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Nonlinear and nonlocal elasticity in coarse-grained differential-tension models of epithelia
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The shapes of epithelial tissues result from a complex interplay of contractile forces in the cytoskeleta of the
cells in the tissue and adhesion forces between them. A host of discrete, cell-based models describe these forces
by assigning different surface tensions to the apical, basal, and lateral sides of the cells. These differential-
tension models have been used to describe the deformations of epithelia in different living systems, but the
underlying continuum mechanics at the scale of the epithelium are still unclear. Here, we derive a continuum
theory for a simple differential-tension model of a two-dimensional epithelial monolayer and study the buckling
of this epithelium under imposed compression. The analysis reveals how the cell-level properties encoded in
the differential-tension model lead to linear and nonlinear elastic as well as nonlocal, nonelastic behavior at the
continuum level.
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I. INTRODUCTION

Intercellular adhesion proteins and cortical actin networks
are well established as regulators of cell surface mechanics,
and hence of the deformations of epithelia during morphogen-
esis [1]. Ever since the seminal work of Odell et al. [2], these
cellular components have therefore underlain mathematical
models of epithelia [3,4]. One large class of such models are
differential-tension models [5–12], in which cell polarity, cell-
cell adhesion properties, and the actomyosin network induce
different surface tensions in different sides of the discrete
cells. Coupling the mechanical models describing epithelial
deformations to models of the intracellular biochemistry is
a key challenge in the field [13], but some progress has
recently been made by coupling the differential-tension model
of Ref. [8] to the diffusion of a “mechanogen” that induces
contractility [14].

While the differential-tension models can quantitatively
reproduce the morphology of epithelial folds in many different
living systems [11], it is likely that, in general multilayered
epithelia, the formation of epithelial folds must be ascribed to
a combination of these intra-epithelial stresses and differential
growth of different parts of the tissue. Models based on the
latter only have, for example, been invoked to describe, at the
scale of the epithelium, the formation of cortical convolutions
in the brain [15–20] and of the intestinal villi [21–23], the
“fication” of which lends itself to the pun that gave Ref. [23]
its title. The coarse-grained limit of the differential-tension
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models at this scale is less well-studied, however, and this
continuum limit is the topic of this paper.

We shall focus on the most basic setup of these differential-
tension models [5,7,10] in an epithelial monolayer (referred
to as epithelium hereinafter): the apical, basal, and lateral
sides of the cells have respective areas Aa, Ab, and A�. The
internal state of the cells induces different surface tensions �a,
�b, and �� in the apical, basal, and lateral sides of the cells,
respectively. The energy of a single cell therefore reads

E = �aAa + �bAb + ��

2
A�, (1)

where the factor of 1/2 has been introduced for mere con-
venience [7,10]. The theory can be extended to incorporate
additional physics such as a basement membrane [11] or a
confining vitelline membrane [6]. In a full three-dimensional
setup, this leads to the study of the shapes of prism-shaped
cells [8,12]. Here, we shall restrict to the two-dimensional
setup [7,10] of an epithelial monolayer consisting of isosceles
trapezoidal cells of parallel apical and basal sides of lengths
La and Lb. These trapezoids are joined up across their lateral
sides, which have equal length L� (Fig. 1). Since there are two
such lateral sides, the cell energy Eq. (1) reduces to

E = �aLa + �bLb + ��L�, (2)

per unit extent in the third dimension [7,10]. A different two-
dimensional limit is obtained by averaging over the thickness
of the cell sheet and describing in-plane deformations only.
Such models, termed area- and perimeter-elasticity models,
have been studied extensively [24–28].

The simplest problem in the mechanics of elastic rods is
their Euler buckling under applied forces [29]; it is therefore
meet to ask how the buckling behavior of an active material
such as this model epithelium differs from that of an elastic
rod. This problem was considered in Ref. [10], where the
continuum limit of Eq. (2) was mapped to Euler’s Elastica
equation [30]. These calculations, complementing simulations
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FIG. 1. Model epithelium. Isosceles trapezoidal cells of apical
and basal bases La and Lb are connected along their lateral sides,
which have length L�. The continuous midline and shaded area
provide a cartoon of the continuum limit, in which the epithelium
is characterized by the deformed arclength S of the midline and the
tangent angle ψ of the midline below the horizontal.

of the discrete model in Ref. [7], were phrased in terms of
spontaneous buckling of the epithelium, but an additional
compressive or extensile force is required to produce these
deformations, making the analysis of Ref. [10] more ap-
propriate to the present setup of buckling under imposed
forces. Moreover, the analysis of Ref. [10] is not completely
consistent with the discrete model, since it does not impose
the condition that the trapezoidal cells match up exactly along
their lateral sides.

In this paper, we perform a consistent asymptotic expan-
sion of the discrete geometry of this model, revealing nonlin-
ear elastic and nonelastic terms in the continuum limit. We
then analyze the buckling behavior of the continuum model
under imposed compression analytically and numerically.

II. CONTINUUM MODEL

A. Single-cell energy

To obtain the energy of a single cell, we express the
sidelengths of the trapezoidal cells in terms of their mean base
K , their height L, and the angle 2φ that their lateral sides make
with each other [Fig. 2(a)]:

La = K + L� sin φ, (3a)

Lb = K − L� sin φ, (3b)

L = L� cos φ. (3c)

Incompressibility implies the cell area conservation constraint

Ac = KL. (3d)

Upon eliminating K and L using these relations, the energy of
a single cell is, from Eq. (2) and as a function of L� and φ,

E = (�a + �b)
Ac

L�

sec φ + (�a − �b)L� sin φ + ��L�. (4)

1. Nondimensionalization

We nondimensionalize this expression by scaling lengths
with the square root of the cell area and thus define the nondi-
mensional length of the lateral sides of the trapezoidal cells,
λ = L�/A1/2

c . We further set � = L/A1/2
c and κ = K/A1/2

c . Fi-
nally, following Ref. [10], we introduce the parameters

α = �a

��

, β = �b

��

, �0 =
√

α + β, δ = α − β. (5)

We note that �0 is the (uniform and nondimensionalized)
thickness of the epithelium in the flat configuration. Hence,
s0 = 1/�0 is the (nondimensionalized) width of a single cell
(i.e., its arclength in the flat configuration). The nondimen-
sional energy e = E/��A1/2

c of a single cell is therefore

e = �2
0

λ
sec φ + λ(δ sin φ + 1). (6)

Without loss of generality, we assume that δ > 0 in what
follows, so, for a single cell, φ < 0 is energetically favorable.

2. Transition to constricted cells

The transition to constricted triangular cells is a geometric
singularity in the discrete model. These triangular cells arise
as limiting cases of the trapezoidal cells when La = 0 or
Lb = 0. Using Eq. (3), the conditions La, Lb � 0 reduce to

λ2 � 1

cos φ |sin φ| = 2

|sin 2φ| . (7)

B. Energy of an epithelium

In the continuum limit, we take φ to be a function of the
arclength s of the midline of the undeformed, flat epithelium.
Summing over all the cells, we obtain the nondimensional
energy E of the epithelium,

E =
∫

e(φ) �0 ds = �2
0

∫ [
�0

λ
sec φ + λ

�0
(1 + δ sin φ)

]
ds,

(8)

By imposing an energy density equal to 1/s0 = �0 times the
(nondimensional) energy of a single cell and integrating with
respect to the reference arclength in this manner, we have
imposed local cell area conservation [31].

The boundary conditions are most naturally expressed in
terms of the angle ψ of the deformed midline of the epithe-
lium below the horizontal [Figs. 1 and 2(b)]. We therefore
express the energy in terms of ψ . This is usefully done in the
scaling limit �0 � 1 of a columnar epithelium, as explained
next.

1. Asymptotic expansion

We make two further scaling assumptions:

λ = O(�0), φ = O
(
�−2

0

)
. (9)

These scalings correspond to the regime � ∼ �0 and φ � 1,
where the cells deform but slightly from their equilibrium con-
figuration. In this limit, Eq. (3c) implies that λ ∼ � ∼ �0. Fur-
ther, area conservation Eq. (3d) requires that κ ∼ 1/�0, and
thus, from Eqs. (3a) and (3b), we must have φ � κ/λ ∼ 1/�2

0.
The second scaling thus corresponds to the largest deforma-
tions allowed. We therefore introduce the parameter

� = λ/�0 = O(1). (10)

We are now set up to relate φ and ψ , for which purpose we
use the geometric relation

ψ (s + ks0) − ψ (s) = φ(s) + 2φ(s + s0) + · · ·
+ 2φ

(
s + (k − 1)s0

)+ φ(s + ks0), (11)

022411-2



NONLINEAR AND NONLOCAL ELASTICITY IN COARSE- … PHYSICAL REVIEW E 99, 022411 (2019)

FIG. 2. Cell Geometry. (a) Geometry of a single isosceles trapezoidal cell of mean base K and height L, and sidelengths La, Lb, L�, the
lateral sides being at an angle 2φ to each other. (b) Definition of the tangent angle ψ of the midline below the horizontal. The geometry of
contiguous cells defines the relation between φ and ψ , as expressed in Eq. (11).

valid for any positive integer k, as sketched in Fig. 2(b). In
Appendix A, we show that, with our scaling assumptions, the
continuum limit of this relation is

ψ ′(s) =
∞∑

m=0

2B2m

(2m)!

φ(2m)(s)

�2m−1
0

, (12)

wherein B0 = 1,B1 = − 1
2 , . . . are the Bernoulli numbers (of

the first kind) [32]. The next step is to invert this series, to
express φ in terms of the derivatives of ψ . While we are
not aware of any explicit expression for the coefficients of
the inverted series, it is straightforward to invert the series
order-by-order by substituting back and forth, and thus obtain

φ(s) = ψ ′(s)

2�0
− ψ ′′′(s)

24�3
0

+ ψ (v)(s)

240�5
0

+ · · · , (13)

where dashes denote differentiation with respect to s. In
Ref. [10], only the first term of this expansion was obtained.
Inclusion of the second term will enable us to analyze the
buckling behavior of the epithelium in what follows.

2. Shape equations for the buckled epithelium

We describe the shape of the buckled epithelium by the
coordinates

(
x(s), y(s)

)
of the centreline of the epithelium,

defined by the axes in Fig. 2(b). To derive the continuum
equations describing the centreline, we begin by projecting
the discrete geometry onto the axes,

x(s+s0) − x(s) = 1
2 [κ (s) cos ψ (s) + κ (s+s0) cos ψ (s+s0)],

(14a)

y(s+s0) − y(s) = 1
2 [κ (s) sin ψ (s) + κ (s+s0) sin ψ (s+s0)].

(14b)

Using κ (s) = (�0�)−1 sec φ(s) and expanding these equations
order-by-order in inverse powers of �0 using Eq. (13), we
obtain, after some algebra [33],

�
dx

ds
= f cos ψ − g sin ψ, �

dy

ds
= f sin ψ + gcos ψ,

(15)

where

f = 1 + ψ ′2

24�2
0

+ 7ψ ′4 + 144ψ ′′2 + 32ψ ′ψ ′′′

5760�4
0

+ O
(
�−6

0

)
,

(16a)

g = ψ ′′

12�2
0

+ 87ψ ′2ψ ′′ − 2ψ (iv)

1440�4
0

+ O
(
�−6

0

)
. (16b)

Integrating these differential equations yields the shape of the
buckled epithelium. Deviations from the “standard” values
f = 1, g = 0 arise at order O

(
�−2

0

)
.

3. Derivation of the governing equation

We shall seek to describe buckled configurations of an
epithelium of undeformed length 2� � s0 in the flat configu-
ration. We change variables by introducing σ = s/�, use dots
to denote differentiation with respect to σ , and define

� = �0� � O(1). (17)

Since � = �/s0, the number of cells in the epithelium is
simply N = 2�.

We shall seek buckled solutions with clamped boundary
conditions and a prescribed relative compression D, so that

x(2) − x(0) = 2(1 − D), y(2) = y(0), (18)

where the coordinates are now expressed relative to the scaled
arclength σ . We shall restrict to symmetrically buckled con-
figurations for which ψ (σ ) = −ψ (2 − σ ). The second condi-
tion above is then satisfied. We may further reduce the solution
to the range 0 � σ � 1, with the condition of prescribed
compression reading x(1) − x(0) = 1 − D. To minimize the
energy of the epithelium at this imposed displacement, we
therefore consider the Lagrangian

L =
∫ 1

0

{
sec φ(σ )

�
+ �[1 + δ sin φ(σ )]

}
dσ

+ μ

�

∫ 1

0
ẋ(σ ) dσ , (19)
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where the Lagrange multiplier μ imposes the displacement condition and has the interpretation of a horizontal, compressive
force. Upon substituting for φ using Eq. (13), expanding in inverse powers of �, discarding terms that vanish upon integration,
and integrating by parts, we find

L=
∫ 1

0

[
�+ 1

�
+ ψ̇2

8��2
− δ�ψ̇3

48�3
+ 5ψ̇4

384��4
+ ψ̈2

48��4
+ μ cos ψ

�

(
1 + ψ̇2

8�2
+ 41ψ̇4

1920�4
+ ψ̈2

40�4
+ ψ̇

...
ψ

240�4

)
+ O

(
�−5

)]
dσ.

(20)

To analyze the dependence of the energy on the differential tension δ, we must go beyond lowest order. We therefore truncate
the expansion at fourth order (although we briefly discuss the lowest-order truncation below), and thus obtain a description of
the epithelium in the spirit of a Landau theory. Not only do nonlinear elastic terms arise at this order of truncation, but nonelastic
terms appear, too: the theory is not elastic [34], since the energy depends not only on strain (i.e., curvature) but also on its spatial
derivatives. In other words, the energy density not only depends on the local value of strain but also (in terms of the underlying
discrete model) on the strain of neighboring cells. This nonelastic dependence is therefore nonlocal.

To obtain the governing equation, we vary the truncated expansion Eq. (20) with respect to ψ , noting that � is a constant
since the trapezoidal cells are required to match up exactly [35] . After some algebra, we find

....
ψ = 6�2ψ̈ − 3��ψ̇ψ̈

1 + μ cos ψ
+ 15 + 27μ cos ψ

4(1 + μ cos ψ )
ψ̇2ψ̈ + μ�4 sin ψ

1 + μ cos ψ

[
24 − 3

�2
ψ̇2 − 1

�4

(
23

16
ψ̇4 − 3

2
ψ̈2 − 2ψ̇

...
ψ

)]
, (21)

wherein � = δ�2, subject to the boundary conditions

ψ (0) = ψ (1) = 0, ψ̈ (0) = ψ̈ (1) = 0, (22a)

and the integral condition∫ 1

0
cos ψ

(
1 + ψ̇2

8�2
+ 41ψ̇4

1920�4
+ ψ̈2

40�4
+ ψ̇

...
ψ

240�4

)
dσ

= �(1 − D). (22b)

The last condition imposes the fixed end-to-end shortening
of the epithelium. These equations have a trivial solution
ψ = 0, � = (1 − D)−1, corresponding to the compressed but
unbuckled state of the epithelium.

We note that, although Eq. (21) only depends on δ and
� through their agglomerate �, a separate dependence on �

arises in condition (22b). Minimizing the energy of buckled
solutions of Eqs. (21) and (22) with respect to � finally
determines �.

4. Truncation at lowest order: Modified Euler’s Elastica

We conclude the setup of the model by briefly discussing
the lowest-order truncation of the Lagrangian (20): truncating
at second order, the governing equation is found to be

ψ̈ + 4μ�2 sin ψ

1 + μ cos ψ

(
1 − ψ̇2

8�2

)
= 0. (23)

This is a modified Euler’s Elastica equation [30], modified
because of the nontrivial term in the displacement condition
associated with the order O

(
�−2

0

)
corrections in Eqs. (16).

Hence, already at this order that does not even resolve the
effect of nonzero differential tension δ, the buckling behavior
of the epithelium differs from that of an elastic rod.

III. BUCKLING ANALYSIS

In this section, we analyze the buckling behavior of
the epithelium, first determining the threshold for buckling

analytically and then discussing the post-buckling behavior
using a weakly nonlinear analysis of the governing equations.

The buckling analysis naturally divides into two parts:
We first seek buckled configurations of small amplitude for
each value of �, and then we minimize the energy of these
configurations with respect to �.

A. Solution of the buckling problem

The form of the trivial solution and of condition Eq. (22b)
suggest that the appropriate small parameter for the first part
of the analysis is ε, defined by

ε2 = 1 − �(1 − D). (24)

We therefore expand

ψ (σ ) = ε
[
ψ0(σ ) + εψ1(σ ) + ε2ψ2(σ ) + O

(
ε3
)]

, (25)

and write μ = μ0 + εμ1 + ε2μ2 + O
(
ε3
)
. It is important to

note that, while the governing equations derived above are
only valid in the limit � � 1, this parameter is not an asymp-
totic parameter for the buckling analysis. It will, however, be
useful to introduce

ξ = π

�
� 1. (26)

Next, we solve Eq. (21), subject to the boundary and integral
conditions Eqs. (22), order-by-order.

1. Solution at order O(ε)

At lowest order, the problem becomes

....
ψ 0 − 6�2ψ̈0 − 24�4μ0

1 + μ0
ψ0 = 0, (27)

subject to ψ0(0) = ψ0(1) = 0, ψ̈0(0) = ψ̈0(1) = 0. The low-
est eigenvalue of this problem is

μ0 = z

1 − z
, where z = ξ 2

4

(
1 + ξ 2

6

)
, (28)
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the corresponding solution for ψ0 being

ψ0(σ ) = �0 sin πσ, (29)

where the constant of integration �0 will be determined below
from the displacement condition (22b).

2. Solution at order O
(
ε2

)

At next order, upon substituting for μ0,
...
ψ1 − 6�2ψ̈1 − 24z�4ψ1

= 24μ1�
4(1 − z)2ψ0 − 3��(1 − z)ψ̇0ψ̈0. (30)

subject to ψ1(0) = ψ1(1) = 0, ψ̈1(0) = ψ̈1(1) = 0. These
conditions imply that μ1 = 0, which is the usual result for the
supercritical pitchfork bifurcation expected for this buckling
problem. Thence, for some constant of integration �1,

ψ1(σ ) = �1 sin πσ + ��2
0

(
ξ

12
− 13ξ 3

144

)
sin 2πσ + O

(
ξ 5
)
.

(31)

3. Solution at order O
(
ε3

)

Finally, upon substituting for μ0 and μ1 = 0,

....
ψ 2 − 6�2ψ̈2 − 24z�4ψ2 = 24�4μ2(1 − z)2ψ0 − 3��(1 − z)

(
ψ̇0ψ̈1 + ψ̈0ψ̇1

)+ (
15
4 + 3z

)
ψ̇2

0 ψ̈0 − 4z(1 − 3z)�4ψ3
0

− z ψ0
(
3�2ψ̇2

0 − 3
2 ψ̈2

0 − 2ψ̇0

...
ψ0

)
, (32)

subject to ψ2(0) = ψ2(1) = 0, ψ̈2(0) = ψ̈2(1) = 0. After a considerable amount of algebra, we obtain

μ2 = �2
0

[
ξ 2

32
+
(

17

384
− �2

96

)
ξ 4

]
+ O

(
ξ 5
)
. (33)

and thence, upon introducing a final constant of integration �2,

ψ2(σ ) = �2 sin πσ + �0�1�

(
ξ

6
− 13ξ 3

72

)
sin 2πσ + �3

0

(
1

192
+ 4�2 − 9

256
ξ 2 − 36�2 − 37

768
ξ 4

)
sin 3πσ + O

(
ξ 5
)
. (34)

4. Calculation of the amplitudes

The constants �0, �1, �2 left undetermined by the above
calculation are obtained by expanding both sides of the inte-
gral condition (22b). Solving order-by-order, we obtain

�0 = 2√
1 − z

, �1 = 0, (35)

where we have chosen �0 > 0 without loss of generality. The
result �1 = 0 is to be expected for a supercritical bifurcation.
In fact, in a standard elastic buckling problem, one would
have ψ1 ≡ 0; here, a nonzero ψ1 is required because of the
symmetry breaking resulting from the term proportional to ψ̇3

in the Lagrangian (20). Further, we obtain

�2 = 1

4
+
(

5

32
− �2

36

)
ξ 2 +

(
149

7680
+ 37�2

864

)
ξ 4 + O

(
ξ 5
)
.

(36)
B. Minimization of the energy

In the second part of the buckling analysis, we determine
the buckling threshold and then analyze the post-buckling
behavior. Substituting for � using Eq. (24) in the energy
term in Eq. (20) and expanding, the energy of the buckled
configuration is(

1

1 − D
+ 1 − D

)
+
(

1 − D

1 − z
− 1

1 − D

)
ε2 + O

(
ε3
)
,

(37)

wherein the first bracketed term is the energy of the trivial
solution ψ = 0, � = (1 − D)−1. Accordingly, buckled con-
figurations become energetically favorable if

1 − D

1 − z
− 1

1 − D
< 0 ⇐⇒ D > D∗ ≡ 1 − √

1 − z.

(38)

In particular, the buckling threshold is independent of the
differential tension δ.

We are left to determine the value of � that minimizes the
energy of the buckled configuration. This is equivalent with
relating ε to the excess compression d = D − D∗ > 0. We
therefore write ε = ε0d1/2 + O(d ) and obtain an expansion of
the energy in d � 1,

E
�2

0

=
(

Cε4
0 − 2ε2

0

1 − z

)
d2 + O

(
d5/2

)
, (39)

where

C = 1 + 3ξ 2

16
+
(

11

64
− δ2

48

)
ξ 4 + O

(
ξ 5
)
. (40)

The energy is thus minimized when ε0 = [
C(1 − z)

]−1/2
.

Substituting this result into the expression for μ2, we finally
obtain

μ ∼ μ0(ξ ) +
[
ξ 2

8
+ 83 − 16δ2

384
ξ 4 + O

(
ξ 5
)]

(D − D∗). (41)

This is the main result of our asymptotic analysis of the buck-
ling: The force required to compress the epithelium decreases
with increasing differential tension δ > 0.

In general, the buckled configuration features both ener-
getically favorable regions (ψ̇ > 0 if δ > 0) and unfavorable
regions (ψ̇ < 0). Still, this result shows that buckling overall
is facilitated if δ > 0 compared to the δ = 0 case.
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FIG. 3. Numerical buckling results. (a) Plot of � against relative compression D. Above a critical compression D� (buckled shape for
D = D� shown), solution shapes at the energy minimum begin to self-intersect (dotted line for D > D�). Inset: zoomed plot of � (filled
marks) against D close to the buckling threshold D∗. (b) Plot of compressive force μ against relative compression D, showing numerical
results (solid line and dotted line for D > D�) in agreement with asymptotic results (dashed line). Inset: zoomed plot of μ against D close to
D∗. Parameter values for numerical calculations: � = 20, δ = 1, �0 = √

10. (c) Critical compression D� against r = �/�2
0, for different values

of δ, at fixed �0 = √
10, and approximation (45) thereof. Insets show buckled shapes at D = D� and δ = 1, for different values of �.

IV. POST-BUCKLING BEHAVIOR

While asymptotic analysis can describe the deformations
of the epithelium just beyond the buckling threshold, larger
compressions must be studied numerically. We solve the gov-
erning equation (21), complemented by the boundary and in-
tegral conditions (22), numerically using the boundary-value-
problem solvers bvp4c, bvp5c of MATLAB (The MathWorks,
Inc.), and the continuation package AUTO [36].

A. Transition to constricted cells

For the numerical solution, we fix � and δ, and obtain
solutions for different values of �. By interpolation, we
determine the value of � that minimizes the energy [Fig. 3(a)].
Thence, we obtain the corresponding value of the compressive
force μ [Fig. 3(b)], in agreement with the asymptotic results
of the previous section. This also validates our numerical
implementation of the system.

There is, however, one extra constraint that has not been
incorporated into the continuum equations: the constraint,
related to the transition to constricted cells that we have briefly
discussed before, that the lateral sides of the trapezoidal cells
cannot self-intersect. At the level of the continuum descrip-
tion, this constraint translates to the condition that the apical
and basal surfaces of the epithelium cannot self-intersect. The
apical and basal surfaces of the cell sheet are described by the
curves

x± = x ∓ � sin ψ, y± = y ± � cos ψ, (42)

where � = �0� cos φ is the local thickness of the cell sheet.
It is important to note that Eqs. (42) are exact equations
since the Kirchhoff “hypothesis” of the analysis of slender
elastic structures, the asymptotic result [30] that the normal
to the undeformed midline remains normal in the deformed
configuration, is an exact result in the discrete model that
underlies our continuum theory. (For this same reason, an

analogous analysis for an elastic object beyond asymptotically
small deformations would, rather more intricately, require
solving for the stretches in each parallel to the midline.)

Numerically, we find that, as D is increased at fixed �,
the shapes of minimal energy self-intersect above a critical
compression D�. The numerical solutions also reveal that
self-intersections first arise at σ = 0, when ẋ+ = 0 there.
Expanding this condition using ψ (0) = 0 and φ̇(0) = 0, of
which the latter follows from Eq. (13) by symmetry,

f (0)

�
− �

�2
0

�
ψ̇ (0) cos φ(0) = 0, (43)

where f is defined as in Eq. (16a). We note that, with this
condition, an explicit dependence on both �0 and � has arisen
for the first time in our analysis.

Estimating the critical compression D�

The numerical data in Figs. 3(a) and 3(b) suggest that
the asymptotic results of the previous section can approx-
imate the buckling behavior of the epithelium well up to
compressions as large as D�. We therefore use our asymp-
totic results to estimate the critical compression D�. For this
purpose, we treat r = �/�2

0 as an O(1) quantity. Then, using
�= (1 − z)−1/2 + O(d ),

f (0)

�
− �

�2
0

�
ψ̇ (0) cos φ(0) = √

1 − z − πε0�0

r
√

1 − z
d1/2 + O(d ),

(44)

whence, to lowest order in ξ ,

D� ≈ r2

4π2
. (45)

This approximation is not itself an asymptotic result, yet,
for small enough values of r, it compares well to numerical
estimates of D� obtained by a bisection search [Fig. 3(c)].
The numerical results also show that, at fixed �, D� decreases
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FIG. 4. Buckling for D > D�. Two scenarios are possible: (a) If ∂ ẋ(0)/∂� > 0 or � < �∗(δ), buckled shapes with increased � do not
self-intersect. (b) If ∂ ẋ(0)/∂� < 0 or � > �∗(δ), buckled shapes with decreased � do not self-intersect. Numerical results: (c) Plot of � (for
buckled shapes of minimal energy without self-intersections) against relative compression D, for �1 < �∗ (thick lines) and �2 > �∗ (thin
lines). For � < �∗, � → (1 − D)−1 for D > D�. Insets show buckled shapes at D = D�. (d) Corresponding plots of scaled compressive
force μ/ξ 2 against D. Dotted lines for D > D� correspond to self-intersecting shapes at the energy minimum. Parameter values for numerical
calculations: δ = 1, �1 = 20, �2 = 34, �0 = √

10.

with increasing δ, with relative variations of about 10% for the
range of δ under consideration.

We also find numerically that, at large values of r, steric
interactions between different parts of the cell sheet become
important before D reaches D�. A detailed analysis of these
interactions is beyond the scope of this discussion.

We have tacitly assumed that, at fixed � and at fixed
D > D∗, the energy E has a single local minimum as a function
of �. This is indeed the case for small enough values of δ,
but fails at compressions D > D� as δ is increased, so this
possibility is not of direct relevance to the present discussion.
Interestingly, eigenmodes (buckled solutions with zero force)
of the epithelium arise at large δ. These eigenmodes are not
energy minimizers, but, for completeness, we discuss these
solutions in Appendix B.

B. Buckled shapes for D > D�

As D is increased beyond D�, we might expect fans of
constricted cells to expand around the trough and (later)
the crest of the buckled shape, but deriving the equations
describing these fans and solving for these shapes is beyond
the scope of the present discussion.

Here, we note simply that, for D > D�, buckled shapes
without self-intersections can be found. Two scenarios can
be envisaged a priori, depending on the sign of ∂ ẋ(0)/∂� at
the energy minimum [Figs. 4(a) and 4(b)]: If ∂ ẋ(0)/∂� > 0,
then buckled solutions without self-intersection arise as �

is increased; if ∂ ẋ(0)/∂� > 0, then such shapes are found
as � is decreased. Interestingly, both of these possibilities
arise in the system: there exists a critical value � = �∗(δ) at
which ∂ ẋ(0)/∂� = 0 [Fig. 3(c)]. The first possibility occurs
in the case � < �∗, and the second one in the case � > �∗
[Fig. 4(c)].

If � < �∗, the buckling amplitude decreases for these
solutions as D is increased beyond D�: � tends to its value
(1 − D)−1 in the unbuckled, compressed configuration, while

μ decreases [Figs. 4(c) and 4(d)]. By contrast, if � > �∗,
the buckling amplitude is increased: as D increases and �

decreases, μ increases faster than in the self-intersecting
configurations at the energy minimum [Figs. 4(c) and 4(d)].

While these qualitative considerations cannot capture the
exact mechanics of the fans of constricted cells near the
through and crest of the buckled shape, we expect them to
give a qualitative indication of the buckling behavior as D is
increased just beyond D�. For larger values of D, there are
more intricate possibilities: there are in general two values of
� such that ẋ(0) = 0, on either side of the energy minimum.
One of these solutions defines the branch shown in Fig. 4(c),
but the second solution may become energetically favorable
over the first one as D is increased sufficiently. This actually
happens on the branch with � = �1 < �∗ in Fig. 4(c) at
D ≈ 0.44, but, for the second solution, different parts of the
cell sheet start to touch before this value of D is reached and
hence we do not pursue this further here.

V. CONCLUSION

In this paper, we have derived, by taking a rigorous
asymptotic limit, the continuum limit of a simple discrete
differential-tension model of a two-dimensional epithelium.
If the expansion is carried to high enough order for the
differential tension between the apical and basal sides of the
epithelium to arise in the energy, nonelastic terms that are non-
local in the strains appear. This is the key lesson to be drawn
from taking the continuum limit. We have gone on to use
this continuum model to study the buckling of the epithelium
under imposed confinement, showing how, post-buckling, the
compressive force is reduced with increasing differential ten-
sion. A second buckling transition occurs when constricted
cells start to form near the troughs and crests of the buckled
shape; we have discussed the behavior close to this transition
qualitatively. Taking the analysis of the buckling behavior of
epithelium in this continuum framework beyond the transition
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to constricted cells is the key challenge for future work on this
problem.

Possible extensions of the continuum framework include
mimicking the setup of studies of the discrete model [6,9,11]
by coupling the epithelium to an elastic substrate or incorpo-
rating fixed-volume constraints for a closed one-dimensional
epithelium. The question of how to extend the continuum
model to describe a two-dimensional epithelium also remains
open. In particular, how are the deviations from elasticity
affected by the increase of the dimensionality of the system?

Cell sheet deformations during development commonly
feature large geometric deformations, but the elastic deforma-
tions can remain small provided that the deformed geometry
remains close to the intrinsic geometry that is generally differ-
ent from the initial geometry because of cell shape changes,
cell intercalation, and related processes. For this reason, de-
velopmental events as intricate as the inversion process of
the green alga Volvox can be modelled quantitatively using a
Hookean shell theory [37,38]. By contrast, large deformations
of many a biological material are not in general described
well by neo-Hookean constitutive equations, although other
families of hyperelastic constitutive equations predict behav-
ior in quantitative agreement with experimental data for brain
and fat tissues [39–41]. However, and in spite of the ubiquity
of these elastic models, in particular in the modeling of
the folds of the cerebrum [15–19], it was pointed out very
recently that the folding of the cerebellum is fundamentally
inconsistent with the differential-growth hypothesis [42]: in
the cerebellum, the oscillations of the thicknesses of the core
and the growing cortex are out-of-phase, while elastic bilayer
instabilities lead to in-phase oscillations [42,43].

Finally, we mention one important limitation of this work:
the model analyzed here derives from a variational principle,

yet deformations of epithelial tissues are driven by out-of-
equilibrium active forces. These active forces can be described
in the framework of active gels [44], but this description still
requires constitutive relations to be specified. This can, of
course, be done by writing down the most general (linear)
relations compatible with underlying symmetries, as in the
recent general description of the mechanics of active sur-
faces [45]. That approach does not however reveal the bio-
logical significance of these constitutive laws at the cell level.

All of this thus emphasizes the need for a deeper under-
standing of how continuum models relate to properties of
structures at the cell level. By explicitly showing how both
nonlinear and nonlocal elastic terms arise in the continuum
limit of a simple discrete model and impact on its behavior,
the present analysis has taken a first step in this direction.
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APPENDIX A: DERIVATION OF EQ. (12)

In this Appendix, we relate φ and ψ by deriving Eq. (12)
used in the main text. At the same time, we verify that this
expansion is indeed consistent at all orders. Taylor expanding
the right-hand side of Eq. (11),

ψ (s + ks0) − ψ (s) = φ(s) + 2

⎛
⎝k−1∑

j=1

φ(s + js0)

⎞
⎠+ φ(s + ks0) = 2kφ(s) +

∞∑
n=1

sn
0

n!
φ(n)(s)

⎧⎨
⎩kn + 2

k−1∑
j=1

jn

⎫⎬
⎭

= 2kφ(s) +
∞∑

n=1

sn
0

n!
φ(n)(s)

⎧⎨
⎩kn+ 2

n + 1

n∑
j=0

(−1) j

(
n + 1

j

)
B j (k − 1)n+1− j

⎫⎬
⎭ , (A1)

where we have used Faulhaber’s formula [46] to expand the
sum of powers of integers, and where B0 = 1,B1 = − 1

2 , . . .

denote the Bernoulli numbers (of the first kind) [32]. Expand-
ing (k − 1)n+1− j using the binomial theorem and simplifying
the binomial coefficients,

ψ (s + ks0) − ψ (s) = 2kφ(s) +
∞∑

n=1

φ(n)(s)

n!�n
0

A(k, n), (A2)

where we have introduced

A(k, n) = kn + 2(−1)n+1n!
n∑

j=0

n+1− j∑
i=0

(−1)iB jki

i! j!(n + 1 − i − j)!

=
n+1∑
i=0

ai(n)ki, (A3)

wherein a0, a1, . . . , an+1 depend on n. In particular,

a0 = 0, an = 0, an+1 = 2

n + 1
, (A4)

of which the last two are obtained by direct computation,
and the first one follows using an identity of Bernoulli num-
bers [32],

n∑
j=0

(
n + 1

j

)
B j = 0 for n = 1, 2, . . . . (A5)

Moreover, for i = 1, 2, . . . , n − 1,

ai(n) = 2(−1)n+1−i n!

i!

n+1−i∑
j=0

B j

j!(n + 1 − i − j)!
. (A6)
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Accordingly,

A(k, n) = 2kn+1

n + 1
+ 2(−1)n+1n!

n−1∑
i=1

(−1)i ki

i!

⎧⎨
⎩

n+1−i∑
j=0

B j

j!(n + 1 − i − j)!

⎫⎬
⎭ . (A7)

Upon inverting the order of summation, Eq. (A2) becomes

ψ (s + ks0) − ψ (s) = 2kφ(s) +
∞∑

n=1

φ(n)(s)

n!�n
0

(
2kn+1

n + 1

)
+

∞∑
i=1

∞∑
n=i+1

2(−1)n+1−i φ
(n)(s)

�n
0

ki

i!

⎧⎨
⎩

n+1−i∑
j=0

B j

j!(n + 1 − i − j)!

⎫⎬
⎭ . (A8)

Finally, upon relabelling indices in the first summation and changing variables n �−→ m = n + 1 − i in the last summation,

ψ (s + ks0) − ψ (s) =
∞∑

i=1

ki

i!�i
0

⎧⎨
⎩2�0φ

(i−1)(s) +
∞∑

m=2

2(−1)m

�m−1
0

φ(i−1+m)(s)

⎛
⎝ m∑

j=0

B j

j!(m − j)!

⎞
⎠
⎫⎬
⎭ . (A9)

But, rearranging Eq. (A5),

m∑
j=0

B j

j!(m − j)!
= Bm

m!
for m = 2, 3, . . . . (A10)

Since Bn = 0 for odd n > 1, and using B0 = 1, we finally
obtain

ψ (s + ks0) − ψ (s) =
∞∑

i=1

ki

i!�i
0

{ ∞∑
m=0

2B2m

(2m)!

φ(i−1+2m)(s)

�2m−1
0

}
.

(A11)

Comparing this to the Taylor expansion of the left-hand side,

ψ (s + ks0) − ψ (s) =
∞∑

i=1

ki

i!�i
0

ψ (i)(s), (A12)

we deduce that the expansion is consistent at all orders, with,
in particular,

ψ ′(s) =
∞∑

m=0

ψm
φ(2m)(s)

�2m−1
0

where ψm = 2B2m

(2m)!
, (A13)

which is Eq. (12). As noted in the main text, we are not aware
of a closed form for the inverted series that expresses φ as a
function of the derivatives of ψ . Formally, inverting Eq. (12)
gives

φ(s) =
∞∑

m=0

φm
ψ (2m+1)(s)

�2m+1
0

, (A14)

where the coefficients φ0, φ1, . . . are determined recursively
by φ0ψ0 = 1 and

m∑
j=0

φ jψm− j = 0 for m = 1, 2, . . . . (A15)

In agreement with Eq. (13), we find

φ0 = 1
2 , φ1 = − 1

24 , φ2 = 1
240 , . . . . (A16)

APPENDIX B: EIGENMODES OF THE
BUCKLED EPITHELIUM

Eigenmodes of the epithelium are nonzero solutions of the
governing Eq. (21) with μ = 0. They thus obey

....
ψ = 6�2ψ̈ − 3��ψ̇ψ̈ + 15

4 ψ̇2ψ̈, (B1)

subject to

ψ (0) = ψ (1) = 0, ψ̈ (0) = ψ̈ (1) = 0. (B2)

To find eigenmodes numerically, we remove the trivial, zero
solution by imposing a nonzero compression D and varying
this compression until a solution with μ = 0 is found.

Numerically, we obtain eigenmodes if � � �∗, but find
no solutions if � < �∗, for some value �∗ depending on
� (Fig. 5). Plotting �∗ against � (Fig. 5, inset) suggests
that �∗ approaches a constant value as � grows large. We
observe that the numerical data are well approximated by a

FIG. 5. Eigenmodes of a buckled epithelium: plot of relative
end-to-end shortening D against �. Parameter value: � = 20. No
eigenmodes were found for � < �∗(�). On the dashed part of the
branch, E < 2. Continuation failed at the point marked ×. Inset: plot
of �∗ against � (solid line) and power-law fit (dashed line).
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power-law �∗ = c1 + c2�
−5/4, where c1 ≈ 3.96, c2 ≈ 19.5

(Fig. 5, inset).
Some of the solutions in Fig. 5 have energy E < 2, lower

than the energy of the uncompressed, flat solution; these are
spontaneous buckled modes that arise in the absence of exter-
nal forces, but, as is apparent from the corresponding values
D > 1 (Fig. 5), these solutions are unphysical. In Ref. [10],
the flat configuration of the epithelium becomes unstable at
large enough differential tension. This instability, absent in the
present description, arises because the analysis of Ref. [10]
does not impose the condition that the cells match up exactly
along their lateral sides [35].

The “large” values of � and hence δ for these eigenmodes
beckon a comment on the formal range of validity of the
continuum model: stability of the underlying discrete model
requires α, β � 0 [7], and hence δ � �2

0. While the asymp-
totic expansion leading to the geometric relation (13) was
an expansion in the large parameter �0, it did not involve δ.
By contrast, the expansion of the Lagrangian (20), which did
involve δ, was an expansion in a different large parameter, �.
Hence, large values of δ � �2

0 are indeed in the formal range
of validity of the continuum model provided that � is large
enough.
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