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Abstract

The past few decades have seen a rapid expansion of our digital world. While early dwellers

of the Internet exchanged simple text messages via email, modern citizens of the digital world

conduct a much richer set of activities online: entertainment, banking, booking for restaurants

and hotels, just to name a few. In our digitally enriched lives, we not only enjoy great convenience

and efficiency, but also leave behind massive amounts of data that offer ample opportunities for

improving these digital services, and creating new ones. Meanwhile, technical advancements

have facilitated the emergence of new sensors and networks, that can measure, exchange and log

data about real world events. These technologies have been applied to many different scenarios,

including environmental monitoring, advanced manufacturing, healthcare, and scientific research

in physics, chemistry, bio-technology and social science, to name a few. Leveraging the abundant

data, learning-based and data-driven methods have become a dominating paradigm across

different areas, with data analytics driving many of the recent developments.

However, the massive amount of data also bring considerable challenges for analytics.

Among them, the collected data are often high-dimensional, with the true knowledge and signal

of interest hidden underneath. It is of great importance to reduce data dimension, and transform

the data into the right space. In some cases, the data are generated from certain generative

models that are identifiable, making it possible to reduce the data back to the original space. In

addition, we are often interested in performing some analysis on the data after dimensionality

reduction (DR), and it would be helpful to be mindful about these subsequent analysis steps

when performing DR, as latent structures can serve as a valuable prior. Based on this reasoning,

we develop two methods, one for the linear generative model case, and the other one for the

nonlinear case. In a related setting, we study parameter estimation under unknown nonlinear

distortion. In this case, the unknown nonlinearity in measurements poses a severe challenge.

In practice, various mechanisms can introduce nonlinearity in the measured data. To combat

this challenge, we put forth a nonlinear mixture model, which is well-grounded in real world

applications. We show that this model is in fact identifiable up to some trivial indeterminancy.

We develop an efficient algorithm to recover latent parameters of this model, and confirm the

effectiveness of our theory and algorithm via numerical experiments.
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Chapter 1

Introduction

1.1 Motivation

Recent technology advancements have introduced and nurtured numerous large-scale digital

services in many aspects of modern life, and the most well known examples include e-commerce,

search engines, social networks, and e-services such as banking and bill pay. Human engagement

in these services is producing massive amount of data. The ability to analyze these data is

critical for building better digital products and services, and it also empowers scientific discovery

[11, 122, 108]. The ever increasing capability of data collection provides novel views of

many activities and phenomena that were previously hard to quantify. Yet, the resultant data

tsunami also brings significant challenges for analytics. One is that, the collected data are

often high-dimensional. The central task in these scenarios is to design methods that unveil the

underlying causes, thus providing actionable insights based on the data. In order to tackle the high

dimentionality problem, many dimensionality reduction (DR) methods have been proposed. The

ultimate goal of DR is to shrink the dimension of data, so that they are easier for manipulation,

analysis, communication, and storage.

In many cases, DR is employed as a pre-processing step on data, before the analysis step,

1
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such as clustering. However, there is a critical issue with this approach. For real world data

sets, where we have prior knowledge that clustering structure exists, using a general purpose DR

technique can be suboptimal. Instead, a better method would involve incorporating this prior

information when performing the DR step. Based on this intuition, we develop two methods

for joint DR and latent clustering, to tackle the cases of linear and nonlinear transformation,

respectively. In the linear case, we employ identifiable matrix factorization models to pin down

the true latent space for clustering. In the nonlinear case, we employ a deep neural network to

find a space that is “friendly” for clustering, so that very simple clustering algorithms perform

well.

In a closely related setting, we study the problem of identifying the latent parameters of

a nonlinear generative model. Many machine learning methods aim at learning a nonlinear

representation of data. Prominent examples include kernel methods [106] and (deep) neural

network-based methods [58]. A critical premise behind these methods is that, there exists a space,

in which data representations are easier for downstream tasks, e.g., classification and regression.

However, when indeed data are generated from a latent space via a nonlinear transformation, it

is often unclear whether recovery of the latent parameters is possible. To study this problem,

we propose a new nonlinear data model, which is well-motivated from real world applications.

We show, surprisingly, that recovery of latent parameters in this highly nontrivial model is in

fact possible, under realistic assumptions on the nonlinear data model. Furthermore, we design a

novel learning method based on the new theory, and verify the effectiveness of the theory and

algorithm via numerical experiments.

1.2 Thesis Outline and Contributions

In Chapter 2, we focus on developing a joint DR and clustering method, leveraging identifiable

matrix and tensor factorization models. Our key observation is that when observing data from a
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linear transformation, the latent clustering structure can be distorted. Methods based on principal

component analysis (PCA) cannot rectify this issue, as the orthogonality structure is enforced in

PCA. This orthogonality structure is unlikely to be compatible with the linear transformation

in data generation. Building upon recent advances in identifiable matrix and tensor models, we

propose a framework of joint factorization and latent clustering. Companion algorithms are

devised based on the alternating-minimization algorithmic framework, and convergence issues

are discussed. We also perform a comprehensive set of numerical experiments to evaluate the

proposed approach. These results are reported in [129, 128].

In Chapter 3, we propose a clustering method exploiting deep neural networks. Many

traditional clustering methods can be seen as first learning a nonlinear transformation of data,

then performing a simple clustering algorithm, e.g., the K-means algorithm. Two well-known

examples are spectral clustering [98, 120] and subspace clustering [118]. The hope is that the

data will be mapped into a space that is suitable for clustering after the first step, so that a

simple algorithm like K-means achieves good results. Unlike these methods that require much

expertise and domain knowledge, e.g., in picking the right type of graph for spectral clustering,

we design a data-driven approach where the nonlinear representations are learned from data, with

the final goal of clustering in mind. As such, the learned representations are naturally suitable for

clustering. Our method also resolves an issue in existing works [124, 132], where undesirable

trivial solutions can emerge. The results in this chapter are reported in [130].

In Chapter 4, we present our results on learning the latent parameters of a nonlinear generative

model. The model is motivated by several real world applications. We first present our new

theoretical result, showing that it is possible to resolve unknown nonlinear distortion in an

unsupervised fashion. Then we establish an optimization criterion to achieve this goal, and

we show how it can be employed in practice – via an optimization formulation, building upon

judiciously designed invertible neural networks. Finally, experimental results on synthetic data

and real world data are provided, corroborating the effectiveness of the theory and algorithm.
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These results are reported in [131].

Conclusions and discussion on future research directions are presented in Chapter 5.

1.3 Notational Conventions

Capital letters with underscore denote tensors, e.g., X; bold capital letters A,B,C denote

matrices; � denotes the Khatri-Rao (column-wise Kronecker) product; kA denotes the Kruskal

rank of matrix A, i.e., the maximal k such that any k columns of A are linearly independent;

AT denotes the transpose of A and A† denotes the pseudo inverse of A; A(i, :) and A(:, j)

denote the ith row and the jth column ofA, respectively;X(:, :, k) denotes the kth matrix slab

of the three-way tensorX taken perpendicular to the third mode; and likewise for slabs taken

perpendicular to the second and first mode,X(:, j, :),X(i, :, :), respectively; ‖x‖0 counts the

non-zero elements in the vector x; calligraphic letters denote sets, such as J , F . ‖·‖F , ‖·‖2, ‖·‖1
denote the Frobenius norm, `2-norm and `1-norm, respectively. R(A) denotes the range space

of matrixA. Lowercase bold letters refer to vectors, e.g., a, b, and c. These vectors are assumed

to be column vectors, unless transposed with (·)T. Additional notation will be introduced when

needed.



Chapter 2

Joint Factorization and Latent

Clustering

2.1 Introduction

Many signal processing and machine learning applications nowadays involve high-dimensional

raw data that call for appropriate compaction before any further processing. Dimensionality

reduction (DR) is often applied before clustering and classification, for example. Matrix and

tensor factorization (or factor analysis) plays an important role in DR of matrix and tensor data,

respectively. Traditional factorization models, such as singular value decomposition (SVD) and

principal component analysis (PCA) have proven to be successful in analyzing high-dimensional

data – e.g., PCA has been used for noise suppression, feature extraction, and subspace estimation

in numerous applications. In recent years, alternative models such as non-negative matrix

factorization (NMF) [84, 47] have drawn considerable interest (also as DR tools), because they

tend to produce unique and interpretable reduced-dimension representations. In parallel, tensor

factorization for multi-way data continues to gain popularity in the machine learning community,

e.g., for social network mining and latent variable modeling [95, 2, 100, 36, 73].

5
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Figure 2.1: The effect of distance distortion introduced by W . Left: H on a 2-dimensional
plane. Right: X = WH on a 2-dimensional plane.

When performing DR or factor analysis, several critical questions frequently arise. First, what

type of factor analysis should be considered for producing useful data representations for further

processing, e.g., classification and clustering? Intuitively, if the data indeed coalesce in clusters

in some low-dimensional representation, then DR should ideally map the input vectors to this

particular representation – identifying the right subspace is not enough, for linear transformation

can distort cluster structure (cf. Fig. 2.1). Therefore, if the data follow a factor analysis model

that is unique (e.g., NMF is unique under certain conditions [39, 67]) and the data form clusters

in the latent domain, then fitting that factor analysis model will reveal those clusters.

The second question is what kind of prior information can help get better latent representa-

tions of data? Using prior information is instrumental for fending against noise and modeling

errors in practice, and thus is well-motivated. To this end, various constraints and regulariza-

tion priors have been considered for matrix and tensor factorization, e.g., sparsity, smoothness,

unimodality, total variation, and nonnegativity [101, 20, 136], to name a few.

In this chapter, we consider using a new type of prior information to assist factor analysis,

namely, the latent cluster structure. This is motivated by the fact dimension-reduced data usually

yield better performance in clustering tasks, which suggests that the cluster structure of the data
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Dataset Inter Intra-1 Intra-2 Ratio

MNIST
Data 0.62 0.22 0.26 2.58
Latent 0.88 0.30 0.34 2.75

Yale Face B
Data 0.38 0.18 0.17 2.17
Latent 0.70 0.27 0.25 2.69

Table 2.1: Comparison of cosine distance in data and latent domain. Data samples are taken
from two clusters for each dataset.

is more pronounced in some latent domain relative to the data domain. Some evidence can be

seen in Tab. 2.1, where we compare the average data-domain and latent domain cosine distances1

of data points from two clusters of image data from the Yale B 2 face image database and the

MNIST handwritten digit image database3, where the latent representations are produced via

NMF. We see that the average latent domain distance between the data from two different clusters

is significantly larger than the corresponding data domain distance in both cases. Moreover, we

calculate the ratio between inter-cluster distance and average intra-cluster distance. This ratio

can serve as an indicator of the quality of cluster structure: the higher this value, the better the

cluster structure is. We observe that this ratio is higher in the latent domain than in the data

domain for both datasets, as shown in Tab. 2.1. This observation motivates us to make use of

such a property to enhance the performance of both factor analysis and clustering.

Using clustering to aid NMF-based DR was considered in [22, 23], where a distance graph

of the data points was constructed and used as regularization for NMF – which essentially forces

reduced-dimension representations to be far (close) in the latent domain, if the high-dimension

vectors are far (resp. close) in the data domain. However, the data domain distance and the latent

domain distance are not necessarily proportional to each other, as is evident from Fig. 2.1.

To see this clearly, consider a matrix factorization model X = WH where each column

of X represents a data point, and the corresponding column of H is its latent representation.

1The cosine distance between two vectors x and y is defined as d(x,y) = 1− xTy/(‖x‖2‖y‖2).
2Online available: http://web.mit.edu/emeyers/www/face databases.html
3Online available: http://yann.lecun.com/exdb/mnist/
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Consider the squared distance between the first two columns ofX , i.e., ||X(:, 1)−X(:, 2)||22 =

(H(:, 1)−H(:, 2))TW TW (H(:, 1)−H(:, 2)), where : stands for all values of the respective

argument. On the other hand, the distance of the latent representations of the first two columns of

X is given by ‖H(:, 1)−H(:, 2)‖22 = (H(:, 1)−H(:, 2))T(H(:, 1)−H(:, 2)). Notice how

the matrixW TW weighs the latent domain distance to produce the data domain distance; also

see Fig. 2.1 for illustration.

An earlier line of work [37, 117] that is not as well-known in the signal processing community

considered latent domain clustering on the factorH , while taking the other factor (W ) to be a

semi-orthogonal matrix. However this cannot mitigate the weighting effect brought byW TW ,

since orthogonal projection cannot cancel the distorting effect brought in by the left factorW .

Aiming to make full use of the latent cluster structure, we propose a novel joint factor

analysis and latent clustering framework in this chapter. Our goal is to identify the unique latent

representation of the data in some domain which is discriminative for clustering purposes, and

also to use the latent cluster structure to help produce more accurate factorization results at the

same time. We propose several pertinent problem formulations to exemplify the generality and

flexibility of the proposed framework, and devise corresponding computational algorithms that

build upon alternating optimization, i.e., alternating between factorization and clustering, until

convergence. Identifiability of the latent factors plays an essential role in our approach, as it

counteracts the distance distortion effect illustrated in Fig. 2.1. This is a key difference with

relevant prior work such as [37, 117, 102].

We begin with K-means latent clustering using several identifiable factorization models of

matrix and tensor data, namely, nonnegative matrix factorization, convex geometry (CG)-based

matrix factorization model [44], and low-rank tensor factorization or parallel factor analysis

(PARAFAC) [50]. Carefully designed optimization criteria are proposed, detailed algorithms

are derived, and convergence properties are discussed. We next consider extension to joint

factorization and subspace clustering, which is motivated by the popularity of subspace clustering
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[118]. The proposed algorithms are carefully examined in judiciously designed simulations.

Real experiments using document, handwritten digit, and three-way E-mail datasets are also

used to showcase the effectiveness of the proposed approach.

2.2 Background

In this section, we briefly review the pertinent prior art in latent clustering and factor analysis.

2.2.1 Clustering and latent clustering

Let us begin with the classical K-means problem [92]: Given a data matrixX ∈ RI×J , we wish

to group the columns ofX into K clusters; i.e., we wish to assign the column index ofX(:, j)

to cluster Jk, k ∈ {1, . . . ,K}, such that J1 ∩ · · · ∩ JK = ∅, J1 ∪ · · · ∪ JK = {1, . . . , J},

and the sum of intra-cluster dispersions is minimized. The K-means problem can be written in

optimization form as follows:

min
S∈ZK×J ,M∈RI×K

‖X −MS‖2F

s.t. ‖S(:, j)‖0 = 1, S(i, j) ∈ {0, 1},
(2.1)

where the matrix S is an assignment matrix, S(k, j) = 1 means thatX(:, j) belongs to the kth

cluster, andM(:, k) denotes the centroid of the kth cluster. When I is very large and/or there

are redundant features (e.g., highly correlated rows ofX), then it makes sense to perform DR

either before or together with clustering. Reduced K-means (RKM) [37] is a notable joint DR

and latent clustering method that is based on the following formulation:

min
S∈ZK×J ,M∈RF×K ,P∈RI×F

‖X − PMS‖2F

s.t. ‖S(:, j)‖0 = 1, S(i, j) ∈ {0, 1},

P TP = I,

(2.2)
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where P is a tall semi-orthogonal matrix. Essentially, RKM aims at factoring X into H =

MS ∈ RI×F and P , while enforcing a cluster structure on the columns of H – which

is conceptually joint factorization and latent clustering. However, such a formulation loses

generality since F (the rank of the model) cannot be smaller than K (the number of clusters);

otherwise, the whole problem is ill-posed. Note that in practice, the number of clusters and the

rank of X are not necessarily related; forcing a relationship between them (e.g., F = K) can

be problematic from an application modeling perspective. In addition, the cluster structure is

imposed as a straight jacket in latent space (no residual deviation, modeled byR in P (MS+R)

is allowed in (2.2)), and this is too rigid in some applications.

Another notable formulation that is related to but distinct from RKM is factorial K-means

(FKM) [117]:

min
S∈ZK×J ,M∈RF×K ,P∈RF×I

‖P TX −MS‖2F

s.t. ‖S(:, j)‖0 = 1, S(i, j) ∈ {0, 1},

P TP = I.

(2.3)

FKM seeks a ‘good projection’ of the data such that the projected data can be better clustered,

and essentially performs clustering on P TWH ifX admits a low-dimensional factorization as

X = WH . FKM does not force a coupling between K and F , and takes the latent modeling

error into consideration. On the other hand, FKM ignores the part ofX that is outside the chosen

subspace, so it seeks some discriminative subspace where the projections cluster well, but ignores

variation in the orthogonal complement of P , since

‖X − PMS‖2F = ‖[P P⊥]T(X − PMS)‖2F ,

= ‖P TX −MS‖2F +
∥∥∥P T
⊥X

∥∥∥2

F
,

where P⊥ is a basis for the orthogonal complement of P . So the cost of RKM equals the cost



11

function of FKM plus a penalty for the part of X in the orthogonal complement space. FKM

was later adapted in [102], where a similar formulation was proposed to combine orthogonal

factorization and sparse subspace clustering.

Seeking an orthogonal projection may not be helpful in terms of revealing the cluster structure

ofH , since P TW is still a general (oblique) linear transformation that acts on the columns of

H , potentially distorting cluster structure, even if P is a basis forW .

2.2.2 Identifiable factorization models

Unlike RKM and FKM that seek an orthogonal factor or projection matrix P , we propose

to perform latent clustering using identifiable low-rank factorization models for matrices and

tensors. The main difference in our approach is that we exploit identifiability of the latent factors

to help unravel the hidden cluster structure, and in return improve factorization accuracy at the

same time. This is sharply different from orthogonal projection models, such as RKM and FKM.

Some important factorization models are succinctly reviewed next.

Nonnegative matrix factorization (NMF)

Low-rank matrix factorization models are in general non-unique, but nonnegativity can help

in this regard [39], [67]. Loosely speaking, if X = WH , where W and HT are (element-

wise) nonnegative and have sufficiently sparse columns and sufficiently spread rows (over the

nonnegative orthant), then any nonnegative (W̃ , H̃) satisfying X = W̃ H̃ can be expressed

as W̃ = WΠD and H̃ = D−1ΠTH , where D is a full rank diagonal nonnegative matrix

and Π is permutation matrix – i.e., W and H are essentially unique, or, identifiable up to a

common column permutation and scaling-counterscaling. In practice, NMF is posed as a bilinear

optimization problem,

min
W ,H

‖X −WH‖2F

s.t.W ≥ 0, H ≥ 0.

(2.4)
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NMF is an NP-hard optimization problem. Nevertheless, many algorithms give satisfactory

results in practice; see [65].

The plain NMF formulation (2.4) may yield arbitrary nonnegative scaling of the columns

of W and the rows of H due tho the inherent scaling / counter-scaling ambiguity, which can

distort distances. This can be avoided by adding a norm-balancing penalty

min
W ,H

‖X −WH‖2F + µ(‖W ‖2F + ‖H‖2F )

s.t.W ≥ 0, H ≥ 0.

(2.5)

It can be easily shown [101] that an optimum solution of (2.5) must satisfy ‖W (:, f)‖2 =

‖H(f, :)‖2 , ∀f .

Volume minimization (VolMin)-based factorization

NMF has been widely used because it works well in many applications. If W or H is dense,

however, then the NMF criterion in (2.4) cannot identify the true factors, which is a serious

drawback for several applications. Recent research has shown that this challenge can be overcome

using Volume Minimization (VolMin)-based structured matrix factorization methods [44, 43,

15, 25] In the VolMin model, the columns of H are assumed to live in the unit simplex, i.e.,

1TH(:, j) = 1 and H(:, j) ≥ 0 for all j, which is meaningful in applications like document

clustering [43], hyperspectral imaging [91], and probability mixture models [60]. Under this

structural constraint, W and H are sought via finding a minimum-volume simplex which

encloses all the data columns X(:, j). In optimization form, the VolMin problem can be

expressed as follows:

min
W∈RI×F ,H∈RF×J

vol(W )

s.t. X = WH

H ≥ 0, 1TH = 1T,

(2.6)
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where vol(·) measures the volume of the simplex spanned by the columns ofW and is usually a

function associated with the determinant ofW orW TW [44, 43, 15, 25]. Notably, it was proven

in [44] that the optimal solution of (2.6) is WΠ and ΠTH , where Π is again a permutation

matrix, if the H(:, j)’s are sufficient spread in the probability simplex and W is full column

rank. Notice that W can be dense and even contain negative or complex elements, and still

uniqueness can be guaranteed via VolMin.

Parallel factor analysis (PARAFAC)

For tensor data (i.e., data indexed by more than two indices) low-rank factorization is unique

under mild conditions [77, 110]. Low-rank tensor decomposition is known as parallel factor

analysis (PARAFAC) or canonical (polyadic) decomposition (CANDECOMP or CPD). For

example, for a three-way tensorX(i, j, l) =
∑F

f=1A(i, f)B(j, f)C(l, f), if

kA + kB + kC ≥ 2F + 2, (2.7)

where kA is the Kruskal rank ofA, if (Ã, B̃, C̃) is such that

X(i, j, k) =

F∑
f=1

Ã(i, f)B̃(j, f)C̃(k, f),

thenA = ÃΠΛ1,B = B̃ΠΛ2, C = C̃ΠΛ3, where Π is a permutation matrix and {Λi}3i=1

are diagonal scaling matrices such that
∏3
i=1 Λi = I . Note thatA,B and C do not need to be

full-column rank for ensuring identifiability.

Making use of the Khatri-Rao product, the tensor factorization problem can be written as

min
A,B,C

∥∥∥X(1) − (C �B)AT
∥∥∥2

F
, (2.8)

where X(1) is a matrix unfolding of the tensor X . There are three matrix unfoldings for this
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three-way tensor that admit similar model expressions (because one can permute modes andA,

B, C accordingly)

X(1) = [vec(X(1, :, :)), · · · , vec(X(I, :, :))]

X(2) = [vec(X(:, 1, :)), · · · , vec(X(:, J, :))]

X(3) = [vec(X(:, :, 1)), · · · , vec(X(:, :,K))] .

Like NMF, PARAFAC is NP-hard in general, but there exist many algorithms offering good

performance and flexibility to incorporate constraints, e.g., [127], [66].

Our work brings these factor analysis models together with a variety of clustering tools

ranging from K-means to K-subspace [114, 118] clustering to devise novel joint factorization

and latent clustering formulations and companion algorithms that outperform the prior art –

including two-step and joint approaches, such as RKM and FKM.

2.3 Proposed approach

2.3.1 Problem formulation

Suppose that X ≈ WH ∈ RI×J , for some element-wise nonnegative W ∈ RI×F and

H ∈ RF×J , where the columns of H are clustered around K centroids. A natural problem

formulation is then

min
W∈RI×F ,H∈RF×J
S∈ZK×J ,M∈RF×K

‖X −WH‖2F + λ‖H −MS‖2F

s.t. W ≥ 0, H ≥ 0,

‖S(:, j)‖0 = 1, S(k, j) ∈ {0, 1},

(2.9)
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where the second term is a K-means penalty that enforces the clustering prior on the columns

of H , and the tuning parameter λ ≥ 0 balances data fidelity and the clustering prior. This

formulation admits a Maximum A Posteriori (MAP) interpretation, ifX = W (MS+E2)+E1,

where the data-domain noise E1 and the latent-domain noise E2 are both drawn from an i.i.d.

(independent and identically distributed) Gaussian distribution and independent of each other,

with variance σ2
1 and σ2

2 , respectively, and λ =
σ2
1

σ2
2

.

Assuming that (W ,H) satisfy NMF identifiability conditions, and that E1 is negligible

(i.e., NMF is exact), H will be exactly recovered and thus clustering will be successful as

well. In practice of course the factorization model (DR) will be imperfect, and so the clustering

penalty will help obtain a more accurate factorization, and in turn better clustering. Note that this

approach decouples K and F , because it uses a clustering penalty instead of the hard constraint

H = MS that RKM uses, which results in rank-deficiency when F < K.

Formulation (2.9) may seem intuitive and well-motivated from a MAP point of view, but

there are some caveats. These are discussed next.

2.3.2 Design considerations

The first problem is scaling. In (2.9), the regularization on H implicitly favors a small-norm

H , since ifH is small, then simply takingM = 0 works. On the other hand, the first term is

invariant with respect to scaling ofH , so long as this is compensated inW . To prevent this, we

introduce norm regularization forW , resulting in

min
W ,H,S,M

‖X −WH‖2F + λ‖H −MS‖2F + η‖W ‖2F

s.t. W ≥ 0, H ≥ 0,

‖S(:, j)‖0 = 1, S(k, j) ∈ {0, 1}.

(2.10)
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Figure 2.2: Normalization in the latent domain helps bringing data points together, creating tight
cluster structures. Figure generated by taking a plain NMF on two clusters of documents from
Reuters-21578 dataset. Left: 2-dimensional representations of documents; Right: the normalized
representations.

Note that ‖W ‖1 can be used instead of ‖W ‖2F to encourage sparsity, if desired 4

Another consideration is more subtle. In many applications, such as document clustering,

it has been observed [111, 62] that the correlation coefficient or cosine similarity are more

appropriate for clustering than Euclidean distance. We have observed that this is also true for

latent clustering, which speaks for the need for normalization in the latent domain. Corroborating

evidence is provided in Fig. 2.2, which shows the latent representations of two document clusters

from the Reuters-25718 dataset. These representations were extracted by plain NMF using

F = 2. In Fig. 2.2, the latent representations on the left are difficult to cluster, especially those

close to the origin, but after projection onto the unit `2-norm ball (equivalent to using cosine

similarity to cluster the points on the left) the cluster structure becomes more evident on the

right.

If K-means is applied in the data domain, the cosine similarity metric can be incorporated

easily: by normalizing the data columns using their `2-norms in advance, K-means is effectively

using cosine dissimilarity as the distance measure. In our context, however, naive adoption of

the cosine similarity for the clustering part can complicate things, since H changes in every
4 In the (contrived) case where H is exactly equal to MS, there is freedom to scale up H arbitrarily; but in

practice we use formulation (2.11) instead of (2.10), and (2.11) is not subject to this issue.
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iteration. To accommodate this, we reformulate the problem as follows.

min
W ,H

S,M ,{dj}Ji=1

‖X −WHD‖2F + λ ‖H −MS‖2F + η‖W ‖2F

s.t. W ≥ 0, H ≥ 0, ‖H(:, j)‖2 = 1, ∀j,

D = Diag(d1, . . . , dJ),

‖S(:, j)‖0 = 1, S(k, j) ∈ {0, 1}.

(2.11)

Introducing the diagonal matrixD is crucial: It allows us to fix the columns ofH onto the unit

`2-norm ball without loss of generality of the factorization model.

The formulation in (2.11) can be generalized to tensor factorization models. Consider a

three-way tensor X ∈ RI×J×L with loading factors A ∈ RI×F , B ∈ RJ×F , C ∈ RL×F .

Assuming that rows of A can be clustered into K groups, the joint tensor factorization and

A-mode latent clustering problem can be formulated as

min
A,B,C

S,M ,{d`}L`=1

∥∥∥X(1) − (C �B)(DA)T
∥∥∥2

F
+ λ ‖A− SM‖2F

+ η‖B‖2F + η‖C‖2F

s.t.A,B,C ≥ 0, ‖A(`, :)‖2 = 1, ∀`,

D = Diag(d1, . . . , dI),

‖S(i, :)‖0 = 1, S(i, k) ∈ {0, 1}, ∀i, k,

(2.12)

where the regularization terms ‖B‖2F and ‖C‖2F are there to control scaling. If one wishes to

perform latent clustering in more modes, then norm regularization can be replaced by K-means

regularization forB and / or C modes as well. It is still important to have norm regularization

for those modes that do not have K-means regularization.

An interesting point worth mentioning is that if one adopts VolMin as factorization criterion,
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then introducingD is not necessary, since VolMin already confinesH(:, j) on the unit-(`1-)norm

ball. We also do not need to regularize with the norm ofW , since in this case the scaling ofW

cannot be arbitrary. This yields

min
W ,H
S,M

‖X −WH‖2F + β · vol(W ) + λ ‖H −MS‖2F

s.t.H ≥ 0, 1TH = 1T,

‖S(:, j)‖0 = 1, S(k, j) ∈ {0, 1}.

(2.13)

2.4 Optimization algorithms

In this section, we provide algorithms for dealing with the various problems formulated in

the previous section. The basic idea is alternating optimization – breaking the variables down

to blocks and solving the partial problems one by one. Updating strategies and convergence

properties are also discussed.

2.4.1 Joint NMF and K-means (JNKM)

We first consider (2.11) and (2.12). For ease of exposition, we use (2.11) as a working example.

Generalization to Problem (2.12) is straightforward. Our basic strategy is to alternate between

updatingW ,H , S,M , and {di}Ii=1 one at a time, while fixing the others. For the subproblems

w.r.t. S andM , we propose to use the corresponding (alternating) steps of classical K-means

[51]. The minimization w.r.t. H needs more effort, due to the unit norm and nonegativity

constraints. Here, we propose to employ a variable-splitting strategy. Specifically, we consider
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the following optimization surrogate:

min
W ,H,Z,S,M ,{di}Ii=1

‖X −WHD‖2F + λ ‖H −MS‖2F

+ η‖W ‖2F + µ‖H −Z‖2F

s.t. W ≥ 0, H ≥ 0, ‖Z(:, j)‖2 = 1, ∀j,

D = Diag(d1, . . . , dJ),

‖S(:, i)‖0 = 1, S(k, j) ∈ {0, 1}, ∀k, j,

(2.14)

where µ ≥ 0 and Z is a slack variable. Note that Z is introduced to ‘split’ the effort of dealing

with H ≥ 0 and ‖H(:, j)‖2 = 1 in two different subproblems. Notice that when µ = +∞,

(2.14) is equivalent to (2.11); in practice, a large µ can be employed to enforceH ≈ Z.

Problem (2.14) can be handled as follows. First,H can be updated by solving

H ← arg min
H≥0

‖X −WHD‖2F + λ ‖H −MS‖2F

+ µ‖H −Z‖2F , (2.15)

which can be easily converted to a nonnegative least squares (NLS) problem, and efficiently

solved to optimality by many existing methods. Here, we employ an alternating direction method

of multipliers (ADMM)-based [18] algorithm to solve Problem (2.15). The update ofW , i.e.,

W ← arg min
W≥0

‖X −WHD‖2F + η‖W ‖2F , (2.16)

is also an NLS problem. The subproblem w.r.t. dj admits closed-form solution,

dj ← bT
jX(:, j)/(bT

j bj), (2.17)
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where bj = WH(:, j). The update of Z(:, j) is also closed-form,

Z(:, j)← H(:, j)

‖H(:, j)‖2
. (2.18)

The update ofM comes from the K-means algorithm. Let Jk = {j | S(k, j) = 1}. Then

M(:, k)←
∑

j∈JkH(:, j)

|Jk|
. (2.19)

The update of S also comes from the K-means algorithm

S(`, j)←


1, ` = arg mink ‖H(:, j)−M(:, k)‖2

0, otherwise.

(2.20)

The overall algorithm alternates between updates (2.15)-(2.20).

2.4.2 Joint NTF and K-means (JTKM)

As in the JNKM case, we employ variable splitting and introduce a Z variable to (2.12)

min
A,B,C

S,M ,{d`}L`=1

∥∥∥X(1) − (C �B)(DA)T
∥∥∥2

F
+ λ ‖A− SM‖2F

+ η(‖B‖2F + ‖C‖2F ) + µ ‖A−Z‖2F

s.t.A,B,C ≥ 0, ‖Z(`, :)‖2 = 1, ∀`,

D = Diag(d1, . . . , dI),

‖S(i, :)‖0 = 1, S(i, k) ∈ {0, 1}, ∀i, k,

(2.21)

The algorithm for dealing with Problem (2.21) is similar to that of the NMF case. By treating

X(1) as X , (B � C) as W and AT as H , the updates of A, D, Z, S and M are the same

as those in the previous section. To update B and C, we make use of the other two matrix
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unfoldings

B ← arg min
B≥0

∥∥∥X(2) − (C �DA)BT
∥∥∥2

F
+ η ‖B‖2F , (2.22a)

C ← arg min
C≥0

∥∥∥X(3) − (B �DA)CT
∥∥∥2

F
+ η ‖C‖2F . (2.22b)

These are nonnegative linear least squares problems, and thus can be efficiently solved.

2.4.3 Joint VolMin and K-means (JVKM)

For VolMin-based factorization, one major difficulty is dealing with the volume measure vol(W ),

which is usually defined as vol(W ) = det(W TW ) [15, 44, 43]. If clustering is the ultimate

objective, however, we can employ more crude volume measures for the sake of computational

simplicity. With this in mind, we propose to employ the following approximation of simplex

volume [13]: vol(W ) ≈
∑F

f=1

∑F
`>f‖W (:, f) −W (:, `)‖22 = Tr(WGW T), where G =

FI−11T. The regularizer Tr(WGW T) measures the volume of the simplex that is spanned by

the columns ofW by simply measuring the distances between the vertices. This approximation

is coarse, but reasonable. Hence, Problem (2.13) can be tackled using a four-block BCD, i.e.,

W ← arg min
W

‖X −WH‖2F + βTr(WGW T), (2.23a)

H ← arg min
1TH=1T,H≥0

‖X −WH‖2F + λ‖H −MS‖2F (2.23b)

Note that Problem (2.23a) is a convex quadratic problem that has closed-form solution, and

Problem (2.23b) is a simplex-constrained least squares problem that can be solved efficiently via

many solvers. The updates forM and S are still given by (2.19) and (2.20).
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2.5 Extension: Joint factor analysis and subspace clustering

In addition to considering Problems (2.11)-(2.13), we also consider their subspace clustering

counterparts, i.e., with K-means penalties replaced by subspace clustering ones. Subspace

clustering deals with data that come from a union of subspaces [52]. Specifically, considerX(:

, j) ∈ R(W (:,Fk)), whereFk denotes an index set of a subset ofW ’s columns,F1∩· · ·∩FK =

∅ andF1∪· · ·∪FK = {1, . . . ,K}. Also assume thatR(W (:,F1))∩· · ·∩R(W (:,FK)) = {0},

which is the independent subspace model [118]. Then, it is evident that

H(f,Jk) = 0, f /∈ Fk, H(Fk, j) = 0, j /∈ Jk,

where Jk denotes the set of indices of columns ofX in cluster k, i.e. X(:,Jk) ∈ R(W (:,Fk)).

Under this data structure, consider a simple example: if I = J = F = 4, K = 2,

F1 = {1, 2} and F2 = {3, 4}, then H is a block diagonal matrix where the nonzero diagonal

blocks are 2×2. From this illustrative example, it is easy to see that the columns ofH also come

from different subspaces. The difference is that these subspaces that are spanned byH(:,Jk)

and H(:,J`) are not only independent, but also orthogonal to each other – which are much

easier to distinguish. This suggests that performing subspace clustering onH is more appealing.

In [102], Patel et al. applied joint dimensionality reduction and subspace clustering on

P TX using a semi-orthogonal P , which is basically the same idea as FKM, but using subspace

clustering instead of K-means as in FKM. However, as we discussed before, whenW andH

are identifiable, taking advantage of the identifiability of the factors can further enhance the

performance and should therefore be preferred in this case.

2.5.1 Formulation

Many subspace clustering formulations such as those in [89], [41] can be integrated into our

framework, but we limit ourselves to simple K-subspace clustering, and assume that the number
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of subspaces K and subspace dimensions {ri}Ki=1 are known, for simplicity. Taking joint NMF

and K-subspace clustering as an example, we can express the problem as

min
W ,H

S,{θj ,µk,Uk}

‖X −WH‖2F + η‖W ‖2F

+ λ

J∑
j=1

K∑
k=1

S(k, j) ‖H(:, j)− µk −Ukθj‖2F

s.t. W ≥ 0, H ≥ 0,

UT
kUk = I, ∀ k,

‖S(:, j)‖0 = 1, S(k, j) ∈ {0, 1},

(2.24)

where S is again a cluster assignment variable, Uk denotes an orthogonal basis of the columns

ofH which lie in the kth cluster, µk is a mean vector of the kth cluster, and θj ∈ Rrk×1 is the

coordinates of the jth vector in the subspace. As in the VolMin case, subspace clustering is also

insensitive to the scaling of H(:, j), since the metric for measuring distance to a cluster centroid

is the distance to a subspace. Therefore, the constraints that were added for normalizingH(:, j)

can be removed.

2.5.2 Joint NMF and K-subspace (JNKS) algorithm

Similar to JNKM, the updates of W ,H in (2.24) are both NLS problems, and can be easily

handled. To update the subspace and the coefficients, we need to solve a K-subspace clustering

problem [118]

min
{Uk},{µk},{θj}

J∑
j=1

K∑
k=1

S(k, j) ‖H(:, j)− µk −Ukθj‖2F

s.t. UT
kUk = I, ∀ k.

(2.25)
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LetH(:,Fk) denote the data points in cluster k, and Θk := {θj |j ∈ Fk}. We can equivalently

write (2.25) as

min
{Uk},{µk},{Θk}

K∑
k=1

∥∥∥H(:,Fk)− µk1T −UkΘk

∥∥∥2

F

s.t. UT
kUk = I, ∀ k.

(2.26)

It can be readily seen that the update of each subspace is independent of the others. For cluster k,

we first remove its center, and then take a SVD,

µk ←
H(:,Fk)1
‖S(k, :)‖0

, (2.27a)

[Û , Σ̂, V̂ T]← svd(H(:,Fk)− µk1T), (2.27b)

Uk ← Û(:, 1 : rk), (2.27c)

Θk ← Σ̂(1 : rk, 1 : rk)V̂ (:, 1 : rk)
T. (2.27d)

To update the subspace assignment S, we solve

min
S

J∑
j=1

K∑
k=1

S(k, j) ‖H(:, j)− µk −Ukθj‖2F

s.t. ‖S(:, j)‖0 = 1, S(k, j) ∈ {0, 1}.

(2.28)

With dist(j, k) :=
∥∥(I −UkUT

k )(H(:, j)− µk)
∥∥

2
, the update of S is given by [118]

S(`, j)←


1 ` = argmink dist(j, k)

0 otherwise.
(2.29)

Remark 1. Subspace clustering is considered suitable for image processing, where occlusions

or outliers are often spotted and special care needs to be taken for dealing with the occlusions

[123]. Since occlusions are sparsely distributed over the data matrix (e.g., image), one way to
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handle this situation is to change the cost function of (2.24) as follows:

min
W ,H

S,{θj ,µk,Uk}

‖X −WH‖1 + η‖W ‖2F

+ λ
J∑
j=1

K∑
k=1

S(k, j) ‖H(:, j)− µk −Ukθj‖22 .

(2.30)

As `1-norm based fitting is known to be robust to sparse outliers, the above is expected to exhibit

better occlusion-robustness than using the Frobenius norm. The price to pay is that `1 norm is

non-smooth and may require more effort for optimization.

2.6 Convergence and complexity

2.6.1 Convergence properties

The proposed algorithms, i.e., JNKM, JVKM, JTKM, and their subspace clustering counterparts,

share some similar traits. Specifically, all algorithms solve the conditional updates (block

minimization problems) optimally. From this it follows that

Property 1. JNKM, JTKM, and JVKM, yield a non-increasing cost sequence in terms of their

respective cost functions in (2.14), (2.21), and (2.13), respectively. The same property is true for

their subspace clustering counterparts.

Monotonicity is important in practice – it ensures that an algorithm makes progress in every

iteration towards the corresponding design objective. In addition, it leads to convergence of

the cost sequence when the cost function is bounded from below (as in our case), and such

convergence can be used for setting up stopping criteria in practice.

In terms of convergence of the iterates (the sequence of ‘interim’ solutions), when using

a cyclical block updating strategy all algorithms fall under the Gauss-Seidel block coordinate

descent (BCD) framework, however related convergence results [14] cannot be applied because
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some blocks involve nonconvex constraints. If one uses a more expensive (non-cyclical) update

schedule, then the following holds.

Property 2. If the blocks are updated following the maximum block improvement (MBI) strategy

(also known as the Gauss-Southwell rule), then every limit point of the solution sequence

produced by JNKM, JTKM, and JVKM is a block-wise minimum of (2.14), (2.21), and (2.13),

respectively. A block-wise minimum is a point where it is not possible to reduce the cost by

changing any single block while keeping the others fixed.

The MBI update rule [28] is similar to BCD, but it does not update the blocks cyclically.

Instead, it tries updating each block in each iteration, but actually updates only the block that

brings the biggest cost reduction. The MBI result can be applied here since we solve each block

subproblem to optimality. The drawback is that MBI is a lot more expensive per iteration. If

one is interested in obtaining a converging subsequence, then a practical approach is to start

with cyclical updates, and then only use MBI towards the end for ‘last mile’ refinement. We use

Gauss-Seidel in our simulations, because it is much faster than MBI.

2.6.2 Complexity

Most block updates of the proposed algorithmic framework are identical or similar to the

corresponding factorization models and clustering algorithms. Therefore, the complexity of the

proposed joint optimization algorithms is no greater than performing factorization and clustering

sequentially in a per-iteration complexity sense. For example, in the JNKM algorithm, the update

of W is essentially a regualrized nonnegativity-constrained least squares. Using ADMM to

solve this problem has per iteration complexity of O(FIJ) flops. The S-subproblem and the

D-subproblem are from the Lloyd update of K-means, and have complexity of O(FKJ) and

O(FJ) flops, respectively. Introducing Z andD to control scaling ambiguity is a unique feature

of our proposed algorithm which enhances the performance greatly as will be shown. However,

the updates of Z and D have closed-form solutions and thus the complexities are very light.
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For the other combinations of factorization and clustering, the complexity can be analyzed in a

similar fashion.

2.7 Synthetic data study

In this section, we use synthetic data to explore scenarios where the proposed algorithms show

promising performance relative to the prior art. We will consider real datasets that are commonly

used as benchmarks in the next section.

Our algorithms simultaneously estimate the latent factors and cluster, so we need a metric

to assess estimation accuracy, and another for clustering accuracy. For the latter, we use the

ratio of correctly clustered points over the total number of points (in [0, 1], the higher the better)

[23, 22]. Taking into account the inherent column permutation and scaling indeterminacy in

estimating the latent factor matrices, estimation accuracy is measured via the following matched

mean-square-error measure (MSE, for short)

MSE = min
π∈Π,

c1,...,cF∈{±1}

1

F

F∑
f=1

∥∥∥∥∥ W (:, f)

‖W (:, f)‖2
− cf

Ŵ (:, πf )

‖Ŵ (:, πf )‖2

∥∥∥∥∥
2

2

,

where W and Ŵ represents the ground truth factor and the estimated factor, respectively, Π

is the set of all permutations of the set {1, · · · , F}, π = [π1, · · · , πF ]T is there to resolve the

permutation ambiguity, and cf to resolve the sign ambiguity when there is no nonnegativity

constraint.

2.7.1 Joint Matrix Factorization and Latent K-means

We generate synthetic data according to

X = W (MS +E2) +E1, (2.31)
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= WH +E1,

where X is the data matrix, W is the basis matrix, H = MS + E2 is the factor where

the clustering structure lies in, M and S are the centroid matrix and the assignment matrix,

respectively, and Ei for i = 2, 1 denote the modeling errors and the measurement noise,

respectively. We define the Signal to Noise Ratio (SNR) in the data and latent space, respectively,

as SNR1 =
‖WH‖2F
‖E1‖2F

and SNR2 =
‖MS‖2F
‖E2‖2F

. SNR1 is the ‘conventional’ SNR that characterizes

the data corruption level, and SNR2 is for characterizing the latent domain modeling errors. All

the simulation results are obtained by averaging 100 Monte Carlo trials.

We employ several clustering and factorization algorithms as baselines, namely, the original

K-means, the reduced K-means (RKM), the factorial K-means algorithm (FKM), and a simple

two-stage combination of nonnegative matrix factorization (NMF) and K-means (NMF-KM).

We first test the algorithms under an NMF model. Specifically,W ∈ RI×F is drawn from

i.i.d. standard Gaussian distribution, with all negative entries set to zero. H is generated with

the following steps:

1. GenerateM ∈ RF×K by setting the first F columns as unit vectors (to ensure identifiabil-

ity of the NMF model), i.e. M(:, 1 : F ) = I , and entries in the remaining K−F columns

are randomly generated from an i.i.d. uniform distribution in [0, 1]; set S ∈ RK×J as

S = [I, I, · · · , I];

2. Draw E2 from an i.i.d. standard Gaussian distribution, setH ←MS +E2 and perform

the following steps

H ← (H)+, (2.32a)

E2 ←H −MS, (2.32b)

E2 ← γE2, (2.32c)
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H ←MS +E2, (2.32d)

where γ in (2.32c) is a scaling constant determined by the desired SNR2, and (·)+ takes the

nonnegative part of its argument. We may need to repeat the above steps (2.32a)∼(2.32d)

several times, till we get a nonnegativeH with desired SNR2 (in our experience, usually

one repetition suffices).

We then multiplyW andH and add E1, where E1 is drawn from an i.i.d. standard Gaussian

distribution and scaled for the desired SNR1. With this process, W and H are sparse and

identifiable (when E1 = 0) with very high probability [39, 67]. Finally, we replace 3% of the

columns ofX with all-ones vectors that act as outliers, which are common in practice.

Table 2.2 presents the clustering accuracies of various algorithms using I = 50, J = 1000,

F = 7, and K = 10. The MSEs of the estimated Ŵ of the factorization-based algorithms are

also presented. We set the parameters of the JNKM method to be λ = 1, µ = 100 and η = 10−1.

Here, SNR1 is fixed to be 15 dB and SNR2 varies from 3 dB to 18 dB. The JNKM is initialized

with an NMF solution [74], and the JVKM is initialized with the SISAL [15] algorithm. We

see that, for all the SNR2’s under test, the proposed JNKM yields the best clustering accuracies.

RKM and FKM give poor clustering results since they cannot resolve the distortion brought by

W , as we discussed before. Our proposed method works better than NMF-KM, since JNKM

estimatesH more accurately (cf. the MSEs of the estimated factorW ) – by making use of the

cluster structure onH as prior information.

Note that in order to make the data fit the VolMin model, we normalized the columns ofX

to unit `1-norm as suggested in [48]. Due to noise, such normalization cannot ensure that the

data follow the VolMin model exactly, however we observe that the proposed JVKM formulation

still performs well in this case.

To better understand the reason why our method performs well, we present an illustrative ex-

ample where the latent factorH lies in a two-dimensional subspace (so that it can be visualized),
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Table 2.2: Clustering and factorization accuracy for identifiable NMF vs. SNR2, for I = 50, J =
1000, F = 7,K = 10, SNR1 = 15 dB.

SNR2 [dB] 3 6 9 12 15 18

AC[%]

KM 77.43 81.5 82.9 81.47 82.68 84.5
RKM 77.51 76.62 73.71 72.43 71.35 71.63
FKM 15.12 15.68 16.6 17.14 37.5 59.74

JNKM 88.1 95.12 96.51 96.13 96.43 95.65
JVKM 75.84 83.87 87.87 89.96 90.27 89.36

NMF-KM 84.72 86.62 88.96 90.95 90.87 92.34

MSE[dB]
JNKM -28.09 -27.82 -27.54 -26.59 -26.91 -26.26
JVKM -16.41 -16.98 -16.37 -15.61 -15.19 -14.9

NMF-KM -27.09 -26.75 -26.7 -25.58 -26.05 -25.31

TIME[s]

KM 0.14 0.05 0.05 0.07 0.06 0.06
RKM 0.18 0.13 0.16 0.17 0.17 0.18
FKM 1.45 0.59 0.64 0.79 0.82 0.56

JNKM 3.37 2.99 3.13 3.22 3.06 3.36
JVKM 5.7 5.06 4.73 4.53 4.42 4.45

NMF-KM 0.76 0.68 0.73 0.83 0.75 0.86

Table 2.3: Clustering and factorization accuracy for identifiable NMF vs. SNR1, for I = 50, J =
1000, F = 7,K = 10, SNR2 = 10 dB.

SNR1 [dB] 5 10 15 20 25 30

AC[%]

KM 78.65 77.89 82.89 84.53 88.43 86.97
RKM 79.54 72.84 72.87 71.15 71.37 72.06
FKM 17.91 17.3 16.76 16.68 16.44 16.51

JNKM 93.28 94.69 95.73 96.33 96.43 96.04
JVKM 71.78 82.74 87.43 91.68 92.43 93.17

NMF-KM 84.95 86.74 89.57 90.87 90.66 91.61

MSE[dB]
JNKM -18.03 -23.95 -26.71 -27.17 -27.09 -26.19
JVKM -4.66 -12.19 -15.96 -20.21 -25.14 -31.05

NMF-KM -17.63 -23.36 -26.29 -27.48 -27.76 -27.13

TIME[s]

KM 0.08 0.08 0.05 0.05 0.04 0.04
RKM 0.18 0.18 0.16 0.14 0.11 0.11
FKM 0.68 0.7 0.66 0.69 0.61 0.67

JNKM 3.1 3.29 3 3.13 2.99 2.92
JVKM 3.21 3.83 4.57 5.12 5.01 4.94

NMF-KM 0.74 0.75 0.7 0.66 0.64 0.62
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Figure 2.3: Illustration of how linear transformation obscures the latent cluster structure, and
how identifiable models can recover this cluster structure. Top left: true latent factor H; Top
right: data domainX = WH +E1, visualized using SVD (two principal components); Middle
left: projected data found by RKM, P TX; Middle right: projected data found by FKM, P TX;
Bottom left: H found by JNKM; Bottom right: HD found by JNKM. In the top right subfigure,
the clustering accuracy of running K-means directly on the data is shown; for other figures, the
clustering accuracy given by corresponding method is shown.
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Table 2.4: Simulation comparison of the clustering methods, identifiable NMF model. I = 50,
F = 7, J = 100K.

K 5 6 7 8 9 10 11

AC[%]
RKM 79.97 78.57 76.6 76.16 75.48 75.22 75.54
FKM 47.75 34.01 27.32 21.96 18.45 16.55 15.14

JNKM 97.6 97.5 97.43 97.37 96.88 96.63 95.48
MSE[dB] JNKM -4.7 -7.52 -25.08 -24.77 -24.3 -24.17 -23.81

and has a clear cluster structure. The basisW is an 8× 2 matrix. The factor are generated such

that the NMF model is identifiable. Fig. 2.3 shows the true latent factors, together with those

found by various methods. Clearly,W brings some distance distortion to the cluster structure in

H (cf. top right subfigure). We see from this example that if the factorization model is identi-

fiable, using the proposed approach helps greatly in removing the distance distortion brought

by W , as indicated by the last row of Fig. 2.3. On the other hand, the other semi-orthogonal

projection-based algorithms do not have this salient feature.

Table 2.3 presents the results under various SNR1’s. Here, we fix SNR2 = 10 dB, and the

other settings are the same as in the previous simulation. We see that the clustering accuracies are

not so sensitive to SNR1, and the proposed JNKM outperforms other methods in AC and MSE

in most of the cases. Table 2.4 presents the ACs and MSEs for fixed rank F = 7 as the number

of clusters K varies from 5 to 11. Here I = 50, J = 100K, SNR1 = 6dB, and SNR2 = 8dB.

We observe that the performance of all methods degrades when we add more clusters, which is

expected. However, RKM and FKM suffer more than the proposed method.

In Fig. 2.4, we show the effect of changing λ in the JNKM formulation. We are particularly

interested in this parameter since it plays an essential role in balancing the data fidelity and prior

information. On the other hand, the parameter µ for enforcing Z to be close toH can be set to

a large number, e.g., 1000, and η for balancing the scaling of the factors can usually be set to

a small number – and the algorithm is not sensitive to these two according to our experience.

Here, the setting is I = 10, J = 100, F = 2, and the number of clusters is K = 2. The SNRs
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are set to SNR1 = 5dB and SNR2 = 30dB. From Fig. 2.4, we see that both the MSE and AC

performance of JNKM is reasonably good for all the λ’s under test, although there does exist a

certain λ giving the best performance (λ = 3000 in this case).
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Figure 2.4: AC and MSE versus parameter λ

So far we have been working with sparse nonnegative factors. Let us consider a generalW

and aH with columns in a simplex, i.e. 1TH = 1T, H ≥ 0, which finds various applications

in machine learning, e.g., document and hyperspectral pixel clustering / classification [48, 47].

We generate H using the same steps as in the previous simulations with the centroid matrix

M(:, k)’s being generated by putting a cluster near each unit vector, and several centroids

randomly; under such setting, the identifiability conditions of the VolMin model are likely to

hold [44]. Note that the entries of W are simply drawn from a zero-mean unit-variance i.i.d.

Gaussian distribution, which means that W is a dense matrix and the identifiability of NMF

does not hold – which differs from the previous simulations. Table 2.5 presents the results. We

see that JNKM works worse relative to the previous simulation, since the generative model is not

identifiable via NMF. However, JVKM works quite well since the VolMin identifiability holds

regardless of the structure ofW , so long as it is full column rank. This is also reflected in the
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Table 2.5: Clustering and factorization accuracy for identifiable VolMin vs. SNR2, for I =
50, J = 1000, F = 7,K = 10.

SNR2 [dB] 3 6 9 12 15 18

AC[%]

KM 61.01 73.82 74.59 73.53 74.66 75.04
RKM 62.48 75.09 78.09 76.8 74.75 76.97
FKM 14.28 14.47 14.66 14.98 15 15.28

JNKM 58.46 75.68 85.52 89.74 91.43 92.56
JVKM 67.9 87.98 95.16 96.54 96.94 97.29

VolMin-KM 64.85 81.7 87.31 89.31 88.59 89.78

MSE[dB]
JNKM -0.11 0.03 0.22 0.21 0.34 0.62
JVKM -21.09 -27.75 -29.14 -29.79 -30.7 -30.98

VolMin-KM -11.88 -15.18 -15.16 -15.58 -15.84 -15.86

TIME[s]

KM 0.14 0.11 0.07 0.06 0.06 0.06
RKM 0.73 0.58 0.46 0.41 0.4 0.38
FKM 1.89 2.03 1.69 1.67 1.68 1.87

JNKM 5.49 6.08 5.81 5.83 5.66 6.09
JVKM 3.02 2.5 2.17 2.1 1.99 2.24

VolMin-KM 1.68 1.57 1.46 1.43 1.39 1.39

MSE performance of VolMin and NMF.

In Table 2.6, we test the joint tensor factorization and latent clustering algorithm (JTKM).

We generate a three-way tensor X ∈ RI×J×L with I = J = L = 30 and loading factors

A ∈ RI×F , B ∈ RJ×F , C ∈ RL×F . To obtain A with a cluster structure on its rows, we

first generate a centroid matrix M = 2I + 11T, and then replicate its columns and add noise

to create Ã. This way, the rows of Ã randomly scatter around the rows of M . Then we let

A = DÃ, where D is a diagonal matrix whose diagonal elements are uniformly distributed

between zero and one. Here,B and C are randomly drawn from an i.i.d. uniform distribution

between zero and one. Gaussian noise is finally added to the obtained tensor. As in the matrix

case, SNR1 denotes the SNR in the data domain, and SNR2 the SNR in the latent domain. In this

experiment we set SNR1 = 20dB, SNR2 = 25dB. As before, to create more severe modeling

error so that the situation is more realistic, we finally replace two slabs (i.e., X(:, :, i)’s) with

elements randomly distributed between zero and one; these slabs mimic outlying data that are
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Table 2.6: MSE and clustering accuracy of JTKM vs. NTF for various F = K.

F 2 3 4 5 6 7 8

AC[%]
JTKM 92.97 74.17 72.33 74.2 76.93 78.4 79.47
NTF 80.5 64.8 62 62.63 62 62.2 62.7

MSE[dB]
JTKM -22.54 -12.45 -10.04 -10.81 -12.08 -12.92 -13.84
NTF -21.52 -11.51 -9.66 -10.47 -11.53 -12.28 -13.34

commonly seen in practice.

We apply the tensor version of the formulation in (2.14) to factor the synthesized tensors for

various F = K. For each parameter setting, 100 independent trials are performed with randomly

generated tensors, and the results are the average of all these trials. As shown in Tab. 2.6, the

proposed approach consistently yields higher clustering accuracy, and lower MSEs than plain

NTF. This suggests that the clustering regularization does help in better estimating the latent

factors, and yields a higher clustering accuracy.

To conclude this section, we present a simulation where the latent data representations lie in

different subspaces. We apply the joint factorization and latent subspace clustering algorithm to

deal with this situation. As a baseline, the latent space sparse subspace clustering (LS3C) method

[102] is employed. The idea of LS3C is closely related to FKM, except that the latent clustering

part is replaced by sparse subspace clustering. We construct a dataset with data that lie in two

independent two-dimensional subspaces. We set I = 10, J = 200, F = 4 and K = 2; each

subspace contains 100 data columns. As before, we add noise in the latent domain, as well as

the data domain. The SNR in data domain is fixed at SNR1 = 30 dB, and the SNR in the latent

domain varies. The parameters of our formulation are set to λ = 1 and µ = 0.5. For LS3C, we

used the code and parameters provided by the authors5. The results are shown in Table 2.7. As

can be seen, our method recovers the factors well, and always gets higher clustering accuracy.
5Available online at http://www.rci.rutgers.edu/ vmp93/Software.html
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Table 2.7: Simulation comparison of proposed JNKS with LS3C

SNR2 [dB] 3 5 7 9 11 13 15

AC[%]
LS3C 82.9 87.45 89.51 91.9 93.74 94.14 95.81
JNKS 87.65 91.17 92.87 94.39 95.91 97.15 97.93

MSE[dB] JNKS -13.84 -15.52 -15.96 -15.75 -17.37 -16.78 -17.24

2.8 Real-data validation

2.8.1 Document clustering

We first test our proposed approach on the document clustering problem. In this problem, the

data matrixX is a word-document matrix, the columns ofW represent F leading topics in this

collection of documents, andH(f, `) denotes the weight that indicates how much document ` is

related to topic f . We use a subset of the Reuters-21578 corpus6 as in [22], which contains 8,213

documents from 41 categories. The number of words (features) is 18,933. Following standard

pre-processing, each document is represented as a term-frequency-inverse-document-frequency

(tf-idf) vector, and normalized cut weighting is applied; see [125, 93] for details.

We apply JNKM and JVKM to the pre-processed data. A regularized NMF-based approach,

namely, locally consistent concept factorization (LCCF) [22] is employed as the baseline.

LCCF makes use of data-domain similarity to enforce latent similarity, and it demonstrates

superior performance compared to other algorithms on several document clustering tasks. We

also compare with spectral clustering (SC) [98], [120], which constructs a similarity graph

from the data, then performs an eigenvalue decomposition (EVD) on the constructed similarity

matrix. The resulting principal eigenvectors are used to infer cluster membership with simple

clustering algorithms such as K-means. A more recent method, namely the symmetric NMF-

based clustering algorithm (SymNMF) [78], is included for comparison since good clustering

performance on Reuters dataset was reported. SymNMF is similar to SC. The difference is

that symmetric NMF (instead of EVD) is performed on the similarity matrix. In addition, we
6Online at: http://www.daviddlewis.com/resources/testcollections/reuters21578/

http://www.daviddlewis.com/resources/testcollections/reuters21578/
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implemented two other related methods: NMF followed by K-means (NMF-KM) [126], and

RKM [37]. FKM [117] is not applied here since this method is not scalable: each iteration of

FKM requires taking an eigenvalue decomposition on a large matrix (in our case a 18933×18933

matrix).

Fig. 2.5 presents our experiment results. We test the above mentioned methods on the

Reuters-21578 data for various K and use F = K for the methods that perform factorization.

For each K, we perform 50 Monte-Carlo trials by randomly selecting K clusters out of the

total 41 clusters (categories), and report the performance by comparing the results with the

ground truth. Clustering performance is measured by clustering accuracy. The averaged result

shows that our proposed methods, i.e., JNKM and JVKM, outperform the other methods under

test. For simpler clustering tasks, e.g., when the number of clusters is small, the difference in

clustering accuracy is relatively small. However, when K becomes larger, the proposed methods

get consistently higher accuracy than the others, as shown in the figure. For all the K’s under

test, JVKM performs slightly worse than JNKM in terms of accuracy, but it has a simpler update

strategy and thus is faster.
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Figure 2.5: Clustering accuracy with different number of clusters on Reuters-21578 dataset



38

2.8.2 Image clustering

We also test the proposed approach using image data. Image data is known to be suitable for

subspace clustering, and thus we apply the JNKS algorithm here. We compare our method with

state-of-the-art subspace clustering methods, namely, the sparse subspace clustering (SSC) [41]

and LS3C [102]. We evaluate these methods on the widely used MNIST 7 dataset. The MNIST

dataset contains images of handwritten digits, from 0 to 9. We use only the testing subset of the

dataset, which contains 10000 images, with each digit having ≈ 1000 images. Each 28 × 28

gray-level image is vectorized into a 784× 1 vector. It was pointed out in [52] that vectors of

each digit lie approximately in a 12-dimensional subspace (2.24) and we adopt this value in our

experiments.

Fig. 2.6 shows how clustering accuracy changes with the number of clusters. For each

number of clusters, we perform 50 trials, each time randomly picking digits to perform clustering.

In each trial, we randomly pick 200 images for each digit. For example, for 2 clusters, each trial

we will have in total 400 images. Note that JNKS outperforms SSC and LS3C when the number

of cluster is moderate (5-7), and remains competitive with SSC, LS3C in all other cases.

Fig. 2.7 shows the results with all the 10 clusters under various number of samples of each

cluster. We also average the results over 50 random trials as before. As can be seen, when the

number of samples is small, JNKS and SSC get similar performance. With more data samples

per cluster, however, the proposed method gets consistently higher accuracy.

2.8.3 Tensor social network data analysis

In this subsection, we apply the proposed JTKM algorithm to analyze the Enron email dataset,

made public by the U.S. Department of Justice, as part of the Enron investigation. The data that

we used contain communication counts between 184 employees over a period of 44 months,

arranged in a three-way tensor of size 184× 184× 44. The (i, j, l) entry of this tensor indicates

7Online available: http://yann.lecun.com/exdb/mnist/
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Figure 2.6: Clustering accuracy with different number of clusters on MNIST dataset, each cluster
has 200 samples.
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Figure 2.7: Clustering accuracy with different number of samples, all the 10 digits (clusters)
from MNIST dataset.

the number of emails employee i sent to employee j in month l 8. This dataset was analyzed

with low-rank tensor factorization models [7], [101].

Enron filed for bankruptcy in late 2001, corresponding to months 36 ∼ 38 out of 44. Thus

the 44 months can be roughly divided into pre-crisis, crisis, and post-crisis period. Therefore, we

impose a cluster structure on the time-mode factor and come up with the following formulation:

min
A,B,C
S,M .

∥∥∥X(1) − (C �B)AT
∥∥∥2

F
+ η (‖A‖1 + ‖B‖1)

+ λ‖C − SM‖2F

s.t.A,B,C ≥ 0,

‖S(i, :)‖0 = 1, S(i, k) ∈ {0, 1}, ∀i, k, (2.33)

8Online available at http://cis.jhu.edu/˜parky/Enron/enron.html

http://cis.jhu.edu/~parky/Enron/enron.html
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Table 2.8: The Legal cluster identified by the three methods, Bold entries are miss-clustered.

Proposed Co-clustering NTF
Debra Perlingiere, Legal Specialist ENA Legal Debra Perlingiere, Legal Specialist ENA Legal Debra Perlingiere, Legal Specialist ENA Legal
Elizabeth Sager,VP and Asst Legal Counsel ENA Legal Elizabeth Sager,VP and Asst Legal Counsel ENA Legal Elizabeth Sager, VP and Asst Legal Counsel ENA Legal
Jason Williams ,Trader Central Desk Gas Trading Jason Williams ,Trader Central Desk Gas Trading Eric Saibi, Trader
Jeff Hodge, Asst General Counsel ENA Legal Jeff Hodge, Asst General Counsel ENA Legal Mark Taylor, Manager Financial Trading Group ENA Legal
Kay Mann , Lawyer Kay Mann , Lawyer Jason Williams, Trader Central Desk Gas Trading
Kim Ward, Manager West Gas Origination Kim Ward, Manager West Gas Origination Jeff Hodge, Asst General Counsel ENA Legal
Marie Heard,Senior Legal Specialist ENA Legal Marie Heard,Senior Legal Specialist ENA Legal Kay Mann, Lawyer
Mark Haedicke, Managing Director ENA Legal Mark Haedicke, Managing Director ENA Legal Kevin Ruscitti, Trader Central Desk Gas Trading
Mark Taylor, Manager Financial Trading Group ENA Legal Mark Taylor, Manager Financial Trading Group ENA Legal Kim Ward, Manager West Gas Origination
Sara Shackleton, Employee ENA Legal Sara Shackleton, Employee ENA Legal Marie Heard, Senior Legal Specialist ENA Legal
Stacy Dickson, Employee ENA Legal Stacy Dickson, Employee ENA Legal Mark Haedicke, Managing Director ENA Legal
Stephanie Panus , Senior Legal Specialist ENA Legal Stephanie Panus , Senior Legal Specialist ENA Legal Mark Haedicke, Managing Director ENA Legal
Susan Bailey, Legal Assistant ENA Legal Susan Bailey, Legal Assistant ENA Legal Mark Taylor, Manager Financial Trading Group ENA Legal
Tana Jones , Employee Financial Trading Group ENA Legal Tana Jones , Employee Financial Trading Group ENA Legal Michelle Lokay , Admin. Asst. Transwestern Commercial Group

Sara Shackleton , Employee ENA Legal
Stacy Dickson, Employee ENA Legal
Stephanie Panus, Senior Legal Specialist ENA Legal
Steven South,Director West Desk Gas Trading
Susan Bailey, Legal Assistant ENA Legal
Kim Ward, Manager West Gas Origination
Tana Jones, Employee Financial Trading Group ENA Legal

where we set K = 3 andC denotes the time-mode factor. Following [101], we also use `1-norm

regularizers on A and B, to control scaling but also promote sparsity at the same time. We

compare our latent clustering formulation with multi-way co-clustering [101] and plain NTF. As

suggested by previous works on this dataset, we aim at identifying 5 groups of people, so we

set F = 5 for all methods. Other parameters in formulation (2.33) are set to λ = 500, η = 5.

The dataset is pre-processed as suggested in [7], i.e., the nonzero values are transformed using

x′ = log2x+ 1 to compress the dynamic range. After getting the results, we derive the clustering

result from the estimatedA factor. To measure the clustering quality, we first remove from the

result the 71 employees who do not have clear roles, usually temporary employees and interns.

The remaining 113 people have one or more of the four roles: legal (e.g., lawyers), executives

(e.g. VPs, CEOs), trading, and pipeline operations.

We obtain qualitatively consistent cluster structure as reported in previous works. The ‘Legal’

cluster identified by the three methods is tabulated in Table 2.8. For this cluster, the proposed

method gets the same result as the sparse co-clustering method [101], both of which are much

cleaner than the result of NTF. In total, the proposed method gets 19 mis-classified employees

compared to 21 for the sparse co-clustering [101] and 24 for plain NTF, respectively.
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2.9 Chapter summary

We proposed a framework for joint factorization and latent clustering, motivated by the fact

that many datasets exhibit better cluster structure in some reduced-dimension domain. The

proposed framework leverages the identifiability of certain matrix and tensor factorization models

together with a latent clustering prior to produce more discriminative latent representations that

are suitable for clustering, and more accurate latent factors for estimation purposes. Carefully

designed optimization objectives were proposed for joint factorization andK-means/K-subspace

clustering. Alternating optimization-type algorithms were proposed for handling the proposed

formulations, and judicious simulations as well as experiments with benchmark document, image,

and social network data showed that the proposed approaches offer promising performance, and

can outperform state-of-art methods for the respective datasets.

There are several open challenges / promising directions for future work. First, the proposed

algorithms are not readily scalable to very large datasets. A lot of modern clustering tasks involve

massive amounts of data, motivating work in this direction. A related question is how to adapt

our methods to online or streaming settings – meaning that if the data points are acquired in

a streaming fashion, can we use some low-complexity algorithm to update the factorization

and clustering results without significant loss in performance? If the underlying clustering and

factorization structure is changing over time, can we track the dynamics? These are important

questions that deserve careful investigation, and we leave those for future work.



Chapter 3

Simultaneous Deep Learning and

Clustering

3.1 Introduction

The K-means algorithm is suitable for clustering data samples that are evenly spread around

some centroids (cf. the first subfigure in Fig. 3.1), but many real-life datasets do not exhibit

this ‘K-means-friendly’ structure. Much effort has been spent on mapping high-dimensional

data to a certain space that is suitable for performing K-means. Various techniques, including

principal component analysis (PCA), canonical correlation analysis (CCA), nonnegative matrix

factorization (NMF) and sparse coding (dictionary learning), were adopted for this purpose. In

addition to these linear DR operators (e.g., a projection matrix), nonlinear DR techniques such

as those used in spectral clustering [98] and sparse subspace clustering [41, 135] have also been

considered.

In recent years, motivated by the success of deep neural networks (DNNs) in supervised

learning, unsupervised deep learning approaches are now widely used for DR prior to cluster-

ing. For example, the stacked autoencoder (SAE) [119], deep CCA (DCCA) [3], and sparse

42
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autoencoder [97] take insights from PCA, CCA, and sparse coding, respectively, and make use

of DNNs to learn nonlinear mappings from the data domain to low-dimensional latent spaces.

These approaches treat their DNNs as a preprocessing stage that is separately designed from the

subsequent clustering stage. The hope is that the latent representations of the data learned by

these DNNs will be naturally suitable for clustering. However, since no clustering-promoting

objective is explicitly incorporated in the learning process, the learned DNNs do not neces-

sarily output reduced-dimension data that are suitable for clustering – as will be seen in our

experiments.

In [37, 102, 128], joint DR and clustering was considered. The rationale behind this line of

work is that if there exists some latent space where the entities nicely fall into clusters, then it is

natural to seek a DR transformation that reveals such structure, i.e., which yields a low K-means

clustering cost. This motivates using the K-means cost in latent space as a prior that helps

choose the right DR, and pushes DR towards producing K-means-friendly representations. By

performing joint DR and K-means clustering, impressive clustering results have been observed

in [128]. The limitation of these works is that the observable data is assumed to be generated

from the latent clustering-friendly space via simple linear transformation. While simple linear

transformation works well in many cases, there are other cases where the generative process is

more complex, involving a nonlinear mapping.

Contributions In this chapter, we propose a joint DR andK-means clustering framework, where

the DR part is implemented through learning a DNN, rather than a linear model. Unlike previous

attempts that utilize this joint DNN and clustering idea, we propose customized co-design for this

unsupervised task. Although implementing this idea is highly non-trivial (much more challenging

than [37, 102, 128] where the DR part only needs to learn a linear model), our objective is well-

motivated: by better modeling the data transformation process with a more general model, a

much more K-means-friendly latent space can be learned – as we will demonstrate. A sneak

peek of the kind of performance that can be expected using our proposed method can be seen
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in Fig. 3.1, where we generate four clusters of 2-D data which are well separated in the 2-D

Euclidean space and then transform them to a 100-D space using a complex non-linear mapping

[cf. (3.9)] which destroys the cluster structure. One can see that the proposed algorithm outputs

reduced-dimension data that are most suitable for applying K-means. Our specific contributions

are as follows:

• Optimization Criterion Design: We propose an optimization criterion for joint DNN-based

DR andK-means clustering. The criterion is a combination of three parts, namely, dimensionality

reduction, data reconstruction, and cluster structure-promoting regularization. We deliberately

include the reconstruction part and implement it using a decoding network, which is crucial

for avoiding trivial solutions. The criterion is also flexible – it can be extended to incorporate

different DNN structures (e.g. convolutional neural networks [83, 76]) and clustering criteria,

e.g., subspace clustering.

• Effective and Scalable Optimization Procedure: The formulated optimization problem is

very challenging to handle, since it involves layers of nonlinear activation functions and integer

constraints that are induced by the K-means part. We propose a judiciously designed solution

package, including empirically effective initialization and a novel alternating stochastic gradient

algorithm. The algorithmic structure is simple, enables online implementation, and is very

scalable.

•Comprehensive Experiments and Validation: We provide a set of synthetic-data experiments

and validate the method on different real datasets including various document and image copora.

Evidently visible improvement from the respective state-of-art is observed for all the datasets

that we experimented with.

• Reproducibility: The code for the experiments is available at https://github.com/

boyangumn/DCN.

https://github.com/boyangumn/DCN
https://github.com/boyangumn/DCN


45

Figure 3.1: The learned 2-D reduced-dimension data by different methods. The observable
data is in the 100-D space and is generated from 2-D data (cf. the first subfigure) through the
nonlinear transformation in (3.9). The true cluster labels are indicated using different colors.
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3.2 Background and related works

Given a set of data samples {xi}i=1,...,N where xi ∈ RM , the task of clustering is to group

the N data samples into K categories. Arguably, K-means [90] is the most widely adopted

algorithm. K-means approaches this task by optimizing the following cost function:

min
M∈RM×K ,{si∈RK}

N∑
i=1

‖xi −Msi‖22 (3.1)

s.t. sj,i ∈ {0, 1}, 1Tsi = 1 ∀i, j,

where si is the assignment vector of data point i which has only one non-zero element, sj,i

denotes the jth element of si, and the kth column of M , i.e., mk, denotes the centroid of the

kth cluster.

K-means works well when the data samples are evenly scattered around their centroids in

the feature space; we consider datasets which have this structure as being ‘K-means-friendly’

(cf. top-left subfigure of Fig. 3.1). However, high-dimensional data are in general not very

K-means-friendly. In practice, using a DR pre-processing, e.g., PCA or NMF [126, 22], to

reduce the dimension of xi to a much lower dimensional space and then applying K-means

usually gives better results. In addition to the above classic DR methods that essentially learn a

linear generative model from the latent space to the data domain, nonlinear DR approaches such

as those used in spectral clustering [98, 120] and DNN-based DR [58, 107, 55] are also widely

used as pre-processing before K-means or other clustering algorithms, see also [119, 21].

Instead of using DR as a pre-processing, joint DR and clustering was also considered in

the literature [37, 102, 128]. This line of work can be summarized as follows. Consider the

generative model where a data sample is generated by xi = Whi, where W ∈ RM×R and

hi ∈ RR, where R � M . Assume that the data clusters are well-separated in latent domain

(i.e., where hi lives) but distorted by the transformation introduced byW . In reference [128] we



47

formulated the joint optimization problem as follows:

min
M ,{si},W ,H

‖X −WH‖2F + λ

N∑
i=1

‖hi −Msi‖22

+ r1(H) + r2(W ) (3.2)

s.t. sj,i ∈ {0, 1}, 1Tsi = 1 ∀i, j,

where X = [x1, . . . ,xN ], H = [h1, . . . ,hN ], and λ ≥ 0 is a parameter for balancing data

fidelity and the latent cluster structure. In (3.2), the first term performs DR and the second term

performs latent clustering. The terms r1(·) and r2(·) are regularizations (e.g., nonnegativity or

sparsity) to prevent trivial solutions, e.g.,H → 0 ∈ RR×N ; see details in [128].

The data model X ≈ WH in the above line of work may be oversimplified: the data

generating process can be much more complex than this linear transform. Therefore, it is well

justified to seek powerful non-linear transforms, e.g. DNNs, to model this data generating

process, while at the same time make use of the joint DR and clustering idea. Two recent works,

[124] and [132], made such attempts.

The idea of [124] and [132] is to connect a clustering module to the output layer of a

DNN, and jointly learn DNN parameters and clusters. Specifically, the approaches look into an

optimization problem of the following form

min
W,Θ

L̂ =
N∑
i=1

q(f(xi;W); Θ), (3.3)

where f(xi;W) is the network output given data sample xi,W collects the network parameters,

and Θ denotes parameters of some clustering model. For instance, Θ stands for the centroids

M and assignments {si} if the K-means clustering formulation (3.1) is adopted. The q(·) in

(3.3) denotes some clustering loss, e.g., the Kullback-Leibler (KL) divergence loss in [124]

and agglomerative clustering loss in [132]. An illustration of this kind of approaches is shown
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Figure 3.2: A problematic joint deep clustering structure. To avoid clutter, some links are
omitted.

in Fig. 3.2. This idea seems reasonable, but is problematic. A global optimal solution to

Problem (3.3) is f(xi;W) = 0 and the optimal objective value L̂ = 0 can always be achieved.

Another type of trivial solutions are simply mapping arbitrary data samples to tight clusters,

which will lead to a small value of L̂ – but this could be far from being desired since there is no

provision for preserving the essential information in the data samples xi’s; see the bottom-middle

subfigure in Fig. 3.1 [Deep Clustering Network (DCN) w/o reconstruction] and the bottom-left

subfigure in Fig. 3.1 [DEC]. This issue also exists in [132].

3.3 Proposed formulation

We are motivated to model the relationship between the observable data xi and its clustering-

friendly latent representation hi using a nonlinear mapping, i.e.,

hi = f(xi;W), f(·;W) : RM → RR,

where f(·;W) denotes the mapping function and W denote the set of parameters. In this

chapter, we propose to employ a DNN as our mapping function, since DNNs have the ability of

approximating any continuous mapping using a reasonable number of parameters [61].

We want to learn the DNN and perform clustering simultaneously. The critical question

here is how to avoid trivial solutions in this unsupervised task. In fact, this can be resolved

by taking insights from (3.2). The key to prevent trivial solution in the linear DR case lies
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in the reconstruction part, i.e., the term ‖X −WH‖2F in (3.2). This term ensures that the

learned hi’s can (approximately) reconstruct the xi’s using the basis W . This motivates

incorporating a reconstruction term in the joint DNN-based DR and K-means. In the realm

of unsupervised DNN, there are several well-developed approaches for reconstruction – e.g.,

the stacked autoencoder (SAE) is a popular choice for serving this purpose. To prevent trivial

low-dimensional representations such as all-zero vectors, SAE uses a decoding network g(·;Z)

to map the hi’s back to the data domain and requires that g(hi;Z) and xi match each other well

under some metric, e.g., mutual information or least squares-based measures.

By the above reasoning, we come up with the following cost function:

min
W ,Z,

M,{si}

N∑
i=1

(
` (g(f(xi)),xi) +

λ

2
‖f(xi)−Msi‖22

)
(3.4)

s.t. sj,i ∈ {0, 1}, 1T si = 1 ∀i, j,

where we have simplified the notation f(xi;W) and g(hi;Z) to f(xi) and g(hi), respectively,

for conciseness. The function `(·) : RM → R is a certain loss function that measures the

reconstruction error. In this chapter, we adopt the least-squares loss `(x,y) = ‖x− y‖22;

other choices such as `1-norm based fitting and the KL divergence can also be considered.

λ ≥ 0 is a regularization parameter which balances the reconstruction error versus finding

K-means-friendly latent representations.

Fig. 3.3 presents the network structure corresponding to the formulation in (3.4). Compare

to the network in Fig. 3.2, our latent features are also responsible for reconstructing the input,

preventing all the aforementioned trivial solutions. On the left-hand side of the ‘bottleneck’

layer are the so-called encoding or forward layers that transform raw data to a low-dimensional

space. On the right-hand side are the ‘decoding’ layers that try to reconstruct the data from the

latent space. The K-means task is performed at the bottleneck layer. The forward network, the

decoding network, and the K-means cost are optimized simultaneously. In our experiments,
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Figure 3.3: Proposed deep clustering network (DCN).

the structure of the decoding networks is a ‘mirrored version’ of the encoding network, and for

both the encoding and decoding networks, we use rectified linear unit (ReLU) activation-based

neurons [96]. Since our objective is to perform DNN-driven K-means clustering, we will refer

to the network in Fig. 3.3 as the Deep Clustering Network (DCN) in the sequel.

We should remark that the proposed optimization criterion in (3.4) and the network in Fig. 3.3

are very flexible: Other types of networks, e.g., deep convolutional neural networks [83, 76], can

be used. For the clustering part, other clustering criteria, e.g., K-subspace and soft K-means

[82, 8], are also viable options. Nevertheless, we will concentrate on the proposed DCN in the

sequel, as our interest is to provide a proof-of-concept rather than exhausting the possibilities of

combinations.

3.4 Optimization procedure

Optimizing (3.4) is highly non-trivial since both the cost function and the constraints are non-

convex. In addition, there are scalability issues that need to be taken into account. In this section,

we propose a pragmatic optimization procedure including an empirically effective initialization

method and an alternating optimization based algorithm for handling (3.4).
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3.4.1 Initialization via layer-wise pre-training

For dealing with hard non-convex optimization problems like that in (3.4), initialization is

usually crucial. To initialize the parameters of the network, i.e., (W,Z), we use the layer-wise

pre-training method as in [12] for training autoencoders. This pre-training technique may be

avoided in large-scale supervised learning tasks. For the proposed DCN which is completely

unsupervised, however, we find that the layer-wise pre-training procedure is important no matter

the size of the dataset. We refer the readers to [12] for an introduction of layer-wise pre-training.

After pre-training, we perform K-means to the outputs of the bottleneck layer to obtain initial

values ofM and {si}.

3.4.2 Alternating stochastic optimization

Even with a good initialization, handling Problem (3.4) is still very challenging. The commonly

used stochastic gradient descent (SGD) algorithm cannot be directly applied to jointly optimize

W,Z,M and {si} because the block variable {si} is constrained on a discrete set. Our idea

is to combine the insights of alternating optimization and SGD. Specifically, we propose to

optimize the subproblems with respect to (w.r.t.) one ofM , {si} and (W,Z) while keeping the

other two sets of variables fixed.

Update network parameters

For fixed (M , {si}), the subproblem w.r.t. (W,Z) is similar to training an SAE – but with an

additional penalty term on the clustering performance. We can take advantage of the mature

tools for training DNNs, e.g., back-propagation based SGD and its variants. To implement SGD

for updating the network parameters, we look at the problem w.r.t. the incoming data xi:

min
W,Z

Li = ` (g(f(xi)),xi) +
λ

2
‖f(xi)−Msi‖22 . (3.5)



52

The gradient of the above function over the network parameters is easily computable, i.e.,

OXLi = ∂`(g(f(xi)),xi)
∂X + λ∂f(xi)

∂X (f(xi) −Msi), where X = (W,Z) is a collection of the

network parameters and the gradients ∂`
∂X and ∂f(xi)

∂X can be calculated by back-propagation

[103] (strictly speaking, what we calculate here is the subgradient w.r.t. X since the ReLU

function is non-differentible at zero). Then, the network parameters are updated by

X ← X − αOXLi, (3.6)

where α > 0 is a diminishing learning rate.

Update clustering parameters

For fixed network parameters andM , the assignment vector of the current sample, i.e., si, can

be naturally updated in an online fashion. Specifically, we update si as follows:

sj,i ←


1, if j = arg min

k={1,...,K}
‖f(xi)−mk‖2 ,

0, otherwise.

(3.7)

When fixing {si} and X , the update ofM is simple and may be done in a variety of ways.

For example, one can simply usemk = (1/|Cik|)
∑

i∈Cik
f(xi), where Cik is the recorded index

set of samples assigned to cluster k from the first sample to the current sample i. Although the

above update is intuitive, it could be problematic for online algorithms, since the already appeared

historical data (i.e., x1, . . . ,xi) might not be representative enough to model the global cluster

structure and the initial si’s might be far away from being correct. Therefore, simply averaging

the current assigned samples may cause numerical problems. Instead of doing the above, we

employ the idea in [109] to adaptively change the learning rate of updatingm1, . . . ,mK . The

intuition is simple: assume that the clusters are roughly balanced in terms of the number of data

samples they contain. Then, after updating M for a number of samples, one should update
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the centroids of the clusters that already have many assigned members more gracefully while

updating others more aggressively, to keep balance. To implement this, let cik be the count of

the number of times the algorithm assigned a sample to cluster k before handling the incoming

sample xi, and updatemk by a simple gradient step:

mk ←mk − (1/cik) (mk − f(xi)) sk,i, (3.8)

where the gradient step size 1/cik controls the learning rate. The above update ofM can also be

viewed as an SGD step, thereby resulting in an overall alternating block SGD procedure that

is summarized in Algorithm 1. Note that an epoch corresponds to a pass of all data samples

through the network.

Algorithm 1 Alternating SGD
1: Initialization {Perform T epochs over the data}
2: for t = 1 : T do
3: Update network parameters by (3.6)
4: Update assignment by (3.7)
5: Update centroids by (3.8)
6: end for

Algorithm 1 has many favorable properties. First, it can be implemented in a completely

online fashion, and thus is very scalable. Second, many known tricks for enhancing performance

of DNN training can be directly used. In fact, we have used a mini-batch version of SGD and

batch-normalization [72] in our experiments, which indeed help improve performance.

3.5 Experiments

In this section, we use synthetic and real-world data to showcase the effectiveness of DCN. We

implement DCN using the deep learning toolbox Theano [113].
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3.5.1 Synthetic-data demonstration

Our settings are as follows: Assume that the data points have K-means-friendly structure in a

two-dimensional domain (cf. the first subfigure of Fig. 3.1). This two-dimensional domain is

a latent domain which we do not observe and we denote the latent representations of the data

points as hi’s in this domain. What we observe is xi ∈ R100 that is obtained via the following

transformation:

xi = σ (Uσ(Whi)) , (3.9)

where W ∈ R10×2 and U ∈ R100×10 are matrices whose entries follow the zero-mean unit-

variance i.i.d. Gaussian distribution, σ(·) is a sigmod function to introduce nonlinearity. Under

the above generative model, recovering the K-means-friendly domain where hi’s live seems

very challenging.

We generate four clusters, each of which has 2,500 samples and their geometric distribution

on the 2-D plane is shown in the first subfigure of Fig. 3.1 that we have seen before. The other

subfigures show the recovered 2-D data from xi’s using a number of DR methods, namely, NMF

[84], local linear embedding (LLE) [105], Laplacian eigenmap (LapEig) [98] – the first step

of spectral clustering, and DEC [124]. We also present the result of using the formulation in

(3.3) (DCN w/o reconstruction) which is a similar idea as in [124]. For the three DNN-based

methods (DCN, DEC, and SAE + KM), we use a four-layer forward network for dimensionality

reduction, where the layers have 100, 50, 10 and 2 neurons, respectively; the reconstruction

network used in DCN and SAE (and also in the per-training stage of DEC) is a mirrored version

of the forward network. As one can see in Fig. 3.1, all the DR methods except the proposed DCN

fail to map xi’s to a 2-D domain that is suitable for applying K-means. In particular, DEC and

DCN w/o reconstruction indeed give trivial solutions: the reduced-dimension data are separated

to four clusters, and thus L̂ is small. But this solution is meaningless since the data partitioning
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is arbitrary.

In the supplementary materials, two additional simulations with different generative model

than (3.9) are presented, and similar results are observed. This further illustrates the DCN’s

ability of recovering clustering-friendly structure under different nonlinear generative models.

3.5.2 Real-data validation

In this section, we validate the proposed approach on several real-data sets which are all publicly

available.

Baseline methods

We compare the proposed DCN with a variety of baseline methods:

1) K-means (KM): The classic K-means [90].

2) Spectral Clustering (SC): The classic SC algorithm [98].

3) Sparse Subspace Clustering with Orthogonal Matching Pursuit (SSC-OMP) [135]: SSC

is considered very competitive for clustering images; we use the newly proposed greedy version

here for scalability.

4) Locally Consistent Concept Factorization (LCCF) [22]: LCCF is based on NMF with a

graph Laplacian regularization and is considered state-of-the-art for document clustering.

5) XRAY [80]: XRAY is an NMF-based document clustering algorithm that scales very well.

6) NMF followed by K-means (NMF+KM): This approach applies NMF for DR, and then

applies K-means to the reduced-dimension data.

7) Stacked Autoencoder followed byK-means (SAE+KM): This is also a two-stage approach.

We use SAE for DR first and then apply K-means.

8) Joint NMF andK-means (JNKM) [128]: JNKM performs joint DR andK-means clustering

as the proposed DCN does – but the DR part is based on NMF.

9) Deep Embedded Clustering (DEC) [124]: DEC performs joint DNN and clustering, where
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the loss function contains only clustering loss, without penalty on reconstruction as in our method.

We use the code1 provided by the authors. For each experiment, we select the baselines that are

considered most competitive and suitable for that application from the above pool.

Evaluation metrics

We adopt standard metrics for evaluating clustering performance. Specifically, we employ

the following three metrics: normalized mutual information (NMI) [22], adjusted Rand index

(ARI) [133], and clustering accuracy (ACC) [22]. In a nutshell, all the above three metrics are

commonly used in the clustering literature, and all have pros and cons. But using them together

suffices to demonstrate the effectiveness of the clustering algorithms. Note that NMI and ACC

lie in the range of zero to one with one being the perfect clustering result and zero the worst.

ARI is a value within −1 to 1, with one being the best clustering performance and minus one the

opposite.

RCV1

We first test the algorithms on a large-scale text corpus, namely, the Reuters Corpus Volume

1 Version 2 (RCV1-v2). The RCV1-v2 corpus [85] contains 804,414 documents, which were

manually categorized into 103 different topics. We use a subset of the documents from the whole

corpus. This subset contains 20 topics and 365, 968 documents and each document has a single

topic label. As in [99], we pick the 2,000 most frequently used words (in the tf-idf form) as the

features of the documents.

We conduct experiments using different number of clusters. Towards this end, we first sort

the clusters according to the number of documents that they have in a descending order, and then

apply the algorithms to the first 4, 8, 12, 16, 20 clusters, respectively. Note that the first several

clusters have many more documents compared to the other clusters (cf. Fig. 3.4). This way, we
1https://github.com/piiswrong/dec
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Figure 3.4: The sizes of 20 clusters in the experiment.

gradually increase the number of documents in our experiments and create cases with much

more unbalanced cluster sizes for testing the algorithms – which means we gradually increase

the difficulty of the experiments. To avoid unrealistic tuning, for all the experiments, we use

a DCN whose forward network has five hidden layers which have 2000, 1000, 1000, 1000, 50

neurons, respectively. The reconstruction network has a mirrored structure. We set λ = 0.1 for

balancing the reconstruction error and the clustering regularization.

Table 3.1 shows the results given by the proposed DCN, SAE+KM, KM, and XRAY; other

baselines are not scalable enough to handle the RCV1-v2 dataset and thus are dropped. One can

see that for each case that we have tried, the proposed method gives clear improvement relative

to the other methods. Particularly, the DCN approach outperforms the two-stage approach, i.e.,

SAE+KM, in almost all the cases and for all the evaluation metrics – this clearly demonstrates

the advantage of using the joint optimization criterion. We notice that the performance of DEC

in this experiment is unsatisfactory, possibly because 1) this dataset is highly unbalanced (cf.

Fig. 3.4), while DEC is designed to produce balanced clusters; 2) DEC gets trapped in trivial

solutions, as we discussed in Sec 3.2.

Fig. 3.5 shows how NMI, ARI, and ACC change when the proposed algorithm runs from

epoch to epoch. One can see a clear ascending trend of every evaluation metric. This result

shows that both the network structure and the optimization algorithm work towards a desired
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Methods DCN SAE+KM KM DEC XRAY

4 Clust.
NMI 0.76 0.73 0.62 0.11 0.12
ARI 0.67 0.65 0.50 0.07 -0.01
ACC 0.80 0.79 0.70 0.38 0.34

8 Clust.
NMI 0.63 0.60 0.57 0.10 0.24
ARI 0.46 0.42 0.38 0.05 0.09
ACC 0.63 0.62 0.59 0.24 0.39

12 Clust.
NMI 0.67 0.65 0.6 0.09 0.22
ARI 0.52 0.51 0.37 0.02 0.05
ACC 0.60 0.56 0.54 0.18 0.29

16 Clust.
NMI 0.62 0.60 0.56 0.09 0.23
ARI 0.36 0.35 0.30 0.02 0.04
ACC 0.51 0.50 0.48 0.17 0.29

20 Clust.
NMI 0.61 0.59 0.58 0.08 0.25
ARI 0.33 0.33 0.29 0.01 0.04
ACC 0.47 0.46 0.47 0.14 0.28

Table 3.1: Evaluation on the RCV1-v2 dataset

direction. In the future, it would be intriguing to derive (sufficient) conditions for guaranteeing

such improvement using the proposed algorithm. Nevertheless, such empirical observation in

Fig. 3.5 is already very interesting and encouraging.

We visualize the 50-D learned embeddings of our network on the RCV1 4-clusters dataset,

using t-SNE [116], as shown in Fig. 3.7. We can see that the proposed DCN method learns much

improved results compared to the initialization. Also, the DEC method does not get a desiable

clustering result, possibly due to the imbalance clusters.

20Newsgroup

The 20Newsgroup corpus is a collection of 18,846 text documents which are partitioned into 20

different newsgroups. Using this corpus, we can observe how the proposed method works with a

relatively small amount of samples. As the previous experiment, we use the tf-idf representation

of the documents and pick the 2,000 most frequently used words as the features. Since this dataset

is small, we include more baselines that are not scalable enough for RCV1-v2. Among them,
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Figure 3.5: Clustering performance metrics v.s. training epochs.

Methods DCN SAE+KM LCCF NMF+KM KM SC XARY JNKM
NMI 0.48 0.47 0.46 0.39 0.41 0.40 0.19 0.40
ARI 0.34 0.28 0.17 0.17 0.15 0.17 0.02 0.10
ACC 0.44 0.42 0.32 0.33 0.3 0.34 0.18 0.24

Table 3.2: Evaluation on the 20Newsgroup dataset.

both JNKM and LCCF are considered state-of-art for document clustering. In this experiment,

we use a DNN with three forward layers which have 250, 100, and 20 neurons, respectively. This

is a relatively ‘small network’ since the 20Newsgroup corpus may not have sufficient samples to

fit a large network. As before, the decoding network for reconstruction has a mirrored structure

of the encoding part, and the baseline SAE+KM uses the same network for the autoencoder part.

Table 3.2 summarizes the results of this experiment. As one can see, LCCF indeed gives

the best performance among the algorithms that do not use DNNs. SAE+KM improves ARI

and ACC quite substantially by involving DNN – this suggests that the generative model may

indeed be nonlinear. DCN performs even better by using the proposed joint DR and clustering

criterion, which supports our motivation that a K-means regularization can help discover a

clustering-friendly space.
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Figure 3.6: Visualization using t-SNE. From top-left to bottom-right: Original data, DEC result,
DCN initialization, DCN result

Figure 3.7: Visualization on the 4-clusters subset of RCV1-v2

Raw MNIST

In this and next subsections, we present two experiments using two versions of the MNIST

dataset. We first employ the raw MNIST dataset that has 70,000 data samples. Each sample is

a 28× 28 gray-scale image containing a handwritten digit, i.e., one of {0, 1, . . . , 9}. Same as

[124], we use a 4-layers forward network and set the number of neurons to be 500, 500, 2000,

and 10, respectively. The reconstruction network is still a ‘mirrored’ version of the forward

network. The hyperparameter λ is set to 1. We use SSC-OMP, which is a scalable version of

SSC, and KM as a baseline for this experiment.

Table 3.3 shows results of applying DCN, SAE+KM, DEC, KM and SSC-OMP to the raw
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Methods DCN SAE+KM DEC KM SSC-OMP
NMI 0.81 0.73 0.80 0.50 0.31
ARI 0.75 0.67 0.75 0.37 0.13
ACC 0.83 0.80 0.84 0.53 0.30

Table 3.3: Evaluation on the raw MNIST dataset.

MNIST data – the other baselines are not efficient enough to handle 70,000 samples and thus

are left out. One can see that our result is on par with the result of DEC reported in [124],

and both methods outperform other methods by a large margin. The DEC method performs

very competitively on this dataset, possibly because it is designed to favor balanced clusters,

which is the case for MNIST dataset. On the dataset RCV1-v2 with unbalanced clusters, the

result of DEC is not as satisfactory, see Fig. 3.7. It is also interesting to note that our method

yields approximately same results as DEC in this balanced case, but DCN also works well in

unbalanced cases, as we have seen.

Pre-processed MNIST

Besides the above experiment using the raw MNIST data, we also provide another interesting

experiment using pre-processed MNIST data. The pre-processing is done by a recently introduced

technique, namely, the scattering network (ScatNet) [21]. ScatNet is a cascade of multiple layers

of wavelet transform, which is able to learn a good feature space for clustering / classification

of images. Utilizing ScatNet, the work in [135] reported very promising clustering results on

MNIST using SSC-OMP. Our objective here is to see if the proposed DCN can further improve

the performance from SSC-OMP. Our idea is simple: SSC-OMP is essentially a procedure of

constructing a similarity matrix of the data; after obtaining this matrix, it performs K-means

on the rows of a matrix comprising several selected eigenvectors of the similarity matrix [98].

Therefore, it makes sense to treat the whole ScatNet + SSC-OMP procedure as pre-processing

for performing K-means, and one can replace K-means by DCN to improve performance.
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Methods DCN SAE+KM KM (SSC-OMP)
NMI 0.88 0.86 0.85
ARI 0.89 0.86 0.82
ACC 0.95 0.93 0.86

Table 3.4: Evaluation on pre-processed MNIST

The results are shown in Table 3.4. One can see that the proposed method exhibits the best

performance among the algorithms. We note that the result of using KM on the data processed

by ScatNet and SSC-OMP is worse than that was reported in [135]. This is possibly because we

use all the 70,000 samples, while only a subset was selected for conducting the experiments in

[135].

This experiment is particularly interesting since it suggests that for any clustering algorithm

that employs K-means as a key component, e.g., spectral clustering and sparse subspace cluster-

ing, one can use the proposed DCN to replace K-means and a better result can be expected. This

is meaningful since many datasets are originally not suitable forK-means due to the nature of the

data – but after pre-processing (e.g., kernelization and eigendecomposition), the pre-processed

data is already more K-means-friendly, and using the proposed DCN at this point can further

strengthen the result.

Parameter Selection

The parameter λ is important, since it trades off between the reconstruction objective and the

clustering objective. As we see from the experiments, the proposed DCN works well with an

appropriately chosen λ. Moreover, our experience suggests that the performance of our approach

is insensitive to the exact value of λ. Fig. 3.8 shows how the proposed method performs with

different λ on the MNIST dataset. As we can see, although there is degradation of performance

as λ gets inappropriately large, the degradation is mild. The proposed method gives satisfactory

result for a range of λ.
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Figure 3.8: Clustering performance on MNIST with different λ.

3.6 Chapter summary

In this chapter, we proposed a joint DR and K-means clustering approach where the DR part

is accomplished via learning a deep neural network. Our goal is to automatically map high-

dimensional data to a latent space where K-means is a suitable tool for clustering. We carefully

designed the network structure to avoid trivial and meaningless solutions and proposed an

effective and scalable optimization procedure to handle the formulated challenging problem.

Synthetic and real data experiments showed that the algorithm is very effective on a variety of

datasets.

3.7 Appendix

3.7.1 Additional synthetic data experiments

In this section, we provide two more examples to illustrate the ability of DCN in recovering

K-means-friendly spaces under different generative models. We first consider the transformation
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Figure 3.9: The generated latent representations {hi} in the 2-D space and the recovered 2-D
representations from xi ∈ R100, where xi = (σ(Whi))

2.

as follows:

xi = (σ(Whi))
2 , (3.10)

where σ(·) is the sigmoid function as before and W ∈ R100×2 is similarly generated as in

the paper. We perform elementwise squaring on the result features to further complicate the

generating process. The corresponding results can be seen in Fig. 3.9 of this supplementary

document. One can see that a similar pattern as we have observed in the main text is also

presented here: The proposed DCN recovers a 2-D K-means-friendly space very well and the
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other methods all fail.

Figure 3.10: The generated latent representations {hi} in the 2-D space of the recovered 2-D
representations from xi ∈ R100, where xi = tanh (σ(Whi)).

In Fig. 3.10, we test the algorithms under the generative model

xi = tanh (σ(Whi)) , (3.11)

where W ∈ R100×2. Same as before, the proposed DCN gives very clear clusters in the

recovered 2-D space.
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The results in this section and the synthetic-data experiment presented in main text are

encouraging: Under a variety of complicated nonlinear generative models, DCN can output

clustering-friendly latent representations.

Table 3.5: Evaluation on the Pendigits dataset

Methods DCN SAE+KM SC KM
NMI 0.69 0.65 0.67 0.67
ARI 0.56 0.53 0.55 0.55
ACC 0.72 0.70 0.71 0.69

3.7.2 Additional real data experiments

Beside the real datasets in the paper, we also conduct experiment on the Pendigits dataset. The

Pendigits dataset consists of 10,992 data samples. Each sample records 8 coordinates on a tablet,

on which a subject is instructed to write the digits from 0 to 9. So each sample corresponds to a

vector of length 16, and represents one of the digits. Note that this dataset is quite different from

MNIST – each digit in MNIST is represented by an image (pixel values) while digits in Pendigits

are represented by 8 coordinates of the stylus when a person was writing a certain digit. Since

each digit is represented by a very small-size vector of length 16, we use a small network who

has three forward layers which are with 16, 16, and 10 neurons. Table 3.5 shows the results: The

proposed methods give the best clustering performance compared to the competing methods, and

the methods using DNNs outperform the ‘shallow’ ones that do not use neural networks for DR.



Chapter 4

Learning Nonlinear Mixture Models

4.1 Introduction

Linear mixture models (LMMs) have found numerous applications in machine learning and

signal processing, e.g., topic mining [60, 17], clustering, and source separation. When a LMM

is used for parameter estimation, it is critical to ensure that the generative model is identifiable.

This is crucial in many data mining problems [6, 49, 64, 94], as model identifiability is necessary

for interpretability. However, a LMM is not identifiable in general – even in the ideal case

without noise: a LMM boils down to matrix factorization (MF) that is known to be unidentifiable,

unless additional constraints on the factors are imposed.

Identifiability research for LMMs has a long and fruitful history at the confluence of machine

learning, statistics, and signal processing, see e.g., [16, 91, 42, 94, 46]. The arguably most

notable line of work is independent component analysis (ICA) ([32, 70]), which was originally

motivated by speech source separation. Statistical independence of latent parameters (i.e., signals

or data streams corresponding to different sources) is exploited to establish identifiability in

ICA. LMM unmixing with correlated latent parameters has also been extensively studied, e.g.,

in the context of nonnegative matrix factorization (NMF) [39, 81, 67, 44, 88, 94, 91], bounded

67
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component analysis [34], and some other types of constrained MF models [45, 9].

Despite the relatively good understanding of the identifiability issues of different LMMs,

the model is considered oversimplified in many applications. In many cases the observed data

cannot be assumed to be linear mixtures of some basis vectors, since nonlinear distortions exist

due to various reasons, for example, e.g., sensor saturation / clipping, or nonlinear amplification.

A natural question then is: under a reasonable nonlinear mixture model (NMM), is it possible to

identify the latent parameters of interest?

This question turns out to be highly nontrivial: most of the analytical tools in the linear

mixture case do not apply. One exception is statistical independence of random variables. Based

on this observation, many works [112, 1, 68, 69, 71] tackle nonlinear mixture model identification

from a nonlinear ICA viewpoint. This line of work is elegant, but only partially answers our

research question when the source signals are statistically independent. In many cases, statistical

independence cannot be assumed, which is why there has been extensive study on correlated

components / sources as mentioned above.

4.1.1 Contributions

In this work, we study the nonlinear mixture model learning problem, under a new setting that is

very different from ICA. Specifically, we study a nonlinear mixture model where the observed

data vectors are convex combinations of a set of basis vectors followed by nonlinear distortion.

Our specific contributions can be summarized as follows:

1. Flexible generative model We put forth a novel nonlinear mixture model, which is flex-

ible enough to faithfully capture nonlinear effects naturally arising in many real world

applications, e.g. hyperspectral unmixing [16] and MRI [121]. Specifically, the proposed

model is related to a classical model in nonlinear ICA (nICA), while the independence

assumption in nonlinear ICA is replaced with new assumptions from convex geometry.

For source separation, our model can handle the case when sources are dependent, unlike
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nICA.

2. Identification criterion We propose a model identification criterion for the considered prob-

lem and provide sufficient conditions under which the model is identifiable. The criterion,

when its global optimality is achieved, guarantees that an inverse function (possibly scaled

and shifted) of the unknown nonlinear distortion is learned, in a completely unsupervised

fashion. Thus the nonlinear effects are rectified / equalized, and traditional methods for

identifying LMMs can be applied subsequently. Our proof leverages perspectives from

functional equations [40, 79], together with novel extensions of existing LMM identifi-

ability results. This fortuitous union yields the right tools for our analysis, as we will

see.

3. Neural network-based implementation We propose a neural network based formulation to

implement the proposed criterion. The neural network acts as an adaptive feature extractor,

which, after training with the proposed identification criterion, will be the (scaled) inverse

function of the unkown nonlinear function in data generation. The employed neural

network is judiciously designed, so as to ensure its invertibility, thus the specific constraints

imposed by the identification criterion can be satisfied.

4. Numerical validation We reformulate the criterion into an easy-to-implement form and

employ a trust region algorithm for solving the problem efficiently. We also test the

algorithm on both synthetic and real data. In particular, the neural network is shown to be

able to counter the nonlinear effects after training, and much better parameter estimation

performance is observed. Evaluation on a real world hyperspectral image also confirms

the effectiveness of the proposed theory and algorithm.

Another salient feature of our method is that it turns the unsupervised parameter estimation

problem into a supervised regression problem, which requires little new algorithmic design – see

Section 4.4 for more information.
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4.1.2 Related work

The current work is closely related to the large body of work studying model identifiability. For

a parametric statistical model, identifiability is a fundamental question which concerns whether

the model parameters can be uniquely pinned down from observed data. In explanatory data

analysis, where the goal is to explain / interpret the data, identifiability of the adopted model is

critical, as otherwise there exist more than one model settings that fit the data equally well, in

which case one does not even know which model to interpret [91, 49, 64]

Linear / Nonlinear Mixture Identifiability through statistical independence

ICA [32, 70] is a classical technique in unsupervised learning. Statistical independence and devi-

ation from Gaussianity of components / sources are exploited to establish model identifiability.

Several identification criteria have been proposed based on mutual information, entropy, as well

as high-order cumulants, see e.g. [70, 53].

A crucial assumption in ICA is linear mixing: sources are mixed linearly by a so-called

mixing matrix. This assumption can be over-simplified in some applications, and considerable

effort has been put into developing methods that handle nonlinear effects in the framework

of ICA. The work of [112, 1] put forth a post-nonlinear model, where on top of the classical

assumption of a linear mixing system, a nonlinear transformation is also assumed. For this

model, identifiability is established based on the assumptions of source independence, and some

assumptions on the nonlinear function. A recent line of work on nonlinear mixture model

includes [68, 69, 71], which exploit structures in the data, e.g. non-stationarity or temporal

dependence, and form identification criterions tailored for these structures such that identifiability

of sources is established.
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Linear Mixture Identifiability through convex geometry

Another line of work establishes identifiability of LMM using geometric properties, instead of

statistical properties as in ICA. To the best of our knowledge, this line of work originated in the

hyperspectral imaging community, see e.g. [16, 91] and reference therein. In such applications,

measurements of a geographical region on the ground are taken in multiple spectral bands,

and the measurement for each pixel is assumed to be a convex combination of the spectral

signatures of several materials, e.g., water and soil, present on the target ground. In these

applications, it is of primary interest to identify the spectral signatures of the materials (known

as “endmembers” in the remote sensing community), as well as those convex combination

coefficients – in other words, identifiability of LMM is a central topic. Exploiting different model

assumptions, considerable work has been done in this area, see [49, 91, 44, 88].

Interestingly, the same LMM also arises in probabilistic topic modeling, see [6, 4, 64]. Again,

identifiability of LMM in this application is crucial, as one would like to identify the true topics.

4.1.3 Organization

The remainder of the paper is organized as follows. In Section 4.2, we review some preliminary

materials that are essential for the presentation of this work, then introduce the considered

nonlinear mixture model. In Section 4.3, we detail the main result of this work, i.e., the

identifiability guarantees for the proposed nonlinear mixture model, as well as the existence

of solution for the proposed identification criterion. In Section 4.4, we develop a companion

learning method for the proposed identification criterion. Specifically, we put forth a neural

network architecture that guarantees invertibility of the resulting mapping – which is crucial to

implement the requirements set by the proposed identification criterion. We present numerical

experiment results in Section 4.5. Conclusions are given in Section 4.6.
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4.2 Problem statement

The new model considered in this work is a generalization of the LMM. In this section, we first

briefly review the LMM and its related identifiability results, then we introduce the new model,

and discuss its motivation. By design, the new model can be seen as having an extra nonlinear

transformation added to the classical LMM. For this reason, in Section 4.3, we propose a natural

two-stage learning strategy: in the first stage, our new method “removes” the nonlinear effects.

After this step, the data model is reduced to LMM, and we employ existing techniques to deal

with it in the second stage.

4.2.1 Review of linear mixture model

We briefly review existing parameter identification results concerning the LMM that are related

to this work. Relevant concepts in convex geometry can be found in Appendix 4.7.1.

To facilitate discussion, we use ∆M :=
{
x|x ∈ RM , x ≥ 0, 1Tx = 1

}
to denote the

(M − 1)-dimensional probability simplex. The LMM is defined as

xj = Asj , ∀j ∈ [N ], (4.1)

whereA ∈ RM×r is often a tall matrix, i.e., M > r, and sj ∈ ∆r. Alternatively, we will also

writeX = AS by collecting all xj’s intoX , and sj’s into S.

As mentioned earlier, the LMM finds applications in a plethora of scenarios: from signal

processing tasks such as hyperspectral imaging [16, 91], MRI data analysis [121], to probabilis-

tic topic modeling of text documents [17, 6, 64]. These important applications motivate the

considerable amount of work studying its identifiability properties.

To recover factorsA and S from dataX = [x1, · · · ,xN ], the following so-called Volume
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Minimization (VolMin, [33, 25, 44]) criterion is often employed:

min
B∈RM×r,H∈Rr×N

Vol(B)

s.t. X = BH, H ≥ 0, HT1 = 1, (4.2)

where it is assumed that r is known. The term Vol(B) is a measure of the volume of the simplex

formed by using columns ofB as vertices, see [19, p. 408]. This criterion means that we want to

findB andH that satisfy the LMM, and we pick the solution with the minimal volume, hence

the name VolMin.

Several algorithms for dealing with (4.2) have been developed [15, 25, 88, 43], and we

will use the so-called minimum volume enclosing simplex (MVES): Given dataX and the rank

parameter r, the MVES algorithm returns a solution (B̂, Ĥ) of (4.2). We refer readers to [25]

for more on MVES.

4.2.2 Proposed signal model

We consider the following signal model

xj = φ(Asj), ∀j ∈ [N ], (4.3)

whereA ∈ RM×r satisfiesA ≥ 0, and sj ∈ ∆r, ∀j ∈ [N ]. The function φ is a nonlinear map-

ping φ : RM → RM , and we consider element-wise nonlinearity, i.e., φ = [φ1, φ2, · · · , φM ]T,

so that

φ(x) = [φ1(x(1)), · · · , φM (x(M))]T, (4.4)

where x = [x(1), · · · ,x(M)]T. For brevity, we use the shorthand notation X = φ(AS) to

denote (4.3), where it should be understood that the φ is applied to each column ofAS.
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Model (4.3) is well motivated. It can be viewed as a generalization of (4.1), which is used

in various applications. In hyperspectral unmixing (HU), each xj is a hyperspectral pixel, each

column of A represents the frequency signature of a certain material (e.g., soil, vegetation,

water), and each sj denotes the proportion of materials in that pixel xj , see e.g. [16, 91, 56, 38].

In MRI, LMM is used due to the so called “partial volume effect” [27, 121, 104], which gives

rise to the condition sj ∈ ∆r. Both these applications are of great importance in their respective

research fields, where considerable work has been done based on (4.1). Yet, it is widely

recognized that in many real world scenarios, the LMM in (4.1) is oversimplified. For example,

in HU, the measurements xj’s are obtained by sensors, which have inherent nonlinearity due

to physical limitations of the measuring devices, see [16, 56, 38]. In MRI, empirical studies

show that there exist (currently) unknown physical / biological processes, which cause nonlinear

relationships between measurements (e.g., changes in cerebral blood flow) and the underlying

signals of interest (brain network connectivity, brain local region energy consumption, etc.), see

[115, 87, 86]. The existence of such nonlinear distortions in various problems has motivated us

to impose the φ function in (4.3) on top of the classical LMM in (4.1). This way, many nonlinear

effects happening in practice yet ignored in the LMM literature may be captured.

However, it is clear that the additional unknown φ brings considerable complication in

recovering A and S. Before pursuing a general result, let us make some simple observations.

First, for many nonlinear φ, it is not possible to recoverA and S, e.g., φ(x) = 0, ∀ x. Hence

one of the tasks is to impose on φ reasonable and practical conditions, under which recovery is

possible. Second, if φ is linear, by the element-wise assumption, we haveX = DAS, where

D is a diagonal matrix. From here, we can see that there are scaling ambiguities on the rows of

A, even for the simplest φ. In light of this, a crucial question about model (4.3) is which parts

(or aspects) ofA and S can be identified, and to what extend?
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4.3 Identifiability analysis

As mentioned earlier, our overall identification strategy to tackle the new model has two stages.

In the first stage, our method “removes” nonlinear effects. In the second stage, since the data

model is reduced to the classical LMM, we adapt existing techniques to deal with it. In this

section, we first present techniques to remove the nonlinearity; then in the last sub-section, we

discuss a technique to identify the model after nonlinearity is dealt with.

4.3.1 A technical lemma

We aim at understanding the identifiability of (4.3), as well as designing a method to learn this

model. It will be shown (see Theorem 1 and Lemma 2) that S can be identified uniquely, A

can be identified up to linear transformation, and the inverse of φ can be identified up to affine

transformation. Towards identifying the model, we will try to learn an adjustable function f , and

denote

yj = f(φ(Asj)), j ∈ [N ]. (4.5)

The remaining question is how to devise a learning method such that the resulting f will

“counteract” the nonlinear effect brought by φ. If this can be done, we can then employ methods

designed for LMM (4.1) to separate the latent factors. Towards this goal, we first introduce a

technical lemma.

Consider the following functional equation concerning functions ψ1, · · · , ψM and variables

s ∈ int ∆r

M∑
i=1

ψi(a
T
i s) = 1, ∀s ∈ int ∆r, (4.6)

where int ∆r denotes the interior of ∆r. To facilitate presentation, letA := [a1,a2, · · · ,aM ]T ∈
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RM×r.

Lemma 1. Suppose (4.6) holds, and M ≥ r ≥ 3. Let us further assume that (a) the functions

ψ1, · · · , ψM are twice differentiable, and are all convex (or all concave) in the domain (0, 1);

and (b)A is nonnegative and has two positive columns. Then the functions ψ1, · · · , ψM are all

affine.

This lemma asserts that under some technical conditions, only affine functions satisfy (4.6).

We use this result to learn a nonlinear function for each element of the nonlinear mixing function

in (4.3), so that all the composite functions are affine, hence nonlinearity in the signal model is

removed. The proof for Lemma 1 can be found in Appendix 4.7.3.

4.3.2 Nonlinear mixture model identification

To proceed, let us suppose that the learning function f : RM → RM in (4.5) is also element-wise,

i.e., f = [f1, f2, · · · , fM ]T, where fi’s are univariate functions. Denote k = [k1, k2, · · · , kM ]T :

RM → RM , where ki = fi ◦ φi, and ◦ denotes function composition. Let us make the following

assumptions about the generative model (4.3).

(A1) The functions φ1, · · · , φM are all invertible, and twice differentiable.

(A2) The matrixA ∈ RM×r in (4.3) satisfiesA ≥ 0, has two strictly positive columns, and is

incoherent (see Definition 1). The dimensions satisfy M ≥ r ≥ 3.

(A3) The columns of S satisfy sj ∈ int ∆r, ∀j ∈ [N ].

Let us briefly discuss the roles of the assumptions. For (A1), the invertibility condition is

important, as one in general cannot hope to recover the unknown parameters if they undergo

non-invertible transformations. The twice differentiable condition on φi’s requires the nonlinear

functions in data generation to be smooth.
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Assumption (A2) is the same as in Lemma 1, except for the additional incoherent assumption.

Both conditions in (A2) are important in establishing the identifiability theory. For example, the

incoherence assumption ensures that solutions that satisfy (4.7) exist; see detailed discussion

in Section 4.3.3. We should mention that although (A2) seems technical, it is not hard to be

satisfied; e.g., if A is generated from an absolutely continuous distribution, supported on the

nonnegative orthant. In this case, both conditions are satisfied with probability one.

For brevity, let us define a matrix function that has k acting on the columns of its matrix

argument, Tk(X) = [k(x1),k(x2), · · · ,k(xN )] for X = [x1,x2, · · · ,xN ]. We are ready to

state the following results.

Theorem 1. (Main results) Under assumptions (A1), (A2), (A3), if f1, f2, · · · , fM satisfy

M∑
i=1

ki(a
T
i s) = 1, ∀s ∈ int ∆r. (4.7)

where ki = fi ◦ φi, and the composite functions ki are all convex (or all concave), then the

following hold

(a) The functions k1, k2, · · · , kM are affine;

(b) The functions φ−1
1 , · · · , φ−1

M are identified up to an affine transformation, i.e. fi(x) =

diφ
−1
i (x) + bi, ∀i ∈ [M ], where di’s and bi’s are scalar constants.

The proof can be found in Appendix 4.7.4. A remark about function Tk is in order.

Remark 2. According to (a) in Theorem 1, we can write

Tk(X) = DX + b1T
N , (4.8)

where D = diag(d1, · · · , dM ), and b = [b1, · · · , bM ]T, and di and bi are coefficients for the

affine function ki. Equation (4.8) suggests that Tk is an affine function inX . However, we would
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like Tk to be linear in X , instead of affine, as later we show that it is possible to identify the

LMM parameters under invertible linear transformation (Lemma 2).

Fortunately, for data model (4.3) satisfying (A1), (A2) and (A3), we can see that Tk(X) is

indeed a linear function of X under mild conditions. Let us consider a matrix X ∈ RM×N .

Due to equation (4.7), we have 1T
MTk(X) = 1T

MDX + 1T
Mb1

T
N = 1T

N , which means 1T
N =

1T
MDX/(1− 1T

Mb). Plugging this into the above equation, we have

Tk(X) = DX + b

(
1

1− 1T
Mb

1T
MDX

)
=

(
I +

1

1− 1T
Mb
b1T

M

)
DX

= WX (4.9)

where we define W :=
(
I + 1

1−1T
Mb
b1T

M

)
D, and 1M is an all-one vector of length M . The

above equation suggests that Tk is linear inX . A subtle point is that the above calculation is

invalid when 1 = 1T
Mb holds exactly, but this never happens in our extensive simulations..

Remark 3. Given the generative model (4.3), Theorem 1 essentially asserts that if we require

1Ty = 1 for all input s, then the learned functions f1, · · · , fM will remove the nonlinearity in

functions φ1, · · · , φM . But our main goal is identifying parameters in the latent LMM; Tk being

linear is not enough. To see this more clearly, suppose we get a solution for fi’s of this form

fi(x) = 1/M, ∀i ∈ [M ]. (4.10)

In this case, the ki’s are all constant functions, and hence convex. Moreover, for this solution

(4.10), we have k(As) = DAs + b, where D = 0 and b = (1/M)1; meaning that f maps

all input x = φ(As) to the single point y = (1/M)1, which does satisfy (4.7). The problem

we exposed here is important: we need additional constraints on y beyond 1Ty = 1, so that y

preserves information about the original data x. Essentially, we require the fi’s to be invertible,



79

see details in Section 4.4.

4.3.3 Existence of solutions

The results in Theorem 1 rely on equation (4.7). One could be wondering, given the conditions

outlined in assumptions (A1), (A2), and (A3), does there exist f such that (4.7) holds? This

amounts to studying feasibility of (4.7), which is not obvious. For instance, one might guess

(incorrectly) that {f̂i = φ−1
i , ∀i} satisfies (4.7). However, under such fi’s,

∑M
i=1 ki(a

T
i s) =∑M

i=1 a
T
i s 6= 1, unless we impose more assumptions on A or S. This means, for this natural

guess, (4.7) does not hold.

To study this feasibility issue, we first note that if there exists a diagonal matrixD, such that

1TDA = 1T, then letting f̃i = φ−1
i , we have

M∑
i=1

dif̃i(φi(a
T
i s)) =

M∑
i=1

dia
T
i s

= 1TDAs

= 1Ts

= 1, ∀s ∈ int ∆, (4.11)

where di is the i-th diagonal element of D. Hence, the functions
{
f̂i(·) = dif̃i(·), i ∈ [M ]

}
satisfy (4.7). An additional requirement is that {di 6= 0, ∀i}, otherwise we can get a trivial

solution, as explained in the above section.

Building on the above observation, the feasibility problem of (4.7) boils down to establishing

existence of a nonsingular diagonal matrix D (i.e. di 6= 0, ∀i), such that 1TDA = 1T, for

matrix A that satisfies assumption (A2). We present Proposition 1, which shows that with a

mild incoherence condition (see Definition 1) onA, such desiredD indeed exists. We start by

providing the following definition of incoherence.
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Definition 1. (Incoherence) A tall and full-rank matrixA ∈ Rm×r is a said to be incoherent if

ej /∈ Range(A), ∀j ∈ [m].

Note that here incoherence is defined in the same spirit as the incoherence found in well-

known compressed sensing literature, see e.g. [24]. The physical meaning of incoherence is that

the energy of each column is widespread across the rows.

We are now ready to state the following proposition. Here we write ATd = 1 instead of

1TDA = 1T for conciseness: existence of nonsingular diagonalD is the same as existence of

fully dense vector d.

Proposition 1. For a matrixA ∈ Rm×r, assume that m > r, andA has full column-rank. Also

assume thatA is incoherent. There exists a vector d ∈ Rm, such that

ATd = 1, (4.12a)

‖d‖0 = m. (4.12b)

Note that by assumption,A is tall and full rank, so there are infinitely many d vectors that

satisfy (4.12a). However, it is not obvious if there is always a fully dense d (i.e., (4.12b)) such

that (4.12a) holds for anyA that is tall and full rank. For example, consider the matrix (which

does not satisfy the incoherence condition)

A =


1 1

0 0

1 0

 . (4.13)

This matrix is tall and full rank. Let d = [d1, d2, d3]T, and fromATd = 1, we have

d1 + d3 = 1

d1 = 1,
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which means d3 = 0 when ATd = 1. This suggests there does not exist a fully dense d for

the particular A in (4.13), such that ATd = 1. The proof of Proposition 1 can be found in

Appendix 4.7.5.

Remark 4. We established that for an incoherentA, there always exist solutions to make (4.7)

hold. Moreover, we point out that even for some A that is not incoherent, solutions for (4.7)

might also exist. For example, if one or more columns of A are some columns of an identity

matrix, then A is not incoherent. However, if we have 1TA = 1T – which is true when all

columns of A are some columns of an identity matrix – then we see that {fi = φ−1
i , ∀i} is a

feasible solution.

4.3.4 Parameter identification after removing nonlinearity

To proceed with parameter learning, let us provide the following lemma, concerning parameter

identifiability of LMM (4.1) under a linear transformation. This is needed in the second stage

of our learning strategy, where nonlinearity is removed, and only a linear transformation of the

LMM is remaining.

Lemma 2. Consider the LMM model X = AS, where A ∈ RM×r and S ∈ Rr×N satisfies

the SS condition (cf. Appendix 4.7.2), and rank(A) = rank(S) = r. Let Y = WX , where

W ∈ RM×M is nonsingular. Then we can identify Ã = WA and S up to column permutation

by solving

min
B∈RM×r,H∈Rr×N

Vol(B)

s.t. Y = BH, H ≥ 0, HT1 = 1. (4.14)

That is, if (B∗,H∗) is an optimal solution of the above problem, then B∗ = ÃΠ and H∗ =

ΠTS, where Π is a permutation matrix.
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This lemma is a direct consequence of Theorem 2 (in Appendix 4.7.2, see also [44]). It

suggests that when the original model X = AS is identifiable, then after an invertible linear

transformationW , we can still identify S using VolMin; but it is not possible to identifyA due

to the linear transformation W . This lemma also suggests that we can employ an algorithm

designed to tackle LMM to identify S, once the nonlinear effects in (4.3) have been removed,

and only an unknown linear transformation is left.

4.4 Learning algorithm

Theorem 1 suggests the following optimization formulation to learn the desired f

find f1, · · · , fM

s.t. fi ◦ φi is all convex (or all concave) ∀i ∈ [M ],

M∑
i=1

fi(xj(i)) = 1 ∀j ∈ [N ]. (4.15)

For this formulation we have the following claim.

Corollary 1. For problem (4.15), suppose the dataX = [x1, · · · ,xN ] ∈ RM×N admit model

(4.3) and assumptions (A1), (A2), (A3) hold. Assume further that sj’s are sampled from a

Dirichlet distribution. When N → +∞, the optimal solutions to (4.15) satisfy (4.7), and the

resulting {ki = fi ◦ φi, ∀i ∈ [M ]} are all affine.

This corollary follows from the distributional assumption on sj . As N → +∞, sj will

cover all the interior of ∆r with probability 1, since every point in ∆r has nonzero probability.

Then the constraints in (4.15) become the same as the conditions in Theorem 1. Corollary 1 thus

guarantees the nonlinear function identification property of formulation (4.15) in an asymptotic

sense. It also suggests that the proposed method should be able to benefit from a large number of

samples. In the following, we approximate problem (4.15) to make it amenable to numerical
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algorithms.

There may be a number of ways to enforce the constraint that ki’s are all convex (or all

concave). For example, we note

k′′i (x) = f ′′i (φi(x))[φ′i(x)]2 + f ′i(φi(x))φ′′i (x). (4.16)

To make sure ki is convex (or concave), we need k′′i (x) ≥ 0 (or k′′i (x) ≤ 0). This can be

done if we somehow know the sign of φi. For instance, if we know a priori that the nonlinear

distortion is a concave function, i.e., φ′′i ≤ 0, then we can pick a parametric family for fi’s,

such that f ′′i (x) ≥ 0 and f ′i(x) ≤ 0. Then we have k′′i (x) ≥ 0, i.e. ki is convex. Similarly, we

can constrain fi’s for all i ∈ [N ] to make sure ki’s are all convex (or concave). To simplify

implementation, we adopt an approximation: We only require fi’s to be invertible in this work.

This leads to the following optimization problem.

find f1, · · · , fM

s.t. fi is invertible ∀i ∈ [M ],

M∑
i=1

fi(xj(i)) = 1 ∀j ∈ [N ]. (4.17)

In other words, we aim at learning invertible functions that add to one. The invertibility condition

is crucial, otherwise we can obtain trivial solutions, as explained before.

To parametrize functions fj , we will adopt Neural Networks (NN) with one hidden layer,

due to their universal approximation capability [61, 10]. In particular, we employ the following

parametric function family

F =

{
f

∣∣∣∣∣f(x) =

K∑
k=1

αkσ(βkx+ γk) + δk, αk > 0, βk > 0, ∀k ∈ [K]

}
(4.18)
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where K is the number of neurons, {αk, βk, γk, δk}Kk=1 are the learnable parameters of this

NN, and σ denotes the nonlinearity. Importantly, the constraints on αk and βk are to ensure

invertibility, as stated below.

Lemma 3. In (4.18), if σ′(x) > 0, ∀x, the functions in F are all invertible.

The above lemma can be easily seen to be true. By definition, we have

f ′(x) =

K∑
k=1

αkβkσ
′(βkx+ γk).

For σ′(x) > 0, we have f ′(x) > 0 if αk >, βk > 0, ∀k ∈ [K]. Note that the requirement for

σ′(x) > 0 is easily satisfied for commonly used neurons, e.g., tanh(·) and the sigmoid function.

For this reason, we set σ to be tanh(·) in this work.

Utilizing the parametric family F in (4.18), we arrive at the following optimization problem

min
{αi
k
,βi
k
,

γi
k
,δi
k
}

1

N

N∑
j=1

(
1−

M∑
i=1

K∑
k=1

αikσ(βikxj(i) + γik) + δik

)2

s.t. αik > 0, βik > 0, ∀k ∈ [K], i ∈ [M ]. (4.19)

This is a nonlinear least-squares regression problem, with bound constraints. We employ a

trust-region algorithm [31] for optimization.

After obtaining parameters {α̂ik, β̂ik, γ̂ik, δ̂ik} via (4.19), we obtain f̂i(x) =
∑K

k=1 α̂
i
kσ(β̂ikx+

γ̂ik) + δ̂ik, and form the transformed data Y = f̂(X). Theorem 1 predicts that Y ≈WAS for

some nonsingular matrixW . From Lemma 2, we see that we can employ an algorithm for LMM

to identify S. For this purpose, we employ the classical MVES algorithm [25] for LMM, and

obtain an estimate Ŝ.

The overall procedure is summarized in Algorithm 2. We emphasize again that the method

is unsupervised: the only training data is X , not {xj , yj}Nj=1 (feature-label pairs) as in, e.g.,
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Algorithm 2 Nonlinear mixture learning.
Require: DataX ∈ RM×N , number of neurons K, latent dimension r
Ensure: Learned functions f̂1, · · · , f̂M , estimated Ŝ

1: Learn parameters {α̂ik, β̂ik, γ̂ik, δ̂ik} by solving (4.19)
2: Form functions f̂1, · · · , f̂M by f̂i(x) =

∑K
k=1 α̂

i
kσ(β̂ikx+ γ̂ik) + δ̂ik

3: Obtain transformed data by applying the learned functions on input data: Y = f̂(X)
4: Obtain Ŝ by calling MVES(Y , r)
5: return f̂1, · · · , f̂M , Ŝ
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Figure 4.1: Learned functions (f̂i’s, as parametrized by the neural network) and their composition
with the ground truth nonlinear functions used for data generation. The four functions for data
generation are φ1(x) = x, φ2(x) =

√
x, φ3(x) = 4

√
x, φ4(x) = log(x+ 1). The φi’s are kept

secret in the learning stage.

the generalized additive models [53, Ch. 9] setting, or recent works on nonlinear estimation

[134, 29].

4.5 Numerical experiments

We evaluate the presented theoretical results, as well as the learning algorithm in this section.

To probe different aspects of the proposed method, we design and execute several numerical

experiments, leveraging controlled synthetic data sets, as well as a real-world data set.

4.5.1 Synthetic data study

We start by providing a qualitative assessment of the proposed theory and algorithm. For this

purpose, we will visualize the learned functions to see if nonlinearity in data generation is indeed
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Figure 4.2: Empirical CDF of MSE: the legend shows the learning method, and the nonlinear
function used in data generation. For each nonlinear function, 100 trials are generated. A point
(−6, 0.99) on a curve means the corresponding learning method yields MSE ≤ 10−6 in 99% of
the 100 trials.

resolved. We randomly generate S according to a Dirichlet distribution – such that the generated

sj’s are nonnegative and sum to one. The dimensions are M = r = 4 and N = 1000. The

parameter of this Dirichlet distribution is set to µ = [0.1, 0.1, 0.1, 0.1], so that the generated

sj’s are well spread on the probability simplex, hence the sufficiently scattered condition (cf.

Appendix 4.7.2) is likely to be satisfied. For this experiment, we take A to be A = 2I4. The

four nonlinear functions in data generation are φ1(x) = x, φ2(x) =
√
x, φ3(x) = 4

√
x, and

φ4(x) = log(x+ 1). Note that these functions are not revealed to the learning algorithm, and

are only used to visualize the results after learning is completed. For learning, each function fi

is parametrized by a constrained one-hidden-layer NN defined in (4.18), with K = 20 neurons.

The learned functions f1 · · · f4 and the composite functions f1 ◦ φ1 · · · f4 ◦ φ4 are shown in

Figure 4.1.

One can immediately see that the learned functions indeed resolve nonlinearity in data

generating nonlinear functions: the learned f1 is a linear function since φ1 is a linear function;

the other learned functions are all visually similar to the corresponding inverse functions of φi’s.

Moreover, one can clearly see that the composite functions all look affine.

Next, we test the parameter estimation performance. For this experiment, we generate data
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with five different nonlinear functions: (a) ex, (b) x + x2, (c) log(ex + 1), (d) log(x + 1),

(e) x+ tanh(x). For each case, one of the five functions is used for all coordinates (features),

i.e. φ1 = · · · = φM . The parameter settings are M = 10, N = 1000, and r = 4. We generate

A ∈ R10×4 by sampling an i.i.d. normal distribution, and then take the absolute values, followed

by a column normalization step. S is similarly generated as in the first experiment. For this

experiment, the fi functions are constrained to be the same: a constrained one-hidden-layer NN

defined in (4.18), with K = 40 for all cases, to avoid unrealistic parameter tuning. In other

words, all the NN share the same parameters. Since problem (4.19) is nonconvex, different

initialization could lead to different results. For this reason, the formulation (4.19) is optimized

five times with different random initialization, and the result of smallest cost function value is

used for subsequent steps of Algorithm 1. The performance metric we employ is mean squared

error (MSE): MSE =
‖Ŝ−S‖2F
rN .

Since our method is the first work dealing with this nonlinear model, the only baseline we

can employ is MVES without considering nonlinear effects. For each setting, 100 trials with

different randomly generated data are performed, and the empirical cumulative distribution

function (CDF) of the resulting MSEs is reported in Figure 4.2.

From Figure 4.2, one can see that the proposed method yields significant improvements over

applying MVES directly, in all the cases. Note that the x-axis in Figure 4.2 is log10(MSE), hence

our method yields several orders of magnitude improvement in accuracy over the baseline.

In the third experiment, we examine the estimation accuracy of matrix S with different

number of data samples – as our theory offers asymptotic guarantees, we’d like to examine how

the learning method performs in the case of finite data. The setting is similar to above: we

generateA randomly, with M = 10 and r = 4. Then different number of data samples (columns

of S) are generated following the Dirichlet distribution. For each setting, we generate 50 data

sets, and measure the resulting MSE of estimating S. Two nonlinear functions, φ(x) = ex and

φ(x) = log(x+ 1) are employed in data generation. For all these experiments, the number of
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neurons in f is fixed to K = 40.
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Figure 4.3: Empirical CDF of MSE of estimating S with different number of data samples.

The results are presented in Figure 4.3. As can be seen, when the number of data samples is

small, larger MSEs of estimating S are observed. However, much better estimation performance

is achieved with more data. Note also that the results presented in Figure 4.3 are relatively worse

than those in Figure 4.2, which is mainly due to the small amount of available data.

In the next experiment, we vary the number of neurons in the neural network. The setting

is similar to above: we generate A randomly, with M = 10 and r = 4. We draw columns

of S by following a Dirichlet distribution, where the number of columns is N = 1000. The

nonlinear function in data generation is φ(x) = ex. In total 50 data sets are generated. We run

Algorithm 2 for different number of neurons K. The results are presented in Figure 4.4. As can

be seen from the figure, very good estimation results can be achieved even when there are only 4

neurons, and better results are obtained when we employ more neurons in the network. However,

using only 1 neuron does not work: in many cases we manually examined, the learned f̂(X) is

almost constant – the entries are all the same, and no meaningful S can be estimated. This can

be explained by the fact that a single neuron is unlikely to be able to approximate the (scaled)

inverse of φ.
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Figure 4.4: MSE results with different number of neurons.

In the last synthetic data experiment, we examine the estimation performance for different

(but known) rank in the latent space. As before, we set M = 10, and N = 1000. The number of

neurons are set to K = 15. We use φ(x) = ex in data generation, and 50 data sets are generated

for each rank setting. The results are presented in Figure 4.5. As can be seen from this figure,

the estimation performance is insensitive to the different rank settings.

4.5.2 Case study with a hyperspectral image

We next perform an experiment on hyperspectral unmixing (HU). Unlike normal RGB images,

a pixel in a hyperspectral image contains information on hundreds of spectral bands. With the
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Figure 4.5: MSE results with different rank

more detailed spectral information, it is often assumed that different materials have their distinct

spectral signatures (see e.g., [16] for details). Physically, each pixel is represented by a convex

combination of materials that are present in that geographical patch. However, it is known that

the collected measurement may encounter nonlinear distortion. The HU task involves identifying

the spectra of the materials in a given region and the material concentrations in the different

pixels (patches of the scene).

The image employed in this experiment is the Moffett Field captured in California, USA. The

region has three main materials: water, soil, and vegetation. This scene is known for the existence

of nonlinear mixture pixels, which usually poses a challenge to LMM-based HU algorithms such
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Figure 4.6: The Moffett Field hyperspectral image.
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Figure 4.7: Visualizing columns of the estimated S corresponding to the water region.

as MVES. The size of the image is 50× 50, hence we have 2500 pixels.

Each pixel is measured on 224 spectral bands, and we remove the water-absorbing bands

following standard preprocessing [43], and end up with 200 spectral bands. In this case, each

pixel {xj , j ∈ [2500]} is measured as a vector of length 200, i.e. xj ∈ R200. A single band

of the image is shown in Figure 4.6: the top part is water, while the bottom part is land (sand

and vegetation). To apply our method, we use the same fi on each of the 200 spectral bands,

and fix K = 40. The latent dimension r = 3 is used since we know there are 3 materials in

this scene. For comparison, in addition to MVES, we employ another two baselines that tackle
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the nonlinearity problem from a robust LMM identification viewpoint: SISAL [15] and robust

volume-minimization (RVolMin) [43].

We plot the estimated S in the known water region (top 15× 50 part of Figure 4.6). We take

this part to compare performance of the algorithms as it is clear that there is only one material

(water) in this region, so the ground truth for each ŝj is a permutation of [1, 0, 0]T, whereas the

ground truth sj for other regions is unavailable and hard to obtain. Since the resulting columns

of Ŝ live in a dimension-2 simplex, we project all the points into a 2D space, with the vetices of

the triangle corresponding to the original vetices in the 3D space, as shown in Figure 4.7.

From Figure 4.7, we see that results of the proposed method coalesce around a coordinate

vector [0, 0, 1]T, which is almost identical to the ground truth. However results of the other

methods are far away from any coordinate vector. This shows that by explicitly incorporating

nonlinearity, the proposed method yields much improved results over prior art.

4.6 Chapter summary

In this chapter we proposed a novel and well-grounded nonlinear extension of the LMM data

model, to account for nonlinear effects that naturally arise in real-world applications. The

proposed model augments a widely used model, by allowing additional nonlinear distortions. It

is an important problem to consider in practice, but a concrete study was sorely missing prior to

this work. Much to one’s surprise, the seemingly impossible mission of figuring out unknown

nonlinearities in the new data model can actually be accomplished up to affine transformations,

as we show in this paper. A learning algorithm leveraging the power of neural networks was

proposed to equalize the unknown nonlinear functions. Numerical experiments show clear

advantages of the proposed method over classic LMM learning algorithms when nonlinearity is

present.
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4.7 Appendix

4.7.1 Some definitions in convex geometry

Definition 2. (Convex cone) The convex cone of {x1, · · · ,xN} is defined as

cone{x1, · · · ,xN} =

x
∣∣∣∣∣x =

N∑
j=1

xjθj , θj ≥ 0, ∀j ∈ [N ]

 . (4.20)

Definition 3. (Convex hull) The convex hull of {x1, · · · ,xN} is defined as

conv{x1, · · · ,xN} =x
∣∣∣∣∣x =

N∑
j=1

xjθj ,

N∑
j=1

θj = 1, θj ≥ 0, ∀j ∈ [N ]

 . (4.21)

Definition 4. (Simplex) A convex hull conv{x1, · · · ,xN} is called a simplex if x1, · · · ,xN are

affinely independent, i.e., x1 − xN , · · · ,xN−1 − xN are linearly independent.

A probability simplex is a special simplex, with all vertex vectors being the coordinate

vectors, i.e. ∀i ∈ [N ], xi = ej for some j, where ej has 1 at its j-th coordinate, and 0 for all

other coordinates.

4.7.2 Identifiability of LMM

We include some identifiability results for LMM, as they are important prior art that we build

upon. In order to characterize identifiability of (4.1), let us introduce the following definition.

Definition 5. (Sufficiently scattered, [44, 64]) Let matrix S ∈ Rr×N+ , where Rr×N+ is the

nonnegative subset of Rr×N . Matrix S is said to be sufficiently scattered (SS) if cone(S) satisfies:

(a) C ⊆ cone(S), where C is a second order cone: C = {x ∈ Rr|1Tx ≥
√
r − 1‖x‖2},

(b) cone(S) ( cone(Q), for any unitary matrixQ ∈ Rr×r that is not a permutation matrix.
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(a) Separabibility (b) Sufficiently scattered (c) Not sufficiently scattered

Figure 4.8: A geometric illustration of the sufficiently scattered condition (middle), a special
case called separability (left), and a case that is not sufficiently scattered (right).

An illustration for r = 3 of this definition is given in Figure 4.8: We are viewing from the

nonnegative orthant towards the origin. The 3 vertices of the triangle correspond to coordinates

[1, 0, 0], [0, 1, 0], [0, 0, 1], thus the triangle is the simplex where all columns of S reside. The

inner circle corresponds to C. The sufficient scattered condition, shown in Figure 4.8b, requires

columns of S to be well-scatted on the simplex, so that cone(S) encloses C. This condition is in

fact fairly relaxed, as discussed in [63].

We should also mention that a stronger condition on S, termed “separability”, which is

shown in Figure 4.8a, can also help establish identifiability of LMM. We refer the interested

readers to [26, 49, 5]. Here we present SS, as it is more relaxed than the separability condition.

Based on this VolMin criterion, the following theorem established identifiability of model(4.1).

Theorem 2. [44] Let the matrices A and S satisfy rank(A) = rank(S) = r. Suppose S

satisfies the SS condition. Under the generative model (4.1), the VolMin criterion (4.2) uniquely

identifies bothA and S up to a permutation. Specifically, any optimal solution to (4.2) takes the

form

B = AΠ, H = ΠTS,

where Π is a permutation matrix.
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A proof of this result can be found in [44]. We mention that by Theorem 2, given that S

satisfies SS, the only remaining indeterminacy is a permutation of the columns (rows) ofA (resp.

S), which is unavoidable – but also inconsequential in most applications.

4.7.3 Proof of Lemma 1

Proof: Assume without loss of generality that the two nonzero columns are the first and second

column. Let us denote

ζ(s1, s2, · · · , sr−1) :=

M∑
i=1

ψi

(
aT
i s
)

= 1, s ∈ int ∆r. (4.22)

Note that ζ is a function of (r − 1) variables s1, · · · , sr−1, since 1Ts = 1. Equation (4.22)

suggests that ζ is a constant function on ∆r. Taking derivative with respect to (w.r.t.) s1 and s2,

we get

∂ζ

∂s1
=

M∑
i=1

ai(1)ψ′i

(
aT
i s
)
, (4.23)

and

∂2ζ

∂s1∂s2
=

M∑
i=1

ai(1)ai(2)ψ′′i

(
aT
i s
)

= 0. (4.24)

By the assumption onA, we have ai(1)ai(2) > 0, ∀i. The assumption that ψi’s are all convex

(or concave) translates to ψ′′i ≥ 0 (or ψ′′i ≤ 0), for all i ∈ [M ]. From (4.24), we conclude that

ψ′′i = 0, ∀i, which suggests that all the ψi’s are affine.

While our result is novel and we conceived it for use in our work, other interesting results

concerning functional equations can be found in [79, 40].
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4.7.4 Proof of Theorem 1

Given assumptions (A2) and equation (4.7), (a) is a direct consequence of Lemma 2.

For (b), we note that from (a), ki(t) = dit+ bi for some constants di and bi. Let x = φi(t),

then t = φ−1(x). Plugging into fi(φi(t)) = dit+ bi, we obtain fi(x) = diφ
−1(x) + bi.

4.7.5 Proof of Proposition 1

To prove Proposition 1, we need Lemma 4 and Lemma 5, which are presented here followed by

their respective proof.

Lemma 4. Suppose A ∈ Rm×r is full rank and incoherent, i.e. ei /∈ Range(A),∀ i ∈ [m].

Then Â =

 A

1T

 is incoherent.

This lemma asserts that if a matrixA is incoherent, then appending a row of all 1’s preserves

incoherence.

Proof: The incoherence condition means that there is no such y ∈ Rr, such thatAy = ei

for any i ∈ [m]. Suppose there is a ŷ ∈ Rr, such that Âŷ = ej for some j ∈ [m+ 1]. There are

two cases

1. 1 ≤ j ≤ m: This means we have ŷ such thatAŷ = ej for some j ∈ [m] – a contradiction

to the assumption thatA is incoherent.

2. j = m+ 1: This means thatAŷ = 0m for ŷ 6= 0– a contradiction to the assumption that

A is full rank.

Hence Â is incoherent ifA is full rank and incoherent.

Lemma 5. For a tall and full rank matrix A ∈ Rm×r, where A is incoherent, there exists a

d ∈ Rm, such that

ATd = 0, (4.25a)
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‖d‖0 = m. (4.25b)

Proof: Let U ∈ Rm×(m−r) be a set of bases of the null space ofA, i.e.

Range(U) = Null(A). (4.26)

By assumption, A is incoherent, hence ej /∈ Range(A), ∀j ∈ [m]. For any j, we have the

decomposition

ej = êj + ej , (4.27)

where êj ∈ Range(A) and ej ∈ Range(U). Since ej /∈ Range(A), we have eT
jU = eT

jU 6=

0m−r, ∀j ∈ [m], which means U does not have a row that is all-zero.

Let I1, · · · , Im−r be the index sets of nonzero entries in each column of U , then we have

∪m−rj=1 Ij = [m] since U does not have an all-zero row. Let us present the following useful fact.

Fact 1. Let x,y ∈ Rm, with sets Ix and Iy being the sets of indices of nonzero entries, then we

can find a vector z ∈ Span{x,y}, such that Iz = Ix ∪ Iy.

Proof: Let a = 1
maxj |xj | and b = 2

minj:yj 6=0 |yj | . The denominator of b is the minimum of

absolute value of the nonzero entries of y. Consider the vector

z = ax+ by. (4.28)

By the choice of a and b, we have maxj |axj | = 1 and minj:yj 6=0 |byj | = 2. Hence for

any j where xj 6= 0 and yj 6= 0, we have axj + byj 6= 0. This shows that there exists a

z ∈ Span{x,y}, such that Iz = Ix ∪ Iy.

We can now use Fact 1 to show that there exists a fully dense d ∈ Range(U). Consider

the first two columns of U : U1 and U2. From Fact 1, we can find a vector u ∈ Span{U1,U2},
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such that Iu = I1 ∪ I2. Now consider u and U3, invoking Fact 1 again, we can find a vector

u ∈ Span{u,U3}, such that Iu = Iu∪I3 = I1∪I2∪I3. Continuing this process, we can find

a vector d ∈ Span{U1, · · · ,Um−r} = Range(U), such that Id = ∪m−rj=1 Ij = [m]; meaning

that d ∈ Range(U) and is fully dense. Since d ∈ Range(U), we haveATd = 0.

Proof of Proposition 1: Consider a matrixA ∈ Rm×r that is tall, full rank, and incoherent,

we can rewrite (4.12a) as

[
AT 1

] d

−1

 = 0 (4.29)

Let us denote ÂT =
[
AT 1

]
. Then we can see that 1) Â ∈ R(m+1)×r is tall and full rank,

2) Â is incoherent by Lemma 4. We see that Â satisfies all the conditions in Lemma 5, hence

there exists a d ∈ Rm+1 such that ÂTd = 0, and ‖d‖0 = m + 1. Since d is fully dense, we

construct a d̂ ∈ Rm+1 as

d̂ := −d/d(m+ 1). (4.30)

By this construction, we have d̂(m+ 1) = −1. In addition, ÂTd̂ = 0 as it is merely a scaled

version of d. Let d = d̂(1 : m) ∈ Rm, then we have

ATd = 1, ‖d‖0 = m. (4.31)

Hence we managed to show the existence of a d that satisfies both (4.12a) and (4.12b) for anyA

that satisfies the conditions in Proposition 1. �



Chapter 5

Summary and Future Directions

This thesis studied the problem of learning latent structure in an unsupervised fashion. The work

was motivated by the increasing need to process and cluster high-dimensional data, as well as

the need for unsupervised learning methods in many scenarios where data labeling is expensive

or impossible.

In Chapter 2, we proposed a joint factorization and clustering (JFC) framework. The JFC

framework leverages identifiable matrix and tensor factorization models, to figure out the ground

truth representation for each datum. Meanwhile, the underlying clustering structure is exploited

to solve the factorization problem, which acts as the dimensionality reduction (DR) step. Our

method builds upon the key observation that latent clustering structure can be distorted in the

data generation process. This distortion cannot be rectified by PCA-based methods, as PCA

finds a set of orthogonal bases, which is unlikely to be compatible with the linear transformation

in data generation. In contrast, our method finds the ground truth representations, when the

factorization models are identifiable. As such, the distorted latent clustering structure can be

restored. We designed efficient algorithms for this method based on the alternating minimization

framework, and showcased the effectiveness of the algorithms with synthetic data and real world

data sets.
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In Chapter 3, we developed a deep clustering network (DCN). This DCN method leverages

recent advances in training deep neural networks (DNN), where impressive performance gain

has been observed when solving supervised learning tasks, such as image classification [76, 54]

and speech recognition [59]. These advancements motivated us to learn a complex nonlinear

mapping from data space to latent space, such that the resultant latent space is naturally suitable

for clustering. Our key observation is that, as an unsupervised learning method, clustering is

fundamentally different than classification. Specifically, when training a DNN for classifica-

tion, data labels act as guidance for representation learning – the DNN is trained to produce

discriminative representations, so that the final classification layer produces good result. When

training a DNN for clustering, however, lack of this explicit supervision can lead to trivial

solutions. We identified this issue and proposed to include a data reconstruction loss term in

the DNN loss function, which fixed the trivial solution problem that could emerge in existing

works [124, 132]. In addition, we designed an algorithm building upon alternating minimization

and online K-means algorithm [109]. The algorithm involves only minibatch-based updates,

enabling scaling to large data sets.

In Chapter 4, we studied a nonlinear mixture model (NMM). Our work was motivated by

the fact that nonlinear effects are ubiquitous in real world applications, thus modeling these

effects can lead to performance enhancements. From a methodological perspective, albeit

there have been many nonlinear representation learning methods, that show learning nonlinear

representations of data is beneficial for many machine learning tasks, it is often unclear when will

these methods work. That is, if indeed the data are generated from some nonlinear transformation

on latent parameters, it is often unclear when can we recover these parameters. We studied this

problem and established that under some mild conditions on the signal model, the proposed

NMM is identifiable up to some trivial indeterminacy. Our key observation is that, if latent

parameters exhibit a sum-to-one structure, it is possible to transform this unsupervised learning

problem into a supervised regression problem. As a result, we leveraged existing algorithms to
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solve this regression problem. Numerical experiments show that indeed latent parameters in this

highly non-trivial model can be estimated to high accuracy.

Based on the current work, our ongoing work is concerned with the following extensions:

• Tackling more general nonlinear mixture models: The current NMM assumes that data

are generated via a linear mixing step followed by an element-wise nonlinear transforma-

tion. While this is suitable for several important applications, it is desirable to consider

more general nonlinear mappings. For example, in [68, 69], the authors study nonlinear

independent component analysis (nICA) with more general nonlinear mappings. It is of

interest to study parameter identification issues under such models.

• Identifying connections between NMM and nICA: A central assumption underpinning

nICA identifiability results is the statistical independence of source signals. In our NMM

work, however, the critical assumption is the latent LMM – this latent structure allows us

to formulate the identification criterion. Identifiability of LMM is established based on

geometrical properties such as the sufficiently scattered condition. It would be beneficial to

cross-fertilize ideas in both frameworks. Besides nICA, recent studies show (empirically)

that some deep unsupervised learning methods, e.g., variational autoencoders (VAE)

[75], produce meaningful and disentangled representations. There, disentanglement is

tantamount to statistical independence. Despite the many attempts [57, 30, 35], theoretical

understanding of this phenomenon is still limited – it is unclear why meaningful and

disentangled latent dimensions naturally emerge during training of these models. Building

upon our success on establishing identifiability of the aforementioned NMM, we plan to

apply and extend our theoretical understandings to the setting of VAEs, and possibly shield

light on the intriguing experiment observations.
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