

1 2 3	Ventricular drainage catheters versus intracranial parenchymal catheters for intracranial pressure monitoring-based management of traumatic brain injury: a systematic review and meta-analysis
4 5 6	Victor Volovici ^{1,2} , Jilske A. Huijben ² , Ari Ercole ³ , Nino Stocchetti ^{4,5} , Clemens M. F. Dirven ¹ , Mathieu van der Jagt ⁶ , Ewout W. Steyerberg ⁷ , Hester F. Lingsma ² , David K. Menon ⁴ , Andrew I. R. Maas ⁸ , Iain K. Haitsma ¹
7	
8	¹ = Department of Neurosurgery, Erasmus MC Rotterdam, The Netherlands
9 10	² = Center for Medical Decision Making, Department of Public Health, Erasmus MC, Rotterdam, The Netherlands
11 12	³ = Division of Anesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
13	⁴ =Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
14 15	⁵ = Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Department of Anesthesia and Critical Care, Neuroscience Intensive Care Unit, Milan, Italy
16	⁶ = Department of Intensive Care Adults, Erasmus MC, Rotterdam, The Netherlands
17 18	⁷ = Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands.
19 20	⁸ = Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
21	
22	Corresponding author
23 24 25 26 27 28 29 30	Victor Volovici, MD Erasmus MC University Medical Center, Erasmus MC Stroke Center Department of Neurosurgery and Medical Decision Making Doctor Molenwaterplein 40 3015 GD, Rotterdam, The Netherlands tel: 0031-10-7039324 fax: 0031-10-7040704
31	Co-authors:

- 32 Ms. Jilske A. Huijben, MD
- 33 Erasmus MC University Medical Center
- 34 Department of Public Health, Center for Medical Decision Making
- **35** Doctor Molenwaterplein 40

- 1 3015 GD, Rotterdam, The Netherlands
- 2 tel: 0031-10-7039324
- 3 fax: 0031-10-7040704
- 4 email: j.a.huijben@erasmusmc.nl
- 5
- 6 Dr. Ari Ercole, MD, PhD
- 7 Division of Anesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- 8 Box 93, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ
- 9 Tel: +44 (0)1223 217889
- **10** Fax: +44 (0)1223 217887
- 11 E-mail: <u>ae105@cam.ac.uk</u>
- 12 Prof. Nino Stocchetti, MD, PhD
- 13 Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Anesthesia and Critical Care,
- 14 Neuroscience Intensive Care Unit, Milan, Italy
- 15 Via Francesco Sforza 28, 20122 Milano
- **16** Tel: +39 0255034422
- **17** Fax: n/a
- 18 E-mail: <u>nino.stocchetti@policlinico.mi.it</u>
- 19
- 20 Prof. Clemens M. F. Dirven, MD, PhD
- 21 Erasmus MC University Medical Center
- 22 Department of Neurosurgery
- 23 Doctor Molenwaterplein 40
- 24 3015 GD, Rotterdam, The Netherlands
- **25** tel: 0031-10-7035993
- **26** fax: 0031-10-7040704
- 27 email: <u>c.dirven@erasmusmc.nl</u>
- 28
- 29 Dr. Mathieu van der Jagt, MD, PhD
- 30 Erasmus MC University Medical Center
- 31 Department of Intensive Care Adults
- **32** Doctor Molenwaterplein 40
- 33 3015 GD, Rotterdam, The Netherlands
- **34** tel: 0031-10-7035993
- **35** fax: 0031-10-7040704
- 36 email: <u>m.vanderjagt@erasmusmc.nl</u>
- 37
- 38 Prof. Ewout W. Steyerberg, PhD
- 39 Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, P.O. Box 9600
- 40 2300RC Leiden, The Netherlands
- 41 Tel: +31 71 5269712
- 42 Fax: N/A
- 43 E-mail: <u>e.steyerberg@erasmusmc.nl</u>
- 44
- 45 Dr. Hester F. Lingsma, PhD
- 46 Erasmus MC University Medical Center
- 47 Department of Public Health, Center for Medical Decision Making
- 48 Doctor Molenwaterplein 40
- 49 3015 GD, Rotterdam, The Netherlands

1	tel: 0031-10-7039324	

- 2 fax: 0031-10-7040704
- 3 email: h.lingsma@erasmusmc.nl
- 4
- 5 Prof. David K. Menon, MD, PhD
- 6 Division of Anesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- 7 Box 93, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ
- 8 Tel: +44 (0)1223 217889
- 9 Fax: +44 (0)1223 217887
- 10 E-mail: dkm13@cam.ac.uk
- 11 Prof. Andrew I. R. Maas
- 12 Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Wilrijkstraat 10
- 13 2650 Edegem, Belgium
- 14Tel: +32 (0)3 821 30 00
- 15 Fax: n/a
- 16 E-mail: <u>Andrew.Maas@uza.be</u> 17
- 18 Dr. Iain K. Haitsma, MD
- 19 Erasmus MC University Medical Center
- 20 Department of Neurosurgery
- 21 Doctor Molenwaterplein 40
- 22 3015 GD, Rotterdam, The Netherlands
- **23** tel: 0031-10-7039324
- **24** fax: 0031-10-7040704
- 25 email: <u>i.haitsma@erasmusmc.nl</u>
- 26
- 27
- '
- 28
- 29

30

- 31
- 32
- 33
- 34
- 35
- 36
- ~**-**
- 37
- 38
- 39
- 3

1 Abstract:

- 2 Intracranial pressure (ICP) monitoring is one of the mainstays in the treatment of severe
- 3 traumatic brain injury (TBI), but different approaches to monitoring exist. The aim of this
- 4 systematic review and meta-analysis is to compare the effectiveness and complication rate of
- 5 ventricular drainage (VD) versus intracranial parenchymal (IP) catheters to monitor and treat
- 6 raised ICP in patients with TBI.
- 7 Pubmed, EMBASE, Web of Science, Google Scholar and the Cochrane Database were
- 8 searched for articles comparing ICP monitoring-based management with VDs and monitoring
- 9 with IP monitors until March 2018. Study selection, data extraction and quality assessment
- 10 were performed independently by two authors. Outcomes assessed were mortality, functional
- 11 outcome, need for decompressive craniectomy, length of stay, overall complications, such as
- 12 infections, and hemorrhage. Pooled effect estimates were calculated with random effects
- 13 models and expressed as relative risk (RR) for dichotomous outcomes and mean difference
- 14 (MD) for ordinal outcomes, with corresponding 95% confidence intervals (CI).
- 15 Six studies were included: 1 randomized controlled trial and 5 observational cohort studies.
- 16 Three studies reported mortality, functional outcome and the need for a surgical
- decompression, three only reported complications. Quality of the studies was rated as poor,
- 18 with critical or serious risk of bias. The pooled analysis did not show a statistically significant
- difference in mortality (RR=0.90, 95% CI=0.60 to 1.36, p=0.41) or functional outcome
- 20 (MD=0.23, 95% CI=0.67 to 1.13, p=0.61). The complication rate of VDs was higher
- 21 (RR=2.56, 95% CI=1.17 to 5.61, p=0.02) and consisted mainly of infectious complications,
- 22 i.e. meningitis.
- 23 VDs caused more complications, particularly more infections but there was no difference in
- terms of mortality or functional outcome between the two monitoring modalities. However,
- the studies had a high risk of bias. A need exists for high quality comparisons of VDs versus
- 26 IP monitor-based management strategies on patient outcomes.
- Keywords: ICP monitoring; Ventricular Catheters; Intraparenchymal monitors; Monitoring
 Devices; Patient Outcomes; Severe TBI
- 29 30 31 32 33
- 34

1

2 Introduction

- 3 Intracranial pressure (ICP) monitoring is one of the mainstays of current severe traumatic
- 4 brain injury (TBI) treatment at the ICU and guidelines recommend using ICP monitoring in
- 5 order to reduce mortality.¹
- 6 There is a wide range of intracranial pressure sensors. Two types are most commonly used:
- 7 Ventricular drainage (VD) and intraparenchymal catheters. The IP monitor catheters require a
- 8 small opening in the skull and their small diameters cause little damage to the brain
- 9 parenchyma. They have a low risk of infection and other complications, such as intracerebral
- 10 hemorrhage.² The insertion of a ventricular catheter, usually into the frontal horn of the right
- 11 lateral ventricle, requires a relatively larger opening and is thought to cause more damage to
- 12 brain tissue than the insertion of a smaller parenchymal sensor.³ VDs fulfill two objectives:
- besides monitoring, they permit drainage of CSF, thereby acting as an ICP-lowering
- 14 intervention. However, this is accomplished at the expense of an increased risk of infections
- 15 and complications.²
- 16 Not much is known about the superiority of one method over the other in terms of patient
- 17 outcomes. In the second Brain Trauma Foundation Guidelines edition of 2000, in which this
- topic was addressed, no clear recommendation was made and in subsequent editions the topic
- 19 was no longer addressed due to lack of evidence.⁴ However, recently, a randomized controlled
- trial (RCT) was conducted, the first of its kind, that suggested the superiority of VDs over IP
- 21 monitors on patient outcomes. Next to this single RCT, several observational studies have
- 22 been published.
- 23 The aim of this study was to review the available evidence on the effectiveness and
- complication rate of VD versus IP-monitor-guided treatment of raised ICP in patients with
- 25 TBI.
- 26

27 Materials and methods

28 A protocol has been published on Prospero.⁵

29 Search strategy

- 30 Searches were not restricted by date, language or publication status. In collaboration with an
- 31 information specialist from the Erasmus MC library we developed a search strategy
- 32 (Appendix 1). We performed the search in MEDLINE, EMBASE, ISI Web of Science,
- 33 Pubmed and Google Scholar, from the first publicly accessible date of a particular database
- until March 1st, 2018. Ongoing studies were searched on clinicaltrials.gov. Grey literature
- 35 was screened using Google Scholar and ISI Web of Science. Reference lists of all relevant
- trials were hand searched and experts in the field that had previously published on this matter
- 37 were contacted for unpublished literature on this topic.

1 Ethical approval and consent

2 This study did not require ethical approval.

3 Inclusion criteria and study selection

- 4 Given the expected scarcity of available literature on the topic, we included next to RCTs -
- 5 prospective and retrospective observational studies that described a direct comparison
- 6 between patients with VDs and patients with IP monitoring and that reported either mortality,
- 7 functional outcomes or complications. Inclusion criteria were: (1) mainly adult population, (2)
- 8 severe or moderate TBI on admission defined as a Glasgow coma score (GCS) <=12 and (3)
- 9 closed head injury
- 10 Exclusion criteria were (1) penetrating or blast TBI, (2) studies with a predominantly
- 11 paediatric population, (3) studies without VD and IP comparisons and (4) studies on external
- 12 lumbar drainage
- 13 For studies with mixed populations, including mixed ages (i.e. adults and children) and mixed
- 14 injury types (i.e. TBI and stroke) we included studies in which the results for our population

15 of interest were presented separately, or in which at least 85% of the participants represented

- 16 our population of interest.
- 17 Considering mixed injury types, one exception was made in the case of the secondary
- 18 outcomes, i.e. infections, haemorrhage and catheter malfunctions. Since we did not expect any
- 19 differences between mixed injury types (i.e. ischaemic stroke and severe TBI) in terms of
- 20 complications when either device was used. We therefore chose to pool all studies that
- compared complications in patients with an VD and those with an IP monitor in mixed injury
- types, even if the population represented < 85% severe TBI.
- 23 The first phase involved screening the titles and abstracts (Appendix 3). Studies unrelated to
- 24 the topics of VDs versus IP monitoring or TBI were excluded. In the second phase the
- 25 remaining abstracts were screened for the inclusion and exclusion criteria.
- 26 In the final sifting phase, the full text of the remaining studies was reviewed. Conflicts were
- 27 resolved by discussion until a final decision was reached.
- 28

29 Data extraction and risk of bias assessment

- 30 Each study was assessed by two investigators (VV, IH) and the data was extracted in a matrix
- 31 consisting of trial details, such as: trial name and date, trial design, author contact
- 32 information, inclusion and exclusion criteria, adherence to a published protocol, number of
- patients, duration of intervention, mean age of patients, mean GCS, percentage of severe TBI,
- male to female ratio, whether the groups were comparable or not and the effect size and
- confidence intervals for the primary and secondary outcomes individually (Appendix 2).
- Finally, potential sources of bias and sources of funding were noted.

- 1 Quality assessment was performed by two authors independently (VV and JH). For the RCTs
- 2 we used the Cochrane Collaboration's Risk of Bias Assessment Tool⁶ (assessing the risk of
- bias as high/low or unknown for each domain) tool and for observational trials the ROBINS-I
- 4 Cochrane tool⁷ (assessing the studies as low/moderate/serious or critical risk of bias for each
- 5 domain and overall) (Appendix 4).
- 6

7 **Outcomes**

- 8 The primary outcomes were mortality and functional outcome at 6 months or final follow-up 9 if earlier, defined by the Glasgow Outcome Scale/Extended (GOS/E).
- 10 The secondary outcomes examined were: the need for decompressive craniectomy during ICU
- stay; the hospital and Intensive Care Unit (ICU) Lengths Of Stay (LOS); monitoring duration;
- device failure at any time point; all complications; infections, however defined in the paper;
- 13 intracranial haemorrhage; and the number of episodes of refractory intracranial hypertension
- 14 (RICH), defined as uncontrollable intracranial hypertension by conventional means requiring
- 15 an increase in therapy intensity, either medical or surgical.
- 16 We anticipated that all outcome data will be dichotomous. As such, for each study, we have
- extracted the number of participants receiving each device and the number of events (i.e. n/N)or the GOS mean differences.
- For the hospital and ICU LOS we calculated the mean difference between groups and the 95%
 CI.
- 22

23 Statistical analyses

- 24 The relative risk (RR) and corresponding 95% Confidence Interval (CI) were extracted for
- mortality, need for decompressive craniectomy, overall complications (specifically for device
 failure, infection and haemorrhage), when available and otherwise calculated.
- 27 The pooled RR and corresponding 95% CI was then determined using the Mantel-Haenszel
- approach, and its significance as the true effect estimate was assessed against the null
- 29 hypothesis RR overall=1 using the z test. Statistical evidence for heterogeneity between
- studies was assessed using the Q-test and the I^2 index estimated the between-study variability.
- 31 We used the random effects model for all analyses, as considerable heterogeneity may exist
- 32 despite the absence of statistical evidence of this, especially in studies with small sample
- 33 sizes.
- For the outcomes reported as mean difference (MD) \pm standard deviation (SD), we used the
- inverse variance method to obtain the pooled MD. In this case we also used the Q-test and I^2
- 36 index to estimate statistical heterogeneity between studies. The outcomes were ICU and
- 37 hospital LOS, mean monitoring duration and mean GOS for each group.

- 1 Review Manager (RevMan, Cochrane Collaboration, version 5.3) was used for data synthesis.
- 2

3 **Results**

- 4 <u>Study characteristics</u>
- 5 1208 studies underwent abstract screening. Among these, 37 were screened full text
- 6 (Appendix 3). Six studies were included and characteristics of patients extracted (Appendix 2)
- 7 with 3968 enrolled patients in total (minimum 122 patients⁸, maximum 2562 patients⁹). One
- 8 of these was an RCT, the rest were retrospective observational cohorts. Three studies included
- 9 data on mortality, functional outcome, LOS and surgical decompression, the other three
- 10 reported only complications.
- 11 <u>Primary outcome</u>
- 12 Three studies with 3013 patients reported mortality rates.⁸⁻¹⁰ When the results were
- aggregated, mortality was not different between VD and IP monitors (RR=0.90, 95% CI=0.60
- to 1.36, p=0.63). There was substantial heterogeneity ($I^2 = 76\%$, p value of the Q test=0.01)
- 15 (*Figure 1a*).
- 16 In the analysis of studies reporting functional outcome at the end of follow-up, 2 papers
- 17 involving 451 patients described functional outcome data using the mean GOS difference.^{8, 10}
- 18 When the results were aggregated, mean GOS was not different between the two interventions
- 19 (Mean Difference (MD) =0.23, 95% CI=-0.67 to 1.13, p=0.61). Heterogeneity was high (Q
- 20 test p=0.003, I^2 =89%) (*Figure 1b*).
- 21 We contacted the authors of the Kasotakis et al study¹⁰ in order to obtain the absolute
- numbers of the functional outcome, but the data on these outcomes were not available
- anymore.
- Aiolfi et al⁹ only described the absolute numbers for patients functionally independent at
- discharge. For the 2562 patients described, there was no difference regarding this number
- between the two groups patients at discharge (RR=0.97, 95% CI= 0.83 to 1.13).
- 27 <u>Secondary outcomes</u>
- 28 Three studies including 3968 patients examined the risk of needing a surgical decompression
- in both groups.⁸⁻¹⁰ There was no difference between the groups (RR = 0.79, 95% CI= 0.56 to
- 30 1.10, p=0.16). Heterogeneity was large (Q-test p=0.005; $I^2=81\%$) (*Figure 2a*).
- 31 The mean LOS in the hospital⁸⁻¹⁰ did not differ between groups with no heterogeneity (MD= M
- 32 0.02, 95% CI= -0.42 to 0.46, p=0.93; Q-test p=0.80; $I^2=0\%$). The mean ICU length of stay
- 33 was shorter in the IP group (MD= 1.09, 95% CI= 0.41 to 1.78, p=0.002).⁸⁻¹⁰ Heterogeneity
- 34 was low (Q-test: p=0.25, $I^2 = 28\%$) (*Figure 2b and 2c*).

- 1 Two papers including 499 patients reported the mean monitoring duration for both groups.^{8, 10}
- 2 This did not differ when the results were pooled (MD= 1.78, 95% CI= -1.55 to 5.11, p=0.29).
- there was large statistical heterogeneity (Q-test: p < 0.00001, $I^2 = 96\%$) (*Figure 3e*).
- 4 Three studies including 607 patients reported device failures^{8, 10, 11} and there was no
- 5 difference between the two groups in this respect (RR=0.98, 95% CI= 0.35 to 2.69, p=0.96).
- 6 There was a low level of statistical heterogeneity (Q-test p=0.13, $I^2 = 52\%$) (*Figure 3d*).
- 7 Six reports including 3968 patients reported overall complications.^{2, 8-12} Five reports including
- 8 1406 patients reported infections of the device, hemorrhage and 'all complications'.^{2, 8, 10-12}
- 9 With regard to all complications, the VD group fared worse than the IP monitor group
- 10 (RR=2.56, 95% CI=1.17 to 5.61, p= 0.02). Statistical heterogeneity was high (Q-test p<
- 11 0.00001, $I^2=91\%$) (*Figure 3a*). Regarding infections^{2, 8, 10-12} in particular, such as meningitis
- 12 and ventriculitis, VD patients were more at risk (RR=7.09, 95% CI= 2.64 to 19.04, p=0.0001),
- 13 without evidence of statistical heterogeneity (Q-test p=0.59, $I^2 = 0\%$) (*Figure 3b*). The VD
- 14 group was also more at risk for hemorrhage (RR=2.64, 95% CI= 1.05 to 6.63, p=0.04),^{2, 8, 10-12}
- 15 without evidence of statistical heterogeneity (Q-test, p=0.94, $I^2 = 0\%$) (*Figure 3c*).
- 16 Episodes of RICH were only reported by one paper⁸, and thus did not lend themselves to a
- pooled analysis. The RR was 0.41, with a 95% CI ranging from 0.24 to 0.70.
- 18 <u>Risk of bias</u>
- 19 The overall quality of the studies is poor (Appendix 4), with one underpowered RCT (N=122)
- 20 with high risk of bias with regard to blinding of trial personnel and of the outcome assessors.
- 21 Of the 5 observational studies, 2 were judged as serious risk of bias and the other 3 were
- 22 deemed at critical risk of bias according to the methodological assessment.
- 23 The risk of bias for the RCT was low on most domains, except blinding of study personnel,
- 24 which is inherently impossible given the nature of the intervention and the blinding of
- clinicians to the intervention in the clinical phase. The retrospective observational cohorts
- were judged as having overall serious⁹ and critical risk of bias respectively.^{2, 10, 11}
- The criterion blinding could not be rated in the Cochrane tool since the monitoring device isidentifiable when placed.

29 **Discussion**

- 30 This is the first systematic review that describes the potential effects of VDs versus IP
- monitor-guided management on patient outcomes. We found no difference in terms of
- mortality or functional outcome between the two groups. IP monitors are associated with a
- 33 shorter ICU stay but not hospital stay and are associated with less complications, in particular
- 34 less infections. The risk of malfunction is comparable among devices. However, strong
- 35 inferences on effectiveness of VDs versus IP monitors cannot be made from this analyses
- 36 given the high risk of bias of the included studies.

- 1 The effect of ICP monitoring is the subject of an ongoing debate in the scientific literature.¹,
- 2 ¹³⁻¹⁵ General consensus remains that ICP monitoring is recommended in patients with severe
- 3 TBI who have traumatic abnormalities on the CT scan.¹⁶
- 4 Considerable practice variation exists with respect to the choice of monitoring device. A
- 5 recent questionnaire-based study carried out by our group in 66 centers in Europe¹⁶ showed
- 6 that both parenchymal and ventricular monitoring devices were available in more than half of
- 7 centers (59%). One-third of the participants indicated that they used only parenchymal
- 8 monitors, whereas one-tenth of the participants indicated that they used only ventricular
- 9 catheters.¹⁶
- 10 This variation noticed in the study carried out by our group can be explained in light of the
- 11 limited evidence base for clinical practice. When looking at studies that provide the best
- 12 quality evidence with a least risk of bias, the only RCT on the topic suggests the superiority of
- 13 monitoring and treatment using \overline{VDs}^8 for both mortality and functional outcome, potentially
- 14 also through a decrease in the number of patients requiring surgical decompression. Our meta-
- analysis shows no difference between the two groups which likely arises from the pooling of
- results with lower quality studies. Despite the importance of ICP monitoring and the clinical
- 17 relevance of the comparison between VDs and IP monitors, we only found 6 papers dealing
- 18 with this head-to-head comparison. This is perhaps due to the idea that a monitoring device in
- 19 itself cannot improve outcomes, but guide treatment and because certain imaging
- 20 characteristics (midline shift, mass lesions, narrow ventricles) might deter clinicians from
- 21 inserting VD, making RCTs difficult to carry out and less generalizable.
- 22 It is essential to distinguish acute craniotomy for the evacuation of life-threatening space-
- 23 occupying lesions from decompressive craniectomy, a rescue therapy to resolve intracranial
- 24 hypertension refractory to medical treatment because of the vastly different prognosis.
- 25 This was, however, only properly defined as such in the paper by Liu and colleagues.⁸ In the
- other two papers that report this outcome 9,10 , it is unclear whether patients received a
- 27 decompressive craniectomy or a craniotomy with decompression of the lesion. Kasotakis et al
- report "surgical decompression" and do not define it¹⁰, whereas Aiolfi et al report in the text
- 29 "The need for craniectomy" and "Craniotomy/Craniectomy performed within 24 hours" in the
- 30 table.⁹ When the results of Liu et al and Kasotakis et al were pooled, the difference was
- 31 significant in that the VD group required surgical decompression more often. When the
- 32 results of the Aiolfi study were added, the difference was no longer significant. Given the
- major differences in prognosis between a craniotomy with evacuation of a lesion and a
- 34 craniectomy on patient outcomes, it is likely that confounding was introduced by adding the
- Aiolfi study to the pooled results, owing in part to the large number of patients included.⁹
- 36 The overall complication rate and in particular to the risk of infection and haemorrhage were
- higher for patients receiving a VD when compared to those receiving an IP monitor.
- The infection risk for an VD in the literature ranges between as low as $0\%^{17}$ and as high as
- $22\%^{17}$, and this needs to be addressed when VDs are used by the implementation of a strict
- 40 protocol of insertion, care and maintenance. In this review the calculated infection rate and
- 41 overall complication rates were higher in the VD groups, ranging from $2\%^8$ to $9\%^{12}$. The IP

- 1 monitor group had consistently very low prevalence of infection, usually under 1%.^{2, 10} It is
- 2 known that a longer duration of monitoring usually leads to a higher infection rate.¹² Only two
- 3 papers report the mean duration of monitoring and the pooled results show no statistically
- 4 significant difference between the two groups,^{8, 10} but future research on this topic needs to
- 5 address this potential confounder.

6 Despite the difference being non-significant in all of the individual studies, the aggregated

- 7 results show a significantly shorter duration of ICU admission in patients receiving IP
- 8 monitors. At first glance, it might appear that the lower complication rate leads to a shorter
- 9 ICU LOS. On average, patients spent one extra day in the ICU. Severe complications would
- 10 prolong ICU stay for longer than a day and the hospital LOS does not differ significantly.
- 11 This might, however, be a case of confounding by indication: the insertion of a ventricular
- 12 probe requires a patent ventricle, and is best accomplished when the ventricular system is not
- displaced. In case of raised ICP the ventricles become slit and a considerable midline shift
- 14 may develop, making the surgical insertion of the probe difficult or impossible. There is the
- risk, therefore, that VDs are used in less severe cases, where its insertion is feasible.
- 16 When looking at variables collected in the 6 included papers, we strikingly found no mention
- 17 of the effect of CSF drainage on therapy intensity level, save for the need for performing a
- 18 surgical decompression and the ICU LOS and number of episodes of RICH as indications of
- 19 therapy intensity (the latter only available in the RCT). We feel that this is a necessary
- 20 addition for future studies, as the beneficial effect of controlling ICP through CSF drainage
- 21 might be counteracted by the risk of adverse events. It is more likely to assume that VD use
- 22 decreases treatment intensity and is in this respect beneficial than to assume that it has, as a
- 23 standalone entity, a direct effect on patient outcomes.
- 24 Moreover, except for the only RCT on the topic by Liu and colleagues⁸, no other papers
- report whether CSF was drained intermittently or continuously. Within the aforementioned
- trial CSF was drained intermittently. So far only small studies suggest a potential benefit of
- 27 continuous drainage above intermittent.¹⁸ In addition, there was also no information available
- of crossover patients, i.e. patients that received an VD after receiving an IP monitor and
- 29 whether there were differences in the readings. This also suggests another possible
- 30 confounder: the values indicated by VDs during drainage might provide inaccurately low
- values, not detecting values above the threshold and leading to under-treatment.¹⁹
- 32 Furthermore, no mention was made in any of the papers whether antibiotic impregnated
- 33 catheters were used. These issues need to be dealt with when further research on this topic
- 34 will be carried out.
- 35 In light of the complications, the use of VDs might seem counterintuitive. However, in the
- 36 pediatric population continuous CSF drainage is a relatively common practice with evidence
- to support improvements in both ICP management and injury biomarkers.²⁰ In the adult
- population, however, only small studies show a potential benefit of continuous drainage¹⁸.
- 39 This statement also figures as a recommendation in the guidelines.¹
- 40 In light of many unanswered questions, a large comparative effectiveness study,²¹ such as the
- 41 ongoing CENTER-TBI and TRACK-TBI cohorts would be needed to address all of the

- 1 questions regarding the effectiveness, complication rate, and to assess the cost-effectiveness
- 2 of each device while keeping the risk of bias moderate or low and work around the
- 3 confounding. The topic of intermittent or continuous drainage also needs to be addressed in a
- 4 larger dedicated trial, and the focus should also be on the effect of CSF drainage on treatment
- 5 intensity.
- 6 Despite the fact that the only RCT on this topic shows better results for patient outcomes, it
- 7 did not create a paradigm shift in practice, nor does it figure in the current edition of the
- 8 guidelines¹. When all available data was pooled, the results of this RCT are challenged.
- 9 Further high-quality comparisons are needed to address this issue.

10 Deviations from the protocol and limitations

- 11 We were unable to access absolute values of the GOS(E) in order to dichotomize. The only
- 12 data available was the mean GOS for the two groups which is a limitation of this study. We
- 13 would have favored an ordinal approach to data analysis.
- 14 We also did not measure the relative risk of receiving an VD when one had received an IP
- 15 monitor first. We included some studies that did not respect our 85% severe TBI rule, but
- 16 given that we felt that the risk of infections when these devices are used in other injury types
- 17 or in mixed injury types are comparable, we avoided the introduction of confounding of our
- 18 results. VDs used in stroke are usually inserted in cases of intraventricular haemorrhage and
- 19 kept in until the blood clears, which might lead to a longer monitoring duration in the VD
- 20 group and consequently more infections. The pooled data available did not suggest a longer
- 21 monitoring duration with VDs, but only 2 of the 6 papers reported this outcome.
- 22 Subgroup analyses were impossible since the studies did not present the required data. Funnel
- 23 plots could also not be compiled as there were insufficient studies in order to do so.
- 24

25 Conclusion

- 26 This systematic review suggests that in patients with severe or moderate TBI the use of VDs
- 27 instead of IP monitors was not associated with less mortality or better functional outcome, but
- the patients did suffer more complications. Overall, these results need to be interpreted with
- 29 caution given that the overall body of evidence is poor, consisting of mostly observational
- 30 studies with serious and critical risk of bias. There remains a need for high quality head-to-
- 31 head comparisons of VDs and IP monitors.

32

33 Acknowledgments

The authors would like to thank Ms. A. Synnot from Cochrane Australia for her invaluable assistance in the preparatory phase of this study and for her help in the protocol stage.

36 **Conflict of interest**

- 1 All authors report funding from the European Commission, Seventh Framework Programme,
- 2 grant number 602150.
- 3
- 4
- 5
- 6 References
- 7 1. Carney, N., Totten, A.M., O'Reilly, C., Ullman, J.S., Hawryluk, G.W., Bell, M.J., Bratton, S.L., Chesnut,
- 8 R., Harris, O.A., Kissoon, N., Rubiano, A.M., Shutter, L., Tasker, R.C., Vavilala, M.S., Wilberger, J.,
- 9 Wright, D.W. and Ghajar, J. (2017). Guidelines for the Management of Severe Traumatic Brain Injury,
 10 Fourth Edition. Neurosurgery 80, 6-15.
- Suyot, L.L., Dowling, C., Diaz, F.G. and Michael, D.B. (1998). Cerebral monitoring devices: analysis
 of complications. Acta neurochirurgica. Supplement 71, 47-49.
- 13 3. Ortolano, F., Carbonara, M., Stanco, A., Civelli, V., Carrabba, G., Zoerle, T. and Stocchetti, N. (2017).
- 14 External ventricular drain causes brain tissue damage: an imaging study. Acta Neurochirurgica 159,
- 15 1981-1989.
- 16 4. (2000). The Brain Trauma Foundation. The American Association of Neurological Surgeons. The
- 17 Joint Section on Neurotrauma and Critical Care. Recommendations for intracranial pressure
- 18 monitoring technology. J Neurotrauma 17, 497-506.
- 19 5. Volovici, V., Lingsma, H.F., Steyerberg, E.W., Maas, A.I.R., Synnot, A.S., Dirven, C.M.F. and Haitsma,
- 20 I.K. (2017). External ventricular drainage versus intraparenchymalfiberoptic catheters in severe
- 21 traumatic brain injury: impact on mortality and six-month functional outcome. PROSPERO 2017
- 22 CRD42017056526 PROSPERO Available from:
- 23 <u>http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017056526</u>.
- 24 6. Higgins, J.P.T., Altman, D.G., Gøtzsche, P.C., Jüni, P., Moher, D., Oxman, A.D., Savović, J., Schulz,
- 25 K.F., Weeks, L. and Sterne, J.A.C. (2011). The Cochrane Collaboration's tool for assessing risk of bias in
- 26 randomised trials. Bmj 343.
- 27 7. Sterne, J.A.C., Hernán, M.A., Reeves, B.C., Savović, J., Berkman, N.D., Viswanathan, M., Henry, D.,
- 28 Altman, D.G., Ansari, M.T., Boutron, I., Carpenter, J.R., Chan, A.-W., Churchill, R., Deeks, J.J.,
- 29 Hróbjartsson, A., Kirkham, J., Jüni, P., Loke, Y.K., Pigott, T.D., Ramsay, C.R., Regidor, D., Rothstein,
- 30 H.R., Sandhu, L., Santaguida, P.L., Schünemann, H.J., Shea, B., Shrier, I., Tugwell, P., Turner, L.,
- 31 Valentine, J.C., Waddington, H., Waters, E., Wells, G.A., Whiting, P.F. and Higgins, J.P.T. (2016).
- 32 ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Bmj 355.
- 8. Liu, H., Wang, W., Cheng, F., Yuan, Q., Yang, J., Hu, J. and Ren, G. (2015). External Ventricular
- 34 Drains versus Intraparenchymal Intracranial Pressure Monitors in Traumatic Brain Injury: A
- 35 Prospective Observational Study. World Neurosurg 83, 794-800.
- 36 9. Aiolfi, A., Khor, D., Cho, J., Benjamin, E., Inaba, K. and Demetriades, D. (2018). Intracranial pressure
- monitoring in severe blunt head trauma: does the type of monitoring device matter? J Neurosurg
 128, 828-833.
- 39 10. Kasotakis, G., Michailidou, M., Bramos, A., Chang, Y., Velmahos, G., Alam, H., King, D. and De
- Moya, M.A. (2012). Intraparenchymal vs extracranial ventricular drain intracranial pressure monitors
 in traumatic brain injury: Less is more? J Am Coll Surg 214, 950-957.
- 42 11. Khan, S.H., Kureshi, I.U., Mulgrew, T., Ho, S.Y. and Onyiuke, H.C. (1998). Comparison of
- 43 percutaneous ventriculostomies and intraparenchymal monitor: a retrospective evaluation of 156
- 44 patients. Acta neurochirurgica. Supplement 71, 50-52.
- 45 12. Dimitriou, J., Levivier, M. and Gugliotta, M. (2016). Comparison of Complications in Patients
- 46 Receiving Different Types of Intracranial Pressure Monitoring: A Retrospective Study in a Single
- 47 Center in Switzerland. World Neurosurgery 89, 641-646.

- 1 13. Chesnut, R.M., Temkin, N., Carney, N., Dikmen, S., Rondina, C., Videtta, W., Petroni, G., Lujan, S.,
- 2 Pridgeon, J., Barber, J., Machamer, J., Chaddock, K., Celix, J.M., Cherner, M., Hendrix, T. and Global
- 3 Neurotrauma Research, G. (2012). A trial of intracranial-pressure monitoring in traumatic brain
- 4 injury. N Engl J Med 367, 2471-2481.
- 5 14. Hartl, R. and Stieg, P.E. (2013). Intracranial pressure is still number 1 despite BEST:TRIP study.
- 6 World Neurosurg 79, 599-600.
- 7 15. Rubiano, A.M. and Puyana, J.C. (2013). Intracranial-pressure monitoring in traumatic brain injury.
- 8 N Engl J Med 368, 1748.
- 9 16. Cnossen, M.C., Huijben, J.A., van der Jagt, M., Volovici, V., van Essen, T., Polinder, S., Nelson, D.,
- 10 Ercole, A., Stocchetti, N., Citerio, G., Peul, W.C., Maas, A.I.R., Menon, D., Steyerberg, E.W., Lingsma,
- 11 H.F. and investigators, C.-T. (2017). Variation in monitoring and treatment policies for intracranial
- 12 hypertension in traumatic brain injury: a survey in 66 neurotrauma centers participating in the
- 13 CENTER-TBI study. Crit Care 21, 233.
- 14 17. Lozier, A.P., Sciacca, R.R., Romagnoli, M.F. and Connolly, E.S., Jr. (2002). Ventriculostomy-related 15 infections: a critical review of the literature. Neurosurgery 51, 170-181; discussion 181-172.
- 16 18. Nwachuku, E.L., Puccio, A.M., Fetzick, A., Scruggs, B., Chang, Y.F., Shutter, L.A. and Okonkwo, D.O.
- 17 (2014). Intermittent versus continuous cerebrospinal fluid drainage management in adult severe
- 18 traumatic brain injury: assessment of intracranial pressure burden. Neurocrit Care 20, 49-53.
- 19. Hockel, K. and Schuhmann, M.U. (2018). ICP Monitoring by Open Extraventricular Drainage:
- 20 Common Practice but Not Suitable for Advanced Neuromonitoring and Prone to False Negativity.
- 21 Acta neurochirurgica. Supplement 126, 281-286.
- 22 20. Shore, P.M., Thomas, N.J., Clark, R.S., Adelson, P.D., Wisniewski, S.R., Janesko, K.L., Bayir, H.,
- 23 Jackson, E.K. and Kochanek, P.M. (2004). Continuous versus intermittent cerebrospinal fluid drainage
- after severe traumatic brain injury in children: effect on biochemical markers. J Neurotrauma 21,
 1113-1122.
- 26 21. Maas, A.I., Menon, D.K., Steyerberg, E.W., Citerio, G., Lecky, F., Manley, G.T., Hill, S., Legrand, V.,
- 27 Sorgner, A., Participants, C.-T. and Investigators (2015). Collaborative European NeuroTrauma
- 28 Effectiveness Research in Traumatic Brain Injury (CENTER-TBI): a prospective longitudinal
- 29 observational study. Neurosurgery 76, 67-80.
- 30
- 31
- 32
- 33
- -
- 34
- 35