data are expressed as mean ± SEM (unless otherwise stated) and were analysed by two-234 

way ANOVA tests followed by Bonferroni multiple comparisons, where appropriate. The level 235 

of significance was set at p ≤ 0.05.  236 
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Results 237 

Physico-chemical characterisation of in situ formed calcium phosphate 238 

The (non-precipitating) formation of nanoparticles in (complex) tissue culture medium limits 239 

ready separation of the pure nanomaterial. Thus, determination of the in situ-formed calcium 240 

phosphate structure drew upon multiple imaging and analytical data, namely: morphology, 241 

particle size, Ca:P ratio by EDX, selected area diffraction and infra-red analysis. Comparisons 242 

were made with established literature data for calcium phosphates. 243 

Addition of calcium chloride (+4 mM) to RPMI 1640, which is a phosphate-rich tissue culture 244 

medium (TCM), and subsequent incubation at 37C in 5 % CO2/95 % air, resulted in the 245 

formation of nanostructured particles of acicular morphology (FIGURE. 1A-C). The primary 246 

particle size could be identified as 100-150 nm in images of agglomerated particles (resulting 247 

from drying the suspensions on TEM grids). Further internal nanostructure of aggregated 248 

ultrafine crystals of individual primary particles could be seen at higher magnification 249 

(FIGURE. 1B-C and supplementary FIGURE. 1A). In suspension in TCM, particles were 250 

typically of 150-180 nm Z average aquated size, as shown by three independent light scattering 251 

techniques, (FIGURE. 1D-F, Table 1 and SUPPLEMENTARY FIGURE. 1B) which, 252 

allowing for the hydration shell, is in the same size range to the nanoparticulate structures 253 

observed by TEM (FIGURE. 1B). In TCM particle size distribution remained stable for 8 254 

hours but started to shift, marginally, towards large particle sizes by 24 hours (FIGURE. 1D-255 

F and Table 1). Zeta potential measures indicated net negative charge of the particles over 24 256 

hours in TCM (Table 1).  257 

TEM-EDX, acquired from particles suspended over holes in the support film, confirmed the 258 

particles to be calcium phosphate with an average Ca:P ratio of  ̴ 1.5 (FIGURE. 1G), consistent 259 
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with a non-stoichiometric apatite composition [13] that forms in serum-containing medium 260 

[19]. Selected area electron diffraction from these particles showed them to be polycrystalline 261 

having lattice spacings consistent with an apatite structure when the lattice spacings were 262 

matched to the strong reflections of the hydroxyapatite X-ray standard (SUPPLEMENTARY 263 

FIGURE. 1A inset and supplementary table 1). Infra-red analysis was consistent with 264 

hydroxyapatite cultured in TCM (FIGURE. 1 H-I) since amine adsorption bands from the 265 

serum proteins could be identified at 1600-1670 cm-1 [20], carbonate adsorption bands were 266 

present at 1465-1410 cm-1 and potential OH broadening from residual water with the main OH 267 

band were present at 3400 cm-1 [21].  The remaining bands at lower wavenumber (< 1100 cm–268 

1) are due to lattice absorption and have previously been assigned to HA [22] since there are 269 

no other absorption bands for any other calcium phosphate, such as dicalcium phosphate 270 

dihydrate and octacalcium phosphate, present in the current spectra [23]. 271 

Taken together our findings are consistent with the formation of polycrystalline non-272 

stoichiometric apatite formed in situ in TCM which is retained upon drying.  Rigorous 273 

identification of calcium deficient hydroxyapatites (i.e. C/P ratios in the range 1.5 – 1.67) 274 

requires the use of several complementary characterisation techniques and thermal treatment 275 

of powders [24].  We do not present powder XRD or thermal treatment results here however 276 

the morphology, composition and electron diffraction pattern of what we assume to be 277 

representative particles, plus the infrared fingerprint of the bulk material, do indeed invoke the 278 

formation of a non-stoichiometric apatite phase [20-22]. Since cells are exposed to the freshly 279 

formed hydrated species we use the terms ‘apatite’ and ‘apatitic’ throughout.  280 

Innate cellular responses to the apatitic nanoparticles: influence of 281 

experimental conditions 282 

Effect of resting of cells and TCM filtration 283 



14 
 

Having characterised the chemical and structural properties of the in vitro-precipitated calcium 284 

phosphate (apatite), we next investigated the cellular properties of these nanoparticles in the 285 

context of different experimental conditions. Cellular isolation is harsh and incurred stress lead 286 

to the release of endogenous danger signals (danger activated molecular patterns) and 287 

activation of purinergic receptors, all of which contribute to inflammasome activation and 288 

consequent IL-1β production (so called sterile inflammation) [25, 26]. For example, if cells are 289 

stimulated with LPS then mature IL-1β is principally observed in freshly isolated monocytes 290 

rather than their one-day rested counterparts [27-29]. Therefore we first tested whether this 291 

also applied to primary human blood cells stimulated with the freshly formed apatitic 292 

nanoparticles. Unrested cells secreted significant amount of IL-1β in response to challenge with 293 

the apatitic nanoparticles over 24 hour when compared to un-challenged cells over the same 294 

time period (FIGURE. 2A; p<0.05). Resting cells prior to experimentation significantly 295 

reduced IL-1β secretion in response to apatite (FIGURE. 2A). Addition of LPS, however, 296 

restored the IL-1β secretory effects of unrested cells (FIGURE. 2A; p<0.05).  297 

Conventionally in cell culture experiments TCM would be filtered prior to use to help remove 298 

(i) trace levels of macromolecular bacterial contaminants and (ii) serum complement 299 

aggregates that may occur during FCS heat treatment. Since the resting of cells reduced, but 300 

did not entirely abrogate, the IL-1β secretory response to apatitic nanoparticles (FIGURE. 2A), 301 

we tested whether filtration of TCM prior to the addition of CaCl2 (for in situ apatite 302 

nanoparticle formation) would further reduce IL-1β secretion. In non-rested cells there was no 303 

effect (FIGURE. 2B) but in rested cells IL-1β secretion was reduced to background and could, 304 

again, be restored by the concomitant addition of LPS with the apatite nanoparticles (FIGURE. 305 

2B; p<0.001).  306 

Since IL-1β secretion in response to apatite stimulation in rested cells was greater when using 307 

unfiltered TCM (FIGURE. 2A), we checked that apatite particles did not simply differ in 308 
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physical characteristics due to their formation in ‘different’ media (i.e. changes in particle size 309 

distribution or charge inadvertently brought about by filtration of the TCM). Dynamic light 310 

scattering analysis and zeta potential measures confirmed that filtration did not affect the 311 

physical characteristics of the formed particles (SUPPLEMENTARY FIGURE. 2). Moreover 312 

the quantitative protein corona appeared to be the same (SUPPLEMENTARY FIGURE. 2). 313 

We believe, therefore, that the difference is qualitative and reflects the ability of trace 314 

macromolecular pyrogens and/or serum protein aggregates to contribute to this corona. Indeed 315 

interaction of serum complement with nanoparticles can induce complement activation [30] 316 

and consequently inflammasome activation [31].  317 

Taken together the above data suggest that under conditions that do not promote pro-IL-1β 318 

induction apatite does not induce significant secretion of mature IL-1β. From here onwards, 319 

therefore, experiments were carried out using filtered TCM and cells were challenged with 320 

apatite following 24 hours rest. 321 

 322 

Effect of duration of exposure to apatite on inflammasome activation 323 

As noted above, failure to generate IL-1β does not mean failure to activate the inflammasome: 324 

the latter could occur but simply have no substrate to act on (i.e. pro IL-1β). Inflammasome 325 

activation may be influenced by particle properties (for example shape, size, and phase) and 326 

also by duration of exposure. To see whether (i) the inflammasome was in fact activated by 327 

apatite and (ii) to relate this to duration of apatite exposure, we followed both caspase 1 and 328 

IL-1β secretion over the course of 24 hours (in rested PBMC and using pre-filtered TCM). 329 

Consistent with the findings above, apatite alone did not elicit IL-1 production (FIGURE. 330 

3A): however it did induce caspase 1 secretion (FIGURE. 3B, p<0.01) showing that the 331 

inflammasome had been activated. Moreover IL-1 production was detectable when apatite 332 
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was in the presence of LPS (to ensure that pro IL-1β was produced) commencing between 3-8 333 

hours stimulation and further increasing by 24 hours (FIGURE. 3B, P<0.0001). Under these 334 

conditions, inflammasome activity was clearly induced by apatite. 335 

Inflammasome activation by particles can be due to particle-induced reactive oxygen species 336 

and phagolysosomal destabilisation [32-34] and, in some circumstances, lead to cell death. 337 

Incubation of mononuclear cells with apatite for long periods could therefore result in 338 

artefactual particle ‘gorging’, lysosomal disruption, and cell death [2]. Indeed, in further studies 339 

we showed that apatite nanoparticles induced cell death between 6 and 12 hours incubation 340 

(FIGURE. 4; ** p < 0.01), irrespective of the presence or absence of LPS (data not shown) 341 

and this mirrored the timing of caspase 1 secretion (FIGURE. 3B). 342 

Cellular responses to the apatitic nanoparticles in the absence of particle 343 

gorging. 344 

In light of the above results, cellular responses to apatite nanoparticles were re-addressed in a 345 

system that tried to avoid particle gorging (i.e. excessive particle loading). To confirm the 346 

extent of mononuclear cell uptake of apatite nanoparticles, by both flow cytometry and 347 

imagestream analysis, we utilised pure calcein, a widely used fluorescent probe for mineralised 348 

forms of calcium [35, 36]. Unlike the calcein-acetomethoxy derivative (Calcein-AM), pure 349 

calcein is unable to passively enter cells to any significant extent and, therefore, the presence 350 

of this probe detected within cells relies upon both the binding of calcein to mineralised calcium 351 

formed in the media and the cellular uptake of this stained mineralised calcium. By incubating 352 

cells in media containing calcein with and without the addition of CaCl2 (i.e. to form apatite in 353 

situ as above) we were able to control for even minor non-specific uptake of this probe in the 354 

absence of apatite nanoparticles. Using this strategy, we showed that (i) apatite nanoparticles 355 

were taken up as early as 1 hr (FIGURE. 5A) (ii) significant apatite loading of monocytes was 356 
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achieved by 3 hours (FIGURE. 5B and D) and (iii) cells were gorged by 24 hrs exposure 357 

(FIGURE. 5C). These findings were confirmed by two independent techniques. 358 

To re-test inflammasome activation without gorging, rested PBMC were first subjected to 359 

vehicle or LPS pre-stimulation to induce pro-IL-1β synthesis (at 0-3 hours), washed and 360 

followed by a pulse with apatite for 3 hours (from 3-6 hours), washed again and chased for 21 361 

hours (from 6-24 hours) with TCM only. Comparisons were made to cellular responses to 362 

soluble peptidoglycan (negative control; sPg), crude peptidoglycan (positive control, Pg) and 363 

to known inflammasome activators (i.e. ATP+LPS and MSU).  364 

Unlike the inflammasome activator, crude Pg, apatite failed to induce significant IL-1β versus 365 

vehicle control even when cells were primed with LPS (FIGURE. 6A). Moreover, the response 366 

from apatite exposure was very similar to that of the negative control, namely soluble Pg from 367 

E.Coli, which is not a significant activator of the inflammasome [37-39]. Unsurprisingly, 368 

without LPS priming, IL-1β secretion was also not observed in response to HA although it was 369 

again observed for crude Pg and positive controls of the inflammasome platform (FIGURE. 370 

6B and SUPPLEMENTARY FIGURE. 3).  371 

Taken together, these data show that apatite nanoparticles neither activate the inflammasome 372 

nor induce the cellular IL-1β secretion to any extent, except as an artefact of experimentation. 373 

  374 
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Discussion 375 

Nanoparticles, whether environmental [6, 10], endogenously formed [7, 8] or engineered for 376 

downstream applications [5, 9] have been well studied and clearly linked to inflammasome 377 

activation. However, in vitro studies have on occasions been difficult to reconcile with in vivo 378 

situations [14, 16, 40], suggesting that applied in vitro experimental conditions do not always 379 

reflect in vivo outcomes. Here, our work demonstrates that the secretion of IL-1β and the 380 

activation of the inflammasome following in vitro cellular challenge with apatite nanoparticles 381 

depend upon experimental conditions.  382 

Under aseptic conditions (to minimise the possibility of contaminants such as macromolecular 383 

MAMP or complement in the system) with non-activated primary cells that were loaded but 384 

not gorged with apatite nanoparticles, we found no evidence of IL-1β secretion or 385 

inflammasome activation. The relevance of this to the in vivo situation should be carefully 386 

considered especially as, there, the source of nanoparticle exposure may be endogenous (i.e. of 387 

internal origin) or exogenous (i.e. of external origin). Endogenous particles such as bone 388 

apatite, or calcium phosphate derived from ectopic calcification, will be sterile (except during 389 

infection when the presence of nanoparticulates will not be the main concern). On the other 390 

hand, exogenous particles (e.g. dietary or environmental) are unlikely to be aseptic or, at least, 391 

unlikely to be devoid of surface adsorbed-molecules. However, during their initial in vivo 392 

transit, ostensibly through the lung or gastrointestinal tract, nanoparticle surfaces will interact 393 

with the myriad of molecules of endogenous biological fluids (e.g. salts, duodenal bile or lung 394 

surfactant protein, mucin, endogenous proteins, low molecular weight ligands). Through 395 

substitution these are likely to strip exogenous particles of any adsorbed, inflammasome-396 

activating MAMPs and exchange them for more benign, self-recognised molecules. The 397 

exception is the distal gastrointestinal tract where turnover of the commensal microbiota 398 
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releases large quantities of MAMPs such as LPS and peptidoglycan. However, intestinal cells 399 

are uniquely hyporesponsive (i.e. resistant) to inflammatory stimulation by MAMPs [41]. 400 

Thus, in our view, carefully characterised aseptic conditions are appropriate for the in vitro 401 

study of nanoparticles. 402 

The choice of cells ‘at rest’ to represent the in vivo situation could also be debated. 403 

Inflammation, especially mildly so, is common place in the population. We used primary cells 404 

because immortal or transformed cells (i.e. cell lines) clearly undergo substantial changes 405 

compared to their in vivo counterparts. Nonetheless, primary cells are most commonly derived 406 

from blood and, thus, may undergo substantial stress during phlebotomy and isolation by 407 

density gradient centrifugation. However, in the experiments reported herein, even when we 408 

primed rested cells with LPS, which is a significant inflammatory stimulus, we still found no 409 

cause to suggest that apatitic nanoparticles stimulated IL-1β secretion or, therefore, activated 410 

the inflammasome.  411 

In our opinion it is cellular gorging of nanoparticles that is most likely responsible for in vitro 412 

inflammasome activation and which commonly leads to misinformation between in vitro and 413 

in vivo exposure. Phagocytic cells are programmed to mop up particles from their environment. 414 

Unlike with in vitro cultures, in vivo cells may migrate and are readily replaced by freshly 415 

recruited cells. Moreover the epithelial barrier blocks most particle entry and ensures a rate of 416 

influx that is readily dealt with by underlying macrophages or immature dendritic cells. Even 417 

when this is bypassed, such as with intravenous (i.v) infusion (e.g. i.v iron oxide nanoparticles) 418 

or intradermal injection (e.g. with tattoo ink), there is adequate circulation of particles and cells 419 

to ensure health of the organism and local structures despite marked particle-loading of cells. 420 

How, in vitro, one ensures that cell loading with particles matches a potential in vivo situation 421 

is not easily addressed. However, gorging to the point of cell dysfunction or even death is 422 
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unlikely to represent ‘real life’. Genuinely toxic particles ought to be seen as such without the 423 

need for cells to gorge excessively and abnormally.  424 

Finally, whilst our data suggest that apatitic nanoparticles do not stimulate inflammasome 425 

activation or, therefore, IL-1β secretion even in the presence of a pro-inflammatory stimulus, 426 

this need not apply to all (nano) particles. For example, α-quartz silica particles are toxic: they 427 

are pro-inflammatory and fibrogenic in vivo and their genuine role in inflammasome activation 428 

seems most likely [6, 42, 43]. Amorphous microparticles of silica appear relatively begnin: 429 

however, as they decrease in size into the ‘nano’ range, they adopt some of the inflammatory 430 

characteristics of their α-quartz crystalline counterpart [44]. Fine nanoparticulate silica may 431 

therefore also activate the inflammasome. There may well be others but, nonetheless, our data 432 

challenge the idea that nanoparticles/nanominerals are necessarily special activators of the 433 

inflammasome. 434 

Conclusion: In vitro investigation of nanoparticles/nanominerals and their potential role in the 435 

inflammasome axis requires careful experimental consideration as artefactual activation may 436 

ensue under certain conditions and therefore lead to misinterpretation. Future work should 437 

consider them carefully on a case-by-case basis, as we have done here for apatitic nanoparticles. 438 

Future perspective 439 

We anticipate that relatively few nanomaterials will be shown to activate the inflammasome 440 

per se and probably in numbers not outstanding from their coarse microparticle and microfibre 441 

counterparts (e.g. quartz, asbestos etc.). The fact that nanoparticles may act as vehicles to 442 

introduce adsorbed or en-trapped substrate into cells, which in turn could activate the 443 

inflammasome, is not to be disputed. We also anticipate much greater scientific scrutiny to be 444 

given over to conditions of particle loading and experimental design in cellular or animal 445 

models that seek to understand toxicity and/or cellular handling of nanomaterials for ‘real life’ 446 



21 
 

scenarios. We expect the arbitrary cut off of 100nm as a nano-definition to be redundant and 447 

that the ‘nano’ term will be used in disciplines depending on relevant behavioural and 448 

functional activities. For example, biologically it is the mechanism of uptake and thereafter the 449 

cellular compartment that is first engaged that separates a ‘nano’ particle from a ‘micro’ 450 

particle. Finally and as previously stated by our group [2], we expect that nanoforms will be 451 

understood as safe, naturally-occurring and of physiological benefit under some circumstances. 452 

Executive summary: 453 

 Discrepancies in the role of (nano) particles in inflammasome activation in vivo and in 454 

vitro have been noted suggesting that applied in vitro experimental conditions do not 455 

always adequately mimic in vivo situations. 456 

 Here, calcium phosphate (apatite) nanoparticles were synthesised in situ and ensuing 457 

caspase1/IL-1β cellular responses studied in peripheral blood mononuclear cells, under 458 

different in vitro conditions. 459 

 Caspase 1/IL-1β responses to apatitic nanoparticles were strongly influenced by the purity 460 

of starting material (i.e. attenuated in aseptic conditions), resting status of cells (i.e. non-461 

existent in experiments using rested cells), and duration of particle exposure (unavoidably 462 

triggered by abnormally prolonged incubation). 463 

 This work clearly highlights that, in addition to particle characteristics, it is necessary to 464 

carefully establish experimental conditions when studying in vitro cellular responses to 465 

nanoparticles, as artefactual activation may ensue. 466 

 467 
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Figure legends 491 

Figure. 1 Physico-chemical characterisation of in situ formed calcium phosphate 492 

nanoparticles. Following synthesis, calcium phosphate particles were analysed for particle 493 

size and structure by transmission electron microscopy (A, B and C; scale bars 500, 100 and 494 

20 nm respectively), for size distribution in tissue culture medium (TCM) by dynamic light 495 
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scattering (D), by nanoparticle tracking analysis (E), static light scattering (F) and for elemental 496 

composition by EDX within the TEM (G; C and Cu signals are generated by the support film 497 

and grid). (H) Infra-red analysis of hydroxyapatite standard (Sigma, 0-200 nm nanopowder) 498 

and (I) infra-red analysis of the in situ formed calcium phosphate particles in TCM with 499 

spectral features attributed as follow: (a) lattice vibrations (b) phosphate vibration (c) carbonate 500 

adsorption bands at 1465-1410 cm-1 (d) amine adsorption bands from serum proteins at 1600-501 

16700 cm-1 and (e)  probable OH broadening from residual water with the main OH band at 502 

3400 cm-1. T3: 3 hours, T8: 8 hours and T24: 24 hours. EDX: Energy Dispersive X-ray 503 

spectroscopy.  504 

Figure. 2: Influence of experimental conditions on IL-1β responses to apatitic 505 

nanoparticles. IL-1β secretion from PBMC (1.106 cells/ml) in experiments that were carried 506 

out using unfiltered TCM (A) or 0.2 m filtered TCM (B). In each setting, PBMC were either 507 

used immediately after isolation (red) or rested for 24 hours (black) and subsequently 508 

stimulated for 24 hours with apatite nanoparticles that were formed in situ by addition of CaCl2  509 

to TCM, in the presence or absence of LPS (10 ng/ml) as indicated in the figure. Data are 510 

represented as mean ± SEM (n = 2). * p < 0.05; ** p <0.01 and *** P<0.001 versus Control. 511 

C: Control. AP: Apatite, TCM: Tissue Culture Medium, LPS: Lipopolysaccharides. 512 

Figure. 3: Influence of duration of exposure to apatitic nanoparticles on IL-1β and 513 

caspase 1 secretion in PBMC. Time course measurement for IL-1β (A) and caspase 1 (B) 514 

secretion from rested PBMC (1.106 cells/ml) following stimulation with LPS (black square; 10 515 

ng/ml), apatitic nanoparticles in the presence or absence of 10 ng/ml LPS (red square and black 516 

circle, respectively), or vehicle (open circle). Data are represented as mean ± SEM (n = 2 517 

except at 8 hours where n = 5). *** p < 0.001 and **** p < 0.0001 (AP+LPS vs Control). 518 

*p<0.05 (AP+LPS vs Control) and ** p < 0.01 (AP vs Control). AP: Apatite, LPS: 519 

Lipopolysaccharide, PBMC: Peripheral blood mononuclear cells. 520 
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Figure. 4: Apatitic nanoparticle-induced cytotoxicity. Flow cytometry measurement of cell 521 

death from the monocyte population within PBMC (1.106 cells/ml) that were stimulated with 522 

apatite nanoparticles (full circle) or vehicle (open circle) overtime. Data are represented as 523 

mean ± SEM (n = 2). ** p < 0.01 and *** p < 0.001. AP: Apatite, PBMC: Peripheral blood 524 

mononuclear cells. 525 

Figure. 5: Apatitic nanoparticle uptake by monocytes. (A-C) Flow cytometric measurement 526 

in cells (CD14+ monocytes) that were stimulated with apatite or vehicle for (A) 1 hour, (B) 3 527 

hours and (C) 24 hours continuously. In each of the six panels only the viable CD14+ gated 528 

monocytes are imaged and thus occupy the top two quadrants. The colours represent density 529 

of cells in their plotted space (blue being the most dense and red the least). The right hand 530 

quadrants represent cells showing calcein positivity and thus intracellular calcium 531 

(‘Unstimulated’) while the addition of apatite shows a marked and rapid increase in calcein 532 

positivity (‘AP’) and by 24 hours few viable cells remain. (D) Imaging with a second 533 

independent technique, namely Image stream, showing three separate example images of 534 

CD14+ Calcein+ gated cells 3 hours after challenge and showing internalisation of AP particles.  535 

Figure. 6: Optimised innate cellular responses to apatitic nanoparticles. IL-1β responses 536 

from PBMC (1.106 cells/ml), with (A) or without (B) LPS pre-stimulation (3 hours), and then 537 

challenged with vehicle, AP nanoparticles, soluble or crude peptidoglycan (Sol Pg and Pg, both 538 

at 10 μg/ml). IL-1β was measured after a further 3 hours (i.e. between 3-6 hours, red column) 539 

and 18 hours after that (i.e. between 6-24 hours; black column). Data are represented as mean 540 

± SEM (n = 4). ****p<0.0001 and ***p<0.001 versus Control. C: Control, Pg: Peptidoglycan, 541 

Sol: Soluble, AP: Apatite, LPS: Lipopolysaccharides, PBMC: Peripheral blood mononuclear 542 

cells. 543 
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Supplementary Figure. 1: Physico-chemical characteristics of in situ formed calcium 544 

phosphate. (A) TEM micrograph of FIGURE 1 C under bright field mode showing the 545 

nanostructured nature of the primary particles, inset selected area diffraction. (B) Following 546 

synthesis, calcium phosphate particles were analysed for particle size by dynamic light 547 

scattering. Data are represented as % Volume and correspond to data already presented in 548 

FIGURE 1D as % intensity. Both graphs show similar particle size distribution whether 549 

expressed as % volume or intensity.  550 

Supplementary Figure. 2: Influence of filtration of TCM on the physico-chemical 551 

characterisation of in situ formed apatitic particles. Size distribution (A), charge (B) and 552 

protein content (C) of apatitic nanoparticles that were formed following addition of CaCl2 to 553 

pre-filtered (0.2 μm cut-off; fTCM) and non-filtered TCM (nfTCM). TCM: Tissue culture 554 

medium. For protein determination, following formation of apatite nanoparticles for 24 hours 555 

in fTCM and nfTCM, particle suspensions were spun down and supernatants collected. Protein 556 

content of the samples were then analysed by the Bradford protein assay, according to 557 

manufacturer’s protocol, and values for adsorbed protein calculated as follow:  558 

% adsorbed protein = 100 × [(Total protein, i.e. fTCM or nfTCM) - (non-adsorbed protein, i.e. 559 

supernatants of particle suspensions)]. Data are representative of two independent experiments. 560 

Supplementary Figure. 3: Positive controls for inflammasome activation and cellular IL-561 

1β secretion. PBMC (1.106 cells/ml) were stimulated with ATP (1 mM), LPS (10 ng/ml), MSU 562 

(100 μg/ml) or concomitant ATP+LPS and ensuing IL-1β responses measured at 3 hours. Data 563 

are represented as mean ± SEM (n = 2). * p <0.05 and ** p < 0.01. LPS: Lipopolysaccharides, 564 

ATP: adenosine triphosphate, MSU: monosodium urate crystals, PBMC: Peripheral blood 565 

mononuclear cells. 566 

 567 
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