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Abstract

Chemical plants are complex, integrated networks of individual process systems. The

process system dynamics along with the interconnections among them make the task of

controlling chemical plants challenging. Distributed control is a promising approach to-

wards achieving plant-wide control of tightly integrated networks. The identification of

sparsely interacting sub-networks in a given chemical network is key towards achieving

superior performance from the distributed control structure. To this end, community detec-

tion algorithms have been adopted to determine the optimal decompositions for chemical

networks by maximization of modularity. These algorithms are based on equation graph

representations of the network. For lumped parameter system (LPS) networks, such rep-

resentations are standard. Since chemical networks usually comprise lumped as well as

distributed parameter systems (DPSs), this thesis aims at incorporating within the frame-

work described above, the variables and topology of DPSs, to develop a unified framework

to obtain optimal network decompositions (control structures) for distributed control. To

this end, an equation graph representation for a generic DPS and a parameter which cap-

tures the strength of structural interactions among its variables analogous to relative degree

in LPSs are proposed. A relationship is established between the length of the input-output

path in the equation graph and the structural interaction parameter, which enables the in-

corporation of DPSs variables in the graph based community detection algorithms.

Also, since in chemical networks, often the measurement of the entire state is not
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available and estimation of the unmeasured variables is a computationally expensive task,

this thesis also addresses the problem of combined distributed state estimation and dis-

tributed control, using community detection for determining network decompositions for

estimation as well as control.
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Chapter 1

Introduction

Chemical plants are large networks of interconnected process systems. The plant-wide

control problem of a generic chemical network is challenging owing to the large number

of process systems with varied dynamics which makes a centralized control architecture

impractical, and the interconnections between the systems which render a decentralized

control architecture ineffective. Distributed control, which entails the implementation of

local controllers to control sub-networks of a plant with some information sharing (com-

munication), is a promising approach towards achieving plant-wide control, since it over-

comes the limitations of the aforementioned approaches [1].

The control performance of distributed control is affected by the network decomposi-

tion, i.e., the choice of sub-networks for the local controllers [2]. Determining the optimal

decomposition for a generic chemical network is an open and challenging problem [3].

Recently, our group has proposed two main methods of obtaining the optimal decom-

position for the distributed control of a chemical plant, the first of which is hierarchical

clustering of the input and output variables of the network [4–6], and the second is the

application of community detection algorithms [7–9]. These approaches are based on the

equation graph of the chemical network (possibly weighted to account for strength of in-
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teractions), and determine the optimal decomposition as quantified by the maximization

of modularity. An equation graph is a set of nodes and edges that captures the structure

of a given network and modularity is a measure of the statistical significance of the inter-

actions (i.e. the number of edges in the graph) among the variables (i.e. the nodes in the

graph) within a community as compared to the variables across different communities.

Relative degree is a measure that captures the strength of structural interactions among

the variables of lumped parameter systems (LPSs) and has been used as the basis for

determining optimal decompositions [4–7,10–14]. In the equation graphs for networks of

LPSs, the length of the shortest path (i.e., the smallest number of edges from an input node

to an output node), l, is related algebraically to the relative degree of the output variable

with respect to the input variable, r, as [10]:

r = l−1 (1.1)

A limitation of the relative degree based network decomposition is that the equation

graph representations and the concept of relative degree are restricted to variables of LPSs

only. However, most chemical plants are networks of LPSs interconnected with distributed

parameter systems (DPSs), the variables of which are functions of both space and time.

This thesis aims at the extension of the equation graph representation and relative degree

to the variables of DPSs, so as to facilitate the use the community detection algorithms for

distributed control of generic chemical plants comprising LPSs and DPSs.

Another limitation of the aforementioned work on plant-wide distributed control is

that the control problems considered are based on the assumption that the full state mea-

surement is available for feed-back control. However, often in chemical networks, not

all states can be measured in real time. This requires the use of a state estimator. The

computational cost associated with state estimation can compromise the control perfor-
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mance in the closed-loop process operation [15]. Hence, the estimation of the states with

minimum computational cost is a challenging and relevant problem. Given the analo-

gous nature of the challenges associated with state estimation and plant-wide control of

large chemical plants, distributed estimation is a promising approach towards mitigating

the computational cost in state estimation [16, 17]. Hence, this thesis aims at the integra-

tion of distributed control and distributed estimation for plant-wide control using equation

graphs that capture the connectivity among the relevant variables for the controller as well

as the state estimator.

In this thesis, chapters 2-5 are directed towards the distributed control of LPS-DPS

networks, and chapter 6 addresses the problem of combined distributed estimation and

control. The details of the specific problems addressed in each of the following chapters

are discussed below.

Chapter 2: Structural Interaction Based Equation Graphs of Convection-Reaction

Systems

We consider DPSs that are convection-reaction systems modeled by linear hyperbolic par-

tial differential equations (PDEs). We define a parameter called the structural interaction

parameter (SIP) for the different types of input and output variables [18–20], and show

that the SIP captures the strength of the structural interactions among the DPS variables

analogous to relative degree among the variables of LPSs. We propose an equation graph

representation for convection-reaction systems and establish a relationship between the

graph and SIP, which is also analogous to that between LPS graphs and relative degree.

We illustrate the process of calculation of the SIPs of the network’s variables from its

equation graph using a small chemical network consisting of a continuous stirred tank re-

actor and a plug flow reactor. This chapter presents the theoretical framework for the case

study in the next chapter.
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Chapter 3: Distributed Control of an Amine Gas Sweetening Plant

We consider an amine gas sweetening plant consisting of a two stage absorption and des-

orption process. In each stage, sour natural gas is contacted with an aqueous solution of

amine, which absorbs the acidic components (carbon dioxide and hydrogen sulfide) from

the natural gas. The spent solvent is sent to the desorbers (strippers) where steam removes

the acidic gases from the solvent stream. The regenerated solvent is recycled to the ab-

sorbers. Two heat exchangers in the network exchange heat across the process streams

to reduce the utility consumption in the plant. Plants like this are integral to the liquified

natural gas train. The process units in the plant are modeled as linear hyperbolic PDEs.

From the equation graph representation and SIP definition for convection-reaction sys-

tems, we obtain the optimal decomposition for distributed control using two algorithms

- agglomerative clustering [4] and modularity maximization [21]. We simulate the plant-

wide control of the plant using the optimal decomposition as the basis for distributed

model predictive control (DMPC). Model predictive control (MPC) is a control strategy

that entails the calculation of the optimum input profiles over a finite horizon by mini-

mizing an objective function (in our case the control effort and the deviation of the output

variables from the set-point) under the constraints applicable on the plant (e.g., material

and energy balances). Three cases are simulated - the nominal start-up, start-up with mea-

surement noise, and start-up with disturbance in the feed natural gas composition. The

performance of DMPC is compared with that of fully centralized and fully decentralized

control architectures.

Chapter 4: Structural Interaction Based Equation Graphs of Diffusion-Convection-

Reaction Systems

Diffusion-convection-reaction systems are the more generic kind of DPSs since diffusion

is present in nearly all DPSs to some extent. We consider diffusion-convection-reaction
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systems modeled by quasi-linear parabolic PDEs. For the different types of input and out-

put variables that have been identified in the literature for such systems, we define an SIP

that is analogous to relative degree for LPSs and SIP for convection-reaction systems. We

propose a graph representation of these systems as well, in which the length of the input-

output path is related to the SIP as in the case of convection-reaction systems. We consider

the model of a tubular reactor, and determine the SIPs among the different variables using

the definition of the SIP as well as using the equation graph to illustrate the relationship

between the two. This chapter presents the unified equation graph based framework to ob-

tain the optimal decompositions for the distributed control of generic chemical networks

comprising LPSs and DPSs.

Chapter 5: Distributed Control of a Reaction-Separation Network

We consider the case study of a reaction-separation plant that is encountered in the pro-

duction of sulphuric acid [22]. It consists of four tubular reactors in series, with interstage

heat-exchangers. An exothermic reversible reaction occurs in the reactors and the heat-

exchangers drive the equilibrium toward the product side by taking away heat from the re-

action mixture. Downstream of the fourth tubular reactor are two flash tanks that separate

the unreacted reactant from the product. Material recycle and heat integration make the

plant-wide control of this network challenging. Using the equation graph representation

from the previous chapter, we simulate the plant-wide control for the set-point tracking

problem and compare the performance of the optimal decomposition based DMPC with

that of fully centralized MPC.

Chapter 6: Distributed Estimation and Nonlinear MPC using Community Detection

In this chapter we consider the problem of controlling a network when the entire state

measurement is not available. For estimating the unmeasured states, we use moving hori-
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zon estimation (MHE) [23–25]. Similar to the underlying optimization problem in MPC,

MHE involves the repeated solution of an optimization problem to calculate the state vari-

able vector, and, thus, can be computationally expensive. Analogous to distributed con-

trol, the distributed approach for MHE is an alternative problem formulation which has

the potential to reduce the computational cost. In this chapter, we develop the framework

for combined distributed MHE (DMHE) [16, 17] along with DMPC for LPS networks.

The optimum network decomposition for DMPC is based on the LPS equation graph that

relates the input-output path to the corresponding relative degree [4, 5, 10]. For MHE,

we propose an equation graph that relates the measured variables to the state variables.

The modularity maximization algorithm discussed in Section 3.4.2 is applied to both of

these graphs to obtain the optimum decomposition for the control and estimation tasks.

We demonstrate this framework on a case study of a benzene alkylation plant consisting

of four continuous stirred tank reactors and a flash tank. We compare the closed-loop

performance of different architectures for control and estimation to that of the optimum

decomposition based DMPC and DMHE.

Chapter 7: Summary and Conclusions & Chapter 8: Future Work

These chapters contain a brief summary of the findings of this work, discuss the conclu-

sions and propose directions of further research that stem from this work.
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Chapter 2

Structural Interaction Based Equation

Graphs of Convection - Reaction

Systems *

2.1 Introduction

Chemical plants are complex, integrated networks of process systems that can be broadly

classified as LPSs, which are described by ordinary differential equations (ODEs) (e.g.,

well-mixed reactors, staged separators, etc.) and DPSs (e.g., heat exchangers, plug-flow

reactors, etc.), which are described by PDEs (hyperbolic or parabolic PDEs). The indi-

vidual process systems’ dynamics and the emerging dynamic behavior due to the inter-

connections among the systems limit the effectiveness of fully decentralized control of the

network [26]. Also, fully centralized control has practical limitations in terms of design

and tuning of the controller [27]. Distributed control, a middle-ground between fully de-

*Reprinted with permission from Manjiri Moharir, Lixia Kang, Ali Almansoori and Prodromos Daoutidis,
Computers and Chemical Engineering 106 (2017), https://doi.org/10.1016/j.compchemeng.2017.07.005.
Copyright ©2017 Elsevier Ltd.
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centralized and fully centralized control, is commonly used for the control of networked

systems [3,28–37]. It involves the decomposition of the network into smaller subsystems,

which are controlled individually with some transfer of information among the controllers

of each sub-system.

The decomposition of a network into sub-networks for distributed control is an open

and challenging problem [3]. Some methods have been proposed in the literature [38,39],

but there is no generically applicable framework for computing decompositions which are

optimal in a well-defined sense [3]. Recently, methods from network theory have been

used for systematic decomposition based on the strength of the variable interactions. The

contributions in [4–6, 10–14] highlight relative degree as a measure of structural connec-

tivity among a system’s variables that can be used to address this problem. The relative

degree of a controlled variable with respect to a manipulated variable for continuous-time

ODE systems is the smallest order of the time derivative of the output that directly depends

on the input. It therefore captures how direct the effect of an input is on an output, and

how sluggish the corresponding response is. In [10], it was shown that relative degrees

could be calculated from an equation graph capturing the connectivity among the variables

in an ODE system, as the shortest path length between the input and the output nodes.

Building on this idea, hierarchical clustering procedures [4,5] have been developed to de-

termine input/output clusters for process networks modeled by ODE systems at various

levels of decentralization based on structural closeness (in a relative degree sense) within

and among clusters. A notion of modularity [21] was used in [6] to evaluate the resulting

hierarchy of clusters and identify the optimal decomposition. This approach results in the

identification of input-output clusters that are allocated to separate controllers, but does

not explicitly allocate state variables to the resulting clusters; yet state variables represent

information sharing in a distributed control framework. An algorithm proposed in [7] con-

siders the network equation graph, which is bisected in a hierarchical manner into smaller

8



blocks so as to minimize input-state and state-state interactions among the resulting clus-

ters. The change in the modularity value [40] with each bisection is maximized to obtain

the optimal decomposition. The optimal decomposition thus obtained has been shown

to allow for computationally more efficient solutions of the distributed model predictive

control (DMPC) design problem without compromising on the closed loop performance

as compared to centralized model predictive control (CMPC) [2]. The above-mentioned

algorithms, taking advantage of well-established graph theory algorithms, are generically

applicable to and well suited for large process networks. They are, however, limited to net-

works modeled by ODE systems. Chemical plants often comprise interconnected LPSs

and DPSs. Currently there exists no method to represent networks of a combination of

ODE and PDE systems on a common equation graph that captures the interconnections

among all the network variables. A very commonly encountered class of DPSs is that of

convection-reaction processes (e.g., heat exchangers, plug flow reactors, adsorption and

absorption columns, etc.), which are modeled by first-order hyperbolic PDEs. This chap-

ter discusses an extension of the aforementioned methods to include variables of such

first-order hyperbolic PDE systems.

Specifically,

• we propose a structural interaction parameter (SIP) which quantifies the interactions

among the variables of first-order hyperbolic PDE systems in a way analogous to

relative degree in ODE systems;

• we propose an equation graph representation for hyperbolic PDE systems and es-

tablish the graph theoretic interpretation of the structural interaction parameter in

terms of the length of input-output paths; and

• we generalize the methods in [4, 6] and [7] to allow for decomposition of process

networks modeled by ODE and hyperbolic PDE systems based on the structural
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interaction parameters.

2.2 Generic Convection-Reaction Systems

We consider linear, first-order hyperbolic PDE systems of the form:

∂x
∂t

= A
∂x
∂z

+Bx+Gu(z, t) (2.1)

where, x(z, t) = [x1(z, t) · · ·xnx(z, t)]
T ∈ Rnx is the vector of distributed state variables, nx

is the number of state variables, z ∈ [0,L]⊂R is the spatial coordinate (L being the length

of the spatial domain), t ∈ [0,∞) is the time, and A, B, and G are constant matrices of con-

forming dimensions. The matrix A is diagonal and contains the velocities, vi contributing

to the convective transport in the system. Non-linear first-order hyperbolic PDEs can be

linearized around a steady state to the generic form described above.

The boundary conditions are:

K1x(0, t)+K2x(L, t) = R (t) (2.2)

where K1 and K2 are constants and R (t) is a smooth function of time. The initial condi-

tions are:

x(z,0) = x0(z) (2.3)

The manipulated inputs to the system could be of the following types:

• Velocity inputs: the elements of the diagonal matrix A.

• Distributed inputs: the elements of the vector u(z, t).

• Boundary inputs: the elements of the vector R (t).
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The controlled outputs of the system could be of the following types:

• Distributed outputs: functions of state variables that are dependent on space and

time:

yd(z, t) = Hdx (2.4)

where Hd is a constant matrix of conforming dimensions.

• Boundary outputs: functions of the values of the state variables at a certain spatial

location (typically a boundary), that are functions of time alone, e.g.,

yb(t) = Hbx|z=L (2.5)

where Hb is a constant matrix of conforming dimensions.

Boundary inputs and outputs can be treated as a special case of distributed ones, as

will be discussed in the subsequent sections.

Figure 2.1: Types of input - output combinations: (a) Velocity input - Boundary output,
(b) Distributed input - Distributed output, (c) Boundary input - Boundary output

Figure 2.1 shows combinations of different types of inputs and outputs that are en-

countered in distributed chemical processes modeled by first-order hyperbolic PDEs.
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The goal is to develop a method to represent on a graph the structural interactions

among the input, state and output variables of multiple DPSs of the above form possibly

connected to LPSs. The first step to this end is the selection of parameters that quantify the

structural proximity among the variables. In what follows, we define the structural inter-

action parameter (SIP) for specific, typical combinations of inputs and outputs, allowing

for a natural generalization of the concept of relative degree as a measure of structural

interactions and a unified graph representation of such interactions for hyperbolic PDE

systems.

2.3 Structural Interaction Parameters for Hyperbolic PDEs

1. Velocity Input - Boundary Output Case: In this case (figure 2.1-(a)), if the fluid is

assumed to be incompressible, then despite the distributed nature of the system, the

input and output variables depend solely on time (as in the case of an ODE system).

In [19], a concept analogous to relative degree was postulated for such systems under

the assumption that there is a single stream of an incompressible fluid flowing in the

system. For such systems, the SIP of an output with respect to the manipulated flow

velocity can be defined as this relative degree analogue, i.e. the smallest order time

derivative of the output which explicitly depends on the manipulated flow velocity.

For example, if the first time-derivative of the output y j ( j ∈ {1,ny}), given by:

dy j

dt
=

nx

∑
i=1

(
hb

jivi
∂xi

∂z

)∣∣∣∣
z=L

+(hb,T
j Bx)

∣∣∣∣
z=L

(2.6)

where hb
ji is the ( j, i)th element of Hb and hb,T

j is the jth row of Hb, explicitly de-
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pends on the velocity vi, that is:

hb
ji

∂xi

∂z

∣∣∣∣
z=L
6= 0 (2.7)

then, the SIP of y j with respect to vi is equal to 1. If equation (2.7) is not satisfied,

then the SIP is greater than 1, and can be determined by further differentiation of

the output variable.

This concept can be directly extended to systems with multiple flow velocities (e.g.,

counter-current heat-exchangers, absorber columns, etc.).

2. Distributed Input - Distributed Output Case: In this case, the input and the output

are functions of space and time as shown in (figure 2.1-(b)).

Consider a single-input single-output (SISO) first-order hyperbolic PDE system as

described by equation (2.1). In the case of distributed actuation, it is customary to

assume that the distributed input variable, u(z, t), is of the form of a finite number

(nz) of actuators distributed over the length of the DPS, and each actuator acts on a

spatial interval (e.g., [zk−1,zk] ∀k ∈ {1,nz}) [18]. Mathematically, this implies that:

u(z, t) = pk(z)ûk(t) (2.8)

where pk(z) is a smooth function defined over the kth spatial interval (z ∈ [zk−1,zk]).

Also, the variable yd(z, t) = hT
d x(z, t) is usually controlled over a finite number of

spatial intervals ([zk−1,zk] ∀ k ∈ {1,nz}) by considering nz spatially averaged output

variables given by:

ŷk(t) = Cky(z, t) (2.9)
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where Ck is a bounded operator defined over the interval [zk−1,zk] of the form:

Cky(z, t) =
∫ zk

zk−1

ck(z)y(z, t)dz (2.10)

with ck(z) a smooth function. Hence, the variables whose interactions are relevant

are:

û(t) = [û1(t)...ûnz(t)]
T (2.11)

ŷ(t) = [ŷ1(t)...ŷnz(t)]
T (2.12)

These are finite dimensional vectors, which depend solely on time. For these finite

dimensional input and output vectors, the concept of characteristic index σ(k), of ŷk

with respect to ûk was defined in [18] as the smallest order of time derivative of ŷk in

which ûk appears explicitly. This is equivalent to determining the smallest integer,

σ(k), for which the following equation is satisfied:

hT
d

(
A

∂

∂z
+B
)σ(k)−1

g 6= 0 (2.13)

Typically, the characteristic indices for all pairs {ûk/ŷk} are equal, and the corre-

sponding value (σ(1) = σ(2)...σ(nz) = σ) can be viewed as the characteristic index of

ŷ(t) with respect to û(t) [18]. This concept was defined for a SISO system in [18],

but, it can be directly extended to a multiple-input multiple-output (MIMO) system.

This concept of characteristic index will be used as the SIP in this case of distributed

actuation.

3. Boundary Input - Boundary Output Case: This can be considered as a specific in-

stance of the distributed input - distributed output case, wherein the input has the
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form:

u(z, t) = δ(z)xm(z, t) m ∈ {1,nx} (2.14)

and the output has the form:

y(z, t) = δ(z−L)hT
b x (2.15)

where δ(z) is the Dirac delta function.

Note that the input and output variables above are at different spatial locations (non-

collocated). If the SIP definition from the distributed input - distributed output case

is directly applied to this case, the SIP of the output with respect to the input would

be ∞ [20]. To overcome this problem, the contribution in [41] defined a modified

output variable as:

ŷ(t) =
∫ L

0
c(z)hT

b xdz (2.16)

where c(z) is a smooth shaping function defined on [0,L].

The first time-derivative of the new output is given by:

dŷ(t)
dt

=
∫ L

0
c(z)hT

b
∂x
∂t

dz (2.17)

Substituting for ∂x/∂t from the system dynamics with the input given by equation

(2.14), we get:

dŷ(t)
dt

=
∫ L

0
c(z)hT

b

(
A

∂x
∂z

+Bx+Gδ(z)xm(z, t)
)

dz (2.18)

The characteristic index of ŷ(t) with respect to input u(z, t) will be finite if and only
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if c(z) is chosen such that: ∫ L

0
c(z)δ(z)dz 6= 0 (2.19)

Hence, any smooth function c(z) that approximates δ(z−L) but also satisfies c(0) 6=

0 can be chosen for the new output to “collocate” the input and output variables

[20]. We adopt this definition of the characteristic index as the SIP for the case

of boundary input - boundary output. This definition can be directly extended to a

MIMO boundary input - boundary output case too.

2.4 Equation Graphs of a Network of Hyperbolic PDE

Systems

We now propose a graph representation of a network comprising hyperbolic PDE systems.

This representation can be seamlessly integrated with a standard equation graph represen-

tation of ODE systems, thus allowing the graph theoretic analysis of networks comprising

both LPSs and DPSs. For this purpose, the following graph representation of a network is

proposed:

• There is a node for every input variable, which could be a manipulated velocity

vi(t), or a finite dimensional distributed input ûi(t) (equation (2.11)) or a boundary

manipulation xi(zb, t) acting at spatial location zb = 0 or L.

• There is a node for every output variable, which could be the finite dimensional

distributed output ŷ j(t) (equation (2.12)), or spatially averaged output ŷ(t) defined

to capture the boundary outputs (equation (2.16)).

• There is a node for every spatially averaged state variable defined by:

x̂m(t) =
∫ L

0
cm(z)xm(z, t)dz (2.20)
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where cm(z) is a smooth shaping function defined on [0,L]. The spatial averaging for

the state variables is performed for consistency since every input and output variable

on the equation graph is a function of time alone. The weight functions (cm(z) in

equation (2.20)) are consistent with those used for the output variables.

• There is an edge from vi(t) to x̂m(t) if vi(t) contributes to the convective transport

of state variable xm(t).

• There is an edge from ûi(t) to x̂m(t) if ûi(t) appears in the first-order time derivative

of x̂m(t).

• There is an edge from xi(zb, t) to x̂m(t) if xi(zb, t) is the boundary condition of

xm(z, t).

• There is an edge from x̂m(t) to x̂n(t) if x̂m(t) appears in the first-order time derivative

of x̂n(t).

• There is an edge from x̂m(t) to any output variable node if the output variable is a

linear function of the state variable x̂m(t).

In this equation graph,

• A path is defined as the sequence of edges such that an edge terminates at the node

from which the succeeding edge of the sequence begins [10]. An input-output path

begins at an input node and terminates at an output node.

• The number of edges contained in a path is called the length o f the path.

In an equation graph as that defined above, the following theorems hold, which generalize

a similar result for ODE systems [10].
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Theorem 1: In the equation graph of a linear first-order hyperbolic PDE system with

velocity manipulation vi(t) and a boundary output ŷ j(t), let the length of the shortest path

from vi(t) to ŷ j(t) be li j and the corresponding SIP be σi j. Then

σi j = li j−1 (2.21)

The proof of Theorem 1 is given in the Appendix A.

Theorem 2: In the equation graph of a linear first-order hyperbolic PDE system with

a distributed input ûi(t) and a distributed output ŷ j(t), let the length of the shortest path

from input ûi(t) to output ŷ j(t) be li j and the corresponding SIP be σi j. Then

σi j = li j−1 (2.22)

The proof of Theorem 2 is given in Appendix B.

Corollary 1: In the equation graph of a linear first-order hyperbolic PDE system with

a boundary input ui(t) and a boundary output ŷ j(t), let the length of the shortest path from

input ui(t) to output ŷ j(t) be li j and the corresponding SIP be σi j. Then

σi j = li j−1 (2.23)

Corollary 1 follows from Theorem 2, because a boundary input - boundary output

pair is a special case of a distributed input - distributed output pair; its proof is therefore

omitted.
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2.5 Illustrative Example

The proposed graph representation is now illustrated by an example comprising of both

LPSs and DPSs. Specifically, consider the network shown in figure 2.2, of an ideal con-

tinuous stirred tank reactor (CSTR, an ODE system) connected in series with a plug flow

reactor (PFR, a first-order hyperbolic PDE system).

Figure 2.2: CSTR and PFR in series

The fluid in these reactors is incompressible. A reactant at concentration C0(t) is fed

to the CSTR, where it reacts at concentration C1(t). The temperature in the CSTR is T1(t).

In the PFR, the concentration profile is C2(z, t) and the temperature profile is T2(z, t). The

rate constant of the reaction follows the Arrhenius equation, k(T ) = k0e−EA/RT , and the

enthalpy of the reaction is ∆H. The manipulated variables in the network are:

• v(t): the flow velocity of the fluid in the system.

• Q(t): the heat input given to the CSTR.

• TS(z, t): the temperature profile in the jacket of the PFR.

The controlled outputs in the network are:

• T1(t): the temperature in the CSTR.

• T2(L, t): the temperature at the exit of the PFR.

• C2(L, t): the concentration of the reactant at the exit of the PFR.
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The CSTR has volume V1 and residence time τ1. The PFR has space-time τ2. The fluid

has density ρ and specific heat capacity Cp.

The material and energy balance equations, with the boundary inputs incorporated us-

ing the Dirac delta function are given by:

dC1

dt
=

C0−C1

τ1
− k(T1)C1 (2.24)

dT1

dt
=

T0−T1

τ1
+

Q
ρCpV1

+
−∆H
ρCp

k(T1)C1 (2.25)

∂C2

∂t
=−v

∂C2

∂z
− k(T2)C2 + vδ(z)C1 (2.26)

∂T2

∂t
=−v

∂T2

∂z
+

hA(Ts−T2)

ρCp
− ∆H

ρCp
k(T2)C2 + vδ(z)T1 (2.27)

Figure 2.3: Equation graph of CSTR-PFR in series

The equation graph for this network, after reformulating the variables as discussed

previously, is given in figure 2.3. It can be seen from the equation graph that the length

of the path from v(t) to T1(t) is 2. Equivalently, v(t) appears in the first time derivative

of T1(t), so the relative degree of T1(t) with respect to v(t) is 1. Similar is the case for all
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other input-output interactions. The SIPs can, thus, be calculated from the equation graph

using the theorems and the corollary stated above as:

T1 T̂2(t) Ĉ2(t)


v(t) 1 1 1

Q(t) 1 3 2

T̂S(t) ∞ 2 1

2.6 Conclusions

We consider the case of convection-reaction systems modeled using linear, first-order hy-

perbolic PDEs. For the different types of input and output variables in these systems, we

propose a relative degree analogue called the SIP, and establish a relationship between the

SIP and the equation graph representation of the hyperbolic PDE systems. This relation-

ship is also analogous to that between relative degree and LPS equation graphs. We use

this relationship to determine the structural distance among different input and output vari-

ables in a network of a CSTR and a PFR. This chapter forms the basis for the case study

of plant-wide control of an amine gas sweetening plant discussed in the next chapter.
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Chapter 3

Distributed Control of an Amine Gas

Sweetening Plant *

3.1 Introduction

Natural gas is a widely used petroleum based fuel that provided nearly a quarter of the

global energy demand in 2010 [42]. Natural gas from a large fraction of reserves con-

tains sour gases like hydrogen sulphide (H2S) and carbon dioxide (CO2) [42]. CO2 has no

heating value. Also, these sour gases cause corrosion in the pipelines. To minimize corro-

sion and meet the fuel specifications, the sour gases need to be removed from natural gas

before it can be used as a fuel [43, 44]. Several technologies have been implemented for

the removal of sour gases, such as physical absorption, chemical absorption, adsorption,

and membrane based separation [42,45]. The conventional approach for the simultaneous

removal of these sour gases is the use of amines [42, 44]. Absorption of H2S and CO2

by contacting natural gas in packed columns with monoethanolamine (MEA) is a widely

*Reprinted with permission from Manjiri Moharir, Davood B. Pourkargar, Ali Almansoori
and Prodromos Daoutidis, Industrial & Engineering Chemistry Research, 57(39) (2018),
https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b01291. Copyright ©2018, American Chemical Soci-
ety
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used commercial technology [42, 46]. Due to economic and environmental concerns, the

spent solvent is regenerated in stripper columns using steam, wherein the sour gases are

removed from the solvent. This regenerated solvent is recycled into the absorber column.

To ensure that the specifications of the sour gas content in the sweetened gas are met with

minimum waste of amine, effective control of the gas sweetening plant is crucial. Using

amines for sour gas removal is of interest not just for natural gas processing, but also for

post-combustion CO2 capture [45].

A lot of research has been dedicated towards amine-based absorption and solvent re-

generation for sour gas removal. Areas of focus have been the kinetics and solubilities of

sour gases in amine solvents [47–51], degradation of and corrosion from solvents [52–54],

selection of solvents [46,54–57] etc. The models of sour gas absorption in amine solvents

are derived following an equilibrium-based approach (in which the liquid and gas streams

are assumed to attain chemical equilibrium at a theoretical stage) or a rate-based approach

(the rates of mass and heat transfer are incorporated into the model). Rate-based ap-

proaches are more rigorous in general [44, 45, 58]. Several studies have focused on build-

ing a realistic rate-based model for the absorption of sour gases in amine solvents with the

aim of estimating the enhancement factors in the absorption kinetics [59–62], coupling of

interfacial transport processes with material and energy balances in the column [63–65],

and gauging dominating film resistances and thermal effects [58]. The modeling of the

absorber and the regenerator dynamics has also been a focus of research [66,67]. For post-

combustion CO2 absorption, performance maintenance during varying loads, the effects

of start-up and load variation, and the effects of energy consumption and reboiler duty on

meeting the specifications have been studied via rigorous dynamic models [67–70]. For

the gas sweetening process, the absorber and regenerator were modeled in TSWEET [71],

HYSYS [43,72,73] and ASPEN [74] to study the effects of mixed amine solutions on sour

gas absorption from natural gas [71, 72], the effect of the incoming solvent temperature
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on sour gas absorption [73], the effects of temperature, solvent circulation rate and amine

concentration on the amine absorption rate [74], and to determine the nominal process

parameters for optimal economics [43].

On the control side, SISO generalized predictive control [75] and MPC [76] have been

implemented on a CO2 absorption column, neglecting the effect of the interactions among

different process units in the plant. Control structures have been designed for single-stage

post-combustion amine absorption and solvent regeneration for minimizing the cost and

energy demand for varying operating ranges [77] and for plant-wide control based on

heuristics [78]. Post combustion carbon capture is a different operation as compared to

the amine gas sweetening process in terms of operating conditions, possible disturbances

and product specifications. To the best of our knowledge, little work seems to have been

done towards the plant-wide control of the gas sweetening process [76]. Motivated by

this, we aimed to design and evaluate plant-wide model-based controllers for a two-stage

amine gas sweetening plant.

MPC is a widely implemented control strategy for chemical processes. A potential

limitation of MPC is the solvability of the underlying optimization problem in real time

for large scale processes. The development of optimization methods to overcome this

limitation is an active subject of research [79–81]. One of the ways of overcoming this

limitation is to implement MPC through separate local controllers, each of which handles

the control problem of a smaller part of the large scale process, with varying degrees of

interaction and communication. This is the distributed MPC (DMPC) approach, which

represents a middle ground between a fully centralized control of a large scale process

and a fully decentralized control, which is often rendered ineffective by a high degree

of material and energy interactions among the process units [3, 28, 35]. The decompo-

sition of the large control problem into smaller sub-problems has a significant effect on

the control performance of DMPC [2]. To this end, as mentioned in the previous chapter,
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network theory-based methods to obtain decompositions of process networks comprising

LPSs modeled by ODEs with varying degrees of decentralization have been recently de-

veloped [4, 5] and their extension to process networks that include convection-reaction

systems modeled by first-order hyperbolic differential equations has been proposed [82].

Also, a method to obtain the optimal decomposition based on the notion of modularity [7]

has been proposed. The impact of the optimal decomposition has been investigated for

distributed control designs considering different classes of dynamic optimization solvers,

different levels of cooperation and communication between local controllers, for general

set-point tracking problem over a wide operating range [83]. A systematic study [2] that

compares the performances of DMPC based on various decomposition algorithms that

have been proposed in the literature, concludes that implementing DMPC on the optimal

distributed architecture obtained through the modularity maximization algorithm [7] has

a performance comparable to that of fully centralized MPC but with significantly reduced

computational cost.

This motivates us to test the application of DMPCs to the amine gas sweetening plant.

More specifically, our aims are:

1. to implement DMPC on a rate-based model of a two-stage amine gas sweeten-

ing network, which includes material and heat integration among six convection-

reaction systems, using the optimal decomposition obtained from modularity maxi-

mization [7];

2. to test the efficacy of the above distributed control structure, the impact of different

decompositions, and the performance and computational requirements of different

architectures including fully centralized and decentralized ones.

As such, this work is the first DMPC implementation of network decomposition al-

gorithms for distributed parameter process networks, as well as a model-based plant-wide
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control study of a realistic amine gas sweetening plant.

3.2 The Amine Gas Sweetening Plant

3.2.1 Plant Description

The gas sweetening plant we considered is a two-stage absorption and regeneration net-

work (Figure 3.1) [84]. There are two absorbers with inert packing connected in series.

Natural gas containing sour gases like hydrogen sulphide and carbon dioxide is contacted

with solvent streams containing aqueous MEA solution in the absorber columns. The

solvent streams from each of the absorber columns are sent to the respective regenerator

columns, where the streams are contacted with fresh steam. The flowrates of steam to each

of the regenerator columns are separately manipulated. The steam absorbs the sour gases

from the aqueous MEA, thus regenerating the solvent. The lean solvent is then recycled

to the absorber columns. The heat exchangers are used for pre-heating the feed gas going

into the first-stage absorber and cooling the solvent stream going into the second-stage

absorber. There are other process units in the plant, such as pumps and valves, whose dy-

namics are much faster as compared to the aforementioned processes. Also, buffer tanks

are often included in the plant to reduce the interactions among the columns. In our study,

we have excluded these processes. Instead we focus at the core process network in the

integrated gas sweetening plant.

3.2.2 Plant Model

The absorption and regeneration columns were modeled assuming negligible axial and

radial dispersion. The liquid and gas phase flowrates, heat capacities and densities were

assumed to be constant since the concentrations of the species transferred across phases
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Figure 3.1: Amine gas sweetening plant

are typically low. Mass transfer rate-limited absorption was modeled using the two-film

theory [45]. In the liquid phase, CO2 and H2S react with the amine. The reactions, which

are assumed to be in equilibrium, are:

CO2 +2MEA
MEAH++MEACOO− (3.1)

H2S+MEA
MEAH++HS− (3.2)

The total carbon and sulfide content in the liquid phase is the sum of the concentrations of

the ionic and non-ionic forms of the species:

Cl
C =Cl

CO2
+Cl

MEACOO− (3.3)

Cl
S =Cl

H2S +Cl
HS− (3.4)
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We assume that no reaction occurs in the gas phase due to negligible concentration of

amine. With the aforementioned assumptions, the material balance in the gas and liquid is

given by:
∂Cg

i
∂t

=−vg ∂Cg
i

∂z
−Ni (3.5)

∂Cl
i

∂t
= vl ∂Cl

i
∂z

+Ni (3.6)

In the above equations, Cg
i and Cl

i represent the concentration of species i (carbon or

sulphide) in the gas and liquid phase respectively (mol/m3), t is time (s), vg is the gas

velocity (m/s), vl is the liquid velocity (m/s), z is the axial coordinate (m). Ni is the mass

transfer rate in mol/m3-s, which is given by

Ni = Kova(P−Peq(T )) (3.7)

where a is the area per unit volume available for the given packing, and Kov is the overall

mass transfer coefficient given by

1
Kov

=
δl

ED l +
RT gδg

Dg (3.8)

where R is the universal gas constant, T g is the gas side temperature, E is the enhance-

ment factor (which reduces the liquid side resistance [58]), D l and Dg are the diffusion

coefficients of a species in the liquid and gas phase respectively [85], and δl and δg are

the widths of the stagnant films on the liquid and gas side [86] respectively. The driving

force for mass transfer depends on the partial pressure of the species in the gas phase (P in

equation (3.7)) and the equilibrium pressure (Peq(T )) dictated by the vapor-liquid equilib-

rium. The partial pressure in the gas phase is calculated from the gas phase concentration

assuming ideal gas behavior. The equilibrium pressure is calculated assuming that Henry’s
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Law holds. Henry’s constant is calculated using the following equation:

H(T ) = H0exp
(

d(ln(H(T )))
d(1/T )

(
1/T −1/T 0)) (3.9)

where H0 is the Henry’s constant value at the reference temperature T 0. The value of

d(ln(H(T )))/ d(1/T ) is taken as a species-specific constant [87]. The energy balance

equations for the absorber and the regenerator columns are given by:

∂T l

∂t
= vl ∂T l

∂z
+

∑ j N j

∑ j(Cl
jC̃p, j)

∆H̃v−
ah(T l−T g)

∑ j(Cl
jC̃

l
p, j)

(3.10)

∂T g

∂t
=−vg ∂T g

∂z
+

ah(T l−T g)

∑ j(C
g
jC̃

g
p, j)

(3.11)

where C̃p (J/mol-K) is the molar specific heat capacity, h (J/m2-s-K) is the heat transfer

coefficient, t (s) is the time, T (K) is the temperature of the stream, and ∆H̃v (J-m3/mol)

is the enthalpy released by the mass transfer. The superscript l denotes the liquid stream,

and g denotes the gaseous stream. The heat transfer coefficient is calculated using the

following equation:

1/h = 1/hl +1/hg (3.12)

where hl and hg are the heat transfer coefficients for this system on the liquid and gas side

respectively [85].

The heat exchangers are modeled assuming negligible axial and radial dispersion.

There is no phase change in either of the heat exchangers. The change of heat capacities

with respect to the temperature is neglected. The model equations of the heat exchangers

are given by:
∂Th

∂t
=−vh

∂Th

∂z
− UA

mhCph
(Th−Tc) (3.13)
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∂Tc

∂t
= vc

∂Tc

∂z
+

UA
mcCpc

(Th−Tc) (3.14)

Cp (J/kg-K) is the mass specific heat capacity, m (kg/s) is the mass flow rate, v (m/s)

is the flow velocity, UA (J/K) is the overall heat transfer coefficient multiplied by the

area available in the heat exchangers, subscript h represents the hot stream in the heat

exchanger, and subscript c denotes the cold stream in the heat exchanger.

The system is simulated from the start-up conditions, so the initial values of all the

state variables were assigned a number as close to zero as was acceptable for the solver

without making the system singular. The process parameter values are listed in Table 3.1

and the boundary conditions for each of the columns which are dependent on the state

variables of the interconnected columns are listed in Table 3.2. In the tables, C represents

concentration of the component being absorbed, T is the stream temperature, subscripts

A j, S j and HE j represent that the variable is associated with the absorber, stripper or heat

exchanger of index j, t is the time, L is the axial length of the column, and the superscripts

l and g represent the liquid or gaseous phase of the stream.

Since all the columns and heat exchangers operate in counter-current mode, we im-

plemented forward and backward finite-differences to discretize the PDEs of the model

(Figure 3.2). This discretization scheme was chosen over more advanced ones for sim-

plicity. For the streams where the boundary conditions were applied at z = 0, backward

finite differences were implemented:

∂x
∂z

∣∣∣∣
k
=

xk− xk−1

∆z
(3.15)

For the streams where the boundary conditions were applied at z = L, forward finite dif-

ferences were implemented:
∂x
∂z

∣∣∣∣
k
=

xk+1− xk

∆z
(3.16)
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Table 3.1: Process parameter values

Parameters Values
a 198 m−1

C̃p
l 4.19 kJ/kg-K

C̃p
g - Natural gas 2.8 kJ/kg-K
C̃p

g - Steam 1.9 kJ/kg-K
h 0.5 W/m2-K

H0 - CO2 0.035 mol/kg-bar
H0 - H2S 0.1 mol/kg-bar

d(ln(H(T )))/ d(1/T ) - CO2 2400 K
d(ln(H(T )))/ d(1/T ) - H2S 2300 K

∆H̃v -84 kJ/mol
Kov 9.4 × 10−6 mol/m2-s-Pa
LA 10 m
LS 10 m

LHE 3 m
ρl 1000 kg/m3

ρg 1 kg/m3

T0 298 K
UA 10 W/m2-s

Figure 3.2: Discretization of the distributed variables
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Table 3.2: Boundary conditions of the model equations

Variables Boundary condition
Cg

A1,CO2
(t,0) 2.23 mol/l

Cg
A1,H2S(t,0) 3.23 mol/l

Cl
A1,CO2

(t,LA1) Cl
A2,CO2

(t,0)
Cl

A1,H2S(t,LA1) Cl
A2,H2S(t,0)

T g
A1
(t,0) T c

HE1
(t,0)

T l
A1
(t,LA1) T l

A2
(t,0)

Cg
S1,CO2

(t,0) 0 mol/l
Cg

S1,H2S(t,0) 0 mol/l
Cl

S1,CO2
(t,LS1) Cl

A1,CO2
(t,0)

Cl
S1,H2S(t,LS1) Cl

A1,H2S(t,0)
T g

S1
(t,0) 373 K

T l
S1
(t,LS1) T l

A1
(t,0)

T h
HE1

(t,0) T g
A1
(0,LA1)

T c
HE1

(t,LHE1) 273 K
Cg

A2,CO2
(t,0) Cg

A1,CO2
(t,LA1)

Cg
A2,H2S(t,0) Cg

A1,H2S(t,LA1)

Cl
A2,CO2

(t,LA2) Cl
S2,CO2

(t,0)
Cl

A2,H2S(t,LA2) Cl
S2,H2S(t,0)

T g
A2
(t,0) T h

HE1
(t,LHE1)

T l
A2
(t,LA2) T h

HE2
(t,LHE2)

Cg
S2,CO2

(t,0) 0 mol/l
Cg

S2,H2S(t,0) 0 mol/l
Cl

S2,CO2
(t,LS2) Cl

A2,CO2
(t,0)

Cl
S2,H2S(t,LS2) Cl

A2,H2S(t,0)
T g

S2
(t,0) 373 K

T l
S2
(t,LS2) T c

HE2
(t,0)

T h
HE2

(t,0) T l
S2
(t,0)

T c
HE2

(t,LHE2) T l
A2
(t,0)
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In the above equations, k represents the index of the discrete variable, and ∆z represents

the spatial discretization step. By doing this the system of PDEs is transformed into a

system of ODEs of the form:

ẋ(t) = f (x(t))+g(x(t))u(t) (3.17)

y(t) = h(x(t)) (3.18)

where x is the vector of all the discretized distributed (i.e., functions of both space and

time) variables, y is the vector of the outputs of the system, f (x(t)), g(x(t)) and h(x(t))

are smooth functions. u(t) is the vector of manipulated inputs to the network. We used

30 discretization points for the absorber and stripper columns, and 10 points for the heat

exchangers, since with finer discretization we found the steady state profiles to change

negligibly. The model has a total of 741 discretized state variables (from the original

28 distributed state variables). For the control implementation, we used a reduced model

which has 233 discrete state variables. It was found that using the reduced model produces

a solution within 10% from the model’s exact solution in open-loop simulation and reduces

the computation time for the controller, without significantly compromising the closed-

loop performance. Thus, the state vector x has dimensions of 741×1 for the model and

233×1 for the controller. We considered 6 inputs and 5 outputs, which are discussed in

the sections that follow. So, u has the dimensions of 6×1, and y has the dimensions of

5×1.

3.3 Model Predictive Control Architectures

Two MPC formulations were considered for the plant-wide control. These are discussed

below.
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Figure 3.3: Centralized MPC

3.3.1 Centralized MPC

A single controller is used (Figure 3.3) for which the optimized input variable profiles are

calculated by solving the following optimization problem:

minimize
u

∫ tk+N

tk
((y−ySS)

T P(y−ySS)+ (u−uSS)
T W(u−uSS))dt

subject to ẋ(t) = f (x(t))+g(x(t))u(t), y(t) = h(x)

umin ≤ u(t)≤ umax(t)

F (x,u, t)≤ 0

G(x,u, t) = 0

(3.19)

where tk is the sampling time for the kth sample, and N is the number of samples in

the prediction horizon. The subscript SS denotes the steady-state values of the state and

manipulated input variables. The matrices P and W are positive definite matrices of con-

forming dimensions used to allocate weights to the state regulation errors and manipulated

input variables. The weights are chosen as the inverse of the magnitudes of the input and

output variables at steady state to ensure that the contribution of all the manipulated and

controlled variable errors in the objective function have comparable orders of magnitudes.

The first constraint comes from the plant model (equation (3.17)). The second constraint

implements bounds on the manipulated input variables. In a general MPC formulation,

the third and fourth constraints are equalities and inequalities associated with the system.

In our work, we incorporated these constraints in the model equations, e.g., the tempera-

ture dependence of the mass transfer coefficient as shown in equation (3.8) was implicitly
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satisfied in the MPC formulation through the model equations. This problem computes

the temporal profiles of the piece-wise constant decision variables, which are the manipu-

lated inputs over the prediction horizon [tk, tk+N ] and implements the first of the calculated

values (which is a constant over the period [tk, tk+1)). The same procedure is repeated for

the next prediction horizon [tk+1, tk+1+N ].

3.3.2 Distributed MPC

In DMPC multiple local controllers are used. A prerequisite to DMPC is the decomposi-

tion of the plant into M interacting subsystems given by:

ẋm(t) = fm(x(t))+gm(x(t))um(t) ∀m ∈ {1,M} (3.20)

ym(t) = hm(x) (3.21)

where the subscript m is the index of the subsystem. The subsystems comprise the com-

ponents of the original plant, so that

xT = [xT
1 xT

2 . . . xT
M] (3.22)

uT = [uT
1 uT

2 . . . uT
M] (3.23)

and

yT = [yT
1 yT

2 . . . yT
M] (3.24)

fm and gm are the components of f and g respectively which capture the dynamics of

xm. We use a modularity-based decomposition algorithm [40] to obtain the optimal de-

composition of the amine gas sweetening plant, which is discussed subsequently in this

section.
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Figure 3.4: Iterative distributed MPC

We have implemented an iterative, non-cooperative DMPC scheme (Figure 3.4) [2],

in which the objective function of the local controller of each subsystem includes only the

variables associated with that subsystem, and the different controllers ‘communicate’ the

latest values of their individual manipulated inputs to each other to iteratively approach

the optimal profiles for all the input variables [2,88]. The optimization problem for a local

controller which calculates the optimal inputs for the mth subsystem is given by:

minimize
u(m)

∫ tk+N

tk
((y−ySS)

T P(m)(y−ySS)+ (u−uSS)
T W(m)(u−uSS))dt

subject to ẋ(t) = f (x(t))+g(x(t))u(t), ym(t) = hm(x)

umin
(m) ≤ u(m)(t)≤ umax

(m) (t)

F(m)(x(m),u(m), t)≤ 0

G(m)(x(m),u(m), t) = 0

(3.25)

where P(m) and W(m) contain the weights associated with the inputs and outputs of the mth

subsystem, and F(m) and G(m) are the corresponding inequality and equality constraints.

Note that the entire model is included as a constraint in all the local controllers’ optimiza-

tion problems, since such a formulation has a better performance as compared to assigning
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individual subsystem models as constraints to their corresponding controllers. For DMPC,

a crucial step is the decomposition of the network into sub-networks such that the inter-

action among the sub-networks is minimal. The following section describes the method

used to obtain such a decomposition for the amine gas sweetening plant.

3.4 Network Decomposition

The absorber columns are interconnected through the natural gas stream. The first-stage

absorber and regenerator column are interconnected with a common solvent stream, as are

the second-stage absorber and regenerator columns. So all the columns interact strongly

with each other. The natural gas exiting the second-stage absorber column is required to

meet the sour gas concentration specifications required for it to be used as a fuel. We

select as controlled outputs, the sour gas content in the natural gas streams leaving the first

and second absorber columns. We also select the H2S composition in the solvent stream

leaving the first-stage absorber column to ensure that the solvent to natural gas ratio is

maintained at a value that effectively removes most of the corrosive sour gas in the first-

stage itself. Due to the interconnections among the absorber and regenerator columns, the

manipulated inputs available are the flow velocities of the solvent and of steam in the two

stages, and the temperature of the feed natural gas. Tables 3.3 and 3.4 list the manipulated

inputs and controlled outputs of the plant.

The decomposition of the plant that would result in effective control using DMPC is

not obvious due to the interactions among the various process units. The method dis-

cussed in the previous chapter [82] for obtaining the optimal decomposition of a network

of convection-reaction systems based on the strength of the structural interactions among

the variables of the network, captured by an equation graph is applied to obtain the opti-

mal decomposition of the amine gas sweetening plant. Two algorithms are proposed for
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Table 3.3: List of inputs

Symbol Description
u1 Inlet natural gas temperature
u2 First-stage solvent flow velocity
u3 Second-stage solvent flow velocity
u4 Second-stage steam flow velocity
u5 First-stage steam flow velocity
u6 Steam temperature

Table 3.4: List of outputs

Symbol Description
y1 CO2 concentration in the gaseous stream exiting absorber A-01
y2 H2S concentration in the gaseous stream exiting absorber A-01
y3 H2S concentration in the liquid stream exiting absorber A-01
y4 CO2 concentration in the gaseous stream exiting absorber A-02
y5 H2S concentration in the gaseous stream exiting absorber A-02

the decomposition, adopted from the corresponding algorithms for ODE system networks.

The first algorithm considers the input-output interaction strength as captured by the SIP

values, and determines hierarchical decompositions of only the input and the output vari-

ables [4]. This algorithm follows a bottom-up approach, that is, starting from a fully

decentralized control configuration, the variables are clustered hierarchically to a fully

centralized configuration. The optimal decomposition is selected based on the modularity

values of the decompositions at various hierarchies [6]. The second algorithm considers

the interactions among the input, state and output variables, and determines the optimal

decomposition of these variables based on modularity maximization [7]. This algorithm

follows a top-down approach, that is, starting from a fully centralized configuration, the

clusters of input, output and state variables are bisected until further decomposition does

not yield an increase in modularity are found to be less that the previous decomposition.
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3.4.1 Input/Output Clustering

Step 1: Structural Interaction Matrix Calculation

We consider a network of interconnected systems modeled by ODEs and first-order hy-

perbolic PDEs. From the network model, the equation graph of the network is obtained.

The shortest path lengths from each input variable to each output variable are calculated

from the equation graph using Dijkstra’s algorithm, which determines the shortest path

between any two vertices of a graph. We form the structural interaction matrix (SIM), M,

as a matrix whose elements, σi j, are the SIPs (if it is a PDE system) or the relative degrees

(if it is an ODE system) of the output y j with respect to the input ui.

Step 2: Decentralized Decomposition

An optimal fully decentralized decomposition is obtained by maximizing the value of [4]:

JDC =
nu

∑
i=1

nu

∑
j=1

(σi j−σii) (3.26)

i.e. pairing inputs and outputs so that the differences between the off-diagonal and diag-

onal SIPs are maximized. nu is the number of input and output variables in the network

(assumed equal). We define the structural decoupling matrix (SDM) whose i jth element is

given by [6]:

si j = max
{ nu

∑
k=1

σik +
nu

∑
k=1

σk j− (nu +nu)σi j,0
}

(3.27)

si j is a measure of how decoupled an input-output pair is from all other inputs and outputs

in the network. Using si j, the optimization problem can be reformulated as an integer

program by re-defining the objective function to be maximized as:

JDC =
nu

∑
i=1

ny

∑
j=1

si j pi j (3.28)
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where pi j is a binary variable which has the value 1 if ui and y j are selected as an input-

output pair and the value 0 otherwise. The optimal solution obtained from this integer

programing problem yields a nu×nu matrix Popt containing all the pi j’s. The SIM of the

optimal decentralized-control decomposition is given by:

Mopt = PT
optM (3.29)

The diagonal elements of Mopt are the SIPs corresponding to each input-output pair. It is

possible that there are multiple such optimal decompositions.

In the case where the inputs are more than the outputs (nu > ny), the above procedure

results in a square ny×ny matrix Mopt , in which nu−ny inputs are not associated with any

output and are not considered further.

Step 3: Agglomerative Clustering Procedure

Starting from the optimal decentralized decomposition, clusters of input-output pairs are

formed in a hierarchical manner until a single cluster is obtained. This agglomerative

clustering procedure is as follows [4]:

• Two input-output pairs, {ui,yi}, {u j,y j} are structurally close if the {ui,y j} and

{u j,yi} interactions are comparable to the {ui,yi}, {u j,y j} interactions (i.e., the off-

diagonal SIPs, σi j and σ ji are comparable to the diagonal SIPs, σii and σ j j). The

following measures of distance among input-output pairs are considered:

1. di j = max{σi j,σ ji}−σii+ max{σi j,σ ji}−σ j j

2. δi j = min{σi j,σ ji}−σii+ min{σi j,σ ji}−σ j j

3. ∆i j = max {σi j,σ ji}

di j captures the largest difference between off-diagonal and diagonal SIPs for the
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two input-output pairs. δi j is the smallest difference between off-diagonal and diag-

onal SIPs. ∆i j is simply the largest off-diagonal SIP.

• A distance among input-output clusters is then defined. The following are the cor-

responding measures of the distance among clusters:

1. d(A,B) = max{d(a,b) : a ∈ A,b ∈ B}

2. δ(A,B) = min{δ(a,b) : a ∈ A,b ∈ B}

3. ∆(A,B) = max{∆(a,b) : a ∈ A,b ∈ B}

where, A and B are input-output clusters, a and b are individual inputs or outputs in

the clusters.

• For clustering the following procedure is followed:

1. At each level of clustering, compute the matrices Dd , Dδ and D∆ for all input-

output clusters (or pairs, in the case of the first level of clustering); these ma-

trices have as elements the distance measures d, δ and ∆, respectively, between

two clusters.

2. Determine the pair of input-output clusters for which the distance d is mini-

mum, and merge them.

3. If there are more than one such pair of clusters, compare the values of δ and

∆ of the two input-output clusters, and merge the ones with the minimum dis-

tance.

4. If there are more than one pair of clusters with identical distance measures d,

δ and ∆, create separate configurations for further clustering.

5. Continue 1-4 until a single cluster is obtained.
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The algorithms used for the calculation of the SIM and the agglomerative clustering

are polynomial and linearithmic time algorithms respectively, and hence scale well

with the size of the network [6].

Step 4: Optimal Process Network Decomposition

A notion of modularity [21] is used to compare the process network decompositions at

all levels of the hierarchical clustering. A decomposition with a high modularity value is

such that the variables within a sub-network have strong interactions among themselves,

and weak interactions with the variables outside the sub-network. The decomposition with

the highest value of modularity is optimal. The modularity matrix, B is expressed as [6]:

B =

{
bi j|bi j =

m̃i j

∑i j m̃i j
− ∑k m̃ik ∑k m̃k j

(∑i j m̃i j)2

}
(3.30)

where m̃i j is the inverse of mi j, the i jth entry in Mopt . δi jk is a binary variable defined as

δi jk =


1, if ui and y j are included in the kth cluster

0, otherwise
(3.31)

The overall modularity of the network with nk clusters is:

Q =
nk

∑
k=1

∑
i, j

(
m̃i j

∑i j m̃i j
− ∑k m̃ik ∑k m̃k j

(∑i j m̃i j)2

)
δi jk (3.32)

The modularities of all decompositions are calculated and the one with the maximum

modularity is selected as the optimal.
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3.4.2 Modularity Based Decomposition of Equation Graph

The network is modeled as interconnected LPSs and DPSs. From the model, the equation

graph of the network is obtained. The equation graph is used to determine the adjacency

matrix A (a matrix such that the element Ai j of the matrix is 1 if there is an edge from the

node j to the node i, and 0 otherwise). The value of the modularity is [7, 40]:

Q =
1

4m
sT (B +BT )s (3.33)

where B , the modularity matrix, is a matrix whose elements are given by:

Bi j = Ai j−
kin

i kout
j

m
(3.34)

where m is the total number of edges in the equation graph of the network, Ai j is the i jth

element of A , and kin
i and kout

i are the in-degree and out-degree of the node i respectively.

The vector s is the bisection vector, whose elements are given by:

si =


1 if node i belongs to community 1

−1 if node i belongs to community 2
(3.35)

In order to determine s (representing the decomposition) that maximizes the modularity,

the following approach is followed [40]:

• Determine the largest positive eigenvalue λmax of (B +BT ) and the corresponding

eigenvector v̄max.

• Assign the node i to community 1 if the ith element of v̄max is positive and to com-

munity 2 of it is negative.

• Transfer each node to the other community one at a time and check if the modularity
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increases by doing so. If it does, update the configuration.

Further bisections of the smaller communities are obtained by maximizing the change in

modularity when a community is bisected, which is given by:

∆Q =
1

4m
sT (B(c)+BT

(c))s (3.36)

where B(c) is the modularity matrix of the bisected community. The decomposition in

which no further community bisection increases the modularity is the optimal one. This

algorithm has an average running time of O(n2log n) where n is the total number of nodes

in the equation graph [7].

3.4.3 The Optimal Decomposition

All the decompositions obtained from the modularity based algorithm discussed in Sec-

tion 3.4.2 in which each community has at least as many manipulated input variables as

controlled output variables are shown in Figure 3.5.

The optimal decomposition is the one with the maximum modularity value. We obtain

the same optimum decomposition from both the aforementioned algorithms. In this de-

composition, the variables of the first-stage absorption-regeneration form one community

and those of the second stage form the other community. This decomposition is shown in

Table 3.5 and in Figure 3.6. In Figure 3.6, the inputs and the outputs and their intercon-

nections with each other and with the state variables are shown in the equation graph. The

state variables (shown as the unlabeled nodes on the equation graph) are listed around the

corresponding process units in the process flow diagram. The higher modularity value of

this decomposition indicates that the interactions among the process units linked with a

common solvent stream (the absorber and regenerator columns in each stage) are stronger

than the interactions among the units associated with a common natural gas stream like
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Figure 3.5: Controllable decompositions

the first- and second-stage absorber columns. This is because the sour gas concentrations

in all the liquid and gaseous streams in the plant are predominantly influenced by the ab-

sorption into and from the solvent stream. Also, the heat released in the solvent stream

due to the mass transfer has an impact on the temperatures of the streams in each of the

columns.

A sub-optimal decomposition obtained is one in which the community containing the

variables associated with the first-stage absorption-regeneration is further bisected to sep-

arate the liquid-side composition control problem from the gas-side composition control

problem. Since the material (and energy) balances of both the streams in an absorption-

regeneration stage are intertwined, the separation of these control problems results in a

decomposition which is slightly less than optimal as reflected in the modularity values.

The variables of the communities in the sub-optimal decomposition are listed in Table 3.6.

Further bisection of the aforementioned communities results in communities which have

fewer inputs than outputs, and are thus, not considered.
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Table 3.5: Communities in the optimal decomposition

Variables Community 1 Community 2

Input
u1 u3
u2 u4
u5 u6

State

Cg
A1,CO2

Cg
A2,CO2

Cg
A1,H2S Cg

A2,H2S
Cl

A1,CO2
Cl

A2,CO2

Cl
A1,H2S Cl

A2,H2S
T g

A1
T g

A2

T l
A1

T l
A2

Cg
S1,CO2

Cg
S2,CO2

Cg
S1,H2S Cg

S2,H2S
Cl

S1,CO2
Cl

S2,CO2

Cl
S1,H2S Cl

S2,H2S
T g

S1
T g

S2

T l
S1

T l
S2

T h
HE1

T h
HE2

T c
HE1

T c
HE2

Output
y1 y4
y2 y5
y3
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Figure 3.6: Optimal decomposition

Table 3.6: Communities in the sub-optimal decomposition

Variables Community 1 Community 2 Community 3

Input
u2 u1 u3
u5 u4

u6

State

Cl
A1,H2S Cl

A1,CO2
Cg

A2,CO2
T g

A1
Cg

A1,H2S Cg
A2,H2S

Cg
S1,H2S Cl

A1,CO2
Cl

A2,CO2

Cl
S1,CO2

T l
A1

Cl
A2,H2S

T l
S1

Cl
S1,CO2

T g
A2

Cl
S1,H2S T l

A2
T g

S1
Cg

S2,CO2

T h
HE1

Cg
S2,H2S

T c
HE1

Cl
S2,CO2

Cl
S2,H2S
T g

S2

T l
S2

T h
HE2

T c
HE2

Output
y1 y3 y4
y2 y5
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The decompositions are meaningful, and highlight the differences in the degrees of

interconnections among process units based on the nature of the shared streams, which

are not immediately apparent from the plant model. We use the optimal decomposition

for DMPC, and compare the performance with other control architectures, as is discussed

subsequently.

3.5 Simulation Results and Discussion

Initially, DMPC was implemented on the optimal decomposition of the amine gas sweet-

ening plant, with a sampling period of 320 seconds, and a prediction horizon of 1600

seconds. The profiles with respect to time of the input and output variables in devia-

tion form are shown in Figure 3.7 and Figure 3.8. The simulations were performed in

MATLABr using a 3.4 GHz Intelr CoreTM i7− 6700 processor. We employed interior

point optimization (IPOPT) [89] to solve the underlying nonlinear constrained dynamic

optimization problem. To ensure that the optimizing procedure is not terminated before

converging to the optimal solution, we consider sufficiently high values of the maximum

allowed number of iterations and function evaluations for the IPOPT solver. The indices

which are used to evaluate the closed-loop performance of the control architecture are:

ISE =
∫ t f

0
eT (t)Pe(t)dt (3.37)

ISC =
∫ t f

0
ūT (t)Wū(t)dt (3.38)

ISE is the integral square error, that is the deviation of the output variable values from

their steady states:

ep = yp− ySS
p (3.39)
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Figure 3.7: Input Profiles

Figure 3.8: Output Profiles
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where ep is the pth element in the vector e, yp is the pth output variable and ySS
p is its steady

state value. ISC is the integral square of the control actions from their steady state values:

ūq = uq−uSS
q (3.40)

where ūq is the qth element in the vector ū, uq is the qth input variable and uSS
q is its

steady state value. The sum ISE + ISC is called the dimensionless performance index

(DPI), which is included in the objective function minimized in the MPC problem. It

represents the regulation and control effort costs for the time interval [0, t f ], and thus, is

a meaningful measure of the overall closed-loop performance of the architectures studied

for the network control [2, 90]. To gauge the performance of the DMPC, we select the

following architectures for comparison:

• Fully centralized MPC: The controller optimizes an objective function that includes

all the network variables and constraints.

• Distributed MPC on the sub-optimal decomposition: There are three separate con-

trollers, one each for the following control problems:

1. Composition control of the gas-side of the first-stage of absorption and regen-

eration.

2. Composition control of the liquid-side of the first-stage of absorption and re-

generation.

3. Composition control of the second-stage of absorption and regeneration.

• Decentralized MPC on the optimal decomposition: One controller each is used to

control the two stages of absorption and regeneration. There is no communication

(information sharing in the form of sharing of the latest input variables for iterative

convergence towards the all the optimal input profiles) between the two controllers.
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We assess the performance of the aforementioned control architectures for the following

control problems:

• Case I: Start-up without disturbances or measurement errors

• Case II: Start-up with errors in output measurements of the following form:

ym = (1+wm)y (3.41)

where ym is the measured value of output y, and wm is white noise with zero mean

and signal to noise ratio of 20 db.

• Case III: Start-up with disturbances caused by fluctuations in the feed natural gas

composition of the following form:

C = (1+wc)C0 (3.42)

where C is the concentration of sour gases in the feed, C0 the nominal concentration

of the sour gases in the feed, and wc is white noise with zero mean and signal to

noise ratio of 40 db.

The performance evaluation indices of the four control architectures for case I along

with the other cases are shown in Figure 3.9. It can be seen that DMPC implemented

on the optimal decomposition has a performance index close to that of Centralized MPC

(CMPC), and is better than decentralized MPC as well as DMPC implemented on the

sub-optimal decomposition.

The average computation time per sampling period, which is the computation time re-

quirement averaged over all the sampling periods for solving the optimization problem for

the four control architectures for all the cases is shown in Figure 3.10. CMPC typically
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Figure 3.9: Performance indices of the four control architectures for the three control
problems considered

requires a large computation time since it solves a large-scale dynamic optimization prob-

lem. In this case, the computation time required for CMPC is larger than the sampling

period itself, which means that CMPC cannot be implemented in real time. By comparing

the computational burden of each sampling time for DMPC using optimal and sub-optimal

decompositions, we observe that in spite of the smaller size of subsystems, DMPC based

on the sub-optimal decomposition requires more iterations at each sampling period which

results in a larger computation time. Optimal decomposition-based DMPC has a small

enough computational time, with a performance close to that of CMPC, and thus, is the

most favorable control architecture.

In Figure 3.9, it is observed that the performance of DMPC based on the optimal de-

composition is consistently comparable to that of CMPC, whereas that of the decentralized
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Figure 3.10: Average computation time per sampling period of the four different control
architectures for the control problems, with the horizontal bar showing the sampling period
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MPC is consistently the poorest. With the addition of a disturbance in the measurement

or the feed composition, the performance of the optimal decomposition-based DMPC is

affected only slightly, whereas the performance of the sub-optimal decomposition-based

DMPC and decentralized MPC are strongly impacted.

Although CMPC has the best performance index for all three cases, its computational

cost renders it impractical. It can be seen from Figure 3.10 that in all the three cases, the

computation time required for CMPC is larger than the sampling period itself, as indi-

cated by the black horizontal bar at 320 seconds. Optimal decomposition-based DMPC

has a lower computational cost than CMPC as well as the sub-optimal decomposition-

based DMPC for all three cases. The decentralized control architecture has the lowest

computational cost, but is unfavorable due to its performance index.

We infer the following from these results:

• For the amine gas sweetening plant, a process network with a high degree of interac-

tion (heat and material integration) among separate process units, the implementa-

tion of centralized control (CMPC) is impractical due to its high computational cost,

and the implementation of decentralized control is ineffective at achieving plant-

wide control and rejecting disturbances with minimal control effort as is apparent

from its exceedingly high performance index.

• Distributed control, i.e., the implementation of separate controllers for controlling

different sub-networks within the network, which communicate with one another to

optimize their respective manipulated inputs, is a superior architecture.

• The network decomposition, i.e., the choice of allocation of input and output vari-

ables to the controllers used for distributed control has a significant impact on the

performance of the DMPC.

• The modularity maximization algorithm is effective in determining the optimal net-
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work decompositions for DMPC, as is demonstrated by the fact that DMPC on the

sub-optimal decomposition showed worse performance with a higher computational

cost as compared to that based on the optimal decomposition.

These results, thus, demonstrate the efficacy of distributed control architectures based

on the optimal decomposition obtained by modularity maximization for controlling the

amine gas sweetening plant. Motivated by these results, we aimed to incorporate the more

generic class of DPSs, the diffusion-convection-reaction systems into the graph based

community detection framework. This extension is discussed in the next chapter.
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Chapter 4

Structural Interaction Based Equation

Graphs of Diffusion - Convection -

Reaction Systems *

4.1 Introduction

Since some degree of diffusion is present in all real systems, a generic DPS is, strictly

speaking, a diffusion - convection - reaction system, the dynamics of which are generally

described by quasi or non-linear parabolic PDEs (PPDEs) [91]. In this chapter we consider

diffusion-convection-reaction systems modeled by quasi-linear PPDEs, for which we

• propose an equation graph representation;

• propose the extension of the structural interaction parameter (SIP) definition to

quantify the strength of interaction among PPDE system variables;

*Reprinted with permission from Manjiri Moharir, Davood B. Pourkargar, Ali Almansoori and Prodromos
Daoutidis, Chemical Engineering Science, 204 (2019), https://doi.org/10.1016/j.ces.2018.11.062. Copyright
©2019 Elsevier Ltd.
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• establish a relationship between the equation graph and the SIP, which is analogous

to that for hyperbolic PDE systems.

This allows us to extend the network theory-based decomposition algorithms to a generic

chemical plant which comprises interconnected LPSs and DPSs and determine the optimal

network decompositions for plant-wide control.

4.2 Standard Form of Diffusion-Convection-Reaction Sys-

tems

The standard form of quasi-linear PPDE systems is [92]:

∂x̄
∂t

= A
∂x̄
∂z

+B
∂2x̄
∂z2 +wu(z, t)+ f(x̄) (4.1)

y = h(x̄) (4.2)

with the boundary conditions

C1x̄(α, t)+D1
∂x̄
∂z

(α, t) = Q1 (4.3)

C2x̄(β, t)+D2
∂x̄
∂z

(β, t) = Q2 (4.4)

and initial condition

x̄(z,0) = x̄0(z) (4.5)

where x̄ is the ns× 1 vector of the ns distributed state variables, y is the ny× 1 vector of

the ny output variables, and u(z, t) is the nd×1 vector of the nd distributed input variables,

A and B are diagonal matrices of conforming dimensions, w, C1, C2, D1, and D2 are

matrices of conforming dimensions, f, h and x̄0(z) are vectors of functions, α and β are
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the boundaries of the spatial domain of the DPS, z ∈ {α,β} is the axial coordinate, t ∈ R

is the time, and Q1 and Q2 are vectors. An alternate representation of the equations is one

in which Q1 and Q2 from equations (4.3) and (4.4) are incorporated into the differential

equations as shown below [41]:

∂x̄
∂t

= A
∂x̄
∂z

+B
∂2x̄
∂z2 +wu(z, t)+ f(x̄)+δ(z−α)Q1 +δ(z−β)Q2 (4.6)

where δ is the Dirac delta function. This is done in order to homogenize the boundary

conditions into the following form:

C1x̄(α, t)+D1
∂x̄
∂z

(α, t) = 0 (4.7)

C2x̄(β, t)+D2
∂x̄
∂z

(β, t) = 0 (4.8)

The homogenization aids in the equation graph representation of this system which

will be discussed subsequently.

4.3 Reduced Order Representation

The dynamics of the system described by the non-linear PPDEs of the form in equation

(4.6) can be approximated using Galerkin’s method by considering the eigenproblem cor-

responding to the operator in the kth PPDE given by

Ak
∂φ

(k)
i (z)
∂z

+Bk
∂2φ

(k)
i (z)

∂z2 = λ
(k)
i φ

(k)
i (z)

k ∈ {1,2, . . . ,ns} (4.9)
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coupled with the homogenized boundary conditions of the kth PPDE. In equation (4.9),

Ak and Bk are the diagonal values in the kth rows of A and B of equation (4.6). This

eigenproblem has infinitely many solutions {λ(k)
i , φ

(k)
i (z)} ∀i ∈ {1,∞} where λ

(k)
i are the

eigenvalues corresponding to the eigenfunctions φ
(k)
i (z). A finite number of the eigenfunc-

tions can be used to approximate the dynamics of the PPDE system; these are determined

on the basis of the real parts of their corresponding eigenvalues [92]. If the eigenvalues

are arranged in the decreasing order of their real parts as

Re(λ(k)
1 )≥ Re(λ(k)

2 )≥ ·· · ≥ Re(λ(k)
Ns
)>> Re(λ(k)

Ns+1)≥ . . . (4.10)

where Re(λ(k)
Ns
)< 0, then, the dynamics of the PPDE can be approximated using Ns of its

eigenfunctions corresponding to the eigenvalues {λ(k)
1 ,λ

(k)
2 , . . . ,λ

(k)
Ns
}, as

dak
s

dt
= Ak

s ak
s +Bk

s u+ f k
s (as) (4.11)

where

ak
s = Psxk (4.12)

Ak
s = Ps

(
Ak

∂

∂z
+Bk

∂2

∂z2

)
(4.13)

Bk
s = Pswk (4.14)

f k
s = Ps

(
f k +∑

i
δ(z−ζi)Qζi

)
(4.15)

wk and f k are the kth rows of w and f in equation (4.6), ζi ∈ {α,β} represents the boundary

coordinates, Qζi represents the corresponding boundary condition, Ak
s is a diagonal ma-
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trix containing the Ns eigenvalues (λ(1)
k ,λ

(2)
k , . . . ,λ

(Ns)
k ), and Ps is the orthogonal projector

to the sub-space spanned by the Ns corresponding eigenfunctions. The distributed state

variable xk(z, t) ∈ x̄ is then approximated using the time-dependent variables ak
si
(t) as:

xk ≈
Ns

∑
i=1

ak
si
(t)φk

i (z) (4.16)

4.4 Graph-based Network Decomposition

4.4.1 Classification of Variables

The inputs to a PPDE system can be classified as:

• Distributed inputs (u(z, t)): The input variable is a function of space and time.

• Boundary input (x̄(ζ, t)): The boundary conditions of the variables of the system.

• Velocity inputs (A): The convective flow velocities of the system.

The outputs of the system can be classified as:

• Distributed outputs: The outputs are profiles in space and time, i.e.

y j = xi(z, t)

i ∈ {1,ns}, j ∈ {1,ny} (4.17)

• Boundary outputs: The outputs are the values of state variables at the boundary of
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the system, i.e.,

y j = xi(ζ, t)

ζ ∈ {α,β}, i ∈ {1,ns}, j ∈ {1,ny} (4.18)

• Spatially varying time-dependent outputs: The outputs are the values of one or more

state variables at a spatial coordinate that varies with time, i.e.

y j = xi(zy j(t), t)

i ∈ {1,ns}, j ∈ {1,ny} (4.19)

where zy j is a time-dependent spatial coordinate at which the output of interest is

located. An example of this kind of output is the hot-spot temperature in a reactor,

which is usually a function of other process parameters such as the inlet composition

(boundary input) or flow velocity (velocity input).

Distributed inputs can be captured by the values of the finite number of actuators located

through the spatial domain in a vector, u(t) = [u1(t),u2(t), . . . ,una(t)]
T (na is the number

of actuators) with a finite number of elements which are functions of time alone [18]. Then

in the model equations u(t) can be incorporated as:

wu(z, t) = wb(z)u(t) (4.20)

where b(z) = [b1(z),b2(z), . . . ,bna(z)] captures the distribution of each element of u(t) on

its respective spatial interval [18]. A distributed output y j(z, t) can also be represented by

a finite dimensional vector of Ny j elements, the pth element of which is a function of time
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alone [18] and given by

y jp(t) =
∫ zp+dz

zp

cp(z)y j(z, t)dz (4.21)

where cp is a smooth shaping function on the interval [zp,zp +dz] ∀p ∈ {1,Ny j}. We can

then define a generic modified output to be of the form:

ŷ j(t) = h j(x̂) (4.22)

j ∈ {1,ny} (4.23)

x̂ is the vector of modified state variables, whose ith element is given by

x̂i =
∫

β

α

γi(z)xi(z, t)dz (4.24)

i ∈ {1,ns} (4.25)

γi is a piece-wise continuous function on the spatial domain [α,β] such that:

• For distributed outputs, γi has the same profile as all the ci in equation (4.21).

• For boundary outputs, γi has a value close to 1 at the boundary where the output lies

(α or β), a small non-zero value at the other boundary, and zero everywhere else.

• For the third kind of outputs (equation (4.19)), the function γi takes a value close

to 1 in the range of zy j and a small non-zero value at the boundary where the inlet

conditions are incorporated using the Dirac delta function in equation (4.6).

The small non-zero value of γi in the case of boundary and spatially varying outputs is to

ensure that the input variables appear explicitly in a finite-order derivative of the modified
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state variable on which the output is dependent as per equation (4.22) if the input variables

have an effect on the PDE corresponding to the original state variable. In a sense, this mod-

ification ‘collocates’ the input and output variables and aids in capturing the dependency

of the output variable’s derivatives on the input variable [82].

4.4.2 Graph Representation

The goal is to capture on an equation graph, the relationships of the input, output and state

variables of a PPDE system in a form that is analogous to the existing graph representa-

tions so that the network theory-based algorithms can be extended to chemical networks

that include DPSs described by PPDEs.

The proposed graph representation of the PPDEs in equation (4.6) for outputs defined

in equation (4.22) and velocity, boundary or distributed manipulation (equation (4.20)) is

as follows:

1. There is a node representing every input variable, distributed state variable and out-

put variable.

2. There is an edge from the input variable to a state variable if the input variable

appears in the PDE that captures the state variable dynamics.

3. There is an edge from a state variable xi to x j if xi appears in the PDE corresponding

to x j.

4. There is an edge from a state variable to an output variable if the output is related to

the corresponding modified state variable as per equation (4.22).

This equation graph captures the strength of the interaction among the variables of a

PPDE system as is discussed subsequently.
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4.4.3 Structural Interaction Parameter

We define a parameter called the SIP as a relative degree analogue for the variables asso-

ciated with PPDEs. The relative degree of an output with respect to an input for LPSs is

defined as the smallest order derivative of the output which shows an explicit dependence

on the input. On similar lines, the SIP of an output with respect to an input for a PPDE

system is the smallest order derivative of the output which is explicitly dependent on the

input variable (which is possible since the input and output variables are functions of time

alone, as described earlier). For this definition of the SIP and the aforementioned equation

graph representation, we establish the following theorem:

Theorem 3: In the equation graph of a PPDE system, if l is the length of the shortest

path from an input node to an output node and s is the SIP between the two variables, then,

s = l−1 (4.26)

The proof of this theorem is discussed in Appendix C. We demonstrate the application

of Theorem 3 through the following example.

Example 1: Consider a tubular reactor with two reactants participating in an irre-

versible reaction:

R1 +R2→ product (4.27)

The concentrations of R1 and R2 at any axial coordinate z ∈ [0,1] (where 1 is the normal-

ized length of the reactor) at time t are x1(z, t) and x2(z, t) respectively. The reaction is

first-order in both the reactants. The rate constant, which follows the Arrhenius Law, is

k = k0e−Ea/RT , where k0 is the pre-exponential factor, Ea is the activation energy, R is the

universal gas constant and T is stream temperature. The model equations of the tubular
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Figure 4.1: Equation graph of the tubular reactor

reactor are
∂x1

∂t
=−v

∂x1

∂z
+D1

∂2x1

∂z2 − kx1x2 +δvx1(0, t) (4.28)

∂x2

∂t
=−v

∂x2

∂z
+D2

∂2x2

∂z2 − kx1x2 +δvx2(0, t) (4.29)

∂T
∂t

=−v
∂T
∂z

+
k

ρCp

∂2T
∂z2 + k1x1x2

−∆H
ρCp

+δvT (0, t) (4.30)

where v is the convective velocity, D1 and D2 are the mass diffusivities of R1 and R2

respectively, k is the thermal conductivity of the stream, ρ is its mass density and Cp

is its specific heat capacity, and −∆H is the reaction enthalpy. The boundary conditions,

x1(0, t), x2(0, t) and T (0, t) are incorporated in the equations using the Dirac delta function

δ. The two inputs, u1 and u2 to this reactor are the inlet temperature and inlet concentration

of R2, while the controlled variable, y1, of the reactor is the exit concentration of R2. Thus,

u1 = T (0, t)

u2 = x2(0, t)

y1 = x2(1, t)

The equation graph of this system of PPDEs is given in figure 4.1. From the equation

graph we can determine the length of the shortest path from u1 to ŷ1 to be 3 and that from
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u2 to ŷ1 to be 2.

The modified state variable x̂2 is defined as

x̂2(t) =
∫ 1

0
γ(z)x2(z, t)dz (4.31)

where γ has a value close to 1 at z = 1, a small non-zero value at z = 0 and a value of 0

for all z ∈ (0,1). The modified output, then, is ŷ1 = x̂2. The first derivative with respect to

time of ŷ1 is
dŷ1

dt
=

∫ 1

0
γ(z)

∂x2(z, t)
∂t

dz (4.32)

Substituting for ∂x2(z,t)
∂t from equation (4.29), we get

dŷ1

dt
=

∫ 1

0
γ(z)
(
− v

∂x2

∂z
+D2

∂2x2

∂z2 − kx1x2 +δvu2

)
dz (4.33)

From equation (4.33), we can observe that the first derivative of ŷ1 has an explicit depen-

dence on u2 since ∫ 1

0
γ(z)δvu2dz 6= 0 (4.34)

Hence, the SIP of y1 with respect to u2 is 1.

For the second derivative with respect to time of ŷ1, we use the product rule of differ-

entiation on the term kx1x2 in equation (4.33). Since k is a function of temperature, the

second derivative of ŷ1 depends on the term

∫ 1

0
γ(z)

∂T
∂t

dz (4.35)

Substituting for ∂T/∂t in equation (4.35) from equation (4.30), and noting that

∫ 1

0
γ(z)δvu1dz 6= 0 (4.36)
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we can conclude that d2ŷ1/dt2 explicitly depends on u1. So the SIP of y1 with respect to

u1 is 2.

Hence, the relationship between the SIP, s, and the length of the shortest path from the

input to the output node, l, as established in Theorem 3 does indeed hold.

Theorem 3 relates the equation graph representation of PPDE system variables to the

SIP, which captures the interaction between an input and an output variable along with the

intermediate state variables. This relationship enables us to use the edges connecting the

nodes in the equation graph of the PPDE system to identify strongly and weakly interacting

subsystems by implementing network theory based algorithms in a form analogous to that

for ODEs and hyperbolic PDEs [10, 82]. As a result of this analogy, we can represent

on a common equation graph all the variables corresponding to a generic chemical plant

that includes LPSs and DPSs, and determine the network decomposition for plant-wide

distributed control.

4.5 Conclusions

This chapter presents a generically applicable equation graph-based algorithm to obtain

optimal decompositions for a chemical plant comprising diffusion-convection-reaction

systems described by parabolic PDEs, which are a broad class of commonly observed

DPSs in chemical plants. We defined a Structural Interaction Parameter (SIP), which is a

measure of the strength of structural interactions among all the types of input and output

variables in such a system, analogous to relative degree for ODE systems. We proposed

equation graph representations of the variables of a parabolic PDE system and related the

lengths of input-output paths to the SIP. These equation graphs, and their relationship to

the SIP closely resemble those for ODE systems, and thus facilitate the representation of

all the variables of a chemical network and their interactions on a common equation graph.
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These equation graphs allow the use of network theory-based algorithms for the identi-

fication of strongly interacting sub-networks within a chemical network for distributed

control.

In the following chapter, we implement the proposed approach on a chemical plant

consisting of four tubular reactors in series with interstage cooling achieved by three heat

exchangers and followed by two flash columns. We determine the optimal network de-

composition based on the network’s equation graph and use that as the basis for DMPC.

We test the performance of DMPC on the optimal decomposition for the set-point tracking

problem.
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Chapter 5

Distributed Control of a

Reaction-Separation Network *

5.1 Introduction

Following from the graph representation and its relationship with the SIP as discussed in

the previous chapter [93], to test the efficacy of the graph based network decomposition

algorithm for process networks that include diffusion-convection-reaction systems, we

consider as a case study a plant designed for the production and separation of a component

B from component A. A is converted to B via a reversible, elementary reaction:

A
k2
�
k1

B (5.1)

where k1 and k2 are the rate constants of the forward and backward reaction respectively,

and follow the Arrhenius law. The reaction is carried out in four tubular reactors (R-1, R-2,

R-3, R-4). The forward reaction (A→ B) is exothermic, and so an increase in temperature

*Reprinted with permission from Manjiri Moharir, Davood B. Pourkargar, Ali Almansoori and Prodromos
Daoutidis, Chemical Engineering Science, 204 (2019), https://doi.org/10.1016/j.ces.2018.11.062. Copyright
©2019 Elsevier Ltd.
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Figure 5.1: Prototypical reaction-separation plant

drives the equilibrium towards the reactant. To drive the equilibrium towards the product,

three interstage coolers (HEx-1, HEx-2, HEx-3) and two additional feed streams to R-2

and R-3 are used [22]. The separation of A and B and the purification of B is achieved

with the help of two flash tanks (F-1, F-2). The distillate of the F-1, which is rich in A is

recycled to R-4. Cooling water is used to cool the process streams in HEx-1 and HEx-3.

The cooled stream of HEx-3 is used to cool the hotter stream exiting R-2 in HEx-2. The

plant is shown in figure 5.1. These types of plants are encountered in the production and

separation of sulphuric acid [22]. The plant-wide control of such plants is challenging

due to the high sensitivity of the conversion to the process parameters like temperature

and reactant concentration, as well as the tight integration among the different process

systems in the plant. For this network, we implement DMPC and compare its performance

for the set-point tracking problem against that of CMPC. The manipulated and controlled

variables of the plant are listed in tables 5.1 and 5.2.
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Table 5.1: Manipulated variables

Symbol Variable

u1 Feed inlet temperature

u2 Cooling fluid temperature to HEx-1

u3 Cooling fluid temperature to HEx-3

u4 Heat input to F-1

u5 Heat input to F-2

u6 Recycle ratio to R-4

u7 Fresh feed flow-rate to R-2

u8 Fresh feed flow-rate to R-3

Table 5.2: Controlled variables

Symbol Variable
y1 Inlet temperature of R-2
y2 Inlet temperature of R-3
y3 Inlet temperature of R-4
y4 Concentration of A exiting R-1
y5 Concentration of A exiting R-2
y6 Concentration of A exiting R-3
y7 Concentration of A exiting R-4
y8 Concentration of B in liquid stream exiting F-2
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5.2 Plant Model

5.2.1 Tubular Reactor Model

The PPDEs describing the dynamics of each of the tubular reactors are [94]:

∂T (i)

∂t̄
=−v(i)

∂T (i)

∂z̄
+

K
ρCp

∂2T (i)

∂z̄2 +
1

ρCp
{∆HA(k1C(i)

A − k2C(i)
B )}+ v(i)δ(0)T (i)

f (5.2)

∂C(i)
A

∂t̄
=−v(i)

∂C(i)
A

∂z̄
+DA

∂2C(i)
A

∂z̄2 − k1C(i)
A + k2C(i)

B + v(i)δ(0)C(i)
A f (5.3)

where T is the temperature, C is the concentration, v is the convective flow velocity, D is

the mass diffusivity, K is the heat conductivity, ρ is the mass density, Cp is the specific

heat capacity, ∆HA is the heat of the forward reaction. The subscripts A and B denote the

components. The reaction rate constants follow an exponential temperature dependence

as per the Arrhenius law given by

k1 = k0
1exp

(
− Ea1

RT

)
(5.4)

k2 = k0
2exp

(
− Ea2

RT

)
(5.5)

where k0
1 and k0

2 are the pre-exponential factors, Ea1 and Ea2 are the activation energies

for the forward and backward reaction respectively. Constant molar density through the

reactor implies

C(i)
B =C0(i)

A −C(i)
A (5.6)

where C0(i)
A is the concentration of the reactant in the fresh feed, which contains no product.

We use the following dimensionless variables:

t =
t̄v(1)

L
z =

z̄
L

Pe(i)1 =
ρCpv(i)L

K
Pe(i)2 =

v(i)L
DA
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x1 =
T −T0

T0
x2 =

CA−CA0

CA0
x1 f =

Tf −T0

T0
x2 f =

CA f −CA0

CA0

γ1 =
Ea1

RT0
γ2 =

Ea2

RT0
B(i)

C1
=

k0
1exp(−Ea1

RT0
)L

v(i)
B(i)

C2
=

k0
2exp(−Ea2

RT0
)L

v(i)

BT =
−∆HCA0

ρCpT0

to non-dimensionalize the PPDEs into the following form [94]:

∂x(i)1
∂t

=−
∂x(i)1
∂z

+
1

Pe(i)1

∂2x(i)1
∂z2 +BT

[
B(i)

c1 exp
(

γ1x(i)1

1+ x(i)1

)
(1+x(i)2 )+B(i)

c2 exp
(

γ2x(i)1

1+ x(i)1

)
(x(i)2 )

]

+δ(0)x(i)1 f (5.7)

∂x(i)2
∂t

=−
∂x(i)2
∂z

+
1

Pe(i)2

∂2x(i)2
∂z2 −B(i)

c1 exp
(

γ1x(i)1

1+ x(i)1

)
(1+ x(i)2 )−B(i)

c2 exp
(

γ2x(i)1

1+ x(i)1

)
(x(i)2 )

+δ(0)x(i)2 f (5.8)

In this form the boundary conditions are

∂x(i)1
∂z

(0) = Pe(i)1 x(i)1 (5.9)

∂x(i)2
∂z

(0) = Pe(i)2 x(i)2 (5.10)

∂x(i)1
∂z

(1) = 0 (5.11)

∂x(i)2
∂z

(1) = 0 (5.12)

Using Galerkin’s method, the distributed concentration variables are approximated as:

x(i)1 ≈
Ns

∑
l=1

tl(t)Γl(z) (5.13)
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x(i)2 ≈
Ns

∑
l=1

al(t)Φl(z) (5.14)

where Ns is the number of dominant modes (assumed to be identical for both the state

variables in a reactor), tl and al are the time-dependent coefficients, and Γl and Φl are the

eigenfunctions corresponding to spatial differential operators of the state variables.

Then, the differential equations describing the dynamics of ak and tk for k ∈ [1,Ns] are

given by:
dtk
dt

=−
Ns

∑
l=1

(
tl
∫ 1

0

dΓl

dz
Γ
∗
kdz
)
+

1

Pe(i)1

Ns

∑
l=1

(
tl
∫ 1

0

∂2Γl

∂z2 Γ
∗
kdz
)

+BT B(i)
c1

∫ 1

0
exp
(

γ1 ∑
Ns
l=1 tl(t)Γl(z)

1+∑
Ns
l=1 tl(t)Γl(z)

)(
1+

Ns

∑
l=1

al(t)Φl(z)
)

Γ
∗
kdz

+BT B(i)
c2

∫ 1

0
exp
(

γ2 ∑
Ns
l=1 tl(t)Γl(z)

1+∑
Ns
l=1 tl(t)Γl(z)

)( Ns

∑
l=1

al(t)Φl(z)
)

Γ
∗
kdz+ x1 f Γ

∗
k(0) (5.15)

dak

dt
=−

Ns

∑
l=1

(
al

∫ 1

0

dΦl

dz
Φ
∗
kdz
)
+

1

Pe(i)2

Ns

∑
l=1

(
al

∫ 1

0

∂2Φl

∂z2 Φ
∗
kdz
)

−B(i)
c1

∫ 1

0
exp
(

γ1 ∑
Ns
l=1 tl(t)Γl(z)

1+∑
Ns
l=1 tl(t)Γl(z)

)(
1+

Ns

∑
l=1

al(t)Φl(z)
)

Φ
∗
kdz

−B(i)
c2

∫ 1

0
exp
(

γ2 ∑
Ns
l=1 tl(t)Γl(z)

1+∑
Ns
l=1 tl(t)Γl(z)

)( Ns

∑
l=1

al(t)Φl(z)
)

Φ
∗
kdz+ x2 f Φ

∗
k(0) (5.16)

5.2.2 Flash Tank Model

In the flash columns, we assume that vapor-liquid equilibrium is established instanta-

neously and that the feed is in the liquid phase. Hence, the model equations are [95]:

dV ( j)

dt̄
= F( j)

f −F( j)
l −F( j)

v (5.17)

d(V ( j)C( j)
Al

)

dt̄
= F( j)

f C( j)
A f
−F( j)

l C( j)
Al
−F( j)

v C( j)
Av

(5.18)
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d(V ( j)C( j)
Bl

)

dt̄
= F( j)

f C( j)
B f
−F( j)

l C( j)
Bl
−F( j)

v C( j)
Bv

(5.19)

d(V ( j)T ( j)
l )

dt̄
= F( j)

f T ( j)
f −F( j)

l T ( j)
l −F( j)

v T ( j)
v

ρvCpv

ρlCpl

(5.20)

where V is the hold-up, F is the volumetric flow-rate, C is the concentration, T is the

temperature, ρ is the mass density, Cp is the specific heat capacity, subscripts f , l and v

denote the feed, the exiting liquid stream and the exiting vapor stream respectively, super-

scripts A and B denote the components, and the superscript ( j) ∈ {1,2} denotes the index

of the flash tank. We use dimensionless forms of the variables for time, concentration and

temperature as defined for the tubular reactors for consistency.

5.2.3 Heat Exchanger Model

We use a lumped model for the heat exchangers, since the space-time in the heat exchanger

is an order of magnitude less than that in the tubular reactors. The model equations are

given by:
dT
dt̄

=
Tf −T

τ
− hA

ρCp
(T −Tc) (5.21)

where T denotes the temperature in the heat exchanger, Tf is the feed temperature, h is the

heat transfer coefficient, A is the area available for heat transfer, Tc is the temperature of

the cooling fluid and τ is the residence time in the heat-exchanger. We non-dimensionalize

the time and temperature variables as was done for the tubular reactors and flash tanks for

consistency.

5.2.4 Model Simulation

We use sixteen modes corresponding to the slowest eigenvalues of the spatial differential

operator of the PPDE of each distributed variable to capture the dominant dynamics of
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the tubular reactors. Thus, every tubular reactor is described by thirty-two ODEs. We

require four ODEs to capture the heat exchanger energy balances, two of which corre-

spond to the process streams in HEx-1 and HEx-3, and the third and the fourth capture

the heat exchange in HEx-2 between the exit stream of R-2 and the cooled process stream

from HEx-3. For each of the flash columns, there are four equations. Our discretized

model, thus, consists of 140 ODEs. This model was used both for simulation and control

purposes.

5.3 Network Decomposition

We use the modularity maximization algorithm discussed in Section 3.4.2 for obtaining the

network decomposition [40]. The algorithm obtains the optimal decomposition by succes-

sive bisection of a larger community until further bisection doesn’t lead to an increase in

the modularity measure. The decomposition obtained from two successive bisections that

has a modularity of 0.4553 is given in table 5.3. Further bisection of Community 1 and

Community 2 leads to an increase in modularity, but the communities thus obtained are

not controllable. Hence, for control purposes, the decomposition in table 5.3 is the opti-

mal decomposition. Figure 5.2 shows the interconnections between the variables in the

optimal decomposition.

Community 1 allocates the inlet feed temperature of the streams, the utility fluid tem-

perature in HEx-1 and the fresh feed flow to R-2 as the inputs for controlling the exit

concentration of R-1 and R-2 and the exit temperature of R-2. Community 2 allocates

utility fluid temperature to HEx-3 and the fresh feed flow-rate to R-3 as the manipulated

variables to control the entry stream temperature to and exit stream composition of R-3.

Community 3 allocates the heat inputs to the two flash columns and the recycle ratio to

control the entry stream temperature for R-4, and the exit stream compositions of R-4 and
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Figure 5.2: Communities in the reaction-separation plant

F-2. The resulting decomposition is not obvious based simply on intuition.

77



Table 5.3: Communities in the optimal decomposition

Variable Type Community 1 Community 2 Community 3

Input

u1 u3 u4

u2 u8 u5

u7 u6

State

CR-1
A CR-3

A CR-4
A

T R-1 T R-3 T R-4

CR-2
A T HEx-2

h CF-1
A

T R-2 T HEx-2
c CF-1

B

T HEx-1
h T HEx-3

h T F-1

CF-2
A

CF-2
B

T F-2

Output

y1 y2 y3

y4 y6 y7

y5 y8

5.4 Simulation Results and Discussion

MPC, as discussed in Chapter 3 was implemented based on the optimal decomposition,

and on the fully-centralized control structure. We employed interior point optimization

(IPOPT) [89] to solve the underlying nonlinear constrained dynamic optimization prob-

lem. The plant model was simulated from the start-up conditions, and control was imple-
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mented for the set-point tracking problem. The model parameters are given in table 5.4,

the initial conditions of the input variables are given in table 5.5, and the initial conditions

of the state variables of the flash tanks, which are the only variables starting from a non-

zero value, are given in table 5.6. In the dimensionless form, a concentration value of -1

implies that the species is not present in the tank. Four set-point changes were imposed

which are shown in table 5.7 and the corresponding steady-state values of the manipulated

variables are given in table 5.8.

Table 5.4: Model Parameters

System Parameter Value

Reactors

BC1 0.1
BC2 0.05
BT 3
γ1 10
γ2 30

Pe1 5
Pe2 5

Slowest mode -500
Tubular reactor length 1

Heat-exchangers hA/ρCp 10
τ 0.1

Flash-tanks

ρl 1000 kg/m3

ρv 1 kg/m3

Cpl 4186 J/kg-K
Cpv 2000 J/kg-K
HA 100
HB 0.01
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Table 5.5: Initial conditions of the input variables

Input variable Initial condition
u1 0.5
u2 0.2
u3 0.4
u4 3
u5 0.8
u6 0.5
u7 0.2
u8 0.1

Table 5.6: Initial conditions of state variables in the flash tanks

Variable Initial condition
Hold-up in flash tanks 0.5

Concentration of A in flash tanks (dimensionless) -1
Concentration of B in flash tanks (dimensionless) -1

Temperature in flash tanks (dimensionless) 0

Table 5.7: Set-points of the controlled variables

Output Set-point 1 Set-point 2 Set-point 3 Set-point 4

y1 0.2030 0.3070 0.1553 0.2064

y2 0.1630 0.2755 0.1567 0.2293

y3 0.1163 0.2339 0.0557 0.2037

y4 -0.0011 0.0002 -0.0003 -0.0005

y5 -0.0095 -0.0023 -0.0091 -0.004

y6 -0.3161 -0.3264 -0.3108 -0.3190

y7 -0.4582 -0.5403 -0.4504 -0.5002

y8 3.6772 4.1832 3.7584 4.2851
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Figure 5.3: Dimensionless Performance Indices (DPI) of the CMPC and optimal decom-
position - based DMPC for the set-point tracking problems

Table 5.8: Steady-state values of the manipulated variables

Steady-state for Steady-state for Steady-state for Steady-state for

Input Set-point 1 Set-point 2 Set-point 3 Set-point 4

u1 0.1 0.4 0.3 0.2

u2 -0.1 0.2 -0.3 0.1

u3 -0.1 0.2 -0.3 0.1

u4 1 0.7 1.2 0.5

u5 1 0.7 1.2 0.5

u6 0.1 0.5 0.2 0.3

u7 0.5 0.8 0.6 1

u8 0.5 0.8 0.6 1

The control performance was evaluated using the dimensionless performance index

(DPI), as used in the previous case study, consists of the Integral Square Error (ISE) and
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Figure 5.4: Computation time (seconds/sample) of the CMPC and optimal decomposition-
based DMPC for the set-point tracking problems

Figure 5.5: Input profiles from DMPC implementation based on the optimal decomposi-
tion
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Figure 5.6: Output profiles from DMPC implementation based on the optimal decompo-
sition

the Integral Square Control (ISC) defined by [90]:

DPI = ISE+ ISC =
∫ t f

0
eT (t)Pe(t)dt +

∫ t f

0
ūT (t)Wū(t)dt (5.22)

ISE and ISC are the two integral terms in the objective function of the MPC optimization

formulation and represent the deviation of the controlled and manipulated variables from

the set-point and steady-state values respectively.

The performance indices and the computation time for each sample on the implemen-

tation of DMPC based on the optimal decomposition and of CMPC are shown in figures

5.3 and 5.4 respectively. The input and output profiles for DMPC are also given in figures

5.5 and 5.6 respectively. It can be observed that the performance of DMPC is comparable

to that of CMPC, with a nearly 80% lower computation time per sample. The sampling

time in the dimensionless form is 0.5. For a typical residence time of 300-400 seconds,

the sampling time becomes 150-200 seconds. For such a case, CMPC is rendered im-

practical for real-time implementation, and DMPC based on the optimal decomposition
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presents itself as a superior control structure based on the control performance and low

computational time.
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Chapter 6

Distributed Estimation and Nonlinear

MPC using Community Detection *

6.1 Introduction

Model predictive control (MPC) is a prevalent control strategy in the chemical industry.

MPC design casts the control problem in the form of a repeated constrained dynamic

optimization problem which computes a sequence of future manipulated inputs at each

sampling time [96, 97]. Consequently, the applicability of MPC hinges on the real-time

solvability of the underlying optimization problem which is a challenging task for large-

scale process systems. This has motivated continued efforts to increase the computa-

tional efficiency of MPC [98–102]. An alternative to centralized model predictive control

(CMPC), with the potential to accelerate computations, is distributed model predictive

control (DMPC) whereby the control system is decomposed into smaller ones with some

level of cooperation and communication among these local controllers [3, 103–107].

Many studies have focused on the distributed control problem assuming full state infor-

*Accepted in Industrial & Engineering Chemistry Research (2019)
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mation at each sampling time. However, such an assumption cannot be generally invoked

in practical cases, where the use of a state estimation method is required along with the

control algorithm. Among the several available methods for state estimation, MHE has

attracted a lot of attention since it can be formulated as a similar constrained dynamic

optimization problem [23–25]. However, solving such an optimization-based estimation

problem at each sampling time for a large-scale process system is also computationally

challenging. Any delay in such computations will directly affect the closed-loop perfor-

mance [15] since the distributed controllers require the initial values of all state variables

at each sampling time. Like DMPC, an alternative approach to overcome the computa-

tional challenges of centralized estimation is a system decomposition and a distributed

MHE (DMHE) structure consisting of local estimators with some level of cooperation and

communication [16,17]. Extending the community-based decomposition to the combined

control and estimation problem is the subject of this chapter.

Specifically, we hereby propose an algorithmic framework to address the feedback

control problem for nonlinear process systems through a combined iterative DMPC and

DMHE architecture built around community-based optimal decompositions for the con-

trol and estimation problems. These decompositions are obtained through distinct graphs

corresponding to the estimation and control problem respectively, and thus are not neces-

sarily the same. The proposed distributed output-feedback control strategy is implemented

on the process of benzene alkylation with ethylene. The closed-loop performance and the

average computation time are evaluated using detailed simulations for the optimal and

suboptimal decompositions, as well as for centralized estimation and control implementa-

tions.

The rest of the chapter is organized as follows. In Section “Model predictive control

and moving horizon estimation”, we present the mathematical description of the studied

class of nonlinear systems and review MPC and MHE synthesis for output regulation. In
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Section “Distributed estimation and control”, we describe the community-based system

decomposition for estimation and control, and the distributed estimation/control architec-

ture. Finally, the impact of system decomposition on the closed-loop performance and

computational effort of distributed estimation and control is examined for the process of

benzene alkylation with ethylene, emphasizing on the importance of system decomposi-

tion in distributed output feedback control.

6.2 Model predictive control and moving horizon estima-

tion

We consider nonlinear process systems defined by the following state-space model

ẋ(t) = f
(
x(t), u(t)

)
+ω(t)

y(t) = g
(
x(t), u(t)

)
ŷ(t) = h

(
x(t), u(t)

)
+ν(t)

(6.1)

where x(t) = [x1(t) x2(t) · · · xn(t)]T ∈ Rn is the vector of state variables, u(t) = [u1(t)

u2(t) · · · um(t)]T ∈Rm the vector of manipulated inputs, ω(t)= [ω1(t) ω2(t) · · · ωn(t)]T

∈Rn the vector of additive disturbances to the process, y(t) = [y1(t) y2(t) · · · yr(t)]T ∈Rr

the vector of controlled outputs, ŷ(t) = [ŷ1(t) ŷ2(t) · · · ŷs(t)]T ∈ Rs the vector of mea-

sured outputs, ν(t) = [ν1(t) ν2(t) · · · νs(t)]T ∈Rs the vector of measurement noises, t is

the time, and f : Rn×Rm→Rn, g : Rn×Rm→Rr, and h : Rn×Rm→Rs denote smooth

functions. Without loss of generality, we assume that the origin is the equilibrium point

for the unforced model dynamics. The availability of measured outputs of the system is

also assumed at predetermined sampling times.

The CMPC design for the system of (6.1), as done in previous chapters, can be de-
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scribed by the following constrained nonlinear dynamic optimization problem

min
u

∫ tk+NcT

tk

(∥∥y− yref∥∥2
P +
∥∥u−uref∥∥2

W

)
dt

s.t. ẋ = f (x,u)+ω

y = g(x,u)

umin ≤ u≤ umax

ξ(x,u, t)≤ 0

φ(x,u, t) = 0

(6.2)

where ∥∥y− yref∥∥2
P = (y− yref)T P(y− yref)∥∥u−uref∥∥2
W = (u−uref)TW (u−uref)

(6.3)

and tk indicates the k th sampling time, Nc denotes the number of sampling times in the

control horizon, and T is the sampling time period. The desired controlled outputs and the

corresponding steady state manipulated inputs are denoted by yref(t) = [yref
1 (t) yref

2 (t) · · ·

yref
r (t)]T ∈ Rr and uref(t) = [uref

1 (t) uref
2 (t) · · · uref

m (t)]T ∈ Rm, respectively. These can

be adjusted during closed-loop process operation due to safety concerns and production

demands. We also consider the positive definite weight matrices of P ∈ Rr×r and W ∈

Rm×m in the optimization objective function to penalize the output regulation errors and

manipulated variables. The lower and upper bounds of the vector of manipulated inputs

are denoted by umin ∈Rm and umax ∈Rm, respectively. The system inequality and equality

constraints are also defined by considering the general nonlinear vector functions of ξ

and φ. The temporal profiles of all manipulated inputs are computed for the prediction

horizon of [tk tk +NcT ] by solving the dynamic optimization problem of (6.2) subject to

the process model, lower/upper bounds, and equality/inequality constraints. The values

of manipulated inputs at time tk are then applied to the process during t ∈ [tk tk +T ), the
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prediction horizon is shifted forward, and then the optimization problem is resolved for

the new prediction horizon [tk +T tk +(Nc +1)T ].

Through reconciling the past information of the system of (6.1), we can formulate

the centralized MHE (CMHE) problem by the following constrained nonlinear dynamic

optimization problem

min
xk

∫ tk

tk−NmT

(∥∥ν
∥∥2

R +
∥∥ω
∥∥2

Q

)
dt

s.t. ẋ = f (x,u)+ω

ŷ = g(x,u)+ν

xmin
k ≤ xk ≤ xmax

k

ξ(x,u, t)≤ 0

φ(x,u, t) = 0

(6.4)

where ∥∥ν
∥∥2

R = ν
T Rν∥∥ω

∥∥2
Q = ω

T Qω

(6.5)

and xk is the vector of the estimated state variables at the sampling time tk, Nm denotes

the number of sampling times in the estimation horizon, and R ∈ Rs×s and Q ∈ Rn×n are

positive definite weight matrices which penalize the magnitude of additive disturbances

and measurement noises. The lower and upper bounds of the estimated state variables are

denoted by xmin
k ∈ Rn and xmax

k ∈ Rn, respectively. By solving the dynamic optimization

problem of (6.4) subject to the process model, lower/upper bounds, and equality/inequality

constraints, we can compute the estimated values of the state variables at the sampling

time tk which are used as the initial values of the predictive model in the CMPC structure.

Such a two-tier dynamic optimization problem (MHE+MPC) must be repeatedly solved

at each sampling time. The schematic of the combined estimation and control problem is
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Figure 6.1: An schematic of the combined estimation and control problem (MHE+MPC)

presented in Figure 6.1.

6.2.1 Distributed estimation and control models

For distributed control, as before, we can decompose the system into L interconnected

subsystems described by a set of state space submodels

ẋ(i)(t) = f(i)
(
x(t), u(i)(t)

)
+ω(i)(t), i = 1, . . . ,L

y(i)(t) = g(i)
(
x(t), u(i)(t)

) (6.6)

where
x = [xT

(1) xT
(2) · · · xT

(L)]
T

u = [uT
(1) uT

(2) · · · uT
(L)]

T

ω = [ωT
(1) ω

T
(2) · · · ω

T
(L)]

T

y = [yT
(1) yT

(2) · · · yT
(L)]

T

(6.7)
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and
f = [ f T

(1) f T
(2) · · · f T

(L)]
T

g = [gT
(1) gT

(2) · · · gT
(L)]

T
(6.8)

with f(i) : Rn×Rmi → Rni and g(i) : Rn×Rmi → Rri , being the corresponding compo-

nents of f and g for the i th subsystem. The state variables, manipulated inputs, additive

disturbances, and output variables of the subsystems can be represented by

x(i) = [x(i),1 x(i),2 · · · x(i),ni]
T

u(i) = [u(i),1 u(i),2 · · · u(i),mi]
T

ω(i) = [ω(i),1 ω(i),2 · · · ω(i),ni]
T

y(i) = [y(i),1 y(i),2 · · · y(i),ri]
T

(6.9)

where n =
L

∑
i=1

ni, m =
L

∑
i=1

mi, and r =
L

∑
i=1

ri.

Similarly, the system of (6.1) can be decomposed into N subsystems for distributed

estimation of the system state variables in the following form

ẋ( j)(t) = f( j)
(
x(t), u(t)

)
+ω( j)(t), j = 1, . . . ,N

ŷ( j)(t) = h( j)
(
x(t), u(t)

)
+ν( j)(t)

(6.10)

where
x = [xT

(1) xT
(2) · · · xT

(N)]
T

ω = [ωT
(1) ω

T
(2) · · · ω

T
(N)]

T

ν = [νT
(1) ν

T
(2) · · · ν

T
(N)]

T

ŷ = [ŷT
(1) ŷT

(2) · · · ŷT
(N)]

T

(6.11)
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and
f = [ f T

(1) f T
(2) · · · f T

(N)]
T

h = [hT
(1) hT

(2) · · · hT
(N)]

T
(6.12)

with f( j) : Rn×Rm→ Rn j and h( j) : Rn×Rm→ Rsi . The state variables, additive distur-

bances, measured outputs, and measurement noises can be represented by

x( j) = [x( j),1 x( j),2 · · · x( j),n j ]
T

ω( j) = [ω( j),1 ω( j),2 · · · ω( j),n j ]
T

ν( j) = [ν( j),1 ν( j),2 · · · ν( j),s j ]
T

ŷ( j) = [ŷ( j),1 ŷ( j),2 · · · ŷ( j),s j ]
T

(6.13)

where n =
N

∑
j=1

n j and s =
N

∑
j=1

s j.

6.2.2 DMPC formulation for output regulation

The optimization problem for the i th local controller corresponding to the i th subsystem is

formulated as

min
u(i)

∫ tk+NcT

tk

(∥∥y(i)− yref
(i)

∥∥2
P(i)

+
∥∥u(i)−uref

(i)

∥∥2
W(i)

)
dt

s.t. ẋ = f (x,u(i))+ω

y(i) = g(i)(x,u(i))

umin
(i) ≤ u≤ umax

(i)

ξ(x,u(i), t)≤ 0

φ(x,u(i), t) = 0

(6.14)
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where the positive definite matrices P(i) and W(i) include only the components correspond-

ing to the outputs and manipulated inputs of the i th subsystem.

Note that we did not decompose the system state-space model (dynamic constraint

in the dynamic optimization problem) and the algebraic equality/inequality constraints,

to guarantee that each local controller accounts for the entire system dynamics and the

related constraints. The proposed architecture distributes only the manipulated inputs and

the controlled outputs. The local controllers communicate over the network by sharing

the latest values of their computed manipulated inputs. At each iteration at the sampling

time tk, each local controller computes the future trajectory of its manipulated inputs by

solving the corresponding optimization problem of (6.14) for the prediction horizon of

[tk tk+NcT ], based on the estimated state variables and the latest values of the manipulated

inputs received from other the local controllers. Then the local controllers interchange the

manipulated input trajectories computed at the latest iteration and re-evaluate the input

trajectories by solving (6.14) for i = 1, . . . ,L in parallel. For the first iteration at each

sampling time, the required trajectories are initialized by the values obtained from the

last iteration of the previous sampling time. This iterative procedure terminates when

the Euclidean norm of the difference between the vectors of manipulated inputs of two

consecutive iterations becomes smaller than a desired threshold [3, 83]. We determine the

required computation time at each sampling time by the longest computation time of the

local controllers. The readers may refer to [?, 83] for a detailed discussion on different

communication and cooperation protocols possible between the local controllers and their

impact on the overall performance of the distributed control design.
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6.2.3 DMHE formulation for state estimation

For distributed estimation, we use the following formulation

min
xk,( j)

∫ tk

tk−NmT

(∥∥ν( j)
∥∥2

R( j)
+
∥∥ω( j)

∥∥2
Q( j)

)
dt

s.t. ẋ = f (x,u)+ω

ŷ( j) = g( j)(x,u)+ν( j)

xmin
k,( j) ≤ xk,( j) ≤ xmax

k,( j)

ξ(x,u, t)≤ 0

φ(x,u, t) = 0

(6.15)

where the positive definite matrices R( j) and Q( j) correspond to the measured outputs

and estimated state variables of the j th subsystem. Similar to the iterative distributed

control design, the j th local estimator computes its state variables at the sampling time

and exchanges these values over the network. Then the local estimators re-compute the

state variables by resolving the dynamic optimization problem of (6.15). This iterative

procedure terminates when the Euclidean norm of the difference between the vectors of

estimated states of two consecutive iterations becomes smaller than a desired threshold.

Similar to the proposed DMPC, the system state-space model and the algebraic equali-

ty/inequality constraints are not decomposed to guarantee that each local estimator satis-

fies the system dynamics and the related constraints. We only consider the distribution of

the unmeasurable state variables and the measured outputs over the network of variables.

Figure 6.2 illustrates the block diagrams of the closed-loop process for the proposed com-

bined distributed estimation and control. In this proposed distributed estimation/control

architecture, each local estimator/controller solves a small dynamic optimization problem

(with a particular objective function) in parallel to other estimators/controllers while they

share their information over the network. Each local estimator/controller deals only with
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Figure 6.2: Iterative combined DMHE and DMPC structure for different system decompo-
sitions for the control problem (L subsystems) and the estimation problem (N subsystems)

the outputs which belong to its corresponding subsystem. The local estimators/controllers

communicate over the network by sharing their computed state values/temporal profiles

of manipulated inputs.

6.2.4 Decompositions for control and estimation

To implement the proposed combined distributed estimation and control, we require a

decomposition of the system into smaller subsystems. The decomposition approach con-

sidered in this chapter is based on the community detection in the equation graphs (graph

representations of the process systems) that capture the structural interactions among the

different variables in the system. For the control problem, the graph captures the relation-

ships of the manipulated inputs, state variables of the system, and the controlled outputs,

as is standard for ODE systems [10]. The graph captures the algebraic relationships of

the measured outputs, state variables of the system, and the unmeasurable state variables
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Figure 6.3: Graph representations of a typical process system for (a) control and (b) esti-
mation problems

for the estimation problem. We used the modularity maximization algorithm discussed in

Section 3.4.2 for the optimal decomposition determination.

The two different types of graphs considered are shown in Figure 6.3. Community

detection methods applied to these graphs will in general lead to different optimal de-

compositions. Consequently, the distributed control and estimation architectures designed

based on these decompositions will be different in general.

6.3 An integrated process case study: Benzene alkylation

with ethylene

In this section, we employ the proposed distributed estimation and control approach to

address the output feedback regulation problem for an integrated process of benzene alky-

lation with ethylene to produce ethylbenzene. This is a widely used process in the petro-

chemical industry where its main product (ethylbenzene) is utilized as an intermediate to

produce styrene (by dehydrating ethylbenzene), the precursor component for important

polymers and copolymers [105, 108]. Ethylbenzene is also used as a solvent in many

industrial applications [109].
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Figure 6.4: Benzene alkylation with ethylene

6.3.1 Process description

The benzene alkylation process considered consists of four continuous stirred-tank reac-

tors (CSTRs) and a flash tank separator (Figure 6.4). The process is assumed to operate at

high pressure which results in a liquid phase reaction with constant molar volumes. Three

CSTRs in series are used for the following two catalytic reactions

Reaction 1 : Benzene (A)+Ethylene (B)→ Ethylbenzene (C)

Reaction 2 : Ethylbenzene (C)+Ethylene (B)→ 1,3 Diethylbenzene (D)

(6.16)

where ethylbenzene is the desired product and diethylbenzene is the byproduct [110]. Pure

benzene and pure ethylene are fed to the first CSTR. The feed streams to the second and

third CSTR only contain pure ethylene. The effluent of the third CSTR is then fed to

the separator. We assume that the reaction in the separator is negligible. The majority

of the benzene is separated and recycled to the reaction units (first and fourth CSTRs)

and the bottom product of the separator is collected as the ultimate product of the plant.

We also feed a pure 1,3-diethylbenzene to the fourth CSTR from another separator unit

97



whose dynamics are not considered in this case study for simplicity [105]. A catalyzed

transalkylation reaction takes place in the fourth reactor

Reaction 3 : Benzene (A)+1,3 Diethylbenzene (D)→ Ethylbenzene (C) (6.17)

The effluent of the fourth CSTR is then fed to the separator. All of the reactors and the

flash tank separator have external jackets used to provide/remove heat from the units.

6.3.2 Model description

By applying material and energy balances and under standard modeling assumptions [105,

111, 112], the following ODEs can be obtained that describe the dynamics of hold-up,

temperature, and concentration of the different components in the four CSTRs and the
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flash tank separator

dV1

dt
= F1 +F2 +Fr2−F3

dT1

dt
=

Q1 +F1CA0HA(TA0)+F2CB0HB(TB0)+Fr2CirHi(T4)−F3Ci1Hi(T1)

∑
A,B,C,D
i Ci1CpiV1

+
−∆Hr1r1(T1,CA1,CB1)−∆Hr2r2(T1,CB1,CC1,CD1)

∑
A,B,C,D
i Ci1Cpi

dCA1

dt
=

F1CA0 +Fr2CAr−F3CA1

V1
− r1(T1,CA1,CB1)

dCB1

dt
=

F2CB0 +Fr2CBr−F3CB1

V1
− r1(T1,CA1,CB1)− r2(T1,CB1,CC1,CD1)

dCC1

dt
=

Fr2CCr−F3CC1

V1
+ r1(T1,CA1,CB1)− r2(T1,CB1,CC1,CD1)

dCD1

dt
=

Fr2CDr−F3CD1

V1
+ r2(T1,CB1,CC1,CD1)

dV2

dt
= F3 +F4−F5

dT2

dt
=

Q2 +F4CB0HB(TB0)+F3Ci1Hi(T1)−F5Ci2Hi(T2)

∑
A,B,C,D
i Ci2CpiV2

+
−∆Hr1r1(T2,CA2,CB2)−∆Hr2r2(T2,CA2,CB2,CD2)

∑
A,B,C,D
i Ci2Cpi

dCA2

dt
=

F3CA1−F5CA2

V2
− r1(T2,CA2,CB2)

dCB2

dt
=

F3CB1 +F4CB0−F5CB2

V2
− r1(T2,CA2,CB2)− r2(T2,CB2,CC2,CD2)

dCC2

dt
=

F3CC1−F5CC2

V2
+ r1(T2,CA2,CB2)− r2(T2,CB2,CC2,CD2)

dCD2

dt
=

F3CD1−F5CD2

V2
+ r2(T2,CB2,CC2,CD2)

dV3

dt
= F5 +F6−F7

dT3

dt
=

Q3 +F6CB0HB(TB0)+F5Ci2Hi(T2)−F7Ci3Hi(T3)

∑
A,B,C,D
i Ci3CpiV3

+
−∆Hr1r1(T3,CA3,CB3)−∆Hr2r2(T3,CA3,CB3,CD3)

∑
A,B,C,D
i Ci3Cpi

dCA3

dt
=

F5CA2−F7CA3

V3
− r1(T3,CA3,CB3)

(6.18)
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dCB3

dt
=

F5CB2 +F6CB0−F7CB3

V3
− r1(T3,CA3,CB3)− r2(T3,CB3,CC3,CD3)

dCC3

dt
=

F5CC2−F7CC3

V3
+ r1(T3,CA3,CB3)− r2(T3,CB3,CC3,CD3)

dCD3

dt
=

F5CD2−F7CD3

V3
+ r2(T3,CB3,CC3,CD3)

dV4

dt
= F7 +F9−F8−Fr1−Fr2

dT4

dt
=

Q4 +∑
A,B,C,D
i

(
F7Ci3Hi(T3)+F9Ci5Hi(T5)−MiHi(T4)−F8Ci4Hi(T4)−MiHvap,i

)
∑

A,B,C,D
i Ci4CpiV4

dCA4

dt
=

F7CA3 +F9CA5−FrCAr−F8CA4

V4

dCB4

dt
=

F7CB3 +F9CB5−FrCBr−F8CB4

V4

dCC4

dt
=

F7CC3 +F9CC5−FrCCr−F8CC4

V4

dCD4

dt
=

F7CD3 +F9CD5−FrCDr−F8CD4

V4

dV5

dt
= F10 +Fr1−F9

dT5

dt
=

Q5 +F10CD0HD(TD0)+∑
A,B,C,D
i

(
Fr1CirHi(T4)−F9Ci5Hi(T5)

)
∑

A,B,C,D
i Ci5CpiV5

+
−∆Hr2r2(T5,CB5,CC5,CD5)−∆Hr3r3(T5,CA5,CD5)

∑
A,B,C,D
i Ci5Cpi

dCA5

dt
=

Fr1CAr−F9CA5

V5
− r3(T5,CA5,CD5)

dCB5

dt
=

Fr1CBr−F9CB5

V5
− r2(T5,CB5,CC5,CD5)

dCC5

dt
=

Fr1CCr−F9CC5

V5
− r2(T5,CB5,CC5,CD5)+2r3(T 5,CA5,CD5)

dCD5

dt
=

Fr1CDr +F10CD0−F9CD5

V3
+ r2(T5,CB5,CC5,CD5)− r3(T5,CB5,CC5)
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where the definition of the process variables is presented in Table 6.1.

Table 6.1: Process variables.

Variables Definition
F3,F5,F7,F8,F9 Flow rates of the streams leaving the units
F1,F2,F4,F6,F10 Flow rates of the streams leaving the units

Fr,Fr1,Fr2 Flow rates of the recycle streams
Q1,Q2,Q3,Q4,Q5 External heat flows to each units
CA1,CB1,CC1,CD1 Concentrations of A, B, C, D in the first CSTR
CA2,CB2,CC2,CD2 Concentrations of A, B, C, D in the second CSTR
CA3,CB3,CC3,CD3 Concentrations of A, B, C, D in the third CSTR
CA4,CB4,CC4,CD4 Concentrations of A, B, C, D in the flash tank separator
CA5,CB5,CC5,CD5 Concentrations of A, B, C, D in the fourth CSTR
CAr,CBr,CCr,CDr Concentrations of A, B, C, D in the recycle stream
V1,V2,V3,V4,V5 Hold-ups in each unit
T1,T2,T3,T4,T5 Temperatures in each unit

Tre f Reference temperature
Hvap,A,Hvap,B,Hvap,C,Hvap,D Enthalpies of vaporization of A, B, C, D in the first CSTR
Hvap,A,Hvap,B,Hvap,C,Hvap,D Enthalpies of vaporization of A, B, C, D in the first CSTR

∆Hr1,∆Hr2,∆Hr3 Heat of reactions 1, 2, 3
TA0,TB0,TD0 Temperatures of the pure feed streams

The reaction rate expressions are

r1(T,CA,CB) = 0.0840exp(
−9502

RT
)C0.32

A C1.5
B

r2(T,CB,CC,CD) =
0.0850exp(

−20643
RT

)C2.5
B C0.5

C

1+ kEB2CD

r3(T,CA,CD) =
66.1exp(

−61280
RT

)C1.0218
A CD

1+ kEB3CA

(6.19)

where
kEB2 = 0.152exp(

−3933
RT

)

kEB3 = 0.490exp(
−50870

RT
)

(6.20)
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We consider a linear dependency of the enthalpies of the reactants on the temperature

Hi(T ) = Hre f ,i +Cpi(T −Tre f ), i = A,B,C,D (6.21)

where the heat capacities of the species, Cpi for i = A,B,C,D, are assumed to be constant,

and Hre f ,i for i = A,B,C,D denotes the enthalpies of the species at the reference tempera-

ture, Tre f . We also consider a linear temperature dependency of the relative volatilities of

the species

αA = 0.0449T4 +10

αB = 0.0260T4 +10

αC = 0.0065T4 +0.5

αD = 0.0058T4 +0.25

(6.22)

The concentration of the species in the recycle stream can be calculated by

Cir =
Mi

∑
A,B,C,D
j

Mi

C j0

, i = A,B,C,D
(6.23)

where C j0 for j =A,B,C,D denotes the molar densities of the pure species and Mi presents

the molar flow rates of the species in the overhead stream of the flash tank separator

Mi = k
αi(F7Ci3 +F9Ci5)∑

A,B,C,D
j (F7C j3 +F9C j5)

∑
A,B,C,D
j α j(F7C j3 +F9C j5)

, i = A,B,C,D (6.24)

and k denotes the fraction of overhead flow recycled to the CSTRs.

The parameters of the model are presented in Table 6.2, and the reference values

(steady states) of the system states and manipulated inputs are shown in Tables 6.2 and

6.4, respectively.

The hold-up, the temperature, and the concentration of the desired product (ethylben-
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Table 6.2: Process parameters

Parameters Values Units Parameters Values Units
Hvap,A 3.073×104 J/mol Hvap,B 1.35×104 J/mol
Hvap,C 4.226×104 J/mol Hvap,D 4.55×104 J/mol
Hre f ,A 7.44×104 J/mol Hre f ,B 5.91×104 J/mol
Hre f ,C 2.02×104 J/mol Hre f ,D −2.89×104 J/mol
Cp,A 184.6 J/molK Cp,B 59.1 J/molK
Cp,C 247 J/molK Cp,D 301.3 J/molK
CA0 1.126×104 mol/m3 CB0 2.028×104 mol/m3

CD0 6485 mol/m3 Tre f 450 K
TA0 473×104 K TB0 473×104 K
TD0 473 K k 0.8 −

∆Hr1 −1.53×105 J/mol ∆Hr2 −1.118×105 J/mol
∆Hr3 4.141×105 J/mol R 8.314 J/molK

zene) in the four CSTRs and the separator are considered as the controlled outputs. As

illustrated in Figure 6.5, the stream flow rates and heat flows to the units are the manip-

ulated inputs. Also, it is assumed that we can only measure the hold-up and temperature

inside the reactors and the separator (Figure 6.6) which necessitates estimating the con-

centrations of the species required by the controller to compute the manipulated inputs.

Thus we have 30 state variables, 17 manipulated inputs, 15 controlled outputs, and only

10 measured outputs.

6.3.3 Distributed estimation and control architecture

Figures 6.7 and 6.8 show the graph representations for the control and estimation prob-

lems, respectively. In both graph representations, the core structures which involve the in-

teractions between the state variables are identical. In the graph representation of the con-

trol problem, we consider specifically the interaction between manipulated inputs (stream

flow rates and heat flows to the reactors and the separator), the state variables of the system

(hold-up, temperature, and concentrations of the species in the reactors and the separator),
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Figure 6.5: The set of manipulated inputs for the benzene alkylation with ethylene

Figure 6.6: The set of measured outputs for the benzene alkylation with ethylene
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Table 6.3: Reference (steady state) values of the state variables

Parameters Values Units Parameters Values Units
V1 1 m3 V2 1 m3

V3 1 m3 V4 3 m3

V5 1 m3 T1 474.36 K
T2 473.65 K T3 469.76 K
T4 465.42 K T5 467.58 K

CA1 9.101×103 mol/m3 CB1 22.38 mol/m3

CC1 1.116×103 mol/m3 CD1 2.204×102 mol/m3

CA2 7.548×103 mol/m3 CB2 23.73 mol/m3

CC2 1.906×103 mol/m3 CD2 3.731×102 mol/m3

CA3 6.163×103 mol/m3 CB3 25.16 mol/m3

CC3 2.614×103 mol/m3 CD3 5.056×102 mol/m3

CA4 1.756×103 mol/m3 CB4 14.03 mol/m3

CC4 5.402×103 mol/m3 CD4 7.396×102 mol/m3

CA5 5.805×103 mol/m3 CB5 4.630 mol/m3

CC5 3.716×103 mol/m3 CD5 2.091×102 mol/m3

and the controlled outputs (hold-up, temperature, and concentrations of ethylbenzene in

the reactors and the separator). In the graph representation of the estimation problem,

we consider the interactions between measured outputs (hold-up and temperature in the

reactors and the separator), the state variables of the system, and the unmeasurable state

variables (concentrations of the species in the reactors and the separator). These interac-

tions define the adjacency matrices that are used in the community detection algorithm.

If the subsystems for estimation and control are more densely connected internally

than the rest of the network, the resulting distributed architecture may improve the state

estimation quality and closed-loop performance. Also, it may minimize the required it-

erations in the distributed estimation and control which in turn reduces the computation

time. Figures 6.9 and 6.10 show the optimal system decompositions using community

detection (maximizing modularity) for the control and the state estimation problems and

the corresponding distributions of the resulting subsystems on the process flowsheet. As
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Figure 6.7: The graph representation for control problem

Figure 6.8: The graph representation for estimation problem

Figure 6.9: System decomposition for control
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Table 6.4: Reference (steady state) values of the manipulated inputs

Parameters Values Units Parameters Values Units
F1 7.1×10−3 m3/s F2 8.697×10−4 m3/s
F3 1.4×10−2 m3/s F4 8.697×10−4 m3/s
F5 1.48×10−2 m3/s F4 8.697×10−4 m3/s
F7 1.57×10−2 m3/s F8 1.2×10−2 m3/s
F9 8.3×10−3 m3/s Fr1 6×10−3 m3/s
Fr2 6×10−3 m3/s Q1 −4.4×106 J/s
Q2 −4.6×106 J/s Q3 −4.7×106 J/s
Q4 9.2×106 J/s Q5 5.6×106 J/s

Figure 6.10: System decomposition for state estimation

mentioned in the previous sections, we obtain different decompositions since the struc-

ture of the two graphs is different. In the system decomposition for control, we obtain

three subsystems consisting of (1) the first and second CSTRs, (2) the third CSTR, and

(3) the fourth CSTR and the flash tank separator. For the state estimation problem, four

subsystems are obtained that involve (1) the first CSTR, (2) the second CSTR, (3) the third

CSTR, and (4) the fourth CSTR and the flash tank separator. In both of the decomposi-

tions the fourth CSTR and the separator are placed in the same community since there are

tightly connected through the material recycle streams. The difference between the de-

composed architectures for control and estimation relates to the first and second CSTRs.

In the control decomposition the first and second CSTR are in the same subsystem. In the
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state estimation decomposition the first and second CSTR form different subsystems. The

reason for this is that the flow rate of the pure benzene entering the first CSTR, which is a

manipulated input, has a strong effect on both the first and the second reactor. On the other

hand, for the estimation problem we are just estimating concentrations from temperature

measurements, and there is no advantage in considering these reactors together.

6.4 Simulation Results and Discussion

The number of sampling periods in the moving horizon for solving the optimization-based

control and estimation problems is set to Nc = Nm = 10, where the sampling time is T =

60s. The initial values of the system states are given in Table 6.5.

Table 6.5: Reference (steady state) values of the state variables

Parameters Values Units Parameters Values Units
V1 1.5 m3 V2 0.5 m3

V3 2 m3 V4 1.5 m3

V5 1.6 m3 T1 423.15 K
T2 423.15 K T3 423.15 K
T4 423.15 K T5 423.15 K

CA1 1.2×104 mol/m3 CB1 100 mol/m3

CC1 100 mol/m3 CD1 100 mol/m3

CA2 1.2×104 mol/m3 CB2 100 mol/m3

CC2 100 mol/m3 CD2 100 mol/m3

CA3 1.2×104 mol/m3 CB3 100 mol/m3

CC3 100 mol/m3 CD3 100 mol/m3

CA4 1.2×104 mol/m3 CB4 100 mol/m3

CC4 100 mol/m3 CD4 100 mol/m3

CA5 1.2×104 mol/m3 CB5 100 mol/m3

CC5 100 mol/m3 CD5 100 mol/m3

We consider white noise with signal-to-noise ratio of 20 dB and 40 dB per sample for

the output measurements and process disturbances, respectively. For both the control and

estimation problems we consider a ±%50 bound on the manipulated inputs and estimated
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state variables with respect to their reference values. Since the hold up dynamics are

non-self regulating, i.e. they may tend towards a different steady state or be unstable if

the corresponding flow rates are chosen freely, we add three equality constraints to the

optimization problems to ensure that the time derivative of the hold up (right-hand side

of the hold up dynamic equations) is always proportional to the negative values of the

hold up variables. The diagonal elements of the required weighting matrices are tuned by

the inverse values of their corresponding reference or steady state values. Such a tuning

strategy balances the importance of output regulation errors and manipulated inputs and

the impact of estimation errors in the objective functions of the control and estimation

problems, respectively.

We employ the interior point optimizer (IPOPT) to solve the nonlinear constrained

dynamic optimization at each sampling time [89] by considering sufficiently high values

of a maximum allowed number of iterations and function evaluations for the solver, to

ensure that the optimizing procedure is not terminated before converging to the optimal

point. Simulations are performed in MATLABr using a 3.4 GHz Intelr CoreTM i7−6700

processor. Figure 6.11 presents selected temporal profiles of the output regulation errors

for the combined DMPC and DMHE using the optimal decomposition for the control and

estimation problems. During the time period of [0 600], we have an open-loop process

where the decision variables are constant values chosen randomly. This short open-loop

period (highlighted area) is used to collect the data history to initialize the estimation

problem. The resulting ensemble of data is used by the MHE to estimate the system

state variables which are then applied by the MPC as the initial values of the of the state

variables at each sampling time.

After t = 600s, we have closed-loop operation with combined MHE and MPC. The

output regulation errors converge to zero with smooth transients and without any chatter-

ing which confirms the regulation of the system outputs at their desired reference values.
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Figure 6.11: Dynamic behavior of selected output variables during open-loop, t ∈ [0 600),
and closed-loop, t ∈ [600 2400], process operation

Figure 6.12 shows selected temporal profiles of the manipulated inputs in deviation

form where the control actions remain constant between sampling times. Note that in the

open-loop period, the manipulated inputs are generated randomly. After activating the

output feedback control loop, we observe that the control actions gradually converge to

their steady state values.

We use, as in the previous case studies, the dimensionless performance index (DPI)

[83] to compare the closed-loop performance of the proposed architecture with other po-

tential configurations

DPI = ISE+ ISC =
∫ t f

0

(∥∥y− yref∥∥2
P +
∥∥u−uref∥∥2

W

)
dt (6.25)
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Figure 6.12: Selected manipulated inputs during open-loop, t ∈ [0 600), and closed-loop,
t ∈ [600 2400], process operation
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Figure 6.13: Performance index for different control and estimation architectures

where ISE and ISC indicate the integral squared errors and the squared control actions,

respectively. Figure 6.13 illustrates the DPI for the proposed distributed output feedback

control architecture (fourth column) compared to other potential architectures. The first

column corresponds to the centralized control and estimation architecture where an indi-

vidual controller/estimator is designed to compute the manipulated inputs/state variables

by solving a dynamic optimization problem at each sampling time.

The second column corresponds to the DMPC with an optimal architecture combined

with CMHE. The third and the fifth columns correspond to the DMPC with the optimal

architecture and the DMHE with a suboptimal architecture, and the DMPC with a subop-

timal architecture and the DMHE with the optimal architecture, respectively. Figure 6.14
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Figure 6.14: Computation times for different control and estimation architectures

demonstrates the average computation times per sampling period, T , for the same cases as

in 6.13. For a combined CMPC and CMHE, it is shown that achieving the solution of the

dynamic optimization problems takes almost %87 time of the sampling period. In such

a case, the estimated state variables and the manipulated inputs are implemented as soon

as they become available [15]. However, the time delay between the sampling time and

when the corresponding states and inputs are implemented may result in instability and

poor closed-loop performance. This impact has not been considered in the performance

index presented in Figure 6.13. Note that the required computational effort to solve a cen-

tralized estimation/control is raised by an increase in the size and the complexity of the

process system. In specific cases, it may also result in a computation time greater than the
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sampling period which make the control implementation impractical [83].

By comparing the DPI and the computation time for these cases, we note a perfor-

mance degradation due to distribution along with a significant reduction in the computa-

tion time. By considering the second and the third columns (both use the same optimal

DMPC architecture, where one employs CMHE and the other DMHE with a suboptimal

decomposition), we observe a slight reduction in the computation time and a closed-loop

performance degradation. The third, the fourth, and the fifth columns use distributed esti-

mation and control design. However, for the third and the fifth columns we use one subop-

timal structure. We observe that the fourth case (red column) which employs a combined

distributed estimation and control based on optimal architectures obtained by applying

community detection has the best closed-loop performance (low DPI and required com-

putation time). In this distributed output feedback control architecture, we utilized system

decompositions that minimizes the interactions between the subsystems for both estima-

tion and control problems. Such a proposed architecture enables closed-loop performance

close to that of the CMPC, while reduces the computational effort significantly.
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Chapter 7

Summary and Conclusions

This thesis dealt with developing a unified framework for distributed control and state es-

timation of generic chemical networks. The first part of this thesis presented a framework

for determining the optimal network decomposition of networks comprising DPSs inter-

connected with LPSs. The second part of the thesis addressed the problem of obtaining

optimal decompositions for distributed control as well as distributed state estimation for

chemical plants consisting of LPSs.

The identification of sparsely interacting sub-networks within LPS networks using

community detection algorithms that maximize modularity has been shown to be a promis-

ing approach towards obtaining the optimal decomposition for distributed control of LPS

networks. The community detection algorithms are based on the equation graphs of the

network, which are standard for LPSs. But most chemical plants consist of LPSs inter-

connected with DPSs. In Chapters 2-5 of this thesis, we extended the equation graph

representation to DPSs. For this, we considered the two broad classifications of DPSs,

namely, convection-reaction systems and diffusion-convection-reaction systems. The for-

mer class is modeled by first-order hyperbolic PDEs, and the latter by parabolic PDEs. We

considered the three different kinds of inputs identified in the literature for these systems:
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1. Boundary inputs: These input variables are the boundary conditions of the PDEs

that capture the system dynamics.

2. Velocity inputs: These input variables are the flow velocities of the streams in the

PDE system.

3. Distributed inputs: These input variables are functions of space and time distributed

along the spatial coordinate of the PDE system.

For convection-reaction systems, we considered only linear systems, and two types of

output variables

1. Boundary outputs: These are located at the boundary of the PDEs that capture the

system dynamics.

2. Distributed outputs: The variables that are distributed along the spatial coordinate

of the PDE system.

For diffusion-convection-reaction systems, we considered quasi-linear parabolic PDE

systems, and, in addition to the aforementioned classifications of the output variables, we

considered a third kind of output - the spatially varying but time-dependent output variable,

e.g., the hot-spot in a tubular reactor. Velocities as output variables are not considered for

either of the PDE systems, as they are not natural in this setting.

For both of these kinds of systems, we proposed a relative degree analogue that we

call the Structural Interaction Parameter or SIP, which captures the strength of interactions

among the variables of the DPS. In order to do this, we redefined the distributed input

and output variables so as to capture their information in finite-dimensional vectors, the

elements of which are functions of time alone [18]. We also redefined the boundary input

and output variables to collocate the variables in case they are located at different spatial

coordinates [19]. This collocation ensures that the output’s dependence on the input is
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captured in finite order time-derivatives of the output. For both classes of DPSs, we pro-

posed equation graph representations. For the convection-reaction systems, we linked the

length of the input to output path in the equation graph to the SIP using the properties of

finite-dimensional coefficient matrices of the set of linear, first-order hyperbolic PDEs that

capture the system dynamics. For the diffusion-convection-reaction system, we linked the

SIP to the equation graph using the Galerkin projection of the PDEs. The SIP is related to

the length of the shortest input-output path in the equation graph with the same algebraic

relationship that relates relative degree and the input-output paths in LPS graphs. This

allows us to use the equation graph based network decomposition algorithms for equation

graphs of interconnected LPS and DPS networks to obtain the optimal decomposition for

distributed plant-wide control of generic chemical networks.

The optimality of the optimal decomposition obtained using the community detection

algorithms on LPS-DPS networks was verified using two case studies.

The first case study is a two stage amine gas sweetening plant (discussed in Chapter

3), which contains two absorbers in series to absorb the sour components (carbon dioxide

and hydrogen sulphide), and two downstream regenerator columns to regenerate the spent

solvent, along with two process stream heat-exchangers. This network was chosen due

to its significance in the liquified natural gas train and the fact that plant-wide control of

such a network has not yet been addressed in the literature. We observed that the optimal

network decomposition gives insight into the dominant factor that determines the degree

of integration among the process units in the plant, which is the reaction between the sour

components of the natural gas, and is not obvious from the plant process flow diagram or

the plant model. We simulated three plant-wide control problems

1. Nominal plant start-up

2. Start-up with measurement noise in all the output measurements
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3. Start-up with disturbance in feed composition

We compared the performance of DMPC based on the optimal network decomposition

with centralized MPC, DMPC based on a sub-optimal decomposition and decentralized

control based on the optimal decomposition.

The second chemical network considered is a reaction-separation plant (discussed in

Chapter 5), that consists of four tubular reactors with interstage cooling, upstream of two

flash columns. An exothermic, reversible reaction occurs in the tubular reactors and the

product is separated from the unreacted reactant in the flash tanks. This network is also

tightly integrated by a material recycle stream and heat integration between the interstage

heat-exchangers. This type of network is encountered in the production and separation of

sulphuric acid [22]. We used the community detection algorithm to determine the opti-

mal decomposition for this network. The optimal decomposition identifies the dominating

factors that affect the interactions among the process units as the integration between the

heat-exchangers and the material recycle from the flash tanks to the fourth reactor. We

implemented DMPC on the set-point tracking control problem, and compared its perfor-

mance with CMPC.

For both the case studies, we used as the measures for gauging the control performance

the performance index (a measure of the deviation of the outputs from the steady-state val-

ues and the control effort required to bring the outputs to the steady-state value) and the

computation time required to compute the optimum values of the input variables. We ob-

served that DMPC consistently gives for all the control problems, a performance index

that is close to that of centralized control, and far superior to that of decentralized control,

with a computation time that is significantly lower than that for centralized control. We ob-

served, also, that the performance of the DMPC on the optimal decomposition as obtained

from the equation graph based community detection is superior to that on a sub-optimal

decomposition obtained from the same algorithm.
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The aforementioned case studies of DMPC for plant-wide control are based on the

assumption that the entire state vector is available. However, in practice, the entire state is

not often measurable. Hence, in chapter 6, we considered the problem of plant-wide con-

trol of an LPS network where the state needs to be estimated from limited measurements.

In particular, we focused on MHE, which is a promising formulation for state estimation.

MHE is based on the repeated solution of a constrained optimization problem where the

decision variables are the state variables. MHE for large networks can be computation-

ally expensive, and can compromise the closed-loop control performance. Analogous to

the DMPC approach, which has shown to have lower computational cost than CMPC, we

formulated a combined distributed MPC and state estimation problem. For this we used

two equation graphs, one for the control architecture and one for estimation architecture.

The graph for the control architecture was the same as the graph associated with relative

degree for LPS variables, and captured the connectivity of the input variables to the output

variables through the state variables. The graph for the estimator captured in a similar

manner the connectivity of the measured variables and the state variable vector. A com-

munity detection algorithm that uses the spectral decomposition of the modularity matrix

corresponding to the network [40] was used to obtain the optimum network decomposi-

tions for estimation and control. As a case study, a combination of DMHE and DMPC

based on these decompositions was then used to address the output regulation problem for

a benzene alkylation plant that consisted of four CSTRs and one flash column. Benzene

and ethylene are fed to the first CSTR in a series of three CSTRs. Additional benzene

is fed to the two downstream CSTRs. The reaction in these CSTRs produces ethylben-

zene. The fourth CSTR produces ethylbenzene from diethylbenze, which is a byproduct

of the first CSTRs in the series of three CSTRs. The flash tank separates ethylbenzene

from ethylene. It was observed that the optimum control configuration was different from

the optimum architecture for state estimation. This would be the expectation in a typical
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case of combined DMHE and DMPC since the equation graphs on which the decompo-

sitions are based are different. It was also observed that the decompositions, which were

not intuitive or obvious from the process flow diagram or model, provided insight into

the dominant interactions in the network. Several combinations of the control and esti-

mation architectures, including fully centralized and sub-optimal architectures, were also

simulated for the combined estimation and control problem to compare the closed-loop

performance with the DMHE-DMPC based on the respective optimal architectures. The

parameters for comparison were the same as for the previous case studies, i.e., the per-

formance index and the computation time to converge upon the decision variables (which

were the state variables for the estimation problem and the input variables for the control

problem). It was observed in the simulations that the proposed distributed output feedback

control design based on the optimal decompositions minimizes the interactions between

the distributed local estimators and controllers, and enables a closed-loop performance

close to that of the centralized architecture while reducing the computational effort signif-

icantly.

These studies highlight the importance of choosing the optimal network decomposi-

tion for distributed control as well as distributed estimation and validate the relationship

established in this thesis between the equation graphs of the network variables and the

strength of the structural interactions as captured by the SIP for DPSs.
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Chapter 8

Future Work

8.1 Structurally Controllable Decompositions

A limitation of the existing community detection algorithms for network decomposition

is that the communities or the subsystems in the decomposition are not necessarily con-

trollable, and a post-processing step is required to check for the controllability of the

decomposition. If the decomposition with the maximum modularity is found to be uncon-

trollable, then the controllability check is performed on the sub-optimal decompositions

until a controllable decomposition is obtained. In the future, structural controllability cri-

teria could be incorporated into the community detection algorithm to eliminate the need

for this post-processing step.

8.1.1 LPS Network Decomposition

For LPSs, in the literature there exist equation graph based criteria related to the rank of

the system’s controllability gramian [113–115], namely the input connectivity condition

and the no-dilation condition, which could be incorporated in the community detection

algorithm for ensuring that the decompositions are controllable. The input connectivity
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condition requires the identification of the strongly connected sets in the equation graph,

which could be done by analysing the elements of the adjacency matrix [115]. The no-

dilation requires the calculation of the maximum matching in the bipartite graph that cap-

tures the connectivity between the input and state variables. The bipartite graph could

be determined from the equation graph, and the algorithms for determining the size of

the maximum matching [116, 117] could be used to check if the no-dilation condition is

satisfied by a certain decomposition.

8.1.2 DPS Network Decomposition

The assessment of controllability and controller design for PDE systems has been exten-

sively studied (see for example, [92, 94, 118–123] and the references therein). Even so,

controllability of PDEs is an open problem [118]. To the best of our knowledge, there

don’t exist results for assessing structural controllability in PDE systems.

The work in [124] discusses controllability for scalar PDE systems as well as non-

scalar PDE systems, with boundary and distributed actuations. For some classes of PDE

systems, with certain inherent model attributes (e.g., autonomous systems with diagonal

diffusion matrix, non-autonomous systems with identity diffusion matrix etc.), the work in

[124] reports controllability criteria that are related to the corresponding Kalman matrix or

operator. These criteria could be the starting point in developing a graph based framework

that forms the basis for assessing structural controllability in PDE systems.

8.2 Structurally Observable Decompositions

Similar to the incorporation of structural controllability criteria in the network decom-

position algorithms, structural observability criteria could be incorporated in the algo-

rithm to determine decompositions that are controllable as well as observable. To this
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end, using the input connectivity and no-dilation conditions along with the controllability-

observability duality, the equivalent observability criteria could be determined for the net-

works of LPSs. The input connectivity criterion on the dual of a given network would

translate to an output connectivity criterion in the original network, and would be based

on the corresponding adjacency matrix. The no-dilation condition on the dual network

would be related to the cardinality of the maximum matching in the original network’s bi-

partite graph that relates the output variables to the state variables. These conditions could

be incorporated in the decomposition algorithm in a similar way as the incorporation of

the controllability criteria.

8.3 DPS Graphs based on Comprehensive Interaction

The work in this thesis [82, 93, 125–127] focused on extending the equation graph repre-

sentation to DPSs. To this end, an analogue of relative degree was saught that captures the

structural distance of the controlled outputs from the manipulated inputs for DPSs. Al-

though the equation graph representations and their relationship with the SIP have shown

to be a promising basis for community detection in generic PDE systems, it remains to

be seen whether the quantification of the strength of interaction among the variables of

the DPS based on factors other than (or, in addition to) the structural interaction would

result in different decompositions for distributed control, and if those architectures can

form the basis of computationally superior controller. The identification of relevant time-

constants related to the system (e.g., the residence time of the fluid in the column) or the

relative characteristic time or length scales (e.g. Damköhler number, Schmidt number)

and their incorporation in the equation graphs (e.g., as weights on the edges) or in the de-

composition algorithm might enable the use of community detection algorithms to identify

communities of variables that are strongly interacting, but whose strength of interaction is
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not accurately captured by the SIP.
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Appendix A: Theorem 1 Proof

For notational simplicity, we drop the subscripts of the SIP (σi j) and the length of the path

(li j).

The length of the shortest path in the digraph from an input vβ to an output yα is l, if

the path traverses exactly l−1 state variables between vβ to yα and hence, there exist a set

of distinct indices {α,k2, . . . ,kl−1,β} such that:

hαk2bk2k3 . . .bkl−1β

∂xβ

∂z

∣∣∣∣
z=L
6= 0 (1)

and for any p < l−1, for all possible sets of indices {α,k1, . . . ,kp,β},

hαk1bk1k2 . . .bkpβ

∂xβ

∂z

∣∣∣∣
z=L

= 0 (2)

Given that the output is

y = Hx|z=L (3)

and the system dynamics are
∂x
∂t

= A
∂x
∂z

+Bx (4)

the αth element of y, yα is given by

yα =
nx

∑
k1=1

hαk1xk1|z=L (5)

The first time derivative of yα is given by

dyα

dt
=

nx

∑
k1=1

hαk1

∂xk1

∂t

∣∣∣∣
z=L

(6)
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Substituting for ∂xk1/∂t in equation (6) from equation (4), we get

dyα

dt
=

nx

∑
k1=1

hαk1

{
vk1

∂xk1

∂z
+

nx

∑
k2=1

bk1k2xk2

}∣∣∣∣
z=L

(7)

Assuming,
∂xk1

∂z

∣∣∣∣
z=L
6= 0 ∀k1 ∈ {1,nx} (8)

the SIP of yα with respect to xβ is 1 if

hαβ 6= 0 (9)

If hαβ = 0, then we calculate the second time derivative of yα:

d2yα

dt2 =
nx

∑
k1=1

hαk1

[ nx

∑
k2=1

bk1k2vk2

∂xk2

∂z

]∣∣∣∣
z=L

+ other terms (10)

The SIP of yα with respect to vβ is 2 if

hαk1bk1β

∂xβ

∂z

∣∣∣∣
z=L
6= 0 (11)

Generalizing from the above derivations, the SIP of yα with respect to vβ is σ if there is a

set of distinct indices {k2, ....,kσ} such that,

hαk2bk2k3 . . .bkσβ

∂xβ

∂z

∣∣∣∣
z=L
6= 0 (12)

But then, from equation (1) it can be concluded that the length of the shortest path is σ+1,

which establishes the result.
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Appendix B: Theorem 2 Proof

Consider a SISO first-order hyperbolic PDE system with distributed actuation for which

the input is u(z, t) and the output is y(z, t). Hence, G and H are a column and a row vector

respectively, henceforth represented as g and hT .

Defining an operator fi(x) as:

fi(x) = aii
∂xi

∂z
+

n

∑
j=1

bi jx j (13)

where aii are the diagonal elements of A, and bi j are the (i, j)th elements of B, yields the

following representation of the system dynamics:

∂xi

∂t
= fi(x)+giu(z, t) ∀i ∈ {1,n}

y(z, t) = hT x (14)

It must be noted that, as was the case for velocity actuation, if the length of the shortest

path in the digraph from û(t) to ŷ(t) is l, then the path traverses exactly l−1 state variables

between û(t) to ŷ(t) and hence, there exists a set of distinct indices {µ1,µ2,µ3, . . . ,µl−1}

such that:

hµl−1

∂ fµl−1

∂xµl−2

∂ fµl−2

∂xµl−3

. . .
∂ fµ2

∂xµ1

gµ1 6= 0 (15)

The SIP between ŷ(t) and û(t) is σ if [18],

hT
(

A
∂

∂z
+B
)σ−1

g 6= 0 (16)

and

hT
(

A
∂

∂z
+B
)σ−k

g = 0 ∀ k ∈ {2,σ} (17)
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From the definitions of A, B and equation (13), a matrix J can be defined as:

J =

(
A

∂

∂z
+B
)
=



∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
... . . . ...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn


(18)

Substituting J into equations (16) and (17), implies that if the SIP is σ then:

hT (J)σ−1g 6= 0 (19)

hT (J)σ−kg = 0 ∀ k ∈ {2,σ} (20)

Initially, it is assumed that only one element in h and g is non-zero. That is, there are in-

dices α and β such that h= [0 0 . . . hα . . . 0 0 ]T , g= [0 0 . . . gβ . . . 0 0 ]T .

This implies that the manipulated input affects the dynamics of only one state variable

(namely, xβ(z, t)), and the controlled output is a function of only one state variable (xα(z, t)).

It is subsequently demonstrated that the results are true for arbitrary h and g too.

If for the input-output pair {u(z, t),y(z, t)}, the SIP σ = p+ 1, for an arbitrary p, then

from the definition of SIP, and equations (19) and (20), the following equations are satis-

fied:

hT (J)pg 6= 0 (21)

and

hT (J)p−kg = 0 ∀ k ∈ {1, p} (22)

Lemma: The pth power of an nx×nx matrix of the form of J is such that its (i, j)th term is

145



given by:
nx

∑
kp=1

nx

∑
kp−1=1

nx

∑
kp−2=1

· · ·
nx

∑
k3=1

nx

∑
k2=1

∂ fi

∂xk2

∂ fk2

∂xk3

. . .
∂ fkp−1

∂xkp

∂ fkp

∂x j
(23)

The lemma is proved using mathematical induction. For p=2,

J2 =



∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
... . . . ...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn





∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
... . . . ...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn



=



∑
n
k2=1

∂ f1
∂xk2

∂ fk2
∂x1

∑
n
k2=1

∂ f1
∂xk2

∂ fk2
∂x2

. . . ∑
n
k2=1

∂ f1
∂xk2

∂ fk2
∂xn

∑
n
k2=1

∂ f2
∂xk2

∂ fk2
∂x1

∑
n
k2=1

∂ f2
∂xk2

∂ fk2
∂x2

. . . ∑
n
k2=1

∂ f2
∂xk2

∂ fk2
∂xn

...
... . . . ...

∑
n
k2=1

∂ fn
∂xk2

∂ fk2
∂x1

∑
n
k2=1

∂ fn
∂xk2

∂ fk2
∂x2

. . . ∑
n
k2=1

∂ fn
∂xk2

∂ fk2
∂xn


(24)

Hence, the (i, j)th term of J2 is
n

∑
k2=1

∂ fi

∂xk2

∂ fk2

∂x j

So the lemma is, indeed, true for p=2.

Assuming that the lemma is true for an arbitrary p, implies that the (i, j)th term of Jp is

n

∑
kp=1

n

∑
kp−1=1

n

∑
kp−2=1

· · ·
n

∑
k3=1

n

∑
k2=1

∂ fi

∂xk2

∂ fk2

∂xk3

. . .
∂ fkp−1

∂xkp

∂ fkp

∂x j
(25)

Then, Jp+1 =

Jp×J = Jp×



∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
... . . . ...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn


From the rules of matrix multiplication, it can be concluded that the (i, j)th term of Jp+1 is
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n

∑
kp+1=1

n

∑
kp=1

n

∑
kp−1=1

· · ·
n

∑
k3=1

n

∑
k2=1

∂ fi

∂xk2

∂ fk2

∂xk3

. . .
∂ fkp

∂xkp+1

∂ fkp+1

∂x j
(26)

So, if the lemma is true for an arbitrary p, it is true for p+ 1. Hence, it must be true for

all p > 2. Therefore, the (i, j)th term of Jp is given by:

n

∑
kp=1

n

∑
kp−1=1

n

∑
kp−2=1

· · ·
n

∑
k3=1

n

∑
k2=1

∂ fi

∂xk2

∂ fk2

∂xk3

. . .
∂ fkp−1

∂xkp

∂ fkp

∂x j
(27)

For σ = p+1, equations (21)-(23) imply the following:

hα

nx

∑
kp=1

nx

∑
kp−1=1

· · ·
nx

∑
k3=1

nx

∑
k2=1

∂ fα

∂xk2

∂ fk2

∂xk3

. . .
∂ fkp−1

∂xkp

∂ fkp

∂xβ

gβ 6= 0 (28)

and

hα

nx

∑
kp−l=1

nx

∑
kp−l−1=1

· · ·
nx

∑
k3=1

nx

∑
k2=1

∂ fα

∂xk2

∂ fk2

∂xk3

. . .
∂ fkp−l−1

∂xkp−l

∂ fkp−l

∂xβ

gβ = 0 ∀ l ∈ {1, p} (29)

Equation (29) implies that, in equation (28) the indices (k2,k3, . . . ,kp,α,β) are all distinct.

Since the left-hand-side of equation (28) is a summation of several terms, and is not

equal to zero, hence, there is at least one term on the left-hand-side which is non-zero.

This implies that there exists at least one set of distinct indices (k2,k3, . . . ,kp) such that:

hα

∂ fα

∂xk2

∂ fk2

∂xk3

. . .
∂ fkp−1

∂xkp

∂ fkp

∂xβ

gβ 6= 0 (30)

It is observed that equation (30) is identical to equation (15). But equation (15) implies

that the shortest path from the input to the output variable has length l, and there are

l−1 nodes corresponding to state variables in the path from the input node to the output

node. Since the left hand side of equation (30) involves nodes corresponding to p+1 state

variables, namely, xα,xβ,xk2,xk3, . . . ,xkp , it is concluded that the shortest path from û to
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ŷ is of length p+ 2. Hence, σ = l− 1, for σ = p+ 1. But since p is arbitrary, it can be

concluded that, for any value of σ,

σ = l−1 (31)

Note that, it is possible that for some systems there are several sets of indices (k2,k3, . . . ,kp)

which satisfy equation (30), but do not satisfy equation (28), since the sum of all those

terms is zero. This corresponds to a singularity which does not invalidate the generic va-

lidity of the result.

Remark: In the case of general forms of h and g, the right hand side of equation (19)

will be as below:

hT (J)σ−1g =
nx

∑
α=1

nx

∑
β=1

hα[(α,β)th term o f Jσ−1]gβ (32)

In case of a MIMO system given by:

∂x
∂t

= A
∂x
∂z

+Bx+Gu(z, t) (33)

the right hand side of equation (19) will be as below:

hi(J)σi j−1g j =
nx

∑
α=1

nx

∑
β=1

hiα[(α,β)th term o f Jσ−1]gβ j (34)

where hi is the ith row of the matrix H and g j is the jth column of matrix G. The rest of

the proof remains identical.
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Appendix C: Theorem 3 Proof

Theorem 3: In the equation graph of a PPDE system, if l is the length of the shortest path

from an input node to an output node and s is the SIP between the two variables, then,

s = l−1 (35)

Proof 1: The time-derivative of the output, ŷ j, is given by:

dŷ j

dt
=

dh j(x̂)
dt

(36)

h j is a linear function, and thus,

dŷ j

dt
= h j

(
d(x̂)
dt

)
(37)

We assume, for the sake of illustration, without loss of generality, that

ŷ j = x̂m1 =
∫

β

α

γm1(z)xm1dz (38)

for an index m1 ∈ {1,ns}. Hence,

dŷ j

dt
=

∫
β

α

γm1(z)
∂xm1

∂t
dz (39)

Using Galerkin’s method, we can write the following approximation:

xm1 ≈
Ns

∑
i=1

a(m1)
i (t)φ(m1)

i (z) (40)

where, Ns is the number of dominant slow modes, a(m1)
i are the time-dependent coeffi-

cients, and φ
(m1)
i are the eigenfunctions of the spatial differential operator in the PPDE
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corresponding to xm1 . Hence,
dŷ j

dt
can be written as

dŷ j

dt
=

∫
β

α

γm1(z)
( Ns

∑
i=1

da(m1)
i
dt

φ
(m1)
i (z)

)
dz (41)

=
∫

β

α

γm1(z)
( Ns

∑
i=1

(λ
(m1)
i a(m1)

i +B(m1)
i u+ f (m1)

i (a(1),a(2), . . . ,a(n)))φ(m1)
i (z)

)
dz (42)

where Ns is the number of dominant modes, λ
(m1)
i is the ith eigenvalue of the spatial dif-

ferential operator corresponding to xm1 , B(m1)
i is the ith element of the operator B , and

{a(1), . . . ,a(n)} are the vectors of the time-dependent coefficients corresponding to the ns

distributed state variables. The second derivative of the output is then given by

d2ŷ j

dt2 =
∫

β

α

γm1(z)
( Ns

∑
i=1

(
λ
(m1)
i

da(m1)
i
dt

+B(m1)
i

du
dt

+
d f (m1)

i
dt

(a(1),a(2), . . . ,a(n))
)

φ
(m1)
i (z)

)
dz

(43)

Now,
d f (m1)

i
dt

can be evaluated using the chain rule as,

d f (m1)
i
dt

=
n

∑
j=1

Ns

∑
k=1

∂ f (m1)
i

∂a( j)
k

da( j)
k

dt
(44)

Using Faa di Bruno’s formula [128], the highest order derivatives of the time-dependent

coefficients in the pth order derivatives of f (m1)
i are

n

∑
j=1

Ns

∑
k=1

∂ f (m1)
i

∂a( j)
k

dpa( j)
k

dt p (45)

If the SIP of the output with respect to an input variable is s, i.e., if s is the smallest

order of the output derivative that is explicitly dependent on the input, then the input must

appear in at least one of the sth derivatives of the time-dependent coefficient of xm1 given
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by
dsa(m1)

i
dts =

(
d(s−1) f (m1)

i

dt(s−1)
+ lower order terms

)
(46)

for some i ∈ {1,Ns}. Equations (44) and (45) imply

dsa(m1)
i

dts =

( n

∑
j=1

Ns

∑
k=1

∂ f (m1)
i

∂a( j)
k

d(s−1)a( j)
k

dt(s−1)
+ lower order terms

)
(47)

which means that the input appears in the (s− 1)th derivative of at least one of the time-

dependent coefficients corresponding to another state variable xm2(z, t), which in turn,

appears in the PPDE corresponding to xm1(z, t). In that case, in the equation graph, there

is an edge from xm2(z, t) (for some m2 ∈ {1,ns}) to xm1(z, t). Since equation (47) is true

for any non-negative integer s, we can conclude that there is a series of s distinct state

variables, {xm1, . . . ,xms} whose (s− p)th derivatives are explicitly dependent on the input

variable for all p ∈ {0,s− 1}, resulting in a sequence of s− 1 edges from the variable

whose first derivative depends on the input to the variable whose sth derivative depends

on the input. There is an edge from the input to the state variable whose first derivative

explicitly depends on the input (xms) and from the state variable xm1 to the output variable.

Hence, from the input variable to the output variable, the least number of possible edges

is s+1.

Conversely, if the shortest path length from an input variable to an output variable

on the equation graph is l, it means that there is a series of l − 2 distinct state vari-

ables {xml−2, . . . ,xm1}, such that xmp appears in the PPDE corresponding to xmp+1 ∀p ∈

{1, l− 2}. The input appears in the PPDE corresponding to xm1 and the output is alge-

braically related to xml−2 . Then, equation (47) implies that the SIP of the output with

respect to the input must be l−1.

Remark 1: Since the aforementioned equations use only the differential or continuous
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or discrete summation operators, which are linear, equations (38)-(47) hold for any generic

linear operator that relates a state variable to the output variable as in equation (4.22).
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