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Bayesian Emulation and Calibration of a Dynamic Epidemic

Model for A/H1N1 Influenza

Abstract

In this paper, we develop a Bayesian framework for parameter estimation of a computa-

tionally expensive dynamic epidemic model using time series epidemic data. Specifically,

we work with a model for A/H1N1 influenza, which is implemented as a deterministic

computer simulator, taking as input the underlying epidemic parameters and calculating

the corresponding time series of reported infections. To obtain Bayesian inference for

the epidemic parameters, the simulator is embedded in the likelihood for the reported

epidemic data. However, the simulator is computationally slow, making it impractical to

use in Bayesian estimation where a large number of simulator runs is required. We pro-

pose an efficient approximation to the simulator using an emulator, a statistical model

that combines a Gaussian process prior for the output function of the simulator with a

dynamic linear model for its evolution through time. This modeling framework is both

flexible and tractable, resulting in efficient posterior inference through Markov Chain

Monte Carlo (MCMC). The proposed dynamic emulator is then used in a calibration

procedure to obtain posterior inference for the parameters of the influenza epidemic.

KEY WORDS: Emulation; Calibration; Gaussian process; Dynamic Linear Models; Epi-

demic model.
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1 Introduction

An emerging epidemic is a major public health concern. Not only does it increase demand

upon health services, but it may also result in substantial socioeconomic problems and loss

of life. Increasingly, mechanistic models are playing an important role in strategies for

epidemic management, approximating the underlying dynamics, and enabling inference on

key epidemic characteristics (Brauer and Castillo-Chavez, 2011; Korostil et al., 2012). In the

attempt to control an epidemic, the goal of model development is to provide computationally

efficient estimation of key parameters in order to allow timely assessment and prediction

of the epidemic evolution as new data become available. In this paper, we address this

computationally efficient parameter estimation problem.

The work here is motivated by inferential challenges posed by a dynamic epidemic model

developed by Birrell et al. (2011) to reconstruct the 2009 A/H1N1 influenza epidemic in

London. The model consists of two components: one for disease transmission, and the

other for the reporting of symptomatic illness to healthcare facilities. Parameter estimation

is carried out, using data from multiple sources, in a Bayesian framework implemented via

Markov Chain Monte Carlo (MCMC). The multiplicity of data, combined with the model

complexity, makes the evaluation of the model computationally expensive. This expense is

exacerbated by the need for the MCMC algorithm to evaluate the model numerous times

at each iteration, seriously limiting the ability for this approach to provide practical online

inference.

To address this problem, we turn to the computer models literature. Computer models

(henceforth simulators) are developed in virtually all scientific fields to encode sophisticated

mathematical representations of particular physical processes (O’Hagan, 2006). Inputs to

the simulator include the underlying parameters of the physical process under consideration,

and the output is a quantity of interest representing some behavior of the physical process.

In practice, some simulators are severely hampered by long run-times, making analyses that

require a large number of simulator runs infeasible. To circumvent the incurred computa-

tional burden, a fast surrogate (an emulator) to the computationally expensive simulator

is used in the analysis instead. The emulator is a statistical model, typically a Gaussian
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process (GP), that efficiently estimates the simulator output using a small set of simulator

runs (e.g., Sacks et al., 1989; Kennedy and O’Hagan, 2000; Santner et al., 2003).

The transmission-reporting model in Birrell et al. (2011) can be cast as a (dynamic)

computationally expensive simulator (henceforth, the BEA simulator), where the inputs are

the underlying epidemic parameters, and the output is the time series giving the number

of individuals reporting illness. The BEA simulator is deterministic, that is, supplying it

repeatedly with the same input point always results in the same time series output. To

improve the efficiency of the epidemic parameter estimation, which requires running the

BEA simulator at every MCMC iteration, we propose conducting parameter estimation

using quick emulator runs. Note that parameter estimation, referred to as “calibration”

in the computer model literature, is equivalent to solving the “inverse-problem”, i.e., the

estimation of the simulator inputs (e.g., Kennedy and O’Hagan, 2000; Higdon et al., 2004;

Bayarri et al., 2007a,b). Calibration requires both simulator runs and field observations.

Framing the estimation of epidemic parameters as a calibration problem, and using emula-

tion as an efficient surrogate for the computationally expensive BEA simulator are the two

major concepts underlying the work presented in this paper.

We begin by emulating the BEA simulator. Here, an appropriate emulator must take

into account interdependencies driven by the inputs within and across time series corre-

sponding to different input points. To capture these interdependencies, we propose an

emulator that combines two interlinked structures: a multivariate dynamic linear model

(DLM) that captures trends attributed to the inputs as well as complicated temporal in-

terdependencies, including non-stationarity and time-varying stochastic growth; and a GP

model that captures the correlation over the input space, and therefore across time series

of different inputs. A similar approach is suggested in Liu and West (2009), where a dy-

namic emulator is constructed using a time-varying autoregressive (TVAR) model (a type

of multivariate DLM). However, the emulator in Liu and West (2009) is not suitable for epi-

demic trajectories as it is designed for time series showing no clear trends, whereas epidemic

models produce highly structured trajectories driven by the values of their parameters. In

this work, we extend the Liu and West (2009) dynamic emulator to account for possible

time-varying input-dependent trends in the time series outputs. Then, we derive a new
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calibration approach that utilizes this extended DLM-GP emulator to efficiently estimate

the underlying epidemic parameters using observed time series data.

The structure of the paper is as follows. In Section 2, we describe the BEA simulator,

our motivating application. In Section 3, we review current approaches to emulation and

calibration of dynamic simulators and describe our proposed methods for dynamic emulation

and calibration. Section 4 includes results of the emulation and calibration methods using

runs from the BEA simulator as well as simulated epidemic data. We conclude with a

discussion in Section 5.

2 Motivating Application: The A/H1N1 Epidemic Simulator

The epidemic model in Birrell et al. (2011) was developed as part of the public health

response in England and Wales to the global outbreak of a novel A/H1N1 influenza virus

in 2009. This model is designed to integrate routinely collected surveillance data and

pandemic-specific data to reconstruct the evolution of the unfolding epidemic, providing

estimates of key epidemiological parameters. Interpreted as a simulator, the model consists

of two main components: one describing the transmission of the virus and the rate at which

susceptible individuals become infected (the transmission model), and one describing how

these new infections manifest themselves in the healthcare system (the reporting model).

The transmission component is specified as a SEIR-compartment model (e.g., Jacquez,

1996). At any time, the closed population is partitioned into either: a susceptible state,

S(t), containing those individuals with no prior immunity to the virus and who are at risk

of becoming infected; an exposed state, E(t), including individuals who have been infected

but are not yet infectious; an infectious state, I(t); and a removed/recovered state R(t).

The total time spent in the E state is referred to as the latent period, and for the I state

this is the infectious period. Disease transmission from those in the I state to those in

the S state is governed by a number of parameters. These include: the basic reproduction

number of the virus, R0, defined as the average number of secondary infections caused by a

primary infection in a fully-susceptible population; I0, the size of the initial pool of infective

individuals; the (time-dependent) mixing matrix M (t), whose (i, j)th element describes the
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time t rate of contact between a member of population stratum i and a member of popula-

tion stratum j; and the average duration of the latent and infectious periods.

incubation

propensity to consult doctor

delay in reporting

Number of  symptomatic individuals

Number of  doctor consultations

Number of  reported cases

S(t)             E(t)             I(t)             R(t)
Transmission

Model

Reporting
Model

Figure 1: Flow chart of the BEA simulator’s modeling components for transmission and
reporting of A/H1N1 influenza.

The reporting component takes as input the number of newly infected individuals from

the transmission component and outputs the number of reported consultations to the health-

care facilities at each time step t, according to the following process. A proportion of the

newly infected individuals develop symptoms after a short incubation period. Of the symp-

tomatic individuals, a further proportion will choose, or be forced due to the severity of

the illness, to interact with the healthcare system in some way. Eventually, the number of

symptomatic individuals accessing the specific healthcare facilities is reported through the

relevant surveillance system with some further delay. The flow of individuals through the

coupled transmission-reporting model, forming the BEA simulator, is shown in a flow chart

in Figure 1.

To run the BEA simulator, inputs, in the form of the underlying epidemic parameters,

are specified. Then, for each input point, the simulator outputs the time series of reported

general practice doctor consultations for influenza-like-illness. Here, we work with six in-

puts, which we denote by x = (x1, . . . , , x6)′, described in Table 1 alongside their plausible

ranges. Given a specified value of x, and at each time step t ∈ {1, . . . , T}, the BEA simula-

tor outputs the number of reported consultations µt(x), a deterministic function of x. We
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denote the time series output by µ1:T (x) = (µ1(x), . . . , µT (x))′. Figure 2 shows trajectories

of µ1:250 corresponding to 100 different input points. This 250 days period covers early May

through early January, the same time period considered by Birrell et al. (2011). The values

of the components of x have a strong impact on the shape of the computed trajectory.

For example, on the log-scale (see Figure 2-B), the value of x2 is closely linked with the

initial positive gradient of the output curves; the value of x5 is linked with the value of the

sustained downhill gradient near day 83; and the value of x6 is associated with the downhill

gradient in the short sections corresponding to the three shorter school holidays at around

days 30, 180, and 240.

(A) (B)
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Figure 2: (A) BEA simulator outputs obtained at 100 input points, each computed over
250 days: (A) on the original scale; (B) on the log(µt + 0.5)− 5 scale.

The goal in Birrell et al. (2011) is calibration, that is, using the BEA simulator in

combination with observed noisy consultation data, z1:T = (z1, . . . , zT )′, to obtain posterior

inference for the unknown underlying epidemic parameters, η = (η1, . . . , η6)′, which have

the same interpretation as the BEA simulator inputs. To link observed consultation data

with the BEA simulator, Birrell et al. (2011) model z1:T as noisy measurements of the

BEA simulator output. Then, the likelihood L(z1:T | µ1:T (η)) is combined, in a Bayesian

framework, with p(η), the prior distribution for η, to obtain the posterior distribution

p(η | z1:T ) ∝ L(z1:T | µ1:T (η))× p(η) (1)
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Component Description Plausible Range

x1 The proportion of infected individuals who
report their illness through consultation
with their doctor.

(0, 1)

x2 The exponential growth rate. This gives the
initial growth rate in the number of infected
individuals and is closely linked with the
value for R0.

(0.095, 0.119)

x3 The average infectious period (days). (3.438, 3.460)

x4 = log(x1l0), where l0 is the initial rate of in-
fection of susceptible individuals. This, as
outlined in Birrell et al. (2011), is a repa-
rameterization of the parameter I0, the size
of the initially infective population.

(-13.883, -13.251)

x5 The proportionate reduction in the pop-
ulation contact rate induced by the over-
Summer school holiday period.

(0, 1)

x6 The proportionate reduction in the popula-
tion contact rate induced by all other school
holidays.

(0, 1)

Table 1: The six inputs to the BEA simulator, the physical quantities they represent, and
their plausible ranges.

7

Page 38 of 66Journal of the American Statistical Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

Evaluation of the likelihood requires evaluation of µ1:T (η), which becomes computationally

burdensome when making repeated calculation of the likelihood in the MCMC algorithm,

limiting the ability for timely inference. Emulation is an obvious approach for efficient

approximate inference, as it replaces the computationally expensive simulator runs with

a more readily evaluated approximating statistical model. Here, we consider a simplified

version of the BEA simulator to illustrate the utility of such an approach. Specifically, we

assume the epidemic acts on a closed population, without stratification by age, and that

the underlying epidemic parameters do not change over time.

3 Methods

3.1 Gaussian process emulation

Consider a deterministic simulator that takes as input a vector x = (x1, . . . , xd)′ with

d ≥ 1 components and produces a scalar output y = f(x). The emulator treats the

functional form of the simulator output, f(·), as a ‘black box’ and uses a small number

of simulator runs to approximate it (e.g., Sacks et al., 1989; Santner et al., 2003). The

standard statistical model for emulation is the GP, which assumes the joint distribution of

simulator outputs f(x1), . . . , f(xn) at any finite set of input points (vectors) x1, . . . ,xn,

where xi = (xi1, . . . , xid)′, to be multivariate Normal. From a Bayesian perspective, the

GP is the prior distribution for the unknown functional form of f(·) (e.g., Kennedy and

O’Hagan, 2001).

A GP is completely determined by its mean function E
(

f(x)
)

and positive semi-definite

covariance function Cov
(

f(xi), f(xj)
)

, i = 1, . . . , n, and j = 1, . . . , n. Typically, the mean

is of the form E
(

f(x)
)

= h(x)λ, where h(x) is a vector of regressors, and λ is the vector of

corresponding regression coefficients. For example, letting h(x) = (1,x′)′ would result in a

linear regression scenario with λ having d+1 components (an intercept and d slopes). The

covariance is specified as Cov
(

f(xi), f(xj)
)

= v c(xi,xj), where v is the GP variance, and
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c(·, ·) is the correlation function, typically assigned the stationary separable Gaussian form

c(xi,xj) = exp

{

−
d

∑

ℓ=1

βℓ(xiℓ − xjℓ)
2

}

, i = 1, . . . , n, j = 1, . . . , n, (2)

which implies that f(·) is expected to respond smoothly to changes in its inputs (Schlather,

1999). Here, β = (β1, . . . ,βd)′ is the vector of correlation range parameters, where each

βℓ > 0 controls the correlation in the GP response surface along each input dimension. A

large value for βℓ indicates weak correlation along input dimension ℓ.

In a fully Bayesian analysis, prior distributions are also placed on the parameters of the

GP mean and covariance functions, resulting in a hierarchical prior structure. The parame-

ters β are typically assigned a prior distribution based on some reasonable assumptions on

the smoothness of f(·) with respect to its inputs (e.g., Higdon et al., 2008b). Some authors,

however, disregard uncertainty about β replacing it with a ‘plug-in’ estimator, β̂ (Bayarri

et al., 2007a; Oakley and O’Hagan, 2004). The remaining GP parameters are typically

assigned conventional diffuse prior distributions.

To fit the GP emulator to the simulator, the latter is run at a design set of input points

X ={x1, . . . ,xn}. This set is typically chosen according to some “space-filling” criterion,

notably a maxi-min Latin hypercube design; see Santner et al. (2003) for a review. For

computational considerations, the input values are scaled (or ‘normalized’) to range over

[0, 1]d (Sacks et al., 1989; Kennedy and O’Hagan, 2001; Higdon et al., 2008a). Together, X

and the corresponding simulator outputs y = (y1, . . . , yn)′, where yi = f(xi) for i = 1, . . . , n,

form the ‘training’ dataset, Ds = {X,y}.

To obtain posterior inference on f(·), the likelihood of Ds is combined with the hi-

erarchical prior distributions for the GP and its parameters. The emulator is ultimately

given by the posterior predictive distribution of f(·) at any input point, conditional on the

training data set. Specifically, let x̃ be a generic input point; then, based on Normal the-

ory and given the GP parameters, the posterior distribution of f(x̃) is Normal with mean

m(x̃) = h(x̃)λ + r′(x̃)Σ−1 (y −Hλ), and variance σ2(x̃) = v
(

1− r′(x̃)Σ−1 r(x̃)
)

, where

H = (h(x1), . . . ,h(xn))′, r(x̃) = (c(x̃,x1), . . . , c(x̃,xn))
′, and Σ is the n × n correlation

matrix with elements c(xi,xj); see (2). Note that the emulator is an interpolator, so that
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at the training data points, m(xi) = f(xi) and σ2(xi) = 0, i = 1, . . . , n, and uncertainty

about f(·) is largest in regions where no training points are nearby.

3.2 Dynamic emulation

Over recent years, a number of emulator extensions have been proposed in the literature to

model simulators of time-varying phenomena, where the output for each input point is a

time series. Specifically, let x̃ be a generic input point; then the corresponding time-series

of outputs is given by {ft(x̃), t = 1, . . . , T}. Adapting existing emulation theory, Bayarri

et al. (2007a) construct a time-dependent emulator by treating time as an additional (dis-

crete) input. In Bayarri et al. (2007b) wavelet representations are used to model the output

curves, while in Higdon et al. (2008a) a principal component basis is utilized to reduce the

dimension of the problem. Conti et al. (2009) propose a recursive model, which requires

fitting an (approximate) GP emulator at each time step. All these approaches rely on a GP

covariance structure that is stationary over time. Working with a multivariate GP, Conti

and O’Hagan (2010) propose a ‘multi-output’ strategy, whereby the time series output is

treated as a vector-valued output at the corresponding input point. Within this multivari-

ate GP framework, Fricker et al. (2013) work with a nonseparable covariance structure.

Relaxing the ‘black box’ assumption regarding ft(·), Reichert et al. (2011) combine a GP

prior for ft(·) with a linear state-space structure based on knowledge of the state-space

equation system underlying the simulator.

Apart from conceptual and computational limitations, these methods poorly handle de-

pendence through time and dependence across time series corresponding to different input

points. These are addressed by the dynamic emulator proposed by Liu and West (2009),

which draws upon state-space modeling ideas to account for three types of interdependen-

cies: the first is dependence over the input space, which is modeled using a GP; the second

is dependence over time (within each time series), which is handled using a TVAR model;

and the third is dependence across time series of different input points, which is achieved

by linking the GP to the TVAR model through the covariance function of the GP.

Specifically, denote the multivariate output at time t for input points x1, . . . ,xn by the

vector yt = (yt(x1), . . . , yt(xn))
′ = (ft(x1), . . . , ft(xn))′, t = 1, . . . , T . Liu and West (2009)

10
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model yt using the following multivariate TVAR structure:

yt = F ′

tφt + ϵt, ϵt ∼ N (0, vtΣ) , (3)

F ′

t =

⎛

⎜

⎜

⎜

⎜

⎝

yt−1 (x1) · · · yt−p (x1)
...

. . .
...

yt−1 (xn) · · · yt−p (xn)

⎞

⎟

⎟

⎟

⎟

⎠

, (4)

φt = φt−1 +wt, wt ∼ N(0, Wt). (5)

Here, p is the specified time-lag, implying that the correlation is negligible after p time steps,

φt = (φt,1, . . . ,φt,p)′ are the TVAR coefficients, which are assumed to follow a random walk

over time, and ϵt =
(

ϵt(x1), . . . , ϵt(xn)
)

′
. The errors ϵt(·) are in turn modeled independently

over time using a GP prior distribution with mean zero and covariance function vtc(·, ·),

where vt is the dynamic variance and c(·, ·) is the correlation function defined in (2), so that

c(xi,xj) is the (i, j)th element of the correlation matrix Σ.

Note that since φt, vt, and Wt all vary over time, the model is able to capture temporal

non-stationarity in the dynamic simulator output. To complete the model defined in (3)-

(5), prior distributions are specified for φ0, {vt, t = 1, . . . , T}, {Wt, t = 1, . . . , T}, and

β. Then, posterior inference is obtained using MCMC by utilizing the forward filtering

backward sampling (FFBS) algorithm (West and Harrison, 1997) to sample the full sequence

of TVAR coefficients and variances, and a Metropolis-within-Gibbs step to sample the

posterior distribution of β.

However, the emulator model setup in (3) only partially succeeds at capturing the

types of interdependencies intrinsic in the BEA simulator. In its covariance structure, the

model uses vt to capture dependence through time and Σ to capture correlation across

the input space, linking together time series corresponding to different input points. In

its mean structure, the model uses the TVAR component to capture dependence on time

lags. However, this structure does not take into account possible trends associated with the

inputs, which, in the case of epidemic models, often have a dramatic effect on the output.

We propose to model these trends using an input-dependent dynamic regression component,
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expanding (3) into yt = F ′

tφt+Hλt+ϵt, where λt are the time-varying regression coefficients

associated with the regression functions h(xi), i = 1, . . . , n, which are collected into the

matrix H introduced in Section 3.1. The regression coefficients are allowed to vary over

time because we expect the impact of the epidemic parameters (which are the inputs of the

BEA simulator) to differ between the earlier and later stages of the epidemic. Letting φt

and λt follow two independent random walks over time, our expanded emulation model is

given by

yt =

(

F ′

t H

)

⎛

⎜

⎝

φt

λt

⎞

⎟

⎠
+ ϵt, ϵt ∼ N(0, vtΣ), (6)

(7)
⎛

⎜

⎝

φt

λt

⎞

⎟

⎠
=

⎛

⎜

⎝

φt−1

λt−1

⎞

⎟

⎠
+

⎛

⎜

⎝

ωt1

ω2t

⎞

⎟

⎠
,

⎛

⎜

⎝

ωt1

ω2t

⎞

⎟

⎠
∼ N(0, Wt), (8)

where Wt now indicates the covariance matrix of the Normal errors (ω′

1t,ω
′

2t)
′ for φt and

λt, respectively. For h(x) = (1,x′)′, we obtain a dynamic linear regression component

with a time-varying intercept that partially accounts for the possible effects of omitted

variables. Let y1:T = (y′

1, . . . ,y
′

T )
′, φ1:T = (φ′

1, . . . ,φ
′

T )
′, λ1:T = (λ′

1, . . . ,λ
′

T )
′, and v1:T =

(v1, . . . , vT )′; then, the likelihood of the time series outputs is given by

p(y1:T | φ1:T ,λ1:T ,v1:T ,β) ∝| Σ |−(T−p)/2 exp(−Ω/2)
T
∏

t=p+1

v−n/2
t , (9)

where

Ω =
T
∑

t=p+1

(

yt − F ′

tφt −Hλt
)

′
Σ−1

(

yt − F ′

tφt −Hλt
)

/vt. (10)

To complete the model in (6) and (8), we need to specify prior distributions for the

initial states {φ0,λ0}, the time-varying variances, and the GP correlation range parameters.

Finally, just as efficiently as in Liu and West (2009), posterior inference for all model

parameters may be obtained using the FFBS algorithm for the states and variances, and a
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Metropolis-Hastings-within-Gibbs step for β; see Appendix A for technical details.

The dynamic emulator is the posterior predictive distribution at any input point x̃.

This distribution is obtained by integrating the conditional distribution of its output yt(x̃),

typically using a Monte Carlo approach, over the posterior distribution of the emulation

model parameters. Specifically, the distribution of yt(x̃), conditional on all model parame-

ters, the output training data y1:T , and the previous time series values yt−1:t−p(x̃), is found

to be Normal with mean mt(x̃) and variance σ2
t (x̃) given by

mt(x̃) =
p

∑

j=1

φt,j yt−j(x̃) + h(x̃)λt + v−1
t r′(x̃)Σ−1 ϵt, (11)

σ2
t (x̃) = vt

(

1− r′(x̃)Σ−1 r(x̃)
)

, (12)

where ϵt =
(

ϵt(x1), . . . , ϵt(xn)
)

′
, with ϵt(xi) = yt(xi) −

∑p
j=1 φt,j yt−j(xi) − h(xi)λt, i =

1, . . . , n. As in Section 3.1, the dynamic emulator is also an interpolator, where, at the

training data points, we obtain mt(xi) = yt(xi) and σ2(xi) = 0, i = 1, . . . , n.

3.3 A strategy for calibration

The purpose of calibration is to estimate the parameters underlying the modeled physical

process, using field observations of the process and simulator runs (Kennedy and O’Hagan,

2001). In our case, the aim is to estimate the epidemic parameters. The standard statistical

formulation of the calibration problem starts by assuming that the field observations are a

noisy representation of the real-world process of interest, i.e., ‘field = reality + error’. Then,

to link these field observations to the simulator data, the simulator output is modeled as

‘reality + bias’, where the bias refers to the discrepancy between the simulator and the

process it is modeling. Thus, a unifying model for both sources of data can be formulated

as ‘field = simulator + bias + error’ (Kennedy and O’Hagan, 2001). In some cases, the bias

term can be ignored; in others, it plays a crucial role (Higdon et al., 2008a). Estimating

the bias of the BEA simulator is not the purpose of this paper. Here, we follow the mod-

eling framework in Birrell et al. (2011), where the observed epidemic data are modeled as

‘simulator + error’, thus assuming the simulator is unbiased. However, we should note that
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if the BEA simulator were to be substantially biased, the form of the bias would affect the

posterior distribution of the calibration parameters. For a discussion on the inclusion of a

bias term, see Kennedy and O’Hagan (2001); Higdon et al. (2004); Loeppky et al. (2006).

The proposed calibration approach thus relies on the availability of two distinct data

streams: (i) a time series z1:T of (suitably rescaled and log-transformed) field observations;

and (ii) a training set of selected simulator runs Ds = {X,y1:T } consisting of simulator

inputs X = (x1, . . . ,xn)′ and corresponding time series outputs y1:T = (y′

1, . . . ,y
′

T )
′, where

yt =
(

ft(x1), . . . , ft(xn)
)

′
for t = 1, . . . , T . Then, assuming the observation errors of the

field data are i.i.d. over time and independent of the simulator data, zt and yt can be

modeled hierarchically at each time step t as

observation model: zt = yt(η) + ϵzt, ϵzt
iid
∼ N(0,σ2

z ) (13)

simulator model: yt(η) = Mt(η) + ϵt(η) , ϵt(·) ∼ GP
(

0, vt c(·, ·)
)

(14)

dynamic coefficients:

⎛

⎜

⎝

φt

λt

⎞

⎟

⎠
=

⎛

⎜

⎝

φt−1

λt−1

⎞

⎟

⎠
+

⎛

⎜

⎝

ωt1

ω2t

⎞

⎟

⎠
,

⎛

⎜

⎝

ωt1

ω2t

⎞

⎟

⎠
∼ N(0, Wt), (15)

where yt(η) is the output at time t from the BEA computer model when evaluated at the

underlying epidemic parameters η, σ2
z is the constant variance of the observation errors,

Mt(·) =
∑p

j=1 φt,jyt−j(·) + h(·)λt, and c(·, ·) is the Gaussian correlation function specified

in (2). Note that the observation model (13) reflects the previously discussed assumption

that the simulator is an unbiased proxy to the data-generating physical system. Now,

denote with ξt = {φt,λt, vt,Wt,β} the collection of parameters specifying the GP in (14)

and (15), and let ξ1:T = (ξ′1, . . . , ξ
′

T )
′. Then, from (13)–(15), it follows that the joint

distribution p(zt,yt | η,σ
2
z , ξt,X) of the field and simulator data at time t is given by the

following (n+ 1)-variate Normal distribution

N

⎛

⎜

⎝

⎛

⎜

⎝

Mt(η)

M t(X)

⎞

⎟

⎠
,

⎛

⎜

⎝

σ2
z + vt vtr′(η)

vtr(η) vtΣ

⎞

⎟

⎠

⎞

⎟

⎠
, (16)

where M t(X) =
(

Mt(x1), . . . ,Mt(xn)
)

′
and r(η) =

(

c(η,x1), . . . , c(η,xn)
)

′
.
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Finally, given the likelihood specified by (16) and prior distributions over the param-

eters in (13)–(15), the joint posterior distribution of all the emulation-calibration model

parameters is obtained as

p(η,σ2
z , ξ1:T | Ds,z1:T ) ∝

p(η)p(σ2
z)p(ξ1:T )

T
∏

t=p+1

p
(

(zt,yt) | η,σ
2
z , ξt,zt−1:t−p,yt−1:t−p

)

, (17)

where z(t−1):(t−p) = (zt−1, . . . , zt−p)′ ⊂ z1:T . The prior distribution for ξ1:T is discussed

in Section 3.2 and Appendix A, and the prior distributions for η and σ2
z are discussed in

Section 4.2.

While the emulation model in Section 3.2 allows for efficient posterior sampling of ξ1:T

through the FFBS algorithm, an MCMC scheme to sample the posterior distribution in

(17) does not. In particular, the posterior distributions of the emulator model variance

components (v1:T ,W 1:T ) will have to be sampled using Metropolis-Hastings steps, an ex-

tremely computationally challenging scenario. Hence, we adopt a pragmatic approach that

breaks up the analysis into two stages, where in the first stage, the emulator is trained using

only the simulator data, utilizing the FFBS algorithm to sample the posterior distribution

of ξ1:T . Then, in the second stage, the posterior distribution of (η,σ2
z) is obtained using

the field data and conditional on the simulator data and the trained emulation model from

the first stage. ‘Modularization’, as this two-stage approach is referred to in the literature

(Bayarri et al., 2007b; Liu et al., 2009; Rougier, 2008), offers an attractive solution in terms

of: efficiency, since the MCMC is split into two lower dimensional blocks; computational

tractability, since the MCMC in the emulation block relies on sampling from standard dis-

tributions, so that the FFBS algorithm could be utilized; and improved MCMC diagnostics.

Ultimately, the posterior distribution of interest in calibration is the marginal posterior

distribution given by

p(η,σ2
z | Ds,z1:T ) =

∫

p(η,σ2
z | ξ1:T ,D

s,z1:T )p(ξ1:T | Ds,z1:T )dξ1:T (18)

Modularization is equivalent to replacing p(ξ1:T | z1:T ,Ds) in (18) with p(ξ1:T | Ds), thus
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allowing for the posterior of ξ1:T to be obtained from the emulation model alone. For our

purposes, the two-stage implementation involves first obtaining p(ξ1:T | Ds) according to

the methods discussed in Section 3.2. In the second stage, the (modularized) posterior

distribution of (η,σ2
z) is sampled by repeatedly drawing from the MCMC sample obtained

in Stage 1, followed by a draw from the distribution of (η,σ2
z) given z1:T and Ds; see

Appendix B for implementation details. A simplified (and more computationally efficient)

two-stage approach can be implemented using plug-in estimators for some (Bayarri et al.,

2007a) or all (Henderson et al., 2009) components of the emulation model parameters.

4 Results

4.1 Training the emulator

To generate simulator runs to train the emulator, feasible ranges are determined for the

BEA simulator inputs (Table 1), and, using a maxi-min Latin hypercube design over the

space determined by the input ranges, a sample of n = 200 input points, xi, i = 1, . . . , 200, is

drawn. The BEA simulator is then run for each xi to obtain the time series outputs µ1:T (xi),

where T = 250. The length of the time series is chosen to match the life span of the epidemic

scenario considered in Birrell et al. (2011). This set of simulator data is used to train the

DLM-GP emulator according the methods presented in Section 3.2. To assess the predictive

performance of the emulator, we generate a different set of 200 input points (chosen using

a new Latin hyper cube design), for which we also obtain the BEA simulator time series

outputs. We use the new set of 200 inputs and corresponding 200 time series outputs as a

“validation” dataset and denote it by Dv = {
(

xv
j , µt(xv

j )
)

, j = 1, . . . , 200, t = 1 . . . , 250}.

Here, we present results based on a DLM-GP model with a regression component having

h(x) = (1,x′)′. In deciding on the degree (number of lags) of the TVAR component of the

DLM, we investigate two models with TVAR(1) and TVAR(2) components, each sharing the

same regression component h(·). Following Liu and West (2009), we compare the predictive

performance of the two resulting emulators over the validation dataset, Dv, using the mean
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square error (MSE) defined as

MSE(xv
j ) =

1

T

T
∑

t=1

(

µ̂t(x
v
j )− µt(x

v
j )
)2

, j = 1, . . . , 200, (19)

where µ̂t(·) is the emulator’s median at time t. Recall that the emulator is the posterior

predictive distribution of ft(·), which is conditionally Normal with parameters given in (11)

and (12). Validated over Dv, the TVAR(1) emulator yields MSEs with mean and standard

deviation 1.03 and 1.50, respectively, while the TVAR(2) emulator yields MSEs with mean

and standard deviation 1.04 and 1.45, respectively. Thus, the two TVAR models are well-

matched in their predictive performance, motivating the use of the simpler, TVAR(1),

model.
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Figure 3: Emulator medians and 95% credible intervals (in red) for the validation simu-
lator runs (in black) based on a DLM-GP emulator with TVAR(1) and h(x) = (1,x′)′

components.

Figure 3 provides a graphical illustration of the predictive performance of the emulator.

Here, posterior predictive medians and 95% credible intervals are plotted over time for 9

17

Page 48 of 66Journal of the American Statistical Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

different validation points corresponding to distinct epidemic trajectories selected to exhibit

one ore more peaks over the lifetime of the epidemic. In general, the emulator captures

the shape of the simulator’s time series output reasonably well, with posterior uncertainty

increasing with time, as expected since the variances increase with time in forward filtering

(see Figure 2-B). At each time step, a handful of validation points had standardized residuals

greater than 2.5, an extreme example of which is seen in the bottom rightmost plot in Figure

3. Here, the large MSE is likely due to the input point for this time series being in a region

(i) not adequately covered by the original training Latin Hypercube design or (ii) where the

simulator output is too volatile to be captured by our emulator. In this example, emulator is

trained using 200 simulator runs. A greater number of simulator training runs would result

in a more accurate emulator (O’Hagan, 2006). However, the improved emulator performance

would be at the expense of obtaining more computationally expensive simulator runs.

In fitting the DLM-GP emulator, we worked with a number of different specifications for

the hyper-parameters defining the initial priors of the DLM. Our prior sensitivity analysis

showed posterior inference to be virtually unchanged (see Appendix A for a discussion of

the prior specifications used). In the fully Bayesian emulation model, we set the prior for

the GP correlation parameters to p(β) ∝
∏d

ℓ=1 (1− exp(−βℓ/4))
0.9 exp (−βℓ/4). This prior,

also used by Liu and West (2009), reflects a prior belief that only a subset of the inputs are

influential in their impact on the simulator output (Higdon et al., 2008b).

Figure 4 shows plots of the posterior distributions of β. Here, the posteriors of β2 and β5

have considerably greater values in their support than other components of β. This indicates

that the output response surface is more sensitive to small (local) changes in inputs x2 and

x5 than other inputs. This is not surprising, since these two inputs correspond to parameters

for the exponential growth rate of the epidemic and the reduction in the population contact

rate due to the school Summer holiday period, two parameters dramatically controling the

behavior of the epidemic (see Table 1). On the other hand, the smallest correlation range

appears to be β3, which is associated with the input representing the average infectious

period. This means the simulator’s response surface is not very sensitive to changes in the

values of this input. Thus, for the purpose of obtaining outputs that reasonably capture

patterns along the response surface, a more efficient design over the inputs should populate
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the design matrix, X, more densely along the 2nd and 5th input dimensions, and perhaps

to a lesser extent along the 3rd dimension.
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Figure 4: Posterior inference for the correlation range parameters β1, . . . ,β6 using a DLM-
GP emulator with TVAR(1) and h(x) = (1,x′)′ components.

We further investigated using plug-in estimators, β̂, for the GP correlation parameters

β. Specifically, we set β̂ to be the posterior mode of β from the fully Bayesian emulator

model (although other plug-in estimators can be used, e.g., Bayarri et al. (2007a)). The

semi-Bayesian emulator (based on β̂) resulted in a MSE distribution with mean 1.02 and

standard deviation 1.48. Thus, while not accounting for uncertainty in β, we find the pre-

dictive performance of the semi-Bayesian emulator to be nearly the same as that of the

fully Bayesian one, a conclusion also reached by other authors using this type of plug-in

approach (e.g., Bayarri et al., 2007a). Replacing β with β̂ in the emulation model results

in a MCMC algorithm entirely made up of Gibbs steps, and, thus, in a much faster poste-

rior sampling scheme. Subsequent reported results are obtained under the semi-Bayesian

emulation model.

Figure 5-A shows summary posterior trajectories (median and 95% credible intervals)

for the TVAR coefficient, φt1 over 250 days. The posterior for φt1 initially has an average

around 0.9 smoothly increasing to 1 within the first 50 days, which implies that the simulator
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output changes smoothly both locally and globally over time. Figure 5-B shows summary

posterior trajectories for the emulator variance vt. These trajectories show global non-

stationarity with periods of apparent instability corresponding to intervals of rapid changes

in the simulator output near days 30, 83, and 180, which coincide with the beginning

of school holidays. We note that, under the fully Bayesian emulation model, we found the

posterior inference for φt1 and vt to be virtually undistinguishable from that obtained under

the semi-Bayesian approach.

(A) (B)
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Figure 5: Pointwise posterior medians and 95% credible intervals for the trajectory of the
TVAR coefficient φt1 (A) and the observational error vt (B) over 250 days.

Summary posterior trajectories for the dynamic regression coefficients, λt0, . . . ,λt6 are

shown in Figure 6. Each of these parameters was given a Normal initial prior distribution

with mean zero and variance 5. It is evident that there is substantial ‘global’ non-stationarity

over time, with some of the slopes changing from positive to negative or vice versa. Note

that the posterior trajectories for λt3 cover zero for almost all time points, and that posterior

trajectories for λt1 are zero or near zero for most of their path. However, the emulator is

able to pick out a clear effect of school holidays. Specifically, the posterior trajectories of λt5

capture the effect of a changing population contact rate near day 83, which is the start of

the Summer holiday; and the posterior trajectories of λt6 capture changes in the population

contact rate near days corresponding to other school holidays, in particular days 30 and 180.

Furthermore, λt4 appears to converge to zero after about 150 days, which is consistent with

the fact that x4 is an initial condition (related to the initial number of infective individuals
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in the population), so its effect is expected to diminish with time.

A sample of size 100, 000 was drawn from the joint posterior distribution of the DLM-GP

emulator parameters, to be employed in the calibration stage.

4.2 Calibration

Here, we are interested in inference for all the elements of η using the field observations

and conditional on the emulation stage. To investigate the performance of our proposed

calibration approach, we use synthetic epidemic data generated from a Poisson distribution

centered on the BEA simulator, given the ‘true’ normalized parameter values η = η0 =

(0.73, 0.39, 0.51, 0.84, 0.33, 0.67)′ . This synthetic epidemic data are plotted in Figure 7. As

discussed in Section 3.3, working on the log scale, we model the field data according to (13)

at each time step using a Normal distribution with mean equal to the BEA simulator and

variance σ2
z . We specify proper Uniform priors for η over their normalized ranges, shown

on the original scale in Table 1. Also, we specify an Inverse-Gamma(2.05, 1.05) prior for

σ2
z , a relatively diffuse specification. Then, the modular posterior distribution for (η,σ2

z)

is obtained by combining the priors for η and σ2
z with the likelihood for the field data,

conditional on the first stage (emulation) analysis and the simulator data (see Section 3.3).

Figure 8 shows the posterior distributions for the components of η plotted against their

priors. Posterior learning is strongest for η2, η4, and η5, which represent the exponential

growth rate of the epidemic, a function of the size of the initially infective population, and

the reduction in population contact rate induced by the Summer school holiday, respectively.

The posterior medians (95% credible intervals) for these parameters are approximately

0.50 (0.22, 0.87), 0.69 (0.49, 0.87), and 0.37 (0.15, 0.70), respectively. Additionally, some

prior-to-posterior learning is evident is the posterior histogram of η6, which represents the

reduction in the population contact rate induced by all school holidays other than the

Summer holiday. This parameter is not expected to have as big an impact on the evolution

of the epidemic as η5 since it corresponds to shorter duration holidays. The posterior median

(95% credible interval) for η6 is 0.70 (0.21, 0.97).

With regard to posterior inference for η1 and η3, we find there is essentially no prior-

to-posterior learning. These two inputs represent the proportion of infected individuals
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Figure 6: Pointwise posterior medians and 95% credible intervals for the trajectory of the
regression component coefficients λt0, . . . ,λt6. The zero line is in red.

22

Page 53 of 66 Journal of the American Statistical Association

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only
0 50 100 150 200 250−6

−4

−2

0

2

4

time

lo
g 

re
po

rte
d 

co
ns

ul
ta

tio
ns

Figure 7: Synthetic observed epidemic data on the log scale.

who consult their doctors and the average infectious period, respectively. As seen in the

emulation stage, the BEA simulator response surface is not sensitive to changes in these

two inputs, and the regression coefficients corresponding to their input values were either

zero or near zero over the lifetime of the epidemic. Thus, the BEA simulator surface,

which we model as the the mean of the field data, is relatively flat and ‘insensitive’ with

respect to these two inputs, so it is not surprising that the calibration procedure is not

able to ‘learn’ their underlying values from field observations. In fact, the values specified

for η3, the average infectious period, in the training set correspond to a small range of

approximately (3.44, 3.46) days, which is a very informative range already. With regard to

η1, this is actually the product of two quantities respectively representing the proportion of

symptomatic individuals and the propensity to consult a doctor. Here, perhaps a further

investigation into the ranges of these two quantities is needed in order to determine a more

informative range for η1. Finally, posterior inference for the observational error variance,

σ2
z , is summarized in Figure 9, which shows significant prior-to-posterior learning.

5 Discussion

We have developed a novel framework for the calibration of a dynamic epidemic simulator

for A/H1N1 influenza. Our approach involves emulating an epidemic simulator, which

is both analytically intractable and computationally expensive. The emulator, which is
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Figure 8: Posterior distributions of the parameters η1, . . . , η6. Uniform prior distributions
are in blue, and true values are in red.
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embedded in a two-stage calibration procedure, is based on a coupled DLM-GP prior model

for the time series simulator outputs. Specifically, the DLM component included a dynamic

regression term to capture time-varying effects of the simulator inputs. The GP component

modeled the correlation structure over the input space and across time series of different

input points. Having all the desirable properties of the multivariate Normal distribution,

the GP results in tractable computations. We have shown that our approach works well

for estimating parameters that are important in determining the shape of the dynamic

simulator’s output.

We believe that this emulation-calibration approach is likely to work well with other

dynamic simulators that have a small to moderate number of inputs. For simulators with

a large number of inputs, our approach requires estimating a correspondingly large number

of correlation range parameters, which is challenging under a fully Bayesian approach since

those parameters are obtained using Metropolis-Hastings steps that require careful tuning

of the proposal distributions. However, it is often the case that the simulator output is only

affected by a subset of the inputs. Here, input screening to identify ‘active’ inputs (Welch

et al., 1992; Koehler and Owen, 1996; Linkletter et al., 2006) and probabilistic sensitivity

analysis to quantify their impact on the simulator output (Saltelli et al., 2000; Oakley and

O’Hagan, 2004; Farah, 2013) may be utilized as tools to reduce the dimension of the input

space.

In terms of implementation, the BEA simulator was coded in C++ and implemented

using optimized parallel processing over a cluster of Linux machines. The DLM-GP emulator

is implemented in Matlab with the code running serially on one MS Windows machine.

Under these two very different implementations, calibration using the emulator does not

yield significant gains relative to the computer model in terms of run time. A fair comparison

of computational run time is to consider the complexity of each algorithm. A single run

of the BEA simulator requires that at every time step, t, parameters specifying the SEIR

states are obtained by solving a system of differential equations. Then, the number of

reported doctor consultations µt(x) is obtained as convolution over three indices (incubation

duration, symptoms duration, and reporting time). This process is repeated at every time

step until one epidemic outcome (i.e. one simulator run) is obtained. On the other hand,
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once the emulator is trained, an emulator run is equivalent to sequentially obtaining T

univariate Normal distributions with mean and variance given by (11) and (12), respectively,

where T is the maximum number of time steps considered. Most software packages give

a near instantaneous answer that would significantly outperform, in terms of run time,

sequentially solving the SEIR model and at each time step calculating a time-consuming

convolution. Clearly, the investment is on the training of the emulator, which, in Matlab,

takes a few hours.

Further, it is worth noting that we found convergence and mixing diagnostics of the

MCMC chains for the η parameters to be a lot more favorable using the emulator rather

than directly using the simulator. In particular, convergence was fast (within the first

few thousand iterations) using the emulator, while Birrell et al. (2011) had reported that

convergence required hundreds of thousands of simulator runs.

Although the overall performance of the dynamic emulator is good, there is still room

for improvement, particularly with regard to the specification of the GP correlation function

as well as its mean function components. In situations where the assumption of stationarity

over the input space is not appropriate, a more flexible covariance specification mechanism

may have to be used. Here, ‘Treed GPs’ (Gramacy and Lee, 2008) may prove to be useful

as they partition the input space into different regions, each having a different stationarity

specification, resulting in a non-stationary process over the input space. For time series with

cyclical behavior, a ‘seasonal trend’ component can be included in the mean function of the

GP. With regard to the observational errors, ϵzt , defined in (13), a more flexible modeling

approach could be attained by allowing their distribution to vary with time. One way to

accomplish this is by linking the variance of the observational error in the calibration stage

to the emulator variance vt, letting ϵzt | vt
ind
∼ N( 0 , σ2

zt = κvt), and placing a prior on κ.

In fact, we implemented this approach and obtained virtually the same calibration results

for η presented in Section 4.2.

An important area of future work includes utilizing the emulator’s forecasting structure

to obtain epidemic trajectories based on the calibrated epidemic model parameters. An-

other important area includes sequential implementation of the dynamic emulator to carry

out real-time calibration for scenarios where batches of data arrive sequentially in time.
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Based on the real-time calibration results, the expected behavior of the epidemic may be

forecasted and used to guide epidemic management policies.
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Appendix A: Technical details for the MCMC algorithm to

sample (φ1:T ,λ1:T , v1:T ,W1:T ,β)

The overall MCMC algorithm iterates between Gibbs sampling (using FFBS) for the se-

quences (φ1:T ,λ1:T ,v1:T ,W1:T ) and a Metropolis-Hastings step for β.

Forward-filtering backward-sampling

For simplicity, the model in (6) and (8)may be expressed as

yt = F̃
′

tΦt + ϵt, ϵt ∼ N (0, vtΣ) ,

Φt = Φt−1 +wt, wt ∼ N(0, Wt),

where F̃ t = (F ′

t , H), Φt = (φt , λt)′, and wt = (ω′

t1 , ω
′

2t)
′. Then priors are specified for

Φ0, {vt, t = 1, . . . , T}, {Wt, t = 1, . . . , T}, and β.

Let D0 be the initial set of information, which includes all initial model-defining quan-

tities, and let Dt = {yt,Dt−1}. Following West and Harrison (1997), we assume that

(v−1
0 | D0) ∼ Gamma(n0/2, d0/2) and (Φ0 | v0,D0) ∼ N(m0,C0), where (n0, d0,m0,C0)

are pre-specified. The results presented in this paper are based on the vague prior speci-

fications m0 = 0, n0 = 1, d0 = 1 and C0 = 5 I8, where Im denotes the identity matrix of

order m. The priors for vt and Wt are specified sequentially, using two separate variance

discount factors δv, and δW . Discount factors, which take values between 0 and 1, control

the ‘relative stability’ over time of stochastic changes in the sequences vt and ωt. Under

discounting, v−1
t | Dt−1 ∼ Gamma(δvnt−1/2, δvdt−1/2), and Wt | Dt−1 = (1− δW )Ct−1/δW ,

where Ct−1 = Cov(Φt−1 | Dt−1).

Forward Filtering

To simplify notation, we assume that, within the FFBS algorithm, β is conditioned upon

and contained in Dt, t = 1, . . . , T . Then, the following are the forward-filter updating

equations (West and Harrison, 1997; Liu and West, 2009).
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(v−1

t−1 | Dt−1) ∼ Gamma(nt−1/2, dt−1/2)

(Φt−1|Dt−1) ∼ Tnt−1
(mt−1,C t−1)

(v−1
t | Dt−1) ∼ Gamma(δvnt−1/2, δvdt−1/2)

(Φt|Dt−1) ∼ Tnt−1
(at,Rt)

(Y t|Dt−1) ∼ Tδvnt−1
(ft,Qt)

(v−1
t | Dt) ∼ Gamma(nt/2, dt/2)

(Φt|Dt) ∼ Tnt
(mt,Ct)

at = mt−1 Rt = Ct−1/δW

f t = F̃
′

tat Qt = F̃
′

tRtF̃ t + st−1Σ

st−1 = dt−1/nt−1 st = dt/nt

mt = at +Atet Ct = (Rt −AtQtA
′

t)st/st−1

At = RtF̃ tQ
−1
t et = Y t − f t

nt = δvnt−1 + n dt = δvdt−1 + st−1e
′

tQ
−1
t et

Backward sampling

Forward filtering operates (sequentially) in forward time over t = 1, . . . , T. Backward sam-

pling operates in reverse time, generating posterior draws from p(Φ1:T ,v1:T | DT ), where

DT represents all available information at the last time step, t = T . Having completed

forward filtering, the distribution p(v−1
T | DT ) is known. Specifically,

v−1
T | DT ∼ Gamma(nT /2, dT /2)

Then, it can be shown (Liu, 2007) that vt | vt+1,Dt, t = T − 1, . . . , 1, may be sampled
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recursively from

v−1
t ∼ δvv

−1
t+1 +Gamma

(

(1− δv)/2, dt/2
)

,

Having completed forward filtering, and having obtained the backward samples for v1:T ,

the distribution of p(ΦT ,v1:T | DT ) is known. Specifically,

ΦT | v1:T ,DT ∼ N(mT ,CT )

Then, it can be shown (Liu, 2007) that Φt, t = T − 1, . . . , 1 may be sampled recursively

from

Φt | Φt+1,v1:T ,Dt ∼ N
(

(1− δW )mt + δWΦt+1 , (1− δW )Ct
)

Metropolis-Hastings step for β

The posterior full conditional distribution of the correlation ranges β is given by

p(β | Φ1:T ,v1:T ,y1:T ) ∝ p(y1:T | Φ1:T ,v1:T ,β)p(β)

∝ | Σ |(T−p)/2 exp

⎛

⎝−
1

2

T
∑

t=p+1

(yt − F̃
′

Φt)
′Σ−1(yt − F̃

′

Φt)/vt

⎞

⎠ p(β)

Thus, β is sampled using a Metropolis-Hastings step.

Appendix B: Technical details for the calibration stage

Consider (18). Then, p(η,σ2
z | ξ1:T ,D

s,z1:T ) is proportional to

p(η)p(σ2
z )

T
∏

t=p+1

p(zt,yt | η,σ
2
z , ξt,zt−1:t−p,yt−1:t−p)

=p(η)p(σ2
z )

T
∏

t=p+1

p(zt | yt,η,σ
2
z , ξt,zt−1:t−p,yt−1:t−p)p(yt | ξt,yt−1:t−p)

∝p(η)p(σ2
z )

T
∏

t=p+1

p(zt | yt,η,σ
2
z , ξt,zt−1:t−p,yt−1:t−p),
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where p(zt | yt,η,σ
2
z , ξt,zt−1:t−p,yt−1:t−p) is Normal with mean and variance given respec-

tively by

Mt = Mt(η) + r′(η)Σ−1(yt −M t(X)), and

St = (σ2
z + vt)− vtr

′(η)Σ−1r(η).

Then,

log p(η,σ2
z | ξ1:T ,D

S ,z1:T ) ∝−
1

2

T
∑

t=p+1

log St −
1

2

T
∑

t=p+1

(zt −Mt)
2 /St + log p(η) + log p(σ2

z)

Thus, once priors are specified for η and σ2
z , their posterior distribution may be sampled

using one (or two) Metropolis-Hastings step(s) at every MCMC sample from Stage 1.
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