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Abstract

Perception is integral to how we interact with our visual environment. How perception changes with

experience is a function of learning, while how it occurs on a flexible, immediate time scale in relation

to dynamic task demands, is mediated by attention. Both of these cognitive phenomena underpin how we

perceive and interact with the world around us.

Visual perceptual learning (VPL) is the improvement in the ability to perceive our visual environment and

is essential to how humans and other animals learn to interact with the world. Despite an extensive amount

of research into the mechanisms of VPL, the neural mechanisms responsible for perceptual improvements

remain controversial. A major challenge has been establishing that a particular physiological correlate of

learning is actually responsible for learning, as opposed to merely reflecting changes in the properties or

populations that are responsible. To address this issue, we employed a perceptual detection task in which

neurons in a specific area, V4, are known to have task related responses on a scale of tens of milliseconds

that reliably predict the timing and precision of shape detection. We followed population responses using a

chronically implanted electrode array while non-human primates learned to detect shapes degraded by noise.

Consistent with previous results that examined single neurons and neuronal ensembles, we found that, after

the course of learning, variations in the local field potentials of individual electrodes over the course of tens

of milliseconds reliably reflected the presentation of degraded shapes, and also predicted detection decisions

made by the animal. Moreover, we found that variations in reliability of shape-related signals predicted the

up-down fluctuations in performance seen over the course of learning in each animal. Together, these results

demonstrate that population signals in area V4 are largely sufficient to explain the timing and reliability of

shape detection and how that detection performance increases as a consequence of training.

Endogenous feature-based visual attention involves an improvement in neural representations involving

the attended feature that is dependent on immediate task dependent demands. How this happens in a specific

population, and whether the involved populations overlap with those mediating perception, is not well un-



iii

derstood. Due to previous work in our laboratory finding that feature based attention is targeted to specific,

task appropriate neural populations in early visual cortex (Warren et al., 2014), we asked whether attention is

similarly distributed in a task specific way in V4, how this depends on attention state, and whether such neu-

rons also signal the readout of the perceptual choice, given that choice signals have consistently been found

in this area. We designed a demanding stimulus discrimination task where we directed subjects to attend

to a specific feature of the task during high-field fMRI scanning. The stimulus alternated continuously at

varying frequencies in low and high level features (spatial frequency and shape, due to their expected sensory

activation of V1 and V4, respectively). Voxels were measured at high resolution, sampling 1mm of cortex,

from V1 to V4, and the stimulus was presented near perceptual threshold in order to disassociate the stimulus

from the choice. We used a linear regression analysis to compare continuous BOLD modulation of individual

voxels to regressors modeling the continuous stimulus presentation when a given feature was attended to vs

when it was not, and assessed how sensory and attention modulations overlapped with modulations contain-

ing a relationship to the ongoing perceptual choice. We found clear sensory attention effects in V4 that were

specific to certain populations; however this did not appear to depend on initial sensitivity, and we did not see

reliable choice signals or choice signals that overlapped with attention signals. We believe this may be due

to the experimental design and recommend future approaches to disassociate sensory, attention, and choice

signals in visual cortex.
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1 Introduction

How we perceive the world is one of the most fundamental questions in cognitive neuroscience. A

computer program can analyze an input and generate a reliable output that is a literal representation of the

pixels, sounds, or other sensory inputs it receives. On the other hand, humans and other animals have an

incredible ability to extract information from their environment that is an incomplete, non-literal view of

the world but contains a flexibility that abstracts an enormous amount of biologically important information

that even the most powerful computers cannot. This combination of flexible and non-linear, yet reliable,

extraction of some information, while other irrelevant information is discarded, is the basis of perception.

We do not see, hear, or feel every piece of information that enters our sensory organs. The brain determines

which features are relevant to task demands on both short and long timescales, and processes such features

from incoming sensory information, abstracting and processing such input into the mental percept that drives

behavioral output.

Changes in how the brain processes sensory information must be responsible for task-dependent percep-

tual processing, and our extensive psychophysical and physiological knowledge of the visual system provides

a promising basis for understanding these changes. The visual system can be precisely controlled with ex-

ternal stimuli, increases in visual performance with training are associated with changes in visual cortex,

and the relationship between behavioral improvements and neuronal changes is quantifiable. Much has been

elucidated about how the brain processes the pure stimulus information from a visual scene to form varying

complexities of receptive fields (Lennie, 2003). Differences in light enter the retina and are separated by

on and off cells in the lateral geniculate nucleus, which combine excitatory center fields with inhibitory sur-

rounds to create orientation encoding in early areas such as V1, which then combine to form curvature and

shape in higher areas such as V4, and then objects and faces in IT and beyond. However, what the human

brain perceives is not equivalent to the pure sensory stimulus entering the retina, as would be expected from

a simplistic interpretation of this hierarchical system. An expert in automobiles perceives far more details to
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discriminate between types of cars than a non-expert; yet both the expert and layperson have the same exact

visual stimulus input. Another example of perceptual complexity is a bistable stimulus, where a subject can

perceive one of two objects, despite an unchanging stimulus. Additionally, performance during tasks improve

if the subject is attending to a location or feature relevant to that task. Thus, learning and attention are integral

in determining and changing what we perceive beyond simple stimulus processing.

1.1 Learning

How we learn to improve the accuracy of our perception, in order to perform various tasks, i.e. perceptual

learning, is critical to understanding the dynamics of sensory perception. Perceptual learning is most simply

defined as the increased ability to discriminate and detect sensory stimuli after experience. This type of

learning is critical to interacting with our environment, whether learning to better detect and predict the

movement of a ball when training in a sport (Abernethy et al., 2012), learning to detect and discriminate

letters in reading (Chung et al., 2004; Nazir et al., 2004), or learning to differentiate familiar individuals on

the basis of facial information (Burton et al., 1999; Ritchie and Burton, 2016).

Perceptual learning is a fundamental process that occurs throughout adulthood, allows us to learn from

past experiences, and more efficiently perform perceptual tasks. Yet, while many studies have utilized the

visual system to understand perceptual learning, due to its extensive baseline characterization, and found

neuronal correlates of visual perceptual learning (VPL), the nature and locus of the cortical changes actually

responsible for behavioral improvements remains controversial (Sasaki et al., 2010; Sagi, 2011; Shibata et al.,

2014). It has been difficult to identify at which level in the brain VPL occurs, how neurons within a region

are differentially altered to improve performance, whether signaling in various regions causes behavioral

improvement, or only reflects changes elsewhere, as well as under what conditions learning is specific or can

generalize to other contexts/features. Although the visual system has the advantage of controlled, external

stimuli, it is still highly complex and comprised of multiple brain regions that receive both bottom-up and
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top-down inputs. Where and how visual perceptual learning (VPL) improvements are mediated within the

vast networks of visual areas is not readily apparent.

1.1.1 VPL as Encoding (Early) or Decoding (Late) Changes

Whether VPL is mediated by changes at early or late levels asks a fundamental question about how the

brain codes for perceptual changes. If sensory representations change with learning, it is the brain’s encoding

that is altered, whereas if higher level areas change to better read out encoded representations, then this is

more an issue of changing how the brain decodes existing, immutable representations. More than likely,

some combination of these possibilities occurs, as the wide variety, of results and proposed, yet incomplete,

models, implies.

Early psychophysical studies of VPL revealed training effects that were often specific to low-level fea-

tures of the trained stimulus, such as location, orientation, and even eye (Karni and Sagi, 1991; Ahissar and

Hochstein, 1993; Schoups et al., 1995), which suggested that the locus of such learning was in early visual

areas, in which such features are segregated between different neural populations (Fahle, 2004). Even train-

ing the same task at several locations can induce specificity for the trained locations compared to untrained

locations only a couple of degrees away (Le Dantec and Seitz, 2012), and VPL changes in human electroen-

cephalogram (EEG) signals also suggests early changes (Bao et al., 2010). Further support, for the hypothesis

that changes in early areas are responsible for learning, came from studies that found that attention and train-

ing were not always necessary for VPL, and that passive stimuli can result in behavioral changes (Watanabe

et al., 2001). If simply being exposed to a stimulus can induce learning, without any involvement of higher

level cognitive features, this suggests that changes in early visual areas may be sufficient for learning.

However, other studies and proposed models have implicated higher level areas and the involvement of

top down processes (Ahissar and Hochstein, 2004; Law and Gold, 2008; Law and Gold, 2010; Zhang et al.,

2010b), with more recent experiments demonstrating that VPL in fact can be more generalized and that the

specificity of VPL reported in such studies may be dependent on the task and training designs employed (Xiao
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et al., 2008; Wang et al., 2012; Zhang et al., 2010c; Hung and Seitz, 2014; Xie and Yu, 2018). Several such

studies explored double training paradigms, where task-irrelevant features were included in the perceptual

training, and this resulted in learning that transferred to the task-irrelevant features (Xiao et al., 2008), with

thresholds equal to that of the trained location (Xie and Yu, 2018). This result, that learning could occur

for features present but not relevant during a task, implicated the involvement of top down, less retinotopic,

cortical sites. If learning related changes affected general features of a stimulus, learning must be at least

partially mediated by less retinotopic, stimulus specific areas than early visual cortex. Additionally, one

group has found that a stimulus may not even be necessary for VPL and that imagery alone is sufficient

(Tartaglia et al., 2009; Tartaglia et al., 2012). Given that mental imagery requires an intentional creation of

an abstraction of an image that is not actually stimulating the visual system, these results makes it difficult

to argue that early visual areas are causally involved in, or at least necessary, for learning. Additionally,

attention, which is well established to involve higher areas, also increases the information contained in V1

neurons during VPL (Li et al., 2004). VPL transfer between overlapping but different types of VPL tasks has

also been observed (McGovern et al., 2012). These results all strongly challenge the hypothesis that early,

stimulus-specific areas like V1 are mediating the bulk of VPL changes, and suggest that higher level areas

that mediate attention and mental imagery are more likely to be critical.

Variations in task and training may also explain the diversity of results in the physiological literature,

which is similarly contradictory to psychophysical results. Early areas such as V1 are highly retinotopic,

with specific sets of neurons representing not only specific orientations (horizontal, vertical, etc.), but also

only responding if the stimulus is in a specific location of the visual field (known as a ”receptive field”). Thus,

if changes in the encoding in such areas mediate learning, not only should behavioral results be specific to

the trained orientation and location, but physiology studies should find that only the populations tuned to the

trained orientation/location improve, as well as that this is related to the perceptual decision. Some studies

have found that changes in early visual areas, such as V1, occur with training. For example, V1 neurons were
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found to change if they were tuned to the trained orientation of a stimulus, using electrophysiological record-

ings (Schoups et al., 2001), fMRI (Engel et al., 2004; Jehee et al., 2012), and two photon microscopy (Poort

et al., 2015). Another study found that not only were neurons tuned to the trained stimulus strengthened,

but also that neurons responding to the training-irrelevant background of the stimulus were suppressed (Yan

et al., 2014). However, other studies have found the opposite, that neural properties in V1 were immutable

(Ghose et al., 2002), where there were no changes in the populations tuned to the trained orientation and

location. Similarly, many have found that when early changes are present, they are irrelevant to, or cannot ac-

count for (Palmer et al., 2007), behavior or the stimulus (Choe et al., 2014). Another study found that choice

probabilities increase in V2, but not V1, after training (Nienborg and Cumming, 2006). Early changes might

only represent feedback from other brain regions, which is supported by a finding that choice probabilities,

when they did exist, were negatively correlated with behavior in both V1 and V2 and most likely represented

modulation after the decision (Goris et al., 2017).

There have been attempts to combine these contradictory findings into one model that explains the

competing observations of specific, early neural changes vs generalized, high level late changes, includ-

ing by framing VPL as an interaction of feedforward and feedback mechanisms (Bejjanki et al., 2011;

Li, 2016). Some models separate VPL into two different types (Watanabe and Sasaki, 2015), propose that

VPL is mediated by re-weighting early sensory representations via higher level areas (Dosher and Lu, 1998;

Dosher and Lu, 1999; Petrov et al., 2005; Talluri et al., 2015; Sotiropoulos et al., 2018), or postulate

that task difficulty or precision could play a role in variations in specificity (Ahissar and Hochstein, 1997;

Jeter et al., 2009; Wenliang and Seitz, 2018). However, despite the plethora of proposed models, there is no

consensus within the field that reconciles the seemingly contradictory findings.

One possible explanation for this controversy lies in the highly interconnected nature of visual process-

ing in the cerebral cortex. Given the pervasiveness of feedforward, feedback, and lateral connectivity within

the multiple areas associated with vision, sensory signals that are not directly responsible for perceptual
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performance, in an addition to those that are, may change with VPL. Behaviorally, this can be seen in

experiments where subjects improve in sensitivity to low level features that do not obviously seem rele-

vant to performance in the trained task. For example, several papers have found that expert video game

players have improved contrast discrimination (Sowden et al., 2000; Li et al., 2009) and reading perfor-

mance (Nazir et al., 2004), compared to non-experts, and functional connectivity changes have also been

observed with learning (Baldassarre et al., 2012; Sarabi et al., 2018). A critical prerequisite, for estab-

lishing whether changes in a neural population are responsible for improvements in the performance of a

perceptual task, is therefore to establish that the population actually plays a role in the performance of that

task. Physiologically, the task relevance of sensory neurons has been addressed by looking for neurons

whose firing both reflects the stimulus and, in difficult tasks based on that stimulus, predicts behavioral

choices. For example, if, in a detection task, a neuron reliably signals a stimulus, but has no relation-

ship to whether or not the animal reports the stimulus, then it cannot be causally involved in detection

and therefore not associated with any improvements in detection that arise through training (Parker and

Newsome, 1998). On the other hand, if sensory responses are predictive of choices, it suggests the pos-

sibility that such neurons contribute in a feedforward manner to perceptual decisions (Zuo et al., 2015;

Panzeri et al., 2017). In the neurons in such a brain region, learning could arise from more selective or

reliable encoding of sensory responses, and thus changes in low level representations at or preceding the

area of interest. Conversely, learning could be mediated by a stronger relationship of sensory responses to

behavioral choices, where the decoding, i.e. readout (Nienborg and Cumming, 2009), of sensory represen-

tations by areas at or above the given brain region, improves to mediate learning. Some combination of

improvements in encoding and decoding could occur as well. Moreover, changes in either of these properties

should correspond to the behavioral time course of learning (Yan et al., 2014). Yet, to date there have been no

studies which follow sensory and choice related signals in the same neural population during the process of

training to examine their potential to explain task performance on a moment to moment basis, and how that
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performance changes with learning over the course of many days.

1.1.2 Methodological Concerns

Identifying the locus of VPL has also been challenging because traditional electrophysiological analy-

ses cannot readily separate sensory and choice contributions to neural activity, and thus the two phenom-

ena have often been conflated. Many studies (Law and Gold, 2008; Sanayei et al., 2018) have used neural

sensitivity and choice probability measures. However, sensitivity and choice probability do not correct for

covariance between the stimulus and the behavioral decision, and this potentially conflates stimulus and

choice, complicating interpretations. Stimulus-related responses have been found to determine the ampli-

tude of choice probability (Kumano and Uka, 2013) and, because of neuronal correlations, choice proba-

bility need not reflect the feedforward influence of a neuron upon behavior (Nienborg and Cumming, 2006;

Cohen and Newsome, 2009; Nienborg and Cumming, 2009; Churchland et al., 2010; Zaidel et al., 2017). Ad-

ditionally, standard trial averaging of stimulus and choice aligned responses, given the interactions between

sensory and choice related signals, especially within the narrow time window that defines rapid detection,

makes it difficult to isolate these signals through such analyses (Panzeri et al., 2017). An additional challenge

of such analyses is that, by averaging over all electrodes and all trials, the moment to moment ability of signals

among small neural populations to signal the shape and predict the saccade is still unknown. These challenges

can be addressed, however, by adopting a moment-to-moment mutual information approach which avoid such

averages and can make use of a covariance correction to isolate sensory and choice signals (Harrison et al.,

2013) (see Experiment 1: methods section).

Another issue in studying VPL, is that learning has often been described monotonically, assuming that

early and late periods adequately represent learning effects. However, in reality, learning often contains ups

and downs as a subject adjusts strategies and processes new information, especially when tasks contain noise

and uncertainty (Gureckis and Love, 2009). It is a fundamental concept in sensory perception that if a neuron

is involved in sensory perception, fluctuations in this neuron’s signals should have perceptual consequences
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that can be measured behaviorally (Parker and Newsome, 1998). Yet this basic principle has usually not

been applied in the context of long term perceptual learning, due to the experimental challenges of measuring

neural responses in a given population over the course of days or weeks or training. If neural populations

are truly involved in and causing learning related changes, they should not only improve in their sensory

representations and/or choice predictions in late compared to early periods, but those measures should also

track the ups and downs of the behavioral learning process. This has been done on a day to day basis in

V1 (Yan et al., 2014), but given that individual training days may vary in number of trials and stimulus

presentations, a point to point, moving average process may more accurately represent fluctuations over time.

While, to our knowledge, the relationship between behavioral fluctuations during VPL and neural signals has

not been studied in this way, this is a critical piece to inferring involvement of specific neural populations

and behavioral changes. We address this by looking at equal bins of trials across weeks of training (see

Experiment 1: methods section).

1.1.3 Local Field Potentials

Past work studying the neuronal correlates of VPL has also often depended on either spike analyses

from single, and occasionally multi-, units, in macaques (Ghose et al., 2002; Yang and Maunsell, 2004;

Rainer et al., 2004; Raiguel et al., 2006; Palmer et al., 2007; Adab and Vogels, 2011; Shiozaki et al., 2012), or

fMRI in humans (Engel et al., 2004; Kourtzi et al., 2005; Zhang et al., 2010a; Byers and Serences, 2014; Choe

et al., 2014; Sarabi et al., 2018). However, single unit analyses are limited in spatial coverage, while fMRI is

limited in temporal resolution, making it difficult to link signals in small populations to perceptual decisions,

and changes in signals over time, that must occur over millisecond timescales. This disparity has also made

it difficult to compare macaque and human VPL literature. However, we may be able to bridge these gaps

by analyzing local field potentials (LFPs). To our knowledge, LFPs have not been previously utilized in VPL

studies, yet there is evidence that they may more closely represent the results from BOLD signals than single

and multi unit activity, in a near linear manner (Logothetis et al., 2001; Goense and Logothetis, 2008), and
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that cortical LFPs can also be related to, and predict, spike trains (Rasch et al., 2008; Manning et al., 2009;

Denker et al., 2011). LFPs have also shown promise in understanding stimulus representations (Belitski

et al., 2008; Montemurro et al., 2008) and complex perceptual and cognitive features (Wang et al., 2009;

Rey et al., 2015), both alone (Lopour et al., 2013) and in combination with spikes (Rutishauser et al., 2010).

Despite the potential for LFPs to reveal more than spikes, they have often been avoided in electro-

physiology analyses, as what LFPs sample and how far they spread is controversial. They contain both

sub- and supra-threshold spike activity, as well as non-synaptic activity (Buzsáki et al., 2012). While

some studies have suggested relatively fixed, small spatial sampling (Xing et al., 2009; Katzner et al.,

2009), others have found that spread can be larger and more complex (Kajikawa and Schroeder, 2011;

Kajikawa and Schroeder, 2014). It has also been found that they reveal information from multiple spa-

tial scales in V4, with smaller spatial information (≈ 350 µm) dominating early components of the signal

(Mineault et al., 2013). Thus, in the case of moment to moment analyses on millisecond timescales, like we

employ, LFPs are likely sampling smaller spatial scales. Additionally, despite LFPs pooling a large number of

neurons, some models demonstrate that informative signals in a pool of noisy neurons can dominate signals

(Krause and Ghose, 2018), allowing us to extract information from a small number of informative neurons

contributing to the LFP signal, as noisy signals cancel each other out, particularly in the absence of strong

noise correlations. We utilize LFP signals for these reasons.

1.1.4 Neuronal Correlations and VPL

Correlations between neurons and populations also potentially play a role in learning. Stimulus input

alone induces decreased variability across cortex (Churchland et al., 2010), and reduced noise correlations

have been found after learning in MSTd (Gu et al., 2011; Sanayei et al., 2018) and V4 (Ni et al., 2018).

However, a lack of noise correlation changes were observed in V1 (Yan et al., 2014; Ni et al., 2018), and

measurements of V4 ensembles during shape detection have revealed that such correlations are largely absent

(Weiner and Ghose, 2015). Learning studies of modalities besides vision has also found that learning may
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increase population coding through decreased noise correlations, in a stimulus specific way, particularly in

pools of neurons (Jeanne et al., 2013). Thus, understanding the relationships between populations may also

be important in elucidating the mechanisms of VPL.

1.2 Attention

Attention is another powerful phenomenon that alters visual perception. While learning improves per-

formance on a task based on experience and relevance, attention improves performance based on short term

behavioral relevance. Yet the two can also interact (Byers and Serences, 2012). Just as we must select which

information is behaviorally important to learn, we must also select what is most important to attend to in the

short term. While sports players may learn to better perceive the movement of a ball over weeks or months

of training, they must also anticipate where the ball is likely to appear in a short time span of hundreds of

milliseconds and attend to that area, to the exclusion of others. We cannot possibly process every piece of

information coming into the visual system and behave effectively on short timescales; attention solves this

problem by selecting only that which is determined to be relevant to behavior. In this way, the behavioral

response to two identical stimuli can vary, based on the goal at hand.

This enhanced focus, on a specific portion or attribute of a visual stimulus, improves performance on

detection and discriminability of visual tasks, even without prior experience/learning. Sensitivity to the at-

tended attribute of the stimulus is increased (Yeshurun and Carrasco, 1998) and reaction times for behavior

is decreased (Posner and Cohen, 1984). This phenomenon ultimately leads to perceptual alterations of both

low and high level features (Carrasco and Barbot, 2019), such as contrast (Carrasco et al., 2004), spatial fre-

quency (Gobell and Carrasco, 2005) and object size (Kirsch et al., 2018). Attention is a broad term however;

it can be overt or covert, with the latter referring to attending to an object peripherally without a saccade (eye

movement). It can also be exogenous (involuntary) or endogenous (voluntary), with the latter being more

delayed (Liu et al., 2007; Carrasco, 2011). Additionally, attention can be directed to a particular spatial loca-
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tion or feature, and covert attention improves spatial resolution in the area attended (Y and M, 1999). For the

purpose of this thesis, we focus on covert, endogenous attention, because we are interested in how perceptual

choices relate to attention. Are the mechanisms, driving the effects of endogenous attention on perception,

similar to, or overlap with those of learning? Is attention a large scale, general effect, or is it targeted to

specific, task relevant populations? If we methodically disassociate the relationships between neural signals

and sensory, attention, and choice conditions, are the visual neurons that encode the perception (i.e. choice)

more modulated by attention than neurons that are unaffected by attention, and how do both attention and

choice relate to initial sensitivity to a stimulus in a demanding attention task?

1.2.1 Global Effects

Some studies have found that attention appears to be very generalized. While modulation occurs in early

visual areas, many results suggest that such changes appear to be mediated by top-down feedback that create

a multiplicative gain effect on neural sensitivity. Feature based attention increases activity throughout the

visual system (Saenz et al., 2002), and attention also not only improves responses to the attended feature at

the task location, such as motion, (Carrasco, 2011), but unlike exogenous attention, performance improve-

ments also transfer to the attended feature at unattended locations (Arman et al., 2006; Bartsch et al., 2018),

across all eccentricities (Yeshurun et al., 2008). This lack of location specificity implicates flexible top down,

non-specific mechanisms in higher brain regions. Transfer occurs to locations that are not ever visually stim-

ulated, implying a global, baseline effect (Liu and Mance, 2011), and spatial attention can generalize across

modalities, resulting in physiological activation in frontoparietal regions, regardless of whether attention is

visual or auditory (Zuanazzi and Noppeney, 2019). Additional support comes from studies finding that neu-

ronal discriminability changes with attention in a way that can explain performance in higher level areas like

LIP, but not earlier areas such as V4 (Arcizet et al., 2018).
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1.2.2 Flexible/Specific Mechanisms

However, while higher brain regions and feedback are undeniably important in attentional modulations,

such feedback may be more specific than originally suspected. To some extent this must be true, in or-

der to explain the specific behavioral improvements mediated by attention. What we need to pay atten-

tion to is essentially limitless; it would be hard to argue that a global increase alone could differentiate the

wide array of possible simple and complex attributes that we can attend to within a visual scene. While

a global baseline increase does occur, attention also alters the relationship between behavior and neural

signals variably across visual areas (Maunsell and Cook, 2002), and in specific task conditions, may be se-

lectively mediated by high frequency filters that can flexibly enhance or decrement resolution to improve

performance (Barbot and Carrasco, 2017), depending on the behavioral goal (Anton-Erxleben and Carrasco,

2013). Attention has also been found to increase perception in accordance with changes in early sensory

areas (Störmer et al., 2009), and baseline increases may be more related to location than feature attributes

(McMains et al., 2007). Additionally, biased competition experiments (Moran and Desimone, 1985) have

demonstrated that if a preferred and non-preferred stimulus orientation are simultaneously presented within

a V4 neuron’s spatial receptive field, an intermediate response will occur, but if either stimuli is attended,

the neuron will increase or decrease, if the attended stimulus is of the preferred or non-preferred orien-

tation, respectively. This suggests that attention is acting at a highly specific level in order to select the

appropriate stimulus and enhance processing of the neurons tuned to the attended stimulus. This could

lead to the conclusion that attention may act on an individual cellular level, and indeed, changes in selec-

tivity do occur, allowing for a dynamic, task dependent improvement in sensory representations that alter

perception, enhancing the spatial resolution of stimuli at the locus of attention (Cutzu and Tsotsos, 2003;

Anton-Erxleben and Carrasco, 2013). Some studies have also suggested that attention can alter receptive

field (RF) sizes in highly specific ways, by shrinking the RF at the locus of attention, expanding nearby RFs,

shifting both the center and surround of the RF in the direction of the attended location (Anton-Erxleben
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et al., 2009), and even changing receptive fields at different levels of the visual system based on the size of

the attended stimulus, within a few hundred milliseconds, even when the scale cannot be anticipated by the

subject (Hopf, 2006). However, this is controversial, as other studies have found that there is no change in

the receptive field structures of individual neurons.

Expectation in conjunction with attention also creates non-linear modulation specific to certain receptive

fields, and this cannot be explained by a global gain increase alone (Ghose and Bearl, 2010). Pre-saccadic

shifts are another mechanism by which RFs are specifically altered to improve performance via a focus on the

immediate goal at hand (Sun and Goldberg, 2016; Binda and Morrone, 2018), where RFs have been found

to change their tuning to the location at the center of the future saccade, a few hundred milliseconds before

the saccade. Given the intertwining of endogenous visual attention and saccades, it stands to reason that

the mechanisms of pre-saccadic shifts and attention may overlap. Two types of pre-saccadic RF mapping

have been found to occur: future field (FF) remapping towards the location to be occupied after the saccade,

and saccade target (ST) remapping towards the saccade target regardless of the RF to be occupied after the

saccade (Neupane et al., 2016a; Neupane et al., 2016a). Both appear to occur in area V4 (Neupane et al.,

2016b). While FF remapping appears to occur in order to modulate perceptual stability (Neupane et al.,

2016a), ST is more likely an attentional mechanism, with the latter occurring later than the former, and this

effect can be seen in both single neurons and LFPs (Neupane et al., 2016b). Since both are predictive, they

must involve the influence of feedback from higher brain regions, especially considering that remapping

effects, in higher regions such as FEF (Joiner et al., 2011) and LIP (Gottlieb et al., 1998), are small for

unattended stimuli but large for attended/salient stimuli. Remapping has particularly been found to occur in

order to modulate and stabilize attention in area V4, where RFs shift in a predictive manner based on the

future focus of attention (Marino and Mazer, 2018). Thus, non-linear effects mediated by top down feedback,

due to changes in cognitive states such as attention, do clearly exist. A remaining question, however, is at

what neural resolution this occurs.
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While there clearly are synaptic level effects of attention, these do not appear to be non-linear; but rather

multiplicative and gain-like (Motter, 1993). Therefore, gain modulation may affect neurons, while non-linear

task specific effects occur in larger pools of neurons. Our lab has found support for this; non-spatial attention

in V1 modulates populations of neurons tuned to the attended feature, temporally matching the attention-

related behavior (Warren et al., 2014). The non-linear effects of biased competition in V4 were also found

to be explained by pooled population effects in early visual cortex that contribute to downstream neural

inputs (Ghose and Maunsell, 2008; Ghose, 2009). It may be that specific effects that change the structure of

signaling, in the targeted ways necessary to mediate precise behavioral effects, may occur at a larger scale

than individual neurons. Given that we have also found that populations of neurons are more reliable at

predicting behavioral changes with learning (see Chapter 1), this may also be the case for attention, where

specific, early changes in pools of neurons may be important in mediating the effect of attention on perceptual

behavior.

1.2.3 Attention and Neuronal Correlations

Another argument for the importance of small neural populations in non-linear attention effects, is that

like learning, attention may also mediate changes in behavior by decreasing noise correlations between neu-

rons (Cohen and Maunsell, 2009; Cohen and Newsome, 2009). One model (Kanashiro et al., 2017) pro-

poses that attention can be understood as changes in correlations that occur via shared and private recurrent

excitatory-inhibitory connections in local populations (specifically V4) that are also influenced by top down

attentional modulation. Top down modulation may decrease variability via inhibitory feedback to recurrent

connections, while canonical gain enhancements may be due to increases in excitatory firing, and stimulus

response gains mediated by enhanced sensitivity of excitatory neurons to feedforward stimulus inputs that

are increased by attentional modulation. Thus, it does appear that the interactions between populations, at

a larger scale than individual neurons, may be important in understanding the effects of attention. Addi-

tionally, correlations in spiking between brain regions (such as V1 and MT) are increased by attention (Ruff
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and Cohen, 2016); thus, changes in both late and early brain regions may best explain behavioral changes

with attention. Changes in correlations have also been proposed to link perceptual learning and attention,

as decreases in trial to trial variance and pairwise correlations explain behavior in both short term attention

and long term perceptual learning tasks in V4, but not V1 (Ni et al., 2018). However, neuronal correlations

also highlight the difficulties of separating sensory and choice effects and determining if signals are due to

attention or feedforward sensory inputs, as changes in the structure of correlations with feature based atten-

tion can create choice probabilities (Cumming and Nienborg, 2016). Thus it is imperative, when studying

populations, to ensure that the effects are measured and analyzed in ways that allow for a distinction between

between sensory, attention, and choice effects.

1.2.4 Attention and Choice

If attention alters perception, then it should also have an effect on behavioral choices, and it follows that

neurons that are modulated by attention may also be modulated by perceptual choice. Previous work from

our lab has found that the reliability of neurons in MT decreases substantially when a stimulus is unexpected,

and thus unattended, and this matches with decreases in behavioral choices (Harrison et al., 2013). However,

disassociating attentional signals from choice signals is difficult, especially in regards to studying neural

populations, for similar reasons as it is in regards to perceptual learning. Thus, it is necessary to select an

experimental design that can disassociate the sensory/attention signal from the choice signal. One potential

approach is to separate the stimulus from the perception, and thus the perceptual report, in time, with a task

that is very difficult, where both the stimulus and the perceptual report fluctuate in a non-binary way over

time. In this way, the perceptual report/choice is distinct in its fluctuations from the stimulus, and a signal

from given brain regions can be regressed against the stimulus or choice fluctuations. Ultimately, this may

address the question of whether specific, small populations in early and/or intermediate visual cortex can

explain variation in attentional state, and if so, whether such signals co-vary with signals that can explain the

behavioral choice.
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1.3 V4: Linking Learning and Attention

As with learning, area V4 is a particular area of interest in understanding the intersection of attention

and perception. Given the frequent lack of learning signatures in early visual cortex (V1), we plan to focus

on this particular visual area, which has been implicated in intermediate visual processing (Kobatake and

Tanaka, 1994; Pasupathy and Connor, 2001; Carlson et al., 2011; Roe et al., 2012; Kosai et al., 2014),

attention (Neupane et al., 2016b; Neupane et al., 2016a; Marino and Mazer, 2018), and learning (Yang and

Maunsell, 2004; Rainer et al., 2004; Raiguel et al., 2006; Adab and Vogels, 2011; Shiozaki et al., 2012;

Sanayei et al., 2018). Meanwhile, stimuli activating the receptive fields in this area are not too complex to

be experimentally controlled; V4 is known to be responsive to curvature and shape (Pasupathy and Connor,

2001), as well as natural textures (Arcizet et al., 2008). Thus V4 is an ideal target for stimuli that are

more similar to natural stimuli but still controllable in a rigorous way. V4 is also an integrative area that is

responsive to perceptual features not necessarily contained in the stimulus, given that this area is responsive to

illusory contours (Cox et al., 2013). Both spatial and feature based attention also occur in area V4 (McAdams

and Maunsell, 2000), and feature based attention has been found to shift the tuning of V4 neurons based on

the attended stimulus (David et al., 2008). Previous work in our lab has also linked sensory and choice

signals in V4 in both single units (Weiner and Ghose, 2014) and populations (Weiner and Ghose, 2015).

Given this apparent relationship of neural signals to perception, attention, and learning in area V4, we mainly

focus on this area to understand the intersection, overlap, and specificity of sensory and choice signals, using

shape stimuli to activate V4 sensory neurons, in both our attention and learning studies. Also, in order to

understand the population effects of perceptual changes in both humans and macaques, we use BOLD signals

in our attention experiment, given their apparent similarity to LFPs (Logothetis et al., 2001), which we use

to study VPL in macaques (see Learning introduction). While ideally we could use both signals and both

species in both experiments, this is a first step in studying population effects in both animals in both short and

long term perceptual changes (attention and VPL, respectively).
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1.4 Relevance

Attention and learning are integral to how perception changes, and alterations to perception underlie a

variety of disorders. Understanding the fundamental signalling mechanisms of attention and learning is es-

sential to understanding how perception affects behavior both in healthy and disease states. We expect our

findings regarding VPL to be relevant to understanding multiple diseases, including visual disorders such

as amblyopia. Learning generalizability is increased in amblyopic patients, and VPL training is effective

in treating amblyopia and other visual disorders (Huang et al., 2008; Shibata et al., 2014). This work may

also be applicable to schizophrenia, where generalization of memories and application to novel experiences

has been found to be impaired (Shohamy et al., 2010). Understanding perceptual learning may also be in-

tegral in developing effective teaching strategies. Students improve in performance on declarative equation

solving tasks when perceptual learning training is administered simultaneously, compared to those receiving

declarative only instruction (Kellman et al., 2010), for example. Additionally, attention is important in un-

derstanding every day functioning, as well as disorders where attention is impaired, such as attention deficit

disorder (Epstein et al., 1997), autism (Gadgil et al., 2013; Robertson et al., 2013), and Alzheimer’s disease

(Greenwood et al., 1997). Therapies involving attention training have shown physiological (Beauregard and

Lévesque, 2006) promise in treatment, although more work is needed to establish how clinicians might max-

imize behavioral effects (Cortese et al., 2015). Visual attention training has also shown promise in treating

attention deficits found in schizophrenia (Medalia et al., 1998), and both attention and perceptual training

may improve problems with attention after strokes (Mazer et al., 2003). Thus, deciphering the underlying

neural substrates mediating, and the overlap between, visual attention and visual perceptual learning, may

ultimately allow us to understand how to solve problems, diseases, and deficits in such neural systems, and

improve perceptual therapies targeting visual attention and learning.
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2 Experiment 1: Population level shape detection signals in area V4

explain the magnitude and dynamics of perceptual learning

2.1 Introduction

To address whether changes in encoding or readout mediate VPL, we leveraged recent observations from

our laboratory, which found that neurons in area V4 carry reliable sensory and choice related signals that are

consistent with the latency and temporal precision of rapid shape detection (Weiner and Ghose, 2014; Weiner

and Ghose, 2015). To examine the role of such neurons in perceptual learning, we recorded LFPs across a

chronically implanted microelectrode array while monkeys learned to detect degraded shapes over the course

of several weeks. We analyzed these recordings across two time scales. On a time scale of milliseconds,

we found that, after training, LFPs on single electrodes reliably reflected both degraded shape presentation

and predicted detection of those shapes, suggesting that they contributed in a feedforward manner to shape

detections. In contrast to the results obtained from smaller V4 populations, we found that the signals on

particular electrodes were largely sufficient to explain both the timing and reliability of shape detection.

Moreover, on a time scale of hours, we found that the reliability of low latency shape signals, reflecting

stimulus encoding at level of V4 or earlier, closely tracked fluctuations in performance during the course of

training. Together, these results demonstrate that local population signals in area V4 are largely sufficient to

explain the timing and reliability of shape detection, and how that detection improves with training.

2.2 Materials and Methods

2.2.1 Ethics Statement and Surgical Procedures

All procedures involving animals conformed to guidelines established by the National Institutes of Health

and were approved by the Institutional Animal Care and Use Committee of the University of Minnesota.

Animals were initially anesthetized with ketamine, and anesthesia was maintained with isoflurane throughout
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all surgical procedures. Analgesics and antibiotics were administered during and following all surgeries to

minimize discomfort and prevent infection. To stabilize head position during training and recording sessions,

headposts (PEEK polymer) were chronically implanted under sterile surgical conditions. Animals were fully

acclimated to their primate chair and training room before headposts were used for stabilization. Once each

animal was trained on the shape detection task, a 96-element microelectrode (”Utah”) array was chronically

implanted, again under sterile conditions.

2.2.2 Task and Training

Two experimentally naive subjects (Macaca mulatta), Monkey Z and Monkey J (≈ 7 and 13kg), were

trained to saccade to a shape. During the task, the subjects’ head position was stabilized by a chronically

implanted headpost. Eye position was monitored by an infrared eye tracker (Arrington Research). Subjects

viewed the stimulus on an LCD monitor (120 Hz), and a photodiode attached to the screen confirmed the

timing of stimulus presentation. The stimulus consisted of a 7x7 array of achromatic Gabors, the appearance

of which was controlled by a custom software program (http://www.ghoselab.cmrr.umn.edu/software.html).

The stimulus overlapped the receptive fields covered by the microelectrode array (an eccentricity of 3.75◦ -

azimuth: 3.75◦, elevation: 0.2◦ for Monkey Z; and an eccentricity of 5.5◦ - azimuth: -2.5◦, elevation: -4◦ for

Monkey J). The size of each Gabor was 0.38 ◦; receptive fields thus covered 16-25 Gabor elements (Motter,

2009; Gattass et al., 2014). Gabors had a spatial frequency of 2 cycles/◦.

Visual Stimulation Noise stimuli in the Gabor array were set to one of eight random orientations, inde-

pendently for each Gabor. To eliminate motion cues as a potential confound for contour detection, the noise

stimulus was constructed by interleaving two types of these noise frames among frame updates: static and

redrawn. A single static noise frame was generated at the beginning of each trial, but was not varied within a

trial, such that the pattern was consistent between alternate frames. In between these frames, a new random

pattern was generated, such that this pattern varied between successive presentations. Our frame rate of 120

Hz meant that each static/redrawn frame was present for 8.3 ms. During shape presentation, the Gabors defin-
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ing the shape replaced the corresponding Gabors within the static noise frame, but this combined static-shape

frame continued to be interleaved with randomly redrawn noise frames. The shape to be detected (”Pacman”)

was defined by fixing the orientations of 16–19 adjoining Gabor patches so as to form a contiguous contour.

During recording sessions, the Gabor elements of both the shape and noise appeared at the same contrast (45

– 50%).

Task A trial began with the appearance of a fixation dot (0.1◦), which the subject was required to contin-

uously fixate on, within a fixation window (< 3◦), before and during the appearance of the stimulus. If the

animal made eye movements outside of this window when the shape was not present, the trial would instantly

abort without reward. Once the fixation dot appeared, and fixation began, a noise stimulus consisting of ran-

domly oriented Gabors appeared after a delay of 500 ms. Animals were required to maintain fixation during

this noise, and saccade to the location of the visual stimulus only following a brief shape stimulus (83ms for

Monkey Z or 120ms for Monkey J) presentation. Saccades were defined by the beginning of the time that the

animal left the fixation window. Animals were rewarded with juice for making this saccade within a reaction

time window (150-550 ms), which ensured vigilance. The timing of shape appearance relative to the start of

the noise was exponentially distributed and random so that the subject could not predict when it would appear

(Ghose, 2006). ”Catch” trials, in which no shape stimulus event appeared and the subject was rewarded for

maintaining fixation throughout the entire trial, were also included 5% of the time.

Implantation Once the subjects could perform this shape detection task, we implanted a chronic 10x10

microelectrode array in visual area V4 on the prelunate gyrus (Monkey Z: left hemisphere, Monkey J: right

hemisphere), slightly above the tip of the interior occipital sulcus. The array was 4-mm in length with

400- µM spacing, and was injected with a 1-mm pneumatic inserter (Blackrock Micosystems). Local field

potentials were recorded during task performance.

Task Training Period After implantation, subjects performed the task during the ”pre-training” period.

Data from this pre-training period are not reported in this study but were reported previously (Weiner and
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Figure 1: Learning Task: a.) A fixation dot followed by a background of randomly oriented Gabors (noise stimulus)

appeared before the shape stimulus. The shape (”Pacman”), defined by colinear Gabors embedded within the noise

stimulus, briefly appeared (83ms for Monkey Z or 120ms for Monkey J). The noise stimulus then returned for the duration

of the trial, which aborted once the monkey saccaded or failed to saccade within the allowable reaction time window

(150-550ms). b.) Once subjects had learned the task with a fully colinear stimulus (100% coherence), they underwent

a coherence training protocol, where the shape was degraded, where a given percentage of the colinear Gabors were

selected to be randomly oriented. Left stimuli are shown as presented to the subject; right stimuli show the Gabors, that

are in the outline of the shape, as highlighted.
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Ghose, 2014; Weiner and Ghose, 2015). In this period, the subjects performed a shape detection task using

multiple different shapes. Then, over a period of 30 days for Monkey Z, and 28 days for Monkey J, the task

was slowly biased to only contain Pacman shapes. Correct reports of the shape during this time period was

≈40% (Weiner and Ghose, 2014), indicating the task was challenging even during the pre-training stage.

Perceptual Learning Period After the pre-training period, we degraded the spatial coherence of the Pac-

man shape on some trials (Figure 1b), where spatial coherence is defined by the colinearity of Gabor elements

forming the shape. Degraded stimuli could have values of 87.5%, 75%, 62.5%, or 50% of the fully coherent

(100%) Pacman shape. For example, since 18 Gabor elements created the shape, at 50% spatial coherence,

9 of the 18 Gabor elements would be randomly selected to have a random, rather than colinear, orientation.

This ”learning period” contains the trials analyzed in this study. Monkey Z underwent this coherence train-

ing protocol for 43 days, and Monkey J for 46 days. At the lowest coherence (50%), the task is extremely

difficult (Figure 1c), which allowed for quantifiable improvements in performance over time. Performance

at low coherences (50 and 62.5%) showed the most improvement (see Figure 3), and only these trials were

utilized in learning analyses (with the exception of Figure 3a-b). Both animals performed near 100% for this

highest coherence throughout this period, indicating that they were familiar with the nature of the task, and

any increases in performance were stimulus, and not task, related.

2.2.3 Data Analysis

Pooling and Moving Average To verify that learning occurred, we first analyzed performance over 1000

trials of low coherence presentations at the beginning and end of the training period. To examine the dynamics

of learning, we also computed moving averages over 300 trial windows, shifting 50 trials per successive

window.

Learning Classical measures of learning included detection rate and reaction times. Detection rate was

computed from correct trials divided by the sum of correct and fail trials. Reaction times were computed

as the difference between saccade and shape onset. Both were computed as pooled (early/late), as well as a
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moving average.

Electrophysiology LFPs were initially sampled at 10kHz and then downsampled to 1kHz. For all analyses,

local field potentials (LFPs) were filtered from 2-100Hz using an 8th order Butterworth filter. We chose a large

filtering range to allow for visualization of broad amplitude changes in event aligned analyses, as well as more

specific changes in mutual information (MI) analyses. A range of LFP frequencies have been implicated as

related to spikes (Manning et al., 2009; Rasch et al., 2008), BOLD signals (Logothetis et al., 2001), and

cognition (Rutishauser et al., 2010; Rey et al., 2015), and given the novelty of studying LFPs in relation to

VPL, we wanted to allow for both broad- and narrow-band changes. However, given the short timescales

of the stimulus associated decisions, signals below 2 Hz would not be of interest and, especially in one

animal, largely reflected motion artifacts. After filtering, LFPs were then “cleaned”, in order to handle noise

issues that arose. We rejected periods with very average high or low amplitudes that occurred for 100ms or

longer (<0.001 mV or >100000 mV) and blank periods where the mean signal was lost. We also rejected

individual electrodes that were poorly correlated (r<.7) to the mean across all electrodes on a given day. We

also rejected electrodes on a day by day basis if their mean amplitude was (>2000 mV) after this ”cleaning”

process. Finally, we also rejected undersampled electrodes (with fewer than 75 correct detections over the

analyzed set of trials). These sampling criteria resulted in completely eliminating 4 out of 96 electrodes for

Monkey Z and 8 out of 96 electrodes for Monkey J, with others only eliminated on a given day or moving

average point. On a day by day basis, 1-3 (<4%) electrodes were eliminated for Monkey Z for most days.

For Monkey J, <10% of 96 electrodes on average were eliminated per day on most days.

Statistics All r values are reported as Pearson’s correlation, r2 as the square of Pearson’s correlation (with

the exception of where a partial, Spearman’s rank, correlation is indicated), linear fits from a simple linear

regression, and all p values reported are from a paired t-test or comparison to a mean of zero, as indicated.

Error bars and shaded regions are reported as standard error of the mean.

Event Aligned Analysis For event aligned analyses, processed LFPs were aligned to a given event, either
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the shape appearance (sensory event) or the saccade (choice event), and averaged according to behavioral

performance (correct or fail for stimulus aligned and correct or false alarm for saccade aligned). To look at

decision-relevant signaling, we analyzed responses over a 75 ms window (125-200ms post-shape, 100-175ms

pre-saccade) within the typical reaction time of detection.

Mutual Information Analysis We computed mutual information (MI) between events (stimulus, saccade,

or neural response) to quantify the reduction in uncertainty about one task event, given knowledge of another

task event (Ghose and Harrison, 2009; Harrison et al., 2013; Weiner and Ghose, 2014; Weiner and Ghose,

2015). Trials were parceled into bins to obtain event distributions on the particular time scale of the bin

(Figure 2a). Mutual information (reliability), quantifying the ability of one event type to inform another, was

then computed for this temporal resolution (binwidth) and by varying the temporal interval (delay) between

the two types of events. For behavioral information, quantifying the relationship between shape presenta-

tion and saccades, delays varied from 25 to 500 ms (Figure 2b), and for sensory information, quantifying

the relationship between shape presentation and neuronal response, and choice information, quantifying the

relationship between neuronal response and saccades, delays from 25 to 250 ms were examined (Figure 2c).

This process was then repeated by reparcelling the data for a variety of binwidths (from 25 to 250 ms). Thus,

we computed mutual information from contingency tables constructed as a function of binwidth and delay

(interval between bins). We also computed behavioral information, where the contingency table is 2x2 in

size (shape/no-shape and saccade/no-saccade). Since behavioral information incorporates hit rates and false

alarms, this moment to moment analysis is equivalent to a discriminability (d’) measure, but without the un-

derlying assumptions of normality inherent to the z-scoring done in a d’ analysis. Additionally, a d’ measure

would not be directly comparable to sensory and choice reliability, whereas behavioral reliability is.

To form a similar contingency table for neuronal responses within bins, we adopted a similar approach as

we have previously used to examine responses distributed across multiple electrodes. We used a variation of

a Fisher linear discriminant analysis process, where LFPs were randomly divided into training and test sets
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(50% of the data for each) (Figure 2c). From the training set, we separately computed the average LFP from

event positive and event negative bins. We subtracted those two averages to form a LFP discriminant, taking

into account the variance. The projection of every observation from the test set onto the discriminant was

computed by dot product, and the resulting distribution of projections was then binned into 20 categories.

Thus, the contingency tables for sensory and choice information, which were compiled separately for each

electrode, were 2x20 in size. Mutual information was computed for each temporally specific contingency

table (Figure 2d). To facilitate comparison across different binwidths, this is then converted to a mutual

information rate (bits/s) by dividing by the binwidth, referred to in the results as ”reliability”. Sensory infor-

mation, examining the relationship between the presence or absence of a shape and neuronal response, and

choice information, examining the relationship between the occurrence of saccades and neuronal responses,

were analyzed in an analogous manner.

Co-variance Correction When computing MI, we corrected for the co-variation between sensory and

choice events based on behavior. Sensory and choice signals necessarily co-vary with behavioral perfor-

mance. For example, if we were looking at a reflex, a purely sensory neuron’s responses would be highly

predictive of the subsequent motor act simply due to the high behavioral correlation between the sensory

stimulus and motor act. Because there is not a 100% correlation between the stimulus and the act associated

with choice in a challenging decision such as ours, this covariance issue is not as challenging as it would be

for a reflex, but it still poses a challenge for trying to dissociate sensory and choice related signals. Fortu-

nately, our contingency table approach offers a solution; we can use the statistics of the relationship between

sensory stimuli (shapes) and motor choices (saccades), in the form of behavioral information, to predict the

choice information that would be expected by chance given sensory information, and the sensory informa-

tion that would be expected by chance given choice information. The ”chance” level of information is then

subtracted by the raw information to yield a behavioral covariance corrected measure (Ghose and Harrison,

2009). We also computed the analysis without the covariance correction. While the correction was neces-
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sary to disassociate sensory and choice reliability, it could also create the correlations to behavior, since the

relationship between the stimulus and saccade (behavior) is what is subtracted in the covariance correction.

This did not appear to be the case, however. Statistical results and distributions were similar to those with the

correction.

Peak Analysis Once information surfaces were computed across all binwidths and delays, we summarized

all information surfaces according to the maximal information observed within a temporal window of interest

(peak reliability) and averaged this peak across electrodes, time points, etc. In this way, peak reliability al-

lowed us a single measure that could be correlated across various points in time or electrodes on the array, and

direct comparisons to sensory, choice, behavior, and/or predicted behavior could be made, with correlations

containing pooled measures that individually are corrected for covariance on a moment to moment basis. For

physiological responses, the window, that peaks were extracted from, matched the time which, given sensory

and motor delays, detection relevant signals were likely to be present (125 to 200ms for sensory and -75

to 150ms for choice), within a binwidth of 75-125ms. This window was also chosen for our event-locked

average responses. To ensure peaks were unlikely to be due to chance, as MI contains an inherent positive

bias (Treves and Panzeri, 1995), we also computed the information rate that would be expected by chance if

there was no relationship between the stimulus and neuronal response. We resampled the contingency tables

at each delay 100 times, which maintained the probability of observing any one variable but destroyed the

relationship between stimulus and neuronal activity variables. We then set a cutoff value of 95% at a given

delay, and if the original information value was not greater than this cutoff, it was set to zero. When the

original value was greater (and thus considered significant), we subtracted the average resampled value to

account for this bias.

As a final step to avoid falsely positive peaks, due to computing MI across many delays, we corrected for

the expected false discovery rate that would be expected by chance (5% of the delays). We required that the

number of delays with significant information exceed the expected number of false discoveries (0.05 times
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Figure 2: Mutual Information Method: a.) Neural signals and behavior were analyzed at varying binwidths and

delays from the event, either the shape stimulus onset (sensory event) or the saccade (choice event). An example at 150ms

delay and 125ms binwidth from example trials is used. b.) Behavioral information was calculated using a contingency

table of the probability that the subject made a saccade/choice (G) or no choice (NG), given whether a shape was present

(S) or not (NS). c) To construct a contingency table for LFPs, 50% of the LFP traces were separately averaged for

events and non-events. The difference between these averages was used as a discriminant for the remaining traces,

and the distributions of projections onto that discriminant were separately tabulated for events and non-events. These

distributions were binned into 20 categories to compute MI. d.) Surfaces represent the output, where MI is divided by the

binwidth to give reliability, for actual behavior, sensory, and choice surfaces. Sensory and choice surfaces are combined

to create a predicted behavioral surface. Red boxes denote the output of the example.
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the total number of delays). If this criteria was not met, the entire surface for a given event pair was set to

zero reliability, and no peak was reported. This occurred for 6.7% and 7.0% of sensory and choice surfaces,

respectively for Monkey J, and 2.6% for both sensory and choice surfaces for Monkey Z, across all moving

average points and electrodes.

Predicted Behavior Additionally, we computed a predicted behavioral information surface by combining

the sensory and choice surfaces. For every delay and binwidth, the predicted behavioral information describes

the information rate that would result from the statistical relationship between sensory and choice information

in a given population, if the behavior was completely informed by this population (Ghose and Harrison, 2009;

Harrison et al., 2013; Weiner and Ghose, 2014; Weiner and Ghose, 2015). To do this, we computed the

products of sensory and choice information for a given point on the predicted behavior surface by computing

all possible sensory and choice delay combinations that could add to a given behavioral delay. We then found

the maximum reliability within those possible sensory and choice delay combinations, and used this value for

the prediction. For example, a behavioral delay of 200 could be found by a sensory delay of 100 and a choice

delay of 100, or a sensory delay of 125 and a choice delay of 75, and so forth. We computed all possible

combinations and then used the maximum value within those combinations. This predicted behavior surface

could then be compared to the actual behavior, found through the behavioral MI process provided above, to

establish how well a neural population could explain behavioral reliability, latency, and precision.

2.3 Results

2.3.1 Behavioral Performance

To study visual perceptual learning, we trained two monkeys over the course of several weeks to detect

briefly presented shapes degraded by noise and report detection by a saccade to the shape. Both animals

exhibited behavioral performance improvements in shape detection, i.e. learning, over the course of our

observations. To demonstrate this, we analyzed behavior for both animals over the first and last 1000 trials
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(referred to as early/late, respectively). Shape degradation was accomplished by decreasing the co-linearity of

local oriented elements defining a specific shape. We define this as shape coherence which is 100% when the

orientation of appropriately located elements was perfectly consistent with defining the shape, and 0% when

the orientation of such elements was random. As expected in both animals and time periods, performance

improved with shape coherence, with almost perfect performance at the highest coherence (Figure 3a). The

dependence of performance on coherence clearly changes with training; while low coherence performance

improves, high coherence performance does not improve for Monkey Z, and improves less than low coher-

ences for Monkey J. This indicates that performance improvements during training at low coherences were

not simply a result of increased task familiarity, but rather were specific to those stimuli that were particularly

challenging. No substantial changes in reaction time for these low coherence stimuli were observed (Figure

3b), suggesting that changes in speed-accuracy trade-offs were not occurring during training. We selected

the lowest two coherences (50% and 62.5%) for all further analyses for both animals, as the three highest

and two highest coherences increased equally for Monkey J and Monkey Z, respectively, suggesting that im-

provements beyond the two lowest coherences were likely due to task, as opposed to perceptual, learning.

For Monkey Z, early trials included 362 correct low coherence trials, 598 false alarms, and 209 false alarms;

late trials included 456 correct low coherence trials, 653 false alarms, and 187 false alarms. For Monkey

J, early trials included 187 correct low coherence trials, 441 false alarms, and 172 false alarms; late trials

included 253 correct low coherence trials, 588 false alarms, and 35 false alarms. To examine the dynamics

of perceptual improvements over the entire period of learning, and visualize any non-monotonic changes, we

applied a moving average method to these low coherence trials by computing detection rates over consecutive

blocks of 300 trials with 50 trial shifts. Consistent with the previous analysis, detection rate improved over

time and between early and late periods (shaded regions) for both subjects. However, these improvements

were not monotonic, but rather were characterized by up and down fluctuations in performance during the

course of learning. Indeed, the correlation coefficient of detection rate vs trial, describing the fit of a linear



30

model of learning, was below 0.5 for both animals (Monkey J, r2=0.38; Monkey Z, r2=0.45) (Figure 3c).

2.3.2 Event Aligned Local Field Potentials

To look for neural population signals that might be responsible for detections during learning, we aligned

the local field potentials (LFPs) across all electrodes (from a 96-electrode array implanted in V4) to both

shape presentation and saccade initiation. If such signals play a role in the detection decisions made by

the animals, we would expect an interaction between sensory and choice locked responses, such that, on

average, sensory-aligned responses would differ depending on the eventual choice the animal made, and

saccade-aligned responses would differ depending on the presence or absence of a shape.

Stimulus-Aligned: Sensory In accordance with this prediction, we found that for both early and late trials,

the amplitude of the shape response was larger prior to correct detections, as opposed to false alarms, in

both individual electrodes and over the sampled population of electrodes (Figure 4a), for both animals. For

Monkey Z, this difference also increased in late trials. To examine whether particular electrodes carried strong

detection relevant information, we mapped the RMS amplitude of sensory locked responses from correct trials

over the time window in which differences were observed according to the stimulus (125-200 ms). Individual

electrodes showed an increase in amplitude in late trials; this was significant for Monkey Z (paired t-test,

p<<.001), but not Monkey J (p=.10). We also found that the spatial pattern of stimulus aligned responses

across the array did not substantially change with learning; the electrodes with the strongest responses prior

to learning maintained their relatively strong responses throughout training (Monkey Z: r=0.85, Monkey J:

r=0.71). All correlations were highly significant (p<<0.001). Thus, in trial averages, training appeared to

produce gain-like effects on the magnitude of perceived shape responses across the array (Figure 4c).

Saccade-Aligned: Choice We performed a similar event-locked analysis with respect to saccades, when

the stimulus was present and perceived (correct) and when the stimulus was not present but still perceived

(false alarm). Consistent with previous observations (Tolias et al., 2001), all electrodes displayed a strong

pre-saccadic signal. Prior to that signal, and given typical reaction times, roughly corresponding with the
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Figure 3: Performance Measures Over the Course of Perceptual Learning: a.) Detection rate (hits/hits+failures)

increases with coherence and improves in late trials for both animals, particularly at low coherences (shaded region). b.)

Reaction times decrease with higher coherences but do not change between early and late trials for low coherences. c.)

There is an overall improvement as training progresses for both animals in detection rate. Learning is not monotonic;

there are noticeable day to day fluctuations with learning for detection rate, especially for Monkey J, as indicated by the

r2 values for the linear fit of the line to the data (Monkey Z: detection, r2=0.45; Monkey J: detection, r2=0.38). Gray lines

represent the linear fit and dotted lines represent individual days. Error bars represent SEM, of a binomial distribution

where applicable.
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same time window that revealed choice effects on shape responses, we observed shape effects on saccade-

locked responses (-100 to -175ms). In early trials, there is no average difference between correct and false

alarm trials for either animal. However, correct, but not false alarm, trials increase in amplitude for Monkey

Z after learning. Monkey J, similarly to stimulus aligned LFPs, does not show an increase in the event

aligned averages over time (Figure 4b) As with shape-locked responses, saccade locked responses for correct

trials were also spatially heterogeneous and consistent with gain-like effects for both animals (Monkey Z:

r=0.86; Monkey J: r=0.59), and there was a significant increase for both animals (Monkey Z: paired t-test,

p<<0.001; Monkey J: p=0.01) (Figure 4c). All correlations were highly significant (p<<0.001). We also

correlated sensory and choice RMS measures of each electrode for both early and late trials, to ask whether

the same populations that were high for sensory (stimulus-aligned) effects were also high in predicting the

choice (saccade-aligned). As expected, given that both analyses look at similar windows on correct detection

trials, sensory and choice measures were highly correlated for both animals in both early and late trials (Figure

4d) (Monkey Z: early r=0.74, late r=0.95; Monkey J: early r=0.85, late r=0.92). All correlations were highly

significant (p<<0.001).

2.3.3 Mutual Information

The observation that average LFP signals, within reaction time limited epochs, depend on both the pres-

ence of a shape and impending saccade execution, suggests such signals may play a role in perceptual detec-

tion (Shadlen and Newsome, 2001; Romo et al., 2004). Furthermore, our finding that these signals increased

in magnitude over the course of training for almost all electrodes in Monkey Z, and many electrodes in

Monkey J (Figure 4c), suggests that they may be contributing to learning. However, the presence of activity

deviations within reaction time limited epochs on average does not mean that such activity occurs consistently

on a trial to trial basis. For example, the broad peak of activity seen in the reaction time defined window of

the shape-locked responses (Figure 4a) could reflect the superposition, across trials or electrodes, of narrow

peaks of activity of variable latency. Similarly, the average amplitude might reflect the rare occurrence of
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Figure 4: Trial Averaged Event Aligned LFPs: a.) Both subjects show enhanced stimulus aligned LFP effects

(stimulus at dotted line at 0ms) on correct trials compared to failure trials before and after learning in examples and

averages. b.) Monkey Z shows enhanced saccade aligned LFP effects on correct trials compared to false alarm trials

in examples and averages after learning (saccade at dotted line at 0ms). Shaded SEM is the width of aligned traces. c)

When the root mean squared (RMS) of the LFP amplitude (shaded area a:25 to 200ms, b:-100 to -175ms) was found

for each electrode and averaged across correct trials, both animals shows gain-like effects in correct shape and saccade

aligned LFP responses between early and late phases of training, but only Monkey Z showed amplitude changes between

the early and late trials for stimulus aligned (Stimulus Aligned: Monkey Z: r=0.85, paired t-test, p<<0.001; Monkey

J: r=0.71, p=.10), while both increased in late trials for saccade aligned (Saccade Aligned: Monkey Z: r=0.86, paired

t-test, p<<.001; Monkey J: r=0.59, p=0.01). All correlations were highly significant (p<<0.001). d.) When sensory

(stimulus aligned) and choice (saccade aligned) RMS values from correct trials for both animals were compared, they

were also highly correlated, especially after learning (Monkey Z: early r=0.74, late r=0.95; Monkey J: early r=0.85, late

r=0.92). Again, all correlations were highly significant (p<<0.001). Filled in scatter plot points correspond to example

electrodes. Error bars represent SEM. 88/96 and 92/96 electrodes were used for Monkey J and Monkey Z, respectively.
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strong activation rather than any consistent signal. Additionally, averages may obscure changes over learning

that occur over the moment to moment timescale demanded by the task. For example, a purely trial-based

analysis ignores the large periods of correct rejection in trials for which shapes were only presented after

many seconds of fixation. A final concern, which is particularly relevant for localizing where in the visual

pathway learning related changes may be occurring, is the temporal overlap between shape-evoked and pre-

saccadic activity (Figure 4a-b). This makes it hard to infer whether potential LFP changes observed during

perceptual learning reflect changes in the feedfoward shape-related signals, feedback saccade-related signals,

or some combination of the two.

Reliability Changes with Learning To measure the consistency of moment to moment variations in LFP

across individual trials, we utilized an analysis that employed information theory to compute the mutual

information (MI) between LFPs, shapes, and saccades at a range of binwidths (25-250 ms) and delays (25-

250 ms). MI measures how reliably one can infer the state of one event given another event, and notably

incorporates the uncertainty of both events. We convert this into a rate by dividing the mutual information

for a given delay and binwidth by that binwidth, to get a rate of bits/s, which we refer to as ”reliability”,

since it measures how reliably LFPs reflect shape appearance (sensory) or predict the saccade (choice). Thus,

by computing MI at fine timescales, we can answer the question of how reliable signals are on a moment to

moment basis.

We apply the same analysis to measure how reliably saccades reflect shape appearance (behavior). Impor-

tantly, this behavioral information allows us to correct for the expected covariance of sensory and choice (see

Methods), disassociating sensory and choice information. All of these MI rates (reliability) were compiled

into a surface describing how the moment-to-moment correlations between two variables depend on timing

parameters. A final advantage of this technique is the ability to use sensory and choice information surfaces

to generate, without any modeling, a predicted behavioral information surface that describes what behavior

would be expected if the measured signal alone was responsible for detection decisions.



35

Sensory and choice surfaces based on the LFPs from single electrodes showed increases in peak reliabil-

ity after learning (Figure 5a-b) over the window of temporal parameters used in the previous RMS analysis

(white box). To evaluate the potential contribution of individual electrodes to this performance improve-

ment, we generated behavioral prediction surfaces on the basis on sensory and choice information surfaces.

Such a surface describes what behavioral information would be expected if the electrode were the only sig-

nal responsible for decisions. By performing this analysis before and after learning, we were therefore able

to quantitatively measure the potential behavioral impact of physiological changes occurring at single elec-

trodes. All electrodes examined showed dramatic increases in predicted behavioral reliability consistent with

those actually observed, and without accompanying changes in behavioral timing (Figure 5c).

Peak Reliability Distribution The location of peak reliability, at both delays and binwidths, on average,

was consistent across learning, and only changed by<6ms for all measures (sensory, choice, and predictions),

for both animals, indicating a stability in temporal parameters after learning. In contrast to these temporal

parameters, peak height, or peak reliability, reflecting the reliability of detection, increased dramatically with

training in both animals (Figure 6). These findings are consistent with classical measures of performance

(Figure 3), and document that shape learning in this task was characterized by increases in performance, but

not changes in timing.

To assess spatial organization of task relevant information across the array, we analyzed the autocorre-

lation of peak reliability across the array. Sensory and choice peak reliability, on average, for Monkey J,

had correlations of r=0.07, r=-0.03, r=0.09, and r=-0.02 for early and late sensory and early and late choice,

respectively, between neighboring (400 µm distant) electrodes. For Monkey Z, the average correlation had

values of r=0.23, r=0.06, r=0.20, and r=0.20 for early and late sensory and early and late choice, respec-

tively, between neighboring electrodes. This is in contrast to RMS autocorrelations, which were much higher

(Monkey Z: r=0.79, r=0.72, r=0.74, r=0.71; Monkey J: r=0.22, r=0.13, r=0.25, r=0.13, for early and late sen-

sory and early and late choice, respectively). We also correlated the RMS and peak reliability of individual
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Figure 5: Mutual Information Surfaces: a-b.) Example electrodes show an enhancement, especially in sensory,

but also in choice, reliability in late trials compared to early. Combining sensory and choice surfaces into a behavioral

prediction surface shows that individual electrodes can largely predict behavioral reliability and timing. White boxes

indicate the delays (125-200 ms for sensory, -100 to -175 ms for choice) and binwidths (75-125 ms) inferred from the

event-triggered analyses as potentially decision relevant. c.) Both animals show improvements after learning when

reliability between eye movement and stimulus presence (behavioral information) is analyzed for early and late trials,

within a reasonable reaction time (delay) from the stimulus. Predicted behavior, computed by combining the sensory and

choice surfaces (see Methods), accounted for about 1/3 of the actual behavior when averaged across electrodes and had

similar temporal dynamics in its peak reliability. 88/96 and 92/96 electrodes were used for Monkey J and Monkey Z,

respectively.
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electrodes, to assess how similar the summarized results of these measures were. For Monkey J, early and

late sensory and choice RMS measures were well correlated with peak information, but less so for Monkey

Z (Monkey J: early sensory r=0.54, late sensory r=0.44, early choice r=0.62, late choice r=0.37; Monkey Z:

early sensory r=0.59, late sensory r=0.20, early choice r=0.39, late choice r=0.19). Thus, such correlations

decreased in all measures after learning. This suggests that RMS measures may be susceptible to spatial

correlations in activity that occur on behaviorally irrelevant timescales, especially after learning.

Despite the increased independence of electrode sampling in the MI analysis, for almost all electrodes,

we see large improvements in the amplitude of sensory, choice, and predicted behavioral reliability associ-

ated with learning (p<0.001 for all measures and both animals), in conjunction with improvement in actual

behavior (Figure 6d). In contrast to RMS measures (Figure 4), reliability heterogeneity was not consistent

between early and late periods (Monkey Z: sensory r=0.04, choice r=0.18, predicted r=0.64; Monkey J:

sensory r=0.17, choice r=0.14, predicted r=0.35, all correlations were highly significant p<<0.001 except

Monkey J sensory was significant at p=0.01) (Figure 6a-c). However, many reliability measures increased by

a similar late:early ratio. (Monkey Z: sensory= 2.18, choice=2.50, predicted=1.83, actual=1.18; Monkey J:

sensory=1.97, choice=1.33, predicted=2.07, actual=1.07)

Previous analyses of single unit and neuronal ensemble data with this task revealed a strong correlation

between sensory and choice reliability (Weiner and Ghose, 2014; Weiner and Ghose, 2015), such that reli-

able choice information was only observed for neurons that carried reliable sensory information. To examine

whether this relationship also applied to LFPs, and was subject to change with learning, we correlated sen-

sory and choice for each electrode separately for the early and late periods of training. Sensory and choice

reliabilities were consistent within an electrode, despite the covariance correction contained in our MI analy-

sis. There were also high correlations between sensory and choice peak reliability, for both animals, in both

early and late trials, with the exception of Monkey Z in the early period (Monkey Z: early, r=-0.16, late,

r=0.53; Monkey J: early, r=0.69, late, r=0.49, all correlations were highly significant p<<0.001) (Figure 6e).
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Consistent with more precise methods, we found that the populations highest in sensory reliability were also

high in choice reliability, and both were strongly correlated after learning. This suggests that the most reli-

able neurons were playing the strongest role in decision making after learning. It is less conclusive, however,

about whether this is associated with learning improvements or required for learning, given that Monkey Z,

but not Monkey J, had low correlations before learning.

Peak Reliability Dynamics To ask whether LFP reliability fluctuates over the course of learning (Figure

7a-b), we computed sensory, choice, and predicted behavior information peaks using the same moving aver-

age sampling as was done previously for detection rate (Figure 3). As with the classic behavioral metrics, we

found that reliability increases were non-monotonic over the course of learning. To understand whether such

fluctuations in LFP reliability were related to performance, we also computed peak behavioral reliability over

the entire course of learning within non-overlapping blocks of 300 trials (in order to avoid spurious correla-

tions that could occur with overlapping blocks). We used a Spearman’s partial correlation to control for the

interaction between sensory and choice. We found that sensory peak reliability, and the predicted behavior

peak reliability, covaries with actual behavior peak reliability, while choice does not, across examples (Figure

7a), the mean (across all electrodes: Monkey Z: r=0.67, r=0.07, r=0.67; Monkey J: r=0.60, r=-0.27, r=0.33,

respectively) (Figure 7b), and individual electrodes (Figure 7c). This suggests that sensory interactions were

driving the correlations to behavioral fluctuations, and that changes in choice signals were driven by their

relationship to the sensory signals. We also correlated the predicted and actual behavior and found that 64

electrodes had significant correlations in Monkey Z and 14 in Monkey J. (Figure 7d).

Spatial Independence and Redundancy We also assessed whether peak reliability of a given electrode

depended on the peak reliability of nearby electrodes. While autocorrelations of reliability were low across

the array, as were correlations between early and late trials, it could be that reliability is distributed in a

heterogeneous manner but still spatially dependent, with redundancy depending on distance across the array.

We assessed this for a subset of neighboring electrodes for Monkey Z (28 pairs), by comparing the sum of



39

a

b

d

e

c

Sensory

Choice

Predicted Behavior

Monkey Z Early
Monkey Z Late
Monkey J Early
Monkey J Late

Peak Reliability:!
Early vs. Late

Peak Reliability:!
Sensory vs. Choice

Monkey Z Sensory
Monkey Z Choice

Monkey J Sensory
Monkey J Choice

Monkey Z Prediction

Monkey J Prediction
Monkey J Actual

Monkey Z Actual

C
ho

ic
e 

Pe
ak

 R
el

ia
bi

lit
y 

(m
s)

Early Peak Reliability (bits/s)
La

te
 P

ea
k 

R
el

ia
bi

lit
y 

(m
s)

Monkey Z

Monkey J

Monkey Z

Monkey J

Monkey Z

Monkey J

Early Late

Electrodes

El
ec

tro
de

s

Peak R
eliability!

(bits/s)

1.0

0

1.0

0

1.0

0

0.7

0

0.7

0

0.7

0

0
0 1.2

1.2

0
0 1.2

1.2

Sensory Peak Reliability (bits/s)

Figure 6: Peak Reliability: a.) Sensory, b.) choice, and c.) predicted peak reliability across the array was heteroge-

neous but, unlike RMS measures, not consistent between early and late phases (Early/late correlations: Monkey Z: sen-

sory r=0.04, choice r=0.18, predicted r=0.64; Monkey J: sensory r=0.17, choice r=0.14, predicted r=0.35, all correlations

were highly significant p<<0.001 except Monkey J sensory was significant at p=0.01) d.) There was a significant effect

of learning for both animals for both sensory and choice populations (paired t-test, p<<0.001). Almost all electrodes

showed an improvement in peak reliability after learning, for both animals. Sensory, choice, predicted behavior, and ac-

tual behavior increased by similar late:early ratios. (Monkey Z: sensory= 2.18, choice=2.50, predicted=1.83, actual=1.18;

Monkey J: sensory=1.97, choice=1.33, predicted=2.07, actual=1.07) e.) Sensory and choice peak reliability were well

correlated, except in early trials for Monkey Z. (Monkey Z: early, r=-0.16, late, r=0.53, Monkey J: early, r=0.69, late,

r=0.49, all correlations were highly significant p<<0.001) Filled in scatter plot points correspond to example electrodes.

88/96 and 92/96 electrodes were used for Monkey J and Monkey Z, respectively.
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peak reliability of neighboring electrodes to the peak reliability of those two electrodes when the LFPs from

each electrode were concatenated prior to computation of MI. If the sum creates a stronger peak reliability

than the concatenation, then there is spatial dependence, if this decreases as a function of distance. If this

occurs but without a change over distance, then redundancy may be high but consistent across the array.

Conversely, if there is no improvement in reliability, this suggests electrodes are entirely independent. It is

also possible that concatenation could improve reliability in comparison to the sum, and this would suggest a

synergistic effect.

We did find high levels of redundancy to be the case for immediate neighboring electrodes (Figure

8a). Reliability was higher for the summed pair vs the concatenated pair, at a high level of significance

(p<<0.001). Concatenated reliability and summed reliability were correlated in some cases but not others

(sensory: early r=0.66, late r=0.33; choice: early r=-0.03, late r=0.47). We then asked how this changes as

a function of distance, looking at the peak reliability of a given electrode combined with an electrode two or

three spaces away (rather than one away, as with the immediate neighbor electrodes). We found that electrode

sums of pairs of up to three neighbors away were still more reliable then the concatenated pairs, suggesting

that there may be a high level of redundancy across the array. For +2 electrodes, the increase was significant

(p<<0.001) for sensory and choice, although correlations again varied (sensory: early r=0.39, late r=0.16;

choice: early r=0.02, late r=0.22). For +3 electrodes, again, all increased with high significance (p<<0.001),

while correlations varied (sensory: early r=0.65, late r=0.11; choice: early r=0.03, late r=0.45). However,

analyzing longer distances might reveal a distance at which electrodes become less redundant (improved

by their sum compared to independent concatenation), revealing spatial dependency. These patterns were

also true in example surfaces (Figure 9), where the sum consistently was more reliable than the individual

electrodes and the concatenation of the two electrodes (while the concatenation and individual surfaces were

generally similar), and this was consistently the case for a distance of up to three electrodes away.
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Figure 8: Peak Reliability of Individual, Concatenated, and Summed Electrode Pairs: a.) For neighboring electrode

pairs, the peak reliability is far higher for the sum than the concatenation of the pairs for both early and late (p<<0.001)

and is correlated for all except early choice (sensory: early r=0.66, late r=0.33; choice: early r=-0.03, late r=0.47). b.)

For electrode pairs 2 electrodes away, the peak reliability is higher for the sum than the concatenation of the pairs for

both early and late (p<<0.001) and is correlated for early sensory and late choice (sensory: early r=0.39, late r=0.16;

choice: early r=0.02, late r=0.22) c.) For electrode pairs separated by a distance of 3 electrodes, the peak reliability is far

higher for the sum than the concatenation of the pairs for both early and late (p<<0.001) and correlation was again high

for early sensory and late choice, but not late sensory or early choice (sensory: early r=0.65, late r=0.11; choice: early

r=0.03, late r=0.45). Electrodes are a subset of electrodes (28) from Monkey Z.
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Figure 9: Electrode Pair Example Surfaces: a.) Sensory and choice surfaces for electrode pair 38 and 39, which

neighbored each other (+1 electrode away). The concatenated surface appears similar to the individual electrode, but

the sum shows increased reliability. This is the case for both sensory and choice. b.) Sensory and choice surfaces for

electrode pair 38 and 40, where electrode 40 is 2 electrodes distant from electrode 38. Again, the summed surface is

similar in reliability and temporal dynamics to the individual surfaces, but the summed surface demonstrates increased

reliability. c.) Sensory and choice surfaces for electrode pair 38 and 8, where electrode 8 is three electrodes away. Results

are similar to a.) and b.). Thus, redundancy across the array is high, at least in Monkey Z to up to a distance of 3 electrodes

away.
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3 Experiment 2: Individual Voxels are modulated by attention but not

choice in area V4

3.1 Introduction

Due to previous work in our laboratory finding that feature based attention is targeted to specific, task

appropriate neural populations in early visual cortex (Warren et al., 2014), we asked whether attention is

similarly distributed in a task specific way in V4, how this depends on attentional state, and whether such

neurons also signal the readout of the perceptual choice, given that choice signals have consistently been

found in this area (see section on V4 in introduction). We designed a demanding stimulus discrimination

task where we directed subjects to attend to a specific feature of the task during high-field fMRI scanning.

The stimulus alternated continuously at varying frequencies in low and high level features (spatial frequency

and shape, due to their expected sensory activation of V1 and V4, respectively). Voxels were measured at

high resolution, sampling 1mm of cortex, from V1 to V4, and the stimulus was presented near perceptual

threshold in order to disassociate the stimulus from the choice. We then used a linear regression analysis to

compare continuous BOLD modulation of individual voxels to regressors modeling the continuous stimulus

presentation when a given feature was attended to vs when it was not, and assessed how sensory and attention

modulations overlapped with modulations containing a relationship to the ongoing perceptual choice. We

found clear sensory attention effects in V4 that were specific to certain populations; however this did not

appear to depend on initial sensitivity, and we did not see reliable choice signals or choice signals that over-

lapped with attention signals. We believe this may be due to the experimental design and recommend future

approaches to disassociate sensory, attention, and choice signals in visual cortex.
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3.2 Materials and Methods

3.2.1 Subjects and Data Acquisition

All procedures conformed to guidelines approved by the Institutional Review Board at the University of

Minnesota. Four adult human subjects (two male, two female, one was the author of this manuscript and one

was a PI on the author’s committee) underwent functional magnetic resonance imaging (fMRI) in a 7 Tesla

(7T) Siemens Magnetom scanner at the Center for Magnetic Resonance Research (CMRR) at the University

of Minnesota with informed consent. All participants had normal or corrected to normal vision. Functional

data were acquired using a T2*-weighted gradient-echo EPI sequence (45 slices, 1.6 mm x 1.6 mm x 1.6

mm, TR 900 ms, TE 22.8 ms, flip angle 50 degrees, multiband slice acceleration factor 3, partial Fourier

7/8, in-plane parallel factor 2). Fieldmaps were acquired with the same slice slab as the functional data for

post-hoc correction of EPI spatial distortion (TR 566 ms, TE 4.69 ms and 5.71 ms).

3.2.2 Task and Training

The stimulus, created using custom code (http://www.ghoselab.cmrr.umn.edu/software.html), was com-

posed of 20 Gabor elements (5 per quadrant, 4 degrees in size). Subjects viewed this stimulus using a mirror

attached to the RF coil. A fixation dot was placed in the middle of the screen, and participants were instructed

to fixate on the dot. The stimulus changed in three dimensions at separate, non-resonant frequencies: fixation

dot color (pink or blue), shape (circle or diamond), and Gabor spatial frequency (high/thin or low/thick).

The changes were not binary and occurred near the subject’s perceptual threshold in the difficult/hard task;

for example a shape could be nearly a diamond or a circle. The task consisted of six runs, with each run

containing one easy and three hard trials that were 90 seconds long each, separated by 10 seconds of no

stimulus. Participants were instructed to fixate on the dot at all times and to pay attention to one of the three

changing features (dot color, spatial frequency, or shape), and continuously press a button on a button box

when they perceived the circle, thin spatial frequency, or pink dot, depending on the run, and to release the
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lever when they perceived the opposite extreme. In this way, we could disassociate the sensory stimulus from

the choice/perception when the task was very difficult and near threshold. The fixation dot was used as a

control; we expected to see very little sensory effects with this stimulus. Spatial frequency was used to com-

pare a stimulus expected to activate earlier areas compared to shape. This generated four independent time

series that could then be correlated to each other (Figure 10b): the time series of each of the three features,

with one being attended per run, and the time series of the lever presses. The difficulty of the hard task was

titrated based on a pre-test of the subject’s performance; we aimed to have performance above chance, but

not perfect, in order to disassociate sensory and choice signals.

3.2.3 Data Analysis

After standard motion correction and T1 alignment using custom MATLAB software, each time series

from individual voxels was convolved with a canonical hemodynamic response function (HRF). The con-

volved time series was mean centered, in order to control for signal drift during the run, and then concate-

nated across runs and trials for each attention variable and task difficulty. Time series were then converted

into percent BOLD (((signal-mean)/mean per trial) * 100) and z-scored. The signal was then regressed with

4 different regressors (sensory features and choice for the attended feature) to obtain beta weights which

measured how well the BOLD signal was explained by the 4 regressors in the model below. Individual voxels

could then be correlated and regressed based on their beta weights for various features, attention, and choice,

or mapped across the visual system based on a given condition for a given region of interest (ROI). When

subjects were collapsed, we aligned all subjects on an averaged atlas, created from the anatomical scans of all

4 subjects. Analyses for individual subjects were only aligned to their own T1 anatomical image. ROIs were

defined using a Kastner atlas (Wang et al., 2015). We focus on shape responses, mostly in area V4 (referred

to as hV4 in the Kastner atlas) for the purpose of this manuscript.

BOLDattended feature =
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Figure 10: Attention Task: a.) The stimulus could vary in three dimensions; as a function of spatial frequency (SF),

shape, or fixation color. These varied in a continuous manner at non-harmonic frequencies. Simultaneously, the subject

made a binary choice, via a lever press, regarding the state of the stimulus (thin/thick spatial frequency, circle/diamond,

pink/blue fixation dot) b.) Example timecourses of stimulus extremes for each feature and corresponding perceptual

choices for the attend runs to each feature, which were used in the model to be regressed against the BOLD signal.
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βeasy,SF * SFhard + βeasy,Shape * Shapehard + βeasy,fix * Fixhard + βChoice,hard * Choicehard,attended feature

3.3 Results

3.3.1 Performance

To measure performance, we correlated (Pearson’s correlation coefficient) the frequency of the attended

stimulus to the frequency of the perceptual report. Subjects performed fairly consistently across almost all

runs for all tasks in the hard trials. Performance did not saturate during the hard trials, creating a difference in

the time course of the attended stimulus and the perceptual report. For hard attend shape trials, performance

varied between r=0.55 and r=0.72 for all subjects, with an SEM between 0.01 and 0.03 across the 6 trials.

For hard attend spatial frequency trials, performance varied between r=0.42 and r=0.70 (SEM between 0.02

and 0.03), and for hard attend fixation trials, performance varied between r=0.47 and r=0.85 (SEM between

<0.01 and 0.04).

3.3.2 Sensory and Attentional Effects

We compared sensory beta weights for each voxel in areas V1v, V1d, and V4, across attend and no attend

conditions. First, we collapsed all the subjects and measured the least square line fit of the two dimensional

distribution (referred to as a line fit in the rest of the manuscript). V1 and V4 showed strong sensory effects

for shape; however V4 also demonstrated attentional effects that V1 did not, as seen in Figure 12a, where the

line fit is larger than 1 for V4 (1.3) but not V1d (1.0) or V1d (1.1). However, this effect was only clear on

easy trials. We did not see strong sensory or attentional effects on hard trials when subjects were collapsed

(Figure 12b). We then focused on V4, given attentional signals observed in easy trials. Spatial frequency and

fixation sensory and attention signals were not as consistent in V1 or V4, and so we do not discuss those here.
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Figure 11: Individual Voxel Analysis: a.) Each stimulus, for a given feature (spatial frequency, fixation, or shape),

and choice timecourses were convolved with a canonical HRF. b.) Timecourses were then mean-centered and concate-

nated across runs/trials for a given attention condition. c.) BOLD signals were similarly concatenated and converted to

percent BOLD and also z-scored. d.) Feature/choice time courses were regressed against the BOLD signal to output four

beta weights and an entire model fit.



50

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

No Attend

At
te

nd

Easy Shape Betas!
All Subjects !

V1d Linefit=1.0107!
V1v Linefit=1.0967
hV4 Linefit=1.2845

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

No Attend

At
te

nd

V1d Linefit=17.5014
V1v Linefit=-59.8042
hV4 Linefit=11.9374

Hard Shape Betas!
All Subjects !

a

b

Figure 12: Attend vs no Attend State Across Subjects: a.) Attention increases shape feature beta weights in V4 but

not V1d or V1v (dorsal and ventral V1, respectively) when subjects are collapsed on easy trials. The least squared line fit

was 1.0 and 1.1 for V1 and V1d, and 1.3 for V4. The increase appears multiplicative. b.) There is no consistent attention

or sensory effect in the hard trials when subjects are collapsed in V1 or V4; line fits are very high, and the voxels form a

cloud near 0.
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3.3.3 Choice Effects

We did not see strong choice effects that were clearly disassociable from the sensory effects in hard

trials in V4. Line fits for all subjects were close to zero (Figure 13) (0.12, 0.05, 0.06, 0.18 for Subjects

1-4, respectively), indicating there was very little relationship between voxels which fit the shape model well

and those which matched the perceptual choice well. This was likely due to the very small changes in our

stimulus. Using a stimulus near threshold is necessary to disassociate sensory and choice effects so that

sensory and choice are not overlapping to an extent that makes regression analysis impossible, but our design

may have brought the stimulus too close to threshold, which may have resulted in a low SNR in the BOLD

signal that was incapable of detecting the small changes in the stimulus. Interestingly, choice beta weights

were larger in amplitude than sensory effects, suggesting that while there may not have been a strong stimulus

related signal; a perceptual choice signal might still be detectable in the data.

3.3.4 Consistency of Voxels Across Easy and Hard Tasks

Due to the larger amplitude of the choice beta weights. despite small shape beta weights and low consis-

tency between sensory and choice beta weights, we considered addressing the issues of low sensory effects

in the hard trials and high overlap of sensory and choice in the easy trials, by using sensory beta weights

from the easy trials and comparing them to choice beta weights from the hard trials. Since the task was

the same across easy and hard trials, sensory and choice effects should be comparable across difficulties. It

could be that while the SNR is too low to see large sensory effects; perceptual choice effects might still be

visible. If this were the case, there might be small sensory beta weights in the hard trials that would be far

lower in amplitude, but correlated, with stronger beta weights in the easy trials. We first wanted to establish

whether any detectable sensory signals existed in the hard trial data, and whether these were comparable to

corresponding voxels from easy trials. However, sensory shape beta weights for voxels did not have high

line fits across easy and hard trials for all subjects (Figure 14), with subjects 2 and 4 having line fits below
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Figure 13: Choice Effects in V4: There was no consistent relationship between sensory and choice effects in V4

during hard trials for any subject (a-d). Line fits were all <0.2. Choice beta weights were twice as large as sensory beta

weights, potentially implicating the presence of a reliable choice signal.
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0, although subjects 1 and 3 did have line fits close to 1. B-intercepts were also close to 0, suggesting there

was no additive effect due to a stronger SNR in easy trials. These results may mean that results from the hard

trials do not contain a high enough SNR to be interpretable in any of the measures, at least not in all subjects.

However, we reasoned that these results also could be due to the low sensory effects in the hard trials, due to

the very small changes occurring in the visual stimulus, in conjunction with the presence of strong perceptual

signals, especially considering the inconsistencies across subjects, and so we further analyzed the overlap

between sensory and choice beta weights from easy and hard voxels, respectively.

3.3.5 Easy Attention Effects vs Hard Choice Effects

Given that choice beta weights in the hard trials (Figure 13) were larger than the sensory beta weights, it

could be the case that while the SNR was too low to capture any sensory effects from such small stimulus

changes, perceptual choice effects may still exist. Thus we compared attended sensory and choice effects,

using attend shape beta weights from the easy trials and choice beta weights from the hard trials (Figure

15). We still did not see a consistent effect; slopes, b-intercepts, and correlation coefficients were very small,

suggesting that there was not a consistent relationship between voxels high in shape attention modulations

and voxels high in representations of the perceptual decision (in regards to shape).
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Figure 14: Voxel Stability Across Task Difficulty: Voxels were not consistent across easy and hard trials for subjects

2 and 4, with line fits near 0 (0.31 and 0.34, respectively), but were for subjects 1 and 3, with line fits near 1 (1.33 and

1.08, respectively). This suggests that sensory beta weights in hard trials are not reliable.
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Figure 15: Attend Shape (easy) vs Choice (hard): Voxels high in attention modulations were not consistently high

in choice effects for individual subjects, with the exception of a slight negative correlation for subject 4 (r2=-0.18, 0.09,

-0.17, -0.32 for subjects 1-4 respectively). B-intercepts were also near 0 for all subjects (<0.06), and line fits were near

0 for all subjects, except a small multiplicative increase for subject 4 (-0.15, 0.11, -0.19, and -0.32 for subjects 1-4,

respectively)
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4 Discussion

4.1 Learning

We asked whether or not, and how, neural signals, implicated in visual task performance, can explain

behavioral changes during learning of that task. Employing a task in which animals were required to detect

shapes degraded by noise, we found that neural population LFP signals, recorded on single microelectrodes

over tens of milliseconds in V4, reliably signaled shape perception and predicted detection events. Training

over a period of weeks in this task resulted in measureable improvements in detection rate, especially for

the most degraded shapes. This was accompanied by comparable increases in the reliability of both sensory

and choice related signals on individual electrodes. Moreover, we found that non-monotonic changes in

performance, over blocks of hundreds of trials (Gureckis and Love, 2009), were highly correlated with the

changes in the reliability of informative sensory signals. We conclude that V4 is involved in VPL of shapes,

and the enhancement of encoding in early visual sensory signals at or before the level of V4, rather than a

change in readout from higher level areas, explains fluctuations over time course of hundreds of trials.

Improvements in performance could arise from improvements in the encoding of stimuli, improvements

in the readout of sensory representations, or some combination. Identifying this locus has been challenging

because traditional electrophysiological analyses cannot readily separate these contributions to neural activity.

For example, although average shape-aligned and saccade-aligned responses (Figure 4) increase over the

course of learning, because of the temporal overlap of shape-triggered and saccade-triggered responses, it is

difficult to isolate such components (Panzeri et al., 2017). Averaging faces an additional limitation, in that the

ability of signals to predict behavior on a trial by trial basis is not established. We addressed such challenges

by adopting a moment-to-moment approach which avoids such averages and makes use of a covariance

correction to isolate sensory and choice signals (Harrison et al., 2013). We found that populations sampled

by individual electrodes can reliably signal the presence of the stimulus and upcoming behavioral decision

within reaction time limited windows. The distribution of task relevant information was heterogeneous across
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our recording arrays; however the particular electrodes that were the most informative of the shape were also

the most predictive of choices after learning.

Previous VPL studies (cf (Yan et al., 2014)) have largely relied on making comparisons between mea-

surements made at the beginning and end of training, and not during the actual training process. With

such an approach, physiological changes may reflect changes that occurred during learning, without actu-

ally being responsible for those changes. We found that both sensory and choice reliability dramatically

increased over the course of learning, but fluctuations in behavior over time scales of hundreds of trials

better reflect sensory, rather choice, dynamics. This seemingly conflicts with findings (Law and Gold,

2008) that changes in sensitivity with learning were not observed in an area (MT) tuned to the stimulus

(motion), but were in a higher level area (LIP), and that choice probability changes in MT were likely

related to improved readout. However, there are several possibilities that explain this apparent discrep-

ancy. Learning associated increases in neuronal sensitivity to orientations (Adab and Vogels, 2011), as

well as contrasts (Sanayei et al., 2018), have been found in V4, and this region may simply be more in-

volved in learning than MT. Increased plasticity in V4 has been proposed to be due to broader inputs to

V4 compared to V1 or MT (Adab and Vogels, 2011), and it is possible that reward prediction error feed-

back is higher in V4 than MT (Kumano and Uka, 2013). Additionally, many studies (Law and Gold, 2008;

Sanayei et al., 2018) have used neural sensitivity and choice probability measures, whereas we used sensory

and choice reliability from the MI analysis. Sensory reliability is a similar measure to sensitivity, although

it measures the change in strength rather than change in response to differing stimuli, respectively. How-

ever, sensitivity and choice probability do not correct for covariance between the stimulus and the behavioral

decision, nor do they optimize for varying binwidths and delays. Conversely, our MI analysis corrects for

covariance, allows for a direct comparison across sensory, choice, and behavior, and also computes all three

measures at multiple, precise time scales.

We also found that LFPs on the most reliable electrodes were 3 to 4 times more reliable than the best
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individual neurons (Weiner and Ghose, 2014), but similar to most reliable neurons ensembles of 10-40 neu-

rons (Weiner and Ghose, 2015). This was true even prior to the beginning of degraded shape training, and

suggests that interneuronal correlations that might degrade performance are minimal in this task, consistent

with past results finding that such correlations are largely absent (Weiner and Ghose, 2015). One possible

explanation for the lack of correlations is the demanding nature of this task. As spatial attention in V4 has

been shown to reduce noise correlations (Cohen and Maunsell, 2009), it is possible that the absence of such

correlations in our studies reflect the consistent allocation of attention during task performance. This is still

somewhat surprising, however, because the vast majority of individual cells are non-informative with regard

to either shapes or saccades (Weiner and Ghose, 2014), and one might expect that, in the spatial sampling

that is reflected in LFP measurements, such neurons would dominate and result in poorly informative LFPs.

However, contributions to LFP signals from sources other than action potentials may contribute to infor-

mation differences between single units and LFPs. LFPs reflect not only spikes, but also intrinsic currents,

calcium spikes, sub-threshold synaptic currents, and other cellular processes that alter the electrical poten-

tial in the extracellular space being recorded, but do not necessarily produce an action potential (Buzsáki

et al., 2012). Irrespective of its origin, our results are consistent with recent findings of their significance

towards understanding stimulus representation (Belitski et al., 2008; Montemurro et al., 2008) and com-

plex perceptual and cognitive features (Wang et al., 2009; Rutishauser et al., 2010; Lopour et al., 2013;

Rey et al., 2015). Prior studies have also found that LFPs better reflect stimulus perception in V4 than spikes

(Wilke et al., 2006), and we believe that the answer to this apparent paradox is the very low levels of corre-

lation, and near independence, of V4 neural activity in this task (Weiner and Ghose, 2015). In the absence

of such correlations, population averages of purely noisy neurons should be small, leaving the LFP to be

dominated by those neurons with task relevant signals. Indeed, simple models show that even with moderate

amounts of interneuronal correlation (≈0.1), neurons with reliable sensory information can dominate popu-

lation level signals and have reliable choice information (Krause and Ghose, 2018). Our results are also con-
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sistent with suggestions that LFPs have a relatively limited and have fixed spatial sampling (Xing et al., 2009;

Katzner et al., 2009); nearby electrodes, spaced 400 µm apart, often displayed very different task-related

signals (Figure 6), although this only occured in the MI analysis. This highlights the importance of using an

analysis that measures reliability on precise timescales, particularly when using population signals such as

LFPs. We did, however, find that, while task related signals differed across the array, there was a high level of

redundancy (Figure 8,9), although this did not change as a function of distance up to 3 electrodes away, in the

subset of electrodes we analyzed. Interestingly, correlations were highest for early sensory and late choice

populations at all three distances, suggesting there might be some effect of learning on reliability redundancy

that is dependent on sensory and choice. However, further work determining how redundancy and spatial

dependence changes across all electrodes along the entire array, in both animals, would be useful.

Discrepancies between LFPs and single and multi-unit observations in our data also demonstrate the use-

fulness of LFP signals. Particularly, the presence of very strong pre-saccadic signals in the LFP (Figure

4b,5a-b), compared to single (Weiner and Ghose, 2014) and multi (Weiner and Ghose, 2015) -unit data,

suggests that LFPs may contain signals not accessible by traditional spike analyses. While our study is not

specifically addressing pre-saccadic signals, the fact that they represent receptive field remapping to the sac-

cade location (Tolias et al., 2001), and are predictive rather than representative, thus involving feedback (Sun

and Goldberg, 2016; Binda and Morrone, 2018), suggests that LFPs may contain more information regarding

top down influences compared to spikes. LFPs have also been found to contain natural stimulus information

that is decoupled from spikes and multi-units (Belitski et al., 2008). Thus, past work, combined with our

evidence that LFPs do clearly represent the stimulus and predict the decision, and that the former predicts

point to point fluctuations with learning, demonstrates that LFPs are a highly informative and powerful tool in

linking findings in humans and macaques. Ultimately, studying LFPs may greatly improve our understanding

of how both sensory and choice related neural signal changes in populations, may underlie changes in visual

perceptual performance. While LFPs have often been studied in terms of oscillations, we demonstrate their
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potential in understanding trial to trial, and even moment to moment, neural changes in relation to behav-

ior and learning, possibly representing top down influences such as pre-saccadic signals more robustly than

pools of spikes. In addition to providing insight into how signals from a small number of informative sensory

neurons may still be extracted from a very large pool, LFP signals may also link the human and macaque liter-

ature, and possibly provide an explanation for how BOLD signals can demonstrate learning related changes,

despite sampling large pools of neurons.

Our findings that LFPs are heterogeneous and can be used to study temporally precise sensory and choice

related information is consistent with previous studies establishing that, despite its spatial imprecision (Histed

et al., 2009), electrical microstimulation can be used to selectively target decision relevant populations (Cohen

and Newsome, 2004). Because we document changes at the level of LFPs with learning, this opens up the

possibility of using microstimulation for a causative approach to the study of VPL. For example, experiments

involving repetitive stimulation during perceptual training might be capable of establishing whether localized

activity fluctuations are sufficient for learning. Our study suggests that V4, by containing reliable and decision

predictive signals which increase during the course of learning, would be a promising target for such an

approach with respect to shape learning.

4.2 Attention

With the experimental design and analysis approach we used, we were not able to clearly determine if

attention and choice signals are disassociable, using fMRI on a single voxel level, and so we were unable to

answer the question of whether individual voxels, that are highly modulated by attention to a shape stimulus,

also carry high perceptual shape choice signals. While even a comparison across easy and hard trials did

not show consistent correlations between voxels modulated by attention to shape and those modulated by a

shape related decision, there was a slight negative correlation for subject 4 (r2=-0.32), which could imply that

voxels tuned to an attended stimulus are suppressed in order to make a decision. However, given that this
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was not consistent across subjects, we cannot make such a conclusion. We also found that b-intercepts were

low, suggesting that there is not an additive effect of attention or choice, although again, this is difficult to

confirm given the lack of consistent results in the hard trials. However, we did confirm that attention effects

are increased in a multiplicative manner in V4 for shapes, but not in V1, using the easy trial data, and this can

be seen on an individual voxel level at high resolution.

The inability to disassociate sensory and choice signals is likely due to the experimental design combined

with the use of fMRI imaging. While these results could also suggest that the same voxels do not carry sensory

and choice signals, we cannot rule out that it is because sensory and choice signals were not sufficiently

disassociated, methodologically. Our results are, however, unlikely to be due to an instability in voxels over

runs, given that easy and hard voxels were consistent across runs within a difficulty, and two subjects were

even consistent across difficulty (Figure 14). More likely, the problem is due to an issue of low SNR. BOLD

signals have low SNR due to high amounts of noise associated with fMRI scanning, and our hard trials

may have pushed the subject too close to a stimulus and/or perceptual threshold to determine such effects,

although it does appear that perceptual effects may exist, given the large hard choice beta weights Figure

(15). But this cannot be definitively concluded when they do not overlap with sensory results from the easy

trials. However, our easy trials had too much overlap between the perceptual report and the stimulus in

order to disassociate signals as slow as BOLD, given near perfect performance in the easy trials, to compare

sensory/attention beta weights with choice beta weights. Even when we attempted to use sensory/attention

beta weights from the easy trials and compare them to choice beta weights with the hard trials, there was not

a consistent relationship across subjects (Figure 15.

One potential solution to these issues would be to use an array of difficulties per subject to determine at

what difficulty threshold sensory effects are visible, rather than only utilizing a single pre-test of performance,

and then use the most optimal difficulty to disassociate sensory and choice signals. An increase in subject

number would also likely be beneficial, given that two subjects did show overlap in shape betas between easy
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and hard trials and one subject did show a slight negative correlation between easy attention and hard choice

beta weights. Additionally, this task could be used in nonhuman primates with electrophysiology techniques,

where temporal and spatial resolution is far higher. Given that we can see attentional effects on individual

voxels in V4, it is likely that attention and choice effects could be disassociated, given an increased number

of subjects in conjunction with more subject-specific optimized task parameters.

4.3 Conclusion: Visual Perception and Future Directions

Separating the effects of the stimulus and the behavioral choice is integral to understanding visual per-

ception. If we want to understand how humans and other animals perceive the world around them, and how

neural substrates change in conjunction with changes in perception, it is necessary to disassociate changes in

sensory and choice effects over small and large time scales. This is not a trivial issue, given the fast timescales

on which perceptual decisions are made. However, using a variety of tools, models, subjects, and brain sig-

nals, we may be able to better understand how the brain alters neural signaling to enable improvements in

behavior.

Our work demonstrates that for perceptual learning, changes in sensory encoding best explain long term

improvements in behavior in area V4. Additionally, on short timescales, the same neurons that signal the

sensory event, also signal the perceptual report, and the relationship between populations, in measures of

sensory and choice, stays consistent over weeks of learning. Thus it is likely, that on the short time scales of

attention, this relationship would also hold true. However, we were not able to determine the overlap between

attentional and choice signals with the attention experiment. Further work is necessary to understand how

neurons in V4 change with attention in relationship to their choice reliability, as well as causal work to

determine the necessity of V4 signals in both attention and learning. However, these studies do suggest that

sensory representations in V4 mediate long term learning, as well as explain short term changes in both

attention and perceptual decisions.
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