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Abstract

Galaxy clusters, because of their massive size, act as powerful lenses for background objects.

The Hubble Frontier Fields project was a multiyear international colloboration to examine

six galaxy clusters acting as gravitational lenses with the aide of the Hubble Space Telescope.

Lens modelling teams used shared data to reconstruct the cluster mass distributions using a

variety of methods. We used our free-form method Grale to solve for the mass distribution

of each cluster. The only inputs used were related to the observed images, and unlike most

other methods, no information about visible light of the cluster galaxies was part of the

input. The lensing models produced by each modelling team were used to study magnified

high redshift galaxies, and construct their luminosity functions. These scientific advances

prepare the community ahead of the James Webb Space Telescope launch.

Upon reconstructing the cluster distributions, our goal was to see if light traces mass

and investigate Grale uncertainties. We focused on the first two Hubble Frontier Fields

clusters, Abell 2744 and MACS J0416. No significant offsets were found between brightest

cluster member galaxies and local mass peaks for either cluster on scales of ≈ 10 − 15kpc.

We calculated the correlation function between cluster core member galaxies and mass

distribution for each cluster. Our results confirmed the standard biasing scenario of galaxy

formation, meaning the clustering of galaxies is heavily influenced by the underlying dark

matter distribution. We found light traces mass within HFF clusters, Abell 2744 and MACS

J0416.

We directly compared two Abell 2744 Grale reconstructions to gauge the robustness of

calculated uncertainties, and confirmed that Grale uncertainties were robust to changes in

input data and slight modifications in the Grale code parameters. Moreover, both maps

produced relatively low Lens-plane RMS values, comparable to those of other methods. We

explained our method for calculating Lens-plane RMS, while also providing multiple alter-

native definitions, because of a lack of consensus on the subject in the published literature.
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Chapter 1

Introduction

1.1 Gravitational Lensing

Gravitational lensing is the bending of light by the presence of mass. The effects of gravi-

tational lensing was predicted long before the work of Albert Einstein but not fully worked

out until the General Theory of Relativity. Assuming a point mass M , the deflection of an

incoming light ray a distance ξ in the lens-plane, away from the mass, predicted by General

Relativity is

α̂ =
4GM

c2ξ
, (1.1)

where c is the speed of light and G is the Gravitational constant. Assuming the gravitational

field is weak, the field equations of General Relativity can be linearized. In this regime the

deflection of light from an extended body can be approximated as a sum of deflections due

to point masses. Another approximation, the thin lens approximation, used in gravitational

lensing assumes that the thickness of the lens is much smaller than the distances between

the lens, observer and source. Then, given a volume of mass, with density ρ, the projected

surface mass density in the z direction, or line-of-sight direction, can be described by

Σ(~ξ) =

∫
ρ(~ξ, z)dz, (1.2)

where ~ξ is a two dimensional vector in the plane of the lens. By summing the deflections

from every mass element, the total deflection at a point ~ξ in the plane is

~̂α(~ξ) =
4G

c2

∫
(~ξ − ~ξ′)Σ(~ξ′)

|~ξ − ~ξ′|2
d2ξ′. (1.3)

1
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A schematic of a light ray being deflected at a point ~ξ in the lens plane can be seen in

Fig. 1.1. The light ray then comes to the observer after having its path bent by the lens.

The difference in the observed image position, ~θ, and the unlensed source position, ~β, is the

deflection angle multiplied by a ratio of angular diameter distances, as seen in Fig. 1.2.

From this geometry, the reduced deflection angle can be introduced

~α =
Dds

Ds

~̂α, (1.4)

where Dds and Ds are angular diameter distances between the lens and source and between

the observer and source, respectively. A quick primer on standard cosmology now. Angular

diameter distance is the ratio of the physical size of an object to the angular size. The

angular diameter distance is then

DA(z) =
dc(z)

1 + z
, (1.5)

where z is the redshift of an object and dc is the comoving distance. The comoving distance,

is the distance between observer and an object at redshift z, measured at the present

cosmological time. The proper distance is defined as the distance measured between two

points at the same time. The comoving distance and proper distance are related to each

other by

dc =

∫ t

tobs

c
dt′

a(t′)
, (1.6)

where a(t) is the scale factor and parametrizes the expansion of the Universe. The scale

factor describes how the Universe is changing size with respect to time, or the ratio of the

proper distance at time t and the distance at reference or present time to, a(t) = d(t)
do

. At

present time, a(to) = 1. The comoving distance can then be thought of as the distance

between two objects without the expansion of the Universe. The scale factor is related to

the redshift of an object as
1

a(t)
= 1 + z, (1.7)

where t is the time from which a photon was emitted from the object at redshift z. The

rate of expansion of the Universe is defined as the Hubble parameter

H(t) =
ȧ

a
, (1.8)

where ȧ is the time derivative of the scale factor. The contents of the Universe, or how

much the Universe is made of each thing x, can be defined with the density parameter Ωx

Ωx =
8πGρx(to)

3H2
o

, (1.9)
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Figure 1.1 Incoming light ray at a point ~ξ on the lens plane, resulting in a deflection
angle ~̂α(~ξ). Credit: Narayan & Bartelmann (1996)



Chapter 1. Introduction 4

Figure 1.2 Geometry of incoming light ray from background source S, being bent by a
gravitational lens, and then arriving to the Observer O. The light ray is deflected by an angle
~̂α at a distance ~ξ from the center of the lens. In the source plane, the background source is
a distance η from the center of the lens. From the observer, θ is the angular position of the
image and β is the angular position of the source. α is the difference between θ and β, also
called the reduced deflection angle. Dd, Dds, and Ds are the angular diameter distances
separating the observer and lens, lens and source, and observer and source, respectively.
Credit: Narayan & Bartelmann (1996)
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where x is radiation, matter, or dark energy Λ. The comoving distance depends on the

cosmology chosen, but for standard ΛCDM cosmology the curvature is assumed to be zero,

Ωk = 0, and the density parameter of radiation is near zero, Ωrad ≈ 10−4, the form is simple

dc(z) = dH

∫ z

0

dz′√
Ωm(1 + z′)3 + ΩΛ

, (1.10)

where dH = c
Ho

is the Hubble distance and Ωm and ΩΛ are the density parameters of matter

and dark energy, respectively. In general for angular diameter distances, Ds 6= Dd + Dds

because of the cosmology involved.

Now that angular diameter distances have been defined, and using Eq. 1.4, the lens

equation can be properly introduced

~β = ~θ − ~α(~θ) = ~θ − Dds

Ds

~̂α(~ξ). (1.11)

As seen from Fig. 1.2, this equation states that the difference in the position of the observed

images, ~θ, and unlensed source position, ~β, is the reduced deflection angle, ~α. This equation

can have multiple image solutions from the same source, a phenomena called multiple

imaged or strong lensing. When the lens is a point mass and the source sits right behind

the lens ~β = 0, we can use Eq. 1.1 to get the observed image position

θE =

√
4GM

c2

Dds

DdDs
. (1.12)

The observed image of the background source is produced an a ring, known as an Einstein

Ring. When the point-like background source sits off axis, a ring will no longer be produced

but two images will be.

Most astronomical lenses are not treated as a point mass, due to the complexity of

their total mass distribution, or projected surface mass density Σ(Dd
~θ). The convergence

is defined as

κ(~θ) =
Σ(Dd

~θ)

Σcr
, (1.13)

where Σcr is the critical surface density of the lens. The critical surface density is defined

as

Σcr =
c2

4πG

Ds

DdDds
, (1.14)

so that given a lens with surface density equal to the critical surface density, Σ = Σcr, the

observed image position is equal to the reduced deflection angle, ~θ = ~α, and the unlensed

position is zero, ~β = 0. When this happens, the resulting image is an Einstein ring as
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noted before. Using Eq. 1.4, the reduced deflection angle can be written in terms of the

convergence as

~α(~θ) =
1

π

∫
(~θ − ~θ′)κ(~θ′)

|~θ − ~θ′|2
d2θ′. (1.15)

From the convergence, an effective lensing potential can be defined as

ψ(~θ) =
1

π

∫
κ(~θ′) ln |~θ − ~θ′|d2θ′, (1.16)

such that

~α(~θ) = ~∇ψ(~θ), (1.17)

and

κ(~θ) =
1

2
∇2ψ(~θ), (1.18)

are satisfied. The lensing potential can be defined in terms of the gravitational potential of

the lens as

ψ(~θ) =
2Dds

DdDsc2

∫
Φ(Dd

~θ, z)dz. (1.19)

The transformation matrix, or the Jacobian, between the lensed and unlensed coordi-

nates is therefore given by

Aij =
∂βi
∂θj

. (1.20)

Using the lens equation and definition of the deflection angle in terms of the lensing poten-

tial, the transformation matrix can be rewritten as

Aij = δij −
∂2ψ

∂θi∂θj
, (1.21)

where δij is the Kronecker delta. This matrix shows how sources are distorted by gravita-

tional lenses. To get a clearer picture of this, we define the shear tensor as

γ1(~θ) =
1

2

( ∂2ψ

∂θ1∂θ1
− ∂2ψ

∂θ2∂θ2

)
= γ(~θ) cos 2φ(~θ),

γ2(~θ) =
∂2ψ

∂θ1∂θ2
= γ(~θ) sin 2φ(~θ),

(1.22)

where φ is the orientation angle and the shear scalar is γ =
√
γ2

1 + γ2
2 . The transformation

matrix can then be rewritten as

Aij = (1− κ)

[
1 0

0 1

]
− γ

[
cos 2φ sin 2φ

sin 2φ cos 2φ

]
. (1.23)

The convergence causes an uniform expansion of the image of the background source,

whereas the shear tangentially stretches the source. The surface brightness from back-

ground sources is preserved during gravitational lensing. This causes magnification of the
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image because of the change in solid angle of the source. The magnification can then be

written as

µ =
1

detA
=

1

[(1− κ)2 − γ2]
, (1.24)

with the definition of the magnification matrix as inverse of the transformation matrix.

Magnification can be either positive or negative, which correspond to different image

properties. When magnification is positive, the parity of the source is preserved, whereas

when magnification is negative the image is flipped like a mirror image. Where the magnifi-

cation is infinite, this represents critical lines in the lens plane. Around critical lines, images

merge with one another and form arcs. These lines projected back to the source plane are

known as caustic lines. If the background source’s position were to move over a caustic line,

two images would be created or destroyed depending on the direction of movement.

1.1.1 Categories of Gravitational Lensing

Gravitational lensing occurs in three classes: (i) strong lensing, (ii) weak lensing, and

(iii) microlensing. Strong lensing is when multiple images, usually as rings or arcs, of the

background source are produced. These strong lensing features can be seen in the galaxy

cluster Abell 2218 in Fig. 1.3. For strong lensing to occur, the projected mass density of

the lens has to be greater than the critical surface density, Σ>∼Σcr, at some location in the

lens plane. Because of this condition, strong lensing is mostly found within galaxy clusters

or massive galaxies as lens. Weak lensing produces distortions of the background sources,

but no multiple images, on a larger scale. The background sources, typically galaxies, are

tangentially stretched and magnified by the foreground mass. The massive size of galaxy

clusters makes them a common occurrence of weak and strong lensing. The last class of

gravitational lensing, microlensing, usually occurs on smaller scales where the distortion of

shape is difficult to detect. Multiple images are produced, but the image separation is very

small δθ <<< 1′′. However, the light received from the background source changes with

time.

1.2 Massive and Merging Galaxy Clusters

According to the standard hierarchical model of structure formation, the earliest objects to

form in the universe come from the gravitational collapse of the initial density perturbation

of the Universe (Kravtsov & Borgani, 2012). Given the mean mass density of the Universe,
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Figure 1.3 Hubble image of Abell 2218 showing strong lensing features as arcs and mul-
tiple images of background sources. Credit: NASA, ESA, A. Fruchter and the ERO Team
(STScI, ST-ECF)

ρ̄m, the density contrast is defined as

δ(~x) =
ρ(~x)− ρ̄m

ρ̄m
, (1.25)

and describes local enhancements and deficits of the underlying density. First, small scale

fluctuations in the density field form. The amplitudes of these fluctuations are characterized

by linear growth theory when δ(~x) << 1. Eventually, these fluctuations grow to a size,

δ(~x) >> 1, where nonlinear growth theory is needed. Dark haloes form and merge together

into bigger halos. Baryonic matter then collapses into these halos and starts the formation

of stars and galaxies. Galaxies merge together to form galaxy clusters. The mass of a galaxy

cluster is dominated by the dark matter halo(s). Dark matter halos have been routinely

modeled with the Navarro-Frenk-White (NFW) density profile:

ρNFW (r) =
ρo

r
rs

(
1 + r

rs

)2 , (1.26)

where r is the radius of the halo, rs is the scale radius, and ρo is a scaling parameter (Navarro

et al., 1996). Besides the dark matter halo(s), galaxy clusters are made up of galaxies and

gas of the intracluster medium (ICM). Their total mass is usually between 1014-1015M�.

Galaxy clusters are either dynamically active and in an ongoing merger between the
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galaxy members, or relaxed. The gas within a merging cluster is heated up from infall of

cluster members. Merging clusters have been identified by extended radio halos in their

centers or smaller radio relics in the outer regions of the clusters (Ferrari et al., 2008).

Similarly, peculiarities in the distribution of X-ray emission of the ICM appear in merging

clusters. Other signatures have been in the offsets between mass and X-ray distributions

in the ’Bullet Cluster’, (Markevitch et al., 2004), or offsets between mass and the Brightest

Cluster Galaxies (BCGs) in Abell 3827 (Massey et al., 2015), although the offsets may

not be significant, (Massey et al., 2018). Relaxed clusters are characterized by large X-ray

peaked emissions from the ICM plasma cooling down (Hudson et al., 2010). Throughout

the evolution of the Universe, galaxy clusters have come to exist in many states.

1.3 Hubble Frontier Fields

Deep field surveys have looked at the earliest and most distant galaxies to gain insights into

the origins of the early Universe. The launch of the Hubble Space Telescope (HST ) provided

the opportunity to investigate these faint and distant galaxies at depths never seen before.

The Hubble Deep Field observations in 1995 were the first to utilize the power of the HST to

capture these galaxies, (Williams et al., 1996), followed by HDF-South in 2000 (Casertano

et al., 2000). A significant number of galaxies were detected, with redshifts out to z ≈ 5.

Many of those galaxies showed signs of ongoing star formation. Over the years, more deep

field imagery, with aide of the Advanced Camera for Surveys (ACS) in 2002 and Wide Field

Camera 3 (WFC3) in 2009, pushed the boundaries of galaxy detections at high redshifts

(Great Observatories Origins Deep Survey (GOODS): Giavalisco et al., 2004, Hubble Ultra

Deep Field: Bouwens et al., 2010). Detections of galaxies with a redshift z > 9 were now

possible, albeit small in number, (Brammer et al., 2013; Finkelstein et al., 2015).

Another technique for studying distant galaxies is to utilize the lensing, magnifying

power of massive galaxy clusters foreground to the galaxies. A recent study, The Cluster

Lensing And Supernova survey with Hubble (CLASH), focused on 25 galaxy clusters to

study properties of galaxies in the early universe. These discoveries and the planned future

launch of the James Webb Space Telescope (JWST ), motivated the proposal of the Hubble

Frontier Fields initiative (Bullock et al., 2012).

The Hubble Frontier Fields program (hereafter HFF) was a multi-year program, using

the HST and Spitzer Space Telescope (Spitzer), to study six massive galaxy clusters and

associated parallel fields Lotz et al. (2017). By utilizing the WFC3 and ACS, scientists

obtained the deepest observations of galaxy clusters ever. The primary science goals of the
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HFF program were to (i) find new populations of galaxies at z = 5-10 (ii) gain insight into

star-forming galaxies at the earliest ages of the Universe (iii) quantitatively study the struc-

ture of star-forming galaxies at z > 5 (iv) use powerful cluster lenses to be able to see the

composition of the faintest galaxies, z > 8 (Bullock et al., 2012; Lotz et al., 2017). Starting

with 25 clusters from Bullock et al. (2012) and other community recommendations, six clus-

ters were chosen to meet these goals: Abell 2744, MACSJ0416.1-2403, MACSJ0717.5+3745,

MACSJ1149.5+2223, Abell S1063, and Abell 370. Each cluster and associated parallel field

was observed for two epochs of HST time, totaling over 840 HST orbits. Lens modeling

teams were invited to apply their reconstruction methods to solve for the mass distributions

of the HFF clusters. Preliminary mass models were produced by five teams using pre-HFF

data to help upcoming observations (Coe et al., 2015). Additional lens modeling teams

joined as the HFF program progressed. Updated mass models of every cluster were pro-

duced with new spectroscopic and weak-lensing data, where available, by each lens modeling

team. Every lens mass model can be found on the MAST website.1

The goal of lens reconstruction techniques is to build mass models of the lens constrained

by the gravitational lensing data, which, for strong lensing consists of identifications, posi-

tions and redshifts of multiple images of background sources. There are a few different lens

inversion methods in existence, based on one of the two different approaches to lens recon-

struction – parametric and non-parametric, or free-form. Some methods are hybrid (Diego

et al., 2015), and incorporate features of both approaches. Parametric methods assume an

underlying functional form of the mass distribution of the lens, and the lensing data is used

to constrain the parameters of the functional form. The number of parameters is usually

small (10-50), and statistical inference can be made using regular sampling methods, like

Markov-Chain Monte-Carlo (MCMC). Though in principle these physical models can take

any form, in practice parametric models assign mass to cluster galaxies, assuming light-

traces-mass, and add a few additional mass components to represent the large-scale cluster

dark matter. One widely used example of such techniques is Lenstool (Jullo et al., 2007).

On the other hand, non-parametric models (or free-form) solve for the lensing mass by

using the images data alone, with no reference to cluster galaxies. Some free-form methods

match the number of free parameters to the number of lensing observables, while others work

with a parameter space whose dimensionality greatly exceeds the number of constraints.

An example of the latter type of method is Grale (Liesenborgs et al., 2006, 2007, 2008,

2009) which uses no light information from the lens, and requires only the position and

redshifts of the multiple images of the background sources.

1 https://archive.stsci.edu/prepds/frontier/lensmodels/
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This dissertation uses the free-form lens reconstruction method of Grale and strong

lensing data to investigate two HFF clusters: Abell 2744 and MACS-J0416.1-2403.

1.4 Grale

Grale is a free-form technique of lens reconstruction that uses a genetic algorithm to

calculate the mass distribution of a lens. Only the images’ identifications, locations and

redshifts are used as inputs for Grale. The images’ positions can be modeled either as

point sources or as extended regions. To start, a uniform grid is initialized with fixed width,

projected Plummer mass distributions. These Plummer spheres are used as the basis set.

The genetic algorithm then searches for the best solution of the mass distribution, in nine

successive steps, according to a fitness value with two components, to be described later.

At each step, the genetic algorithm refines the original grid, subdividing it into smaller grid

cells where mass density is high, and places a Plummer sphere in each grid, with its size

matching the size of the grid cell, and its mass determined by the constraints provided by the

lensed images. Through each iteration, reproduction and mutation are used to breed new

solutions. After this process is repeated nine times, Grale obtains a final mass distribution

(Liesenborgs et al., 2006).

The fitness measures of a genetic algorithm assesses how well a mass distribution satisfies

the lens equation, and is therefore used to select the best solution for any given Grale run.

In general Grale’s fitness value can be based on one, two, or more fitness criteria; we

chose to use two. The first fitness measure, positional fitness measure, depends upon image

positions and the second fitness measure uses the absence of images. For a given mass

distribution, the lens equation can be used to project the images from the same source back

to the source plane. The positional fitness measure is based on how close observed back-

projected images converge to each other. The second fitness measure is based on spurious

extra images. In complex lensing systems, additional images could exist that trace back to

sources. If the modeler is sure that these extra images do not exist, then the null space

of Grale is defined to be the area of no images in the image plane. The null space is

divided in triangles and each triangle is back-projected to the source plane. The second

fitness measure of Grale’s fitness is the number of all the triangles that back-projects to

the region containing all back-projected images. The fitness value then is proportional to

the product of the two fitness measures and used to compare the different iterations of a

given run.
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Both fitness measures depend upon the choice of modeling images as point-like or ex-

tended regions. For the positional fitness measure, the overlap is either fractional between

rectangles surrounding extended back-projected images, or measured as distances between

back-projected point-like images. For point-like images, Grale uses the size of the region

containing all back-projected images as a length scale. Thus an absolute scale is not used,

because this would favor solutions that place the images into smaller source plane regions,

and result in overfocusing. For extended images, an absolute scale is also not used, but the

average size of the rectangles acts as the length scale which helps avoid overfocusing images,

(Liesenborgs et al., 2006). When using extended images for the second fitness measure, the

area of existing images is cut out from the null space. Holes are made for regions where one

suspects additional images, based on lensing theory. Point-like images do not remove any

regions from the null space.

1.4.1 Plummer Spheres

The Plummer sphere is a mass model which, for a Plummer mass M, has density as a

function of radius r as

ρp(r) =

(
3M

4πrp

)(
1 +

r2

r2
p

)− 5
2

, (1.27)

where rp is the plummer width (Plummer, 1911). The gravitational potential of a Plummer

sphere is

Φp(r) = − GM√
r2 + r2

p

, (1.28)

(Liesenborgs, 2010). Using Eq. 1.19, the lensing potential follows as

ψp(θ) =
Dds

DsDd

2GM

c2
ln(θ2 + θ2

p), (1.29)

where θp =
rp
Dd

. Using Eq. 1.17, the reduced deflection angle caused by a Plummer sphere

is

~α(~θ) =
Dds

DsDd

4GM

c2

~θ

θ2 + θ2
p

. (1.30)

Following this, using Eq. 1.18, the convergence from a Plummer sphere is

κp(~θ) =
Dds

DsDd

4GM

c2

(
θ2
p

(θ2 + θ2
p)

2

)
. (1.31)

Similarly, using Eq. 1.22, the shear tensor for a Plummer sphere is

γ1(~θ) =
Dds

DsDd

4GM

c2

(
θ2

2 − θ2
1

(θ2 + θ2
p)

2

)
,

γ2(~θ) =
Dds

DsDd

4GM

c2

(
−2θ1θ2

(θ2 + θ2
p)

2

)
.

(1.32)



Chapter 2

Grale reconstructions of HFF

Clusters

2.1 Grale reconstructions of all HFF clusters

Over the entire duration of the HFF project, four versions of cluster reconstructions were

done. Lens modeling teams used pre-HFF data for HFFv1. HFFv2, HFFv3, and HFFv4

used updated data primarily from HST observations. A list of lensing observables were

required to be submitted for each reconstruction per version. FITS maps were made for the

convergence (κ), shear and components (γ, γ1, γ2), lensing potential (ψ), deflection angles

in x and y direction (αx, αy) for a source at ’infinity’, Dds
Ds

= 1. In addition, FITS maps were

made for magnifications (µ) for sources at z = 1, 2, 4, 9. There was a target set of clusters

for each submission, but lens modeling teams were free to provide more models than the

target.

We, as the Grale lens modeling team, delivered mass models for all six HFF clusters

over the four submission periods. As an example, HFFv1 models using pre-HFF data are

shown in Fig. 2.1, for all six HFF clusters. Several submissions had two reconstructions per

cluster. Our mass models are available for public use on the ’Frontier Fields Lens Models’

webpage of the MAST website under the L. Williams (PI) drop-down menu.1 Readme

files are provided that contain the image list used, size of the maps, and other relevant

information.

Use of our reconstructions, outside of our team, can be found in McLeod et al. (2016);

Bouwens et al. (2017a,b); González et al. (2018); Montes & Trujillo (2018), and other papers.

Chapters 3 & 4 use HFFv2 of MACSJ0416 and HFFv3 & HFFv4 of Abell 2744, respectively.

1 https://archive.stsci.edu/prepds/frontier/lensmodels/

13
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Figure 2.1 HFFv1 Grale mass reconstructions of the six HFF clusters. Color scale is
projected density in units of kg/m2. Green dots are multiple images used in each recon-
struction. Credit: Mohammed et al. (2016)

Table 2.1 Grale reconstructions of the six HFF clusters

Abell 2744 HFFv1, HFFv3, HFFv4

Abell 370 HFFv1, HFFv4, HFFv4.1

Abell S1063 HFFv1, HFFv4. HFFv4.1

MACSJ0416 HFFv1, HFFv2, HFFv3, HFFv3.1, HFFv4

MACSJ0717 HFFv1, HFFv4

MACSJ1149 HFFv1, HFFV4
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Testing light-traces-mass in Hubble

Frontier Fields Cluster

MACS-J0416.1-2403

3.1 MACS-J0416.1-2403

To use clusters as telescopes one must have a detailed and accurate characterization of

their optics, or maps of the mass distribution. This chapter is concerned with the mass

distribution of one of the HFF clusters, MACSJ0416.1-2403 (hereafter MACSJ0416). It

is a massive gravitational lens at a redshift of 0.396, and right ascension 04:16:09, and

declination -24:03:58, (Mann & Ebeling, 2012). An HST image of the cluster can be seen in

Fig. 3.1. The cluster shows features of a recent major merger or pre-merger (Jauzac et al.,

2015; Ogrean et al., 2015), like double-peaked X-ray surface brightness (Mann & Ebeling,

2012), elongation, and many sub-structures (Zitrin et al., 2013; Grillo et al., 2015). It has

been studied in detail for its mass distribution (Zitrin et al., 2013; Jauzac et al., 2014a,b;

Grillo et al., 2015; Diego et al., 2015), magnification maps (Johnson et al., 2014; Richard

et al., 2014), and mass power spectrum (Mohammed et al., 2016) using different inversion

methods.

This chapter has two goals: (i) to study the mass distribution of the cluster with respect

to the light, and (ii) to compare results of two very different methodologies: free-form

Grale with nparam � nconstr, and light-traces-mass Lenstool, with nparam<∼nconstr. To

accomplish the first goal in an unbiased way one needs a method that does not include

cluster galaxies as input; Grale satisfies that criterion. One motivation for this is the

15
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Figure 3.1 HST image of MACSJ0416. Credit: NASA, ESA and the HST Frontier Fields
team (STScI).
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recent discovery of an offset between a galaxy deep inside the gravitational potential of a

massive cluster, ACO 3827 and its dark matter halo (Williams & Saha, 2011; Mohammed

et al., 2014; Massey et al., 2015). Because our analysis is confined to the central portions of

the cluster we do not expect to find mass-light discrepancies of the kind found by Merten

et al. (2011) and Jauzac et al. (2014b). Our second goal has been addressed by some recent

papers (Zitrin et al., 2010; Coe et al., 2012), but usually these compare circularly averaged

density profiles, which is probably not the most suitable statistic in this case as MACSJ0416

underwent a recent merger. We use a more detailed metric, namely mass-galaxy correlation

function.

In Section 3.2 we give a brief summary of the existing mass reconstructions of this

cluster. In Section 3.3 we discuss our lens reconstruction method. Section 3.4 presents

our results, and in particular discusses light and mass offsets and galaxy-mass correlation

function obtained with Grale, and two inversions with Lenstool. In Section 3.5 we

summarize our findings for MACSJ0416. We use flat ΛCDM cosmology, with Ωm = 0.27,

and h = 0.71, which results in a scale of 5.31 kpc/′′ at the cluster redshift of z = 0.396

3.2 Existing Mass Models of MACSJ0416

Current literature on mass reconstructions of MACSJ0416 have used free-form, hybrid and

parametric methods to calculate the associated mass distribution. Zitrin et al. (2013) used

two different parametric methods to determine the mass distribution of MACSJ0416. Their

first method assigned a PIEMD (pseudo-isothermal elliptical mass distribution) mass profile

to every galaxy and smoothed the total resulting mass map with an elliptical Gaussian to

obtain a cluster-wide dark matter distribution. The latter was added to the mass due to

individual galaxies. The second method used the same PIEMD model for galaxies, and two

elliptical NFW halos to describe the dark matter. The authors ran an MCMC algorithm to

obtain the solution for both methods. The large number of multiple images in this cluster

was attributed to the extreme elongation of MACSJ0416. With their analysis the authors

discovered 70 new multiple images from 23 sources.

Johnson et al. (2014) modeled all 6 HFF clusters using pre-HFF data, and analyzed the

resulting mass and magnification properties of the reconstructions. They followed the para-

metric approach by utilizing Lenstool to find the best solution for the mass distribution

in the clusters. They assigned a PIEMD to each cluster member, and to two cluster-scale

components. The best solution was found through an iterative process of running an MCMC

algorithm at each step. The final model was computed under image plane optimization,
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meaning the differences in the observed and model predicted positions were optimized in

the lens plane. The authors report a smaller mass inside the z = 2 critical curve than Zitrin

et al. (2013) because of different redshifts used in each model.

Richard et al. (2014) adopted a strong- and weak-lensing approach to find the mass

distribution of MACSJ0416. They used Lenstool with dual pseudo-isothermal elliptical

(dPIE) mass profiles for each cluster member, and two cluster-wide mass clumps placed in

the regions of high galaxy number density plus a third halo for a lower-redshift galaxy not

belonging to the cluster.

Jauzac et al. (2014a) used Lenstool, which assigns a dPIE mass profile to cluster

galaxies, and cluster wide components. Based on the HFF data the authors identify 51 new

multiply imaged systems, for a total of 68, comprising red 194 individual lensed images.

Their best model produces lens plane rms of 0.68′′ for 149 images of 57 most securely

identified sources.

Grillo et al. (2015) used a parametric method called GLEE. They considered a range of

ways of parametrizing the mass distribution in the cluster, and found that the best fit was

obtained with a model that has two cored elliptical pseudo-isothermal mass distributions

to represent the dark matter and 175 galaxy-size dual pseudo-isothermal mass distributions

with the mass-to-light scaling with luminosity. Their model reproduces the positions of 10

image systems, totaling 30 spectroscopically confirmed lensed images very well, with lens

plane rms of 0.3′′. Their results are largely in agreement with previous reconstructions of

the shape of the mass distribution. A comparison with simulated galaxy clusters with total

masses similar to that of MACSJ0416 shows that the former contain considerably less mass

in subhalos in their cores relative to MACSJ0416.

Diego et al. (2015) used a hybrid approach to reconstruct the mass distribution of

MACSJ0416. Three separate mass models were made for the galaxy component of the

lens, two following the light traces mass assumption and the third linking every galaxy to

a circularly symmetric NFW distribution. The rest of the mass distribution was modeled

by a free-form method. These mass models showed a bimodal mass distribution, similar

to the X-ray emission distribution, except for small offsets in the two peaks. Collisional

effects such as dynamical friction are believed to be the reason behind the offsets between

X-ray and dark matter distributions. In addition, a flat mass profile was found on medium

distance scales surrounding the two peaks of the mass distribution, likely because of tidal

forces, projection effects, or possibly self interacting dark matter. The authors find that

overall light traces mass in MACSJ0416.
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Table 3.1 Previous MACS0416 mass models with type of data used and number of mul-

tiple images.

Author Type of Data Num. of multiple images

Zitrin et al. (2013) LTM-Gauss pre-HFF 34

Zitrin et al. (2013) NFW pre-HFF 34

Johnson et al. (2014) pre-HFF 34

Richard et al. (2014) pre-HFF 47

Jauzac et al. (2014a) HFF 149

Grillo et al. (2015) CLASH 30

Diego et al. (2015) CLASH 96

Published mass reconstructions of MACSJ0416 are summarized in Table 2.1. Besides the

Zitrin et al. (2013) LTM-Gauss method, every previous parametric method used two cluster-

scale haloes. All previous reconstructions made use of the galaxy light in MACSJ0416

in some form when calculating the mass distribution. We go about the reconstruction

process differently, and use only the positions of the lensed images as input. Thus, light

is not assumed to trace mass in our reconstruction processes, and our results represent a

completely independent way of modeling MACSJ0416 and testing if light follows mass in

clusters.

3.3 Grale Setup

We generated 30 Grale reconstructions, each one using nine successive lensing grid re-

finements. We used 149 secure images as outlined in Jauzac et al. (2014a) and updated

redshifts from Grillo et al. (2015). For each grid the number of Plummer distributions was

chosen at random from a selected range. The first lensing grid’s range was 300-400 and the

last, ninth lensing grid’s range was 1700-1800. Each subsequent grid had a greater density

of Plummer spheres. In addition, the center coordinates and size of each grid was allowed

to fluctuate by 5′′ and 10′′ respectively to eliminate the imprint of a fixed grid on the solu-

tion. Finally, for each run the best mass map was selected depending upon the fitness value

described above. Each reconstruction’s results are somewhat different because the random

seed used by Grale to initialize a run enables it to explore different regions of the large

dimensional model parameter space. To reduce the random variations and to enhance the

common features in mass maps of different runs, the runs—30 in our case—are averaged

to produce one final mass map, which is also a solution, as discussed in Mohammed et al.
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(2014).

3.4 Results

The average map of the 30 individual Grale reconstructions is shown in Fig. 3.2; this

map is the basis of our analysis. The blue lines are the mass density contours and the red

circles indicate images. There are 20 contour lines linearly spaced from 0.03827 g/cm2 up

to 0.76531 g/cm2. Using the 30 individual maps we can calculate the fractional uncertainty

defined at every location in the lens plane as the ratio of the root-mean-square deviation

between the maps’ κ values and the average κ of all the maps. (κ is the projected surface

mass density in units of critical density for lensing). The fractional uncertainty highlights

areas in the mass distribution that contain small and large uncertainty. As seen in Fig. 3.3,

there are some small areas within the central parts of the galaxy cluster that contain large

fractional uncertainty, 30-40% (where contour lines are green and the density of lines is

greater), however most of the galaxy cluster is minimal in fractional uncertainty, usually

below 15% and in some regions below 5% (where contours are thin and the density of lines

is lower), because Grale is very well constrained by the images in this region. Large

fractional uncertainty values can be seen outside the central elongated region of the cluster

where Grale does not have many constraints.

Grale, or any other lens reconstruction method that does not explicitly place mass at

the location of visible galaxies as part of its input is the right tool for investigating how

well mass follows light on the scale of galaxies in the cluster. No other published lensing

inversion of MACSJ0416 is form-free in this sense. Here, we investigate this using two

approaches, described in the next subsections.

3.4.1 Mass Contours and Local Mass Peak Offsets

One way to determine if light traces mass is to analyze the projected mass contours, shown

in Fig. 3.2, and their relation to the galaxies.

It is apparent that the overall mass distribution of the cluster, including its elongation

is well reproduced. Grale finds two prominent cluster-wide mass clumps; these correspond

to the two parametric dark matter components used in most of the models of MACSJ0416

described in Section 3.2. Visual inspection shows that close to the center of the cluster,

where the map is best constrained the mass density contours around galaxies encircle the

galaxies indicating that Grale places mass concentration at those locations, even though

galaxies are not part of the input. Towards the edges of the cluster, where the mass is least
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Figure 3.2 Mass contours of averaged mass map of MACSJ0416 red overlaid on a HST
F435W image. The blue lines represent the mass density contours and the red circles are
images. There are 20 mass contour levels linearly spaced from 0.03827 g/cm2 up to 0.76531
g/cm2. The green dots represent local mass peaks around the 4 central ridge galaxies, in
30 individual mass reconstructions. These galaxies are labeled G1-G4, with G1 appearing
the brightest.
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Figure 3.3 Contours of fractional uncertainty in mass density of MACSJ0416. The con-
tours are separated into two groups distinguishable by their colors. The six blue contour
lines range from 3.3% to 19.8% in fractional mass density uncertainty, and the seven green
lines range from 23.1% to 49.5%. Images are highlighted by red circles and the two BCGs
are marked as magenta crosses.
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constrained, some contour lines go through galaxies, indicating that these galaxies are not

‘detected’ by Grale.

One of our goals is to determine how well mass follows light in the immediate vicinity

of galaxies. These latter galaxies that Grale does not detect cannot be used for the

purpose, but the former ones can. There are four such galaxies along the central ridge line

of MACSJ0416; they are marked in Fig. 3.2 and have magenta labels G1-G4. These regions

also correspond to low fractional uncertainties, <∼ 10%, in reconstructed mass.

A closer inspection of the mass contours around these four galaxies reveals that the

peaks of the mass distribution are displaced from the closest galaxy cluster member. To

find out if the displacement is statistically significant we can look at the scatter of the

positions of the local density peaks in the 30 individual mass maps. The green dots in

Fig. 3.2 mark the highest single mass pixel in each of the 30 reconstructions, in circular

regions of radius 8′′ around the four galaxies. Even though the galaxy positions are not

centered on the corresponding cloud of 30 mass peaks, they are also not significantly offset

from that distribution. Table 3.2 shows the distance in arcseconds between galaxy and

average position of the 30 mass peaks. The significance can be defined as the ratio between

the offset and root-mean-square dispersion. The last column of Table 3.2 shows none of

the galaxies to be significantly offset from the mass peaks. We conclude that there is no

compelling evidence that the mass in the immediate vicinity of the central galaxies does

not trace the light. This is in contrast to the case of galaxy N1 in ACO 3827 (Williams &

Saha, 2011; Mohammed et al., 2014; Massey et al., 2015), where the displacement between

the galaxy and the nearest mass peak is 0.89+0.26
−0.27

′′, or 1.62+0.47
−0.49 kpc.

Table 3.2 Offsets between galaxies G1-G4 and 30 mass models peaks in arcseconds. The
third column is the root-mean-square dispersion between the galaxies and mass peaks. The
last column is the significance, ratio between the distance and root-mean-square.

Galaxy Dist. (′′) RMS (′′) Dist.
RMS

G1 2.77 3.62 0.77
G2 0.94 2.16 0.43
G3 5.94 3.62 1.64
G4 2.20 2.35 0.94

The width of the distribution of the 30 local mass peaks from individual reconstructions,

i.e. our uncertainty, is ∼ 5′′, and represents the smallest offset we could have detected, if

these were present. Given that the galaxy-mass offset in ACO 3827, ∼ 0.9′′, yields dark

matter self-interaction cross section that is approximately the same as the upper limit



Chapter 3. Testing light-traces-mass in Hubble Frontier Fields Cluster
MACS-J0416.1-2403 24

from other studies (Clowe et al., 2006; Randall et al., 2008; Kahlhoefer et al., 2014, 2015),

means that the level of uncertainty in MACSJ0416 will not allow a more stringent upper

limit on dark matter self-interaction cross section. Although the total number of images

in MACSJ0416 is high, ≈150, it appears that their distribution, for example the proximity

to the four galaxies, or the accuracy of the source redshifts, are not adequate to constrain

the offsets at a level comparable to those seen in ACO 3827. The role of image (or image

knot) number density in accurately constraining mass maps was discussed in Liesenborgs

et al. (2008). The authors showed that the monopole degeneracy, a way to redistribute

mass between images by adding circularly symmetric density distributions with zero total

mass, does not change image positions, and is largely responsible for uncertainty in the

mass determination. The prevalence of monopole degeneracy will depend on whether the

distribution of images allows adding such circular regions. It is possible that this is easier

to do near the galaxies G1-G4 in MACSJ0416 than in ACO 3827. It is possible that in

other HFF clusters the configuration of the images is more fortuitous for the detection of

possible offsets.

3.4.2 Mass-Galaxy Correlation Function: Grale

A further measure of how well mass follows light is provided by the correlation function,

ξ(θ) between galaxies and the average reconstructed mass map. The projected galaxy-

mass correlation function describes how galaxies and mass are clustered, as a function of

separation, θ, on the sky. It is defined through conditional probability, dP of finding a

galaxy in a volume dV , a distance θ away from another galaxy, dP = n(1 + ξ)dV , where

n is the average number density of galaxies. It typically decreases with separation, after

attaining the largest amplitude at zero. We use the estimator ξ(θ) =
DmDg

〈DmRg〉 − 1, where

DmDg represents the number of mass pixel–galaxy pairs, and 〈DmRg〉 is the average number

of pairs of 100 trials, where the positions of the galaxies have been randomized.

The galaxy-mass correlation function between the galaxies in the Subaru R-band catalog

in MACSJ0416 and the average mass map is shown in Fig. 3.4. It was computed using a

bin size of 0.52′′within a region of area 5903.52 squared arcseconds and enclosing galaxies

and images along the cluster’s line of elongation. This is the line extending through the two

brightest cluster galaxies of the cluster. We chose Subaru galaxies over HST galaxies because

Subaru catalog contains magnitudes for all HST galaxies, including those that are too bright

for HST. Furthermore, Subaru filters we use are closely matched by HST filters; specifically,

galaxy magnitudes in Subaru Z (R) band are tightly correlated with HST F814W (F606W)

magnitudes. Since Subaru is a ground-based telescope, the light profiles of the brightest
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galaxies are extended, and may block fainter galaxies. To reduce this bias, we masked the

10 brightest galaxies in the Subaru R-band with a circle of radius 8” before calculating the

correlation functions. Fig. 3.4 shows ξ(θ) for several galaxy magnitude cuts; the number of

galaxies in each cut is indicated in the figure.

If galaxies traced the underlying mass distribution according to the standard biasing

scheme one would expect that the brightest galaxies would show the strongest clustering

with the mass, and as the galaxy magnitude limit is pushed towards lower fluxes, the

amplitude of the correlation function would decrease due to two reasons: fainter galaxies

contain less mass, and are thus biased towards less mass. This is indeed what is seen.

Because Grale input does not include any information about the galaxies, the trend

of brighter galaxies being more biased towards mass is an important confirmation of the

standard biasing scenario.

Fig. 3.4 also shows that at very small separations, <∼ 2′′, the correlation function de-

creases, instead of increasing as separation approaches zero. Taken at face value, this would

be indicative of an offset between dark and light matter in cluster galaxies. However, the

uncertainties in ξ, which are approximately 0.025, are too large to make that conclusion.

This behaviour at small separations and its marginal statistical significance was already

seen in Section 3.4.1.

While it is safe to assume that bright galaxies are mostly cluster members, the same

cannot be said of fainter ones. One way to find the apparent magnitude below which most

galaxies are background to the cluster is to use lensing magnification bias. Behind a galaxy

cluster lensed galaxies are made brighter than unlensed ones at the same redshifts and

the area behind the lens is simultaneously stretched by the same magnification factor. To

predict the net effect of this bias we can look at the differential galaxy counts as a function of

apparent magnitude. Fig. 3.5 shows these counts based on the entire Subaru field; using just

the galaxies in the direction of the cluster would produce very noisy counts. Magnification

bias decreases galaxy counts at magnitudes where the slope of the counts is shallow, and

increases them at magnitudes where the slope is steep. When the slope is equal to one,

d log(n[m])/d log(f) = 1, there is no magnification bias because the flux magnification and

area dilution cancel each other out. In principle, one should look at the unlensed counts

slope for this purpose, which are unobservable, but in the case of relatively shallow counts,

the lensed observed counts provide a reasonable approximation.

Because at magnitudes where d log(n[m])/d log(f) < 1 area dilution wins over flux

magnification, magnification bias predicts anti-correlation between cluster mass and back-

ground galaxies. According to Fig. 3.5, d log(n[m])/d log(f) becomes shallower than 1 below
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Figure 3.4 Normalized galaxy-mass cross-correlation function for Subaru R-band at mul-
tiple magnitude cuts. The mass map is the average of 30 individual Grale reconstructions.
Rms dispersion between the 100 realizations of DmRg is approximately 0.025 for all mag-
nitude ranges. Shaded regions indicate 1σ error bars.
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Figure 3.5 Differential number counts of galaxies over the entire Subaru field, not just
the galaxies behind the cluster. The vertical dashed line marks the magnitude below which
counts are incomplete; we did not include these galaxies in any of the analysis. The marked
line, d log(n[m])/d log(f) = 1, is provided for comparison to the two bands.
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m ≈ 20, for both R and Z magnitudes. We select two magnitude cuts, 20≤m≤ 24 and

24 ≤m ≤ 25.5; we did not use galaxies fainter than 25.5 because beyond this magnitude

counts suffer significantly from incompleteness.

For the 20≤m≤24 cut we expect modest anti-correlation for the R-band, and somewhat

larger anti-correlation for the Z-band, because Z-band counts are shallower than those in R-

band. The same masking procedure was applied to the Z-band for computing the correlation

function. The computed correlation functions for both bands are shown in violet in the lower

middle left and right panels of Fig. 3.6. Indeed, the Z-band galaxies show less correlation

than the R-band galaxies. However, neither the R-band selected galaxies nor the Z-band

selected galaxies show an anti-correlation between Grale cluster mass and galaxies. This

might indicate that some of the galaxies in this magnitude range are cluster members, and

so the total correlation function signal consists of a superposition of mass clustering with

the cluster member galaxies, and magnification bias resulting from the cluster mass lensing

background galaxies.

At fainter galaxy magnitudes, 24≤m≤25.5, we expect that most, if not all galaxies are

background to the cluster, and so magnification bias will be the only effect. Consistent with

this expectation we find a strong anti-correlation between cluster mass and cluster galaxies

for both Subaru magnitude bands (we show only R band results here). Thus, different

magnitude cuts show features that imply that magnification bias exists in MACSJ0416, and

so many of the fainter galaxies are significantly background to the cluster. Magnification

bias is sometimes used to aid mass reconstruction in clusters (Umetsu & Broadhurst, 2008;

Umetsu et al., 2016).

We note that the (anti-)correlations extend to about 20′′, or 100 kpc at the redshift

of the cluster (Fig. 3.4), which is roughly the typical separation between bright, m<∼ 20

galaxies, and considerably smaller than the size of the cluster, 120′′×50′′.

3.4.3 Mass-Galaxy Correlation Function: Grale vs. Lenstool

A number of metrics can be used to compare mass reconstructions from different lens

inversion methods. One can look at the differences, or fractional differences between two κ

maps on the x, y plane, however, summarising that information in a concise way is difficult.

One can also look at the circularly averaged radial density profiles of the different maps,

however, this entails a lot of averaging, which hides many potentially interesting differences.

We use the correlation function, which is similar to circular averaging, but is done around

each galaxy, instead of just the center of the cluster. It is a good compromise between too

much and too little detail.
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Figure 3.6 Galaxy-mass cross-correlation functions for five Subaru R-band and one Z-
band magnitude cut. Three mass maps are used: from the Grale team (violet), CATS
team (gold), and Sharon/Johnson (red). Shaded regions indicate 1σ error bars.
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We compare Grale results to those of two groups that use different implementations

of Lenstool, CATS team and Sharon/Johnson team, which are presented in Jauzac et al.

(2014a) and Johnson et al. (2014), respectively, and are available for download on the

HST MAST website. In this work, we limit our comparison to reconstructions based on

Lenstool only, because Grale and Lenstool are at the opposite ends of the spectrum

of assumptions going into lens inversion methods. We leave a broader comparison to a later

work. The CATS reconstruction is based on the HFF strong and weak lensing data, and

Sharon/Johnson reconstruction uses pre-HFF strong lensing data. Both assume flat ΛCDM

cosmology, with Ωm = 0.3, and h = 0.7. This is different from our assumed cosmology, but

the difference results in negligible deviations of length scales, ∼ 0.5%.

Figure 3.6 plots mass-galaxy correlation function for six different galaxy magnitude cuts.

All but the bottom middle panel use Subaru R-band to select galaxies; the bottom middle

panel uses Z-band. The magnitude cuts in the six panels are mR ≤ 20, mR ≤ 22, mR ≤ 24,

20 ≤ mR ≤ 24, 20 ≤ mZ ≤ 24, and 24 ≤ mR ≤ 25.5. A cursory look at these reveals that

all three teams recover very similar clustering properties. The fact that parametric and

free-form methods yield very similar results is encouraging, and leads to two conclusions,

(a) strong priors about mass following light are not required to recover mass distribution

in clusters with very many lensed images, (b) light follows mass quite well in this merging

cluster.

Though Grale and the two implementations of Lenstool agree overall quite well,

there are notable differences between the three.

CATS and Sharon/Johnson correlation functions have a sharp spike near zero separa-

tions. This tight correlation is the result of Lenstool placing mass at the locations of the

visible galaxies. The central spike in Lenstool models can be also seen in the projected

mass power spectrum of the cluster studied by Mohammed et al. (2016): see the left panel

of their Fig. 9, where the fluctuation power at large k does not fall as fast as Grale’s.

Grale, which is blind to galaxies, still detects galaxies as gauged by this metric, but does

not associate as much mass with them due to a combination of two reasons, (i) the positions

of lensed images do not require it, and (ii) Grale does not have sufficient spatial resolution.

Aside from the central spike, the correlation functions of the two implementations of

Lenstool, CATS and Sharon/Johnson, disagree with each other at the same level as they

disagree with Grale. In fact, in the range θ = 2′′−20′′ CATS and Grale are closer to

each other than CATS and Sharon/Johnson. This behaviour is probably the result of the

data sets used: Grale and CATS use HFF, while Sharon/Johnson use pre-HFF.

Given that CATS and Grale teams use the same strong lensing data sets, the difference
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between these two should be entirely due to the differences in the reconstruction method. A

closer examination shows that at separations 2′′−10′′ and magnitude cuts above mR = 24,

CATS team correlation functions’ amplitude is below that of Grale—one can say it shows

a dip—and below a smooth extrapolation of ξ(θ) from larger separations. On these scales

Grale’s ξ(θ) looks smooth and rises monotonically in that region. In other words, compared

to Grale, CATS Lenstool mass maps show a steeper decline in correlation function with

increasing separation. This is likely a consequence of how Lenstool builds its mass maps as

a superposition of large, smooth dark matter component(s) and mass spikes due to galaxies.

There is no intermediate mass component that could bridge the gap and introduce more

mass on these length scales around galaxies.

Grale’s ξ(θ) gentler decline with θ on scales 2′′−10′′ or 10− 50 kpc may suggest that

there is more galaxy-mass correlation on these scales, i.e. that galaxies, and especially

those in the magnitude range 22<∼mR<∼ 24, are more biased traces of mass in clusters than

Lenstool assumes. In this context it is interesting to recall a recent discovery of nearly

a thousand low surface brightness galaxies with 1 kpc <∼Re<∼ 3 kpc in the center of Coma

cluster (Koda et al., 2015). Since these galaxies are old and evolved, they likely existed in

clusters at higher redshifts, comparable to those of HFF clusters. Though faint and likely

low mass, they still outnumber cluster members. These are not part of Lenstool input, and

if they cluster with brighter galaxies, they could contribute to higher correlation amplitude

on scales of tens of kpc.

In general, the somewhat different galaxy-mass clustering amplitudes found by the three

groups imply distinct models of how mass is distributed in clusters, and have different

implications for the cluster structure and evolution. For example, a larger galaxy-mass

clustering amplitude, such as obtained by Lenstool vs Grale, may imply that galaxies

form at much higher density peaks of the matter distribution, or that only the most compact

galaxies can survive in cluster centers. Hydrodynamic numerical simulations could help to

further determine the implications of the degree of biasing within clusters.

3.5 Conclusions

We carried out a lens inversion of MACSJ0416 using Grale, a free-form genetic algorithm

based method. The only inputs were 149 lensed images, identified by Jauzac et al. (2014a)

based on HFF data. First, we summarize our results on the comparison between Grale and

the two Lenstool mass reconstructions of this massive, merging z ∼ 0.4 cluster. Because

the true mass distribution in galaxy clusters is unknowable, it is important to critically
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compare the commonly used estimators. Our conclusions based on these two very different

methodologies are:

• Though the mass maps of Grale and Lenstool reconstructions look somewhat

different in detail, Grale and Lenstool (specifically, CATS and Sharon/Johnson

teams) recover very similar statistics of the mass-galaxy correlation.

• The most striking, but expected difference is that Lenstool’s galaxy-mass correla-

tions show a pronounced spike near zero separation. This is because Lenstool places

a lot of mass at the locations of galaxies as part of its input, whereas Grale does

not.

• Another notable difference is that on scales of 2′′−10′′, or tens of kpc, Grale’s cor-

relation function falls less steeply than Lenstool’s. It is possible that the lensing

constraints are compatible with both the steeper and the shallower decline. However,

it is also possible that the mass distribution is more extended on these scales around

galaxies, as Grale suggests, due to the presence of many hundreds of low surface

brightness galaxies of the kind recently detected in Coma (Koda et al., 2015).

The fact that two very different methodologies—Grale and Lenstool—give similar

results leads us to conclude that when lensed image number is around 100 or more, the

images alone are sufficient to recover the mass distribution in clusters very well. Strong

priors on galaxies are not needed.

Our conclusions regarding the mass vs. light distribution in MACSJ0416 are:

• Even with the high number of images present in MACSJ0416, no significant mass-

light offsets are found between the four central galaxies and the nearest mass peaks,

in contrast to ACO 3827. Our uncertainties are ∼ 5′′, larger than 0.9′′ offset observed

in ACO 3827. It is possible that other HFF clusters have a more fortuitous image

configuration and hence smaller uncertainties around the bright cluster galaxies.

• Overall, on scales larger than a few arcseconds, light traces mass, as reconstructed by

Grale, in the merging cluster MACSJ0416 quite well, as measured by the galaxy-

mass correlation function. This is the only analysis of this merging cluster that does

not use any information about the visible light, hence the conclusion that light follows

mass is not trivial.

• The faintest galaxies in the direction of MACSJ0416 are anti-correlated with the

cluster mass, implying the presence of the lensing magnification bias



Chapter 4

Two free-form lens reconstruction

of Hubble Frontier Fields Cluster

Abell 2744

4.1 Abell 2744

The first goal of this chapter is to address systematic uncertainties, for a single lens recon-

struction method, free-form Grale, applied to the multiple image, strong lensing data. We

evaluate the reliability of Grale-derived uncertainties by comparing two reconstructions of

the same HFF cluster, Abell 2744, that differ in input image properties, as well as certain

code parameters. Our first reconstruction described in this paper, HFFv3, was done for the

second year of the HFF project, using an image list with a combination of spectroscopic

and photometric redshifts from Richard et al. (2014); Johnson et al. (2014); Wang et al.

(2015); Jauzac et al. (2015). The following year, our second reconstruction, HFFv4, was

completed with an all spectroscopic image list from Mahler et al. (2018).

Since Grale is fully free-form, and uses no information pertaining to the distribution

of light from the cluster or its galaxies, it serves as an excellent method to accomplish our

second goal, to investigate if there are any significant unexpected differences between the

reconstructed mass and the observed light distributions. Following the previous chapter

and work on a different HFF cluster, MACSJ0416, we use mass-light centroid offsets, and

galaxy-mass correlation function as our metrics to accomplish the second goal.

Abell 2744 is a massive galaxy cluster with a right ascension of 00h:14m:19s and decli-

nation of −30◦:22′:15′′, and a redshift of 0.308 (Mann & Ebeling, 2012). The cluster can

33



Chapter 4. Two free-form lens reconstruction of Hubble Frontier Fields Cluster Abell
2744 34

be seen in Fig. 4.1. The cluster is in an ongoing merger, first evidenced from a radio halo

(Giovannini et al., 1999; Govoni et al., 2001a,b). The merger scenarios for Abell 2744 have

been a popular topic of debate for the last 20 years (Owers et al., 2011; Merten et al.,

2011; Medezinski et al., 2016; Jauzac et al., 2016). Inversion methods have utilized many

multiply-imaged systems (Zitrin et al., 2014; Johnson et al., 2014; Ishigaki et al., 2015;

Jauzac et al., 2015; Kawamata et al., 2016, 2018; Mahler et al., 2018), cluster-wide weak

lensing distortions (Cypriano et al., 2004; Medezinski et al., 2016), or both (Merten et al.,

2011; Lam et al., 2014; Wang et al., 2015; Jauzac et al., 2016) to study the mass distribution

at different scales.

In Section 4.2 we give an overview of the previous mass models of Abell 2744. In

Sec. 4.3 we outline the inputs for our lens reconstruction method. Section 4.4 presents the

comparison between our two reconstructions. In Section 4.5 we discuss the influence of mass

outside the region of images on our results, and in Section 4.6 we examine how well light

traces mass in this cluster. Finally, Section 4.7 presents a summary of our findings. We

use a flat ΛCDM cosmology, with Ωm = 0.3 and h = 0.7 which results in a scale of 4.536

kpc/′′ at the cluster redshift of z = 0.308.

4.2 Existing Mass Models of Abell 2744

The first lensing mass estimates of Abell 2744 (also known as AC 118) were published

by Smail et al. (1997) and Allen (1998). Smail et al. (1997) constructed a weak lensing

shear map for Abell 2744 from a catalogue of faint background objects built from HST

data. Using this shear map and the singular isothermal sphere (SIS) profile to model the

cluster, the cluster mass around the central core region, r < 400kpc, was calculated to be

M = 1.85 ± 0.32 1014h−1M�. The authors note that the configuration of the shear map

reveals that the cluster contains two prominent mass clumps. Allen (1998) used strong

lensing data from previous literature to calculate the mass of Abell 2744. Using an arc at

z = 1.00, the mass of a circular distribution was calculated to be M = 5.68 1013h−1M�.

Cypriano et al. (2004) reconstructed the mass of Abell 2744, and 23 other clusters, using

the LENSENT software for weak lensing. Catalogues of galaxies within each cluster field

were built, and galaxy ellipticity parameters were extracted using a Bayesian technique.

Background galaxies were chosen based on their location behind the cluster and light prop-

erties, leading to accurate shape measurements. The total mass distribution was calculated

using LENSENT, with a maximum entropy method, starting from the reduced shear field.

After smoothing, two mass models, SIS and singular isothermal ellipsoid (SIE), were used
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Figure 4.1 HST image of Abell 2744. Credit: NASA, ESA, and J. Lotz, M. Mountain,
A. Koekemoer, and the HFF Team (STScI).
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to fit the cluster through minimization of χ2. Discrepancy between velocity dispersion cal-

culated from weak-lensing data and that calculated from the dynamical study of Girardi

& Mezzetti (2001), along with A2744 having the second highest cluster lumonosity of the

sample, further supported the idea that A2744 is the result of two merging clusters.

Merten et al. (2011) carried out the first comprehensive strong lensing and weak lensing

mass reconstruction of Abell 2744. A parametric method was used to identify 34 multi-

ple images from 11 background sources. Weak lensing analysis was done by combining

three image sets (HST/ACS, VLT/FORS1, and Subaru/SuprimeCam) to get ellipticity

measurements of background galaxies, and a final shear map. A total χ2 to be minimized

consisted of a strong lensing term (dependent upon the lensing Jacobian), a weak lensing

term (dependent upon the complex reduced shear), and a regularization term. The result-

ing mass, estimated as a function of radius, was M(r < 1.3Mpc) = 1.8± 0.4 1015M�, and

M(r < 250kpc) = 2.24 ± 0.55 1014M�. The joint X-ray and lensing analysis revealed four

main mass components, and provided clearity into the merging details of Abell 2744.

The CATS colloboration produced a mass model of Abell 2744 each year of the HFF

program (v1: Richard et al., 2014, v2: Jauzac et al., 2015, v3: Jauzac et al., 2016, v4:

Mahler et al., 2018). The algorithm Lenstool was used to model cluster mass distributions

from strong and weak lensing data. They represent the cluster’s mass distribution by a few

large cluster-scale haloes and galaxy-scale haloes. A Markov Chain Monte Carlo (MCMC)

sampler is used to probe the parameter space and find the best fitting solution to the lens

equation (Jullo et al., 2007). Richard et al. (2014) used pre-HFF data of 55 images from 18

sources along with weak lensing data to obtain a best fitting model with Lens-plane RMS

of 1.26′′. Jauzac et al. (2015) used only strong lensing data and two cluster-scale haloes to

model the core. The best fitting model used 154 images from 54 sources and produced a

Lens-plane RMS of 0.79′′. Jauzac et al. (2016) used new spectroscopic redshifts from Wang

et al. (2015) to model Abell 2744 with a combined strong and weak lensing data set. Using

113 images from 39 different background sources, their best fit model produced a Lens-plane

RMS of 0.70′′. Mahler et al. (2018) performed an analysis of MUSE observations to extract

new spectroscopic redshifts for objects in Abell 2744. An updated strong and weak lensing

mass reconstruction obtained a Lens-plane RMS of 0.67′′ from 188 images and 60 systems.

Johnson et al. (2014) also used the parametric method Lenstool lens inversion al-

gorithm to model galaxy clusters using strong lensing data. A total of 47 images from

15 sources were used with redshifts either computed from Bayesian Photometric Redshifts

(BPZ), measured from spectroscopy, or obtained from Richard et al. (2014). Cluster mem-

ber galaxies and 5, including 2 in the core, cluster-scale haloes were modelled with the
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psuedo-isothermal elliptical mass distributions (PIEMD). The iteration process uses mini-

mization in the source plane, which is easier and computationally cheaper, but concludes

with a minimization in the image plane. The resulting mass model with a Lens-plane RMS

of 0.40′′ produced a central mass of M(r < 250kpc) = 2.43+0.04
−0.07 1014M�, within the range

of Merten et al. (2011).

Zitrin et al. (2014) used light traces mass (LTM) lensing model to reconstruct the mass

distribution of Abell 2744. Their models assume that both the baryonic and dark matter

components follow the light distribution, but to different degrees. A MCMC was used to

find the best fit solution to the cluster’s mass distribution. The best fitting model produced

a Lens-plane RMS of 1.3′′. Zitrin et al. (2014) used another version of the algorithm, with

elliptical NFW distributions, to check image positions predicted by LTM. This allowed them

to find one of the most distant multiply imaged galaxies, at z ≈ 10.

Lam et al. (2014) utilized a free-form lens reconstruction method, known as WSLAP+,

to determine the cluster mass. The algorithm finds solutions for the surface mass density and

positions of background sources in the source plane, by solving a set of linear equations. In

addition to the free-form part to represent the cluster, parametric forms for cluster member

galaxies were used. Model and photometric redshifts were used to identify several new image

systems and correct several previously known systems, bringing the total image number to

65 from 21 background sources. The resulting mass model highlighted two major cluster

components and significant excess mass near a large region of X-ray emission. The best

mass model produced a Lens-plane RMS of 1.25′′.

Wang et al. (2015) used a free-form lens reconstruction method, called SWUnited, to

reconstruct Abell 2744 using strong and weak lensing data, over an adaptive grid. This lens

inversion method differs from most other methods in that it reconstructs lensing potential,

instead of projected mass. Using multiply imaged sources and ellipticity of background

galaxies as input, the algorithm minimizes χ2 and converges to a final solution of the

potential. Version v1 used pre-HFF data, including 44 images from 11 background sources.

Using new spectroscopic Grism Lens-Amplified Survey from Space (GLASS) data, their

selection algorithm found 72 images from 25 distinct sources. Their v2 mass model found

two main mass peaks in the core and a lesser third peak north of the center.

Medezinski et al. (2016) performed a weak lensing analysis of Abell 2744 using newly

obtained imaging from Subaru/Suprime-Cam. The reduced shear from background galax-

ies was used to construct the mass distribution out to 5 Mpc, the largest extent probed

by lensing in this cluster. Four substructures were found and modelled with NFW and

truncated NFW profiles. Results suggested an alternative merging scenario compared to
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Merten et al. (2011): the northwestern mass clump is the result of a smaller merger from

two haloes that are falling into the main core of the cluster, instead of being produced from

a ‘slingshot’ effect of the main merger activity, as suggested by Merten et al. (2011).

The Glafic team used a parametric reconstruction method applied to strong lensing

data. The mass distribution of the cluster was modeled with cluster-scale NFW haloes,

pseudo-Jaffe ellipsoids for cluster member galaxies, and external perturbations. A best fit

model was found using a downhill-simplex algorithm to minimize a χ2. Errors of the mass

models were derived through MCMC. Ishigaki et al. (2015) used pre-HFF image data (67

images from 24 background sources) to model Abell 2744 and find faint galaxies at high

redshifts. Kawamata et al. (2016) used 111 images from 37 sources to produce their v3 map

which had a Lens-plane RMS of 0.37′′. Kawamata et al. (2018) increased the total number

of images used to 132 from 45 sources for their v4 map, which produced a Lens-plane RMS

of 0.42′′.

4.3 Grale Setup

We describe two sets of Abell 2744 recontsructions, HFFv3 and HFFv4, carried out using

multiple image data shared by the HFF community.

4.3.1 HFFv3

We generated 40 Grale reconstructions based on 55 multiply lensed images from 18 differ-

ent sources for HFFv3. The image list was compiled by the HFF community data presented

in Richard et al. (2014); Johnson et al. (2014); Wang et al. (2015); Jauzac et al. (2015).

Six sources had spectroscopic redshifts from Richard et al. (2014); Johnson et al. (2014);

Wang et al. (2015), and the rest of the sources used model redshifts from Jauzac et al.

(2015). Each reconstruction was the result of finding the best solution of nine successive

grid refinements. We increased the number of Plummer spheres in each subsequent grid by

approximately 200. The number of Plummers in the first and last grid were chosen by the

genetic algorithm from ranges of 300-400 and 1700-1800, respectively. The final solution

for each reconstruction was chosen based on the fitness values, described above, for all nine

grids. Each reconstruction is started with its own random seed, and is somewhat different

from the rest because of the very large dimensionality of the parameter space that the ge-

netic algorithm searches. An average is taken of these 40 reconstructions, which highlights

the common features in the mass distribution, and suppresses one-off features.
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4.3.2 HFFv4

For HFFv4, we produced 40 Grale reconstructions using 91 multiply lensed images from

29 different sources. All 91 images used updated spectroscopic redshifts from Mahler et al.

(2018). There is some overlap between the image lists for our HFFv3 and HFFv4. There are

29 images, from 10 sources, that have the same positions for both HFF versions. Of these,

10 images have a difference in redshift |δ(zv3 − zv4)| < 0.1, whereas the rest have a larger

difference in redshift up to |δ(zv3 − zv4)| = 1.42. We used only images with spectroscopic

redshifts because they typically have a higher degree of accuracy than model redshifts.

The process for producing mass distribution solutions for HFFv4 is similar to that for

HFFv3 described above, with one exception. The number of Plummer spheres in each

grid refinement no longer increased linearly with grid number. Instead, the number of

Plummer spheres increased by, on average, 175, starting from the first to seventh grid,

ending with a maximum range of 1100-1200. The eighth and nineth grid had approximately

150 fewer Plummer spheres than the preceding grid. This procedure, similar to what was

used in Mohammed et al. (2014), and different from that used for Abell 2744 in HFFv3, was

implemented to test if reducing the number of Plummer spheres, and hence parameters, will

retain the goodness of fit achieved in the seventh grid. The best mass map for each run was

selected according to the fitness values of the nine grids. The eighth and nineth grids were

the most frequently preferred by Grale, showing that Grale does not always converge to

the grid with the highest number of Plummer spheres. As for HFFv3, an average of the 40

individual reconstructions was calculated as the best solution for HFFv4.

4.4 Results of Lens Reconstruction

The average mass maps of the 40 individual Grale reconstructions for HFFv3 and HFFv4

are shown in left and right panels, respectively, of Fig. 4.2. The contour lines represent

the projected surface mass density, Σ, starting from 0.1 g/cm2 and linearly spaced by 0.1

g/cm2. The left (right) panel has twelve (eight) lines, with the last one at 1.2 g/cm2 (0.8

g/cm2). The red circles represent the images used as input for each version. The two

brightest cluster galaxies (BCGs) are highlighted as magenta crosses. The elongated shape

of Abell 2744 is clearly visible in both maps. Likewise, the two major cluster components

that have been identified by previous reconstructions, are found by both maps. HFFv3

shows steeper mass peaks around the two BCGs, relative to HFFv4; we will return to

this in Section 4.6. Both versions produced good Lens-plane RMSs, 0.53′′ and 0.87′′ for

HFFv3 and HFFv4, respectively. The mass enclosed within 250 kpc of the cluster center is
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Figure 4.2 Mass contours of averaged mass map of Abell 2744 overlaid on a HST total
(F435W, F606W, and F814W combined) image. Left: HFFv3; Right: HFFv4. The lines
represent mass contour in units of g/cm2 and red circles represent images used in the two
reconstructions. The two BCGs are labelled as magneta crosses.

M(r < 250 kpc) = 2.25× 1014M� and 2.27× 1014M� for HFFv3 and HFFv4, respectively,

nearly the same as that found by Merten et al. (2011) and 2.3σ lower than the value found

by Johnson et al. (2014).

Next, we look at the fractional mass uncertainty in the HFFv3 and HFFv4 sets of 40

individual reconstructions. For a set of mass maps, the fractional uncertainty at any point

in the lens plane is ε/Σ where ε is the root-mean-square deviation in the maps’ Σ values.

Fig. 4.3 shows the fractional uncertainy map for HFFv3 (left panel) and HFFv4 (right

panel). Similar to MACS J0416 in Sebesta et al. (2016), Grale produces low fractional

uncertainty within the cluster region where images lie. Most of the cluster’s elongated

shape, the central ∼ 20′′×60′′, has errors below 10% for HFFv4, and below 20% for HFFv3.

Circular regions of radius r ≈ 2.5′′ around the two BCGs have errors of less than 10% in

both versions. Outside the center of the cluster, where there are no images, the fractional

uncertainy is >∼ 30 − 50%, with no clear pattern, because Grale is not constrained here

and is therefore less reliable in reconstructing the mass distribution.

In addition to analysing the results of our reconstructions, we also present the compari-

son of HFFv3 and HFFv4. Prompted by the Hubble Frontier Fields project, several papers

have examined the statistical and systematic uncertainties in lens reconstruction methods
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Figure 4.3 Contours of fractional uncertainty in surface mass density of Abell 2744, over-
laid on the same HST image as in Fig. 4.2 with same field of view. Left: HFFv3; Right:
HFFv4. The contours are linearly spaced by 10% and start at 10% (dark blue line). The left
panel has a total of ten contour lines and the right panel has a total of eleven contour lines.
Images are highlighted by red circles and the two BCGs are marked as magenta crosses.

(Meneghetti et al., 2017; Priewe et al., 2017; González et al., 2018). Most of these analy-

ses compared different lens inversion methods, while keeping the input data as similar as

possible. Our approach is the opposite: we use (nearly) the same lens inversion method,

but different data input. We compare two reconstructions of Abell 2744 using Grale, that

are based on different data sets, both in terms of image sets used, image positions, and

source redshifts; only 10 out of 91 images used in HFFv4 are the same in all respects, as in

HFFv3. The two implementations of Grale are also somewhat different, as described in

Sections 4.3.1 and 4.3.2.

The left panel of Fig. 4.4 shows the difference map of HFFv3 and HFFv4, ∆Σ = Σv3 −
Σv4. A more meaningful understanding of the difference map can be gained by considering

the significance, defined as σΣ = ∆Σ/
√
ε2v3 + ε2v4, which highlights regions of the lens plane

where discrepancies in the mass distributions are statistically significant. The σΣ map is

shown in the right panel of Fig. 4.4.

Since Grale relies solely on image data as input, it is instructive to see if there is a

direct connection between changes in input data and changes in the resulting mass distri-

bution. The circles in Fig. 4.4 represent images, used in both reconstructions, that have

a significant change in input redshift, |zv4 − zv3)| > 0.1. Yellow circles are images with a
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Figure 4.4 Left: Difference map of the two mass reconstructions of Fig. 4.2, ∆Σ = Σv3−
Σv4, where v3 and v4 are for HFFv3 and HFFv4 respectively. The solid contour lines are
at ∆Σ = 0,±0.1,±0.2. Right: Map of the statistical significance of the difference map. The
solid contour lines are at σΣ = 0,±2,±4. The yellow and green circles represent images
that have a difference in redshift of δ(zv3 − zv4) > 0.1 and δ(zv3 − zv4) < −0.1, respectively.
The size of the circle corresponds to the magnitude of difference in redshift. Both panels
show the same region as in Fig. 4.2 and Fig. 4.3.
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positive difference (HFFv4 redshift is larger) and green circles are images with a negative

difference (HFFv3 redshift is larger). The radius of the circle is scaled to the change in

redshift, with the larget difference being |zv3−zv4| = 1.42. The distribution of these images

reveals no clear pattern in the difference or significance map, implying that the input image

data affects the mass distribution on most of the lens plane.

The steeper density profiles in the few arcseconds around the two BCGs in HFFv3

(Fig. 4.2 and the left panel of Fig. 4.4), is seen to have ∼ 2σ significance in the right panel

of Fig. 4.4. Though the difference is not statistically significant, it is still interesting to

understand the reason for it. The peaks in the difference and significance maps surrounding

the Southern BCG are caused by the higher concentration of Plummer spheres in HFFv3

compared to HFFv4. Recall from Sec. 4.3 that HFFv3 reconstructions used more Plummer

spheres as inputs than HFFv4. Combined with the fact that Grale refines the grid based

on the local mass density, which is high close to galaxies, and that HFFv3 was allowed to

continue to refine the grid in the eighth and nineth grids, resulted in the HFFv3 average

map having roughly four times as many Plummer spheres within a 4′′ radius around the

Southern BCG compared to the same region in the HFFv4 average map. It is important to

note that this higher concentration of mass, or higher steepness, is possible because there

are no images within ∼ 5′′ of the BCG center to act as model constraints. In regions with

no constraints, the monopole degeneracy (Liesenborgs et al., 2008) is free to redistribute

the mass in any circularly symmetric, mass conserving fashion.

The differences between the two mass maps, expressed in units of Grale derived errors

(right panel of Fig. 4.4) tells us how robust Grale reconstructions are to changes in input

lens data and Grale implementation procedure, and how reliable Grale’s estimate of

uncertainties is. The area of regions with significant differences in mass distribution, σΣ ≥ 4,

is 74.85 sq. arcsec, which is very small compared to the area covered by the cluster. Since

most of the mass maps HFFv3 and HFFv4 are within each other’s errors, Grale-derived

uncertainties can be trusted, because they cover changes in mass distribution if the true

images properties turn out to be somewhat different from the ones used as input.

Somewhat different, but consistent findings about Grale-derived uncertainties are pre-

sented in Rodney et al. (2015) Figure 6, where Grale’s uncertainties on the magnification of

Type Ia SN HFF14Tom cover nearly the full range of uncertainties of all other lens inversion

methods, as well as the true magnification of the supernova. Priewe et al. (2017) extended

this type of magnification analysis to the whole strong lensing regions of MACS J0416 and

Abell 2744, and confirmed the conclusion obtained from a single lens plane location of SN

HFF14Tom.
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4.5 Influence of the mass to the North West of the main

cluster

Grale reconstructions show a prominant broad peak North West of the main cluster, with

HFFv4 showing a larger mass excess than HFFv3. It is located approximately at (−15′′,

0′′) in Fig. 4.2, and about 50′′ to the North West of the northern BCG. While the peak is

beyond the image region, and hence outside the region that Grale can constrain well, it

sits in the area of relatively low fractional mass uncertainties, <∼ 30, in both versions. The

detailed features of this mass clump cannot be taken too seriously, but its existance and

approximate location are robust.

This mass clump is at the same location as the broad peak in the X-ray distribution of

Abell 2744, seen, for example in the maps X-ray luminosity contours presented in Merten

et al. (2011). However, dispite the coincidence in the location of the peak, the mass in the

X-ray emitting gas is unlikely to be large enough to cause the mass clump. Govoni et al.

(2001b) examined the X-ray emission of Abell 2744, as a part of a larger study. From their

Fig. 14, the X-ray mass within r ≈ 100 kpc of the X-ray peak is M ≈ 5× 1011M�. Within

the same radius, Grale finds Mv3 = 3.17 × 1013M� and Mv4 = 4.88 × 1013M�, or about

100 times more than the mass in X-ray emitting gas. Assuming the X-ray gas mass to be an

external point source, located at the peak of the X-ray emission, outside the main cluster,

the amplitude of deflection angles at the North West and South East ends of the lensed

image distribution are α ≈ 0.16′′ and α ≈ 0.04′′, respectively. Since these are smaller than

the Lens-plane RMS of any reconstruction, it is unlikely that either Grale or any other

lens inversion method would be able to discern the X-ray gas.

Instead, the excess mass recovered by Grale must be attributed to the cluster merging

with A2744, located about 150′′ North West of A2744. In Grale reconstructions this mass

acts as external shear due to the merging cluster. This cluster is seen directly in wider field

weak lensing reconstructions (Merten et al., 2011; Wang et al., 2015; Jauzac et al., 2016;

Medezinski et al., 2016), and also in strong lensing reconstruction, for example, Johnson

et al. (2014) and Lam et al. (2014).

4.6 Comparing the distributions of light and mass in Abell

2744

In this section we look at how closely the distribution of mass follows the light distribution

of cluster member galaxies. Grale is well suited for this purpose, since no information
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about member galaxies is used as input in creating the mass maps. Only one other existing

techniques is similar to Grale in this regard—SWUnited (Wang et al., 2015)—all others

use parametrized forms to represent mass in cluster galaxies. We utilize two types of

analysis to quantify how closely cluster member galaxies of Abell 2744 follow the overall

mass distribution.

4.6.1 Local Mass Peaks near Massive Galaxies

Fig. 4.5 zooms in on the central region of Fig. 4.2, containing the four central massive

galaxies, labeled in magenta as G1-G4. According to the right panel of Fig. 4.3 this region

has fractional uncertainty <∼ 10% for HFFv4 reconstruction, i.e. it is well constrained. For

HFFv3 (left panel), the fractional uncertainty is larger, <∼ 20 − 30%, but still low enough

for consideration. As indicated by the mass density contour lines, both HFFv3 and HFFv4

pick out the two prominent mass concentrations, associated with G1-G2 and G3. These

correspond to the cluster-scale dark matter haloes used in previous literature. Galaxy G4

is also identified by Grale, but many galaxies further away from the center are not; in

several cases mass contour lines go right through fainter galaxies.

The contour lines represent projected density distribution of the average Grale maps,

and the magenta dots show the local mass density peaks, within a circle of radius 5′′ centered

on the four galaxies, G1-G4, in each of the 40 individual reconstructions. The dispersion

of these points on the lens plane gives an estimate of the uncertainty in the location of the

mass peaks associated with the massive central galaxies. The clouds of magenta points are

centered on the corresponding galaxies, consistent with there being no detectable offsets

between the center of light and the center of mass, on scales larger than ∼ 3′′, or ∼ 14 kpc.

This is consistent with the findings of Massey et al. (2018) in the case of Abell 3827.

The distribution of magenta points around G1 and G2 galaxies is more compact in

HFFv4 compared to HFFv3, and requires some explanation. The inset in the right panel

of Fig. 4.5 shows a zoomed in version of this region. We believe that the reason for this

compact distribution is a single observed lensed image, located between G1 and G2. This

image is a part of a five-image configuration. In the absence of any information about the

light distribution, Grale is interpreting this system as a regular “quad” with a central

image. However, this is most likely a misinterpretation. Because of the presence of adjacent

G1 and G2 near that image, instead of single mass peak, the actual image configuration is

probably more complex, and the image multiplicity is seven. The observed central image

is likely a saddle point in the arrival time surface, with two galaxies producing nearby

maxima in the arrival time. (This triple is surrounded by the 4 images of a quad.) But
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Figure 4.5 Zoomed in area of Fig. 4.2, spanning 35.6′′ by 49.6′′, with the left and right
panel showing HFFv3 and HFFv4 respectively. Magenta points represent peaks of 40 mass
reconstructions in the projected surface mass density around four main galaxies, labelled
G1-G4. These points were slightly displaced from their positions by random amounts to
make them visible. (The points were obtained on a grid, so many were superimposed.) Red
crosses are the images used for each reconstruction version. Contours lines match the scale
from Fig.4.2, but only extend up to 0.7 g/cm2. Higher density contour lines were left out
for clarity around local mass peak points. A zoomed in region around G1 and G2 of HFFv4
is provided in the right panel. It uses a lighter gray scale shading to highlight the region
between the two galaxies.
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Grale prefers the simpler five-image solution, where the central image is a maximum in

the arrival time surface. There are no other images within ∼ 2 − 3′′ to help Grale with

the interpretation.

4.6.2 Mass-Galaxy Correlation Function

The second technique we will use to investigate how well light traces mass is the correlation

function between cluster member galaxies and average mass maps, ξgm(θ). The probability

of finding a second galaxy in a small area, dS, at distance, θ, away from a galaxy is

dP = n(1 + ξgm)dS, where n is the average surface number density of galaxies within that

cluster. This metric ξgm(θ) will help us determine if total mass, which is mostly dark

matter, clusters with visible galaxies in Abell 2744. We use the same estimator as in 3.4.2,

ξgm(θ) =
DgDm(θ)
〈RgDm〉(θ)−1, where DgDm is the number of galaxy-mass pixel pairs, and 〈RgDm〉

is the number of random galaxy-mass pixel pairs, averaged over 100 realizations. (Here, D

stands for direct, and R stands for random.)

A Subaru galaxy catalogue was provided to us by E. Medezinski, which encompasses

the total field of view for Abell 2744. We restrict our galaxy-mass correlation calculation to

the core of Abell 2744, where strong lensing features are present. We use a circular region

centered on α = 3.5886563 δ = −30.401297 with radius r = 39′′ and a bin size of 0.39′′. This

region encompasses all the images of HFFv3 and most of the images of HFFv4, along with

the two BCGs in the core of Abell 2744. Our choice of Subaru galaxies requires masking

to deal with the light of bright galaxies that may block nearby fainter galaxies. When

calculating the galaxy-mass correlation functions, we mask regions around the 10 brightest

galaxies with a circle of variable radius (4-11′′), which scales with the galaxy brightness

profile in Subaru images.

The correlation function between Subaru R-band and Z-band galaxies and averaged

HFFv3 and HFFv4 mass maps are shown in the two panels of Fig. 4.6. We chose eight mag-

nitude cuts to investigate the behaviour of Grale reconstructions against Subaru galaxies.

The numbers of galaxies used in each magnitude cut are listed in the figure.

The galaxy-mass correlation functions in Fig. 4.6 for both versions of Grale show

similar behavior, clearly showing that the reconstructed total mass clusters around brighter

galaxies. However, comparing HFFv3 and HFFv4 within each galaxy color shows that

ξgm(θ) of HFFv3 has a higher amplitude than that of HFFv4 for every magnitude cut. This

is a direct consequence of the mass distribution around galaxies being less peaked in HFFv4

compared to HFFv3, already seen in Fig. 4.2. In additoin to being more peaked, ξgm(θ) of

HFFv3 shows small elbows, around θ ≈ 6− 7′′, which can be attributed to the very central
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Figure 4.6 The left and right panel show normalized galaxy-mass correlation functions
for R-band Subaru galaxies with HFFv3 and HFFv4 averaged mass maps, respectively.
These calculations were done in a circular region centered on the core of Abell 2744 and
over eight magnitude cuts of the galaxies. Each magnitude cut is color coded and has the
number of galaxies within it listed. An additional correlation function (gray) is done for
HFFv3 which is the same as the mR ≤ 20, but with galaxies G1-G3 removed. Shaded
regions are 1σ error bars, such that the RMS dispersion for 100 randomizations of DmRr
is between 0.01 and 0.025 for both panels.
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peaks in HFFv3 being more massive than in HFFv4. To test if the most massive galaxies

are solely responsible for the elbow, we removed the galaxies G1-G3 from the mR ≤ 20

magnitude bin and computed the normalized correlation function for HFFv3, shown as a

gray band in the left panel of Fig. 4.6. This correlation function has an initial amplitude

close to the one for the mR ≤ 21 magnitude cut, then falls off more gradually and connects

to the mR ≤ 20 correlation function around 12′′ separation. Since the elbow persists, we

conclude that the elbows are due to a wide range of galaxies, and are likely the result of

the differences in Grale’s resolution in HFFv3 vs. HFFv4, discussed in Section 4.4. Both

reconstructions show a crossing of zero correlation around 20′′ which is approximately the

separation between the two BCGs.

The trend of brighter galaxies clustering stronger with mass matches the results of our

previous study of Grale’s reconstruction of MACSJ0416, another HFF galaxy cluster.

The standard biasing scenario of galaxy formation states that galaxies are biased tracers of

the underlying mass distribution and Grale’s results are further validations of this. The

faintest galaxies contain the least amount of mass and are least biased to mass; conversely,

brighter galaxies cluster closely to mass. For both reconstructions in Fig. 4.6, the initial

amplitudes of ξgm(θ) grow as the galaxy magnitudes decrease.

The correlation functions between Subaru Z-band galaxies and the two Grale recon-

structions are shown in Fig.4.7. The general results of the galaxy-mass correlation functions

for the Z-band galaxies follow the galaxy-mass correlation functions for the R-band galax-

ies, in both Grale reconstruction versions. As the galaxies get fainter, the correlation

amplitude decreases, but the amplitude of HFFv3 is always higher than that of HFFv4 for

the same magnitude cuts.

The galaxy-mass correlation function is a powerful tool to investigate how well light

traces mass in galaxy clusters, but caution needs to be exercised when selecting the galaxies

to use. Whereas bright galaxies are most likely cluster members, faint galaxies can be

background galaxies that underwent lensing magnification bias, and can be falsely included

as members. Magnification bias is the result of two effects. The area behind the lens is

enlarged, thereby diluting the number density of background galaxies. The second effect,

competing against the first, is that background galaxies are magnified to appear brighter

than unlensed galaxies at the same redshifts. The slope of the unlensed number counts

of background galaxies determines which of the two effects dominates. The two effects

cancel each other when the slope of d log(n[f ])/d log(f) = 1, or d log(n[m])/dm = 0.25, if

magnitudes are used.

The differential galaxy counts of the entire Subaru field as a function galactic magnitude
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Figure 4.7 Same plot as Fig.4.6 with normalized galaxy-mass correlation functions for
Z-band Subaru galaxies with HFFv3 and HFFv4 averaged mass maps on the left and right
panels, respectively. These calculations were done in a circular region centered on the core
of Abell 2744 and over nine magnitude cuts of the galaxies.
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Figure 4.8 Differential number galaxy counts versus magnitude of Subaru R-band and
Z-band galaxies. Because of low number counts in the cluster region, the field of view used
is the entire Subaru region. A dashed vertical line indicates where the catalogue suffers
from incompleteness. A solid line with slope equal to one is provided for reference.



Chapter 4. Two free-form lens reconstruction of Hubble Frontier Fields Cluster Abell
2744 52

for Subaru R-band, Z-band are plotted in Fig. 4.8. Since most of the galaxies are not behind

the central region of Abell 2744, these counts are, effectively, unlensed. A line of slope

d log(n[f ])/d log(f) = 1 is provided for reference. For magnitudes fainter than m ≈ 19 for

Z-band and R-band, the slope is shallower than d log(n[f ])/d log(f) = 1, and the net effect

of the magnification bias is to decrease the galaxy counts behind a lens. This results in an

anti-correlation between cluster mass and galaxies. Around m ≈ 25.5, the counts begin to

flatten off and suffer from incompleteness. Thus we choose 2 magnitude cuts, 24 ≤ m ≤ 25.5

and 19 ≤ m ≤ 24, for Subaru Z-band and R-band to look at magnification bias.

In the 19 ≤ m ≤ 24 range, the slope of Z-band galaxies is shallower than that of R-band

galaxies, so stronger anti-correlation is predicted for Z-band galaxies in this magnitude

range. In fact, anti-correlations are observed for both HFFv3 and HFFv4 for the Z-band,

but R-band galaxies show a positive correlation with mass in both reconstructions. This

suggests that in this magnitude range, a larger fraction of R-band, compared to Z-band

galaxies are cluster members.

Since faint galaxies are believed to be behind the cluster, the faintest magnitude cuts,

24 ≤ m ≤ 25.5, should be anti-correlated more strongly with reconstructed mass. Fig.4.6 and

Fig.4.7 shows the 24 ≤ m ≤ 25.5 magnitude cut provides the strongest anti-correlation

between averaged mass and Subaru galaxies, as expected. HFFv3 shows stronger anti-

correlation than HFFv4 across both Subaru bands.

We can use the BPZ redshift estimates of the Subaru galaxy catalogue to check our

conclusion that magnificaiton bias affects the faintest magnitude ranges of the correlation

function. Fig.4.9 shows Subaru magnitudes plotted against BPZ redshifts for both R-band

(blue dots) and Z-band (red crosses) galaxies. Two dashed lines, one at the cluster redshift

z = 0.308, and one at magnitude m = 24 are plotted for reference. Using a conservative

redshift range for a cluster member galaxies, ∆z ∼ ±0.2, we see that at m ≥ 23 a substantial

fraction of galaxies is background to the cluster, and will contribute to the magnification

bias seen at the fainter magnitudes in Figs.4.6 & 4.7. Thus, the galaxy-mass correlation

functions between Grale mass and faint Subaru galaxies reveal magnification bias exists

in Abell 2744.

4.7 Conclusions

Using exquisite lens image data provided by the Hubble Frontier Field observations, and

collaborative nature of the HFF project, we were able to address two questions pertaining

to galaxy clusters. The first question asks how trustworthy are the uncertainties in the
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Figure 4.9 Plot of magnitudes of Subaru galaxies against BPZ redshifts. Blue dots indi-
cate R-band Subaru galaxies and red x’s are Z-band Subaru galaxies. Two lines are provided
for clarity, one on the cluster redshift, z = 0.308, and the other at the magnitude m = 24
separating our two magnitude cuts.



Chapter 4. Two free-form lens reconstruction of Hubble Frontier Fields Cluster Abell
2744 54

derived mass distribution of galaxy clusters? Our answer is for Grale only. The sceond

question asks do galaxies follow the underlying mass distribution within a galaxy cluster?

Grale is exemplary as a method to answer this question because no inputs are related to

light from galaxies.

We performed two mass reconstructions of Abell 2744 using Grale, a free-form genetic

algorithm-based lens inversion method. The first reconstruction, HFFv3, used 55 images

as inputs with a mix of spectroscopic and photometric redshifts from Richard et al. (2014);

Johnson et al. (2014); Wang et al. (2015); Jauzac et al. (2015). Our second reconstruction,

HFFv4, made use of 91 images with spectroscopic redshifts from Mahler et al. (2018). To

gauge the robustness of Grale reconstruction against changes in data and small modifica-

tions in the inversion procedure, we directly compare both versions to each other. This also

shows the value/usefulness of Grale derived uncertainties. Both averaged mass maps have

small Lens-plane RMSs of 0.53′′ for HFFv3 and 0.87′′ for HFFv4. The overall elongated

shape of Abell 2744 and the two major cluster components are picked out by both versions.

On a smaller scale, differences in the mass peaks arise because of changes in the input image

list and Plummer sphere concentrations. Grale captures the features of Abell 2744 very

well and this is most evident by the area above |σΣ| > 4 being small, A = 74.85 sq. arcsec.

In regards to the cluster light and mass distributions, we find light follows our mass,

reconstructed by Grale and with no information pertaining to cluster member galaxies.

This result is seen across both reconstruction versions and calculated with the galaxy-mass

correlation function. Lensing magnification bias is present in Abell 2744 because the mass

is anti-correlated with the faintest galaxies in the line of sight.
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Lens-plane RMS

5.1 Introduction

The Lens-plane RMS is a comparative metric, commonly used within the field of lens re-

construction, to gauge solutions of a galaxy cluster’s projected surface mass density. It ex-

amines how well the mass distribution reproduces observed image positions. Many massive

galaxy clusters show multiple-image systems and other strong lensing features. The set of

all observed images of a galaxy cluster acts as input for all lens reconstruction methods, for

both parametric and free-form methods that use strong lensing data. Some lens reconstruc-

tion methods utilize the Lens-plane RMS in their optimization of the mass model solution.

Other methods calculate and use the source-plane RMS. From the literature, it appears the

lensing community has not decided on the exact treatment of calculating the Lens-plane

RMS. This chapter will detail describe the algorithm for finding projected-forward positions

and several definitions of the Lens-plane RMS.

5.2 imgsol.py: Algorithm to find forward projected image

positions from Grale output

Grale does not calculate the Lens-plane RMS when solving for the mass distribution, so an

independent algorithm was developed. The usual output of Grale for the mass distribution

is an NxM grid for the projected surface mass density, in units of kg/m2. Initial versions of

this algorithm used the grid but had trouble converging to distances smaller than the grid

spacing, ≈ 0.25′′. To circumvent this problem, Grale can output the mass distribution as

a list of the Plummer spheres that make up the cluster mass.

To calculate the lens-plane RMS, the algorithm starts by projecting back all images to
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the source plane using the lens equation Eq. 1.11 and Eq. 1.30. Visual inspection of these

back-projected positions is made to ensure images of the same source are close to each

other. Next, the algorithm uses the previous two equations to find the projected-forward

positions in the lens plane. Given a source position, all observed image positions are used

as initial guesses to find the projected-forward positions. The algorithm uses optimize.root

from NumPy package to find a root, the projected-forward position, of the lens equation.

There are three cases for the result of optimize.root : (i) successfully converged to the

correct image position (ii) successfully converged to a ’wrong’ image position (iii) failed

to converge. The algorithm tries this multiple times per initial guess of observed image

position, with slight randomization of the initial guess position introduced after each new

iteration. If case (i) arises, then the final position is accepted as the correct project-forward

position.

The difference between (i) and (ii) arises when two (or more) images are very close to

each other. For the simplest case of two images close to each other, using the observed

images positions as initial guesses for the root finder leads to the same projected-forward

position. We identify which image this projected-forward position belongs to by which ever

observed image is closer. The other observed image position is labeled as a ’wrong’ image.

A search is then made for this wrong image, to find it’s correct projected-forward position.

Using the ’wrong’ image position as the origin, a coordinate axes is set up with the nearest

observed image position being the positive x-axis. A new projected-forward position is

looked for along each axis with the root finder. This goes until a new image position is

found that corresponds to the ’correct’ image. The distance this projected-forward position

is away from the origin is used to make sure the algorithm didn’t converge to a spurious

image. If a new image cannot be found then the ’wrong’ image position is accepted as the

projected-forward position.

The accepted image position from case (iii) is handled a bit differently than ’wrong’

images from case (ii). During the initial tries at finding an accepted projected-forward

position, if the algorithm fails, the count of each failed position is maintained. The failed

position with the highest count is accepted as the projected-forward position then.

An additional check is made for both case (ii) and case (iii) to see if the algorithm

is near a critical line. A separate code was written to make a magnification check with

Eq. 1.24. The convergence and shear are calculated with Eqs. 1.31 & 1.32 for every position

the root finder ends up at, with each observed position as the initial guesses. A histogram

of the magnifications are produced and a cut-off is chosen such that magnification above it

correspond to positions near a critical line; for example magnifications of µ ≈ 10, 000 were
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seen. For Abell 2744, the magnification cut-off was chosen as 100. If the position from

the root finder is near a critical line, then it is accepted as the projected-forward position.

For case (ii) this usually arises such that two (or more) images merge with each other, and

trying to find additional unique images is difficult.

Finally, the list of projected-forward positions is compiled and the lens-plane RMS is

calculated.

5.3 Lens-plane RMS Definitions

Each reconstruction of the mass distribution of a galaxy cluster has i = 1, ...I sources, and

each source has j = 1, ...Ji observed images. The location of each image is denoted by ~θi,j .

The total number of lensed images in the whole cluster is J =
∑
i=1,I

Ji. Each observed image

j of source i, ~θi,j is lensed back to the source plane using the lens equation, Eq. 1.11, and

the deflection angles calculated from the mass distribution. From here on, there are two

different ways to proceed, (I) use each of these back-projected images as a source itself, or

(II) average the positions of these back-projected images belonging to the same source, in

the source plane, to obtain a single model-predicted source.

(I) Each of the j = 1, ...Ji back-projected images in the source plane is used as a source

itself, i.e. lensed forward, or relensed, to the lens plane, producing Ji model predicted

images per each observed image, and Ki = J2
i model predicted images per source. Their

locations are designated by ~θi,j,k. One of the Ji relensed images should coincide exactly

with the corresponding observed image, and is used as a test of the code. There are a total

of K =
∑
i=1,J

Ki =
∑
i=1,I

(Ji)
2 relensed images in the whole cluster.

There are three possible ways to calculate the lens plane rms using all K individual back-

projected images. The first is to sum up the deviations of all the K model predicted (i.e.,

relensed) images from the observed images, in quadrature. Of all five methods we present

here, this is the most conservative calculation because it explicitly takes into account every

model-predicted image, and adds them in quadrature. It typically yields the largest rms

value. (
∆I

rms,tot

)2
=

1

K

∑
i=1,I

{ ∑
j=1,Ji

[ ∑
k=1,Ji

∣∣∣ ~θi,j,k − ~θi,j∣∣∣2]}. (5.1)

While in eq. 5.1 sources with more images contribute more to the rms, in the second method

all sources contribute equally, regardless of the number of images they have,(
∆I

rms,src

)2
=

1

J

∑
i=1,I

{ ∑
j=1,Ji

[ 1

Ji

∑
k=1,Ji

∣∣∣ ~θi,j,k − ~θi,j∣∣∣2]}. (5.2)
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Finally, the average position of the Ji relensed images is compared to the corresponding

observed image position. The distance between these are

|~θobs − ~θmod I| = (∆θ2
i,j;x + ∆θ2

i,j;y)
1/2, (5.3)

where

∆θi,j;x =
( 1

Ji

∑
k=1,Ji

θi,j,k;x

)
− θi,j;x, (5.4)

and similarly for the y-component. These distances are summed in quadrature to produce,(
∆I

rms,ims

)2
=

1

J

∑
i=1,I

{ ∑
j=1,Ji

∣∣∣ ~θobs − ~θmod I

∣∣∣2} (5.5)

Typically, eq. 5.5 yields the smallest of eq. 5.1, eq. 5.2, and eq. 5.5 estimated rms values.

(II) Another way to calculate the lens plane rms is to first find the average of the Ji

model back-projected images in the source plane. This gives the model-predicted source

position. This is then lensed forward to obtain Ji model predicted images, one per observed

image. The distance between these corresponding model-predicted and observed images is

calculated, ∣∣∣~θobs − ~θmod II

∣∣∣2 = (θmod II; i,j;x − θi,j;x)2 + (θmod II; i,j;y − θi,j;y)2 (5.6)

and used as in eq. 5.8, except that eq. 5.6 is different from eq. 5.3.(
∆II

rms,ims

)2
=

1

J

∑
i=1,I

{ ∑
j=1,Ji

∣∣∣ ~θobs − ~θmod II

∣∣∣2} (5.7)

We believe that most papers use this definition, however, some, like D’Aloisio & Natara-

jan (2011) take the average of eq. 5.6 values, one per source, instead of adding them in

quadrature:

∆II
rms,avg =

1

J

∑
i=1,I

{ ∑
j=1,Ji

∣∣∣ ~θobs − ~θmod II

∣∣∣} (5.8)



Chapter 6

Summary

Gravitational lensing is a powerful tool to study astronomical objects on a variety of scales.

The massive size of galaxy clusters make them very good choices as lenses to magnify distant

background galaxies. The goal of this thesis was to use the lensing power of six massive

galaxy clusters of the Hubble Frontier Fields program to reconstruct their mass distribu-

tions, and to study in depth these mass distributions for insights into the characteristics of

clusters. We used a free-form method, known as Grale, to reconstruct the mass distribu-

tions using strong lensing data. In Chapter 2, we reported our existing reconstructions of

each Hubble Frontier Fields cluster, including publicly available maps of lensing observables,

like magnification and shear, for each reconstruction. In Chapters 3 and 4 we reviewed ex-

isting mass models of MACS J0416 and Abell 2744, respectively, while analyzing our own

reconstructions of these clusters.

We used two methods to investigate if light traces mass: local mass peaks around the

brightest cluster galaxies and the galaxy-mass correlation function. In our three reconstruc-

tions, one of MACS J0416 and two of Abell 2744, we found no significant offsets between the

brightest cluster galaxies and distribution of mass peaks nearby on a scale of ≈ 10− 15kpc.

In Chapter 3, we compared Grale and two Lenstool-based galaxy-mass correlation func-

tions of MACS J0416 and found agreement between all on the overall features. Around small

separations, < 1′′, the Lenstool galaxy-mass correlation functions had much larger ampli-

tudes than Grale because of modeling cluster galaxies in the reconstruction technique. In

Chapter 4, our two reconstructions, using no input from cluster member galaxies, found the

brightest cluster galaxies were tightly correlated to our mass distributions. An interesting

feature was produced in one of the galaxy-mass correlation functions, distinctive elbows

around 6 − 7′′, because of a higher concentration of Plummer spheres, around the bright

galaxies.
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We conclude that light traces mass within two Hubble Frontier Fields clusters, Abell

2744 and MACS J0416. The member galaxies, of these two clusters, are biased tracers

of the total mass distribution. Also, we found magnification bias present in both clusters

because of the anti-correlation between mass and the faintest galaxies in each cluster.

There exist many lens reconstruction methods and several previous studies have com-

pared the statistics across them. We looked at the uncertainties derived from our free-form

lens reconstruction. We presented an analysis of two Grale reconstructions of Abell 2744,

using different input data. The resulting mass models highlighted the features of the cluster

comparably. So much that the area of significant differences in the mass distributions is

small relative to the size of the cluster. This shows the robustness of uncertainties derived

from Grale reconstructions.

Lens-plane RMS is a conventional metric within lens reconstruction to compare the

goodness of cluster mass distributions. In Chapter 5, we explained our algorithm for cal-

culating the Lens-plane RMS, since Grale does not incorporate the statistic within its

method. While the Lens-plane RMS is widely used, a common definition has not been

settled on by the community. Therefore, we presented several definitions that depend on

the treatment of back and forward projected positions of images from the same source. We

obtained small Lens-plane RMS values for our two Abell 2744 reconstructions, 0.53′′and

0.87′′.
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Appendix A

Lens-plane RMS Code

#

###############################################################################################################

# imgso l . py : This program f i n d s image s o l u t i o n s f o r an average

mass map by p r o j e c t i n g back and then forward wi th

# the l en s equat ion .

#

# Input :

#

# Output :

# source pos . t x t : : source p o s i t i o n s from every image back−
p ro j e c t e d

# p fp ave . t x t : : p ro j ec t ed−forward p o s i t i o n s

# lprms . t x t : :

#

==============================================================================================================

# NOTE: some t h i n g s are commented wi th #, t h e s e were used f o r

g e t t i n g s t a t u s during the run or debugg ing

#

#

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

67
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import sys

sys . path . i n s e r t (1 , ’ / data / ka l inka / s ebe s ta /python ’ )

#import g l pa ra s

#import cosmology

import numpy as np

import operator

from s c ipy import opt imize

from g lpa ra s import c , G #grab c and G from g l pa ra s . py

#################

def l i n e ( p1 , p2 ) :

#−−−−−−−−−−−−−−−−
’ ’ ’

This f unc t i on c a l c u l a t e s the s l o p e and y−i n t e r c e p t from two

po in t s and then re turns them .

p1 , p2 : : input arrays wi th a l en g t h o f 2 . F i r s t index i s ’ x ’

coordinate , 2nd i s ’ y ’ coord ina te .

’ ’ ’

m = ( p1 [ 1 ] − p2 [ 1 ] ) / ( p1 [ 0 ] − p2 [ 0 ] ) # Ca lcu l a t e the s l o p e

o f the l i n e

b = p1 [ 1 ] − m ∗ p1 [ 0 ]

return m, b

###################################

def pto n l i n e ( xc , yc , m, b , r , add ) :

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ ’ ’

This f unc t i on s f i n d s the po in t ( x , y ) on a l i n e y = mx + b

tha t i s a d i s t ance r away from ( xc , yc )

x , y : : output po in t

xc , yc : : input cen ter po in t

m, b : : s l o p e and y−i n t e r c e p t f o r l i n e between ( x , y ) and (

xc , yc )

r : : input d i s t ance away the two po in t s are
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add : : boo lean f o r e i t h e r adding ( t rue ) or s u b t r a c t i n g (

f a l s e ) terms in equat ion f o r x

’ ’ ’

i f ( add == True ) :

term = np . s q r t (−b∗∗2−2∗b∗xc∗m+2∗b∗yc−(xc∗m) ∗∗2+2∗xc∗m∗yc

+(m∗ r )∗∗2+r∗∗2−yc ∗∗2)

else :

term = operator . neg (np . s q r t (−b∗∗2−2∗b∗xc∗m+2∗b∗yc−(xc∗m)

∗∗2+2∗xc∗m∗yc+(m∗ r )∗∗2+r∗∗2−yc ∗∗2) )

x = (−b∗m+xc+m∗yc+term ) /(m∗∗2+1)

y = m∗x+b

return x , y

################

class cons tant s :

#−−−−−−−−−−−−−−−
’ ’ ’

c l a s s o f cosmology cons tan t s

’ ’ ’

##########################################

def i n i t ( s e l f , omega m , omega l , H 0 ) :

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
s e l f . omega m = omega m

#matter d en s i t y

s e l f . omega l = omega l

#dark energy den s i t y / lambda

s e l f . omega k = 1 .0 − omega l − omega m #

curva ture dens i ty , f o r f l a t normal ly zero

s e l f .H = H 0

#Hubble parameter today

s e l f . h = H 0 /100 .

#dimens ion l e s s Hubble parameter

s e l f . d h = 299792.458/ H 0 #

Hubble d i s tance , c/H 0 with c in un i t s o f km ∗

sˆ−1
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################

class d i s t a n c e s :

#−−−−−−−−−−−−−−−
’ ’ ’

c l a s s o f d i f f e r e n t d i s t anc e s in cosmology

’ ’ ’

################################

def c o d i s t ( s e l f , z1 , z2 , cosmo ) :

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ ’ ’

This f unc t i on c a l c u l a t e s the comoving d i s t ance

d c in un i t s o f Mpc .

z1 , z2 : : r e d s h i f t s wi th z1<z2

cosmo : : c l a s s o f cosmology cons tan t s (omega m ,

omega l , h , e t c . )

d c : : comoving d i s t ance

’ ’ ’

dz = 0.0001

z = z1 + 0 .5 ∗ dz

d c = 0 .0

while ( z < z2 ) :

f = 1 .0 + z

demon = cosmo . omega m ∗ f ∗∗3 + cosmo .

omega k ∗ f ∗∗2 + cosmo . omega l

d c += dz / np . s q r t (demon)

z += dz

return d c ∗cosmo . d h

######################################

def t c o d i s t ( s e l f , z1 , z2 , d c , cosmo ) :

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ ’ ’

This f unc t i on c a l c u l a t e s the t r an s v e r s e comoving

d i s t ance d M in un i t s o f Mpc .

z1 , z2 : : r e d s h i f t s wi th z1<z2
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cosmo : : c l a s s o f cosmology cons tan t s (omega m ,

omega l , h , e t c . )

d c : : comoving d i s t ance

d M : : t r an s v e r s e comoving d i s t ance

’ ’ ’

d M = 0.0

f = np . s q r t (np . abs ( cosmo . omega k ) )

i f ( cosmo . omega k > 0 . 0 ) :

d M = cosmo . d h/ f ∗np . s inh ( f ∗ d c /cosmo . d h

)

#pr in t ’Omega k > 0 ’

e l i f ( cosmo . omega k < 0 . 0 ) :

d m = cosmo . d h/ f ∗np . s i n ( f ∗ d c /cosmo . d h )

#pr in t ’Omega k < 0 ’

else :

d M = d c

return d M

###############################

def angd i s t ( s e l f , d M , z , d A ) :

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ ’ ’

This f unc t i on c a l c u l a t e s the angu lar diameter

d i s t ance d M in un i t s o f Mpc .

z1 : : r e d s h i f t z

d M : : t r an s v e r s e comoving d i s t ance

d A : : angu lar diameter d i s t ance

’ ’ ’

d A = 0.0

d A = d M/(1.0+ z )

return d A

################################################

def d e f l p l ( image , D, px , py , pwidth , pmass , N) :

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ ’ ’
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This func t i on c a l c u l a t e s the d e f l e c t i o n ang le at po in t

from numerous Plummer spheres .

image : : po in t to c a l c u l a t e the d e f l e c t i o n at

D : : d l s / d o l / d os

px , py : : cen te r plummer coord ina t e s in arc s ec s

pwidth : : plummer width in arc sec s

pmass : : plummer mass in s o l a r mass un i t s

dfx , d fy : : d e f l e c t i o n ang l e coord ina t e s

’ ’ ’

dfx , dfy = 0 . , 0 . #I n i t i a l i z e d e f l e c t i o n ang l e s

f a c t o r = 4∗G/c ∗∗2 #4G/cˆ2 in cgs

#m sol = 1.989 e33 # So lar mass in grams

for i in xrange (N) : #Sum over plummers

dfx += f a c t o r ∗ m sol ∗ pmass [ i ] ∗ D ∗ ( image [ 0 ]

− px [ i ] ) / ( ( image [ 0 ] − px [ i ] ) ∗∗2 + ( image [ 1 ]

− py [ i ] ) ∗∗2 + ( pwidth [ i ] ) ∗∗2) ∗ r a d a r c s ∗∗2 #

206265ˆ2 f o r conver t ing from radians to

arc s ec s

dfy += f a c t o r ∗ m sol ∗ pmass [ i ] ∗ D ∗ ( image [ 1 ]

− py [ i ] ) / ( ( image [ 0 ] − px [ i ] ) ∗∗2 + ( image [ 1 ]

− py [ i ] ) ∗∗2 + ( pwidth [ i ] ) ∗∗2) ∗ r a d a r c s ∗∗2

return dfx , dfy

#################################################

def kappa pl ( image , D, px , py , pwidth , pmass , N) :

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ ’ ’

This f unc t i on c a l c u l a t e s the convergence ( kappa ) at a

po in t from numerous Plummer spheres .

image : : po in t to c a l c u l a t e the convergence at

D : : d l s / d o l / d os

px , py : : cen te r plummer coord ina t e s in arc s ec s

pwidth : : plummer width in arc sec s

pmass : : plummer mass in s o l a r mass un i t s

kappa : : convergence at ( image [ 0 ] , image [ 1 ] )
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’ ’ ’

kappa = 0 .0 #I n i t i a l i z e convergence

f a c t o r = 4∗G/c ∗∗2 #4G/cˆ2 in cgs

#m sol = 1.989 e33 # So lar mass in grams

for i in xrange (N) :

kappa += f a c t o r ∗ m sol ∗ pmass [ i ] ∗ D ∗ pwidth [ i

]∗∗2 / ( ( image [ 0 ] − px [ i ] ) ∗∗2 + ( image [ 1 ] − py

[ i ] ) ∗∗2 + ( pwidth [ i ] ) ∗∗2) ∗∗2 ∗ r a d a r c s ∗∗2 #

206265ˆ2 f o r conver t ing from radians to

arc s ec s

return kappa

##################################################

def gamma1 pl ( image , D, px , py , pwidth , pmass , N) :

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ ’ ’

This f unc t i on c a l c u l a t e s the f i r s t component o f the shear

(gamma) at a po in t from numerous Plummer spheres .

image : : po in t to c a l c u l a t e the shear at

D : : d l s / d o l / d os

px , py : : cen te r plummer coord ina t e s in arc s ec s

pwidth : : plummer width in arc sec s

pmass : : plummer mass in s o l a r mass un i t s

gamma1 : : f i r s t componenet o f shear at ( image [ 0 ] , image

[ 1 ] )

’ ’ ’

gamma1 = 0 .0 #I n i t i a l i z e convergence

f a c t o r = 4∗G/c ∗∗2 #4G/cˆ2 in cgs

#m sol = 1.989 e33 # So lar mass in grams

for i in xrange (N) :

gamma1 += f a c t o r ∗ m sol ∗ pmass [ i ] ∗ D ∗ ( ( image

[ 1 ] − py [ i ] ) ∗∗2 − ( image [ 0 ] − px [ i ] ) ∗∗2) / ( (

image [ 0 ] − px [ i ] ) ∗∗2 + ( image [ 1 ] − py [ i ] ) ∗∗2 +

( pwidth [ i ] ) ∗∗2) ∗∗2 ∗ r a d a r c s ∗∗2 #206265ˆ2

f o r conver t ing from radians to arc sec s
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return gamma1

##################################################

def gamma2 pl ( image , D, px , py , pwidth , pmass , N) :

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
’ ’ ’

This f unc t i on c a l c u l a t e s the second component o f the

shear (gamma) at a po in t from numerous Plummer spheres

.

image : : po in t to c a l c u l a t e the shear at

D : : d l s / d o l / d os

px , py : : cen te r plummer coord ina t e s in arc s ec s

pwidth : : plummer width in arc sec s

pmass : : plummer mass in s o l a r mass un i t s

gamma2 : : second componenet o f shear at ( image [ 0 ] , image

[ 1 ] )

’ ’ ’

gamma2 = 0 .0 #I n i t i a l i z e convergence

f a c t o r = 4∗G/c ∗∗2 #4G/cˆ2 in cgs

#m sol = 1.989 e33 # So lar mass in grams

for i in xrange (N) :

gamma2 += −2.0 ∗ f a c t o r ∗ m sol ∗ pmass [ i ] ∗ D ∗

( ( image [ 1 ] − py [ i ] ) ∗ ( image [ 0 ] − px [ i ] ) ) / ( (

image [ 0 ] − px [ i ] ) ∗∗2 + ( image [ 1 ] − py [ i ] ) ∗∗2 +

( pwidth [ i ] ) ∗∗2) ∗∗2 ∗ r a d a r c s ∗∗2 #206265ˆ2

f o r conver t ing from radians to arc sec s

return gamma2

’ ’ ’

Grab image data t ha t i s transformed in to coord ina t e s w. r . t . Grale

cen ter

source : : i d e n t i f i e r f o r which source the image be l ong s too

num : : i d e n t i f i e r f o r source , but s t a r t s a t 1 and

sub s e quen t l y i n c r ea s e s by 1

z : : r e d s h i f t
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’ ’ ’

img = np . genfromtxt ( ’ l en sp l ane image s . txt ’ , dtype=({ ’ names ’ : [ ’ x ’

, ’ y ’ , ’ source ’ , ’ z ’ , ’num ’ ] , ’ formats ’ : [ ’ f 8 ’ , ’ f 8 ’ , ’ i ’ , ’ f 8

’ , ’ i ’ ] } ) )

N = len ( img [ ’ x ’ ] ) #Number o f images

# F i r s t t h ing i s to g e t angu lar diameter d i s t anc e s and c r i t i c a l

su r f a c e d e n s i t i e s f o r every image

# Define cosmology .

cosmo = cosmology . cons tant s ( 0 . 3 , 0 . 7 , 70)

# Define r e d s h i f t s

z o = 0 .0 # observe r r e d s h i f t

z l = 0.308 # len s r e d s h i f t f o r Abe l l 2744

# I n i t i a l i z e angu lar diameter arrays

d o l = np . z e ro s (N)

d l s = np . z e ro s (N)

d os = np . z e ro s (N)

s c r i t = np . z e ro s (N)

#Check Curvature i s near zero

print ”Omega k : ” , cosmo . omega k

d c , d M , d A = 0 . 0 , 0 . 0 , 0 . 0 # I n i t i a l i z e d i s t an c e s

d i s t = cosmology . d i s t a n c e s ( ) # crea t e cosmology . d i s t ance

in s tance

# For loop over images to c a l c u l a t e the angu lar diameter

d i s t anc e s and c r i t i c a l su r f a c e d e n s i t i e s .

for i in xrange (N) :

z s = img [ ’ z ’ ] [ i ]
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# Ca lcu l a t e the ob se rve r to l en s ang d i s t .

d c = d i s t . c o d i s t ( z o , z l , cosmo )

d M = d i s t . t c o d i s t ( z o , z l , d c , cosmo )

d A = d i s t . angd i s t (d M , z l , d A )

d o l [ i ] = d A ∗ 3.08567758 e24 # Convert from Mpc to cm

# Ca l cu l a t e the l en s to source ang d i s t .

d c = d i s t . c o d i s t ( z l , z s , cosmo )

d M = d i s t . t c o d i s t ( z l , z s , d c , cosmo )

d A = d i s t . angd i s t (d M , z s , d A )

d l s [ i ] = d A ∗ 3.08567758 e24 # Convert from Mpc to cm

# Ca l cu l a t e the ob se rve r to source ang d i s t .

d c = d i s t . c o d i s t ( z o , z s , cosmo )

d M = d i s t . t c o d i s t ( z o , z s , d c , cosmo )

d A = d i s t . angd i s t (d M , z s , d A )

d os [ i ] = d A ∗ 3.08567758 e24 # Convert from Mpc to cm

#Ca l cu l a t e c r i t i c a l su r f a ce d en s i t y

s c r i t [ i ] = c ∗∗2/(4∗np . p i ∗G) ∗ d os [ i ] / d o l [ i ] / d l s [ i ]

#Import Plummer data o f mass d i s t r i b u t i o n

plummers = np . genfromtxt ( ’ . . / A2744 extended dir00−39 plummers . dat

’ , dtype=(

{ ’ names ’ : [ ’ x ’ , ’ y ’ , ’ width ’ , ’ mass ’ ] , ’ formats ’ : [ ’ f 8 ’ , ’ f 8 ’

, ’ f 8 ’ , ’ f 8 ’ ] } ) )

index = np . where ( plummers [ ’ mass ’ ] == 0 . 0 ) #Get i n d i c e s o f a l l

plummers wi th zero mass

#For loop to ge t r i d e o f zero mass plummers by c r ea t i n g new

arrays ( px , py , pwidth , pmass )
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for n in plummers . dtype . names :

blah = ’p ’+n

exec ( blah + ’ = np . d e l e t e ( plummers [ n ] , index [ 0 ] ) ’ )

#Open f i l e to save back−p ro j e c t e d or source p o s i t i o n s

f s r c = open ( ’ source pos . txt ’ , ’w ’ , 0)

d e f l = np . z e r o s ( ( 2 ,N) )

beta = np . z e ro s ( ( 2 ,N) )

image = np . z e r o s (2 )

#For loop over images to c a l c u l a t e source p o s i t i o n s

for i in xrange (N) :

image = img [ ’ x ’ ] [ i ] , img [ ’ y ’ ] [ i ]

d e f l [ 0 , i ] , d e f l [ 1 , i ] = g lpa ra s . d e f l p l ( image , d l s [ i ] / d o l [ i

] / d os [ i ] , px , py , pwidth , pmass , l en ( px ) ) #de f l e c t i o n

ang le o f plummer

beta [ 0 , i ] , beta [ 1 , i ] = image [ 0 ] − d e f l [ 0 , i ] , image [ 1 ] − d e f l

[ 1 , i ] #len s equat ion

np . save txt ( f s r c , np . array ( [ img [ ’ source ’ ] [ i ] , img [ ’num ’ ] [ i ] ,

beta [ 0 , i ] , beta [ 1 , i ] ] ) . reshape ( ( 1 , 4) ) , fmt=’%i %i % .18

f % .18 f ’ , newl ine=’ \n ’ )

#I f on ly want to c a l c u l a t e source /back−p ro j e c t e d image po s i t i on s ,

uncomment be low

#sys . e x i t ( ’ Stopping f i l e ’ )

#Define func t i on f o r op t imize . roo t

def f v e c ( image ) :

dfx , dfy = g lpa ra s . d e f l p l ( image , d l s [ i ] / d o l [ i ] / d os [ i ] , px

, py , pwidth , pmass , l en ( px ) )

fx = beta [ 0 , i ]+dfx−image [ 0 ]

fy = beta [ 1 , i ]+dfy−image [ 1 ]

return fx , fy

#Open f i l e s f o r record ing pro j ec t ed−forward p o s i t i o n s
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# ’a ’ f o r append mode and 0 f o r unbu f f e red mode ( wr i t e s output

during execu t i on )

f = open ( ’ p fp ave . txt ’ , ’ a ’ , 0)

f 2 = open ( ’ p f p a v e s . txt ’ , ’ a ’ , 0) #p f p a v e s t a t u s document .

Gives any unusual e r ro r s when c a l c u l a t i n g the forward

p ro j e c t e d p o s i t i o n s .

# ho lde r ac t s as index ing v a r i a b l e to c y c l e through images and

sources .

ho lder = 0

num = img [ ’num ’ ]

’ ’ ’

Ca l cu l a t e pro j ec t ed−forward po s i t i on s , ’ r e l en s ed ’ image p o s i t i o n s

be low

i index i s f o r l oop ing over sources , j index i s f o r l oop ing over

images

Typica l output f o r p fp ave . t x t

x y source image

num fx f y

I 14.492806194328091252 −85.032872753471067995 22 1

13 0.000000000000000000E+00 0.000000000000000000E

+00

52.225188706004715300 −59.447408117002346728 22 2

13 −7.687646075282827951E−10 8.365503845197963528

E−10
41.319095506368014981 −75.664516879076643363 22 3

13 4.298783551348606125E−12 1.932676241267472506

E−12
14.474706295057405470 −84.932449177284951247 22 1

13 2.625526462907146197E−10 7.909761734481435269

E−11
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52.270264221782973380 −59.136460847752744030 22 2

13 0.000000000000000000E+00 0.000000000000000000

E+00

41.134224885480996647 −75.761144996246983396 22 3

13 1.065814103640150279E−13 −2.842170943040400743
E−13

14.619061271139178970 −85.064869432382266723 22 1

13 8.384404281969182193E−13 −1.421085471520200372
E−14

52.288445887853491456 −59.403678494193336235 22 2

13 −1.152500317402882501E−10 −3.443290097493445501
E−11

41.271762373385378453 −75.744998454252055353 22 3

13 0.000000000000000000E+00 0.000000000000000000

E+00

The above sn i ppe t o f a p fp ave . t x t g i v e s an idea o f how the be low

for−l oop s work . The f i r s t l i n e wi th I i s the s t a r t o f a new

source , j goes from 0−2 ( python uses zero index ing ) wh i l e i

kep t the same , then i+=1 and j : 0−>2, l a s t l y i+=1 and j : 0−>2
s ince t h i s i s a t h r ee image system . There i s a s e l f −
cons i s t ency check as f x and f y are ( 0 . , 0 . ) when the same

image i s l en sed back and forward

’ ’ ’

#Se l e c t what source range to c a l c u l a t e s o l u t i o n s from

for i in xrange (N) : #xrange ( i i , i f ) : S t a r t s a t i i , and ends at i f

−1
#Print out which image ( ho lde r ) and source (num) the code i s

cu r en t l y at

print ’ ho lder : ’ , holder , ’num[ i ] : ’ , num[ i ]

#This i f b l o c k f i n d s the id ’ s o f the images from the same

source

#Also grabs the observed images p o s i t i o n s as r e f x and r e f y

arrays
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i f ho lder != num[ i ] :

ho lder = num[ i ]

j = i

while ( ho lder == num[ j ] ) :

j = j + 1

i f ( j == N) :

break

j f = j #Comment out j and i f o r choos ing wi th images to

c a l c u l a t e the p ro j e c t e d forward p o s i t i o n s o f . S imi lar

to above , w i l l s t a r t a t j i and f i n i s h at j f −1
j i = i

# Set up r e f e r ence arrays o f s e t o f image p o s i t i o n s to

check i f converged s o l u t i o n s are w i th in t h e i r

neighborhood

d i f f = j f − j i # f ind how many image the r e are

r e f x = np . z e r o s ( d i f f ) # de f i n e arrays

r e f y = np . z e r o s ( d i f f )

##srcx = np . ze ro s ( d i f f ) #Arrays to c a l c u l a t e average

source p o s i t i o n

##srcy = np . z e ros ( d i f f )

for k in xrange ( d i f f ) :

r e f x [ k ] , r e f y [ k ] = img [ ’ x ’ ] [ j i + k ] , img [ ’ y ’ ] [ j i + k ]

##srcx [ k ] , s rcy [ k ] = be ta [ 0 , j i+k ] , be ta [ 1 , j i + k ]

##fo r k in xrange ( d i f f ) :

##beta [ 0 , j i+k ] = np . sum( srcx )/ d i f f

##beta [ 1 , j i+k ] = np . sum( srcy )/ d i f f

#Check r e f e r ence arrays

print ’ r e f x : ’ , r e f x

print ’ r e f y : ’ , r e f y
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#Define image arrays :

img so l = np . z e r o s ( ( d i f f ) , dtype =[( ’ x ’ , ’ f 8 ’ ) , ( ’ y ’ , ’ f 8 ’ ) , (

’ fx ’ , ’ f 8 ’ ) , ( ’ fy ’ , ’ f 8 ’ ) ] ) #array f o r image s o l u t i o n s f o r

t h i s source where k in img so l [ k ] corresponds to the

image id number o f source se t , ( i e k=0 corresponds to

f i r s t image o f #( d i f f ) image s e t o f source i ) , f i e l d names

f o r image p o s i t i o n s and f x & fy o f l en s equat ion

i m g f a i l = np . empty ( ( 0 ) , dtype =[( ’ x ’ , ’ f 8 ’ ) , ( ’ y ’ , ’ f 8 ’ ) , ( ’

index ’ , ’ i 4 ’ ) , ( ’ fx ’ , ’ f 8 ’ ) , ( ’ fy ’ , ’ f 8 ’ ) , ( ’ count ’ , ’ i 4 ’ )

] ) #empty array f o r image f a i l p o s i t i o n s f o r t h i s source ,

f i e l d names f o r image p o s i t i o n s and f x & fy o f l en s

equat ion , index corresponds to the image id number o f

source s e t

img wimg = np . empty ( ( 0 ) , dtype =[( ’ x ’ , ’ f 8 ’ ) , ( ’ y ’ , ’ f 8 ’ ) , ( ’

index ’ , ’ i 4 ’ ) , ( ’ fx ’ , ’ f 8 ’ ) , ( ’ fy ’ , ’ f 8 ’ ) ] ) #wimg = ’wrong

image ’ , empty array f o r images t ha t didn ’ t converge to

the co r r e c t c l o s e s t image , f i e l d names f o r image p o s i t i o n s

and f x & fy o f l en s equat ion , index corresponds to the

image id number o f source s e t

n f a i l = 0 #Number o f f a i l image searches

’ ’ ’

Find pro j ec t ed−forward image p o s i t i o n s f o r images o f the same

source

i index l oops over source from above for−loop , used in f v e c

f o r op t imize . roo t

j index be low loops over images

’ ’ ’

for j in xrange ( j i , j f ) :

print ’ j : ’ , j

# i n i t i a l i z e image array

image = np . z e r o s (2 )

image [ 0 ] , image [ 1 ] = img [ ’ x ’ ] [ j ] , img [ ’ y ’ ] [ j ] #I n i t i a l i z e

p o s i t i o n wi th observed image po s i t i o n
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#Setup parameters f o r f i n d i n g roo t s to l en s equa t ions

dfx , dfy = 0 . , 0 . #de f l e c t i o n ang l e s in x & y coord ina t e s

s u c c e s s = False

count = 0 #I t e r a t o r f o r how many t imes to f i nd pro j ec t ed−
forward p o s i t i o n s

i t e r s u c , maxsuc = 0 , 5

so lx , so ly , funx , funy = 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0

maxiter = 10

dbest = 100 .0 # I n i t i a l i z e d i s t ance between image and

converged s o l u t i o n

while ( s u c c e s s != True ) :

#Use opt imize . roo t to f i nd converged s o l u t i o n to

forward−p ro j e c t e d p o s i t i o n s

s o l = opt imize . root ( fvec , image )

#pr in t ’ count : ’ , count , i t e r s u c , s o l . succe s s

#pr i n t s o l . x [ 0 ] , s o l . x [ 1 ] , s o l . succe s s

# Check i f s o l u t i o n converged

i f ( s o l . s u c c e s s ) :

# Now check to see i f converged s o l u t i o n i s

w i th in the r i g h t image po s i t i o n

dmin = 100 .0 # I n i t i a l i z e minimum d i s t ance

for k in xrange ( d i f f ) : # Compute d i s t ance

between every image and look f o r c l o s e s t image

d = np . s q r t ( ( s o l . x [ 0 ] − r e f x [ k ] ) ∗∗2 + ( s o l . x

[ 1 ] − r e f y [ k ] ) ∗∗2)

i f (d < dmin ) :

dmin = d

kbest = k

#pr in t j i , kbes t , j

i f ( j i + kbest == j ) : # Check i f converged to

co r r e c t image

img so l [ j− j i ] [ ’ x ’ ] , img so l [ j− j i ] [ ’ y ’ ] = s o l .

x [ 0 ] , s o l . x [ 1 ]
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img so l [ j− j i ] [ ’ fx ’ ] , img so l [ j− j i ] [ ’ fy ’ ] =

s o l . fun [ 0 ] , s o l . fun [ 1 ]

s u c c e s s = True

#np . s a v e t x t ( f t o t , np . array ( [ img [ ’ source ’ ] [ i

] , j + 1 , num[ i ] , count , i t e r s u c , image

[ 0 ] , image [ 1 ] , s o l . x [ 0 ] , s o l . x [ 1 ] , s o l . fun

[ 0 ] , s o l . fun [ 1 ] , s o l . succe s s ] ) . reshape (

#(1 , 12) ) , fmt=’%i %i %i %i %i % .18

f % .18 f % .18 f % .18 f % .18E

% .18E %s ’ , newl ine=’\n ’)

else :

i f ( img wimg . s i z e == 0) : #Check i f img wimg i s

empty

img wimg = np . append ( img wimg , np . array

( [ ( s o l . x [ 0 ] , s o l . x [ 1 ] , j−j i , s o l . fun

[ 0 ] , s o l . fun [ 1 ] ) ] , dtype=img wimg .

dtype ) )

count = maxiter−1 #Break out o f curren t

loop , on ly want 1 wrong img per one

convergence loop o f ’ j ’ , −1 because o f

count += 1 below wi th in t h i s e l s e

s ta tement

else :

n f = 0 #count f o r img wimg to see i f s o l .

x i s conta ined wi th in i t

ni = 0 #count f o r matching i n d i c e s w i th in

img wimg

for k in xrange ( l en ( img wimg [ ’ x ’ ] ) ) :

d = np . s q r t ( ( img wimg [ ’ x ’ ] [ k ] − s o l . x

[ 0 ] ) ∗∗2 + ( img wimg [ ’ y ’ ] [ k ] − s o l .

x [ 1 ] ) ∗∗2)

i f (d < 1 . e−2) :

nf += 1
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i f ( j− j i == img wimg [ ’ index ’ ] [ k ] ) : #

Checks i f any images w i th in the

same ’ j ’ are added

ni += 1

#Append ’wrong image ’ to img wimg i f s o l .

x i s not found wi th in img wimg or i f

the wrong image has a l r eady been added

i f ( nf == 0) :

img wimg = np . append ( img wimg , np .

array ( [ ( s o l . x [ 0 ] , s o l . x [ 1 ] , j−j i ,

s o l . fun [ 0 ] , s o l . fun [ 1 ] ) ] , dtype=

img wimg . dtype ) )

i f ( n i == 0) :

img wimg = np . append ( img wimg , np .

array ( [ ( s o l . x [ 0 ] , s o l . x [ 1 ] , j−j i ,

s o l . fun [ 0 ] , s o l . fun [ 1 ] ) ] , dtype=

img wimg . dtype ) )

count += 1

else : #so a f a i l u r e . . . and op t imize . roo t didn ’ t

converge

i f ( i m g f a i l . s i z e == 0) : #Check i f im g f a i l i s

empty

i m g f a i l = np . append ( i m g f a i l , np . array ( [ ( s o l

. x [ 0 ] , s o l . x [ 1 ] , j−j i , s o l . fun [ 0 ] , s o l . fun

[ 1 ] , 1) ] , dtype=i m g f a i l . dtype ) )

else :

n f = 0 #count f o r im g f a i l to see i f s o l . x i s

conta ined wi th in i t

for k in xrange ( l en ( i m g f a i l [ ’ x ’ ] ) ) :

d = np . s q r t ( ( i m g f a i l [ ’ x ’ ] [ k ] − s o l . x [ 0 ] )

∗∗2 + ( i m g f a i l [ ’ y ’ ] [ k ] − s o l . x [ 1 ] )

∗∗2)

i f (d < 1 . e−2) :
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n f f = 0 #i t e r a t o r to count the

e n t r i e s o f im g f a i l t h a t have the

same po s i t i o n and image index ( j− j i

)

for l in xrange ( l en ( i m g f a i l [ ’ index ’

] ) ) :

i f ( j− j i == i m g f a i l [ ’ index ’ ] [ l ] ) :

n f f += 1

i f ( n f f == 0) : #I f the image index was

not found in img f a i l , append the

new ’ f a i l e d ’ s o l u t i o n to im g f a i l

i m g f a i l = np . append ( i m g f a i l , np

. array ( [ ( s o l . x [ 0 ] , s o l . x [ 1 ] , j

−j i , s o l . fun [ 0 ] , s o l . fun [ 1 ] ,

1) ] , dtype=i m g f a i l . dtype ) )

e l i f ( j− j i == i m g f a i l [ ’ index ’ ] [ k ] ) : #

I f the image index was found in

im g f a i l and i t i s the same image

as the current img f a i l , then

inc rea se i t ’ s count

i m g f a i l [ ’ count ’ ] [ k ] += 1

nf += 1

i f ( nf == 0 ) :

i m g f a i l = np . append ( i m g f a i l , np . array

( [ ( s o l . x [ 0 ] , s o l . x [ 1 ] , j−j i , s o l . fun

[ 0 ] , s o l . fun [ 1 ] , 1) ] , dtype=i m g f a i l .

dtype ) )

count += 1

#Give i n i t i a l guess o f pro j ec t ed−forward po s i t i o n a

b i t o f randomizat ion

a = 0.5∗ np . random . rand (2)

image [ 0 ] = img [ ’ x ’ ] [ j ] + a [ 0 ] / 2

image [ 1 ] = img [ ’ y ’ ] [ j ] + a [ 1 ] / 2



Appendix A. Lens-plane RMS Code 86

#I f count reaches max # of i t e r a t i o n s , break out o f

loop

#Print number o f wrong and f a i l e d images

i f ( count == maxiter ) :

print ’ wrong images : ’ , img wimg . shape

print ’ f a i l e d images : ’ , i m g f a i l . shape

s u c c e s s = False

break

#f . wr i t e (’% .18 f % .18 f %3i %3i %3i %

.18E % .18E \n ’ % ( so l x , so ly , s l a b [ i ] , j , num[ i ] ,

funx , funy ) )

#np . s a v e t x t ( f , np . array ( [ so l x , so ly , img [ ’ source ’ ] [ i ] , j

+ 1 , num[ i ] , funx , funy ] ) . reshape (

# (1 , 7) ) , fmt=’% .18 f % .18 f %3i %3i %3i

% .18E % .18E ’ , newl ine=’\n ’)

#f2 . wr i t e (’% i %i %s %i \n ’ %(i , j , so l suc ,

num iters ) )

#np . s a v e t x t ( f2 , np . array ( [ i + 1 , j + 1 , so l suc , num iters

]

# ) . reshape ((1 , 4) ) , fmt=’%i %i

%s %i ’ , newl ine=’\n ’)

#Print s t a t u s o f pro j ec t ed−forward p o s i t i o n s wi th source i

print ’ source : ’ , i +1, ’ with ’ , d i f f , ’# o f images ’

print ’ img so l : ’ , img so l

print ’ img wimg : ’ , img wimg

print ’ i m g f a i l : ’ , i m g f a i l

#Check to see i f t h e r e are any image s o l u t i o n s t ha t f a i l e d to

be found

n f a i l = 0

for k in xrange ( l en ( img so l ) ) :

d = np . s q r t ( img so l [ ’ x ’ ] [ k ]∗∗2 + img so l [ ’ y ’ ] [ k ]∗∗2 )

i f (d < 1 . e−6) :
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n f a i l += 1

print ’ n f a i l : ’ , n f a i l

’ ’ ’

Note t ha t the code below w i l l copy the f a i l e d image s o l u t i o n s

to the img so l array i f no new image i s found . This

u s u a l l y happens when two converge and are near a c r i t i c a l

l i n e . Externa l code can be used to i n v e s t i g a t e i f near a

c r i t i c a l l i n e .

’ ’ ’

wimg = [ ] #empty l i s t f o r index o f ’ wrong images ’ t h a t match

a s o l u t i o n in img so l

rimg = [ ] #empty l i s t f o r index o f ’ r e f e r ence images ’

#I t e r a t e through img wimg to see i f en try in img wimg i s not

w i th in img so l ( then accep t i t based on img id −> img wimg

[ 2 , : ] ) or i t i s ( then w i l l l ook f o r another s o l u t i o n

around o r i g i n a l image )

ep = 1 . e−6

for m in xrange ( l en ( img wimg [ ’ x ’ ] ) ) :

count = 0

for n in xrange ( l en ( img so l [ ’ x ’ ] ) ) : #i t e r a t e through

img so l to f i nd matches o f curren t img wimg s e l e c t i o n

d = np . s q r t ( ( img so l [ ’ x ’ ] [ n ] − img wimg [ ’ x ’ ] [m] ) ∗∗2 +

( img so l [ ’ y ’ ] [ n ] − img wimg [ ’ y ’ ] [m] ) ∗∗2)

i f (d < ep ) :

wimg . append (m)

rimg . append (n)

print wimg , rimg

count += 1

i f ( count == 0) :

d = np . s q r t ( ( img so l [ ’ x ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] )

∗∗2 + ( img so l [ ’ y ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] )

∗∗2)
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i f (d < ep ) : #i f img so l i s ( 0 . , 0 . )

img so l [ ’ x ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] =

img wimg [ ’ x ’ ] [m]

img so l [ ’ y ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] =

img wimg [ ’ y ’ ] [m]

img so l [ ’ fx ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] =

img wimg [ ’ fx ’ ] [m]

img so l [ ’ fy ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] =

img wimg [ ’ fy ’ ] [m]

else : #check i f current img wimg i s a b e t t e r s o l u t i o n

than the s t o r ed img so l o f img wimg [2 ,m]

fun = np . s q r t ( img so l [ ’ fx ’ ] [ i n t ( img wimg [ ’ index ’

] [m] ) ]∗∗2 + img so l [ ’ fy ’ ] [ i n t ( img wimg [ ’ index ’

] [m] ) ]∗∗2 ) #f fo r img so l t h a t img wimg po in t s

too wi th img wimg [2 ,m]

fun2 = np . s q r t ( img wimg [ ’ fx ’ ] [m]∗∗2 + img wimg [ ’

fy ’ ] [m]∗∗2 ) #f fo r curren t img wimg

i f ( fun > fun2 ) :

img so l [ ’ x ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] =

img wimg [ ’ x ’ ] [m]

img so l [ ’ y ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] =

img wimg [ ’ y ’ ] [m]

img so l [ ’ fx ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] =

img wimg [ ’ fx ’ ] [m]

img so l [ ’ fy ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] =

img wimg [ ’ fy ’ ] [m]

else :

print ’ This ”wrong image : ” ’ , m, ’ matches img so l : ’ ,

rimg [ wimg . index (m) ]

’ ’ ’
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img so l shou ld now conta in any en t r i e s o f img wimg tha t do

not match any prev ious img so l and are t h e r e f o r e unique

s o l u t i o n s . In add i t ion , i f t h e r e i s a match , wimg conta ins

the index , k , o f img wimg tha t does match the img so l

entry wi th index at img wimg [2 , i n t (wimg [ k ] ) ] , t h i s w i l l be

used l a t e r when search ing f o r a new s o l u t i o n around the

o r i g i n a l image

A magnitude check w i l l be performed . The magnitude at each

po in t o f img wimg tha t matches an entry in img so l . Based

on imgsol magcheck . py , the c u t o f f magnitude w i l l be 100 ,

every po in t >100 i s an o u t l i e r and thus near a c r i t i c a l

l i n e . Thus , two images merge t o g e t h e r . I f mag > 100 , image

at index , rimg [ k ] w i l l be cop ied to image at img wimg [ ’

index ’ ] [ i n t (wimg [ k ] ) ]

Next par t w i l l l ook f o r an add i t i o n a l image s o l u t i o n near the

r e f e r ence image .

A l i n e ( x−ax i s ) w i l l be formed with the o r i g i n a l image (

img wimg [ 2 , [ wimg [ k ] ] ] ) as v e r t e x and conta ins the neare s t

image . A perpend i cu l a r l i n e (y−ax i s ) w i l l a l s o be formed ,

t ha t makes a coord ina te a x i s wi th the o r i g i n a l l i n e . The

four ax i s l i n e s w i l l be used as s t a r t i n g po in t s to search

f o r a new image t ha t i s d i f f e r e n t from img wimg .

’ ’ ’

mag cut = 100 . #cut o f f f o r magnitude check

print wimg

for m in wimg :

magx , magy = img wimg [ ’ x ’ ] [m] , img wimg [ ’ y ’ ] [m]

print magx , magy

#Ca lcu l a t e the magnitude , mu
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kappa = g lpa ra s . kappa pl ( ( magx , magy) , d l s [ i ] / d o l [ i ] /

d os [ i ] , px , py , pwidth , pmass , l en ( px ) )

gamma1 = g lpa ra s . gamma1 pl ( ( magx , magy) , d l s [ i ] / d o l [ i ] /

d os [ i ] , px , py , pwidth , pmass , l en ( px ) )

gamma2 = g lpa ra s . gamma2 pl ( ( magx , magy) , d l s [ i ] / d o l [ i ] /

d os [ i ] , px , py , pwidth , pmass , l en ( px ) )

detA = ((1 − kappa ) ∗∗2 − gamma1∗∗2 − gamma2∗∗2)

mu = 1 . / detA

print ’ Magnitude o f ’ ,mu

i f (np . abs (mu) > mag cut ) : #I f the magnitude i s h i ghe r

than the cut , t h i s image i s near the c r i t i c a l l i n e .

Copy t h i s image to img so l

index = wimg . index (m)

img so l [ ’ x ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] = img so l [ ’ x ’

] [ rimg [ index ] ]

img so l [ ’ y ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] = img so l [ ’ y ’

] [ rimg [ index ] ]

img so l [ ’ fx ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] = img so l [ ’

fx ’ ] [ rimg [ index ] ]

img so l [ ’ fy ’ ] [ i n t ( img wimg [ ’ index ’ ] [m] ) ] = img so l [ ’

fy ’ ] [ rimg [ index ] ]

del wimg [m] #de l e t e entry from wimg l i s t

print ’Mag check done f o r wrong images ’

#Search f o r new image by making a coord ina te system centered

on the o r i g i n a l image po s i t i o n o f img wimg

print ’wimg : ’ , wimg

for n in xrange ( l en (wimg) ) :

#Grab coord ina t e s o f image , p1 i s o r i g i n a l image and p2

i s neare s t image ( probab l y the s o l u t i o n t ha t the

a l gor i thm converged too )
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p1 , p2 = np . z e ro s (2 ) , np . z e r o s (2 )

p1 [ 0 ] , p1 [ 1 ] = r e f x [ img wimg [ ’ index ’ ] [ wimg [ n ] ] ] , r e f y [

img wimg [ ’ index ’ ] [ wimg [ n ] ] ]

p2 [ 0 ] , p2 [ 1 ] = r e f x [ rimg [ n ] ] , r e f y [ rimg [ n ] ]

print p1

print p2

m, b = l i n e ( p1 , p2 ) #ge t s l o p e and y−i n t e r c e p t o f l i n e

between images

m per = −(m)∗∗−1 #ge t s l o p e o f pe rpend i cu l a r l i n e t ha t

conta ins the converged s o l u t i o n

b per = p1 [ 1 ] − m per ∗ p1 [ 0 ] #ge t y−i n t e r c e p t o f

pe rpend i cu l a r l i n e

print m, b

print m per , b per

xc , yc = p1

# Now search a long coord ina te axes , x−ax i s i s the l i n e

between the two image po in t s

# y−ax i s i s the pe rpend i cu l a r l i ne , r i s the rad ius from

the cen ter po in t o f i n t e r s e c t i o n

r = 0 .0

image = np . z e r o s (2 )

r max = 5 .0

newimage = False

print ’ n : ’ , n

while ( r < r max ) :

r += 0 .1

print ’ r = ’ , r

for l in xrange (4 ) :

i f ( l == 0) : #For p o s i t i v e a long new ’ x−ax i s ’
image = pto n l i n e ( xc , yc , m, b , r , True )
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i f ( l == 1) : #For p o s i t i v e a long new ’y−ax i s ’
image = pto n l i n e ( xc , yc , m per , b per , r ,

True )

i f ( l == 2) : #For nega t i v e a long new ’ x−ax i s ’
image = pto n l i n e ( xc , yc , m, b , r , Fa l se )

i f ( l == 3) : #For nega t i v e a long new ’y−ax i s ’
image = pto n l i n e ( xc , yc , m per , b per , r ,

Fa l se )

#pr in t ’ image : ’ , image

s o l = opt imize . root ( fvec , image )

#Check i f s u c c e s s f u l convergence , then see i f

converged to a d i f f e r e n t image

#pr in t s o l . x , s o l . succe s s

i f ( s o l . s u c c e s s == True ) :

i f (np . abs ( img wimg [ ’ x ’ ] [ i n t (n) ] − s o l . x [ 0 ] ) >

1 .0 e−2 and (np . abs ( img wimg [ ’ y ’ ] [ i n t (n) ]

− s o l . x [ 1 ] ) > 1 .0 e−2) ) :

#pr in t s o l . x

i d i f = 0 #count f o r i f s u c c u s s f u l

s o l u t i o n s are d i f f e r e n t from new

s o l u t i o n

for k in xrange ( l en ( img so l [ ’ x ’ ] ) ) :

i f (np . abs ( img so l [ ’ x ’ ] [ k]− s o l . x [ 0 ] ) <

1 .0 e−2 and np . abs ( img so l [ ’ y ’ ] [ k

]− s o l . x [ 1 ] ) < 1 .0 e−2) :

i d i f += 1

i f ( i d i f == 0) :

#Check i f the new s o l u t i o n i s an

ac t ua l s o l u t i o n o f t h i s source s e t

d = np . s q r t ( ( s o l . x [ 0 ] − p1 [ 0 ] ) ∗∗2 + (

s o l . x [ 1 ] − p1 [ 1 ] ) ∗∗2)



Appendix A. Lens-plane RMS Code 93

#I f the d i s t ance between the s o l u t i o n

and o r i g i n a l image i s g r ea t e r

than e i t h e r 1.5∗ rmax or 2∗( d i s t

between p1 and p2 ) then r e j e c t i t

i f ( (d > r max ∗1 . 5 ) or (d > 2∗np . s q r t

( ( p1 [0]−p2 [ 0 ] ) ∗∗2 + ( p1 [1]−p2 [ 1 ] )

∗∗2) ) ) :

np . save txt ( f2 , np . array ( [ img [ ’

source ’ ] [ i ] , img wimg [ ’ index ’

] [ wimg [ n ] ] , img [ ’num ’ ] [ i ] , s o l

. x [ 0 ] , s o l . x [ 1 ] , s o l . fun [ 0 ] ,

s o l . fun [ 1 ] , p1 [ 0 ] , p1 [ 1 ] ] ) .

reshape ( ( 1 , 9) ) , fmt=’%i %i

%i % .18 f % .18 f % .18 f

% .18 f % .18E % .18E ’ ,

newl ine=’ \n ’ )

else :

print ’ new image : {0 : . 1 8 f } {1 : . 1 8

f } {2 : . 1 8E} {3 : . 1 8E} ’ . format (

s o l . x [ 0 ] , s o l . x [ 1 ] , s o l . fun

[ 0 ] , s o l . fun [ 1 ] )

img so l [ ’ x ’ ] [ img wimg [ ’ index ’ ] [

i n t (n) ] ] = s o l . x [ 0 ]

img so l [ ’ y ’ ] [ img wimg [ ’ index ’ ] [

i n t (n) ] ] = s o l . x [ 1 ]

img so l [ ’ fx ’ ] [ img wimg [ ’ index ’ ] [

i n t (n) ] ] = s o l . fun [ 0 ]

img so l [ ’ fy ’ ] [ img wimg [ ’ index ’ ] [

i n t (n) ] ] = s o l . fun [ 1 ]

newimage = True

r = r max #break out o f wh i l e

loop

break #break out o f f o r loop

i f ( newimage == False ) :
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img so l [ ’ x ’ ] [ img wimg [ ’ index ’ ] [ i n t (n) ] ] = img wimg [ ’ x

’ ] [ i n t (n) ]

img so l [ ’ y ’ ] [ img wimg [ ’ index ’ ] [ i n t (n) ] ] = img wimg [ ’ y

’ ] [ i n t (n) ]

img so l [ ’ fx ’ ] [ img wimg [ ’ index ’ ] [ i n t (n) ] ] = img wimg [ ’

fx ’ ] [ i n t (n) ]

img so l [ ’ fy ’ ] [ img wimg [ ’ index ’ ] [ i n t (n) ] ] = img wimg [ ’

fy ’ ] [ i n t (n) ]

print ’ img so l : ’ , img so l

’ ’ ’

The next par t o f code w i l l d ea l wi th f a i l e d image s o l u t i o n s .

These are p o s i t i o n s t ha t the a l gor i thm did not

s u c c e s s f u l l y converge wi th .

F i r s t a magnitude check i s performed with mag cut = 100. I f

the mag > 100 , then the image po s i t i o n i s near a c r i t i c a l

l i n e and thus cou ld make i t hard f o r the a l gor i thm to

converge .

Then , the ’ count ’ o f each entry in im g f a i l w i l l be

i n v e s t i g a t e d . The count o f each entry corresponds to the

number o f t imes the a l gor i thm stopped at t ha t p o s i t i o n .

For each image index , the p o s i t i o n wi th the h i g h e s t number

o f counts w i l l be recorded to img so l .

’ ’ ’

mag cut = 100 . #cut o f f f o r magnitude check

for m in xrange ( l en ( i m g f a i l [ ’ index ’ ] ) ) :

magx , magy = i m g f a i l [ ’ x ’ ] [m] , i m g f a i l [ ’ y ’ ] [m]

print magx , magy
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#Ca lcu l a t e the magnitude , mu

kappa = g lpa ra s . kappa pl ( ( magx , magy) , d l s [ i ] / d o l [ i ] /

d os [ i ] , px , py , pwidth , pmass , l en ( px ) )

gamma1 = g lpa ra s . gamma1 pl ( ( magx , magy) , d l s [ i ] / d o l [ i ] /

d os [ i ] , px , py , pwidth , pmass , l en ( px ) )

gamma2 = g lpa ra s . gamma2 pl ( ( magx , magy) , d l s [ i ] / d o l [ i ] /

d os [ i ] , px , py , pwidth , pmass , l en ( px ) )

detA = ((1 − kappa ) ∗∗2 − gamma1∗∗2 − gamma2∗∗2)

mu = 1 . / detA

print ’ Magnitude o f ’ ,mu

i f (np . abs (mu) > mag cut ) : #I f the magnitude i s h i ghe r

than the cut , t h i s image i s near the c r i t i c a l l i n e .

Copy t h i s image to img so l

index = i m g f a i l [ ’ index ’ ] [m]

i f ( i m g f a i l [ ’ count ’ ] [m] == np . amax( i m g f a i l [ ’ count ’ ] )

) :

img so l [ ’ x ’ ] [ index ] = i m g f a i l [ ’ x ’ ] [m]

img so l [ ’ y ’ ] [ index ] = i m g f a i l [ ’ y ’ ] [m]

img so l [ ’ fx ’ ] [ index ] = i m g f a i l [ ’ fx ’ ] [m]

img so l [ ’ fy ’ ] [ index ] = i m g f a i l [ ’ fy ’ ] [m]

print ’Mag check done f o r f a i l e d images ’

nz = 0 #number o f z e ro s in img so l

for m in xrange ( l en ( img so l [ ’ x ’ ] ) ) :

d = np . s q r t ( img so l [ ’ x ’ ] [m]∗∗2 + img so l [ ’ y ’ ] [m]∗∗2 )

i f (d < 1 . e−6) :

nz += 1

i f ( nz != 0) :

for m in xrange ( d i f f ) :

maxfc = 0 #max f a i l e d counts

for n in xrange ( l en ( i m g f a i l [ ’ index ’ ] ) ) :
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i f (m == i m g f a i l [ ’ index ’ ] [ n ] and maxfc < i m g f a i l

[ ’ count ’ ] [ n ] ) :

maxfc = i m g f a i l [ ’ count ’ ] [ n ]

img so l [ ’ x ’ ] [m] = i m g f a i l [ ’ x ’ ] [ n ]

img so l [ ’ y ’ ] [m] = i m g f a i l [ ’ y ’ ] [ n ]

img so l [ ’ fx ’ ] [m] = i m g f a i l [ ’ fx ’ ] [ n ]

img so l [ ’ fy ’ ] [m] = i m g f a i l [ ’ fy ’ ] [ n ]

print ’ img so l : ’ , img so l

#Write img so l f o r source i and image j

for j in xrange ( l en ( img so l ) ) :

np . save txt ( f , np . array ( [ img so l [ ’ x ’ ] [ j ] , img so l [ ’ y ’ ] [ j ] ,

img [ ’ source ’ ] [ i ] , j + 1 , img [ ’num ’ ] [ i ] , img so l [ ’ fx ’

] [ j ] , img so l [ ’ fy ’ ] [ j ] ] ) . reshape ( ( 1 , 7) ) , fmt=’% .18 f

% .18 f %3i %3i %3i % .18E % .18E ’

, newl ine=’ \n ’ )




