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Abstract

Student-teacher training allows a large teacher model or ensem-

ble of teachers to be compressed into a single student model, for

the purpose of efficient decoding. However, current approaches

in automatic speech recognition assume that the state clusters,

often defined by Phonetic Decision Trees (PDT), are the same

across all models. This limits the diversity that can be captured

within the ensemble, and also the flexibility when selecting the

complexity of the student model output. This paper examines

an extension to student-teacher training that allows for the pos-

sibility of having different PDTs between teachers, and also

for the student to have a different PDT from the teacher. The

proposal is to train the student to emulate the logical context

dependent state posteriors of the teacher, instead of the frame

posteriors. This leads to a method of mapping frame posteriors

from one PDT to another. This approach is evaluated on three

speech recognition tasks: the Tok Pisin and Javanese low re-

source conversational telephone speech tasks from the IARPA

Babel programme, and the HUB4 English broadcast news task.

Index Terms: Student-teacher, random forest, ensemble,

speech recognition

1. Introduction

In Automatic Speech Recognition (ASR), hardware limitations

can often make it impractical to implement large models, even

though they may perform well. Student-Teacher (ST) training

[1] is a possible solution to this issue, by training a single stu-

dent model to emulate the behaviour of the larger teacher model

or ensemble of teachers. Only this single student needs to be

used at test time. In ST training, there are many ways of propa-

gating information from the teacher(s) to the student [2, 3, 4]. In

a hybrid Neural Network-Hidden Markov Model (NN-HMM)

acoustic model architecture, a common method of propagating

frame posterior information is to minimise the KL-divergence

between frame posteriors, represented by the NN outputs [2].

However to date, ST methods have assumed that the NN out-

puts of all models have identical interpretations, otherwise the

KL-divergence criterion does not make sense. In ASR, this ex-

cludes the possibility of using different sets of state clusters be-

tween models.

One situation where different sets of state clusters are re-

quired is in a Random Forest (RF) ensemble [5]. Ensemble

methods [6, 7] in general make a Monte Carlo approximation

to Bayesian inference, by performing combination over a finite

number of models. The ensemble captures the uncertainty about

the model parameters that is encapsulated within the diversity

of the models used. Methods such as Dropout [8], Adaboost

[9], and using multiple Random Initialisations (RI) [4] produce

a diversity of models within a fixed architecture. A diversity

of architectures can be achieved by combining different model

types [10]. Methods such as RF provide an additional mode of

diversity by using a variety of Phonetic Decision Trees (PDT)

[11], thereby capturing uncertainty about the state clustering.

These different ensemble methods can be used concurrently to

obtain a richer ensemble.

Ensembles often outperform single models [6], but can be

computationally expensive to use. During decoding, it is more

computationally efficient to combine the ensemble at the frame

level [10, 12] than the hypothesis level [6, 7], as this only re-

quires the processing of a single lattice for the whole ensemble.

To further reduce the computational demand when using an RF

ensemble, a multi-task architecture can be used [13], where all

hidden layers are shared between models and only separate out-

puts are used for each PDT. The data then only needs to be fed-

forward through the hidden layers once. However, decoding a

single student is less computationally demanding.

This paper extends the capability of ST training to allow

different sets of state clusters. The proposal is for the student

to emulate the logical context posteriors of the teacher, rather

than the frame posteriors. This leads to a method of mapping

the frame posteriors from one PDT to another. As such, ST

training can be used to compress an RF ensemble. This also

introduces the freedom to choose the output complexity of the

student independently of the teacher.

2. Ensemble with different state cluster sets

It has been found that the acoustic representations of phones are

strongly affected by their neighbouring contexts [14], leading to

the use of context dependent phones. However, independently

modelling all contexts requires too many trainable parameters

to robustly estimate. To reduce the number of trainable param-

eters, similar contexts can be clustered together, with their ob-

servation likelihoods tied [14]. This can be achieved using a

PDT [14], T , which defines a many-to-one mapping from log-

ical context HMM states, c, to physical state clusters, s, at the

PDT leaves,

sc = T (c) . (1)

Finding a globally optimal PDT is a computationally intractable

problem. As such, the PDT is usually trained by finding the

greedy split at each node from a set of phonetically motivated

questions. However, the resulting PDT is not guaranteed to even

be at a local optimum of the total cost over the whole tree.

This training procedure can be modified to produce a vari-

ety of PDTs. In the RF method, diversity is achieved by inject-

ing randomness into the node split selection. One way to inject

randomness is to randomly select one of the top n splits at each

node, instead of the greedy split [5]. Each PDT is associated

with a separate NN [15], which learns to discriminate between

its own state clusters. An ensemble of these models can ap-

proximately capture the uncertainty about the state clustering.

Another way to obtain multiple PDTs is to explicitly train them

to be different [16, 17]. These PDT forest methods can be used
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concurrently with other ensemble methods, such as using differ-

ent model types, to obtain a more diverse ensemble that better

captures model uncertainty.

During decoding, the predictions of the models in the en-

semble need to be combined together. Frame combination is

more efficient that hypothesis combination, as only a single lat-

tice needs to be processed for the whole ensemble. One ap-

proach to do frame combination of an RF ensemble is to con-

vert the frame posteriors into observation pseudo likelihoods

and take a linear average [12],

p̃
(
ot

∣∣∣c, Φ̂
)
=

M∑

m=1

λm

P (smc |ot,Φ
m)

P (smc )
, (2)

where ot is the observation, t and m are the time and model

indexes, M is the ensemble size, Φm and Φ̂ designate the in-

dividual models and ensemble, and λm are the model interpo-

lation weights that satisfy
∑

m
λm = 1 and λm ≥ 0. Every

logical context that gets mapped to the same set of M clus-

ters,
{
s1, · · · , sM

}
, will share the same combined pseudo like-

lihood. It is therefore possible to cluster these contexts together

and tie their likelihoods without any loss of generality [12].

These clusters are referred to as RF tied states.

3. Student-teacher training

It can be computationally demanding to use a large model or

an ensemble during decoding. One possible solution to this is

ST training, where a single student model is trained to emulate

the behaviour of the large teacher model or ensemble of teach-

ers. During test time, only this single student model needs to

be decoded, thereby reducing the computational demand. To

learn from an ensemble where all teachers share the same state

clusters, standard ST training propagates frame posterior infor-

mation from the teachers to the student, by minimising the KL-

divergence between their frame posteriors [2],

G = −

T∑

t=1

M∑

m=1

αm

∑

s∈T

P (s|ot,Φ
m) logP (s|ot,Θ) , (3)

where T is the total number of training frames, αm are the

model interpolation weights such that
∑

m
αm = 1 and αm ≥

0, and Θ designates the student model. It is also possible to in-

terpolate forced alignments into the criterion target. However,

it is shown in [4] that when the teachers have been sequence

trained, the forced alignments do not benefit the student, and as

such, shall not be used in this paper.

During decoding, the observation pseudo likelihoods only

need to be computed from the student model, using

p̃ (ot|c,Θ) =
P (sc|ot,Θ)

P (sc)
, (4)

instead of from each model in the ensemble.

4. Mapping posteriors between clusters

The teachers and student used with standard ST training are

restricted to have the same state clusters, otherwise the KL-

divergence of (3) cannot be used. This forbids the use of an RF

ensemble. To allow for different sets of state clusters, a distance

measure can be defined over the logical contexts. This paper

proposes to train the student by minimising the KL-divergence

between logical context posteriors,

F = −
T∑

t=1

∑

c∈C

P (c|ot,Φ) logP (c|ot,Θ) , (5)

where C is the set of all logical contexts. For simplicity, only

a single teacher with a different PDT from the student is con-

sidered here. The student’s logical context posteriors can be

decomposed as

P (c|ot,Θ) = P (c|sc,ot,Θ)P (sc|ot,Θ) . (6)

Since the PDT is a deterministic mapping from logical contexts,

c, to clusters, s, P (c|s,ot,Θ) = 0 for all c that are not in

cluster s. Substituting (6) into (5) leads to

F = −

T∑

t=1

∑

c∈C

P (c|ot,Φ)
[
logP (sc|ot,Θ)

+ logP (c|sc,ot,Θ)
]
. (7)

The student’s NN weights in P (sc|ot,Θ) need to be trained.

The standard system does not have P (c|sc,ot,Θ), and it shall

therefore be ignored in training. This simplifies the criterion to

F̃ = −
T∑

t=1

∑

c∈C

P (c|ot,Φ) logP (sc|ot,Θ) . (8)

It is inefficient to compute the sum over c, as there are many

logical contexts. It is better to sum over state clusters in the

student’s PDT, T , by re-expressing the criterion in the form of

F̃ = −

T∑

t=1

∑

s∈T

Q (s|ot,Φ) logP (s|ot,Θ) . (9)

This form can be obtained by expressing the target posteriors as

Q (s|ot,Φ) =
∑

sΦ∈T Φ

P
(
s

∣∣∣sΦ,ot,Φ
)
P
(
s
Φ
∣∣∣ot,Φ

)
, (10)

where

P
(
s

∣∣∣sΦ,ot,Φ
)
=

∑

c:T (c)=s

P
(
c

∣∣∣sΦ,ot,Φ
)
, (11)

and sΦ and T Φ are the teacher’s state clusters and PDT re-

spectively. When the student and teacher have the same PDT,

T = T Φ, then the transformation reduces to the identity ma-

trix, P
(
s
∣∣sΦ,ot,Φ

)
= δ

(
s, sΦ

)
, leading to the standard ST

criterion of (3).

It is the matrix transformation, P
(
s
∣∣sΦ,ot,Φ

)
, that makes

it possible to do ST training across different PDTs, by mapping

frame posteriors between these PDTs. However, standard ASR

systems again do not yield P
(
c
∣∣sΦ,ot,Φ

)
. To address this, an

approximation can be made that it is independent of the obser-

vation,

P
(
c

∣∣∣sΦ,ot,Φ
)
≈ P

(
c

∣∣∣sΦ
)
. (12)

The transformation will then also be independent of the obser-

vation, P
(
s
∣∣sΦ,ot,Φ

)
≈ P

(
s
∣∣sΦ

)
. This approximation loses

some phonetic resolution. Computing the transformation then

requires the estimation of P
(
c
∣∣sΦ

)
, which can be expressed as

P
(
c

∣∣∣sΦ
)
=

P (c)∑
c′:T Φ(c′)=sΦ

P (c′)
δ
(
T Φ (c) , sΦ

)
. (13)



It is possible to obtain P (c) as a maximum likelihood estimate

from forced alignments. To improve robustness, a discount fac-

tor can be incorporated into the estimate,

P (c) =
Nc + ν∑

c′∈C

(Nc′ + ν)
, (14)

where Nc is the number of times c appears in the forced align-

ments, and ν is the discount factor. This smoothing technique

is commonly used in areas such as language modelling [18].

This allows P
(
s
∣∣sΦ

)
to be computed, which is used to map the

teacher’s frame posteriors to the student’s state clusters. These

mapped target posteriors can then be used with standard CE

training infrastructures.

For an ensemble of teachers, the target posteriors can be

computed as an average of the contributions from each teacher,

Q
(
s

∣∣∣ot, Φ̂
)
=

M∑

m=1

αm

∑

sm∈T m

P (s|sm)P (sm|ot,Φ
m). (15)

This proposed criterion thus allows ST training to be used to-

gether with an RF teacher ensemble, and for the student’s PDT

to be chosen independently of teachers’ PDTs.

5. Experiments

The experiments were performed on the Kaldi speech recog-

nition toolkit [19], and used the Tok Pisin (IARPA-babel207b-

v1.0e) and Javanese (IARPA-babel402b-v1.0b) datasets, which

are low resource tasks from the Babel programme [20], and

the HUB4 English broadcast news (LDC97S44 and LDC98S71)

dataset. The Very Limited Language Pack (VLLP) was used

for Tok Pisin, while for Javanese the Full Language Pack (FLP)

was used, comprising approximately 3 hours and 40 hours of

conversational telephone speech respectively. Graphemic lexi-

cons [21] were used, along with trigram language models that

were trained on the VLLP transcriptions for Tok Pisin and FLP

transcriptions for Javanese. The standard 10 hours development

sets were used for decoding. For HUB4, the 144 hours training

set was used, comprising data from both the 1996 and 1997 re-

leases. The standard phonetic lexicon was used, and the trigram

language model was imported from the RT-04 system [22]. The

2.6 hours Eval03 test set was used for decoding. Experiment-

ing on these datasets allows an investigation of ST training over

different performance ranges and lexicon types.

For all datasets, frame alignments were obtained from tan-

dem Gaussian Mixture Model (GMM)-HMMs. These GMMs

were trained on 107-dimensional multilingual tandem features

[23] for Tok Pisin and Javanese, and 65-dimensional unilingual

tandem features for HUB4. PDTs were trained with greedy

splits, having 1000 leaves for Tok Pisin and 6000 leaves for both

Javanese and HUB4. These greedy PDTs were used to construct

RI ensembles. RF PDTs with the same number of leaves were

trained, by randomly selecting a split from the best 5 at each

node. Only splits that increased the likelihood beyond a thresh-

old were considered. The alignments were mapped from the

tandem GMM PDT to each of the PDTs. These alignments were

used to train DNNs consisting of 4 layers of 1000 nodes for Tok

Pisin, and 6 layers of 2000 nodes for both Javanese and HUB4.

For Tok Pisin and Javanese, the DNN inputs consisted of the

tandem features with a 9 frame context. For HUB4, the DNN

input consisted of 40-dimensional filterbank features with first

temporal derivatives and a 9 frame context. The DNNs were

first initialised with layerwise pretraining using either the CE or

ST criterion, and then fine-tuned with the same criterion. Se-

quence training was performed using the state-level Minimum

Bayes’ Risk (sMBR) criterion [24, 25]. Evaluation was done

using Minimum Bayes’ Risk (MBR) decoding [7].

To map the frame posteriors between PDTs, the transfor-

mation matrices, P (s|sm), were computed using the tandem

GMM alignments, with a small discount of ν = 10−4. The

discount cannot be too large, as there are many logical contexts.

The interpolation weights were all set as equal, λm = αm =
1
M

.

5.1. Ensemble performance

The first experiment assesses the gains that can be obtained

from both the RI and RF ensemble methods. Each ensemble

consisted of four sMBR-trained models with the same architec-

ture. Combination was done at the hypothesis level using MBR

combination decoding [7], and at the frame level through a lin-

ear average of observation pseudo likelihoods (2).

Table 1: Ensemble WER (%) performance

Ensemble Single model Combined

method mean best worst std dev hypothesis frame

Tok Pisin VLLP

RI 47.8 47.6 48.0 0.18 46.3 46.7

RF 48.3 48.0 48.4 0.17 45.8 46.0

Javanese FLP

RI 53.8 53.7 53.9 0.10 52.2 52.5

RF 54.1 54.0 54.3 0.14 52.3 52.4

HUB4

RI 9.2 9.1 9.3 0.10 8.8 8.8

RF 9.3 9.2 9.4 0.10 8.7 8.7

The results in Table 1 show that significant combination

gains can be achieved over single models by both ensemble

methods. In the low resource tasks, the RF ensembles have

worse performing single models, as their PDTs are less opti-

mal. Despite this in Tok Pisin, the combined RF ensemble is

able to significantly outperform the combined RI ensemble. In

both Javanese and HUB4, the combined RF ensembles are able

to match the RI ensemble performances, but not significantly

outperform them. Perhaps the diversity between PDTs becomes

less significant with larger PDTs. Using methods to encourage

more PDT diversity [16, 17] may help. These results suggest

that the RF method may be particularly helpful when the train-

ing data is extremely limited and the PDTs are small. It is also

interesting to note that this trend is in spite of the Javanese and

HUB4 RF ensembles having 102577 and 85840 RF tied states

respectively, which is many more than for Tok Pisin, with 15094

RF tied states. The RF and RI methods provide different modes

of diversity, and can be used concurrently to obtain a richer en-

semble. It is therefore useful to be able to train a student toward

teachers with different sets of state clusters.

Hypothesis combination outperforms frame combination in

some of the ensembles, possibly because unlike frame combina-

tion, it does not require all models to produce time-synchronous

states. However, frame combination is less computationally ex-

pensive. Furthermore, frame combination is indicative of the

quality of the target posteriors that are used to train the students,

and it shall therefore be used in the further experiments.



Table 2: Mean single model WER (%) with standard training

Dataset CE + sMBR

Tok Pisin VLLP 50.2 47.8

Javanese FLP 55.9 53.8

HUB4 10.0 9.2

5.2. Student-teacher training

The next experiment uses the proposed method to train students

toward both types of ensembles. The students of both ensem-

bles used the same greedy PDTs as the RI ensembles. As a

baseline for comparison, Table 2 shows the mean performance

of single models using these PDTs, with standard training, of

which the sMBR results are a repetition from Table 1.

Table 3: Student-teacher training

Ensemble Student WER (%) Ensemble

method ST + sMBR WER (%)

Tok Pisin VLLP

RI 46.9 46.6 46.7

RF 47.3 46.6 46.0

Javanese FLP

RI 52.4 51.6 52.5

RF 52.7 51.9 52.4

HUB4

RI 8.9 8.8 8.8

RF 9.2 9.0 8.7

The student performances with ST training are shown in Ta-

ble 3. Here, frame combination of the teacher ensembles pro-

vides an indication of how well the students can be expected

to perform. The results show that the proposed method is able

to train students toward RF ensembles, achieving better perfor-

mances than standard CE training with hard targets in Table 2.

Further sMBR training of the students brings additional gains,

though not significantly for HUB4. However, there is a con-

sistent performance loss between the RF ensembles and their

students after only ST training. This leads to the RF students

performing worse than the RI students in all datasets. This

degradation may be caused by the posterior mapping (15) or

the limited student complexity.

5.3. Student model output complexity

The proposed method gives the freedom to select the student’s

state clusters independently of the teachers’. The final experi-

ment investigates training students with PDTs of various sizes

toward the RF ensembles. Using a larger PDT increases the stu-

dent’s phonetic resolution, and potentially reduces any degrada-

tion of the target posteriors arising from the posterior mapping

of (15). Table 4 shows the results for Tok Pisin, which Table 1

suggests operates in a data quantity and PDT size regime that is

able to benefit most from the RF method. Here, the larger stu-

dents used either a PDT with 1800 leaves trained using greedy

splits, or the RF tied states. The intermediate PDT size of 1800

leaves was chosen, as this was about the largest that could be

generated for this dataset without relaxing the likelihood im-

provement threshold. Using the RF tied states as the student

DNN outputs is inspired by [26], and gives the student the same

phonetic resolution as the RF ensemble.

The results show that increasing the number of leaves in

Table 4: RF ensemble students with larger PDTs, for Tok Pisin

Student WER (%) Ensemble

Student PDT size ST + sMBR WER (%)

1000 47.3 46.6

46.01800 47.0 46.3

15094 (RF tied states) 46.6 46.0

the students’ PDTs allows them to better capture the RF en-

semble performance, thereby mitigating the degradation in the

proposed method. The best student performance after only ST

training is obtained when the student DNN directly uses the RF

tied states as outputs, and this student is able to outperform the

RI student in Table 3. This shows that the gain of the RF en-

semble over the RI ensemble in this dataset can be propagated

to the student. Further sMBR training of this RF tied state stu-

dent gives the best single system performance, and is able to

meet the ensemble performance. However, this requires a large

number of parameters, which may present a hindrance when

deploying the ASR system on devices with hardware limita-

tions. A possible method of reducing the number of parameters

is to force the output layer linear transformation to be low-rank

[27]. These results suggest that students with more complex

outputs may be required to effectively capture the RF ensemble

behaviour, because of the nature of its diversity. In Javanese and

HUB4, RF ensemble students with PDTs having 10000 leaves

give WERs of 52.4 % and 9.0 % respectively after only ST train-

ing, showing consistent improvements with increased student

output complexity.

By allowing the state clusters of the student to be chosen

independently of those of the teachers, the proposed method

introduces the possibility of using students with greater output

complexities. Although this increases the computational cost

of decoding, a balance can be chosen to make it far less than

decoding through the ensemble.

6. Conclusion

This paper presents a method to perform ST training when the

student and teachers use different sets of state clusters. This

is accomplished by minimising the KL-divergence between the

logical context posteriors of the student and teachers. To com-

pute the logical context posteriors, an approximation is made

that the probability of a logical context is independent of the ob-

servation when given the state cluster. This allows the proposed

method to be implemented by mapping the teachers’ frame pos-

teriors to the student’s state clusters. The experiments show that

the proposed method allows the student to learn from teach-

ers with different PDTs. Although degradation is observed be-

tween the student and RF ensemble performances, the proposed

method also allows the use of larger PDTs for the student, which

has been shown to improve the student performance.

The proposed method expands the flexibility of the ST

framework, allowing for different sets of state clusters between

teachers, and also for the student’s state clusters to be chosen

independently of the teachers’. It is therefore possible to use

richer ensembles with multiple forms of diversity, so long as a

mapping can be computed from the teachers’ frame posteriors

to the student’s state clusters.
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