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ABSTRACT 41  42 
Rationale:  Short-term hyperglycemia suppresses superior cervical ganglia 43 neurotransmission. If this ganglionic dysfunction also occurs in the islet sympathetic 44 pathway, then sympathetically-mediated glucagon responses could be impaired. 45  46 
Objectives: 1) To test for a suppressive effect of 7 days of streptozotocin (STZ) 47 diabetes on celiac ganglia (CG) activation and 2) on neurotransmitter and glucagon 48 responses to preganglionic nerve stimulation. 3) To isolate the defect in the islet 49 sympathetic pathway to the CG itself. 4) To test for a protective effect of the WLDS 50 mutation. 51  52 
Methods:  1) Inject saline or nicotine in nondiabetic and STZ diabetic rats, and 53 measure the fos mRNA levels in whole CG. 2) Electrically stimulate the preganglionic 54 or 3) postganglionic nerve trunk of the CG in nondiabetic and STZ diabetic rats, and 55 measure portal venous norepinephrine and glucagon responses. 4) Repeat the 56 nicotine and preganglionic nerve stimulation studies in nondiabetic and STZ 57 diabetic WLDS rats. 58  59 
Findings:  In STZ diabetic rats, the CG fos response to nicotine was suppressed, and 60 the norepinephrine and glucagon responses to preganglionic nerve stimulation 61 were impaired. In contrast, the norepinephrine and glucagon responses to 62 postganglionic nerve stimulation were normal. The CG fos response to nicotine, and 63 the norepinephrine and glucagon responses to preganglionic nerve stimulation, 64 were normal in STZ diabetic WLDS rats.  65  66 
Conclusions:  Short-term hyperglycemia’s suppressive effect on nicotinic 67 acetylcholine receptors of the CG impairs sympathetically-mediated glucagon 68 responses. WLDS rats are protected from this dysfunction. 69  70 
Implication: This CG dysfunction may contribute to the impaired glucagon 71 response to insulin-induced hypoglycemia seen early in Type 1 diabetes.  72  73  74 
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 84 
INTRODUCTION 85 

 86 The well-known peripheral autonomic and sensory neuropathies of diabetes 87 contribute to the debilitating complications of this disease (43). While long-term, 88 uncontrolled diabetes clearly impairs nerve function as well as structure (8, 19, 43) 89 there had been little convincing evidence of a direct, deleterious effect of short-term 90 hyperglycemia on the function of peripheral autonomic nerves.  However, a recent 91 study has shown that as little as one week of diabetic hyperglycemia can suppress 92 neurotransmission across the prototypical paravertebral sympathetic ganglion, the 93 superior cervical ganglion (SCG) (6). 94   95 The study on the mechanism of suppressed ganglionic neurotransmission concluded 96 that short-term hyperglycemia impairs the function of the nicotinic acetylcholine 97 receptor (nAChR) that resides on the cell body of principal ganglia neurons.  It does 98 so by interfering with the function of the alpha 3 subunit of the nAChR, which is 99 located near the pore of the nAChR ion channel which controls depolarization of the 100 neuron (6). This receptor dysfunction is likely caused by a hyperglycemia-induced 101 increase in the production of reactive oxygen species because suppressed 102 neurotransmission is prevented by antioxidant treatment in vitro (6). Because alpha 103 3-containing nAChRs are thought to be present in all peripheral sympathetic ganglia, 104 hyperglycemia has the potential to impair sympathetic regulation of many tissues, 105 including the endocrine cells of the pancreatic islet. 106   107 Activation of the sympathetic pathway to the islet requires neurotransmission 108 across the celiac ganglion (CG), a prevertebral ganglion that also projects its 109 postganglionic fibers to the proximal gut, liver and spleen (35). This islet 110 sympathetic pathway is activated by the stress of hypoglycemia (10, 17) and the 111 resultant release of glucagon stimulates glycogenolysis, which, in turn, aids in the 112 restoration of euglycemia (13). This specific glucagon response to hypoglycemia is 113 impaired early in Type 1 diabetes (3, 5) resulting in an increase in both the depth 114 (13, 16) and the duration (13) of iatrogenic hypoglycemia. Such hypoglycemia is 115 aversive (12, 26) and decreases compliance with intensive insulin therapy (12, 26). 116 Based on the report that short-term hyperglycemia suppresses neurotransmission 117 across the SCG, we hypothesized (41) that short-term hyperglycemia would also 118 suppress CG neurotransmission and thereby impair sympathetically-mediated 119 glucagon responses.  120  121 To test this hypothesis, we chemically activated with nicotine the ganglionic nAChRs 122 of conscious rats and looked for a decrease of CG activation in rats with only one 123 week of streptozotocin (STZ)-induced hyperglycemia. To determine if the degree of 124 CG suppression was sufficient to impair sympathetically-mediated glucagon 125 secretion, we then electrically stimulated the preganglionic sympathetic nerves of 126 the CG and looked for both decreased neurotransmitter release and decreased 127 



glucagon responses in STZ diabetic rats. To demonstrate that the neural dysfunction 128 was located within the CG itself, and not within postganglionic axons or nerve 129 terminals, we electrically stimulated the postganglionic sympathetic nerves of the 130 CG and looked for normal neurotransmitter and glucagon responses in STZ diabetic 131 rats. Lastly, to determine if it is possible to prevent, in vivo, hyperglycemia-induced 132 suppression of CG neurotransmission, we repeated the nicotine and nerve 133 stimulation studies in a transgenic rat that produces a fusion protein that has been 134 shown to be neuroprotective. On the premise that this neuroprotection is due to 135 increased production of endogenous antioxidants, we expected no suppression of 136 CG neurotransmission and no impairment of sympathetically-mediated 137 neurotransmitter and glucagon responses, despite the presence of one week of STZ-138 induced hyperglycemia.  139  140 
METHODS 141 

 142 
Animals and Streptozotocin Pretreatment 143  144 Adult male Wistar, Sprague Dawley and Wallerian degeneration slow (WLDS) rats 145 (1) (325-375g) were housed in groups on a standard 12hr/12hr light cycle and fed 146 normal rat chow. Diabetic hyperglycemia was induced in twelve separate groups of 147 rats (see Table 1) with two consecutive daily injections of the pancreatic beta cell 148 toxin, streptozotocin (STZ, 40 mg/kg, sc; Sigma, St. Louis, MO, USA) dissolved in 149 citrate buffer vehicle (pH=4.5). Tail vein blood glucose (1 µl blood, One Touch Ultra 150 2 meter; Lifescan, Milpitas, CA, USA) was measured in the mornings. 3-5 daily 151 glucose measurements were averaged during the 7-day interval between onset of 152 diabetes (tail vein glucose >350 mg/dl) and acute, terminal study (see Table 1).  153  154 Two groups of STZ-diabetic Wistar rats received mild insulin treatment to slightly 155 decrease average weekly glucose levels. On the first day of diabetes, these rats had 156 brief, recovery surgery under aseptic conditions to suture a portion of an insulin 157 pellet (Lin Shin, Scarborough, ON, CAN) to the omentum of the lesser curvature of 158 the cecum, a placement designed to absorb insulin primarily into the portal vein.  159  160 Research involving animals was conducted in a facility accredited by the Association 161 for Assessment and Accreditation of Laboratory Animal Care International. All 162 experimental protocols were approved by the Institutional Animal Care and Use 163 Committee of the Seattle VA Puget Sound Health Care System. All rats included in 164 these studies were certified as healthy by the Veterinary Medical Officer. 165  166 
Nicotine stimulation 167  168 On the day of acute nicotine study, conscious nondiabetic rats or rats that had been 169 diabetic for 7 days received a subcutaneous injection of either nicotine (2 mg/kg for 170 Wistar and Sprague Dawley rats, 6 mg/kg for WLDS rats) or saline. Thirty minutes 171 after injection, the time of maximal ganglionic fos mRNA responses to nicotine (32), 172 rats were sacrificed and superior cervical ganglia (SCG) and CG were quickly 173 



harvested. Ganglia were immediately placed in RNA later (Qiagen, Valencia, CA, 174 USA), refrigerated for 24 hours and then stored at -80°C until being extracted, 175 reverse transcribed and assayed for whole ganglia fos mRNA levels. 176  177 
Preganglionic (PRE) and postganglionic (POST) sympathetic nerve stimulation 178 
(sns) 179  180 On the day of acute sympathetic nerve stimulation studies, nondiabetic rats or rats 181 that had been diabetic for 7 days underwent surgery to place a portal venous blood 182 sampling catheter, a vena cava infusion catheter and to perform a bilateral 183 adrenalectomy, as previously described (31). A nerve stimulation electrode 184 (Harvard Apparatus, Holliston, MA, USA) was placed around either the 185 preganglionic or the postganglionic nerve trunk of the CG, both within 0.5 cm of the 186 CG. A 45-minute stabilization period preceded the drawing of baseline blood 187 samples.    188  189 Portal vein blood samples for norepinephrine (NE) and glucagon analysis were 190 drawn before, during and after a ten-minute nerve stimulation (8 Hz, 1 mS, 10 mA). 191 Full-volume replacement of donor blood was infused into the vena cava 192 immediately after drawing portal venous samples to avoid hypovolemia, as 193 autonomic responses to hypotension can influence glucagon responses. Average NE 194 and glucagon responses to nerve stimulationwere calculated as the mean level 195 between 5 and 10 minutes minus basal levels.  196  197 Portal venous blood destined for NE analysis was drawn on a mixture (20 µl/ml 198 blood) of EGTA (0.09 mg/ml) and glutathione (0.06 mg/ml). Blood for glucagon 199 analysis was drawn on benzamidine HCl (1M, 50 µl/ml whole blood). Blood was 200 centrifuged (3,000rpm, 30 min.), and plasma was frozen at -80°C until assayed.  201  202 
Ganglia and plasma analysis 203  204 The extraction, reverse transcription and RT-PCR analysis of ganglia were 205 performed as we have previously described in detail (32). The change of fos 206 expression (fold of control) in STZ rats was calculated as 2-∆∆CT using a method 207 previously described (21). 208    209 Plasma NE was measured in duplicate using a sensitive and specific radioenzymatic 210 assay (11). Plasma glucagon was measured in duplicate by radioimmunoassay 211 (Millipore, Billerica, MA, USA). 212  213 
Statistics 214  215 When making comparisons between two groups we used a two-sample t test. All 216 data are expressed as mean ± sem. 217  218 



 219 
RESULTS 220 

 221 
Suppressed superior cervical ganglia (SCG) and celiac ganglia (CG) fos mRNA 222 
responses to nicotine stimulation in diabetic Wistar rats 223  224  225 SCG fos mRNA expression in nondiabetic and diabetic Wistar rats receiving either 226 saline or nicotine are shown in Figure 1A. We found a 77% suppression of nicotine-227 stimulated SCG activation in STZ-treated rats (P< 0.02 vs nondiabetic nicotine) that 228 had been hyperglycemic for one week.  229  230 CG fos mRNA expression in these same Wistar rats are shown in Figure 1B. Despite 231 the differences in magnitude of the fos mRNA responses to nicotine between the CG 232 and SCG in nondiabetic rats, the 80% suppression of the response in the CG in STZ-233 treated rats (P< 0.02 vs nondiabetic nicotine) was similar to the 77% suppression 234 seen in the SCG (Fig 1A).  Additionally, STZ-diabetic rats with mild insulin treatment 235 had only a 2.95±0.79 fold increase of CG fos over control in response to nicotine 236 (data not shown). Therefore, the CG fos mRNA response to nicotine was suppressed 237 by approximately 80% in two separate groups of STZ-diabetic Wistar rats, and 238 decreasing average weekly glucoses from 433±16 mg/dl to 336±12 mg/dl (Table 1) 239 did not lessen the suppressive effect of hyperglycemia on CG fos mRNA responses to 240 nicotine. 241  242 
Impaired norepinephrine and glucagon responses to preganglionic 243 
sympathetic nerve stimulation (PRE-sns) in diabetic Wistar rats 244  245 The norepinephrine (NE) levels before, during and after the ten-minute PRE-sns in 246 nondiabetic and STZ diabetic Wistar rats are shown in Figure 2A. The average NE 247 response to PRE-sns in STZ-hyperglycemic rats (+2,437 ±385 pg/ml, Fig 2B) was 248 impaired by 57% (P<0.001 vs nondiabetic) compared to the average NE response of 249 nondiabetic rats (+5,679±748 pg/ml, Fig 2B).  250  251 Portal glucagon levels during PRE-sns in nondiabetic and diabetic Wistar rats are 252 shown in figure 2C. The average glucagon response to PRE-sns in STZ diabetic rats 253 was reduced by 63% (P=0.07 vs nondiabetic, Fig 2D).  254  255 
Suppressed CG fos mRNA responses to nicotine in diabetic Sprague Dawley 256 
rats 257  258 We ultimately sought to test the potential protective effect of the Wallerian 259 degeneration slow (WLDS) mutation on CG neurotransmission and sympathetically-260 mediated glucagon responses. But first we had to demonstrate that the background 261 strain of the WLDS rat, the Sprague Dawley rat, was susceptible to the same 262 deleterious effects of hyperglycemia seen in Wistar rats. CG fos mRNA expression in 263 nondiabetic and diabetic Sprague Dawley rats receiving either saline or nicotine are 264 



shown in Figure 3. Similar to the finding in Wistar rats, we found a marked 265 suppression of the CG fos mRNA response to nicotine (-64%) in STZ diabetic 266 Sprague Dawley rats (P< 0.05 vs nondiabetic nicotine).  267  268 
Impaired norepinephrine and glucagon responses to preganglionic, but not 269 
postganglionic, sympathetic nerve stimulation in diabetic Sprague Dawley rats 270 
 271 NE and glucagon levels before, during and after the ten-minute PRE-sns in 272 nondiabetic and STZ diabetic Sprague Dawley rats are shown in Figures 4A and 4C, 273 respectively. The average NE response to PRE-sns in STZ-hyperglycemic rats 274 (+4,179±677 pg/ml, Fig 4B) was impaired by 56% (P< 0.005 vs nondiabetic) 275 compared to the average NE response on nondiabetic rats (+9,415±1,212 pg/ml, Fig 276 4B). The average glucagon response to PRE-sns in STZ-hyperglycemic rats 277 (+907±205 pg/ml, Fig 4D) was impaired by 39% (P<0.05 vs nondiabetic) compared 278 to the average glucagon response on nondiabetic rats (+1,495±164 pg/ml, Fig 4D).  279  280 To demonstrate that the suppression of the islet sympathetic pathway occurred at 281 the CG itself, we electrically stimulated the postganglionic, as opposed to the 282 preganglionic, nerve trunk of the CG and looked for no impairment of NE and 283 glucagon responses in one-week STZ diabetic Sprague Dawley rats. NE and glucagon 284 levels before, during and after the ten-minute postganglionic sympathetic nerve 285 stimulation (POST-sns) in nondiabetic and STZ diabetic rats are shown in Figures 286 4A and 4C, respectively. The average NE response to POST-sns in STZ-287 hyperglycemic rats (+9,012±1,252 pg/ml, Fig 5B) was not decreased compared to 288 the average NE response in nondiabetic rats (+6,988±919 pg/ml, Fig 5B). Likewise, 289 the average glucagon response to POST-sns in STZ-hyperglycemic rats (+1,220±187 290 pg/ml, Fig 5D) was not decreased as compared to the average glucagon response in 291 nondiabetic rats (+1,300±154 pg/ml, Fig 5D).  292  293 
Normal CG fos mRNA response to nicotine stimulation in diabetic WLDS rats 294  295 We hypothesized that rats harboring the WLDS mutation would be protected against 296 the suppressive effect of hyperglycemia on CG activation, perhaps due to their 297 increased endogenous antioxidant capacity. CG fos mRNA expression in nondiabetic 298 and diabetic WLDS rats receiving either saline or nicotine are shown in Figure 6. 299 There was no suppression of CG activation by nicotine in hyperglycemic WLDS rats, 300 in contrast to the 64% suppression of the CG fos mRNA response to nicotine seen in 301 hyperglycemic Sprague Dawley rats (Fig 3). 302  303 
Normal norepinephrine and glucagon responses to PRE-sns in diabetic WLDS 304 
rats 305  306 NE and glucagon levels before, during and after the ten-minute PRE-sns in 307 nondiabetic and STZ diabetic WLDS rats are shown in Figures 7A and 7C, 308 respectively. In contrast to the NE impairment seen in Sprague Dawley rats, the 309 average NE response to PRE-sns in STZ-hyperglycemic WLDS rats (+3,482±1,154 310 



pg/ml, Fig 7B) was not decreased compared to the average NE response in 311 nondiabetic rats (+5,060±904 pg/ml, Fig 7B). Likewise, the average glucagon 312 response to PRE-sns in STZ-hyperglycemic WLDS rats (+588±113 pg/ml, Fig 7D) 313 was not decreased compared to the average glucagon response on nondiabetic 314 WLDS rats (+516±121 pg/ml, Fig 7D).  315 
 316 

DISCUSSION 317 
 318 The current study demonstrates that short-term diabetic hyperglycemia suppresses 319 celiac ganglia (CG) neurotransmission in vivo to a degree that is sufficient to 320 markedly impair sympathetically-mediated glucagon secretion. Furthermore, we 321 demonstrate that this ganglionic suppression, as well as the resultant impairment of 322 sympathetically-mediated glucagon secretion, is preventable in vivo, at least in one 323 transgenic animal model with diabetes.  324  325 The finding in Sprague Dawley rats that the glucagon response to preganglionic 326 sympathetic nerve stimulation (PRE-sns), but not to postganglionic sympathetic 327 nerve stimulation (POST-sns), is impaired after short-term STZ-induced 328 hyperglycemia localizes the site of dysfunction in the islet sympathetic pathway to 329 the CG. For instance, the normal norepinephrine (NE) response to POST-sns after 330 one week of STZ-diabetes demonstrates that short-term hyperglycemia does not 331 impair either electrical transmission along postganglionic axons or 332 neurotransmitter release from its terminals, as long-term hyperglycemia can (19, 333 25). Furthermore, the normal glucagon response to POST-sns in rats with one week 334 of diabetes demonstrates that there is no generalized secretory defect in the alpha 335 cell after short-term hyperglycemia, a finding consistent with the normal glucagon 336 response to epinephrine seen after short-term autoimmune diabetes (31). Thus, the 337 impaired NE and glucagon responses to PRE-sns are due to impaired CG 338 neurotransmission.  339  340 The suppressed CG fos responses to nicotine after short-term hyperglycemia in both 341 Wistar and Sprague Dawley rats independently confirm the presence of a defect in 342 this sympathetic ganglion and further localizes this defect to the nAChRs. Our index 343 of successful ganglionic stimulation following nAChR activation by nicotine, an 344 increase of whole CG fos mRNA, reflects only the activation of sympathetic neuronal 345 cell bodies because we have previously shown, by immunohistochemistry for Fos 346 protein, that nicotine activates only the principal ganglia neurons of the CG (27). The 347 lack of activation of supportive cells of the ganglia, such as satellite or Schwann cells, 348 by nicotine administration is consistent with the presence of muscarinic (22), but 349 not nicotinic, AChRs on neuronal support cells. Our in vivo demonstration of 350 decreased CG fos mRNA response to nicotine in one week diabetic rats is consistent 351 with, and quantitatively similar to, impaired membrane current responses to serial 352 acetylcholine pulses in superior cervical ganglia excised from STZ-diabetic mice (6). 353 This previous study went further to strongly suggest that short-term 354 hyperglycemia’s suppression of sympathetic ganglia is caused by an increase of 355 



reactive oxygen species (ROS), which oxidize particularly susceptible amino acids 356 within the alpha-3 subunit of the nAChRs (6). 357  358 Previous evidence that the sympathetic ganglionic defect after short-term 359 hyperglycemia is due to an increase of ROS, as opposed to the non-ROS generated 360 increases of AGEs or UDP-GlcNAc produced by glucose neurotoxicity (14, 43), 361 included the presence in STZ diabetes of 4-hydroxynonenal in sympathetic ganglia, 362 demonstrating oxidative damage of lipids, and an increase of CM-H2DCFDA, a redox-363 sensitive dye (6, 38). Importantly, suppressed ganglionic neurotransmission by 364 hyperglycemia is prevented in vitro by the addition of the antioxidants alpha lipoic 365 acid and catalase to culture media (6). Sympathetic ganglia seem uniquely 366 susceptible to ROS-mediated oxidative damage, perhaps due to the increased 367 oxidation involved in normal catecholamine metabolism (38). In support of this 368 theory, parasympathetic ganglia, which do not contain catecholamines, do not 369 exhibit suppressed neurotransmission following short-term hyperglycemia (38).  370  371 In the current study, we chose a genetic approach to increase endogenous 372 antioxidant production and therefore to protect sympathetic ganglia from the 373 increased ROS production during hyperglycemia: the Wallerian degeneration slow 374 (WLDS) rat (1). The WLDS gene (23) encodes for a fusion protein that includes 375 NMNAT1, a critical enzyme for NAD synthesis. While NAD serves many intracellular 376 functions, one of the most important is providing an increase in reducing 377 equivalents that counteract the action of ROS (34). While basal NAD is not increased 378 in WLDS animals (2, 24), the WLDS gene potently attenuates the decrease of axonal 379 NAD that occurs shortly after axotomy (9, 45). This maintenance of NAD (45), or 380 more likely the removal of the NAD precursor, NMN (9), likely accounts for the 381 observed delay in axonal degeneration. Further, the spike in axonal ROS activity, as 382 judged by the oxidation of a redox-sensitive biosensor, that immediately precedes 383 fragmentation of distal segments of transected axons is markedly decreased in the 384 presence of the WLDS gene (33). Axon degeneration is thereby slowed in the 385 presence of this reduced oxidation. Regarding ROS in diabetes, the STZ diabetic 386 WLDS mouse has a delayed reduction of renal NAD+/NADH ratio and smaller 387 increase of renal NADPH oxidase activity compared to diabetic wild type mice (48), 388 thereby lending protection against renal oxidative damage (48). Finally, WLDS mice 389 are protected from hyperglycemia-induced suppression of superior cervical ganglia 390 neurotransmission, as demonstrated by unimpaired EPSPs to preganglionic nerve 391 stimulation in STZ-diabetic WLDS mice (E. Cooper, unpublished observation). 392 Therefore, it is proposed that the WLDS gene protects against axotomy-induced 393 oxidative damage by reducing NMN, yet it protects against diabetes-induced 394 oxidative damage by increasing NAD, thereby counteracting hyperglycemia-induced 395 ROS.  396   397 As expected, introduction of the WLDS gene prevented suppressed CG activation by 398 one week of diabetic hyperglycemia, thereby preserving the NE and glucagon 399 responses to PRE-sns. Interestingly, we did not see in our WLDS rats the resistance 400 to STZ-induced beta cell destruction seen in WLDS mice (46, 49). A species 401 



difference (36) is the likely explanation, a theory supported by our multiple low-402 dose STZ treatment producing a greater degree, and faster appearance, of 403 hyperglycemia in wildtype rats as similar doses produce in wildtype mice (46, 49). 404 Regardless, all three groups of our STZ treated WLDS rats exhibited a weekly 405 average blood glucose level greater than that which suppresses CG activation in our 406 insulin treated Wistar rats (see Table 1), thereby providing a sufficient 407 hyperglycemic challenge to test for a protective effect of WLDS. In support of the 408 concept that suppressed CG neurotransmission is due directly to the hyperglycemia 409 of STZ-diabetes is the previous finding of suppressed ganglionic activation in two 410 non-STZ models of diabetes, ob/ob and db/db mice (6). These studies ruled out a 411 direct toxic effect of STZ on the ganglia, as well as insulin deficiency per se, as the 412 ganglionic suppressor. While there is extensive evidence that the WLDS mutation is 413 neuroprotective to axons, our finding of preserved ganglionic neurotransmission in 414 STZ-diabetic WLDS rats adds to the short list of soma neuroprotection by this 415 mutant gene (15, 42, 44, 50). While we have not proven that the protective effect of 416 the WLDS mutation on CG activation to nicotine and on NE and glucagon responses 417 to PRE-sns is, in fact, due directly to increased protection against hyperglycemia-418 induced ROS damage, the combination of previous and current work suggests that it 419 is likely.  420  421 Our finding that sympathetically-mediated glucagon responses are impaired by 422 short-term hyperglycemia adds a metabolic dysfunction to the short list of 423 cardiovascular and thermoregulatory dysfunctions previously described after short-424 term STZ-diabetes (6). Because the CG projects nerves to the stomach, jejunum, liver 425 and spleen (35), as well as to the islet, defects in the sympathetic control of these 426 organs resulting from CG suppression by hyperglycemia are likely. For example, 427 ghrelin secretion (30) and hepatic glucose production (18) are robustly increased 428 by stimulation of CG-derived sympathetic nerves, therefore these responses are 429 prime candidates for impairment by short-term hyperglycemia. Because both islet 430 (16) and hepatic (29) sympathetic nerves are activated during insulin-induced 431 hypoglycemia, hyperglycemia-induced impairments of the sympathetic stimulation 432 of both glucagon and hepatic glucose production may contribute to the impaired 433 recovery from insulin-induced hypoglycemia known to occur in Type 1 diabetes.  434  435 As recently reviewed (7, 41), the loss of beta cell-derived suppressors of glucagon 436 secretion (i.e. insulin (4, 20), zinc (47) and GABA (37)) in Type 1 diabetes likely 437 mediates the majority of the impaired glucagon response to mild insulin-induced 438 hypoglycemia.  However, it is impairments in the autonomic nervous system that 439 likely mediate the impaired glucagon response during more severe insulin-induced 440 hypoglycemia (41). Suppression of CG neurotransmission by prior hyperglycemia is 441 now a valid candidate for such an autonomic defect, as is the major loss of islet 442 sympathetic nerves that is known to occur in the autoimmune form of diabetes (28, 443 39, 40). Separating the contributions of beta cell loss from those due to autonomic 444 defects to the impaired glucagon response to insulin-induced hypoglycemia in 445 diabetes requires an animal model of diabetes that is characterized by the presence 446 of both beta cell loss and hyperglycemia but the absence of a suppressed 447 



sympathetic pathway to the islet. The current study demonstrates that the STZ-448 diabetic WLDS rat fulfills these criteria.  449  450 
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Table 1:     Hyperglycemic levels achieved by STZ pretreatment   

 



FIGURE 1                   
Suppressed activation of sympathetic ganglia neurons by nicotine in streptozotocin 

(STZ) diabetic Wistar rats.  The expression of fos mRNA in A superior cervical ganglia (SCG) and B celiac ganglia (CG) of nondiabetic (solid bars) and STZ diabetic (open bars) rats treated with either saline (NaCl) or nicotine (NIC). The control group is nondiabetic rats treated with NaCl. * significant difference in responses between nondiabetic and STZ diabetic rats; P<0.02 for SCG, P<0.02 for CG.              



FIGURE 2 
                            
Impaired neurotransmitter and glucagon responses to preganglionic sympathetic 

nerve stimulation (PRE sns) in STZ diabetic Wistar rats.  Portal venous (PV) A norepinephrine and C glucagon levels of nondiabetic (solid circles, solid line) and STZ diabetic (open circles, dashed line) rats before, during and after PRE sns. Average PV B norepinephrine and D glucagon responses during PRE sns in nondiabetic (solid bars) and STZ diabetic (open bars) rats. * significant difference in responses between nondiabetic and STZ diabetic rats; P<0.001 for norepinephrine.     



FIGURE 3                  
Suppressed activation of celiac ganglia neurons by nicotine in STZ diabetic Sprague 

Dawley rats.  The expression of fos mRNA in the CG of nondiabetic (solid bars) and STZ diabetic (open bars) rats treated with either saline (NaCl) or nicotine (NIC). The control group is nondiabetic rats treated with NaCl. * significant difference in responses between nondiabetic and STZ diabetic rats; P<0.05.               



FIGURE 4                               
Impaired neurotransmitter and glucagon responses to preganglionic sympathetic 

nerve stimulation in STZ diabetic Sprague Dawley rats.  Portal venous A norepinephrine and C glucagon levels of nondiabetic (solid circles, solid line) and STZ diabetic (open circles, dashed line) rats before, during and after PRE sns. Average portal venous B norepinephrine and D glucagon responses during PRE sns in nondiabetic (solid bars) and STZ diabetic (open bars) rats. * significant difference in responses between nondiabetic and STZ diabetic rats; P<0.005 for norepinephrine, P<0.05 for glucagon.   



FIGURE 5                                
Normal neurotransmitter and glucagon responses to postganglionic sympathetic 

nerve stimulation (POST sns) in STZ diabetic Sprague Dawley rats. Portal venous A norepinephrine and C glucagon levels of nondiabetic (solid circles, solid line) and STZ diabetic (open circles, dashed line) rats before, during and after POST sns. Average portal venous B norepinephrine and D glucagon responses during POST sns in nondiabetic (solid bars) and STZ diabetic (open bars) rats.    



FIGURE 6                 
Normal activation of celiac ganglia neurons by nicotine in STZ diabetic Wallerian 

degeneration slow (WLDS) rats. The expression of fos mRNA in the CG of nondiabetic (solid bars) and STZ diabetic (open bars) rats treated with either saline (NaCl) or nicotine (NIC). The control group is nondiabetic rats treated with NaCl.                



FIGURE 7                               
Normal neurotransmitter and glucagon responses to preganglionic sympathetic nerve 

stimulation in STZ diabetic WLDS rats.  Portal venous A norepinephrine and C glucagon levels of nondiabetic (solid circles, solid line) and STZ diabetic (open circles, dashed line) rats before, during and after PRE sns. Average portal venous B norepinephrine and D glucagon responses during PRE sns in nondiabetic (solid bars) and STZ diabetic (open bars) rats.   
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