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We consider a class of interacting particle models with anisotropic, repulsive-attractive

interaction forces whose orientations depend on an underlying tensor field. An example

of this class of models is the so-called Kücken-Champod model describing the formation
of fingerprint patterns. This class of models can be regarded as a generalization of a

gradient flow of a nonlocal interaction potential which has a local repulsion and a long-
range attraction structure. In contrast to isotropic interaction models the anisotropic
forces in our class of models cannot be derived from a potential. The underlying ten-

sor field introduces an anisotropy leading to complex patterns which do not occur in
isotropic models. This anisotropy is characterized by one parameter in the model. We
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study the variation of this parameter, describing the transition between the isotropic
and the anisotropic model, analytically and numerically. We analyze the equilibria of

the corresponding mean-field partial differential equation and investigate pattern forma-

tion numerically in two dimensions by studying the dependence of the parameters in the
model on the resulting patterns.

Keywords: Nonlocal interactions; Pattern formation; Dynamical systems.

AMS Subject Classification: 35B36, 35Q92, 70F10, 82C22

1. Introduction

Nonlocal interaction models are mathematical models describing the collective be-

havior of large numbers of individuals where each individual can interact not only

with its close neighbors but also with individuals far away. These models serve as

basis for biological aggregation and have given us many tools to understand the

fundamental behavior of collective motion and pattern formation in nature. For

instance, these mathematical models are used to explain the complex phenomena

observed in swarms of insects, flocks of birds, schools of fish or colonies of bacte-

ria.1–22

One of the key features of many of these models is the social communication be-

tween individuals at different scales which can be described by short- and long-range

interactions.2,15,18 Over large distances the individuals in these models can sense

each other via sight, sound, smell, vibrations or other signals. This leads to another

key feature in these models, the non-zero characteristic speed of the individuals

which can be modeled in different ways. For instance, the speed can be constant

with a direction based on the averages of the neighbors as in Ref. 23 or it may be

driven by random noise.24 While most models consider only isotropic interactions,

pattern formation in nature is often anisotropic25 and an anisotropy in the commu-

nication between individuals is essential to describe these phenomena accurately. In

this paper, we consider a class of interacting particle models with anisotropic inter-

action forces. It can be regarded as a generalization of isotropic interaction models.

These anisotropic interaction models capture many important swarming behaviors

which are neglected in the simplified isotropic interaction model.

Isotropic interaction models with radial interaction potentials can be regarded

as the simplest form of interaction models.26 The resulting patterns are found as

stationary points of the N particle interaction energy

E(x1, . . . , xN ) =
1

2N2

N∑
j,k=1
k 6=j

W (xj − xk) (1.1)

where W (d) = W (|d|) denotes the radially symmetric interaction potential and

xj = xj(t) ∈ Rn for j = 1, . . . , N denote the positions of the particles at time
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t ≥ 0.3,17 The associated gradient flow is:

dxj
dt

=
1

N

N∑
k=1
k 6=j

F (xj − xk) (1.2)

where F (d) = −∇W (d). Here, F (xj − xk) is a conservative force, aligned along the

distance vector xj − xk.

When the number of individuals is large as in many biological applications, it

becomes essential to use continuum models for the evolution of the density of the

individuals. Denoting the density of particles at location x ∈ Rn and at time t > 0

by ρ = ρ(t, x) the interaction energy is given by

W[ρ] =
1

2

∫
R2

(W ∗ ρ) (x)ρ(dx)

and the continuum equation corresponding to (1.2), also referred to as the aggre-

gation equation,3,17,27,28 reads

ρt +∇ · (ρu) = 0, u = −∇W ∗ ρ (1.3)

where u = u(t, x) is the macroscopic velocity field. The aggregation equation (1.3)

whose well-posedness has been proved in Ref. 29 has extensively been studied re-

cently, mainly in terms of its gradient flow structure,30–34 the blow-up dynamics for

fully attractive potentials,27,35–37 and the rich variety of steady states.2,22,26,35,38–47

Recently, there has been a trend to connect the microscopic and the macroscopic

descriptions via kinetic modeling, see for instance Ref. 48, 49, 50 for different kinetic

models in swarming, Ref. 51, 52 for the particle to hydrodynamics passage and

Ref. 53 for the hydrodynamic limit of a kinetic model.

If the radially symmetric potential W (d) = W (|d|) is purely attractive, e.g. W

is an increasing function with W (0) = 0, the density of the particles converges to

a Dirac Delta function located at the center of mass of the density.54 In this case,

the Dirac Delta function is the unique stable steady state and a global attractor.36

Under certain conditions the collapse towards the Dirac Delta function can take

place in finite time.27,36,55,56

In biological applications, however, it is not sufficient to consider purely at-

tractive potentials since the inherently nonlocal interactions between the individual

entities occur on different scales.2,15,18 These interactions are usually described by

short-range repulsion to prevent collisions between the individuals as well as long-

range attraction that keeps the swarm cohesive.57,58 The associated radially sym-

metric potentials W , also referred to as repulsive-attractive potentials, first decrease

and then increase as a function of the radius. These potentials lead to possibly more

complex steady states than the purely attractive potentials and can be considered

as a minimal model for pattern formation in large systems of individuals.26

The 1D nonlocal interaction equation with a repulsive-attractive potential has

been studied in Ref. 44, 45, 46. The authors show that the behavior of the solution
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strongly depends on the regularity of the interaction potential. More precisely, the

solution converges to a sum of Dirac masses for regular interaction, while it remains

uniformly bounded for singular repulsive potentials.

Pattern formation for repulsive-attractive potentials in multiple dimensions is

studied in Ref. 3, 17, 47, 22. The authors perform a linear stability analysis of ring

equilibria and derive conditions on the potential to classify the different instabili-

ties. This analysis can also be used to study the stability of flock solutions and mill

rings in the associated second-order model, see Ref. 59 and 60 for the linear and

nonlinear stability of flocks, respectively. A numerical study of the N particle inter-

action model for specific repulsion-attraction potentials3,17 outlines a wide range

of radially symmetric patterns such as rings, annuli and uniform circular patches,

while exceedingly complex patterns are also possible. In particular, minimizers of

the interaction energy (1.1), i.e., stable stationary states of the microscopic model

(1.2), can be radially symmetric even for radially symmetric potentials. This has

been studied and discussed by instabilities of the sphere and ring solution in Ref. 3,

47, 22. The convergence of radially symmetric solutions towards spherical shell sta-

tionary states in multiple dimensions is discussed in Ref. 26. Another possibility to

produce concentration in lower dimensional sets is to use potentials which are not

radially symmetric. This has been explored recently in the area of dislocations in

Ref. 61. Moreover, the nonlocal interaction equation in heterogeneous environments

(where domain boundaries are also allowed) is investigated in Ref. 62. Besides, in-

teraction energies with boundaries have been studied in Ref. 63.

Nonlocal interaction models have been studied for specific types of repulsive-

attractive potentials.16,38,64–67 In Ref. 38 the dimensionality of the patterns is

analyzed for repulsive-attractive potentials that are strongly or mildly repulsive

at the origin, i.e., potentials with a singular Laplacian at the origin satisfying

∆W (d) ∼ −|d|−β as d → 0 for some 0 < β < n in n dimensions and poten-

tials whose Laplacian does not blow up at the origin satisfying W (d) ∼ −|d|α as

d → 0 for some α > 2, respectively. In Ref. 16 a specific example of a repulsive-

attractive potential is studied, given by a Newtonian potential for the repulsive and

a polynomial for the attractive part, respectively.

Isotropic patterns and clustering have been studied in different contexts. In

Ref. 68 the authors review a general class of models for self-organized dynamics

and show that the tendency to bond more with those who are different rather than

with those who are similar is crucial in the clustering process. Bourne, Peletier et

al. study pattern formation and pattern evolution in various contexts, see Ref. 69,

70, 71 for instance.

In this work, we consider an evolutionary particle model with an anisotropic

interaction force in two dimensions. More precisely, we generalize the extensively
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studied model (1.2) by considering an N particle model of the form

dxj
dt

=
1

N

N∑
k=1
k 6=j

F (xj − xk, T (xj)) (1.4)

where F (xj−xk, T (xj)) ∈ R2 describes the force exerted from xk on xj . Here, T (xj)

denotes a tensor field at location xj which is given by

T (x) := χs(x)⊗ s(x) + l(x)⊗ l(x)

for orthonormal vector fields s = s(x), l = l(x) ∈ R2 and χ ∈ [0, 1].

As in the standard particle model (1.2) we assume that the force

F (xj − xk, T (xj)) is the sum of repulsion and attraction forces. In (1.2), attrac-

tion and repulsion forces are aligned along the distance vector xj − xk so that the

total force F (xj − xk) is also aligned along xj − xk. In the extended model (1.4),

however, the orientation of F (xj−xk, T (xj)) depends not only on the distance vec-

tor xj−xk but additionally on the tensor field T (xj) at location xj . More precisely,

the attraction force will be assumed to be aligned along the vector T (xj)(xj − xk).

Since T depends on a parameter χ ∈ [0, 1] the resulting force direction is regulated

by χ. In particular, alignment along the distance vector xj −xk is included in (1.4)

for χ = 1. The additional dependence of (1.4) on the parameter χ in the definition of

the tensor field T introduces an anisotropy to the equation. This anisotropy leads

to more complex, anisotropic patterns that do not occur in the simplified model

(1.2). Due to the dependence on parameter χ the force F is non-conservative in

general so that it cannot be derived from a potential. However, most of the analysis

of the interaction models in the literature relies on the existence of an interaction

potential as outlined above. A particle interaction model of the form (1.4) with a

non-conservative force term that depends on an underlying tensor field T appears

not to have been investigated mathematically in the literature yet. It seems that

there are not many results currently available in the field of anisotropies. Evers et

al. model anisotropy by adding weights to the interaction terms in Ref. 72. Since the

weights depend on the velocities themselves, the equation for velocities becomes im-

plicit. This introduces a fair number of new issues, such as discontinuous solutions.

Hence, small inertia regularization are introduced and studied in the follow-up pa-

per in Ref. 73. Note that the model in Ref. 72, 73 is related to the model we consider

in this paper if one introduces a tensor field T as the velocity direction.

Due to the generality of the formulation of the anisotropic interaction model

(1.4) a better understanding of the pattern formation in (1.4) can be regarded as a

first step towards understanding anisotropic pattern formation in nature. An exam-

ple of an N particle model of the form (1.4) is the model introduced by Kücken and

Champod in Ref. 74, describing the formation of fingerprint patterns based on the

interaction of Merkel cells and mechanical stress in the epidermis.75 Even though

the Kücken-Champod model74 seems to be capable to produce transient patterns

that resemble fingerprint patterns, the pattern formation of the Kücken-Champod
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model and its dependence on the model parameters have not been studied analyti-

cally or numerically before. In particular, the long-time behavior of solutions to the

Kücken-Champod model and its stationary solutions have not been understood yet.

However, stationary solutions to the Kücken-Champod model are of great interest

for simulating fingerprints since fingerprint patterns only change in size and not in

shape after we are born so that every person has the same fingerprints from in-

fancy to adulthood. Clearly, fingerprint patterns are of great importance in forensic

science. Besides, they are increasingly used in biometric applications. Hence, un-

derstanding the model, proposed in Ref. 74, and in particular its pattern formation

result in a better understanding of the fingerprint pattern formation process.

The goal of this work is to study the equilibria of the microscopic model (1.4) and

the associated mean-field PDE analytically and numerically. We investigate the ex-

istence of equilibria analytically. Since numerical simulations are crucial for getting

a better understanding of the patterns which can be generated with the Kücken-

Champod model we investigate the impact of the model parameters on the resulting

transient and steady patterns numerically. In particular, we study the transition of

steady states with respect to the parameter χ. Based on the results in this paper

we study the solution to the Kücken-Champod model for non-homogeneous ten-

sor fields, simulate the fingerprint pattern formation process and model fingerprint

patterns with certain features in Ref. 76.

Note that the modeling involves multiple scales which can be seen in several

different ways. Given the particle model in (1.4) we consider the associated particle

density to derive the mean-field limit. Here, the interaction force exhibits short-

range repulsion and long-range attraction. The direction of the attraction force

depends on the parameter χ which is responsible for different transient and steady

state patterns. More precisely, ring equilibria obtained for χ = 1 evolve into ellipse

patterns and stripe patterns as χ decreases. Besides, large-time asymptotics are

considered for determining the equilibria.

This work is organized as follows. In Section 2, a general formulation of an

anisotropic N particle model (1.4) and the associated mean-field PDE (2.9) are

introduced and a connection to the Kücken-Champod model74 is established via

a specific class of interaction forces. The solution to the mean-field PDE (2.9) is

analyzed in Section 3. More precisely, we discuss the impact of the parameter χ

on the force alignment and on the solution to the model. Besides, we study the

impact of spatially homogeneous tensor fields and we show that the equilibria to

the mean-field PDE (2.9) for any spatially homogeneous tensor field can be regarded

as a coordinate transform of the tensor field T = χs ⊗ s + l ⊗ l where s = (0, 1)

and l = (1, 0) for any parameter χ ∈ [0, 1]. Hence, we can restrict ourselves to this

specific tensor field T for the analysis. We investigate the existence of equilibria

to the mean-field PDE (2.9) whose form depend on the choice of χ. Under certain

assumptions we show that for χ = 1 there exists at most one radius R > 0 such

that the ring state of radius R is a nontrivial equilibrium mean-field PDE (2.9)

for spatially homogeneous tensor fields and uniqueness can be guaranteed under
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an additional assumption, while for χ ∈ [0, 1) the ring state is no equilibrium. For

χ ∈ [0, 1] and R > 0 sufficiently small there exists at most one r > 0 such that

an ellipse with major axis R + r and minor axis R whose major axis is aligned

along s is an equilibrium. Besides, the shorter the minor axis of the ellipse, the

longer the major axis of possible ellipse steady states and the smaller the value

of χ the longer the major and the shorter the minor axis of the possible ellipse

equilibrium. Section 4 contains a description of the numerical method and we discuss

the simulation results for the Kücken-Champod model (1.4). The numerical results

include an investigation of the stationary solutions and their dependence on different

parameters in the model, including the impact of the parameter χ and the associated

transition between the isotropic and anisotropic model. Besides, we compare the

numerical with the analytical results.

2. Description of the model

Kücken and Champod introduced a particle model in Ref. 74 modeling the forma-

tion of fingerprint patterns by describing the interaction between so-called Merkel

cells on a domain Ω ⊆ R2. Merkel cells are epidermal cells that appear in the volar

skin at about the 7th week of pregnancy. From that time onward they start to

multiply and organize themselves in lines exactly where the primary ridges arise.

The model introduced in Ref. 74 models this pattern formation process as the rear-

rangement of Merkel cells from a random initial configuration into roughly parallel

ridges along the lines of smallest compressive stress.

In this section, we describe a general formulation of the anisotropic microscopic

model, relate it to the Kücken-Champod particle model and formulate the corre-

sponding mean-field PDE.

2.1. General formulation of the anisotropic interaction model

In the sequel we consider N particles at positions xj = xj(t) ∈ R2, j = 1, . . . , N,

at time t. The evolution of the particles can be described by (1.4) with initial data

xj(0) = xinj , j = 1, . . . , N . Here, F (xj − xk, T (xj)) denotes the total force that

particle k exerts on particle j subject to an underlying stress tensor field T (xj)

at xj , describing the local stress field. The dependence on T (xj) is based on the

experimental results in Ref. 77 where an alignment of the particles along the local

stress lines is observed, i.e., the evolution of particle j at location xj depends on

the the local stress tensor field T (xj). Note that model (1.4) can be rewritten as

dxj
dt

= vj

vj =
1

N

N∑
k=1
k 6=j

F (xj − xk, T (xj)).
(2.1)
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Starting with Newton’s second law of the form

dxj
dτ

= vj

m
dvj
dτ

+ λvj = F j

where we assume that the particles have identical mass m, λ denotes the coefficient

of friction and F j is the total force acting on particle j, rescaling in time τ = m
ελ t

for small ε > 0 yields

ελ

m

dxj
dt

= vj

ελ
dvj
dt

+ λvj = F j .

Setting Fj := 1
λF j where the rescaled total force Fj on particle j is given by the

sum of all interaction forces exerted by other particles, i.e.,

Fj =
1

N

N∑
k=1
k 6=j

F (xj − xk, T (xj)).

Further we set xj := ελ
mxj and vj := vj , resulting in the rescaled second order

model:

dxj
dt

= vj

ε
dvj
dt

= −vj +
1

N

N∑
k=1
k 6=j

F (xj − xk, T (xj))
(2.2)

for small ε > 0. Starting from (2.2) the first order model (2.1) was justified and

formally derived in Ref. 78. Note that (2.2) reduces to (2.1) if the inertia term

is neglected, corresponding to small response times of the individuals. However,

setting ε = 0 corresponds to instantaneous changes in velocities which need to

be justified rigorously. In Ref. 79 the authors proved the rigorous limit from the

isotropic second order model (2.2) to the isotropic first order model (2.1) as ε→ 0

based on a classical Tikhonov theorem for ODEs, see e.g. Ref. 80 . A classical

hypothesis is the C1 regularity of F with respect to x and v which can be relaxed

to Lipschitz continuous functions F . However, this assumption is not sufficient and

the anisotropy of the model might lead to troubles. In Ref. 73, the authors consider

an anisotropic aggregation model and derive its vanishing inertia limit. In this case,

however, the classical result by Tikhonov is no longer valid, mainly because the

anisotropy depends on the velocity variable and the roots of the limiting equation

can be lost. For the anisotropic interaction model (2.1) considered in this paper the
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anisotropies only involve positions and for ε = 0 we have a unique root

vj =
1

N

N∑
k=1
k 6=j

F (xj − xk, T (xj)),

i.e., we have an isolated root. Further, the root is positively stable and its domain

of influence is {(x1, . . . , xN )} × R2N . For further details see Ref. 79.

The total force F in (1.4) is given by

F (d(xj , xk), T (xj)) = FA(d(xj , xk), T (xj)) + FR(d(xj , xk)) (2.3)

for the distance vector d(xj , xk) = xj−xk ∈ R2. Here, FR denotes the repulsion force

that particle k exerts on particle j and FA is the attraction force exerted on particle

j by particle k. The tensor field T (xj) at xj encodes the direction of the fingerprint

lines at xj and is given by T (xj) = χs(xj) ⊗ s(xj) + l(xj) ⊗ l(xj) with χ ∈ [0, 1].

Here, s = s(xj) ∈ R2 and l = l(xj) ∈ R2 are orthonormal vectors, describing the

directions of smallest and largest stress, respectively. Defining WR(d) := W (|d|) and

WA(d) := WA(|d|) where WR(r) and WA(r) satisfy

W
′
R(r) = −fR(r)r and W

′
A(r) = −fA(r)r (2.4)

the attractive and repulsive forces are given by

FR(d = d(xj , dk)) = −∇WR(d),

FA(d = d(xj , xk), T (xj)) = −T (xj)∇WA(d),
(2.5)

respectively. The direction of the interaction forces is determined by the parameter

χ ∈ [0, 1] in the definition of T . For χ = 1 we have T (xj) = I for the two-dimensional

unit matrix I and the attraction force between two particles is aligned along their

distance vector, while for χ = 0 the attraction between two particles is oriented

along l. Depending on the choice of the coefficient functions fR and fA in (2.4) the

forces are repulsive or attractive according to the following local definition:

Definition 2.1 (Strictly repulsive (attractive) forces). Let the vector field

G = G(x, y) be a continuous interaction force, i.e., the vector G(x, y) is the force

which is exerted on x by y. Then G at x in direction x − y is strictly repulsive

(attractive) if

G(x, y) · (x− y) > 0 (< 0).

The meaning of this definition is the following. Let y be fixed and let X = X(t)

be the trajectory given by

dX

dt
= G(X, y), X(0) = x,

then |X(t)− y| is locally at t = 0 strictly monotonically increasing (decreasing).

To guarantee that FR and FA are repulsion and attractive forces, we make

assumptions on the coefficient functions fR and fA in (2.4).
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Assumption 2.1. We assume that fR : R2 → R and fA : R2 → R denote smooth,

integrable coefficient functions satisfying

fR(|d|) ≥ 0 and fA(|d|) ≤ 0 for all d ∈ R2, (2.6)

such that the total interaction force F in (2.3) exhibits short-range repulsion and

long-range attraction forces along l, i.e., there exists a da > 0 such that

(fA + fR)(|d|) ≤ 0 for |d| > da and (fA + fR)(|d|) > 0 for 0 ≤ |d| < da.

Also, F ∈ C1 has bounded total derivatives, i.e., there exists some L ≥ 0 such that

sup
x,x′∈R2

|DxF (d(x, x′), T (x))| ≤ L and sup
x,x′∈R2

|Dx′F (d(x, x′), T (x))| ≤ L,

where Dx denotes the total derivative with respect to x. This implies that F is

Lipschitz continuous in both arguments. In particular, F grows at most linearly at

infinitely.

Remark 2.1. In the well-posedness results by Bertozzi et al. in Ref. 29 the authors

consider mildly singular potentials WR and WA in the isotropic case χ = 1 satisfying

WR(r),WA(r) '

{
rα, r � 1

exp(−βr), r � 1

where α, β > 0 in two spatial dimensions. These conditions can be restated as

fR(r), fA(r) '

{
rα−2, r � 1

exp(−βr), r � 1.

The range 0 < α < 2 lies outside the hypothesis in Assumption 2.1 and falls

outside the scope of this paper. However, this case is extremely interesting since it

models singular attractive and repulsive interactions in aggregation models where

the limiting Newtonian case α↘ 0 is the most interesting one regarding its physical

consequences. There is an extensive scientific activity related to isotropic singular

(first and second order) interactions, see for instance Ref. 81, 82, 83, 84, 85, 86,

87 and the references therein. Note that the restriction to Lipschitz and bounded

forces in Assumption 2.1 is sufficient (see e.g. Ref. 84) for proving the rigorous mean-

field limit, but one can also show the mean-field limit for mildly singular interactions

including the range 0 < α < 2 in the isotropic case χ = 1, see Ref. 81, 82 and related

papers. Hence, it would be interesting to address these mildly singular interactions

in the anisotropic case χ ∈ [0, 1) and compare it with the results for isotropic mildly

singular interactions.

Note that we recover a potential attractive interaction in FA if, and only if,

T (xj) = I (i.e., the isotropic case χ = 1), as shown in Remark 2.2.

Remark 2.2 (Existence of an interaction potential). For the existence of

interaction potentials for the attractive force FA we restrict ourselves to spatially

homogeneous tensor fields first. Let χ ∈ [0, 1], set l = (1, 0) and s = (0, 1), and
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let T̃ = χs̃⊗ s̃+ l̃ ⊗ l̃ denote a spatially homogeneous tensor field for orthonormal

vectors l̃, s̃ ∈ R2. Then,

s̃ = Rθs and l̃ = Rθl, (2.7)

where the angle of rotation θ and the corresponding rotation matrix Rθ are given

by

θ =

{
arccos(s̃2) s̃1 < 0

2π − arccos(s̃2) s̃1 > 0
, and Rθ =

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, (2.8)

respectively, and we have T̃ = RθTR
T
θ with T = χs⊗ s+ l ⊗ l. Hence,

FA

(
d, T̃

)
= fA (|d|)

(
cos2 (θ) + χ sin2 (θ) (1− χ) sin (θ) cos (θ)

(1− χ) sin (θ) cos (θ) χ cos2 (θ) + sin2 (θ)

)
d

by (2.4) and (2.5), where d = (d1, d2) ∈ R2. The condition

∂(FA)1

∂d2
=
∂(FA)2

∂d1

for FA being a conservative force implies

cos2 (θ) + χ sin2 (θ) = χ cos2 (θ) + sin2 (θ) and (1− χ) sin (θ) cos (θ) = 0,

which can only be satisfied simultaneously for χ = 1 and θ ∈ [0, 2π) arbitrary.

Thus, the attraction force for spatially homogeneous tensor fields is conservative

for χ = 1 only and the associated potential is radially symmetric. This also implies

that there exists a potential for χ = 1 for any tensor field, while for χ ∈ [0, 1) there

exists no potential. In particular, a potential that is not radially symmetric cannot

be constructed for the attraction force FA for χ ∈ [0, 1).

The associated mean-field model for the distribution function ρ = ρ(t, x) at

position x ∈ R2 and time t ≥ 0 can be derived rigorously in the 1-Wasserstein metric

from the microscopic model (1.4) following the procedure described in Ref. 88, 81.

The Cauchy problem for the mean-field PDE reads

∂tρ(t, x) +∇x · [ρ(t, x) (F (·, T (x)) ∗ ρ(t, ·)) (x)] = 0 in R+ × R2 (2.9)

with initial condition ρ|t=0 = ρin in R2.

Remark 2.3. Similarly as for the rigorous inertia limit ε→ 0 of the second order

model (2.2) to the first order model (2.1) in the discrete setting one can consider

the mean-field limit for N → ∞ associated with the second order discrete model

(2.2) and derive the hydrodynamic limit ε → 0 to the mean-field PDE (2.9). The

second order mean-field limit for N →∞ is given by

ε∂tfε + εv · ∇xfε +∇v · [(F (·, T (x)) ∗ ρε) fε − vfε] = 0 in R+ × R2 × R2
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where fε = fε(t, x, v) is the density of individuals at position x ∈ R2 with velocity

v ∈ R2 and

ρε(t, x) =

∫
R2

fε(t, x, v) dv

is the macroscopic density. The hydrodynamic limit ε→ 0 to the first order macro-

scopic macroscopic PDE (2.9) can be shown as in Ref. 79. Besides, one might study

aggregation equations from first principles not only for regular interactions but also

for mildly singular ones, see Ref. 89 and in another context Ref. 90.

2.2. Kücken-Champod particle model

Consider as an example the Kücken-Champod particle model74 with a spatially

homogeneous tensor field T producing straight parallel ridges, e.g.

T =

(
1 0

0 χ

)
,

is considered for studying the pattern formation. For more realistic patterns the

tensor field is generated from 3D finite element simulations91,92 or from images of

real fingerprints. The coefficient function fR defined by the potential WR (2.4) in

the definition of the repulsion force FR (2.5) in the Kücken-Champod model (1.4)

is given by

fR(d) = (α|d|2 + β) exp(−eR|d|) (2.10)

for d ∈ R2 and nonnegative parameters α, β and eR. The coefficient function fA in

(2.4) in the definition of the attraction force (2.5) is given by

fA(d) = −γ|d| exp(−eA|d|) (2.11)

for d ∈ R2 and nonnegative constants γ and eA. For the case that the total force

(2.3) exhibits short-range repulsion and long-range attraction along l, we choose

the parameters as follows:

α = 270, β = 0.1, γ = 35, eA = 95, eR = 100, χ ∈ [0, 1]. (2.12)

The coefficient functions (2.10) and (2.11) for the repulsion and attraction forces

(2.5) in the Kücken-Champod model (1.4) are plotted in Figure 1a for the param-

eters in (2.12) and one can easily check that they satisfy Assumption 2.1. If not

stated otherwise, we consider the parameter values in (2.12) for the force coeffi-

cient functions (2.10) and (2.11) in the sequel. The interaction forces between two

particles with distance vectors d = rl and d = rs for a constant r ∈ R are given by

F (d) = fR(d)d+ fA(d)Td =

{
(fR(r) + fA(r))rl if d = rl

(fR(r) + χfA(r))rs if d = rs.

Figure 1b shows the total interaction force along l and s, respectively, i.e.,

F (rl) · l = (fR(r) + fA(r))r and F (rs) · s = (fR(r) + χfA(r))r, (2.13)



October 17, 2017 18:38 WSPC/INSTRUCTION FILE ws-m3as

Pattern Formation of a Nonlocal, Anisotropic Interaction Model 13

as a function of r for χ = 0.2, while the corresponding coefficient functions are

illustrated in Figure 1a. For the choice of parameters in (2.12) repulsion dominates

for short distances along l to prevent the collision of particles. Besides, the total

force exhibits long-range attraction along l whose absolute value decreases with the

distance between particles. Along s the particles are always repulsive for χ = 0.2,

independent of the distance, though the repulsion force gets weaker for longer dis-

tances.

(a) Force coefficients fR and fA (b) Total force coefficients along l and s

Fig. 1. Coefficients fR in (2.10) and fA in (2.11) of repulsion and attraction forces (2.5), respec-
tively, as well as the total interaction force along l and s for χ = 0.2 given by (2.13) and its

coefficients (i.e., fA + fR and 0.2fA + fR) for parameter values in (2.12)

3. Analysis of the model

We analyze the equilibria of the mean-field PDE (2.9) in terms of the parameter

χ ∈ [0, 1] for the general formulation of the model, i.e., the total force is given by

(2.3) where the repulsion and the attraction forces are defined in (2.5).

3.1. Interpretation of the total force

The alignment of the attraction force, defined in (2.5), and thus the pattern forma-

tion strongly depend on the choice of the parameter χ ∈ [0, 1]. For χ = 1 the total

force F in (2.3) can be derived from a radially symmetric potential and the mean-

field PDE (2.9) reduces to the isotropic interaction equations (1.3). In particular,

the solution to (2.9) is radially symmetric for χ = 1 for radially symmetric initial

data.55

For χ ∈ [0, 1) the attraction force FA of the form (2.5) is not conservative by

Remark 2.2 and can be written as the sum of a conservative and a non-conservative

force, given by FA = FA,1 + FA,2 with

FA,1(d) = fA(|d|)d
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and

FA,2(d, T (xj)) = fA(|d|)(T (xj)− I)d = fA(|d|) (χ− 1) (s(xj) · d) s(xj),

where d ≡ d(xj , xk) := xj − xk and I denotes the two-dimensional identity matrix.

In particular, FA,1 does not depend on χ and is equal to the attraction force in (2.5)

with χ = 1. Since the coefficient function fA(χ − 1) of FA,2 is nonnegative, FA,2
is a repulsion force aligned along s(xj) and leads to an additional advection along

s(xj) compared to the case χ = 1. This repulsion force along s(xj) is the larger, the

smaller χ. In particular, for the force coefficients fA and fR in the Kücken-Champod

model (1.4), given by (2.11) and (2.10) with parameters in (2.12), the total force

along s is purely repulsive for χ sufficiently small as illustrated in Figure 2.

For the spatially homogeneous tensor field T = χs⊗ s+ l⊗ l with l = (1, 0) and

s = (0, 1) the solution is stretched along the vertical axis for χ < 1. The smaller

the value of χ, the larger the repulsion force and the more the solution is stretched

along the vertical axis. For χ sufficiently small stretching along the entire vertical

axis is possible for solutions to the Kücken-Champod model (1.4) because of purely

repulsive forces along s.

(a) Along l (b) Along s

Fig. 2. Total force along l and s given by (2.13) for coefficients fA in (2.11) and fR in (2.10) of the
attraction and the repulsion force for parameter values in (2.12), respectively) for different values

of χ

3.2. Impact of spatially homogeneous tensor fields

Let χ ∈ [0, 1] and consider the spatially homogeneous tensor field T = χs⊗ s+ l⊗ l
with l = (1, 0) and s = (0, 1). The solution of the particle model (1.4) for any

spatially homogeneous tensor field T̃ is a coordinate transform of the solution of

the particle model (1.4) for the tensor field T . Similarly, for the analysis of equilibria

of the microscopic model (1.4) for T̃ it is sufficient to study the equilibria of (1.4)

for T . For a similar statement for the mean-field PDE (2.9) we define the concept

of an equilibrium state.
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Definition 3.1 (Equilibrium state of (2.9)). A Borel probability measure

µ ∈ P(R2) is said to be an equilibrium state of the mean-field PDE (2.9) if

K ∈ L1
loc (dµ) and K = 0 on supp(µ) µ-a.e. (3.1)

where K = F (·, T ) ∗ µ µ-a.e.

An equilibrium state of the mean-field equation (2.9) for any spatially homo-

geneous tensor field T̃ is the coordinate transform of an equilibrium state to the

mean-field equation (2.9) for the tensor field T . For detailed computations see Ap-

pendix Appendix A.

3.3. Existence of equilibria

Based on the discussion on the action of the total force in Section 3.1 possible shapes

of equilibria of the mean-field PDE (2.9) depend on the choice of the parameter

χ ∈ [0, 1]. To analyze the equilibria of the mean-field PDE (2.9) in two dimensions

for any spatially homogeneous tensor field, it is sufficient to consider the tensor

field T = χs⊗ s+ l ⊗ l with l = (1, 0) and s = (0, 1) in the sequel as outlined in

Section 3.2. Note that the forces along l are assumed to be repulsive-attractive,

while the forces along s depend significantly on the choice of χ and may be re-

pulsive, repulsive-attractive-repulsive or repulsive-attractive. Further note that the

forces only depend on the distance vector for spatially homogeneous tensor fields.

To simplify the analysis, we make the following assumption on F in addition to

Assumption 2.1 in this section:

Assumption 3.1. We assume that F is strictly decreasing along l and s on the

interval [0, de] for some de > da where da is defined in Assumption 2.1. In particular,

there exits de > da such that χfA+fR is strictly decreasing on [0, de] for all χ ∈ [0, 1].

Assumption 3.1 is clearly satisfied for the force coefficients (2.10) and (2.11) in

the Kücken-Champod model (1.4) with parameter values in (2.12), cp. Figure 3.

With this choice of parameters we have da ' 0.0029 and for de = 0.0126 the mono-

tonicity property of the force holds in [0, de] uniformly with respect to χ ∈ [0, 1].

3.3.1. Ellipse pattern

Solutions to the the mean-field PDE (2.9) for T = χs ⊗ s + l ⊗ l with l = (1, 0)

and s = (0, 1) are stretched along the vertical axis by the discussion in Section 3.1.

This motivates us to consider an ellipse whose major axis is parallel to the vertical

axis. Because of the spatial homogeneity of the tensor field it is sufficient to restrict

ourselves to probability measures with center of mass (0, 0).

Definition 3.2. Let R > 0 and let r ≥ 0. The ellipse state whose minor and major

axis are of lengths R and R + r, respectively, is the probability measure which is
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Fig. 3. Coefficients fA + fR for parameter values in (2.12)

uniformly distributed on{
x = (x1, x2) ∈ R2 :

(x1

R

)2

+

(
x2

r +R

)2

= 1

}
.

We denote this probability measure by δ(R,r).

First, we restrict ourselves to nontrivial ring states δ(R,0) of radius R > 0, i.e.,

we consider the special case of ellipse states where r = 0. The existence of ring

equilibria for repulsive-attractive potentials that do not decay faster than 1/d2 as

d→∞ has already been discussed in Ref. 26. However, the force coefficients (2.10)

and (2.11) in the Kücken-Champod model74 decay exponentially fast as d → ∞.

Besides, a repulsive-attractive potential exists for χ = 1 only by Remark 2.2. To

analyze the ring equilibria we distinguish between the two cases χ = 1 and χ ∈ [0, 1),

starting with the case χ = 1.

Lemma 3.1. Let χ = 1. The probability measure δ(R,0) is a nontrivial ring equilib-

rium to (2.9) for radius R > 0 if and only if∫ π

0

(fA + fR)

(
R

√
(1− cosφ)2 + sin2 φ

)
(1− cosφ) dφ = 0. (3.2)

Proof. By symmetry of the domain one obtains that K(x) = (F (·, T (x))∗δ(R,0))(x)

is rotation invariant for χ = 1. We have

K(Rθx) = K(x), x ∈ R2,

for every angle θ ∈ R, where Rθ stands for the counter-wise rotation matrix

with angle θ in (2.8). In particular, for every x in the circle of radius R one has

K(x) = K((R, 0)). Hence, it suffices to show for χ = 1 that there exists R > 0 such

that

(F (·, T ) ∗ δ(R,0))((R, 0)) =

∫ 2π

0

F (R(1− cosφ,− sinφ), T )R dφ = 0
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for nontrivial ring equilibria. By using the simplified form of

F (d, T ) = (fA + fR)(|d|)d

for χ = 1 a change of variables yields∫ 2π

π

F (R(1− cosφ,− sinφ), T )R dφ =

∫ π

0

F (R(1− cosφ, sinφ), T )R dφ

due to the odd symmetry of the sine function at π. Hence, the second component of

the integral
∫ 2π

0
F (R(1−cosφ,− sinφ), T )R dφ is zero and we can restrict ourselves

to the first component, implying that it is sufficient to show the existence of R > 0

such that

R2

∫ π

0

(fA + fR)

(
R

√
(1− cosφ)2 + sin2 φ

)
(1− cosφ) dφ = 0.

Since we are interested in nontrivial ring equilibria with radius R > 0 the condition

finally reduces to (3.2).

Proposition 3.1. Let χ = 1. There exists at most one radius R̄ ∈ (0, de2 ] such that

the ring state δ(R̄,0) of radius R̄ is a nontrivial equilibrium to the mean-field PDE

(2.9). If ∫ π

0

(fA + fR)

(
de
2

√
(1− cosφ)2 + sin2 φ

)
(1− cosφ) dφ < 0 (3.3)

there exists a unique R̄ ∈ (da2 ,
de
2 ] such that the ring state δ(R̄,0) of radius R̄ is a

nontrivial equilibrium.

Proof. Consider the left-hand side of (3.2) as a function of R denoted by G(R).

By deriving G(R) with respect to R and using Assumption 3.1 one can easily see

that G(R) is strictly decreasing as a function of R on [0, de2 ]. Note that G(0) > 0,

G(R) > 0 for R ≤ da
2 and fA, fR are continuous by Assumption 2.1 on the total

force. Since (3.3) is equivalent to G(de2 ) < 0 this concludes the proof.

One can easily check that (3.3) is satisfied for the force coefficients (2.10) and

(2.11) in the Kücken-Champod model (1.4) with parameter values in (2.12) if de is

the argument of the minimum of fA + fR, see Assumption 3.1. In particular, this

implies that there exists a unique nontrivial ring equilibrium of radius R ∈ (da2 ,
de
2 ]

to the mean-field PDE (2.9) for the forces in the Kücken-Champod model for χ = 1.

The case χ ∈ [0, 1) can be analyzed similarly as the one for χ = 1 for ring

patterns except that some of the symmetry arguments do not hold.

Proposition 3.2. Let χ ∈ [0, 1). There exists no R ∈ (0, de2 ] such that the ring

state δ(R,0) is an equilibrium to the mean-field PDE (2.9).

Proof. For χ = 1, (F (·, T ) ∗ δ(R,0))((R, 0)) = 0 is equivalent to (3.2) by Lemma

3.1, based on the property (F (·, T ) ∗ δ(R,0))((R, 0)) · s = 0. Since

F (d, T ) = fA(|d|)(d1, χd2) + fR(|d|)d
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where d = (d1, d2), (3.2) also has to be satisfied for χ ∈ [0, 1). Similarly as in the

proof of Lemma 3.1 one can show that

(F (·, T ) ∗ δ(R,0))((0, R)) =

∫ 2π

0

F (R(− cosφ, 1− sinφ), T )R dφ = 0

is equivalent to∫ 3π/2

π/2

(χfA + fR)
(
R
√

cos2 φ+ (1− sinφ)2
)

(1− sinφ) dφ = 0 (3.4)

for R > 0. Note that (3.2) is equivalent to (3.4) for χ = 1 by symmetry so that

the equilibrium of radius R ∈ (0, de2 ] from Proposition 3.1 satisfies (3.2) and (3.4)

simultaneously for χ = 1. However, (3.2) and (3.4) are not satisfied simultaneously

for any R ∈ (0, de2 ] and any χ ∈ [0, 1) which concludes the proof.

Next, we analyze the ellipse pattern.

Corollary 3.1. Let χ ∈ [0, 1] be given and define

w1(φ,R, r) =

√
R2(1− cosφ)2 + (R+ r)2 sin2 φ,

w2(φ,R, r) =

√
R2 sin2 φ+ (R+ r)2 cos2 φ,

w3(φ,R, r) =
√
R2 cos2 φ+ (R+ r)2(1− sinφ)2.

Then, necessary conditions for a stationary ellipse state δ(R,r) where R, r ≥ 0 are

given by ∫ π

0

(fA + fR) (w1(φ,R, r))R (1− cosφ)w2(φ,R, r) dφ = 0 (3.5)

and ∫ 3π/2

π/2

(χfA + fR) (w3(φ,R, r)) (R+ r) (1− sinφ)w2(φ,R, r) dφ = 0. (3.6)

Proof. For ellipse equilibria we require (F (·, T ) ∗ δ(R,r))((R, 0)) = 0 implying∫ 2π

0

F ((R(1− cosφ),−(R+ r) sinφ), T )

√
R2 sin2 φ+ (R+ r)2 cos2 φdφ = 0.

Since e2 · (F (·, T ) ∗ δ(R,r))((R, 0)) = 0 by symmetry for any χ ∈ [0, 1) where

e2 = (0, 1) and

F (d, T ) = (fA(|d|) + fR(|d|))
(

1 0

0 χ

)
d

this implies that it is sufficient to require (3.5) where

w2(φ,R, r) =

√
R2 sin2 φ+ (R+ r)2 cos2 φ.
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Similarly,

(F (·, T ) ∗ δ(R,r))((0, R+ r))

= C

∫ 2π

0

F ((−R cosφ, (R+ r)(1− sinφ)), T )w2(φ,R, r) dφ

= 0

for a normalization constant C reduces to the necessary condition (3.6).

In the sequel, we denote the left-hand side of (3.5) by G(R, r).

Assumption 3.2. Given r ∈ [0, de) we assume that there exists Rint ∈ (0, Re)

such that

d

dR
G(R, r) > 0 for R ∈ (0, Rint) and

d

dR
G(R, r) < 0 for R ∈ (Rint, Re) .

Remark 3.1. Since G(0, r) = 0 and Assumption 3.2 implies that for r ∈ [0, de)

given we have G(R, r) > 0 for all R ∈ (0, Rint). Besides, the uniqueness of station-

ary ellipse states δ(R,r) for R ∈ (Rint, Re) for given r ∈ [0, de) is guaranteed by

Assumption 3.2.

We have the following existence result for nontrivial ellipse states, including

rings for R > 0 and r = 0.

Corollary 3.2. Let r ∈ [0, de) and let Re > 0 such that

w1(φ,R, r) ≤ de for all φ ∈ [0, π], R ∈ [0, Re] (3.7)

is satisfied and assume that∫ π

0

(fA + fR) (w1(φ,R, r)) (1− cosφ)
(
R2
e +Rer cos2 φ

)
dφ < 0. (3.8)

holds. Further define

G1(R, r) =

∫ π

0

(fA + fR) (w1(φ,R, r)) (1− cosφ) dφ

and

G2(R, r) =

∫ π

0

(fA + fR) (w1(φ,R, r)) (1− cosφ) cos2 φdφ.

If r satisfies

min {G1(0, r), G2(0, r)} > 0 (3.9)

there exists an R ∈ (0, Re) such that the necessary condition (3.5) for a nontriv-

ial stationary ellipse state δ(R,r) to the mean-field PDE (2.9) are satisfied. For r

satisfying

max {G1(0, r), G2(0, r)} < 0 (3.10)
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20 M. Burger, B. Düring, L. M. Kreusser, P. A. Markowich and C.-B. Schönlieb

there exists no R ∈ (0, Re) such that the ellipse δ(R,r) is an equilibrium to the

mean-field PDE (2.9) and the trivial ellipse state δ(0,r) is the only equilibrium.

If, for r ∈ [0, de) given, Assumption 3.2 is satisfied, then there exists a unique

R ∈ (Rint, Re) such that the necessary condition (3.5) for a nontrivial stationary

ellipse state δ(R,r) is satisfied.

Remark 3.2. Condition (3.7) is related to the assumption that fA + fR is strictly

decreasing on [0, de] in Assumption 3.1. Condition (3.8) can be interpreted as the

long-range attraction forces being larger than the short-range repulsion forces. Be-

sides, given r ∈ [0, de) condition (3.10) can be interpreted as the attractive forces

being too strong for the existence of a stationary ellipse patterns δ(0,r) and hence

for any stationary ellipse pattern δ(R,r) for R ≥ 0 because the forces are attractive

for R sufficiently large. Condition (3.9) implies that the forces are too repulsive

along the vertical axis for a stationary ellipse state δ(0,r), but as R increases the

forces become more attractive which may result in stationary ellipse state δ(R,r)
for R > 0. Assumption 3.2 relaxes condition (3.9), but requires additionally that

G(·, r) first increases and then decreases to guarantee the uniqueness of a station-

ary ellipse pattern. In Figure 4a the function G is evaluated for certain values of

r ∈ [0, de) for the forces in the Kücken-Champod model (1.4) and one can clearly

see that Assumption 3.2 is satisfied and there exists a unique zero R > 0, as stated

in Corollary 3.2.

Proof. Let r ∈ (0, de) be given. Note that the left-hand side of (3.7) is equal to

w1(φ,R, r) for all φ ∈ [0, π] and w1(φ,R, r) ∈ [0,max{2R,R + r}] for all φ ∈ [0, π].

Since fA + fR is strictly decreasing on [0, de] by Assumption 3.1 we only consider

R ≥ 0 such that w1(φ,R, r) ∈ [0, de] for all φ ∈ [0, π]. Clearly, there exists Re > 0

such that (3.7) is satisfied.

Since w2 (φ,R, r) ∼ R+ r cos2 φ we approximate (3.5) by∫ π

0

(fA + fR) (w1(φ,R, r)) (1− cosφ)
(
R2 +Rr cos2 φ

)
dφ = 0 (3.11)

Note that (fA + fR) (w1(φ,R, r)) (1− cosφ) for φ ∈ (0, π) is strictly decreasing

as a function of R because fA + fR is a strictly decreasing function by Assump-

tion 3.1 and w1(φ,R, r) is strictly increasing in R for φ ∈ (0, π) fixed. Hence,

G1(R, r) is strictly decreasing in R and has a unique zero R1 ∈ [0, Re], provided

r ≥ 0 satisfies G1(0, r) > 0 and (3.8). Similarly, one can argue that G2(R, r) is

strictly decreasing in R and has a unique zero R2 ∈ [0, Re] if r ≥ 0 such that

G2(0, r) > 0 and (3.8) are satisfied. The left-hand side of (3.11) is the rescaled

sum of G1 and G2 where id2 ·G1(·, r) as a function of R is nonnegative on [0, R1]

and negative on (R1, Re], while id · rG2(·, r) as a function of R is nonnegative on

[0, R2] and negative on (R2, Re]. In particular, the left-hand side of (3.11) has a zero

R ∈ [min{R1, R2},max{R1, R2}] on (0, Re) if r ≥ 0 satisfies (3.9) and (3.8), while

there exists no zero on (0, Re) if r ≥ 0 satisfies (3.10). If Assumption 3.2 is satisfied,

then G(·, r) with r ∈ [0, de) given has a zero at R = 0 and at an R ∈ (0, de) because
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G(·, r) > 0 on (0, Rint), G(·, r) strictly decreasing on (Rint, Re) and G(Re, r) < 0

by (3.8). This concludes the proof.

Since the equilibrium condition (3.5) for trivial ellipse states with R = 0 is

clearly satisfied for all r ≥ 0 we rewrite G(R, r) = Rg(R, r) for a smooth function

g and require g(0, r) = 0. Since we are interested in nontrivial states, i.e., r > 0, we

define

ḡ(r) =

∫ π

0

(fA + fR) (r| sinφ|) (1− cosφ) | cosφ|dφ = 0

and and it is sufficient to require ḡ(r) = 0 for an r > 0. Note that ḡ(r) > 0 for all

r ∈ (0, da] since fA + fR is repulsive on [0, da]. Assuming that ḡ(de) < 0 which is a

natural condition for long-range attraction forces being stronger than short-range

repulsive forces there exists a unique r̄ ∈ (0, de) such that ḡ(r̄) = 0 because ḡ strictly

decreases on (0, de). Besides, the necessary condition (3.6) reduces to∫ 3π/2

π/2

(χfA + fR) (r̄|1− sinφ|) (1− sinφ) | cosφ|dφ = 0.

Since fA ≤ 0 and fR ≥ 0 by the definition of the attractive and repulsive force,

cf. Assumption 2.1, there exists a unique χ̄ ∈ (0, 1) such that condition (3.6) is

satisfied, given by

χ̄ = −

∫ 3π/2

π/2
fR (r̄|1− sinφ|) (1− sinφ) | cosφ|dφ∫ 3π/2

π/2
fA (r̄|1− sinφ|) (1− sinφ) | cosφ|dφ

> 0. (3.12)

Note that χ̄ < 1 by the assumption that the long-range attraction forces are stronger

than the short-range repulsive forces. In summary, we have the following result.

Lemma 3.2. There exists a unique r̄ ∈ (0, de) such that the necessary condition

(3.5) for a stationary ellipse state δ(0,r̄) with ḡ(r̄) = 0 is satisfied. In this case,

the second necessary condition (3.6) is satisfied for a unique χ̄ ∈ [0, 1], defined by

(3.12).

Assumption 3.3. Assume that

(1) If G(R̃, r̃) = 0 for R̃ > 0, r̃ ≥ 0, then G(R̃, r) < 0 for r > r̃.

(2) There exists R > 0 such that G(R, 0) < 0.

(3) For all R > 0 there exists r ≥ 0 such that G(R, r) < 0.

Remark 3.3. Note that (1) in Assumption 3.3 implies that if the equilibrium

condition for an ellipse state is satisfied for a specific tuple (R̃, r̃), then the forces

are too attractive for any ellipse state (R̃, r) with longer major axis R̃+ r ≥ R̃+ r̃

for r ≥ r̃. Condition (2) in Assumption 3.3 together with Assumption 3.2 implies

the existence of a ring equilibrium. Besides, (3) in Assumption 3.3 states that for

an ellipse state with a minor axis of length R > 0 one can choose the major axis

R+ r sufficiently long so that the given forces are too attractive for the ellipse state
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δ(R,r) to be stationary. Note that one can easily check that these assumptions are

satisfied for the forces in the Kücken-Champod model with parameters in (2.12).

Proposition 3.3. Let 0 ≤ r1 < r2 < de and let R1, R2 ≥ 0 such that

w1(φ,R, r) ≤ de for all φ ∈ [0, π], R ∈ [0,max{R1, R2}]

and the necessary condition (3.5) for δ(R1,r1) and δ(R2,r2) being stationary ellipse

states are satisfied. Suppose that Assumption 3.3 and Assumption 3.2 hold. Then,

R1 < R2, i.e., the longer the major axis of the stationary ellipse state, the shorter

the minor axis. Besides, there exists a continuous function q(t) = (R(t), r(t)) for

t ∈ [0, 1] where R(t) is strictly decreasing, r(t) is strictly increasing, q(0) = (0, r̄)

for the pseudo-ellipse state δ(0,r̄) with r̄ > 0 in Lemma 3.2 and q(1) = (R̄, 0) for the

unique ring state of radius R̄ in Proposition 3.1.

Proof. Note that G(0, r) = 0 for all r ≥ 0. Further note that (fA + fR)(0) > 0

since F is a short-range repulsive, long-range attractive force by Assumption 2.1,

implying that for all R ∈ (0, da/4] and all r ∈ [0, da/4] we have G(R, r) > 0. By

continuity and since G(R, 0) < 0 for some R > 0 there exists R̃ > 0 such that

G(R̃, 0) = 0. Besides, Assumption 3.3 implies that G(R̃, r) < 0 for all r > 0. In

particular, G(R̃, r1) < 0 and G(R̃, r2) < 0 for r2 > r1 > 0 implies together with

Assumption 3.2 that there exists a unique R̃1 ∈ [0, R̃) such that G(R̃1, r1) = 0

which implies that G(R̃1, r2) < 0 and that there exists R̃2 ∈ [0, R̃1) such that

G(R̃2, r2) = 0.

In Figure 4b the tuples (R, r) are plotted such that the necessary condition (3.5)

for ellipse equilibria is satisfied. In particular, these tuples (R, r) can be determined

independently from χ from (3.5).

Corollary 3.3. Let H(R, r, χ) denote the left-hand side of (3.6) and assume that

H(q1, q2, 1) is strictly increasing where the function q(t) = (q1(t), q2(t)), t ∈ [0, 1],

is defined in Proposition 3.3. For every tuple (R, r) with R, r ≥ 0 such that the

condition (3.5) is satisfied there exists a unique χ ∈ [0, 1] so that (3.6) is also

satisfied. If additionally H(q1, q2, χ) is strictly decreasing for all χ ∈ [χ̄, 1] then

there exists a unique tuple (R, r) such that the corresponding ellipse pattern δ(R,r)
is an equilibrium for any given χ ∈ [χ̄, 1]. In particular, there exists a continuous,

strictly increasing function p = p(t) for t ∈ [0, 1] with p(0) = χ̄ and p(1) = 1

such that for t ∈ [0, 1] given the ellipse state δ(q1(t),q2(t)) is stationary for a unique

value of the parameter χ = p(t). In other words, the smaller the value of χ ∈ [χ̄, 1]

the longer the major and the shorter the minor axis for ellipse equilibria, i.e., the

smaller the value of χ the more the ellipse is stretched along the vertical axis.
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Proof. Note that (3.6) can be rewritten as∫ π

0

(χfA + fR) (w3(φ+ π/2, R, r)) (R+ r) (1− cosφ)w2(φ+ π/2, R, r) dφ = 0

(3.13)

where

w3(φ+ π/2, R, r) =

√
R2 sin2 φ+ (R+ r)2(1− cosφ)2.

In particular, (3.13) is equal to (3.5) for χ = 1 and r = 0, i.e., H(q1(1), q2(1), 1) = 0.

However, for any tuple (R, r) with r > 0 satisfying (3.5) we have H(R, r, 1) < 0

since H(q1, q2, 1) is strictly increasing on [0, 1] and H(q1(1), q2(1), 1) = 0. Besides,

H(q1, q2, 0) > 0 on [0, 1] since by the definition of the repulsive force coefficient

in Assumption 2.1 we have 1 − cosφ ≥ 0 on [0, π], fR ≥ 0 and w2 ≥ 0. Since

H(q1(t), q2(t), ·) is strictly decreasing as a function of χ for any t ∈ [0, 1] fixed

by the properties of the attractive force coefficient in Assumption 2.1 for each

t ∈ [0, 1] there exists a unique χ ∈ [0, 1] by continuity of H such that the tuple

q(t) = (q1(t), q2(t)) satisfies condition (3.6).

To show that for any χ ∈ [χ̄, 1] there exists a unique tuple (R, r) such that

δ(R,r) is a stationary ellipse state note that H(R̄, 0, 1) = 0 by the definition of R̄ in

Proposition 3.1 and H(R̄, 0, χ) > 0 for χ ∈ (0, 1] since H(R̄, 0, ·) strictly decreasing.

Similarly, H(0, r̄, χ̄) = 0 and H(0, r̄, χ) < 0 for all χ ∈ (χ̄, 1]. Since H(q1, q2, χ)

is strictly increasing for any χ ∈ [χ̄, 1] by assumption the function H(q1, q2, χ) for

χ ∈ [χ̄, 1] fixed has a unique zero, i.e., there exists a unique tuple (R, r) such that

δ(R,r) is a stationary ellipse state. Besides, if δ(R1,r1) and δ(R2,r2) are stationary

ellipse states with R1 < R2 and r1 > r2 for χ1, χ2 ∈ [χ̄, 1], respectively, then

χ1 < χ2 since there exist t1, t2 ∈ [0, 1] with t1 < t2 such that q(t1) = (R1, r1) and

q(t2) = (R2, r2) and H(q1, q2, χ) strictly increasing for any χ ∈ [χ̄, 1].

In Figure 4c the functional H(q1, q2, χ) is evaluated for different values of χ

and one can see that for every χ there exists a unique tuple (R, r) such that the

equilibrium condition (3.6) is satisfied. The eccentricity e =
√

1− (R/(R+ r))2

of the ellipse is illustrated as a function of χ in Figure 4d and one can see how

the eccentricity increases as χ decreases which corresponds to the evolution of the

ring pattern into a stationary ellipse pattern whose minor axis becomes shorter and

whose major axis becomes longer as χ decreases, proven in Corollary 3.3.

The existence of steady states is essential for getting an insight into the prop-

erties of the model. In order to explain the emergent behavior of the model, it is

necessary to study the stability of the equilibrium and classify the convergence to

equilibria in terms of initial data. This will be subject to future research.

3.3.2. Stripe pattern

Based on the discussion in Section 3.1 for the tensor field T = χs ⊗ s + l ⊗ l with

l = (1, 0) and s = (0, 1), we consider different shapes of vertical stripe patterns in
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(a) Evaluation of LHS of (3.5) (b) Tuples (R, r)

(c) Evaluation of LHS of (3.6) (d) e = e(χ)

Fig. 4. Tuples (R, r) for stationary ellipse patterns to the mean-field equation (2.9) satisfying

equilibrium conditions (3.5) and (3.6) for different values of χ and eccentricity e as a function of

χ for the forces in the Kücken-Champod model for parameter values in (2.12)

R2 and discuss whether they are equilibria.

Definition 3.3. Let the center of mass be denoted by xc = (xc,1, xc,2) ∈ R2. Then

we define the measure δ(xc,1,·) by

δ(xc,1,·)(A) = λ (A ∩ ({xc,1} × R))

for all measurable sets A ⊂ R2 where λ denotes the one-dimensional Lebesgue

measure.

The measure δ(xc,1,·) is a locally finite measure, but not a probability measures

and satisfies condition (3.1) for equilibria of the mean-field PDE (2.9) for any force

satisfying Assumption 2.1 and any χ ∈ [0, 1] since F (x−x′, T ) = −F (−(x−x′), T )

for all x, x′ ∈ R2. Note that fully repulsive forces along the vertical axis are necessary

for the occurrence of stable stripe patterns δ(xc,1,·). Further note that as χ decreases

the attraction forces disappear along the vertical direction and the mass leaks to

infinity driven by purely repulsive forces along the vertical axis so that δ(xc,1,·)
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cannot be the limit of an ellipse pattern. Hence, vertical lines are not stable equilibria

with Definition 3.1 for the Kücken-Champod model (1.4) posed in the plane.

To obtain measures concentrating on vertical lines as solutions to the Kücken-

Champod model (1.4) and to guarantee the conservation of mass under the vari-

ation of parameter χ, we consider the associated probability measure on the two-

dimensional unit torus T2 instead of the full space R2. Another possibility to ob-

tain measures concentrating on vertical lines as solutions is to consider confinement

forces, see Ref. 61.

Solutions to the mean-field PDE (2.9) satisfying condition (3.1) include measures

which are uniformly distributed on certain intervals along the vertical axis, i.e.,

on {x = (x1, x2) ∈ R2 : x1 = xc,1, x2 ∈ [a, b]} for some constants a < b, as

well as measures which are uniformly distributed on unions of distinct intervals.

The former occur if the total force is repulsive-attractive so that the attraction

force restricts the stretching of the solution to certain subsets of the vertical axis.

The latter which look like dashed lines parallel to the vertical axis can be realized

by repulsive-attractive-repulsive forces, i.e., repulsive-attractive forces may lead to

accumulations on subsets of the vertical axis while the additional repulsion force

acting on long distances is responsible for the separation of the different subsets.

After considering these one-dimensional patterns, the question arises whether

the corresponding two-dimensional vertical stripe pattern of width ∆ satisfies the

equilibrium condition (3.1) for any ∆ > 0. Let ∆ > 0 and consider the two-

dimensional vertical stripe pattern of width ∆, given by

g∆(x) = g∆(x1, x2) =

{
1
∆ , x1 ∈

[
xc,1 − ∆

2 , xc,1 + ∆
2

]
,

0, otherwise.

We assume that g∆ satisfies the equilibrium condition (3.1) for the mean-field PDE

(2.9), i.e., g∆ (F ∗ g∆) = 0, implying∫
[xc,1−∆

2 ,xc,1+ ∆
2 ]×R

F (x− x′, T ) dx′ = 0 for all x ∈
[
xc,1 −

∆

2
, xc,1 +

∆

2

]
× R.

By linear transformations this reduces to∫
[−∆

2 ,
∆
2 ]×R

F ((x1, 0)− x′, T ) dx′ = 0 for all x1 ∈
[
−∆

2
,

∆

2

]
.

Since F (x− x′, T (x)) = −F (−(x− x′), T (x)) for all x, x′ ∈ R2 we have

e1 ·
∫
[−∆

2 ,
∆
2 ]×R

F ((x1, 0)− x′, T ) dx′ = 0 for all x1 ∈
[
−∆

2
,

∆

2

]
and symmetry implies

e1 ·
∫

[x1,∆−x1]×R
F (x′, T ) dx′ = 0 for all x1 ∈

[
0,

∆

2

)
. (3.14)
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Hence the equilibrium state can only occur for special choices of the interaction

force F . In general, (3.14) is not satisfied and thus g∆ is not an equilibrium state

of the mean-field PDE.

4. Numerical methods and results

In this section, we investigate the long-time behavior of solutions to the Kücken-

Champod model (1.4) and the pattern formation process numerically and we discuss

the numerical results by comparing them to the analytical results of the model in

Section 3. These numerical simulations are necessary for getting a better under-

standing of the long-time behavior of solutions to the Kücken-Champod model

(1.4) and its stationary states. Since the mean-field limit shows that the particle

method is convergent with a order given by N−1/2 ln(1 +N) (see Ref. 93, 88) it is

sufficient to use particle simulations instead of the mean-field solvers.

We consider the domain Ω = T2 where T2 is the 2-dimensional unit torus that

can be identified with the unit square [0, 1) × [0, 1) ⊂ R2 with periodic boundary

conditions. To guarantee that particles can only interact within a finite range we

assume that they cannot interact with each other if they are separated by a distance

of at least 0.5 in each spatial direction, i.e., for i ∈ {1, 2} and all x ∈ Ω we require

that F (x− x′, T (x)) · ei = 0 for |x− x′| ≥ 0.5 where ei denotes the standard basis

for the Euclidean plane. This property of the total interaction force F in (2.3) is

referred to as the minimum image criterion.94 Note that the coefficient functions

fR and fA in (2.10) and (2.11) in the Kücken-Champod model (1.4) satisfy the

minimum image criterion if a spherical cutoff radius of length 0.5 is introduced for

the repulsion and attraction forces.

Remark 4.1 (Minimum image criterion). The minimum image criterion is

a natural condition for large systems of interacting particles on a domain with

periodic boundary conditions. In numerical simulations, it is sufficient to record and

propagate only the particles in the original simulation box. Besides, the minimum

image criterion guarantees that the size of the domain is large enough compared

to the range of the total force. In particular, non-physical artifacts due to periodic

boundary conditions are prevented.

4.1. Numerical methods

To solve the N particle ODE system (1.4) we consider periodic boundary conditions

and apply either the simple explicit Euler scheme or higher order methods such as

the Runge-Kutta-Dormand-Prince method, all resulting in very similar simulation

results.

4.2. Numerical results

We show numerical results for the Kücken-Champod model (1.4) on the domain

Ω = T 2 where the force coefficients are given by (2.10) and (2.11). In particular,
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we investigate the patterns of the corresponding stationary solutions. Unless stated

otherwise we consider the parameter values in (2.12) and the spatially homogeneous

tensor field T = χs ⊗ s + l ⊗ l with l = (1, 0) and s = (0, 1). Besides, we assume

that the initial condition is a Gaussian with mean µ = 0.5 and standard deviation

σ = 0.005 in each spatial direction.

4.2.1. Dependence on the initial distribution

The stationary solution to (1.4) for N = 1200 particles is shown in Figure 5 for

χ = 0.2 and χ = 0.7, respectively, for different initial data. One can clearly see that

the long-time behavior of the solution depends on the chosen initial conditions and

the choice of χ. As discussed in Section 3.1 the absence of attraction forces along

s = (0, 1) for χ = 0.2 leads to a solution stretched along the entire vertical axis

and particles in a neighborhood of these line patterns are attracted. For χ = 0.7

the domain of attraction is significantly smaller and the particles remain isolated

or build small clusters if they are initially too far apart from other particles. This

results in many accumulations of smaller numbers of particles for χ = 0.7. Note

that these accumulations have the shape of ellipses for χ = 0.7 which is consistent

with the analysis in Section 3, independent of the choice of the initial data. Because

of the significantly larger number of clusters for randomly uniformly distributed

initial data the resulting ellipse patterns consist of fewer particles compared to

Gaussian initial data with a small standard deviation. Since initial data spread over

the entire simulation domain leads to multiple copies of the patterns which occur

for concentrated initial data, this motivates to consider concentrated initial data

for getting a better understanding of the patterns which can be generated. In the

sequel we restrict ourselves to concentrated initial data so that all particles can ini-

tially interact with each other. Besides, it is sufficient to consider smaller numbers

of particles to get a better understanding of the formation of the stationary pattern

to increase the speed of convergence. Further note that for χ = 0.2 and randomly

uniformly distributed initial data the convergence to the stationary solution, illus-

trated in Figure 6, is very slow which implies that the fingerprint formation might

also be slow. However, the Kücken-Champod model (1.4) is able to generate very

interesting patterns over time t, as shown in Figure 6. Besides, it is of interest how

the resulting patterns depend on the initial data and whether the ellipse pattern is

stable for χ = 0.7. In Figure 7a we consider N = 600 particles and Gaussian initial

data with mean µ = 0.5 and standard deviation σ = 0.005 in each spatial direction.

Given the initial position of the particles for the simulation in Figure 7a we perturb

the initial position of each particle j by δZj where Zj is drawn from a bivariate

standard normal distribution and δ ∈ {0.0001, 0.001, 0.01, 0.1}. The corresponding

stationary patterns are illustrated in Figures 7b to 7e and one can clearly see that

the ellipse pattern is stable under small perturbations.
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(a) χ = 0.2 (b) χ = 0.7 (c) χ = 0.7, enlarged (d) χ = 0.7, enlarged

Randomly uniformly distributed

(e) χ = 0.2 (f) χ = 0.7 (g) χ = 0.7, enlarged (h) χ = 0.7, enlarged

Gaussian with σ = 0.05

Fig. 5. Stationary solution to the Kücken-Champod model (1.4) for N = 1200 and different initial

data for χ = 0.2 (left) and χ = 0.7 (right)

(a) t = 0 (b) t = 50000 (c) t = 110000 (d) t = 710000

Fig. 6. Numerical solution to the Kücken-Champod model (1.4) for N = 1200 and randomly

uniformly distributed initial data for χ = 0.2 and different times t

4.2.2. Evolution of the pattern

In Figure 8, the numerical solution of the particle model (1.4) on Ω = T2 for

N = 1200 is shown for χ = 0, χ = 0.2 and χ = 1.0 for different times t for Gaussian

initial data with mean µ = 0.5 and standard deviation σ = 0.005 in each spatial

direction. Compared to the initial data one can clearly see that the solution for

χ = 0 and χ = 0.2, respectively, is stretched along the vertical axis, i.e., along

s = (0, 1), as time increases. This is consistent with the observations in Section 3.1

since the forces along the vertical axis for χ = 0 and χ = 0.2 are purely repulsive.

In contrast, the long-range attraction forces for χ = 1 prohibit stretching of the

solution and the isotropic forces for χ = 1 lead to ring as stationary solution whose

radius is approximately 0.0017. The different sizes of the stationary patterns are
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(a) δ = 0 (b) δ = 0.0001 (c) δ = 0.001 (d) δ = 0.01 (e) δ = 0.1

Fig. 7. Stationary solution to the Kücken-Champod model (1.4) for N = 600 and Gaussian initial

data (µ = 0.5, σ = 0.005) in each spatial direction in Figure 7a and perturbation of the initial

position of each particle j by δZj where Zj is drawn from a bivariate standard normal distribution
and δ ∈ {0.0001, 0.001, 0.01, 0.1} in Figures 7b to 7e

also illustrated in Figure 8 where the solutions for χ = 0 and χ = 0.2 are shown

on the unit square, while a smaller axis scale is considered for χ = 1 because of the

small radius of the ring for χ = 1. Besides, the convergence to the equilibrium state

is very fast for χ = 1 compared to χ = 0 and χ = 0.2.

(a) χ = 0 (b) χ = 0.2 (c) χ = 1

Fig. 8. Numerical solution to the Kücken-Champod model (1.4) for different times t and different

values of χ for N = 1200 and Gaussian initial data (µ = 0.5, σ = 0.005) in each spatial direction

4.2.3. Dependence on parameter χ

In this section we investigate the dependence of the equilibria to (1.4) on the pa-

rameter χ which strongly influences the pattern formation. Given N = 600 particles

which are initially equiangular distributed on a circle with center (0.5, 0.5) and ra-

dius 0.005 the stationary solution to (1.4) is displayed for different values of χ in

Figures 9 and 10. Note that the same simulation results are shown in Figures 9 and

10 for different axis scales. In Figure 9 one can see that the size of the pattern is

significantly larger for small values of χ due to stretching along the vertical axis

(cf. Section 3). For small values of χ the stationary solution is a 1D stripe pat-

tern of equally distributed particles along the entire vertical axis, while for larger

values of χ the stationary solution can be a shorter vertical line or accumulations

in the shape of lines and ellipses. The stationary patterns for different values of χ
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(a) χ = 0.08 (b) χ = 0.24 (c) χ = 0.40 (d) χ = 0.56 (e) χ = 0.72

Fig. 9. Comparison of the size of the stationary solution to the Kücken-Champod model (1.4) for

different values of χ where N = 600 and the initial data is equiangular distributed on a circle with

center (0.5, 0.5) and radius 0.005

are enlarged in Figure 10 by considering different axis scales. As χ increases the

stationary pattern evolves from a straight line into a standing ellipse and finally

into a ring for χ = 1.0. Since the same particle numbers and the same initial data,

as well as the same parameters except for the parameter χ are considered in these

simulations, the different stationary patterns strongly depend on the choice of χ.

Note that the length of the minor axis of the ellipse increases as χ increases, while

the length of the major axis of the ellipse gets shorter. Further note that we have a

continuous transition of the stationary patterns as χ increases due to the smooth-

ness of the forces and the continuous dependence of the forces on parameter χ in

the Kücken-Champod model (1.4).

4.2.4. Dependence on parameter eR

In Figure 11 the stationary solution to (1.4) for N = 1200 and χ = 0.2 is shown for

different values of eR where a ring of radius 0.005 with center (0.5, 0.5) is chosen

as initial data. One can clearly see that the size of accumulations increases for eR
increasing due to strong long-range repulsion forces for smaller values of eR. Besides,

the stationary solution is spread over the entire domain for smaller values of eR. The

spreading of the solution along the entire horizontal axis can be explained by the fact

that for smaller values of eR the total force along l, i.e., along the horizontal axis, is

no longer short-range repulsive and long-range attractive, but short-range repulsive,

medium-range attractive and long-range repulsive and the long-range repulsion is

the stronger the smaller the value of eR.

4.2.5. Dependence on the size of the attraction force

In this section, we assume that the total force is given by

F (d, T ) = δFA(d, T ) + FR(d)

for δ ∈ [0, 1] for the spatially homogeneous tensor field T = χs ⊗ s + l ⊗ l with

l = (1, 0) and s = (0, 1) instead of (2.3). We consider N = 600 particles which are

initially equiangular distributed on a circle with center (0.5, 0.5) and radius 0.005

and we investigate the influence of the size of the attraction force FA on stationary
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(a) χ = 0.12 (b) χ = 0.16 (c) χ = 0.20 (d) χ = 0.24 (e) χ = 0.28

(f) χ = 0.32 (g) χ = 0.36 (h) χ = 0.40 (i) χ = 0.44 (j) χ = 0.48

(k) χ = 0.52 (l) χ = 0.56 (m) χ = 0.60 (n) χ = 0.64 (o) χ = 0.68

(p) χ = 0.72 (q) χ = 0.76 (r) χ = 0.80 (s) χ = 0.84 (t) χ = 0.88

Fig. 10. Stationary solution to the Kücken-Champod model (1.4) for different values of χ where
N = 600 and the initial data is equiangular distributed on a circle with center (0.5, 0.5) and radius

0.005

(a) eR = 40 (b) eR = 50 (c) eR = 60 (d) eR = 70 (e) eR = 80

Fig. 11. Stationary solution to the Kücken-Champod model (1.4) for χ = 0.2 and different values

for eR where N = 1200 and the initial data is equiangular distributed on a circle with center
(0.5, 0.5) and radius 0.005

patterns by varying its coefficients. While the force is repulsive for small values of

δ, resulting in a stationary solution spread over the entire domain, stripe patterns

and ring patterns for χ = 0.2 and χ = 1, respectively, arise as stationary patterns
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as δ increases as shown in Figures 12. Note that the radius of the stationary ring

pattern decreases as δ increases due to an increasing attraction force.

(a) δ = 0.1 (b) δ = 0.3 (c) δ = 0.5 (d) δ = 0.7 (e) δ = 0.9

(f) δ = 0.1 (g) δ = 0.3 (h) δ = 0.5 (i) δ = 0.7 (j) δ = 0.9

Fig. 12. Stationary solution to the Kücken-Champod model

(1.4) for force F (d, T ) = δFA(d, T ) + FR(d) for different values of δ (i.e., different sizes of the

attraction force FA) where χ = 0.2 and χ = 1 (for different axis scalings) in the first and second
row, respectively, where N = 600 and the initial data is equiangular distributed on a circle with

center (0.5, 0.5) and radius 0.005

4.2.6. Dependence on the size of the repulsion force

In this section, we consider a force of the form F (d, T ) = FA(d, T ) + δFR(d) for

δ ∈ [0, 1] for the spatially homogeneous tensor field T = χs⊗s+ l⊗ l with l = (1, 0)

and s = (0, 1) instead of (2.3) and we consider N = 600 particles which are initially

equiangular distributed on a circle with center (0.5, 0.5) and radius 0.005. The

stationary solution to (1.4) for χ = 0.2 stretches along the vertical axis as δ increases

due to an additional repulsive force as illustrated in Figure 13. For χ = 1, the radius

of the ring pattern increases as δ, see Figure 14.

(a) δ = 0.1 (b) δ = 0.3 (c) δ = 0.5 (d) δ = 0.7 (e) δ = 0.9

Fig. 13. Stationary solution to the Kücken-Champod model (1.4) for χ = 0.2 and force

F (d, T ) = FA(d, T ) + δFR(d) for different values of δ (i.e., different sizes of the repulsion force

FR) where N = 600 and the initial data is equiangular distributed on a circle with center (0.5, 0.5)
and radius 0.005
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Fig. 14. Stationary solution to the Kücken-Champod model (1.4) for χ = 1 and force

F (d, T ) = FA(d, T ) + δFR(d) for different values of δ (i.e., different sizes of the repulsion force
FR) where N = 600 and the initial data is equiangular distributed on a circle with center (0.5, 0.5)

and radius 0.005

4.2.7. Dependence on the tensor field

In Figures 15 and 16 the numerical solution to the Kücken-Champod model (1.4)

for N = 600, χ = 0.2 and randomly uniformly distributed data is shown for different

non-homogeneous tensor fields T = T (x) and different times t. Since s = s(x) and

l = l(x) are assumed to be orthonormal vectors, the vector field s = s(x) and the

parameter χ determine the tensor field T = T (x). One can clearly see in Figure 15

that the particles are aligned along the lines of smallest stress s = s(x). However,

these patterns are no equilibria. The evolution of the numerical solution for different

tensor fields is illustrated in Figure 16.

4.3. Discussion of the numerical results

In this section, we study the existence of equilibria and their stability of the Kücken-

Champod model (1.4) for the spatially homogeneous tensor field T = χs⊗ s+ l⊗ l
with l = (1, 0) and s = (0, 1) and compare them with the numerical results.

4.3.1. Ellipse

As outlined in Section 3.1 the anisotropic forces for χ ∈ [0, 1) lead to an additional

advection along the vertical axis compared to the horizontal axis for the given tensor

field T . Hence, possible stationary ellipse patterns are stretched along the vertical

axis for χ ∈ [0, 1). Besides, this advection leads to accumulations within the ellipse

pattern, i.e., the distances of the particles are much longer along the vertical lines

(e.g. at the left or right side of the ellipse) than along the horizontal lines (e.g. at

the top or bottom of the ellipse). As in Section 3.3 we denote the length of the

minor and major axis of the ellipse state by R and R+ r, respectively.



October 17, 2017 18:38 WSPC/INSTRUCTION FILE ws-m3as
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(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

Fig. 15. Different non-homogeneous tensor fields T = T (x) given by s = s(x) (left) and the

numerical solution to the Kücken-Champod model (1.4) at time t = 40000 for χ = 0.2, T = T (x)

and randomly uniformly distributed initial data (right)

(a) s = s(x) (b) t = 40000 (c) t = 200000 (d) t = 400000

Example 5

(e) s = s(x) (f) t = 40000 (g) t = 200000 (h) t = 400000

Example 6

Fig. 16. Different non-homogeneous tensor fields T = T (x) given by s = s(x) (left) and the
numerical solution to the Kücken-Champod model (1.4) at different times t for χ = 0.2, T = T (x),
N = 600 and randomly uniformly distributed initial data (right)

First, we consider ring patterns of radius R > 0. We identify R2 with C and
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consider the ansatz

x̄k = x̄k(R) = xc +R exp

(
2πik

N

)
, k = 0, . . . , N − 1 (4.1)

with center of mass xc, i.e., the particles are uniformly distributed on a ring of

radius R with center xc. The radius R > 0 has to be determined such that the

ansatz functions x̄j = x̄j(R) satisfy

N∑
k=1
k 6=j

F (x̄k(R)− x̄j(R), T ) = 0 (4.2)

for all j = 0, . . . , N−1. Denoting the left-hand side of (4.2) by Gj(R), then Gj(R) is

highly nonlinear and zeros of Gj can only be determined numerically. By symmetry

it is sufficient to determine the zeros of G0 for χ = 1. Since =G0(R) = 0 for all

R > 0 by the definition of F the condition simplifies to finding R > 0 such that

<G0(R) = 0. Using Newton’s algorithm the unique nontrivial zero of <G0 can be

computed as R̄ ≈ 0.0017 for the forces (2.10) and (2.11) in the Kücken-Champod

model (1.4) with parameter values from (2.12), N = 600 and a fixed center of mass

xc. Hence, given xc (4.1) with radius R̄ is the unique ring equilibrium for χ = 1 and

R̄ coincides with the radius of the numerically obtained ring equilibrium in Section

4.2.2. Based on a linearized stability analysis95 one can show numerically that the

ring pattern is stable for χ = 1 for the forces in the Kücken-Champod model for

parameters in (2.12) and N = 1200. Since <Gj is independent of χ with unique

zero R̄ and χfA ≤ 0, this implies that there exists no R > 0 such that =Gj(R̄) = 0

for all j = 0, . . . , N for any χ ∈ [0, 1), i.e., the ring solution (4.1) is no equilibrium

for χ ∈ [0, 1) and any R > 0. This is consistent with the analysis of the mean-field

PDE (2.9) in Section 3 and with the numerical results in Section 4.2.

For the general case of an ellipse where r ≥ 0 we identify R2 with C and regard

the equiangular ansatz

x̄k = x̄k(r,R) = xc +R cos

(
2πk

N

)
+ i(R+ r) sin

(
2πk

N

)
, k = 0, . . . , N − 1,

(4.3)

where the distances of the particles are longer along vertical than along horizontal

lines. An ellipse equilibrium has to satisfy

N∑
k=1
k 6=j

F (x̄k(R, r)− x̄j(R, r), T ) = 0 (4.4)

for all j = 0, . . . , N − 1. Tuples (R, r) such that (4.3) is a possible equilibria to

(1.4) can be determined numerically from <G0(R, r) = 0, where Gj((R, r)) for

j ∈ {0, . . . , N − 1} denotes the left-hand side of (4.4). For the force coefficients

(2.10) and (2.11) in the Kücken-Champod model for parameter values (2.12) and

N = 600, the condition in (4.4) implies that the larger r the smaller R, i.e., as r
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increases the ring of radius R evolves into an ellipse whose major axis of length

2(R+ r) gets longer and whose minor axis of length 2R gets shorter as r increases.

The numerically obtained tuples (R, r) are shown in Figure 17a. Besides, it follows

from plugging the definition of the total force for spatially homogeneous tensor fields

into (4.4) that each tuple (R, r) can be associated to an equilibrium for at most

one value of χ. Further note that by Section 3.1 the additional advection along the

vertical axis is the stronger the smaller the value of χ, implying that r increases as

χ decreases. Hence, we can conclude that for a given value of χ there exists at most

one tuple (R, r) such that the ansatz (4.3) is an equilibrium to (1.4). This can also

be justified by evaluating =GN/4(R, r) as a function of radius pairs (R, r) for fixed

values of χ for N = 600 particles. The eccentricity e =
√

1− (R/(R+ r))2 of the

stationary ellipse pattern as a function of the parameter χ is shown in Figure 17b.

Note that these observations are consistent with the numerical results in Section

4.2. Further note that the shape of the relation between R and r as well as the

eccentricity curve in Figures 17a and 17b is similar to the ones in the continuous

case, shown in Figures 4b and 4d. However, there are small differences between the

radius pairs for the discrete and the continuous case which is due to the additional

functional determinant that has to be considered if the corresponding integrals in

(3.5) and (3.6) are discretized.

(a) Tuples (R, r) (b) e = e(χ)

Fig. 17. Tuples (R, r) for stationary ellipse patterns to (1.4) with ansatz (4.3) and eccentricity e

as a function of χ for N = 600 and the forces in the Kücken-Champod model for parameter values
in (2.12)

4.3.2. Single straight vertical line

Because of the observations in Section 3.1 a natural choice for line patterns are

vertical lines. Identifying R2 with C results in the ansatz

x̄k = xc + i
2k − 1

2N
, k = 0, . . . , N − 1, (4.5)
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for a single straight vertical line with the center of mass xc. One can easily see

that ansatz (4.5) defines an equilibrium of (1.4) for all values χ ∈ [0, 1] where the

minimum image criterion is crucial to guarantee that (4.5) is an equilibrium for

even values of N . Based on a linearized stability analysis95 one can show that (4.5)

is a stable equilibrium of (1.4) for N = 1200 for χ ∈ [0, 0.27] which is consistent

with the numerical results in Section 4.2.

4.3.3. Clusters

The numerical results in Section 4.2 crucially depend on the choice of the parameter

values. As seen in Figure 11 the smaller the value of eR the more the particles are

spread over the entire domain. Note that the coefficient of the repulsive force is

given by (2.10) so that smaller values of eR correspond to a slower exponential

decay and hence larger repulsion forces, resulting in a larger number of clusters.

It would be very interesting to explore the dependence of the coefficients on the

number of clusters in the steady state further. In future research, one might also

study analytically how the number of clusters and structures depend on the cutoff

radius.
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Appendix A. Detailed computations of Section 3.2

Let T̃ = χs̃⊗ s̃+ l̃⊗ l̃ denote a spatially homogeneous tensor field for orthonormal

vectors l̃, s̃ ∈ R2. Given l = (1, 0), s = (0, 1) and angle of rotation θ in (2.8), then

T̃ = RθTR
T
θ with T = χs⊗ s+ l ⊗ l and rotation matrix Rθ in (2.8).

Let xj = xj(t), j = 1, . . . , N , denote the solution to the microscopic model (1.4)

on R2 for the tensor field T and define

x̃j(t) = xc +Rθ(xj(t)− xc), j = 1, . . . , N
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where xc denotes the center of mass. Then, x̃j = x̃j(t), j = 1, . . . , N , is a solution

to the microscopic model (1.4) on R2 for the tensor field T̃ . Besides, given an

equilibrium x̄j , j = 1, . . . , N , to (1.4) on R2 for the tensor field T , then

¯̃xj = xc +Rθ(x̄j − xc), j = 1, . . . , N,

is an equilibrium to (1.4) on R2 for the tensor field T̃ .

We show that x̃j , j = 1, . . . , N , solves (1.4) for the tensor field T̃ . Since

xj , j = 1, . . . , N, solves (1.4) for the tensor field T , we have

dxj
dt

=
∑
k 6=j

fA(|d|) [χ (s · d) s+ (l · d) l] + fR(|d|)d

for all j = 1, . . . , N where d(xj , xk) = xj − xk. Note that x̃j − x̃k = Rθ(xj − xk)

and |x̃j − x̃k| = |xj − xk|. Using (2.7) as well as the fact that Rθ is an orthogonal

matrix we get

χ (s̃ · (x̃j − x̃k)) s̃+
(
l̃ · (x̃j − x̃k)

)
l̃ = Rθ [χ (s · (xj − xk)) s+ (l · (xj − xk)) l] .

Setting d̃(x̃j , x̃k) = x̃j − x̃k this implies

dx̃j
dt

=
∑
k 6=j

fA

(∣∣∣d̃∣∣∣) [χ(s̃ · d̃) s̃+
(
l̃ · d̃
)
l̃
]

+ fR

(∣∣∣d̃∣∣∣) d̃
for all j = 1, . . . , N , i.e., x̃j , j = 1, . . . , N , solves (1.4) for the tensor field T̃ .

Similarly, one can show that ¯̃xj is an equilibrium to (1.4) for the tensor field T̃ ,

given that x̄j , j = 1, . . . , N , is an equilibrium to (1.4) for the tensor field T .

We turn to equilibria of the mean-field equation (2.9) for spatially homogeneous

tensor fields now. Let ρ = ρ(dx) denote an equilibrium state to the mean-field PDE

(2.9) on R2 for the tensor field T and define

ρ̃(x) = ρ
(
xc +R−1

θ (x− xc)
)

a.e. (A.1)

where xc denotes the center of mass. Then, ρ̃ is an equilibrium state to (2.9) for the

tensor field T̃ .

To show this result note that for x ∈ R2 we have

(F (·, T ) ∗ ρ̃) (xc +Rθ(x− xc))

=

∫
R2

F (xc +Rθ(x− xc)− (xc +Rθ(x− x′c)) , T̃ )ρ(dx′)

=

∫
R2

[
fR(|x− x′|)Rθ(x− x′)

+ fA(|x− x′|)
[
χ (s̃ · (Rθ(x− x′))) s̃+

(
l̃ · (Rθ(x− x′))

)
l̃
]]
ρ(dx′)

= Rθ (F (·, T ) ∗ ρ) (x)

where the first equality follows from (A.1) and the substitution rule. The def-

initions of the repulsion and attraction forces in (2.5) are used in the second
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equality and (2.7) is inserted in the third equality. Since x ∈ supp(ρ̃) implies

x ∈ supp(ρ(xc +R−1
θ (· − xc))) and

(F (·, T ) ∗ ρ̃) (x) = Rθ (F (·, T ) ∗ ρ)
(
xc +R−1

θ (x− xc)
)
,

ρ̃ is an equilibrium state to (2.9) for the tensor field T̃ provided that ρ is an equi-

librium state to (2.9) for the tensor field T .

References

1. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina,
V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Inter-
action ruling animal collective behaviour depends on topological rather than metric
distance: evidence from a field study, Proc. Natl. Acad. Sci. 105 (2008) 1232–1237.

2. A. J. Bernoff and C. M. Topaz, A primer of swarm equilibria, SIAM J. Appl. Dyn.
Syst. 10 (2011) 212–250.

3. A. L. Bertozzi, H. Sun, T. Kolokolnikov, D. Uminsky and J. H. von Brecht, Ring
patterns and their bifurcations in a nonlocal model of biological swarms, Comm.
Math. Sci. 13 (2015) 955–985.

4. B. Birnir, An ode model of the motion of pelagic fish, Journal of Statistical Physics
128 (2007) 535–568.

5. A. Blanchet, V. Calvez and J. A. Carrillo, Convergence of the mass-transport steepest
descent scheme for the subcritical patlakkellersegel model, SIAM Journal on Numer-
ical Analysis 46 (2008) 691–721.

6. A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model:
Optimal critical mass and qualitative properties of the solutions., Electronic Journal
of Differential Equations (EJDE) 44 (2006) 1–33.

7. S. Boi, V. Capasso and D. Morale, Modeling the aggregative behavior of ants of the
species polyergus rufescens, Nonlinear Analysis: Real World Applications 1 (2000)
163–176.

8. M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short
range interactions, Nonlinear Analysis: Real World Applications 8 (2007) 939–958.

9. S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz and
E. Bonabeau, Self-organization in biological systems, Princeton Univ. Press, Prince-
ton .

10. J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics
for the kinetic cuckersmale model, SIAM Journal on Mathematical Analysis 42 (2010)
218–236.

11. A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini and
R. Tavarone, From empirical data to inter-individual interactions: unveiling the rules
of collective animal behavior, Math. Models Methods Appl. Sci. 20.

12. P. Degond and S. Motsch, Large scale dynamics of the persistent turning walker model
of fish behavior, Journal of Statistical Physics 131 (2008) 989–1021.

13. A. M. Delprato, A. Samadani, A. Kudrolli and L. S. Tsimring, Swarming ring pat-
terns in bacterial colonies exposed to ultraviolet radiation, Phys. Rev. Lett. 87 (2001)
158102.

14. M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi and L. S. Chayes, Self-propelled
particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett.
96 (2006) 104302.

15. L. Edelstein-Keshet, J. Watmough and D. Grunbaum, Do travelling band solutions



October 17, 2017 18:38 WSPC/INSTRUCTION FILE ws-m3as
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40. J. A. Cañizo, J. A. Carrillo and F. S. Patacchini, Existence of compactly supported
global minimisers for the interaction energy, Archive for Rational Mechanics and Anal-
ysis 217 (2015) 1197–1217.

41. J. A. Carrillo, M. G. Delgadino and A. Mellet, Regularity of local minimizers of the
interaction energy via obstacle problems, Communications in Mathematical Physics
343 (2016) 747–781.

42. J. A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev, Confinement in
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