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Abstract

In an era of ubiquitous connectivity, various new applications, network protocols, and on-

line services (e.g., cloud services, distributed machine learning, cryptocurrency) have been con-

stantly creating, underpinning many of our daily activities. Emerging demands for networks

have led to growing traffic volume and complexity of modern networks, which heavily rely

on a wide spectrum of specialized network functions (e.g., Firewall, Load Balancer) for per-

formance, security, etc. Although (virtual) network functions (VNFs) are widely deployed in

networks, they are instantiated in an uncoordinated manner failing to meet growing demands of

evolving networks.

In this dissertation, we argue that networks equipped with VNFs can be designed in a fash-

ion similar to how computer software is today programmed. By following the blueprint of joint

design over VNFs, networks can be made more effective and efficient. We begin by presenting

Durga, a system fusing wide area network (WAN) virtualization on gateway with local area

network (LAN) virtualization technology. It seamlessly aggregates multiple WAN links into a

(virtual) big pipe for better utilizing WAN links and also provides fast fail-over thus minimizing

application performance degradation under WAN link failures. Without the support from LAN

virtualization technology, existing solutions fail to provide high reliability and performance

required by today’s enterprise applications. We then study a newly standardized protocol, Mul-

tipath TCP (MPTCP), adopted in Durga, showing the challenge of associating MPTCP subflows

in network for the purpose of boosting throughput and enhancing security. Instead of designing

a customized solution in every VNF to conquer this common challenge (making VNFs aware of

MPTCP), we implement an online service named SAMPO to be readily integrated into VNFs.

Following the same principle, we make an attempt to take consensus as a service in software-

defined networks. We illustrate new network failure scenarios that are not explicitly handled

by existing consensus algorithms such as Raft, thereby severely affecting their correct or ef-

ficient operations. Finally, we re-consider VNFs deployed in a network from the perspective

of network administrators. A global view of deployed VNFs brings new opportunities for per-

formance optimization over the network, and thus we explore parallelism in service function

chains composing a sequence of VNFs that are typically traversed in-order by data flows.
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Chapter 1

Introduction

The classical description of the Internet architecture is based on the hourglass model [3]. In this

architecture, the only function in the neck of the hourglass are IP routers which determine routes

and forward packets. Today, networks have been growing to meet new and sophisticated de-

mands. For example, demands for securing networks – whether backbone networks of Internet

service providers, campus/enterprise networks, data center networks, or even satellite networks

– have been growing rapidly; carrier network keeps track of bandwidth consumption to bill

users for usage; real-time streaming service designs new protocols for pursuing extremely low

latency; IP depletion problem has been discussed for decades. There are many other require-

ments – load balancing, data compressing and caching, proxing, to name a few – need to be

satisfied, and thus today’s networks support far beyond merely forwarding packets.

To satisfy these demands for networks, virtual network functions (VNFs) are inserted into

networks to perform specialized functions. VNFs run in one or more virtual machines on top of

the hardware networking infrastructure, and provide functions such as transforming, inspecting,

filtering, or otherwise manipulating traffic for purposes other than packet forwarding. Example

of VNFs include the following.

• Load balancers. These functions distribute network or application traffic across a number of

servers for the purpose of balancing traffic load required to be processed on each server.

• Intrusion Detection/Prevention Systems (IDS/IPS). These functions inspect the entire network

for suspicious traffic by analyzing packet header and payload; upon detection of malicious

behaviors, the functions alert administrator and may block the traffic connection.

• Proxies. Depending on configurations, these functions act as intermediaries between endpoint

1



2

clients and servers to provide content filtering, censorship bypassing, caching, etc.

While VNFs are widely deployed to bring various benefits such as regulated control and

performance enhancement, they are typically developed and deployed in an isolated way, with-

out interacting with each other. VNFs are programmed as gigantic black-boxes and instantiated

in an uncoordinated manner, failing to meet growing demands of evolving networks.

Thesis: By following the blueprint of joint design over VNFs, networks can be made more

effective and efficient.

In this thesis, we advocate for a joint design in how VNFs are implemented and operated.

Instead of designing and deploying VNFs separately – where each VNF has no interaction

with others or hosts – we argue that VNF development should break barriers among isolated

VNFs. Rather, VNFs should provide necessary interfaces to expose certain information and to

be integrated into networks, allowing VNF developers or network administrators to fuse them

together. As we will show, the jointly designing blueprint is feasible for VNF development and

deployment in networks, and brings better network performance, security, and manageability.

1.1 Contributions and Organization

This dissertation explores network enhancement via virtualized network functions. The outline

of this dissertation, along with the primary contributions of this dissertation are as follows:

In Chapter 2, we provide a review for required background knowledge including software-

defined wide area network, multi-path TCP (MPTCP) awareness, consensus in software defined

network, service function chaining, and parallelizable VNFs.

In Chapter 3, we fuse LAN Virtualization with SD-WAN Virtualization. We advance WAN-

aware MPTCP (WaMPTCP) which fuses LAN virtualization with WAN virtualization for fine-

grained load balancing and fast failover across WAN links. We present the detailed implemen-

tation of HydraNF, a comprehensive SD-WAN virtualization framework. We propose two new

metrics to better capture the performance of tunnel handoff under link failures; through ex-

tensive evaluation in both emulated testbeds and real-world deployment, we show the superior

performance of HydraNF over existing SD-WAN solutions.

In Chapter 4, we take a first step towards making the network devices MPTCP-aware by
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investigating how to associate subflows that belong to the same MPTCP session. We present

an online subflow association mechanism for MPTCP with partial flow record. The mechanism

adopts a data sequence number (DSN)-based algorithm that can associate subflows based on

analysis of DSN values of each subflow, their range, and overlapping pattern.

In Chapter 5, we make an attempt to take consensus as a service in software defined network.

The reliance of network OS on consensus protocols to maintain consistent network state intro-

duces an intricate inter-dependency between the network OS and the network under its control,

thereby creating new kinds of fault scenarios or instabilities. Thus, we use Raft to illustrate the

problems that this inter-dependency may introduce in the design of distributed SDN controllers

and discuss possible solutions to circumvent these issues. We then propose a network-assisted

Raft consensus algorithm that takes advantage of programmable network and offloads certain

Raft [4] functionality to P4 [5] switches.

In Chapter 6, we parallelize VNFs for accelerating service function chains. We present Hy-

draNF, a novel framework which intends to reduce SFC latency by parallelizing VNF process-

ing. HydraNF statically analyzes SFCs to construct an abstract dataplane model that contains

necessary information for SFC optimization. Based on the model, HydraNF employs novel

algorithms to parallelize SFCs running entirely on a single server or across multiple servers,

while correctly preserving sequential processing semantics. We conduct extensive evaluation of

HydraNF prototype, using real network configurations and SFCs that contain both open-source

and production NFs.

Chapter 7 presents concluding remarks, lessons learned, and thoughts for the future.
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Chapter 2

Background and Motivation

2.1 Software Defined Wide Area Network

Many modern enterprises are geographically dispersed across multiple sites over a wide area

network (WAN). Typically, branch office site networks are connected to a central office core net-

work as well as a core data center (private cloud) via “dedicated” WAN links provisioned by one

or more service providers. For security and privacy, WAN gateways at each site route enterprise

traffic over VPN tunnels connecting edge networks with core/cloud networks. With increasing

IT cloudification and IoT deployment, traffic loads are bumping up against the WAN link ca-

pacity [6]. Novel WAN virtualization solutions using software-defined wide area networking

(SD-WAN) mechanisms are being developed and deployed for managing traffic traversing these

WAN tunnels SD-WAN allows multiple WAN links (tunnels) to be logically combined into a

virtual “big pipe” with higher capacity: it dynamically distributes traffic across heterogeneous

WAN links for load balancing; when WAN link failures are detected, it employs vertical tunnel

handoff to re-distribute traffic from failed links to other available links [7].

In Chapter 3, we argue that simple tunnel handoff employed by existing SD-WAN solutions

fail to provide high reliability required by today’s enterprise applications. We propose two new

performance metrics to better capture the effect of tunnel handoff on standard (single-path) TCP

connections under WAN network failures. Our experimental results show that WAN network

failures significantly degrade application performance. We postulate that mitigating impacts of

WAN failures on application performance requires joint architectural innovation at both SD-

WAN gateways and connected end systems.

5
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2.2 MPTCP Awareness

MPTCP is designed to boost data transmission throughput by taking advantage of multiple

available paths in network. It is a major extension to TCP and has been standardized by the

Internet Engineering Task Force (IETF) [8]. MPTCP allows a pair of hosts to use multiple

interfaces for transmission of the upper layer data stream and has been becoming a promising

technique. MPTCP can not only increase data throughput, but also seamlessly perform vertical

handover between multiple paths, which makes the data transmission more robust against link

failures [9]. Moreover, these features are obtained without requiring any modification at the

application level. By large, MPTCP can be deployed in today’s Internet without much impact

on the proper functioning of the existing network devices [10].

The reason why MPTCP can achieve such benefits is because MPTCP directly relies on

TCP as its subflow protocol. Once MPTCP subflows have been established, upper layer data

can be scheduled to traverse over any of the established MPTCP subflow sessions. In order

to coordinate across multiple paths, MPTCP adopts two levels of sequence numbers: a data

sequence number (DSN) at MPTCP session level and a regular sequence number at MPTCP

subflow session level. As in regular TCP, the subflow sequence number guarantees that the data

sent over each subflow can be reliably received and assembled at the subflow receiver buffer.

DSN is shared across multiple subflows and designed to guarantee reliable data delivery at

MPTCP session level, i.e., to ensure the entire data stream can be assembled back in sequence.

Although MPTCP is designed to be compatible with most network devices, MPTCP can not

be necessarily understood by these network devices. To the best of our knowledge, few network

devices are designed with explicit consideration of MPTCP, and little work has been done to

investigate how to better support this new protocol in the network. For example, MPTCP is

designed to be no more aggressive than a regular TCP on a shared bottleneck link [11]. This

implies that multiple subflows of a MPTCP session can only bring throughput improvement if

the subflows do not share the same bottleneck link. However, no mechanism in either the end

host or the network to allow MPTCP subflows to avoid common links currently exists. On the

other hand, if routers could spread the MPTCP subflows onto disjoint paths, the overall data

goodput could be greatly improved [12].

Furthermore, making network devices MPTCP-aware may improve the functionality of cer-

tain network services. Take application identification service or intrusion detection service as an
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example. If an application/malware signature spans across multiple MPTCP subflows, the accu-

racy of the identification outcome may be improved by assembling subflows together. Likewise,

when a subflow that carries the signature is identified/blocked, all other subflows belonging to

the same MPTCP session can be identified/blocked too.

2.3 Consensus in Software-Defined Network

Software-defined networking (SDN) simplifies network devices by moving control plane func-

tions to a logically centralized control plane; therefore data plane devices become simple pro-

grammable forwarding elements. SDN controllers use OpenFlow APIs [13] to set up forwarding

rules and collect statistics at the data plane, which enables controller software and data plane

hardware to evolve independently. Under SDN, physical connectivity between two end points

do not guarantee they can communicate with each other – the underlying (logical) commu-

nication graph depends on the network policies reflected by the flow entries installed by the

controller. For scalability and reliability, the logically centralized control plane (“network OS”)

is often realized via multiple SDN controllers (see Figure 5.1), forming a distributed system.

Open Network Operating System (ONOS) [14] and OpenDayLight (ODL) [15] are two such

Network OS examples supporting multiple SDN controllers for high availability.

In distributed network OS such as ONOS and ODL, the replicated controllers rely on con-

ventional distributed system mechanisms such as consensus protocols for state replication and

consistency. Paxos [16, 17] is a widely used distributed consensus protocol in production soft-

ware [18–21] to ensure liveness and safety. Unfortunately, Paxos is very difficult to understand

and implement in practical systems [4]. Raft [4] attempts to address these complexities by de-

composing the consensus problem into relatively independent sub-problems: leader election,

log replication, and safety. It implements a more “easy-to-understand” consensus protocol that

manages a replicated log to provide a building block for building practical distributed systems.

Both ONOS and ODL use certain implementations of Raft to ensure consistency among repli-

cated network states. For example, ONOS maintains a global network view to SDN control

programs that is logically centralized, but physically distributed among multiple controllers. It

employs Raft to manage the switch-to-controller mastership and to provide distributed prim-

itives to control programs such as ConsistentMap, which guarantees strong consistency for a

key-value store.
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The reliance of distributed network OS on consensus protocols to maintain consistent net-

work state introduces an intricate inter-dependency between the network OS (as a distributed

system) and the network it attempts to control. This inter-dependency may create new kinds

of fault scenarios or instabilities that have neither been addressed in distributed systems nor in

networking. In particular, it may severely affect the correct or efficient operations of consensus

protocols, as will be expounded in Chapter 5. The key issue lies in the fact that the design of

fault-tolerant distributed system mechanisms such as consensus algorithms typically focuses on

server failures alone, while assuming the underlying network will handle connectivity issues

on its own. For example, the design of Paxos or Raft assumes that the network may arbitrarily

delay or drop messages; however, as long as the network is not partitioned, messages from

one end point will eventually be delivered to another end point. Such assumptions about the

network hold true in classical IP networks, where distributed routing algorithms running on

routers cooperate with each other to establish new paths after failures. SDN now creates cyclic

dependencies among control network connectivity, consensus protocols, and control logic man-

aging the network, where the control logic managing the network is built on top of a distributed

system (e.g., ONOS) which relies on consensus protocols for consistency and control network

connectivity for communication, whereas the network data plane (and control network) hinges

on this distributed system to set up rules to control and enforce “who can talk to whom” among

networking elements. Consequently, new failure scenarios can arise in SDN.

Besides new failure scenarios, consensus mechanisms typically involve expensive opera-

tions, especially for strong consistency guarantee, which may require multiple rounds of com-

munications. Even without failure, consensus latency is bound to round-trip time between

servers running consensus algorithms. Offloading application-level implementation of consen-

sus algorithms to network may be a promising solution to improve the performance of consen-

sus algorithms. Several recent projects investigate offloading consensus algorithms to either

switches [22] or FPGA devices [23]. NetPaxos [22] proposes to implement the Paxos con-

sensus algorithm in network by leveraging programmable switches. Besides the Paxos roles

implemented on servers, NetPaxos requires one switch serving as a Paxos coordinator and sev-

eral others as Paxos acceptors. NetPaxos can be implemented using P4 [5], a domain specific

language that allows the programming of packet forwarding planes. However, Paxos consensus

algorithm is very difficult to understand and implement due to its notoriously opaque expla-

nation and lack of details for building practical systems [4]. Thus, offloading such a complex
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consensus algorithm to network is error-prone. István et al. [23] takes the efforts of imple-

menting the entire ZAB consensus algorithm [24] on FPGA devices using a low-level language

which is difficult to program. Moreover, this hardware-based solution may not be scalable as

it requires the storage of potentially large amounts of consensus states, logic, and even the

application data.

2.4 Service Function Chaining and Parallelizable VNFs

A Service Function Chain (SFC) defines a sequence of VNFs, such as firewalls and load bal-

ancers (LBs), and stitches them together [25]. SFC has been a key enabler for network oper-

ators to offer diverse services and an important application of Software Defined Networking

(SDN) [26–28]. Recently, operators can create, update, remove, or scale out/in network func-

tions (NFs) on demand [29–31], construct a sequence of NFs to form a SFC [25], and steer traffic

through it to meet service requirements [32–34]. However, virtualization and “softwarization”

of NFs pose many new challenges [35]. In particular, traffic traversing virtualized NFs suffers

from reduced throughput and increased latency, compared to physical NFs [32–34, 36]. The

flexibility offered by SDN will enable more complex network services to be deployed, which

will likely lead to longer SFC. As the length of an SFC (i.e., number of NFs) increases, so does

its overhead.

Exploiting parallelism to reduce packet processing latency and increase the overall system

throughput is a classical approach that is widely used in networked systems. For example,

most of today’s web-based cloud computing applications take advantage of the stateless HTTP

protocols for parallel HTTP transaction processing. Data analytics frameworks such as Map-

Reduce and Spark utilize task level parallelism to speed up massive compute jobs using multiple

servers. In terms of NFV, NF-level parallelism is first explored in ParaBox [1] and later in

NFP [2] by exploiting order independence of certain NFs for parallel packet processing within

an SFC. Both efforts focus on parallelizing packet processing for SFCs on a single (multi-core)

server. Real-world NFs, on the other hand, will likely be operating in edge clouds or data centers

with clusters of servers [37]. How to effectively utilize multiple servers to reduce per-packet

processing latency and increase the overall system throughput is the main problem we explore.



Chapter 3

Fusing LAN Virtualization with WAN
Virtualization

3.1 Main Results

We develop a novel WAN-awareness mechanism that enables end systems with MPTCP support

(even with only one network interface) to generate multiple MPTCP subflows using virtual

subnet addresses. This mechanism is enhanced at SD-WAN gateways to load-balance subflows

across WAN links and dynamically reroute them away from failed WAN links in a scalable

manner.

Building on top of WAN-aware MPTCP (WaMPTCP), we present Durga, a novel scal-

able SD-WAN virtualization framework which not only can aggregate multiple (heterogeneous)

WAN links into a (virtual) “big pipe”, but is also capable of providing fast failover with minimal

application performance degradation. Durga is designed to handle diverse enterprise traffic. In

addition to WaMPTCP for support of performance critical applications running on hosts with

MPTCP kernel modules, it also incorporates MPTCP proxies for legacy TCP connections run-

ning on hosts with no MPTCP support as well as the default tunnel handoff mechanism for

non-TCP traffic. In summary, we make the following contributions:

• We advance WaMPTCP (Section 3.2) which fuses LAN virtualization with WAN virtualization

for fine-grained load balancing and fast failover across WAN links;

• We present the detailed implementation of Durga, a comprehensive SD-WAN virtualization

framework (Section 3.3);

10
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Figure 3.1: Motivating Scenarios

• We propose two new metrics (Section 3.4) to better capture the performance of tunnel handoff

under link failures; through extensive evaluation (Section 3.5) in both emulated testbeds and

real-world deployment, we show the superior performance of Durga over existing SD-WAN

solutions.

3.2 Mitigating the Impact of WAN Link Failures

Let us consider Figure 3.1 depicting a simple enterprise branch site network consisting of two

subnets (one wired and one wireless) to a campus core network with an SD-WAN gateway

connecting to a central office site or a corporate private cloud via three separate WAN links

(each, say, to a different WAN provider). Client A has only one network interface connected to

WiFi subnet, whereas client B has two network interfaces, one connected to WiFi subset and

the other to wired subnet. Neither clients have awareness of multiple WAN links available at

the WAN gateway. Hence traditional SD-WAN systems use gateways for performing vertical

handoffs in event of WAN link failures or policy change. The key question this project aims

to answer is: what novel mechanisms can we develop to mitigate the impact of WAN link

failures on application performance by taking advantage of software-define control of WAN

links? We believe that a comprehensive solution with modifications to end-systems and SD-

WAN gateways (connecting to multiple WAN links) is required.

3.2.1 End system MPTCP to the Rescue?

Given an end host with multiple interfaces, MPTCP [38] enables a TCP session to exploit

these multiple parallel network paths to achieve higher throughput. MPTCP manages multiple

subflows (each operating as a separate TCP connection with its own congestion control), and

dynamically assigns data to each TCP subflow based on available capacity, thus load-balancing

among multiple paths. If one path fails (or is highly congested), MPTCP automatically routes
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data away from the failed (or highly congested) path, thereby alleviating the impact of network

failures/congestion on application performance. The benefits of using MPTCP for load bal-

ancing, wireless handoff and coping with network failures have been widely studied [39–43].

Furthermore, switching from standard TCP to MPTCP is application-transparent – it requires

no modification to applications. Hence it is natural to think about employing MPTCP at end

systems (for those with OS support for MPTCP) for mitigating the impact of WAN link failures

on application performance.

However, is employing MPTCP at end systems alone sufficient? Again considering the

network in Figure 3.1, we assume that the OSes on both machines support MPTCP. Client A can

not avail itself of the three available WAN links using MPTCP because it is only aware of one

directly connected network interface. Thus, traffic from an application running on client A can

only traverse one of the three available WAN links, failure of which will affect its performance.

In the case of client B, it can employ MPTCP to generate two subflows, one over the WiFi

subnet and the other over the wired subnet. However, the two subflows will converge at the SD-

WAN gateway, and both may be routed along the same WAN link to their common destination.

If this WAN link fails or is highly congested, MPTCP running on client B does not soften the

impact of this WAN link failure/congestion. In general, we note that there can be a mismatch

between the number of physical interfaces an end system has and the number of available WAN

links at an SD-WAN gateway. Making end systems aware of the availability of WAN links at

the gateway, enabling them to generate appropriate number of MPTCP subflows, and routing

these subflows across different WAN links in a scalable manner at the SD-WAN gateway1 is a

challenging issue.

The above scenarios raise the following questions: i) Is it possible to enable an MPTCP-

compatible end system with only one network interface to exploit multiple WAN links via MPTCP?

ii) Given an end system running MPTCP with multiple subflows, is there a scalable way to in-

form and ensure that the SD-WAN gateway always routes subflows of an MPTCP session across

different WAN links? For question i), an astute reader may suggest that one can use the ndiff-
ports path manager option [38] in MPTCP to create multiple subflows across the same pair of

IP addresses. However, all these MPTCP subflows will likely traverse the same WAN link, thus

still suffering from the same issues as client B in the above scenario. An alternative approach
1The SD-WAN gateway could assign flows randomly to WAN links, e.g., using hashing, but this does not guar-

antee MPTCP subflows from one application will always traverse different WAN links.
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is to deploy MPTCP proxies co-located at (or implemented as a module within) SD-WAN gate-

ways [44–46]. This requires a pair of MPTCP proxies, e.g., one at the branch site and the other

at the central office/private cloud site: a TCP connection from a client machine to a remote

server is split by the MPTCP proxy at the local SD-WAN gateway to generate multiple MPTCP

subflows, and the gateway routes them across different WAN links to the remote SD-WAN

gateway on the other side of the WAN; these MPTCP subflows are then merged by the remote

MPTCP proxy before routed to the server. Clearly, this approach incurs significant overheads,

requiring MPTCP/SD-WAN gateways to keep track of every TCP connection over the enter-

prise network to the WAN. Morever, the congestion control operated by the TCP connection

of an application and the MPTCP congestion control operated by MPTCP proxies can interact

negatively, creating performance penalties for high-speed WAN links (Section 3.5).

3.2.2 WAN-aware MPTCP

We advance a novel scalable solution, dubbed WAN-aware MPTCP (WaMPTCP). This solution

combines a low-overhead mechanism at the end system side to create multiple virtual network

interfaces driven by“WAN-awareness” (even though the end system may only have one phys-

ical interface), and a scalable mechanism at the SD-WAN gateway side that routes different

MPTCP flows from the same application across different WAN links, detects WAN tunnel fail-

ures, and adaptively reroutes MPTCP flows from failed links to other available links. This is

schematically depicted in Figure 3.2.

vSubnets 

Applications 

MPTCP WAN Link #1 

WAN Link #2 

WAN Link #3 

Figure 3.2: Virtualizing NIC for MPTCP to generate multiple subflows and for gateway to
forward traffic in a stateless manner

The virtual network interfaces are WAN-aware, as each corresponds to one WAN link,

each assigned from a (virtual) subnet address mapped to a WAN link at the SD-WAN gateway

(and re-mapped to another available link if the current WAN link fails). Hence the SD-WAN
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gateway can route the MPTCP subflows to the corresponding WAN link via a simple source-

destination addresss-based flow lookup. The details regarding how the virtual subnet addresses

are created and advertised to end systems and how WaMPTCP is implemented are discussed in

Section 3.3.3. While WaMPTCP is developed as a key component of Durga, we remark that

WaMPTCP is a general solution, and can be applied in other contexts as well.

3.3 Durga Overview and Mechanisms

Durga is designed specifically to address the requirements of SD-WAN for connecting branch

office enterprise networks to a central office and/or private cloud over the Internet with multiple

WAN links provisioned by several WAN service providers. The goals of Durga are multi-fold:

• Aggregate capacity of WAN links (as a single “big pipe”) to deliver higher bandwidth than

existing SD-WAN solutions;

• Support fast failover in the event of WAN network failure, and mitigate the impact of such

failures on applications;

• Support diverse types of traffic (TCP, UDP, MPTCP);

• Maintain fewer states at SD-WAN gateways for scalability and reliability, and minimize end

system software changes.

Durga framework implements multiple WAN virtualization mechanisms to support different

types of clients and traffic. The most innovative component is WaMPTCP which supports appli-

cation connections from MPTCP-compatible end systems where MPTCP subflows from each

connection are routed across multiple WAN links for enhanced throughput and fast failover. For

legacy end systems with no OS support for MPTCP, an MPTCP proxy implemented as part of

Durga is employed to provide the same support 2. In addition, UDP traffic from end systems

(as well as TCP flows from non-performance critical applications) are handled using the default

vertical tunnel handoff mechanism.

3.3.1 Tunnel Handoff

The Tunnel Handoff mechanism is a baseline of our framework and is used for both UDP and

TCP traffic when a MPTCP proxy is not available. It depends on the tunnels between SDN
2As the number of legacy end systems is relatively small and continues to dwindle, the overhead incurred by

MPTCP proxy becomes a less concern.
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gateway and remote gateway to reroute IP traffic without having to change the external rout-

ing of the gateway on the Internet, which would take too much time. The tunnels provide a

simple overlay, enabling both gateways to reroute traffic by only changing local rules. Our im-

plementation (Figure 3.3) uses OpenvSwitch [47], VxLAN tunnels [48], and simple OpenFlow

rules [49]. More secure tunnels can be implemented without changing the architecture.

Durga maps the traffic to the tunnels using one of two schemes. The first one is a strict

priority scheme, where all the traffic is sent to the preferred link and fallbacks to a backup link

as needed (OpenFlow failover group). The second one is a static load balancing scheme, where

the TCP flows are distributed to the various WAN links using a hash based on the IP 5 tuples

and static allocation for each WAN link (OpenFlow select group). We are looking into dynamic

allocation of traffic to the WAN links. The mapping is always flow aware, to avoid splitting a

flow across two tunnels.

Tunnels are monitored using the Bidirectional Forwarding Detection (BFD) protocol [50],

which uses a simple periodic request/reply handshake between gateways. When BFD detects a

failed path, the hash is automatically reconfigured to distribute the TCP flows on the remaining
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WAN links, using an OpenFlow group with fast failover property.

3.3.2 MPTCP Proxy

One way to address WAN link unawareness at end system is to originate all MPTCP flows

at the gateway. The MPTCP stack on the gateway is directly mapped to WAN interfaces and

can generate the right number of subflows. Some SD-WAN solutions exploit this by using a

MPTCP proxy on the gateway [44–46], which converts a plain TCP connection into a MPTCP

connection using all WAN links.

The plain TCP connection originating from end system is intercepted by the SDN gateway

and directed to the MPTCP proxy. The MPTCP proxy terminates the TCP connection, opens a

MPTCP connection on behalf of this connection, and joins those two connections (Figure 3.4).

The MPTCP proxy can directly generate one MPTCP subflow for each WAN link of the SDN

gateway. On the remote end, another MPTCP proxy may terminate the MPTCP connection and

open a TCP connection to the intended destination.

We build our first MPTCP proxy (Figure 3.4) based on the OpenSource HPSockd proxy

[51], and due to limited performance, we build a second MPTCP proxy based on the Open-

Source Dante proxy [52]. We selected both of those proxies for their enterprise features includ-

ing flexible access control rules and logging.

For each proxy, we added support for transparent proxying feature in addition to the orig-

inal Socks protocol. The client must be modified to use the Socks protocol to initiate connec-

tions. With transparent proxying, TCP connections are redirected to the proxy without client
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intervention, which enables the use of unmodified applications on the client. We implemented

transparent proxying using two netfilter mechanisms of the Linux kernel, NAT redirection [53],

and TProxy [54]. Both mechanisms offer similar performance in our tests, but TProxy should

be more scalable because it does not rewrite packet header.

MPTCP proxies offer the benefits of MPTCP : path aggregation, traffic re-balancing, and

resilience to outages. However, using indirect TCP proxy has well known issues. Splitting

the TCP connection at the proxy breaks the assumed end-to-end semantics of TCP [55]. The

scalability of such proxy is problematic, as it needs to keep track of every TCP and MPTCP

connection. Moreover, with these proxy implementations, we observed performance penalties

for high speed WAN links (Section 3.5.1).

3.3.3 WAN aware MPTCP

Due to limitations of MPTCP proxies, we invented WaMPTCP, a new mechanism to address

the lack of WAN link awareness at end system. The goal is to make MPTCP take advantage of

multiple WAN links.
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We want end system to initiate the same number of MPTCP flows as the number of avail-

able WAN links at a SDN gateway (or multiple of that number if the server is multihomed and

fullmesh is used [38]), despite the end system having a single interface connected to the gate-

way. Further, the SDN gateway must map those subflows to the WAN links efficiently and in

a scalable manner. The clients must be informed of the number of WAN links and generate

subflows that makes mapping at the gateway easy.

WaMPTCP is composed of three parts, a specific IP subnet allocation for the local network,

a modified IP provisioning at the client, and finally a simple MPTCP subflow routing on the

gateway.

IP subnet allocation: For each network segment of the local network, instead of allocating

a single IP subnet, we allocate one subnet associated with each WAN link (gateway side of

Figure 3.5). To simplify routing, an IP address space is associated with each WAN link, and

then one subnet is created in each IP address space for each local network segment served by

the gateway, based on the networking topology inside a campus network.

Direct routing adds additional constraints on the IP address space. Direct routing enables

MPTCP to be routed directly to the Internet without any tunneling, instead of being restricted

to the tunnels (which is the case for Tunnel Handoff). If using NAT, those subnets must reside

in the private IP address space. Otherwise, each subnet associated with a WAN link must be

within the IP address space routed on the Internet to that WAN link. This guarantees that the

return path of any MPTCP subflow is valid and congruent with the forward path, a requirement

for direct routing.

IP provisioning: We modify IP provisioning to inform the client of multiple IP subnets

available on the network segment where it is connected and assign it one IP address associated

with each WAN link (client side of Figure 3.5).

For IPv4, we modify the DHCPv4 protocol [56], we insert in the DHCP response a DHCP

option informing the clients about the various subnets available. DHCP is a flexible protocol

and allows custom DHCP options, the WaMPTCP option is a simple string listing the various

subnets available on the network segment. DHCPv4 client is modified to request an IP address

in each subnet of the list and configure those IP addresses on the network interface using IP

aliases. We configured the ISC DHCP server and modified the ISC DHCP client to implement

this option [57]. If the number of WAN links changes (not frequent in enterprise networks),

DHCP TTL could be used to refresh the number of subnets on hosts.
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IPv6 is simpler and does not require client modifications, because multiple IP addresses

per interface is part of the IPv6 standard. DHCPv6 server is configured to assign multiple IP

addresses to the client, one in each subnet, and most DHCPv6 clients automatically configure

those IP addresses on the network interface. ISC DHCP server does not support multiple subnets

per segment, and therefore we use the dhcpy6d server with the appropriate configuration [58].

IPv6 may alternatively use Stateless Address Autoconfiguration (SLAAC) [59]. We did not

implement SLAAC, but the gateway would need to broadcast multiple Router Advertisement

messages, one for each subnet.

Gateway routing: Routing on the SDN gateway forwards any packet originated in a subnet

to the associated WAN link. This uses simple routing based on source subnet. A few static rules

can match each source subnet, and this is supported by most OSes. Packets coming from the

WAN links are routed based on destination subnet (classical routing). Our routing technique is

implemented to support VxLAN tunneling to a remote gateway and direct routing to the Internet

without tunneling.

Here is an example on how WaMPTCP works. Assigning multiple IP addresses to the inter-

face of a client creates multiple virtual interfaces in the network stack, one per WAN link, the

MPTCP stack by default uses all the virtual interfaces, and therefore it generates one MPTCP

subflow using each source IP address. Assuming there are two WAN links available, A and

B, each link would have an IP address space associated with it, IPSA and IPSB. If direct rout-

ing is needed, the gateway routes IPSA on link A and IPSB on link B. IP subnet allocation
assigns two subnets, IPSA.s and IPSB.s, to each network segment. If client c joins the local net-

work, IP provisioning allocates two addresses to its network interface, IPSA.s.c and IPSB.s.c.

Each MPTCP session generates two subflows, with respective source addresses IPSA.s.c and

IPSB.s.c. Gateway routing directs packets with source address IPSA.s.c to link A and packets

with source address IPSB.s.c to link B.

3.3.4 MPTCP Recovery Optimization

During a path failure, a MPTCP subflow using the path is affected: packets don’t reach the

receiver, and the TCP congestion algorithm triggers retransmissions and eventually timeouts,

causing the subflow to get stalled. When a subflow is stalled, it does not send packets to probe

the path and can suffer an outage much longer than the actual L3 outage (Section 3.5.2). In
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certain circumstance, the subflow cannot resume at all, due to the TCP exponential backoff al-

gorithm. We propose MPTCP Recovery Optimization (RO) to address stalled MPTCP subflows

on failed paths, and it can be optionally applied to both MPTCP proxy and WaMPTCP.

One obvious solution would be to crank up the retransmission frequency of all the MPTCP

subflows, so that the subflows do not wait such a long time before probing the path again.

However, this has a number of downsides. First, this is not a standard configuration of MPTCP

stack, so we would need a new mechanism for the gateway to communicate with end systems to

use more aggressive retransmissions. Second, if subflows probe failed path too often, probing

packets consume extra resources on the local network and on the gateway, possibly reducing

the performance of subflows using healthy paths. Third, probing packets carry MPTCP session

data, and this data must first be sent on the failed subflow, wait for the failure timer, before

being resent on the healthy subflow. This is similar to what is measured by the T-latency metric

(Section 3.4), and this can add significant latency to the data (around 300ms - Section 3.5.3).

Our solution is to combine strength of MPTCP and tunnel handoff and to allow the gateway

to probe efficiently for failed subflows. When tunnel handoff detects that an path is down, it

reroutes MPTCP subflows on that path to an alternate healthy path, similar to what it does for

non-MPTCP traffic (Section 3.3.1). When those MPTCP subflow are on a healthy path, they

can resume progress and it prevents them to stall. At this point, the subflow interfere with the

subflow that was already on that path, but the effect is negligible (Section 3.5.2). Once tunnel

handoff detects that the path has recovered, it reroutes all the affected TCP subflows back to

their original path. This MPTCP recovery optimization is able to improve the recovery time of

MPTCP sessions.

3.3.5 Mechanisms Integration

An additional challenge was integrating all the mechanisms together on the same gateway and

making sure connections are routed to the proper mechanism. The integration is based on

Netfilter [60] and OpenvSwitch [47] which are part of the Linux kernel (Figure 3.6). Filtering

packet for the proxy is optional and done first using the TProxy mechanism [54]. Then, Netfilter

mark the MPTCP packet, because OpenvSwitch does not have this field in its classifier. In OVS,

there is two set of OpenFlow rules predicated on this mark, the rules for TCP and UDP use an

OpenFlow failover or select group, whereas the rules for MPTCP match on the source subnet.
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3.4 Vertical Handoff Performance Metrics

Tunnel Handoff and MPTCP use two completely different way to implement handoff, therefore

we propose two new metrics for measuring the impact of various SD-WAN management tech-

niques on application and network session performance. These metrics can not only capture the

SD-WAN performance but also motivate and drive the design of Durga.

Prior studies have defined L3 metrics for measuring handoff performance under various

network settings, including SDN (see, e.g., [61–64]). In addition, rerouting events adversely

affect TCP performance [65], so several TCP optimization schemes have also been proposed,

e.g., [64, 66, 67]. Most prior studies examine the impact of link failures on TCP performance

by observing congestion window reduction, instant TCP throughput degradation, or packet

losses.These metrics are too specific and are not directly related to the application experience.

For this reason, we propose two new metrics to evaluate the impact of vertical tunnel handoff

on TCP connections. For these new metrics to be useful, we pose the following requirements:

1) be a direct measurement of the effect of handoff; 2) applicable to both reactive and proactive

handoff, due to path outages or policy changes; 3) relate directly to the application performance.

Path 1
Outage Vertical

Handoff

L3 reroute repair

Time

Path 2

Fair share 
throughput

L4  T-throughput  repair

Figure 3.7: L4 T-throughput repair

The first metric is T-throughput: time for throughput repair (Figure 3.7). It measures the

time elapsed from the start of the outage or policy change, i.e. as soon as the link becomes

undesirable, to when the throughput of an affected TCP connection is fully restored. As the

conditions on the old link and the new link may be different, the expected throughput on the new

link is likely different from the old link. Therefore, we consider that the TCP throughput has

been fully restored when it has obtained its TCP-fair share of the (new) link bandwidth. In other

words when the TCP slow start phase has ended and the throughput becomes stable. This metric

provides a better measure of the effect of handoff on an application that is bandwidth-bound

(e.g., a file download), as it quantifies how long an application suffers performance degradation

before it fully recovers. This metric is a function of how efficient a TCP congestion control

algorithm operates after the handoff.
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Figure 3.8: L4 T-latency repair

The second metric is T-latency: time for latency repair (Figure 3.8). It measures the time

elapsed from the start of the outage or policy change, to when all packets that were lost during

the handoff are retransmitted by a TCP connection. This metric provides a better measure of the

effect of handoff on an application that is latency-bound, e.g., interactive gaming over TCP. This

metric is a function how efficient a TCP retransmission mechanism operates after the handoff.

A key benefit of these two metrics lies in that they allow us to evaluate how TCP configura-

tions and network conditions affect the network failure recovery time. In particular, they enable

us to design better failover and recovery mechanisms under MPTCP and evaluate them fairly

against existing (single-path) TCP mechanisms.

3.5 Evaluation of Durga

We evaluate Durga in both emulated testbeds and real-world deployment, allowing us to evalu-

ate performance across a wide range of workloads and network conditions.

We compare the following mechanisms implemented in the experiments:

• Tunnel Handoff is a baseline of Durga framework (Section 3.3.1). It uses Open vSwitch

version 2.4.2 [47] to reroute flows across VxLAN tunnels. Unless specified, the traffic is

plain TCP, and some tests do use plain MPTCP without WAN awareness;

• MPTCP Proxy is a transparent proxy solution (Section 3.3.2). By default, MPTCP Proxy in

our experiments is our proxy implementation based on Dante Socks proxy version 1.4.1 [52].

For performance comparison, we also use our modified version of HPsockd v0.17 [51];

• MPTCP Tunnel [68] is a overlay solution which tunnels MPTCP over TCP. All TCP flows

are encapsulated in a single MPTCP flow between gateways. We use the implementation

available online [69];

• WaMPTCP implements WAN aware MPTCP in end systems and gateways (Section 3.3.3).

End systems are provided with one IP address per WAN link, and generate appropriate num-

ber of MPTCP subflows. Fullmesh, the default MPTCP path manager, is used, and gateways
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route MPTCP subflows based on source subnets;

• WaMPTCP+RO implements WAN aware MPTCP with MPTCP recovery optimization (Sec-

tion 3.3.4). When the gateway detects an path failure, it reroutes infected MPTCP subflows

away from the failed path, and reroutes back when the path is recovered.

Except for the bandwidth aggregation experiments in Section 3.5.1, controlled testbed setup

is described as follows. The testbed uses six Ubuntu 16.04 servers with MPTCP 0.93 imple-

mentation. The setup is similar to Figure 3.3: two gateways, two clients, and two servers. The

gateways have two pairs of Ethernet interfaces, and they are configured at 100Mb/s to emulate

a wide area network. The remote gateway terminates VxLAN tunnels originated at the SDN

gateway and routes to the servers. One legacy client and one WaMPTCP client connect to a

local SDN gateway at 1Gb/s. Through local and remote gateways, clients can access servers

which are connected to the remote gateway at 1Gb/s. One pair of client and server is used for

generating background traffic as needed.

3.5.1 Bandwidth Aggregation Evaluation

Table 3.1 shows the overall throughput of the 4 mechanisms with a single IPv4 connection, a

single IPv6, or 10 IPv4 connections. These tests use 5 WAN links configured at 1 Gb/s between

the gateways, the client and server use 10Gb/s.

Direct Routing (i.e., no VxLAN tunnels) can only use the default path for all plain TCP and

plain MPTCP connections due to the constraints of routing. Tunnel Handoff is only available

with VxLAN tunnels, and can only aggregate bandwidth when there are multiple connections.

Dante proxy offers much greater performance than HPsock proxy, but suffers with VxLAN

tunnels due to the smaller MTU and higher CPU load. WaMPTCP performs the best because it

uses all available bandwidth in all conditions.

Mb/s
Direct Routing VxLAN tunnels

IPv4 IPv6 10 IPv4 IPv4 IPv6 10 IPv4
Plain TCP 941 928 944 908 893 4550
Plain MPTCP 928 915 931 893 888 4480
MPTCP Tunnel 120 N/A 119 114 N/A 112
HPsock Proxy 740 N/A 1050 752 N/A 876
Dante Proxy 4285 3925 4550 3233 2763 3610
WaMPTCP 4606 4531 4640 4433 4221 4490

Table 3.1: Throughput aggregation comparison
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3.5.2 Handoff Traces Evaluation
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Figure 3.9: Tunnel Handoff
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Figure 3.10: MPTCP Tunnel
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Figure 3.11: WaMPTCP
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Figure 3.12: WaMPTCP + RO

Figures 3.9, 3.10, 3.11 and 3.12 show the throughput of a single connection during an outage

on a link (labeled as “LK2” in the figure). The outage is emulated by blocking the primary link

after 5 seconds, and unblocking it after another 10 seconds, whereas the backup link is always

healthy. The primary link is blocked using an iptables/netfilter rule [60], which is almost instan-

taneous. We decompose an outage into two phases: failover (which typically harms throughput)

and recovery (which typically benefits throughput). We don’t simulate policy changes, since in

most cases, it would be similar to the recovery phase of an outage. MPTCP proxy behaves

almost identically to WaMPTCP, so it is not shown.

Figure 3.9 shows that tunnel handoff does not aggregate available bandwidth on the two

WAN links together, and it experiences more than 3 seconds down-time during failover. Ap-

proximately 3 seconds after the link is blocked, BFD considers the path as failed, and tunnel

handoff reroutes the affected flow to the healthy link, and it resumes progress. After the link

is unblocked, BFD eventually discovers that the path is healthy, and reroutes the flow to its

original path. In our experiment, the throughput spikes shortly after recovery. This is because

prior to handoff, the flow has filled the send buffers of the NIC and the tunnel endpoint on
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the gateway before the bottleneck link. After handoff, the flow moves to an empty link, and

can therefore transmit immediately, while the other link is still draining the send buffers. This

creates out of order packets [65], however the Linux TCP/IP stack has many optimization to

overcome this [64].

Figure 3.11 and 3.12 show that during failover phase, there is no down-time because MPTCP

natively supports resilience by maintaining multiple subflows. Just after the failure, the through-

put of MPTCP goes down a little bit and quickly reaches fair share. Conceptually, suspension

of one subflow does not affect the other one if the other flow has already reached its fair share.

Figure 3.11 shows that when Recovery Optimization in not used, the subflow get stalled

(Section 3.3.4). When the path become available again, BFD takes less than 1 second to detect

the link recovery, however throughput need further 5 seconds to recover. Further experimenta-

tion shows that the L4 throughput repair time increases with the length of the outage and is due

to TCP RTO backoff (Figure 3.16).

Figure 3.12 shows that Recovery Optimisation prevents the subflow to get stalled, and that it

recovers the bandwidth of the second path very quickly after being moved to the recovered path.

The aggregated throughput dips and spikes slightly when the gateway is notified of the failure

(at 8s). With the MPTCP proxy, those dips and spike are more pronounced. The two subflows

sharing the healthy path interact with each other and create out-of-order packets, causing our

measurement application to mistakenly computes instant throughput higher or lower than the

real value.

MPTCP Tunnel in Figure 3.10, does not exhibit stable throughput even without any back-

ground traffic. We conjecture that it is caused by the interaction between the outer TCP control

loop (end-to-end) and inner TCP control loop (tunnel), which is a well know issue of any TCP

in TCP encapsulation [70].

3.5.3 Handoff Metric Evaluation

Visual examination of traffic traces does not convey the full picture, and in order to quanti-

tatively study handoff impact on transport layer, we need use the new metrics we designed,

T-throughput and T-latency (Section 3.4). We evaluate those metrics both for the failover phase

and the recovery phase.

For tunnel handoff, the factor that has the biggest impact on handoff performance is the

configuration of the BFD protocol, used to evaluate the health of the WAN link and the Internet
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Figure 3.13: BFD impact
over T-throughput-failover
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Figure 3.14: BFD impact
over T-latency-failover
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Figure 3.15: BFD impact
over T-throughput-recovery

path (Section 3.3.1). Figures 3.13, 3.14, 3.15 and Table 3.2 show both metrics for both phases,

with various mechanisms and various setting of the BFD timer.

seconds T-throughput-failover T-latency-failover T-throughput-recovery T-latency-recovery
BFD timer 1s 100ms 1s 100ms 1s 100ms

Tunnel Handoff 3.77 0.63 3.52 0.56 1.33 0.42 0
MPTCP Tunnel 0 0.34 6.57 0
MPTCP Proxy 0 0.37 6.41 0
WaMPTCP 0 0.32 6.86 0
WaMPTCP+RO 0 0.32 1.28 0.44 0

Table 3.2: Vertical handoff performance of different mechanisms

Tunnel Handoff and Recovery Optimization rely on BFD, and consequently are impacted

by the value of the BFD timer. The period of BFD handshakes is equal to the BFD timer, and by

default BFD declares the path failed after 3 failed handshake. Our results pretty much confirm

this and show that the performance at TCP level when using BFD is mostly dominated by the

Layer 3 handoff. Mechanisms not using BFD are obviously not impacted by this setting. Tunnel

handoff would need to use a very small BFD timer to compare to how MPTCP handles failures,

increasing overhead and the risks of false positives.

The metrics do confirm many of our earlier findings. MPTCP provides a much better

failover performance, and MPTCP without Recovery Optimization suffer worse recovery per-

formance due to stalled flows. T-throughput-failover is zero with MPTCP, which confirm that

the throughput of the subflow on the healthy link is not impacted. T-latency-recovery is always

zero, because there is no retransmissions3, the handoff is between two healthy link and cause

no packet loss.

The traffic traces did show near instant handoff for MPTCP, the metrics are useful to show

that this is not the case. T-latency-failover shows that for all MPTCP mechanisms, some data

get stuck for around 320ms on the failed subflow before being retransmitted on the healthy
3Even though packet retransmission may be triggered due to congestion, we do not take it as caused by failure.
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Figure 3.16: Outage impact on T-recovery-time (BFD=100ms)

subflow. This could impact latency sensitive applications.

Figure 3.16 shows the impact of the outage duration on the recovery phase and the T-

throughput-recovery metric. Without Recovery Optimization, MPTCP recovery depends on

TCP congestion control, and grows with outage duration. During outage, TCP reconnects af-

ter one second by default in Linux, and the retry interval grows exponentially. Linux default

number of retries is 15, and thus the maximum outage that can be tolerated is 924.6 seconds.

For high-availability server, the suggested number of retries is 3 [71]. In this case, if the outage

duration is larger than seconds, a stalled subflow will never resume.

In contrast, Tunnel Handoff and Recovery Optimization are using BFD for recovery, there-

fore are independent of the outage duration. BFD is using a constant periodic timer, the subflow

is not stalled, and therefore T-throughput-recovery is approximately layer 3 recovery time plus

the delay for congestion window (cwnd) growth. Congestion window growth closely depends

on round trip time, bandwidth, and congestion on the forwarding path (Section 3.5.4).

3.5.4 TCP/IP Congestion Control

Figure 3.17 shows that for all mechanisms T-throughput-recovery grows as RTT of the path
grows. Higher RTT makes opportunities to adjust the congestion window (cwnd) less frequent,

thus it takes more time to recover the larger cwnd. WaMPTCP+RO and MPTCP proxy+RO do

not have to perform an entire cwnd recovery, since the subflow is not stalled (Section 3.3.4),

and both subflows recover in parallel. Without Recovery Optimization, the subflow needs to

recover the entire tunnel bandwidth from TCP slow start.

Table 3.3 shows that the TCP congestion control used for the subflows impacts the per-

formance of WaMPTCP+RO. Six TCP congestion control algorithms are uncoupled, while the
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last three - olia, balia, and wvegas - are coupled and specifically designed for MPTCP [38]. We

artificially add 1ms or 100ms latency to both WAN links using Linux Traffic Control [72] to

emulate a large Bandwidth× Delay Product (BDP) network. Different congestion control algo-

rithms suit different network characteristics. For example, Reno underutilizes “long fat” paths,

and after packet losses it grows cwnd by one every RTT, which explains its slower recovery.

Similar to our earlier RTT tests, Reno with Tunnel Handoff is even slower (72.6s). We verified

that for the coupled congestion controls, the fairness is proportional to the number of MPTCP

sessions, and that for uncoupled congestion controls it is proportional to subflows. High RTT

impacts the achievable throughput in all cases. The congestion windows of three coupled con-

gestion controls grow very slowly, two of them even did not recover after 120 seconds. They

also have lower throughput at 100ms RTT, which indicates the need of further improvements

before they can be used for SD-WAN scenario.

Earlier tests explore only a single MPTCP session in idle links. Figure 3.18 has an increas-

ing number of TCP background flows competing for the WAN links. Contention does not

impact much T-throughput-recovery. T-latency-failover increases with contention, because the

congestion window size shrinks and there are more retransmitted segments, which causes more

delay for retransmitted packets.

3.5.5 Handoff Impact on Applications

A single handoff event won’t impact much long lived applications, therefore we evaluate the

impact on applications of intermittent links, which are frequently blocked or disconnected

[73–75], for example a wireless link with slow fading [76]. In our tests, the backup link is
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Figure 3.17: RTT Impact over T-throughput-recovery (BFD=100ms, Outage=5s)
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seconds T-latency-fail T-tput-recover Throughput

RTT 1ms 100ms 1ms 100ms 1ms 100ms
cubic 0.43 0.71 1.26 12.3 179 126.0
reno 0.41 1.00 1.65 38.4 179 125.0
vegas 0.22 0.65 1.92 34.9 175 125.0
illinois 0.44 0.86 1.25 23.2 179 124.0
veno 0.33 0.74 1.31 26.8 179 125.0
westwood 0.27 0.55 1.43 14.9 179 126.0
olia 0.38 0.90 1.10 >120 179 83.9
balia 0.62 0.72 1.06 82.7 179 93.5
wvegas 0.64 0.59 1.46 >120 179 54.6

Table 3.3: Impact of TCP congestion control (BFD=1s)
BFD timer 1s 100ms

Time between link
events (on or off)

1s 2s 3s 4s none 1s 2s 3s 4s none

Tunnel Handoff >3600 >3600 >3600 680 177 305 235 205 197 177
MPTCP Tunnel stall stall stall stall 94 stall stall stall stall 94
MPTCP Proxy 176 175 175 173 91 176 175 175 173 91
WaMPTCP 176 175 175 173 91 176 175 175 173 91
WaMPTCP+RO 176 175 175 168 91 162 155 146 131 91

Table 3.4: HTTP download duration with intermittent link in controlled testbed (seconds for
2GB file)

always healthy, and the primary link alternates between on and off state at periodic interval

(from 1s to 4s), it is blocked 50% of the time using netfilter (Section 3.5.2). Half of the handoff

are reactive and the other half is proactive, which is more strenuous than frequent policy changes

[64] (only proactive handoffs).

Table 3.4 explores the impact of intermittent links on download performance. The client

downloads a 2GB file from a web server using wget, this represents applications which are
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throughput sensitive (Section 3.4).

When using Tunnel Handoff with BFD timer of 1s, downloads are very slow for frequent

outages. Our metrics explain this (Table 3.2), the connection is constantly switched back to the

bad link, and TCP does not have enough time to fully recover before the next outage or when

on the healthy link. TCP can recover only when the period of link events is greater than our

metrics. A shorter BFD timer of 100ms produces shorter metrics, increasing performance. The

metrics are independent of the outage duration (Section 3.5.3), and therefore the performance

is mostly proportional to the outage frequency (for the same overall link duty cycle).

MPTCP mechanisms without Recovery Optimization use only a single link after the first

outage, the download time is almost twice the time without outage. T-throughput-recovery

increases with the outage duration (Section 3.5.3), so only an increase in the duty cycle of

the bad link would allow the affected subflow to recover. Recovery Optimization with a short

BFD timer enables the affected subflow to exploit the time between outages, with performance

mostly proportional to the outage frequency. MPTCP Tunnel is completely stalled in presence

of frequent outages and needs to be restarted.

BFD timer 1s 100ms
Time between link
events (on or off)

1s 2s 3s none 1s 2s 3s none

Tunnel Handoff 754.09 839.01 2021.88 3854.02 1989.44 3437.9 3737.66 3911.91
MPTCP Tunnel stall stall stall 3923.49 stall stall stall 3943.24
MPTCP Proxy 3854.02 3883.26 3807.68 3946.42 3847.61 3842.71 3820.95 3876.36
WaMPTCP 3835.75 3822.78 3807.24 4061.85 3835.16 3864.27 3886.63 4048.54
WaMPTCP+RO 3879.77 3854.63 3873.92 4036.86 3828.03 3855.38 3889.34 4054.52

Table 3.5: TCP transaction rate with intermittent link in controlled testbed (transactions / sec-
onds)

Table 3.5 explore the impact of intermittent links on transaction performance. The client

uses the Netperf TCP RR test, this measures the number of back to back bidirectional trans-

actions on a TCP connection. This represents applications which are latency sensitive (Sec-

tion 3.4), higher transaction rate can only be achieved with shorter round trip latency.

Tunnel Handoff with BFD timer of 1 seconds makes slow progress for frequent outages,

and BFD timer of 100ms greatly improves performance. MPTCP tunnel is stalled.

Without outages, the performance of MPTCP mechanisms is only slightly higher than Tun-

nel Handoff, the back-to-back transactions are tiny, therefore they can not exploit the parallelism

offered by MPTCP. In the presence of outages, MPTCP only uses a single path, and is mostly

unaffected by the outage frequency. The MPTCP scheduler prefers the link with the lowest
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Intermittent link low-latency link high-latency link

Time between link
events (on or off)

1s 2s 3s 4s none 1s 2s 3s 4s none

Tunnel Handoff 350 218 137 125 49 167 113 80 72 49
MPTCP Tunnel stall stall stall stall 32 stall stall stall stall 32
MPTCP Proxy 90 77 68 61 32 62 58 50 49 32
WaMPTCP 92 78 67 63 32 62 57 51 47 32
WaMPTCP+RO 62 71 62 56 32 58 52 49 42 32

Table 3.6: HTTP download duration with intermittent link in GENI testbed, 100ms BFD (sec-
onds for 20MB file)

RTT, therefore it permanently avoids the link with outage which has higher RTT. In contrast

BFD can only do binary evaluation of the link. We only evaluated the default MPTCP sched-

uler, evaluating other advanced MPTCP schedulers [77, 78] could be future work.

3.5.6 Evaluation in the Wild

We deploy Durga in the real world to confirm the findings of our testbed. We perform experi-

ments over the Internet in both the GENI testbed [79] and Amazon AWS.

In GENI testbed, we create a 5 node topology (Figure 3.19). We perform the previous

experiments with intermittent links and 100ms BFD timer (Section 3.5.5). One particularity is

that both path are heterogeneous and have different latencies, therefore we test with the primary

and intermittent link being either the low-latency link or the high-latency link.

Table 3.6 mostly confirms our testbed results. Without outages, MPTCP does not have twice

the performance of Tunnel Handoff, it can not exploit both links fully. A higher frequency of

outages drastically reduces the performance of Tunnel Handoff, due to penalty of handoffs

RTT <1ms 
BW 95.4mbps 

Client 

Server 

Figure 3.19: GENI Network Setup
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Intermittent link low-latency link high-latency link

Time between link
events (on or off)

1s 2s 3s 4s none 1s 2s 3s 4s none

Tunnel Handoff 7.72 9.67 12.48 14.09 19.55 11.73 14.11 14.78 13.53 9.83
MPTCP Tunnel stall stall stall stall 19.45 stall stall stall stall 19.36
MPTCP Proxy 10.98 11.22 12.45 13.98 19.56 19.34 19.31 19.33 19.33 19.34
WaMPTCP 11.19 11.65 12.33 14.19 19.32 19.34 19.34 19.31 19.33 19.34
WaMPTCP+RO 11.13 11.52 12.35 14.78 19.34 19.33 19.38 19.33 19.34 19.37

Table 3.7: TCP transaction rate with intermittent link in GENI testbed, 100ms BFD (transac-
tions / seconds)

under high RTT (Section 3.5.4). Frequent outages make MPTCP a bit slower, and outages on

the low-latency path are worse, confirming that MPTCP has trouble using the high-latency link

effectively.

Table 3.7 mostly confirms our testbed results and highlight the effect of heterogeneous

paths. TCP transaction rate mainly depends on latency, consequently without outage Tun-

nel Handoff perform as well as MPTCP, unless the primary path is high-latency. The default

MPTCP scheduler prefers to send packets over low-latency path, therefore when the intermit-

tent path is the high-latency path, MPTCP avoids it almost entirely and does not suffer from

outages. When the intermittent path is the low-latency path, performance reduces closer to the

performance of the high-latency link alone as outage frequency increases. Finally, when Tunnel

Handoff uses the high latency link as the primary and intermittent link, outages increase per-

formance compared to without outages, despite the cost of handoffs, because outages force the

traffic onto the low-latency link which has much higher performance.

We instanciate a HTTP server (Apache 2.4.18) in Amazon Elastic Compute Cloud (EC2)

in eu-west-1 zone. The local gateway uses three types of access networks: cellular network by

using the hotspot feature on a mobile phone, university WiFi, and university Ethernet. Those

WAN links offer different raw download performance (Table 8). A CNN’s homepage consisting

of 216 WEB objects is stored on the HTTP server, and the client downloads it.

RTT Throughput
Cellular 138∼162 ms 1.2 Mb/s
WiFi 181∼242 ms 1.64 Mb/s
Ethernet 100∼120 ms 6.4 Mb/s

Table 3.9: Parameters to access Amazon EC2

We simulate a single 1-second outage on the Ethernet primary path and investigate the
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Figure 3.20: Web Browsing via Tunnel Handoff
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Figure 3.21: Web Browsing via WaMPTCP

cumulative distribution function (CDF) of web object loading time. Figure 3.20 shows that for

Tunnel Handoff with 100ms BFD timer, the application can perceive the outage (separation of

blue and red curves). Figure 3.21 shows that WaMPTCP+RO successfully hides the outage

from the application.

3.6 Related Work

WAN virtualization solutions have been extensively studied in both enterprise and literature.

As discussed, existing SD-WAN productions [7] use techniques similar to Tunnel Handoff for

reliability, and certain solutions provide more features such as aggregated link utilization and

fast failover. However, most implementation details are proprietary. In the literature, the ben-

efits of using MPTCP for throughput and failover are studied [39–43] in different scenarios.

Moreover, several MPTCP proxies [45, 46] are implemented for the purpose of link utilization.

Our solution focuses on a SD-WAN scenario which has not been fully explored, and studies the

metrics directly related to application performance.

On the other side, interests have shown in Layer 4 performance and designing fast failover

mechanisms to settle link failure and achieve restoration. N. M. Sahri et al. [80] proposes a

novel fast failover architecture by having a central controller to compute backup path so as

to reduce switching delay. OSP scheme [81] maintains preplanned backup flows at different

priorities and achieves fast resilience in optical transport networks. Ranadive et al. [65] explore

the effect of route fluctuation on TCP. Kim et al. [61] propose an improved TCP scheme to

deal with outage during handoff. Cârpa et al. [64] explore the effect of frequent SDN route

changes on TCP. In contrast, our work defines metrics under link failures and takes MPTCP
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into consideration.

3.7 Summary

We have presented Durga, a novel SD-WAN solution for fast failover with minimal application

performance degradation under WAN link failures. We motivated the design for Durga by illus-

trating the problem associated with vertical (tunnel) handoff commonly employed by existing

SD-WAN solutions to handle WAN link failures, and showed that it can lead to significant appli-

cation performance degradation in the evaluation. Durga combines an innovative WAN-aware

MPTCP mechanism which enables applications to generate multiple MPTCP flows even with

a single physical interface. This is further augmented with an MPTCP proxy to accommodate

end systems without native MPTCP support. We also introduced two new metrics to better

capture and quantify the impact of WAN link failures on application performance. Through

extensive evaluation in emulated testbed and real-world deployment, we demonstrated the su-

perior performance of Durga over existing SD-WAN solutions. While the focus of this project

is on providing fast failover under WAN link failures to minimize their impact on application

performance, Durga can also be used to further enhance WAN link utilization by intelligently

distributing MPTCP subflows to WAN links and support application-aware SD-WAN traffic

engineering – an in-depth exploration of these topics will be left to a future project.



Chapter 4

Making Network Functions Aware of
Multiple TCP

4.1 Main Results

As facilitating VNFs aware of MPTCP is beneficial to both the performance of MPTCP sessions

and the quality of network services described in Section 2.2, we take a first step towards making

the network devices MPTCP-aware by investigating how to associate subflows that belong to

the same MPTCP session. This is relatively easy to do at a place where all flow records are

available, e.g., at the end hosts. In this case one can use MPTCP token in TCP option field

carried in the MP JOIN message of each subflow to identify a MPTCP session. However, the

problem of associating MPTCP subflows becomes more challenging in network. For example,

it is common that network monitoring devices perform sampling on the data streams before

processing them in order to reduce processing load. Moreover, flow paths can also change due

to network dynamics and hence the monitoring device may only see a portion of the flow. All

such complications may cause the MPTCP packets containing the token to be missing from flow

records, and hence a more comprehensive and robust solution is needed for subflow association

in network.

We propose SAMPO, an online subflow association mechanism for MPTCP with partial

flow record. Our main contribution is a DSN-based algorithm that can associate subflows based

on analysis of DSN values of each subflow, their range and overlapping pattern. Through exten-

sive theoretical analysis and experimentation, we find that the DSN-based association is very

35



36

effective even when a very small fraction of packets from each subflow are available. For in-

stance, the algorithm reaches close to 100% accuracy when only 1% of packets are sampled

in.

The remainder of this project is organized as follows: the workflow of the system is illus-

trated in Section 4.3. MPTCP subflow association algorithm and its analysis are described in

Section 4.4. After that, in Section 6.6, we show the evaluation of the main algorithm and then

conclude.

4.2 MPTCP Subflow Association

In this section, we present background information related to the MPTCP subflow association

problem. We first describe a token-based solution which is a regular way of associating MPTCP

subflows and then explain why such a regular approach, although simple and accurate, may not

always work in network.

4.2.1 Token-based Solution

The most straightforward way of solving the problem is to look for signatures in the MPTCP

protocol that can be used to identify each session. Figure 4.1 shows the initial MPTCP protocol

exchange during connection establishment. When sender A initiates a MPTCP connection with

receiver B, it first sends a SYN packet, which contains both MP CAPABLE flag and sender’s

key (KEY A) in the TCP option field of its header. If MPTCP is supported and enabled at

the receiver side, the receiver sends back a SYN/ACK that contains a MP CAPABLE flag with

receiver’s key (KEY B). The following ACK packet from the sender to receiver contains the

keys of both sides. At this point, the first subflow in MPTCP has been established; this is called

meta socket. Later on, when the sender needs to establish an additional subflow, it sends a

SYN packet with MP JOIN. This SYN packet contains a token, which is calculated from the

receiver’s key that the sender has obtained during meta socket handshake. In MPTCP Linux

Kernel implementation, the token is calculated by taking the most significant 32 bits out of

160 bits SHA1 function of the receiver’s key [82]. This SYN packet also contains a nonce

field for further authentication. The next few handshake packets can be ignored since they

are not relevant to MPTCP subflow association. Further details of MPTCP subflow handshake

procedure can be found in the MPTCP RFC [8].
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Since the token is generated from the receiver’s key and the same function is called to

compute the token for different subflows, all MPTCP subflows contain the same token. One

exception is the meta socket, which only contains keys but not a token. In this case, we can

use the token generation function to convert the receiver’s key into a token so that we can

associate the meta socket with other subflows. Note that in the current MPTCP Linux kernel

implementation, only a sender is allowed to initiate subflows so only its receiver’s key needs

to be used. However, MPTCP specification allows both sides to initiate subflows. In the case

where other MPTCP implementations choose to allow a receiver to initiate subflows, its sender’s

key can then be stored to derive the token for the reverse direction.

Host A Host B

Address A1 Address B1Address A2

SYN
MP_CAPABLE, KEY_A

SYN/ACK
MP_CAPABLE, KEY_B

ACK
MP_CAPABLE, KEY_A, KEY_B

SYN
MP_JOIN, TOKEN, NONCE

SYN/ACK
MP_JOIN, NONCE, HMAC

ACK
MP_JOIN, HMAC

ACK

Establishment of an Additional Subflow

Figure 4.1: Basic Knowledge for Token-based MPTCP Subflow Association

4.2.2 Challenges in Network

Although the token-based approach can effectively associate MPTCP subflows, it relies on the

assumption that the entire MPTCP handshake process can be captured, so that each subflow can

be identified by using the token or the receiver’s key. While this is true at the end hosts, e.g.,

at the hypervisor where host A or B runs, it is generally not true in network. We describe two

common reasons below.
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Sampling

Packet sampling is often used in network monitoring systems as a way to reduce processing

and memory load [83]. As the link speed continues to increase on routers and switches, it is

conceivable that to monitor every packet on each link will be even more challenging. A common

sampling approach is to randomly sample a fraction of packets from a link. As a result, only

partial flow records may be exposed to the monitoring system. The higher the sampling rate

is set in network devices, the more bandwidth to transmit packets and resource to store and

process them are required.

Network Dynamics

Network path can be changed due to various reasons. For example, link failure on the Internet

is common due to its size and complexity, as shown in the measurement study [84]. Link

failure may cause network instability and affect routing convergence on a large scale. For

instance, the inter-domain routing protocol BGP could take up to 15 minutes to converge after

link failures [85]. Such network dynamics may cause the packets in the same flow to be routed

across different paths, and hence a monitoring device may not able to capture the entire flow.

Due to the above reasons, we believe that the token-based association approach will not be

a reliable solution for a monitoring device in network. In the next section, we present a more

sophisticated algorithm based on statistical characteristics of DSNs in each subflow, which can

support online MPTCP subflow association with only partial flow record.

4.3 SAMPO Overview

In this section, we propose SAMPO, an online subflow association system for MPTCP with

partial flow records.

Figure 4.2 illustrates the workflow of SAMPO. The input to SAMPO is a set of partial

flow records (e.g., sampled packets). The output is the association result of MPTCP subflows,

identifying sets of subflows belonging to the same MPTCP session. The pre-processing step

is done as follows. First, the flow records are grouped according to 5-tuple information in the

packet header. The MPTCP flows are then selected based on the TCP option field. For flows

containing MPTCP header information, DSNs and corresponding packet length are extracted
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Figure 4.2: SAMPO Workflow

from the option field, along with the token or the receiver’s key, if available. Such information

is stored in a flow cache as part of the flow record to be fed to the next MPTCP association step.

To enable online processing, we use a sliding window mechanism in the flow cache. MPTCP

association is triggered every γ second. Flows cached within each time window of γ seconds

are processed together. The inactive flows that have arrived before the current time window are

timed out and removed.

The MPTCP association step consists of two parts: token-based association and DSN-based

association. If a receiver’s key or token is available, token-based association is then performed

using the method described in Section 4.2. The results of token-based association along with

flow records are fed into DSN-based association for further association; details of this step

are illustrated in Section 4.4.1. At the end of processing, the system produces a report of

flows belonging to the same MPTCP session. For every pair of flows in the report, there is

a confidence value Φ to represent how trustworthy the result is. For association results with

Φ higher than before, they will be stored back into flow cache for the association of future

subflows.

4.4 MPTCP Subflow Association

In this section, we describe the main algorithm in our system and present our analysis. For

completeness, the overall SAMPO system still takes advantage of token-based subflow associa-

tion method (Φ is set to 1 if associated by token) presented in Section 4.2.1, although our main
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algorithm presented here only relies on DSN-based association.

4.4.1 DSN-based Association

Recall that DSN is used as a global sequence number for the entire MPTCP data. Since multiple

subflows are used for data transmission, DSN is spread across different subflows. We define the

active range of a subflow as the DSN range from the beginning to the end of this subflow.

Similarly, we define the DSN segment for a packet as the DSN range between the beginning and

end of this packet. Note that the length of each DSN segment is the length of this packet. Hence

our main intuition is that if two subflows belong to the same MPTCP session, their active ranges

have a high probability of overlapping. Furthermore, within their overlapped active range, the

DSN segments of the two subflows should be interleaving, instead of overlapping. This is

because upper-layer data should only be assigned to one subflow, except for reinjection packets,

which we will address later. DSN-based association actually uses 2-level overlap analysis to

determine whether two subflows are generated by the same MPTCP session or not.

EM-1

EM

E1

E2

DSN Space (2^32)

E3

BmB3B2B1

AnA3A2A1

G
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1st Level Overlap
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D
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φi
S = 1 - φi
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Figure 4.3: DSN-based Association

As shown in Figure 4.3, the algorithm first examines whether the active ranges of two sub-

flows overlap or not. This is called the first-level overlap. If the first-level overlap holds, the al-

gorithm further checks if the DSN segments in the overlapped active range has the second-level

overlap. The second-level overlap is defined as overlapped DSN segments in the overlapped

active range. The colored boxes on the right side of the figure show steps of the classification

logic. Each step of the decision is associated with a confidence value Φi
X , where X can be

either S (i.e., same MPTCP session) or D (i.e., distinct MPTCP sessions). Label i = 1, 2, 3

corresponds to the outcome of each decision step, as shown in the colored box. The confidence
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values range between [0,1]. Φi
S is defined to be 1−Φi

D. For example, given that first-level over-

lap does not hold, Φ1
D is confidence value of the classification result that two subflows belong

to distinct MPTCP sessions. Similarly, Φ1
S is confidence value of the classification result that

two subflows belongs to the same MPTCP session. Since the confidence value, Φ, of an associ-

ation result for a pair of subflows is defined as max(Φi
S ,Φ

i
D), the essential task of DSN-based

association is to calculate max(Φi
S ,Φ

i
D). If Φi

S is larger than Φi
D, the association result is S

for the current round; otherwise, D is. The detailed analysis on the value of Φi
X is presented in

Section 4.4.2.

In DSN-based association, if a subflow is wrap-around [86] in terms of DSN in a given

window, when this subflow is associated with other subflows, a virtual DSN space is used to

examine whether two subflows overlap at the first level. In virtual DSN space, wrap-around part

[0, n] is mapped to [S, S + n] in which S is the total DSN space size.

4.4.2 Analysis of DSN-based Association

The confidence value Φi
X generated by DSN-based association can be analyzed by using prob-

ability theory. Since DSN-based association is based on a two-level overlap algorithm, we may

have the following questions: for subflows belonging to the same MPTCP session, what is the

probability that they overlap at the first level? How about subflows belonging to distinct MPTCP

sessions? If two subflows overlap at the first level and they belong to the same MPTCP session,

what is the probability that they overlap at the second level? How about subflows belonging to

distinct MPTCP sessions in this case? Understanding these questions helps us better define Φi
X

to tune the algorithm. We first present the analysis for the first-level overlap, and then present

the analysis for the second-level overlap.

First-Level Overlap

The first-level overlap of two subflows belonging to distinct MPTCP sessions needs to be in-

vestigated, i.e., the probability that active ranges of these two subflows overlap. The question is

formalized as the following: Given two subflows (length of active range is N1 and N2 respec-

tively) passing through a switch, the initialized data sequence number (IDSN) follows a discrete

uniform distribution with range [0, s], what is the probability that these two subflows overlap in

terms of DSN? (s = 232 − 1 gives the problem of calculating probability of first-level overlap).
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The probability is easily calculated as P (E1E2) = P (E1) × P (E2|E1) = N1+N2−1
s+1 in which

Ei is the active range of each subflow.

What if these two subflows belongs to the same MPTCP session? In order to understand

this problem, we need to understand how MPTCP scheduling algorithm works, i.e., how data

segments are scheduled over multiple links. In MPTCP Linux kernel implementation [82],

the default scheduler chooses subflow with the lowest RTT until its congestion window is full.

Then, the scheduler assigns data segments to the subflow with the next lowest RTT. This sched-

uler is argued to be the best known till date [87]. Based on the such a scheduling mechanism, it

can be inferred that active ranges of two subflows belonging to the same MPTCP session have

very high probability of overlapping with each other.

Given that two subflows are not overlapped at the first level, can we guarantee that they

must belong to distinct MPTCP? The brief answer is no. There are three reasons. The first

reason is that it is possible that active range of one subflow might be too small to overlap

with that of another subflow in the same MPTCP session. The second reason is that MPTCP

data segments may not be transmitted over multiple paths concurrently. MPTCP end host can

specify a path (in fact, end host specify the interface connected to this path) as a backup path

which will only be used if no default path is available. A well-known application, Siri, in

iOS 7 takes cellular connection as a backup connection [88]. When WiFi goes down, DSN

over cellular connection would not be overlapped with that over WiFi. The third reason is

that the input to our analysis is partial subflow instead of complete subflow information, so

it is possible that overlapped active range is missed due to network dynamics or packet sam-

pling. Despite of various reasons, if subflows belonging to the same MPTCP session are not

overlapped at the first level, the gap between two active ranges from two subflows has high

probability to be smaller than the largest gap between two consecutive DSN segments from a

subflow. Thus, Φ1
D is defined as Sigmoid(min(gap subflow)

max(gap DSN) − 1), in which min(gap subflow)

is the smaller gap between two active ranges and max(gap DSN) is the largest gap between

two consecutive DSN segments in the same subflow. Here, we include the sigmoid function as

a “cut-off”. When min(gap subflow) is small, i.e., min(gap subflow) < max(gap DSN),

Sigmoid(min(gap subflow)
max(gap DSN) − 1) will rapidly get closer to 0, leading to a small probability that

two subflows are belonging to distinct MPTCP.

Another question is: given that two subflows are overlapped at the first level, can we guar-

antee that they must belong to the same MPTCP? The brief answer is also no. Consider that
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there are only two subflows passing through a monitoring element, the probability that two ac-

tive ranges are overlapped is P (E1E2) = P (E1)× P (E2|E1) = N1+N2−1
s+1 as analyzed before.

However, what if there are M subflows belonging to distinct MPTCP sessions passing through

the monitoring element?

We generalize above problem from two subflows to M subflows and calculate the proba-

bility that at least two subflows have first-level overlap. The question is formalized as given M

subflows with length Ni(i = 1, ...,M) passing through a switch, the initialized data sequence

number follows a discrete uniform distribution with range [0, s], what is the probability that at

least two subflows are overlapped?

We first calculate the probability P (E1, . . . , EM ) that no subflows are overlapped. Then

1− P (E1, . . . , EM ) is the probability that at least two subflows are overlapped.

P (E1, . . . , EM ) = P (EM |E1, . . . , EM−1)

× P (EM−1|E1, . . . , EM−2) · · ·P (E2|E1)× P (E1)

Given (M − 1) subflows with length Ni(i = 1, ...,M − 1) passing through a switch, the

IDSN follows a discrete uniform distribution with range [0, s] without any overlap. Given an

additional subflow with lengthNM passing through this switch, the probability that this subflow

will not be overlapped with other M − 1 subflows is

P (EM |E1, . . . , EM−1)

=


max

(∑
gapM−1−gM−1×(NM−1)

S , 0

)
,M > 1

1 ,M = 1

with lower bound:

Pmin(EM |E1, . . . , EM−1)

= max


S −

M−1∑
k=1

Nk − (M − 1)× (NM − 1)

S
, 0

 ,M > 1
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and upper bound:

Pmax(EM |E1, . . . , EM−1)

= max


S −

M−1∑
k=1

Nk −NM + 1

S
, 0

 ,M > 1

in which space size S is 232.
∑
gapM−1 is the total size of gaps, each of which is equal to or

larger thanNM , while gM−1 is the number of such gap in total when M-1 subflows have already

been placed.

Explanation for lower bound: there are S different choices for each IDSN without consid-

ering overlap. First count how many of them are not overlapped. The first IDSN can be chosen

freely, in S different ways. Adding E1 makes N1 +NM − 1 out of S points forbidden as IDSN

for other subflows (each of the N1 points contained in that subflow and NM − 1 points before

it). The total legal IDSN for the second subflow is S −N1 − (NM − 1). Choosing the second

IDSN will make at most N2 +NM − 1 out of the remaining points invalid. For the IDSN of the

third subflow, there are at most S −N1 −N2 − 2(NM − 1) valid points. Overall, in the worst

case, S −
M−1∑
k=1

Nk − (M − 1)× (NM − 1) points are forbidden when EM needs to be placed.

Explanation for upper bound: in the best case, all active ranges are connected end to end in

which the most valid places will be available for the next active range. The first IDSN can still

be chosen freely, in S different ways. AddingE1 makesN1+NM−1 out of S points forbidden

as IDSN for other subflows. Then after adding E2 which is end to end with E1, there are only

N1 + N2 + NM − 1 out of S points forbidden instead of N1 + N2 + 2(NM − 1) in the worst

case. Therefore, when EM needs to be placed, there are only
M−1∑
k=1

Nk +NM − 1 places invalid
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in the best case.1

P (E1, . . . , EM )

=


max

(
M∏
k=2

(

∑
gapk−1−gk−1×(Nk−1)

S ), 0

)
,M > 1

1 ,M = 1

with lower bound:

Pmin = max


M∏
k=2

(

S −
k−1∑
t=1

Nt − (k − 1)× (Nk − 1)

S
), 0


and upper bound:

Pmax = max


M∏
k=2

(

S −
k−1∑
t=1

Nt −NM + 1

S
), 0


We refer Taylor series to calculate the approximations of aforementioned formula. When

S �
M∑
t=1

Nt, the lower bound can be approximated as:

Pmin ≈ max(e−
(M−1)×(

M∑
t=1

Nt−M
2 )

S , 0),M > 1

and the upper bound can be approximated as:

Pmax ≈ max(e−

M∑
k=2

k∑
t=1

Nt−(M−1)

S , 0),M > 1

The derivation of lower bound and upper bound is shown as follows.
1In fact, Birthday Paradox [89] is an extreme case of our analysis in which Ni = 1(i = 1, ...,M) and S = 365.

In this extreme case, the lower bound and upper bound are equal because gM−1 is always equal to the number of
gaps available.



46

Key steps of lower bound derivation are:

e−

k−1∑
t=1

Nt+(k−1)×(Nk−1)

S ≈ 1−

k−1∑
t=1

Nt + (k − 1)× (Nk − 1)

S

M∏
k=2

(1−

k−1∑
t=1

Nt + (k − 1)× (Nk − 1)

S
)

≈ e−
1∑

t=1
Nt+(N2−1)

S · · · × e−
M−1∑
t=1

Nt+(M−1)×(NM−1)

S

= e−
(M−1)×(

M∑
t=1

Nt−M
2 )

S

Key steps of upper bound derivation are:

e−

M−1∑
t=1

Nt+NM−1

S ≈ 1−

M−1∑
t=1

Nt +NM − 1

S

M∏
k=2

(

S −
M−1∑
t=1

Nt −NM + 1

S
)

≈ e−
2∑

t=1
Nt−1

S × e−
3∑

t=1
Nt−1

S · · · e−
M∑
t=1

Nt−1

S = e−

M∑
k=2

k∑
t=1

Nt−(M−1)

S

Figure 4.4 shows the rate that two active ranges are overlapped given different subflow size.

we can see that given hundreds of subflows, the overlap rate is relatively high. For example,

as a switch in the middle of the network, it captures numerous subflows simultaneously. Even

though two subflows are not generated by the same MPTCP session, the chance that their active

ranges are overlapped could not be ignored. Thus, the algorithm still cannot make a rash clas-

sification that two subflows are belonging to the same MPTCP session if their active ranges are

overlapped. The algorithm needs to further analyze the DSN segments in the overlapped active

range.
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Figure 4.4: First-Level Overlap Rate

Second-Level Overlap

In the second-level overlap, we analyze the DSN segments from two subflows in the overlapped

active range and see how this can help the algorithm make better classification. The probability

of the second-level overlap is calculated given two subflows belonging to the same MPTCP

session or distinct MPTCP sessions.

Given two subflows belonging to the same MPTCP session, what is the probability that

they are overlapped at the second level? As we known, for two subflows belonging to the

same MPTCP session, their DSN segments are supposed to be interleaved without overlap. It is

because MPTCP scheduler assigns packets into different subflows according to scheduler algo-

rithm [87]. It is just like a TCP session. If two packets from a TCP session are not retransmission

packets, they would not overlap with each other in terms of sequence number segment which is

a segment starting at sequence number and ending at sequence number plus packet length. The

story is similar for MPTCP session. The only reason why two subflows belonging to the same

MPTCP overlap at the second level is because of reinjection packets which is retransmission

over another subflow instead of the original subflow. If the packets are reinjected from a subflow

to another, DSN segments of these two subflows would overlap. For example, packets sent over

WiFi may be reinjected to cellular network when WiFi signal degrades or WiFi connection is

terribly congested. To address this issue, we need to first understand in which condition, packets
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would be reinjected to another subflow. After analyzing MPTCP implementation [82], we know

that reinjection packets appear if and only if either of the following two conditions hold: 1) link

failure; 2) retransmission timer expiration. In order to detect reinjection packets, DSN-based

association algorithm includes a heuristic that reinjection packets start with the same DSN and

are of the same size. Thus, Φ2
M is defined as 0 because the algorithm filters out reinjection

packets and then examines whether two subflows overlap at the second level or not.

Given two subflows belonging to distinct MPTCP sessions, what is the probability that they

overlap at the second level? As shown in the bottom of Figure 4.4, given two subflows with

the length of overlapping active range G, assuming the number of DSN segments within the

overlapping segment is n and m (n ≥ m) respectively, and the size of each DSN segment is

pAi
(i = 1, . . . , n) and pB i

(i = 1, . . . ,m), what is the probability that DSN segment Ai(i =

1, . . . , n) overlaps with DSN segment Bi(i = 1, . . . ,m)? Ai is the ith DSN from subflow A in

the overlapping active range, while Bi is the corresponding one from subflow B.

This probability problem can be converted into another form. Given Ai(i = 1, . . . , n) in

space G without overlap, what is the probability of overlapping after all Bi(i = 1, . . . ,m) are

put into G, i.e., P (B1, . . . , Bm|A1, . . . , An). Denote DBk−1
as the distance between the first

DSN of the overlapped active range and the end of DSN segment Bk−1. The probability can be

calculated as

P (B1, . . . , Bm|A1, . . . , An)

= 1− P (B1|A1, . . . , An)× P (B2|B1A1, . . . , An)

· · ·P (Bm−1|B1, . . . , Bm−2A1, . . . , An)

× P (Bm|B1, . . . , Bm−1A1, . . . , An)

in which

P (Bk|B1, . . . , Bk−1A1, . . . , An)

=

∑
gapn+k−1 − gn+k−1 × (pBk

− 1)

G−DBk−1
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with lower bound:

Pmin(Bk|B1, . . . , Bk−1A1, . . . , An)

=

G−DBk−1
−

n∑
t=1

pAt − n× (pBk
− 1)

G−DBk−1

and upper bound:

Pmax(Bk|B1, . . . , Bk−1A1, . . . , An)

=

G−DBk−1
−

n∑
t=1

pAt − pBk
+ 1

G−DBk−1

Therefore, the probability that Bi(i = 1, . . . ,m) overlaps with Ai(i = 1, . . . , n) is

P (B1, . . . , Bm|A1, . . . , An)

= 1−
m∏
k=1

∑
gapn+k−1 − gn+k−1 × (pBk

− 1)

G−DBk−1

with lower bound:

Pmin(B1, . . . , Bm|A1, . . . , An)

≈ 1− e−
m×

n∑
t=1

pAt
+nm×

m∑
t=1

pBt
−mn

G

and upper bound:

Pmax(B1, . . . , Bm|A1, . . . , An)

≈ 1− e−
−m+m×

n∑
t=1

pAt
+

m∑
t=1

pBt

G

Φ3
M is defined as the lower bound of P (B1, ..., Bm|A1, ..., An), based on the probability

analysis above. From a high level understanding, it means that the probability of overlapping

at the second level is assigned as the confidence value of judging two subflows belonging to
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the same MPTCP session. Given two subflows without overlap at the second level, the higher

probability of overlapping is calculated, the more confidence that these two subflows are be-

longing to the same MPTCP. For example, with more space in G occupied by increasing DSN

segments from two subflows, the lower bound of P (B1, ..., Bm|A1, ..., An) grows to 99%, but

these two subflows still do not overlap at the second level, and then we can probably have 99%

confidence to classify them as belonging to the same MPTCP session. The reason we choose

lower bound is because we want to minimize false positive cases in which subflows belonging

to distinct MPTCP session is classified as the same MPTCP session. The cost of false positive

cases is much larger than that of false negative cases in which subflows belonging to the same

MPTCP session is mistakenly classified as distinct MPTCP session. It is because after subflows

are classified as the same MPTCP session, there may have some additional operations needed

to be performed. For example, the application identification function may assemble subflows

belonging to the same MPTCP to perform analysis.

Since partial subflow records could be caused by sampling, it is possible that overlapping

DSN segments are not sampled in. Thus, DSN-based association also takes sampling rate % into

consideration at the second-level overlap. The solution is quite straight-forward. Every time the

probability of second-level overlap, P (B1, ..., Bm|A1, ..., An), is calculated, the algorithm set

G = G/%.
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Figure 4.5: Second-Level Overlap Rate
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Figure 4.5 shows the second-level overlap rate, we take G as 1,000,000 and 1428 bytes

(maximum Ethernet segment size) as size of the packet. We can see that the more DSN segments

are in the overlapping segment, the more chance they overlap. Given 50 DSN segments from

each subflow in the overlapping active range, it is highly likely that at least two DSN segments

overlap in terms of data sequence segment. In this case, if two subflows do not overlap at all,

Φ = Φ3
S which is a very large value. It means that DSN-based algorithms classifies these two

subflows as the same MPTCP session with very high confidence value.

4.5 Evaluation

SAMPO have been implemented to associate subflows belonging to the same MPTCP session.

In this section, we use Mininet experiments to demonstrate the feasibility and effectiveness of

SAMPO running in network.

4.5.1 Experimental Setup

Mininet, a Linux container-based emulation tool, is used to conduct experiments. It provides a

platform to create a virtual network and generates end hosts and network devices. The benefits

of using Mininet are that the topology of the network is flexible and real MPTCP implementa-

tion can be used instead of protocol simulation so that experimental results are more practical.

Mininet is installed in Ubuntu 64bit LTS directly instead of running it in a virtual machine. The

machine running experiments is equipped with Intel Core i7-4770 CPU @ 3.40GHz × 8, with

32G memory and 512G solid state drives. End hosts in Mininet are installed with Linux kernel

implementation of MPTCP v0.89. The reason v0.89 is used because new features in this version

provide more flexibility for the experiments. In this version, MPTCP can be switched on/off

at application level when a socket is initialized, and thus regular TCP can be generated as the

background traffic.

The setup of our experiment is shown in Figure 6.9. It creates a virtual network including a

server and 100 clients in which 40 configured to run MPTCP and the rest 60 to run standard TCP.

Clients and server are connected with pre-defined bandwidth as shown in the figure. One switch

is configured as a gateway to forward packets across different subnets. An Open vSwitch [90]

is run on the gateway, and configured to support packet sampling according to experimental

requirements. Sampled packets are fed into a virtual host running SAMPO in real-time. Each
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Figure 4.6: Experimental Setup

client or the server has two interfaces, and thus 4 subflows are generated for one MPTCP session

between a client and the server. The end hosts running standard TCP randomly choose an

interface when experiments start. For each experiment, all clients start a task of downloading a

500 MB file from the server.

In the experiments, we try to classify each pair of MPTCP subflows (i.e., distinct or same).

As a ground truth, the total number of MPTCP subflows is 160, which gives rise to
(

2
160

)
pairs

of subflows. In these pairs of subflows, 240 pairs belong to the same MPTCP session, and the

rest 12480 pairs belong to distinct MPTCP sessions. For each pair of subflow, if it is classified

as the same MPTCP session and it actually is, we attribute it as true positive (TP ), otherwise it

is false positive (FP ); if it is classified as distinct MPTCP and it actually is, we count the case

as true negative (TN ), otherwise it is false negative (FN ). The following performance metrics

are used in the evaluation:

• Accuracy is defined as (TP +TN)/(TP +TN +FP +FN). It represents the fraction

of all flows correctly classified.

• Precision is defined as TP/(TP + FP ). It represents how trustworthy the classification

result is.

• Recall is defined as TP/(TP +FN). It represents how complete the classification result

is.
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4.5.2 Experimental Results

In this section, we present experimental results using DSN-based association. Token based

association is disabled in the experiments, because association based on token is deterministic

and does not produce any error.
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Figure 4.7: Count Based Sampling

We first evaluate DSN-based association by using two different sampling algorithms [83]:

count-based sampling (selection triggered at every n packet) and timing-based sampling (selec-

tion triggered at every t microsecond)2. The sliding window size γ is set to 500 microseconds.

Figure 4.7 and 4.8 show the results obtained from count-based sampling and time-based sam-

pling, respectively. Accuracy, precision and recall increase with the sampling rate in the figures

and all three metrics approach 100% if one packet is sampled at every 100 packets, or every 50

microseconds. This implies that given the fixed size of γ, as more packets are fed into the al-

gorithm, it can achieve better association results in general. The reason why accuracy is always

high is because there are many more negative cases (flows belonging to distinct MPTCP ses-

sions) than positive cases (flows belonging to the same MPTCP session), and the correctness of

identifying negative cases is high. Thus, these negative cases (it is a practical setting that most

subflows belong to distinct MPTCP sessions) overwhelms the result of subflows belonging to

the same MPTCP session. This is the reason why we use precision and recall in addition to

accuracy. We can also observe that precision is high. It is because DSN-based algorithm gener-

ates very few FP cases even though sampling rate is low. The reason why precision and recall

are 0 given that sampling rate is 1/800 is because the number of packets in each flow sampled in

to DSN-based algorithm is very few (only 0 or 1). In such an extreme case, the algorithm could

not generate even one TP case, and thus the the precision and recall are both 0 according to its
2Since Open vSwitch does not support timing-based sampling, its result is generated from simulation.
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definition.
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Figure 4.8: Timing Based Sampling
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Figure 4.9: Relation Between Packets Number And Recall Rate

Throughout our experiments, we observe that all the performance metrics increase as either

the sampling rate or the window size increases. This is quite intuitive as increase in any of the

parameters contributes more packets to the association algorithm and that helps in the analysis.

Therefore, we set out to investigate the relationship between the number of examined packets

in each subflow and the accuracy obtained by the DSN-based algorithm. Since it is difficult

to sample exactly the same number of packets from each subflow (due to the disparity in their

goodput), we take the 50th percentile number amongst all the subflows as the representative

packet count fed into the algorithm. Figure 4.9 plots recall against the number of packets in

the 50th percentile over all the subflows. Note that accuracy and precision are both very close

to 100% and are omitted to maintain clarity in the plot. Observe that with the increase in the

number of packets sampled in, the recall with lower sampling rate reaches 100% faster than

that with higher rate. This is due to the manifestation of the first-level overlap. When a fixed

number of packets are sampled in, lower sampling rate covers a larger time window into the

flow compared to the higher rate. Therefore, with lower sampling rate, the first-level overlap
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decision can be made sooner.

The DSN-based algorithm keeps on refining the association decision with newly sampled

packets. That is, for the same pair of subflows, the current association decision with lower Φ is

always replaced by a higher one. Thus, we investigate how long it takes to get the correct result

that is never replaced by the wrong result later. Figure 4.10 shows the resultant cumulative

distribution function of the time spent from the start of each subflow. Since the number of

packets sampled within a window with a higher sampling rate is larger than that with a lower

rate, the time spent to achieve the correct result with a higher sampling rate is much smaller

than that with the lower rate.
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Figure 4.10: Time Spent To Reach Correct Result

Since DSN-based association is an online algorithm, its space and time performance is

important too. We have performed the experiments to run SAMPO in real time fed with traffic

sampled using Open vSwitch. As DSN-based association only processes data in a window

of size γ, it greatly reduces the number of packets to be processed in the association stage.

Since around 40 packets in each subflow can produce fairly good result from Figure 4.10 (with

higher sampling rate, this number will be smaller), given 160 MPTCP subflows in total (around

6400 packets in a sliding window γ), association of these subflows from scratch takes 237

millisecond on an average. For each subflow, DSN-based association only keeps DSN segment

of each packet in the current γ time period. It also maintains a triangular matrix where the

relation of each pair of subflows with confidence value Φ is stored. The relation here means

whether these two subflows belong to the same MPTCP session. To give an idea of the space

requirements of DSN-based association, within a sliding window γ, 20 MB traffic generated

by 160 MPTCP subflows costs no more than 1 MB memory. If the algorithm needs to process

network traffic collected from multiple sources (e.g. multiple switches), DSN space (232) can
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be split into multiple subspaces and each can be handled by a dedicated distributed node. In this

case, MPTCP subflow association can be performed in a parallel.

Last but not least, the impact of 64-bit MPTCP DSN space is discussed. MPTCP specifica-

tion states that the length of MPTCP DSN space can be set as 64-bit. The use of 64-bit DSN

actually benefits the accuracy of DSN-based association. It is because two subflows belonging

to distinct MPTCP have even less probability of overlapping in term of active range (first level

overlap). For subflows belonging to the same MPTCP connection, since they are more likely to

overlap (have been analyzed above), they will not be influenced by DSN space size. Moreover,

64-bit DSN decreases the probability of DSN wrap-around.

From the experimental results, we can see that DSN-based association is able to associate

MPTCP subflows with high accuracy even when a very small portion (e.g. high sampling

rate) of the entire flow records are available. Note that SAMPO also uses token information

to associate MPTCP subflows. Therefore, it is more accurate and effective in online MPTCP

subflow association with partial flow records.

4.6 Related Work

MPTCP has generated lots of interest from many researchers in the past few years [10, 91–94].

Olivier has recently written an annotated bibliography on MPTCP [95].

Our work is motivated by the mptcptrace tool developed by Hesmans et al., which is de-

signed to analyze MPTCP flows [96]. The main difference is that mptcptrace works as an offline

tool and requires full flow records; it uses token-based approach to associate MPTCP flows. On

the other hand, SAMPO is designed to be an online tool that can work with either full or partial

flow records.

Sandri et al. [12] have designed a method to improve MPTCP performance by distributing

subflows of the same MPTCP connection across different paths. An OpenFlow controller is

used to associate MPTCP subflows and hence it relies on reactive flow processing, which may

bring scalability concerns. In addition, their subflow association algorithm is based on token

only, ignoring MPTCP meta socket. SAMPO does not assume a centralized point where all

flows would pass through and hence can be used in a more flexible setting.

Relatively less work has been done to support MPTCP based services. Greory et al. have

designed a middlebox that supports translation between MPTCP and TCP. In addition, Zubair
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et al. have investigated the security issues exposed by the multiple MPTCP subflows. They have

discovered a new MPTCP cross-path attack [97], which allows a service provider to infer the

path quality of its competitors if its customer’s MPTCP subflows go through multiple provider’s

networks. However, their work does not explicitly address the subflow association issue.

4.7 Summary

Making network devices MPTCP-aware may benefit both the performance of MPTCP sessions

and the quality of network services. In this project, we explore a first step towards this goal by

solving online MPTCP subflow association problem. Associating MPTCP subflows in network

is more challenging than doing it at end hosts because the identity of a MPTCP subflow can be

missing due to network dynamics or packet sampling. SAMPO solves this problem by using

both tokens (when available) and analysis of overlapping in DSN space. Both our theoretical

analysis and experimental results show that SAMPO can detect and associate MPTCP subflows

with high accuracy even when only a very small portion of each MPTCP subflow is available.



Chapter 5

Taking Consensus as a Service in
Software Defined Network

5.1 Main Results

We first introduce a brief overview of Raft and P4 [5] in Section 5.2. We then illustrate a

few network failure scenarios that may arise when applying Raft to a distributed SDN con-

trol cluster (see Section 5.3). We demonstrate how these failure scenarios can severely af-

fect the correct or efficient operations of Raft: in the best case they significantly reduce the

available “normal” operation time of Raft; and in the worst case, they render Raft unable to

reach consensus by failing to elect a consistent leader. It is worth noting that the problems

highlighted here are different from those addressed by, e.g., the celebrated CAP Theorem in

distributed systems [98, 99], which establishes impossibility results regarding simultaneously

ensuring availability and (strong) consistency under network partitions. This result has been

recently generalized in [100] to SDN networks in terms of impossibility results regarding en-

suring network policy consistency under network partitions. In contrast, we argue that thanks

to the inter-dependency between the network OS as a distributed system and the network it

attempts to control, SDN introduces new network failure scenarios that are not explicitly han-

dled by existing consensus algorithms such as Raft, thereby severely affecting their correct or

efficient operations.

In Section 5.4.1, we discuss possible “fixes” to circumvent these problems. In particular,

we argue that in order to fundamentally break this inter-dependency, it is crucial to equip the

58
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SDN control network with a resilient routing mechanism such as PrOG [101] that guarantees

connectivity among (non-partitioned) SDN controllers under arbitrary failures. We then propose

a network-assisted Raft consensus algorithm that takes advantage of programmable network and

offloads certain Raft [4] functionality to P4 [5] switches. Our goal is to improve the performance

of Raft without sacrificing scalability. Using a vanilla Raft implementation [102], PrOG, and

a P4 switch simulator, we provide preliminary evaluation results in Section 5.5. Finally, we

discuss the related work in Section 5.6 and conclude the project in Section 5.7.

5.2 Fundamentals

5.2.1 Raft Overview

Raft [4] is a consensus algorithm designed as an alternative to (multi-)Paxos [17, 103], and it

meant to be more understandable than Paxos, and it is also formally proven safe. Raft is as

efficient as Paxos, but its structure is different from Paxos. This makes Raft more understand-

able and it also provides a better foundation for building practical systems. To enhance under-

standability, Raft separates the main consensus components into the following subproblems: 1)

Leader election: a new leader is elected when the current leader fails; 2) Log replication: the

leader accepts log entries from clients and replicates them, forcing other logs to be consistent

with its own log; and 3) log commitment: few restrictions on leader election are enforced to

ensure safe log commitment, i.e., if any member applied a particular command to its state ma-

chine, then no other member may apply a different command for the same entry. Raft starts by

electing a strong leader, then it gives the leader full responsibility for managing the replicated

log. The leader accepts log entries from clients, and replicates them to other servers. When it is

safe to apply log entries to the state machines, the leader tells the servers to apply them to their

local state machines.
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Raft States. Raft clusters typically contains odd number of members (e.g., five servers allows

two failures). As illustrated in Figure 5.2, a server can be in one of three states: follower, candi-

date, or leader. Normally, there is one leader in the cluster and others are just followers passively

receiving RPCs from the leader or candidates. A leader responds to clients’ requests and repli-

cates the log entries to followers. In case a client contacts a follower, it will be redirected to the

leader.

Raft Terms. As shown in Figure 5.3, time is divided in terms of arbitrary length. Terms are

monotonically increasing integers, where each term begins with an election. If a candidate

wins an election, it will serve as the leader for the rest of the term. Terms allow Raft servers

to detect obsolete information such as stale leaders. Current terms are exchanged whenever

servers communicate using RPCs. When a leader or a candidate learns that its current term is

out of date (i.e., there exists a higher term number), then it immediately reverts to the follower

state. If a server receives a request, either a vote request or a replicate log entry from the leader,

with a stale term number, it rejects the request.

Raft Leader Election. A leaders in Raft send periodical heartbeats to all followers, and all

other servers remain in the follower state as long as they are receiving heartbeats from the

current leader. If a follower receives no heartbeat messages over a predefined period of time

(election timeout), then it assumes that there is no leader and starts a new election. To start

a new election, the follower that encountered the election timeout increments its current term,

vote to itself, and moves to candidate state. Then, it send request-to-vote RPCs to other servers.

Three possible outcomes can happen: Win Election: if it receives votes from a majority, it

sends heartbeats to all servers to prevent new elections and establish its authority for its term.

Lose Election: While waiting for votes, the candidate server may receive a heartbeat message

from another server claiming to be the leader. If the received term number is at least as large

as the candidate’s current term, then it surrenders as a follower. Split Votes: If no candidate

server receives majority of votes, then one of the servers will timeout for not receiving heartbeat

messages from any leader and start a new election. Raft uses randomized timeouts to ensure

Split Votes is a rare event. Raft enforces restrictions on elected leaders e.g., a server votes to

a candidate if its term is higher, and the candidate’s log is at least as up-to-date as its own;

otherwise the server rejects the vote request. Therefore, receiving a majority of votes means

that the new leader’s log contains all committed entries.

To ensure safe log commitment, Raft enforces restrictions on elected leaders to guarantee
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that all committed entries from previous terms are present on the new leader. During the election

process, the candidate must receive majority from the cluster. A server in the cluster will vote

to the candidate if the term is higher and the candidate’s log is at least as up-to-date as its own

log. Otherwise, the server rejects the vote request. Therefore, receiving a majority means that

the new leader log contains all committed entries.

5.2.2 P4 Overview

P4 [5] is a language to program data-plane behavior of network devices. It can be used to

support customized functionality, e.g., evolving OpenFlow standard [13], specific data-center

packet processing logic, etc. The P4 language composes an abstract forwarding model in which

a chain of tables are used for packet processing. The tables match pre-defined packet fields, and

perform a sequence of actions. Then P4 compiler takes charge of the abstract forwarding model

to a concrete implementation on a particular target platform, e.g., software switches, FPGAs,

etc.

There are five major components in a P4 program: 1) control blocks which specify a way

of composing tables; 2) tables which specify packet processing logic, a high-level behavior

representation about field matching and corresponding actions; 2) customized packet header

fields which are a collection of packet bytes; 3) packet header parser which describes a way

of transforming incoming packets to field matching instances; 4) actions which forward or

drop packets; modify fields; perform stateful memory operations; encapsulate or decapsulate

headers.

Beyond these five major components, P4 offers additional mechanism for performing state-

ful packet operations. Network-based Raft algorithm uses registers to keep track of Raft states

like logs and state machines. Registers provide persistent state which is organized as an array

of cells. We need to specify the size of each cell and the number of cells in the array, when

declaring a register for Raft state.

5.3 Raft Meets SDN

In distributed network OS such as ONOS and ODL, multiple controllers must maintain a con-

sistent global view of the network. This is achieved by employing a consensus protocol such as

Raft to ensure consistency among the replicated network states maintained by each controller.
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Figure 5.4: Motivating Examples.

The connectivity among these controllers can be provided either via a dedicated control net-

work (“out-of-band”) or via “in-band” (virtual) control network through the data plane under

their control [14,15,100,104]. In either case, we refer to the (dedicated or virtual) network con-

necting the controllers as the control network. We assume that it consists of OpenFlow switches

with flow rules installed by the same controller cluster to which it provides connectivity.

Figure 5.4(a) shows an SDN control cluster with three controllers in a full-meshed control

network with five OF switches. The controllers run Raft to ensure consistency among the repli-

cated (critical) network states they maintain. We will use a few toy (contrived) examples to

illustrate the new failure scenarios that may arise when applying Raft to a distributed SDN con-

trol cluster for consensus. In the following scenarios, we assume that initially R1 is the leader

(in red) and green indicates that the logs of a member (controller) is up-to-date. The current

term is T1 as seen by all members. Up links are black, while down link are red, and the cluster

is not partitioned.

Scenario 1: Oscillating Leaders. Figure 5.4(b) shows a Raft cluster, where the links (R1, R3),

(R1, R4), and (R2, R5) fail. Either R3 or R4 will time out for not receiving heartbeats. Assum-

ing R3 times out first, then it will increment its term number to T2, vote for itself, and request

votes from R2, R4, and R5. After getting the votes, R3 will be the leader, and the current term

vector becomes Term(R1=1,R2=2,R3=2,R4=2,R5=2). After that, R1 will step down af-

ter learning about the higher term T2 from R2 or R5 through heartbeat messages, and update

its term to T2. R1 and R3 cannot communicate, because the link (R1, R3) is down. R1 will

time out, and increase its term number. Thus, it can get R2 and R5 votes to become a leader for

term T3, force R3 to step down, and snatches the leadership, because its term number is larger

than T2. The term vector becomes Term(R1=3,R2=3,R3=2,R4=2,R5=3). Then, we are

back to the initial settings, and the whole scenario can be repeated.
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Assuming after R3 became the leader again for T4, it receives some requests and updates

the logs for all nodes except R1. Thus, when R1 tries to become the leader for T5, it will

not receive votes from R2 and R5, because their logs are more recent than R1’s log, and the

current term vector will be Term(R1=5,R2=5,R3=4,R4=4,R5=5). Thus, R3 will step

down. Currently, there is no leader, so whoever times out first can be the leader except R1. If

R3 or R4 times out first, what we just discussed will be repeated.

Assuming R2 times out first, increments its term to T6, and becomes a leader. In this case,

R5 will not receive heartbeats ((R2, R5) is down), and will try to become a leader. Thus, we

can notice the leadership will be oscillating between either (R2, R5) or (R1, R3, and R4). In the

worst case, the cluster can be dead, since clients sending requests to the current leader will be

redirected to the new leader. By the time they contact the new leader, it will change again.

Condition. Up-to-date nodes have a quorum, but they cannot communicate with each other.

Scenario 2: No Leader Exists. Figure 5.4(c) shows a Raft cluster, where the leader R1 suc-

cessfully updated the logs of R4 and R5, but failed to update the logs of R2 and R3 (in purple),

due to link failure, packet drop or network congestion. Assuming R2 times out first for not

receiving heartbeats, it will increase its term to T2, forcing R1 to step down. In this case, even

though R2 and R3 have a quorum (R2 connected to R1 and R3; R3 connected to R2, R4, and

R5), they will not be able to become a leader, because their logs are not up-to-date. R1, R4, and

R5 cannot be the leader also, because they do not have a quorum. Therefore, the cluster is not

live anymore, even though the underlying network is not partitioned.

Condition. Nodes have a quorum, but they have obsolete logs, and nodes having up-to-date

logs, do not have a quorum.

In summary, consensus distributed systems are designed agnostic from underlying network,

with the assumption of all-to-all communication between network entities, as long as the un-

derlying network is not partitioned. In SDN, these consensus systems are used to manage the

underlying network. Therefore, making progress depends on updating the OpenFlow rules,

which depends on the connectivity between servers (chicken and egg situation.) Hence, a novel

approach needs to be designed to solve this issue in SDN networks.
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5.4 System Design

5.4.1 Possible Solutions During Leader Election

In this section, we illustrate the solution requirements and discuss the limitations of some pos-

sible solutions. Then, we briefly introduce a prospective solution for this problem.

Solution Requirements. The problem with Raft, and distributed protocols in general, is the

assumption of all-to-all connectivity among cluster members as long as the network is not par-

titioned. In SDN, switches in the data plane forward traffic based on decisions made by the

control plane, which uses a consensus protocol like Raft to ensure the state is replicated cor-

rectly. Upon failures, controllers may lose connection to each other and to switches in the

network. Moreover, in SDN failures can be physical, i.e., physical link/node failures, or logi-

cal, e.g., two servers are physically connected, but there are no corresponding rules installed,

thus preventing them from communicating. Therefore, with unpredictable network failures, the

solution should be resilient against arbitrary link/node failures and ensure that controllers retain

reachability among them whenever the underlying network is physically connected.

Gossiping. One common distributed systems solution to restore connectivity is via gossiping.

Thus, to achieve connectivity, Raft can be extended to enable servers to gossip and forward

heartbeats through other servers to overcome the failures affecting their direct communication.

This solution may help avoid the scenarios mentioned in Section 5.3 by probabilistically for-

warding Raft messages (heartbeat, replicated logs, ... etc.) through some other servers, which

may have a path to the original message’s destination. If the number of these servers is large

enough, there is a high probability one of them is able to forward the message to its destination.

As long as followers receive these messages from the leader, the cluster can still be live, as they

will renew their heartbeatTime, and avoid starting a new election process.

However, the problem with such a solution is that it may work in some cases only, as

it depends on the underlying network connectivity and which servers are selected to forward

messages. Since it assumes uncorrelated link failures and might be affected by new link failures

and Raft timeouts, it is not guaranteed to work in all cases and scenarios. Alternatively, flooding

can be used instead to ensure message delivery. However, it may lead to network congestion,

which may not only increase packet delay and affect data plane flows, but create additional

packet losses/network failures. We believe that built-in resiliency in the (control network/data

plane) is essential for high-availability of SDN controllers. The control network (data plane)
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should not rely on the control plane to recover from failures, and should have pre-installed rules

in switches for automatic failure recoveries. Fortunately, this can be achieved via a new routing

paradigm proposed in [101], known as “routing via preorders”, which provides adaptive resilient

routing to ensure all-to-all communications among servers regardless of network failures, as

long as the underlying network is not partitioned. We briefly discuss it as a prospective solution

next.

Routing via Preorders. Considering a network G = (V,E) representing the control plane,

and a flow F from a source s to a destination d, where s, d are SDN control cluster servers.

A preorder is defined on a node set V ′ where s, d ∈ V ′, and V ′ ⊆ V . This preorder specifies

the relation between any two nodes u, v, where v → u means v is a child of u, and v ↔ u

means u, v are siblings. The result is a directed connected (sub)graph G′ = (V ′, E′), where

each edge in E′ (⊆ E) is oriented either uni-directional or bi-directional, and G′ is called a

preordered graph (PrOG in short.) At each node, packets can be forwarded to any of its parents

or siblings, (i.e., follow any directed path from s to d without enumerating all paths between

them.) Bi-directional links are only activated along one direction upon failures. Through its

construction, PrOG includes all possible paths between s, d. Therefore, it ensures controllers

retain connectivity, as long as the underlying graph is not partitioned, allowing Raft participants

to exchange data even if direct communication links are unavailable. PrOGs are constructed for

each source-destination pair, using a modified version of breadth-first search.

Upon failures, the affected parts of PrOG are deactivated, and traffic is routed along the

remaining part, where each node uses its alternative outgoing links if they exist. Upon link/node

recovery, relevant links are activated. The original PrOG is restored, when all links/nodes

recover. PrOG also provides an additional feature, where the constructed graph can have a

bounded threshold for the cost of the included paths from s to d (see [101] for more details.)

Thus, a threshold can be defined for normal operations, and a relaxed threshold to be used

upon failures. Therefore, Raft members can communicate within a predefined threshold even

when there are failures. PrOGs are then converted to OpenFlow rules pre-installed in switches.

Switches are provided with a small functionality required to maintain and update an internal

state. For example, each switch maintains the state of its outgoing links, whether they are active

or not, and sends activation/deactivation messages upon link recovery/failure.

Summary. “Routing via Preorders” uses local data plane operations to achieve resiliency un-

der arbitrary link/node failures, without any involvement from the control plane to recompute
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routes, since they are pre-computed and pre-installed. Thus, it avoids the cyclic dependency

between control network connectivity and management, where controllers need to setup rules

to recover from failures, but cannot reach switches because of failures. Therefore, it provides

all-to-all communications among cluster members for a stable Raft leadership and enables the

cluster to progress regardless of failures. Finally, it is a general solution as it does not require

any modifications to Raft, and can be used by other distributed protocols as well. The cor-

rectness and overheads of PrOG are discussed in [105]. We will expand its design for control

network resiliency in a future project.

5.4.2 Offloading Raft to P4 Switch

There are three key requirements for our network-assisted Raft. First, the correctness of Raft al-

gorithm should not suffer by offloading processing logic to the network. Second, the Raft logic

on a switch should be able to respond most requests directly for improved performance. Third,

the Raft logic on a switch should safely discard obsolete log entries and even state machine

for scalability. In the basic Raft consensus algorithm, there are three major elements: leader

election, log replication, and log commitment. In order to satisfy the above requirements, our

system consists of two major components: front-end implemented in a switch taking care of

log replication and log commitment, and back-end in a server having a complete Raft imple-

mentation1. Front-end enhances Raft in two aspects. First, it is able to perform Raft-aware

forwarding. Second, it can quickly respond to Raft requests by rewriting the incoming packets.

The job of back-end maintains complete states on the server for responding certain requests

(described in the following subsection) which might not be fulfilled by front-end. The unique

feature of our proposed solution is that we duplicate only the necessary logic to switches which

act as a cache to reduce consensus latency, and we minimize the storage of replicated log entries

and state machine in switches. The entire Raft algorithm is still running on the server machines.

This partial offloading architecture helps improve the performance of Raft without sacrificing

scalability.

Raft-aware P4 Switch. Front-end runs in a P4 switch which parses Raft requests and caches

Raft states using P4 primitive actions. Upon the reception of a request, front-end parses the

request and rewrites the packets to construct the corresponding response. It also forwards the
1leader election and log replication are duplicated at front-end and back-end to improve performance and scala-

bility.
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original packet to back-end for liveness check which is part of leader election. Normal response

would be generated from back-end and sent to the switch as well, but front-end does not need to

forward the message and only extracts necessary flow control information from it. For certain

request, front-end may not be able to generate response due to limited information available on

the switch, and such a request will be served normally by back-end. For example, when a new

server joins the cluster, it needs to fetch all logs which may not be available at front-end, and

then back-end would serve the request.

Now we discuss how front-end can forward certain Raft message without involving the

back-end. In Raft, the requests from a client can only be handled by the leader. In the bootstrap

phase, the client would randomly choose a server in the cluster to talk with. If the selected

server is not a leader, it would notify the client of the leader’s IP address if it knows. Then the

client can issue a new request to the leader. In our design, since front-end is aware of Raft,

front-end of the selected server can forward the request to the leader directly and reduce the

communication overhead.

In a practical system, especially when log replication and log commitment are implemented

in switches, the log and state machine of Raft cannot grow without a bound. To solve this prob-

lem, we adopt a similar but simpler approach as snapshot mechanism described in Raft [4]. In

our scenario, front-end just needs to discard obsolete information without storing it because

back-end always keeps all necessary information. However, the mechanism for discarding

state machine is different from discarding obsolete log entries because front-end needs to know

whether a requested item is already in swtich’s state machine or server’s. Thus, before discard-

ing state machine cached in a switch, it needs to maintain a dictionary for existing keys in the

system.

Handling Failures. We now discuss how to handle failures in this partial offloading architec-

ture. Because front-end records the gap between two consecutive Raft heartbeat, if the gap is

larger than a timeout value, front-end knows that back-end is down. Front-end will not discard

any log and state machine from now on and sync them after the failed back-end is recovered.

Communication failure between front-end and back-end is equivalent to a back-end failure.

If front-end fails, more specifically, the switch running front-end fails, back-end times out

and issues a RequestVote message which cannot reach others. Back-end then times out and

increases its term (defined as a representation of virtual time in Raft) indefinitely. Later on,

when the switch is recovered, it will retrieve previous state by forwarding requests to back-end
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and observing its response. At this point, back-end may have the largest term number, but may

not have up-to-date log. Thus, it would step down the existing leader, and propose a new round

of leader election.

5.5 Evaluation

5.5.1 Raft with Routing via PrOG

In this section, we compare the results of vanilla Raft and PrOG-assisted Raft to show that

PrOG resolves the issues presented in Section 5.3 and enables a more resilient and robust SDN

distributed control platform.

Experiment Setup. Standard Raft C++ implementation in LogCabin [102] is used in the ex-

periments. LogCabin is a distributed storage system which supports all major Raft features like

log replication, membership changes, etc.. The basic setting of our experiment is to create six

Docker containers [106] (Ubuntu 14.04) in which five containers serve together as a Raft clus-

ter, while the other one serves as a client which reads logs from the cluster or writes logs to the

cluster. Topology is setup as illustrated in Figure 5.4 and Open vSwitch [47] (OVS) instances

are used as software switches. Data written to the Raft cluster is replicated across all cluster

members (i.e., containers) by a Raft leader. We disable vote withhold [107] and simulate the

two failure scenarios described in Section 5.3.

Results. To demonstrate the effectiveness of PrOG, we present three types of results: 1) leader-

ship shifting diagram; 2) statistics of clients’ failed attempts when accessing cluster leader; and

3) statistics of cluster availability time. Leadership shifting diagram is a straight-forward way

of observing the states of Raft servers at each term before and after failure occurs. In Figure 5.5,

the x-axis shows the current term number, and the y-axis shows the raft server. Different colors

shows different states: leader (red), follower (green), and candidate (orange), e.g., Figure 5.5(a)

R1 starts as follower in term 1, then leader for term 2, then follower again for term 3, and so on.

Note that for leaders, we don’t show the transition to candidate, since it is implied by successful

transition to leader.

Figure 5.5(a) shows the results for Figure 5.4(b). It shows the leadership keeps oscillating

and is not stable. In our experiments, we noticed that this blocks the client from being able to

read or write to the storage for a large number of trials (detailed later.) Figure 5.5(b) shows

the results for Figure 5.4(c), in which no viable leader exists, since servers cannot directly
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Figure 5.5: Results for simulating the motivation examples using vanilla Raft and PrOG-
assisted Raft.
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Figure 5.6: Vanilla Raft vs. PrOG-assisted Raft.

communicate with each other, therefore the client cannot read or write to the storage anymore.

Figure 5.5(c) shows that our extension resolves the issues in Figure 5.5(a), because servers can

indirectly communicate with each other through other servers, therefore the client can read from

and write to the storage quickly. The system is stable from term 2.

When a client performs read/write operations on a Raft cluster, it will randomly select one

server in the cluster. If the selected server is not the current leader, it replies with the current

leader’s IP. However, if there is no leader at the moment, no suggestion is returned, and the

client will randomly select a server again. The client issues 100 read/write requests with 1-

second interval under the failure scenario in Figure 5.4(b) for each round of experiments. Then,

we count the number of failed attempts before the client successfully reaches the current cluster

leader as shown in Figure 5.6(a). Moreover, we measure the latency of each read/write request

as shown in Figure 5.6(b). The results demonstrate that PrOG-assisted Raft is more robust to

network failures. In terms of why most durations in Vanilla Raft are close to N × 105µs (N

is positive integer), it is because the client is set by default in LogCabin to wait 105µs before

trying another server’s IP.
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We also carefully analyzed the log of the five Raft servers to sum up availability time of the

whole Raft system under the oscillating leadership scenario. The availability time in our exper-

iments is defined as the total time period in which a leader is available, because the distributed

system can only serve clients when a leader exists. We perform five rounds of three-minute

experiments, and calculate system availability time. The average availability time is 75.67s

(42.04% out of 180s), and 248 times of leadership shifting happen, even though the network is

not partitioned.

5.5.2 Raft-aware P4 Switch
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Figure 5.7: Experimental Setup

In this section, we present the preliminary experimental results to demonstrate the feasibility

and efficiency of our HydraNF. We show the experimental setup in Figure 5.7, which consists of

four Docker containers and P4 switches (simulated by p4factory [108]). We run LogCabin [102]

in three containers (leader in red; followers in green) and run three Raft-aware P4 switches (in

blue), serving together as a Raft cluster. The box in grey acts as a client, and the P4 switch in

yellow performs regular forwarding. We instrument LogCabin to measure the interval of RPC

calls and run tcpdump on the NICs in pink to record timestamp.

Table 5.1: Decomposed Latency between Raft Leader and a Follower.
a: RPC latency at leader side + bidirectional latency between S1 and P4 1; b: bidirectional
latency in P4 1; c: bidirectional latency between P4 1 and P4 2; d: bidirectional latency in
P4 2; e: bidirectional latency between P4 2 and S2 + latency at Raft follower

a b c d e sum
Heartbeat (Vanilla) 106 233 6 231 94 670
Heartbeat (ours) 110 244 4 243 n/a 601
Write (Vanilla) 779 243 8 251 1206 2487
Write (ours) n/a 479 7 451 n/a 937

We measure the latency (in µs) between a Raft leader and a follower for heartbeat message

and client’s write request, as shown in Table 5.1. The latency is decomposed into fine-grained
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segments. We can observe latency benefits for both heartbeat and write request. Moreover,

the proof-of-concept does not add significant memory usage compared to the one performing

regular forwarding. Note that the current P4 switch is running as a simulator, we expect better

performance when running front-end on a real hardware P4 switch.

5.6 Related Work

SDN availability. SDN controllers may take advantage of established techniques from the dis-

tributed systems literature. For example, a control cluster with multiple controllers could use a

distributed storage system for durable state replication. Distributed SDN controller designs rely

on consensus algorithm, such as Paxos used by ONIX [104] and Raft used by ONOS [14], and

even stronger consistency guarantees are required by Ravana [109]. LegoSDN [110] focuses on

controller crash failures caused by software bugs. Statesman [111] demonstrates incrementally

mitigating up-to-date state to switch with obsolete state when a control master fails. Liron et

al. [112] propose a model for designing distributed control plane, which maintains connectivity

between a distributed control plane and the data plane. In contrast, we study the availability

issues in consensus algorithm, and propose PrOG to enhance Raft. We assume that Network

OS employs consensus algorithms, such as Raft, to maintain the correctness of control logic

managing the network, and enhaces it with a “self-healing” resilient control network.

Robust message exchange. Robust message exchange in SDN is fundamental for controller

availability. Webb et al. [113] propose a way of deploying tightly-coupled distributed system in

wide area in a scalable way. It preserves efficient pairwise communication through an overlay

network with gossip-based communication protocol. Schiff et al. [114] propose a synchro-

nization framework for control planes based on atomic transactions, implemented in-band, on

the data-plane switches. Akella et al. [115] tackle the problem of in-band network availability

and synthesize various distributed system ideas like flooding, global snapshots, etc. Hyper-

Flow [116] utilizes publish-subscribe messaging paradigm among controller instances to repli-

cate network events, and local state is built solely by controller application based on subscribed

event. Muqaddas et al. [117] quantify the traffic exchanged amongst controllers running Raft

and summarize that the inter-controller traffic scales with the network size. PrOG provides a

general robust and resilient message exchange mechanisms for both in-band and out-of-band

control channels.
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5.7 Summary

SDN controllers use distributed consensus protocols, like Raft, to manage the network state

and provide a highly available cluster to the underlying networking elements. Therefore, SDN

controller liveness depends on all-to-all message delivery between cluster servers. In this chap-

ter, we use Raft to illustrate the problems which may be induced by this inter-dependency in

the design of distributed SDN controllers. We discuss possible solutions to circumvent these

issues. Also, by leveraging programmable devices, we propose to partially offload certain Raft

functionality to P4 switches for improving latency, while not sacrificing scalability. Our eval-

uation results show the effectiveness of PrOG and Raft-aware P4 switches in improving the

availability of leadership in Raft used by critical applications like SDN controller clusters.



Chapter 6

Parallelizing Network Functions For
Accelerating Service Function Chains

6.1 Main Results

We present HydraNF, a parallelism mechanism to accelerate SFCs spanning multiple servers.

Instead of parallelizing NFs as much as possible (e.g., [1, 2]), HydraNF employs a controller

that converts a sequential chain into a hybrid chain 1 and parallelizes packet processing only if

it is beneficial. Additionally, the controller adopts traffic level parallelism to distribute traffic

in an optimized way to satisfy service level objectives (SLOs) of target traffic. The controller

programs both software and hardware switches to activate parallelism across NFs spanning

multiple physical servers. HydraNF employs a customized data plane to support hybrid chains

without modifying the implementation of existing NFs. Based on the instructions from the con-

troller, HydraNF data plane mirrors packets to parallelized NFs and then merges their outputs

to ensure correctness – i.e., traffic and NF states changed by a hybrid chain must be identi-

cal to what would have been produced by the original sequential SFC. We make the following

contributions:

•We identify the motivations and challenges in SFC parallelism (§ 6.2), and design HydraNF,

a mechanism to support SFC parallelism across multi-core servers (§ 6.3).

• We present HydraNF controller (§ 6.4) to enable both NF level and traffic level parallelism,
1A hybrid chain consists of both parallel segments (with NFs processing packets in parallel) and sequential

segments (with NFs processing packets sequentially).

73
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which effectively converts sequential SFCs into hybrid ones, and calculates optimized paths

over multiple servers for traffic steering. In addition, we present key building blocks in HydraNF

data plane, and explore the placement choices for a high-performance data plane (§ 6.5).

• To demonstrate the effectiveness of HydraNF (§ 6.6), we implement a prototype and evaluate

it via both synthetic SFCs generated by simulation, and practical SFCs constructed by off-the-

shelf open-source and production-grade NFs.

6.2 Challenges in Parallelizing VNFs

In this section, we present a few examples that highlight the motivations in designing a system

for accelerating SFC with parallelism. We also articulate some of the key challenges and issues

in exploiting SFC parallelism.

NF Order Dependence, State Poisoning, and Function-Level Parallelism. The basic

premise of SFC function-level parallelism is that given a pair of NFs, if the operations of two

NFs applying to the same traffic stream do not conflict, then they can be executed in parallel. For

example, if both NFs simply perform read operations, they can be parallelized. If one performs

a read operation and another performs a write operation, they can be parallelized if and only

if they do not operate on the same header field. Likewise, if both perform write operations

(including inserting/removing headers/bits in the packet), they cannot be executed in parallel

if the data portions (header or payload) they modify potentially overlap. Given such NF order

independence, a sequential SFC can be converted to a hybrid one with both sequential and

parallel NF segments.

However, order dependency is necessary but not sufficient in determining whether it is safe

to parallelize an SFC, one must also take into account the states maintained by NFs. Otherwise

this may lead to state poisoning. In Figure 6.1, consider a simple SFC consisting of a L4 (layer-

4) FW (which does not modify packet headers, but may drop packets from certain sources)

followed by a dynamic NAT (which re-writes the public destination IP address carried in a

packet to the next available private IP address in a pool). Since L4 FW only reads packet

headers while NAT (re-)writes destination IP address header, based on NF order dependency
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alone, these two NFs can be executed in parallel2. In the case of a static NAT3, it is indeed safe

to parallelize the sequential FW→ NAT SFC by executing the two vNFs in parallel. However,

in the case of a dynamic NAT, the operation of NAT on a new flow alters its internal state – the

availability of private IP addresses is reduced by one. This can potentially lead to exhaustion

of available IP addresses – thus state poisoning – when in fact some of these addresses are not

being used.

Reducing Function-level Parallelism Overhead with SFC latency constraints. If NFs

are executed in a sequential way, traffic SLOs may break due to accumulated NF processing

delays. Thus, function-level parallelism is adopted to satisfy latency constraints. However, par-

allelizing NFs as much as possible may not gain benefits, instead wasting available resources.

For example, in Figure 6.2, after dependency analysis [1, 2], network monitoring (NM), in-

trusion detection system (IDS), and VPN gateway could be executed in parallel. Since the

processing delays of these NFs are different, the overall processing delay is determined by the

longest NF processing delays plus parallelism overhead. In the bottom part of Figure 6.2, the

overall processing delay is similar to the upper part of the figure, but it only uses fewer CPU

cores, and fewer packet mirror and merge operations. Thus, when a sequential SFC is converted
2In order to deal with the issue that FW may drop/block certain packets/flows, ParaBox [1] uses a timeout

mechanism in the merge function whereas NFP [2] generates a “nil” packet to signal the merge function to drop the
packet already processed by the NAT.

3A static NAT employs a fixed mapping, e.g., a hash function, to translate the public destination IP address to a
private one.



76

into a hybrid SFC, how to reduce parallelism overhead needs to be considered.

Traffic Distribution across Multi-core Servers. In a cluster of multi-core servers, there

are many factors to consider when deciding whether and how to parallelize an SFC. For exam-

ple, it might be beneficial to execute an SFC entirely within a single server, or even within a

CPU core – run-to-completion [118,119] to avoid network latency or core switching overheads.

Alternatively, one might want to distribute the vNFs across multiple servers and execute them in

parallel, or replicate some heavily loaded vNFs to execute them in parallel on multiple servers.

Which options are best in terms of the SFC processing latency and overall system throughput

will depend on individual vNF performance, traffic volumes, server capabilities, switch capabil-

ities, and network bandwidth. Moreover, real-world operational constraints of vNF placement

(e.g., security concerns requiring some third-party vNFs be placed on certain servers running as

VMs) further limit the options of SFC parallelism. After NF provisioning, given multiple SFCs

as exemplified in Figure 6.3, how to distribute traffic in an optimized way by taking parallelism

into consideration is also challenging.

All in all, when developing mechanisms for accelerating SFC processing in a multi-server

environment, we must not only explore opportunities and constraints in parallelizing SFC pro-

cessing along both the (network) function and the traffic-levels, but also need to co-design the

rules needed (in hardware and software switches) for traffic distribution to appropriately steer

and load balance traffic among multiple servers while minimizing the network latency. Hy-

draNF is designed to address these challenges while exploring the opportunities afforded by

operating NFV in multi-core, multi-server environment to accelerate SFC processing for the

high scalability, availability and performance.

6.3 HydraNF Overview

In this section, we present the system architecture and introduce the key components of Hy-

draNF.

Realizing parallel packet processing is by no means straightforward. First, HydraNF must

guarantee the correctness of the generated chain by carefully analyzing the order dependency of

NFs in a chain. The dependency relies not only on the semantics of NFs, but also their config-

urations and operational rules. Second, HydraNF needs to automatically program both virtual
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switches in servers and hardware switches connecting the servers by creating appropriate data-

plane forwarding rules to perform parallel packet processing across multiple servers. Third, the

data plane functions of HydraNF to support SFC parallelism should be lightweight, avoiding

adding too much processing overhead. Finally, to enable incremental deployment, HydraNF

should not require modifications to existing NFs.

We schematically depict the overall system architecture of HydraNF in Figure 6.4. HydraNF

consists of a HydraNF Controller (HRC) and a HydraNF Data Plane (HDP) running on a

cluster of multi-core servers equipped with DPDK. These servers are connected via an SDN

network. The primary role of the HRC is two-fold. First, based on dependency analysis, HRC

constructs a service processing graph (SPG) from each sequential SFC. SPG is defined as a

hybrid SFC with optimized processing latency and optimized parallelism overhead (number of

mirror and merge operations). Second, based on the knowledge about vNF performance profiles

and placement constraints as well as information about server and network resources, HRC

provisions an SPG to servers and cores to satisfy SLOs of target traffic load. The HydraNF data

plane engine consists of two key building blocks, a mirror module which duplicates packets for

parallel processing and merge module which combines and processes duplicated packets after

parallel processing. Its primary role is to enforce SFC parallelized and distributed processing

based on the forwarding and processing rules installed by HRC.
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6.4 HydraNF Controller

In this section we present HRC design as shown in Figure 6.5. It comprises two key modules:

SPG construction and SPG provisioning. We first illustrate how an SPG is constructed from

a sequential SFC along with each NF Profile to enable NF-level parallelism which accelerates

SFC processing with minimized overhead. After SPGs are generated, we demonstrate how

each SPG is provisioned into physical machines with various constraints to support traffic-level

parallelism. Finally, the output of HRC is software and hardware switch rules.

SPG 
Provisioning

Software & 
Hardware 

Switch Rules

SPG 
Construction

SFC Profile

Network 
Profile

NF Profile

HydraNF 

Controller

Server 
Profile

Target Traffic 
Profile

Figure 6.5: HydraNF Controller Design.

6.4.1 SPG Construction

NF-level parallelism is to parallelize packet processing in multiple NFs so that overall process-

ing latency can be minimized. In order to enable NF-level parallelism, we construct SPG based

on dependency between any two NFs. After NF dependency is analyzed, a dependency graph

can be generated from NF profiles as exemplified in the upper part of Figure 6.6. Next, we

present how an SPG is constructed.

Problem Description. SPG construction can be expressed as the following problem:

• Input: a finite collection of NFs; processing delay of each NF; dependency between any two

NFs 4.

• Goal: constructing an SPG with two objectives: 1) minimized overall latency (high priority);

2) minimized parallelism overhead (low priority).

Overall latency is defined as the packet delay caused by SFC processing. When we enable

NF-level parallelism, packets needs to be mirrored and merged so that NFs can process the
4We assume that dependency between any two NFs is given, because both Parabox [1] and NFP [2] have de-

scribed methods to obtain NF dependency.
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same packet in parallel. Thus, parallelism overhead is defined as the number of mirror and

merge operations. Given SPGs with the same overall latency, we prefer an SPG with lowest

parallelism overhead as mentioned in § 6.2.

Analysis. The key observation of our analysis is that the problem can be converted to a

Bin Packing problem with bin size as critical path in a NF dependency graph. Intuitively, if

the processing delays of two parallizable NFs do not exceed the processing delay of the critical

path, there is no benefit to parallelize these two NFs. The critical path is defined as a chain with

longest processing delay in dependency graph (e.g., 1,7,5,8,10 in Figure 6.6)

Proposition 1. Let ϕ(g) be the processing delay of critical path in dependency graph g.

The processing delay of g is bound by ϕ(g) without taking mirror and merge overhead into

consideration.

Hence, in order to construct an SPG satisfying two objectives with different priorities, we

divide this task into two steps. The first is to identify the minimied overall latency which is

determined by the processing delay of a critical path. Then we try to eliminate unnecessary

parallelism.

Step 1: finding a critical path. We first apply forward and backward pass algorithm to find

the critical path [120] in a dependency graph. It identifies the earliest start and finish times, and

the latest start and finish times for packets going through each NF. In Figure 6.6, path in yellow

is critical path. An SPG with NF processing latency as large as critical path satisfies the first

objective in problem description.

Step 2: eliminating unnecessary parallelism. Demonstrating critical path alone in the de-

pendency graph is insufficient, because we have the second objective to achieve, minimizing

pallelism overhead.

Proposition 2. The SPG construction problem is strongly NF-complete.

Proof. This is proved by establishing a polynomial-time reduction from the Bin Packing

problem, known to be strongly NP-complete [121], which is defined below:

Given a set of bins S1, S2, ... with the same size V and a list of n times with sizes a1, ..., an
to pack. Find an integer number of bins B and a B − partition S1 ∪ ...∪ SB of the set 1, ..., n

such that
∑

i∈Sk
ai ≤ V for all k = 1, ..., B.

Lemma 1. The SPG construction problem with γi,j = 0 and the Bin Packing problem are

equivalent (note that γi,j = 0 implies that there is no dependency between NF i and NF j).

Proof. Given any instance of the Bin Packing problem, we construct a specific instance
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of the SPG construction problem as follows. We create a separate object for each NF, N =

1, 2, ..., |S|. Certain NFs are shared across multiple chains, we create multiple objects, e.g.,

node 5 in Figure 6.6. The sizes of the objects match processing delays of NFs. The bin size

matches critical path in dependency graph. If there exists an SPG, the latency of which is bound

by the critical path, and the number of mirror and merge operations (number of chains - 1)

is minimized, then there will also be an n-way partition ρ of objects such that
∑

i∈Sk
ai ≤

V for all k = 1, ..., B. The objects in each bin will correspond to NFs in each chain. The

number of chains in SPG will be equal to the number of bins. Hence, a solution to the SPG

construction problem yields a solution to the Bin Packing problem. It is known that it is NP-

hard to approximate the Bin Packing problem to any factor better than 1.7 [122]. Therefore,

Lemma 1 indicates that the same statement holds for the SPG construction problem, i.e., the

SPG construction is at least as hard as the Bin Packing problem, which is strongly NP-complete.
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Figure 6.6: An example of SPG construction.

Problem Formulation. An SFC consists of N NFs. NF i (1 ≤ i ≤ N ) has a processing

delay Di. zk indicates whether bin k is used for packing or not. We use B to denote the

processing delay bound of the SFC. The SFC can be divided into M chains (e.g., 1,2,4,6,9 in

Figure 6.6) based on their dependency. If NF i (1 ≤ i ≤ N ) is on chain j (1 ≤ j ≤ M ), we

have aij = 1; otherwise aij = 0. If chain j (1 ≤ j ≤ M ) is in bin k (1 ≤ k ≤ N ), we have

yjk = 1; otherwise yjk = 0. If NF i (1 ≤ i ≤ N ) is in bin k (1 ≤ k ≤ N ), we have xik = 1;

otherwise xik = 0. Our problem can be formulated as follows:
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min
x,y,z

N∑
k=1

zk (6.1)

s.t.
N∑
k=1

yjk = 1, ∀j, (6.2)

zk ≥ xik, ∀i, k, (6.3)
N∑
i=1

(Di ∗ xik) ≤ zk ∗B, ∀k, (6.4)

xik ≥ aij ∗ y
j
k, ∀i, j, k, (6.5)

xik, y
j
k, zk ∈ {0, 1}, ∀i, j, k. (6.6)

Eq. (6.1) minimizes the number of bins. Eq. (6.2) assigns each chain to exactly one bin.

Eq. (6.3) ensures that an bin is used as soon as it contains one chain. Conversely, thanks to

the objective function, every used bin contains at least one chain. From Eq. (6.4), an SPG’s

processing time is limited by the bound B. Eq. (6.5) guarantees that, when a chain belongs

to an bin, this bin includes all its NFs. Eq. (6.6) indicates the integrality constraints of the

variables.

Heuristic Algorithms. Optimal solutions of the above problem could be achieved by ex-

isting integer program solvers. However, it may take a quite long time to calculate an optimal

solution if input SFCs are complex. Inspired by Pagination problem [123], a variation of Bin

Packing problem supporting overlapping items, we take each chain (e.g., 1,2,4,6,9 in Figure 6.6)

in dependency graph, instead of each NF, as an basic unit to pack into bins. Certain NFs are

duplicated in multiple chains, and thus we take these NFs as overlapping items in the Pagination

problem.

We implement 3 heuristics to construct SPG.

• First Fit. The algorithm rescans sequentially each bin already created, and put the new chain

into the first bin where it fits.

• Overload-and-remove. The algorithm adds a chain c to the bin b on which c has maximum

overlapping size with existing cb in b, even if this addition actually overloads b. If overloading,

the algorithm tries to unload b by removing chain(s) c′ which has minimal overlapping size in

b. The removed chains c′ are rescheduled by putting them to the end of a FIFO queue, and
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forbidden to reenter to the same bin b.

• Genetic. The algorithm runs with the cost function to reduce the number of distinct NFs in the

last nonempty bin, and penalize invalid bin packing (i.e., exceeding bin size). During mutation,

the algorithm transfers one randomly selected chain from one bin to another. The crossover

process applies standard two-point crossover without requiring any repair process.

After bin number and chains in each bin are calculated, we finally merge chains in the

same bin (serializing parallelizable NFs), and stitch merged chains in multiple bins together to

construct an SPG. For example, in Figure 6.6, chains except the critical path can be packed into

one bin, the size of which is 150. Then the chains in each bin will be merged into one chain,

i.e., 1,2,3,4,5,6,9,10. After that, two chains (the merged chain and the chain on critical path) are

stitched together as a constructed SPG as shown in the bottom part of Figure 6.6.

6.4.2 SPG Provisioning

Given an SPG, HRC takes the performance profiles of each vNF, profiles of servers and network

resource, and constraints (e.g., vNF placement policy considerations) to decide on SPG provi-

sioning, weighing various options by considering their performance benefits and service level

objectives/agreements. These options include a) executing the SPG within a single server using

one core or multiple cores, b) parallelizing and executing the SPG within a single server using

multiple cores, c) distributing and striding the SPG processing across multiple servers, but ex-

ecuting each SFC sequentially; d) distributing and executing SPG processing in parallel across

multiple servers. For each of these options, one can further explore traffic-level parallelism (if

available) by running multiple instances of the same SPG.

Due to inter-core communication, switching overheads, and network latency, the best option

in terms of SFC processing latency and overall system throughput will hinge on specific vNFs

involved, the current server and network resource availability, traffic load and NF placement

constraints. Furthermore, and perhaps more importantly, in real-world operational scenarios,

there are often multiple concurrent SFCs with vNFs placed on certain servers. When mapping

SPG to the physical system substrate, we must also account for these scenarios. For this reason,

we conduct SPG mapping to jointly decide vNF placement and traffic distribution based on vNF

placement policy constraints, server resource availability, and existing placement of vNFs. The

vNF placement decides the number of instances of NFs and the location of instances in servers,

while the traffic distribution decide whether certain vNFs (either residing on the same server or
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different servers) should be executed in parallel (on different cores within the same server or on

different servers).

Problem Statement. Given a set of servers S and an SFC that consists of a set of NFsNF ,

we should place each NF ∈ NF into a server ∈ S by deciding N , the number of instances of

the NF, andX , the placement ofN instances of the NF into S, andR, the traffic rate distribution

among instances of NFs. We use D to denote the set of transmission delay among servers. Our

objective is to minimize the SFC’s overall transmission overhead TO. The TO between servers

equals r×d, where r denotes the traffic rate between two servers and d denotes the transmission

delay between the two servers. The overall TO equals the total TO between any two servers.

That is

TOSPG =
∑
r∈R

∑
d∈D

(r × d).

Problem Formulation. The profile of an SFC is its target throughput requirement TSFC .

The profile of NF i ∈ NF consists of three parts: processing rate pri, CPU requirement cpui,

and memory requirement memi. To meet the throughput requirement of the SFC, each NF has

to be realized by Ni instances, where

Ni = bTSFC

pri
c, ∀i ∈ NF .

If i and i′ (i, i′ ∈ NF , i 6= i′) have dependency, αi,i′ = 1; otherwise αi,i′ = 0. The traffic rate

from instance j ∈ Ii of NF i to instance j′ ∈ Ii′ of NF i′ is yi,j,i′,j′ .

The profile of a server ∈ S consists of two parts: CPU resource CPU and memory MEM .

The transmission delay between servers sk and k∗ (sk, k∗ ∈ S, k 6= k∗) is dk,k
∗
. The two

instances in the same server do not have the transmission delay. That is dk,k = 0. If server sk
is used, we have zk = 1; otherwise zk = 0. If instance j of NF i is placed in server sk, we have

xki,j = 0; otherwise, we have xki,j = 1.
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Our problem can be formulated as follows:

min
x,y,z

∑
k∈S

∑
k∗∈S

∑
i∈NF

∑
i′∈NF

∑
j∈Ii

∑
j′∈Ii′

(zk ∗ zk∗ (6.7)

∗ dk,k∗ ∗ yi,j,i′,j′ ∗ (xki,j + xk
∗

i′,j′))

s.t. Ni − 1 =
∑
k∈S

∑
j∈Ii

xki,j ∗ (1− zk), ∀i, (6.8)

CPU ≥
∑
i∈NF

∑
j∈Ii

[(1− xki,j) ∗ zk ∗ cpui], ∀k, (6.9)

MEM ≥
∑
i∈NF

∑
j∈Ii

[(1− xki,j) ∗ zk ∗memi], ∀k, (6.10)

αi,i′ ∗ TSFC =
∑
j∈Ii

∑
j∈Ii′

ri,j,i′,j′ , ∀i, i′, (6.11)

xki,j , z
k ∈ {0, 1}, pri ≥ yi,j,i′,j′ ≥ 0, (6.12)

∀k, k∗ ∈ S, i, i′ ∈ NF , j ∈ Ii, j′ ∈ Ii′ .

Eq. (6.7) minimizes the TO of the SFC. Eq. (6.8) assigns each instance of an NF to exactly one

server. Eq. (6.9) ensures that the CPU consumption of a server does not exceed its bound. Eq.

(6.10) guarantees that the memory consumption of a server does not exceed its bound. From

Eq. (6.11), if two NFs are dependent, the traffic between the instances of two NFs should equal

to TSFC . Eq. (6.12) indicates the integer constraints of the variables.

Heuristic Algorithm. The above problem is a nonlinear integer problem with a high com-

putation complexity. To provide the high quality service, we need to place the SPG quickly.

Therefore, we need a heuristic algorithm to efficiently solve the problem. The basic idea of

our algorithm is to greedily minimize the transmission rate and transmission delay iteratively.

Recall the goal of the above problem is to minimize the multiple of transmission rate and trans-

mission delay, and the instances in the same server do not have transmission delay. Thus, our

algorithm finds the NF instances with the high transmission rate and place them into the server

with the highest CPU and memory resource among the rest of servers. This procedure iteratively

process until all instances are placed into servers.

Forwarding Rule Generation. Once the traffic distribution algorithm determines the paths

for traffic steering, forwarding (including packet duplication) rules for both software and hard-

ware switches are generated as part of the output. HRC configures hardware switches through
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an SDN controller (i.e., Ryu [124]). HydraNF does not rely on a specific SDN technology, such

as OpenFlow, and can operate on top of any programmable switches [125] with their corre-

sponding controllers. For software switches on servers, an agent in HydraNF data plane engine

is responsible for communicating with HRC and installing rules. This agent also reports the

runtime state of HydraNF data plane and system load information to HRC which will be used

for auto-scaling and other control & management plane operations.

6.5 HydraNF Data Plane

We present the data-plane design of HydraNF, focusing on the mirror and merge modules and

their placement.

6.5.1 Mirror and Merge Modules

We show the main building blocks and data structures of the HydraNF data plane in Figure 6.7.

The data-plane execution engine enforces SFC parallelism based on the forwarding and pro-

cessing rules installed by HRC. We first present the design of data plane within a single server

as an extension of software switches. We then present the multiple server case in § 6.5.2. Before

presenting the details of the mirror and merge modules, we first describe the structure of two

tables, Flow Steering table and Packet State table, that these modules operate on.

The Flow Steering table contains information for packet processing of SFC segments con-

sisting of NFs residing within a given server. Each entry represents an SFC segment, e.g.,

{A,{B,C}}, along with the corresponding NF operations denoted as OPS, and FID which shows

the flow to which the SFC segment applies. HRC installs these entries in the software switch.

The mirroring module uses the Flow Steering entries to steer packets among NFs, duplicating

them if needed. For an example SFC segment {A,{B,C}}, mirroring module would duplicate

packets processed by A, sending them to both B and C for parallel processing.

The Packet State table is primarily used by the merge module and contains four fields: 1)

PID (packet ID, identification field in IP header), 2) PKTR (reference pointer to the memory

address of the original packet), 3) BUF (packet buffer for saving the intermediate results), and

4) CNT (counter array for parallel SFC segments). The unique PID keeps track of duplicate

packets that are processed by parallelizable NFs. The CNT records the number of NFs in each

segment of a local hybrid SFC. For instance, CNT for {A, {B, C}} is {1, 2}. The count
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decrements by one after a packet goes through an NF in the segment. HydraNF performs the

merge operation when the count reaches zero.
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Figure 6.7: Building blocks and data structures of HydraNF data plane.

In the merge operation, we treat a data packet as a sequence of bits, namely a {0|1}∗ string.

If an NF in a parallel segment adds L extra bits into packets, we insert a string of L zeros at

the corresponding location in the outputs from other NFs before the merge. In a similar vein,

if an NF removes L bits from packets, we delete the same bits from the outputs of other NFs.

Moreover, if packets are dropped, a no-op packet with corresponding configured information is

sent back to merge module.
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Figure 6.8: Various placements of the mirror and merge modules for the multi-server scenario.
In the first step, the mirror module receives the packets. It then duplicates them to two NFs in
the second step. In the third step, the NFs send back the packets to the merge module which
generates the final output.

Assume PO is the original packet and there are two NFs A and B in the chain. Assume that
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PA and PB are their respective outputs. The packet output after passing two network functions

will be PO⊕PA⊕PB . Note that correctness is guaranteed as parallelizable NFs do not modify

the same portion of a packet. Finally, we recalculate the checksum before steering/mirroring the

packet to the next NF(s) – either residing within the same server or different servers. In order

to avoid merge function to be bottleneck, multi-queue NIC with 5-tuple based load balance is

enabled.

6.5.2 Placement of Mirror and Merge

When parallelizing packet processing for NFs spanning multiple machines, a natural question

is where to place the mirror and merge functions. For SFC parallelism within a server, the

mirror and merge functions are placed with software switches, as in ParaBox [1], or the merge

function can run as a dedicated container in NFP [2]. However, when considering an SFC

spanning multiple servers, if we naively place mirror and merge modules on one of the servers,

we may not only waste bandwidth, but also potentially increase the SFC latency.

For example, consider an SFC: NAT → FW → IPS → WANX, and suppose we can par-

allelize the packet processing for NAT, FW and IPS, but not the WANX. Further, assume that

NAT and FW are placed on server 1, while IPS and WANX are on server 2. If we place the mir-

ror and merge functions on server 1, the mirror function will have to duplicate packets to IPS

on server 2. After IPS examines the packets, it will have to send them back to server 1 for the

merge, and then back to server 2 again for the last-hop WANX processing. As a result, placing

the mirror and merge functions on server 1 ends up increasing latency instead of reducing it.

Instead if we place mirror and merge intelligently, i.e., mirror on server 1 and merge on server

2 then we can reduce the extra traversal of packets caused by placing both mirror and merge on

same server.

Hence, when parallelizing SFC processing across multiple servers (with NF placement con-

straints), the location of the mirror and merge functions is crucial. Using two parallel NFs

placed on two servers as an example, Figure 6.8 illustrates several design choices for the place-

ment. (a) mirror and merge in software switches (on servers) only: This placement strategy can,

to certain extent, avoid sending packets back-and-forth between the two servers, but there will

still be two outgoing flows for server 1 and two incoming flows for server 2 (in contrast, pro-

cessing two NFs sequentially generates only one incoming and outgoing flow for each server).

(b) mirror on hardware switches and merge on software switches: This placement can reduce
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the number of outgoing flows for server 1 from two to one; it still cannot improve the situations

for server 2. This design choice is what is currently implemented in HydraNF. (c) both mirror

and merge on hardware switches: This is the ideal case which achieves the same bandwidth

utilization as the sequential chain.

Although it is feasible to place the mirror function on hardware switches, it is more chal-

lenging to design and implement the merge function even on programmable hardware switches.

The reason is that the merge function requires relatively complex operations (e.g., xor) and

needs extra memory to store the intermediate results.

6.6 Evaluation

In this section, we evaluate HydraNF through a prototype implementation, and conduct experi-

ments for the following scenarios to demonstrate its efficacy and benefits.

•We first evaluate the SPG construction algorithms using both synthetic and practical SFCs to

show their correctness and benefits.

• In realistic chains, we demonstrate HydraNF indeed reduces SFC latency in various setups

(Figure 6.12).

•HydraNF improves packet processing performance in multi-server scenarios (Figures 6.13, 6.14,

and 6.15).

• The overhead introduced by HydraNF is manageable (Figures 6.16, 6.17, and 6.18).

Experimental Setup. The experimental setup is shown in Figure 6.9. HydraNF prototype

uses an Openflow-enabled switch with 48 10Gbps ports. We connect a cluster of six servers to

the switch, four of which are equipped with two 10Gbps links, and the other two are equipped

with four 10Gbps links. Each server uses an Intel(R) Xeon(R) CPU E5-2620 with 6 cores, for

a total of 36 cores. On each server, one core is dedicated to HydraNF data plane. The HydraNF

controller runs on a standalone machine that connects to each server and to the management

port of the switch on a separate 1Gbps control network. Pktgen-dpdk [126] is used as the traffic

generator to generate 64B Ethernet packets.

We choose the Berkeley Extensible Software Switch (BESS) [127] mainly due to its high

performance and programmability. To optimize the bandwidth utilization for the multi-server

scenario, we have offloaded the mirror module inside an OpenFlow switch. Due to the more

complex operations in the merge module, it is challenging to implement it using OpenFlow
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Figure 6.9: Experiment Setup

switches. As ongoing work, we are exploring the feasibility of offloading the merge module to

P4 [128] switches.
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Regarding the control plane, we have implemented HRC in Python using the Flask frame-

work [129]. We store the table information as discussed in § 6.4 using pickleDB [130] which

is a light-weight key-value store. HRC communicates with the OpenFlow controller Ryu [124]

through its RESTful APIs. The local daemon implemented on each server also uses Flask

framework.

NFs Used in Experiments. Each NF is running in either a Docker container or a KVM-

based VM. We dedicate a CPU core to each container or VM. We use seven types of NFs: Layer

2 forwarder (L2FWD), NAT, FW, IDS, Monitor, Load Balancer, and VPN gateway. L2FWD
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is used for NF benchmarking. For NAT and FW running in VM, we use product-level NFs

with real operational rules from a carrier network. We also use open-source iptables running

in containers as NAT and FW. We use BRO [131] as IDS, Nload [132] as Monitor, Linux

Network Load Balancing [133] as Load Balancer, and OpenVPN [134] as VPN gateway in the

experiments. Moreover, we create customized L2FWD, NAT, and FW to invoke BESS zero-

copy API and OpenNetVM zero-copy API respectively for benchmarking purpose.

6.6.1 HydraNF Performance

Synthetic and Practical SFCs. We use both synthetic and practical SFCs in experiments. Pag-

ination database [135] is used to construct synthetic SFCs. For each SFC, it is constructed with

various NF dependencies (we take each tile in pagination problem as a chain in NF dependency

graph). The processing cost of each simulated NF is set as 1. Each chain in NF dependency

ranges from 2 to 13. We compare the overall processing delay of SFC sequential execution and

parallel execution. Moreover, in parallel execution, we compare parallelism overhead between

SPG construction algorithms and Parabox [1].

Figure 6.10 shows the overall processing latency of SFC sequential execution and parallel

execution. Since the overall latency is determined by the critical path, and thus for any SFC in-

put, critical paths calculated in parallel processing (i.e., FirstFit, Genetic, Overload-and-remove,

and ParaBox) are the same. In contrast, the overall latency of parallel processing is reduced.

Figure 6.11 presents SPG benefits compared to ParaBox which parallelizes NFs based on

topological sorting (parallelizing NFs as much as possible). The number of mirror and merge

operations in constructed SPG is less than that of ParaBox.

Index Deployed Chain in One Machine Hybrid Chain in One Machine Deployed Chain in Two Machines Hybrid Chain in Two Machines
1 {IDS, NAT, FW} container {(IDS, NAT, FW)} {IDS ‖ NAT, FW} container {(IDS, ‖ NAT, FW)}
2 {IDS, NAT, FW} vm {(IDS, NAT, FW)} {IDS ‖ NAT, FW} vm {(IDS, ‖ NAT, FW)}
3 {VPN, Monitor} vm, {FW, LB} container {(VPN), (Monitor, FW), (LB)} {VPN, Monitor} vm ‖ {FW, LB} container {(VPN), (Monitor ‖ FW), (LB)}
4 {NAT, FW, IDS, LB} vm {(NAT, FW, IDS), (LB)} {NAT, FW ‖ IDS, LB} vm {(NAT, FW ‖ IDS), (LB)}

Table 6.1: Service Function Chains Used in the Experiments

In experiments over synthetic SFCs, we did not consider processing delay of mirror and

merge modules. We only calculate process latency and SPG benefits over simulated NFs with

synthetic processing delay. Next, we conduct experiments on practical SFCs with real NFs in

practical SFCs to further evaluate the performance benefits. Table 6.1 presents sequential and

hybrid chains generated by Overload-and-remove Algorithm 6.4.1. NFs in () mean that they
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can be processed in parallel, and NFs separated by || mean that they are on different servers.

HydraNF can reduce the SFC latency by up to 31.7% as shown in Figure 6.12. Moreover, since

HydraNF provides unified virtual interfaces to both Docker containers and KVM-based VMs,

mixed-technique NFs can be integrated into a chain and processed by HydraNF.
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Impact of Different Module Placements. Figure 6.15 shows latency of different core

module placements. HydraNFParallelProcessing(MM) means that mirror and merge

functions are placed on the same server; HydraNFParallelProcessing(M/M) indicates

that mirror and merge functions are running on different physical servers; if mirror function is

implemented in a physical switch, it is labelled as HydraNFParallelProcessing(MH/M).

Figure 6.15 shows latency gains achieved by NF parallelism in various SFCs. We observe that

HydraNF controller can correctly distribute forwarding rules into hardware and software to en-

able parallelism, and NF parallelism among multiple servers can still achieve latency gains.

Among three system implementation choices for NF parallelism, putting mirror functions into

physical switch achieves the best results in most cases.

However, it is not always the case that putting mirror functions into physical switch can

achieve the best results. For example, in the chain that VPN and Monitor are in the same server,

while FW and LB are on the other server. Monitor and FW can be processed in parallel. How-

ever, putting mirror function into a physical switch is not as good as putting it into a physical

server in such a scenario because traffic processed by VPN needs to be mirrored into Monitor

and FW. Thus, the traffic needs to be detoured back to physical switch for mirroring.

Impact of Different NF Placements. We investigate the impact of NF placement spanning
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over multiple servers in Figure 6.13. Three customized zero-copy NFs (L2FWD, NAT, FW)

are loaded into each of four servers in linear placement scenario, while these 12 NF instances

are placed randomly in NF random placement. We configure generated traffic into four SFCs

(L2FWD→NAT→FW, L2FWD→NAT, L2FWD→FW, NAT→FW). 500 flows are generated to

follow each chain. We present the results of HydraNF, random distribution approach, and the

worst case. The aggregated throughput is shown in Figure 6.13, and latency result is shown in

Figure 6.14. HydraNF achieves 1.74x-1.87x throughput improvement in NF linear placement

while 1.42x-1.48x throughput improvement in NF random placement. Similarly, we can also

observe great latency benefits of HydraNF compared with others.

Furthermore, in order to verify the correctness of HydraNF, we always send traffic through

traditional SFCs and replay the same traffic in HydraNF. We then compare the packets at the

receiver side and network state maintained in NFs using log information, in order to confirm

that the HydraNF generates the same output as the sequential ones.

6.6.2 HydraNF Overhead
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We evaluate HydraNF overhead in this section. We first show the overhead of data plane

modules; then controller overhead is showed; and finally the performance overhead during NF

scaling is demonstrated.

To understand the overhead introduced by HydraNF, especially the mirror and merge mod-

ules, we measure the CPU cycles to process each packet in benchmarking experiments which

uses L2FWD as NF. Figure 6.16 shows the CPU cycles per packet increasing with the SFC

length for both sequential and hybrid chains. However, CPU cycles per packet in HydraNF
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parallel processing is up to 7% more than the sequential SFCs.

HydraNF controller calculates appropriate rules to install into hardware and software switches.

Controller overhead is segmented into three parts: 1) collecting active flows; 2) calculating

steering rules; 3) installing steering rules. We create 9 scenarios with different complexity, and

manually trigger topology update which forces the controller to recalculate traffic distribution

rules. We measure the overhead of each segment, as shown in Figure 6.17. We observe that the

overhead of calculating steering rule depends on the number of chains in SFC configuration,

while the overhead of installing steering rules depends on the number of active flows in existing

network. Since controller only recalculates steering rules when topology is changed, the rela-

tive costly operation is affordable. We have been exploring more efficient approaches without

requiring NF modifications.

During NF scaling, we want to further investigate the overhead and observe how throughput

and latency change. We deploy two machines, one of which only runs an IDS, while the other

one runs an IDS and a L2FWD. Then we generate traffic going through IDS → L2FWD. As

shown in Figure 6.18, the throughput of the system increases immediately and reaches the bot-

tleneck of IDS processing. After that, HydraNF controller gets notification from local daemon

running on the NF server and utilizes candidate SFC calculated by traffic distribution algorithm.

The throughput of the system goes up because two IDS instances are utilized, but median la-

tency increases as well because certain traffic is detoured into a sub-optimal SFC which spans

over two servers. At the fifth second, we spin up another L2FWD in the server running only

one IDS, and trigger the controller to recalculate the traffic distribution rules. In our current

implementation, after controller recalculates traffic distribution rules, it will refresh existing

rules. This will cause temporary system unavailability, and thus the system throughput drops

down rapidly, but recovers quickly. This is a trade-off of NF performing scaling without NF

modification, and we have been exploring an effective mechanism of conquering it. Now both

paths (IDS→ L2FWD on servers) are optimized, so latency drops.

6.7 Related Work

SFC Parallelism. Although using parallelism for accelerating an SFC has been explored, e.g.,

in ParaBox [1] and NFP [2], these solutions are limited in terms of real-world applicability.

We differentiate HydraNF with ParaBox and NFP in Table 6.2 on key features desired for SFC
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parallelism.

Features ParaBox NFP HydraNF
NF Level Parallelism 3 3 3

Optimized SPG 7 7 3

Inter-Server Traffic
Distribution

7 7 3

Incremental Deploy-
ment

3 7 3

Table 6.2: Comparison of HydraNF with ParaBox [1] and NFP [2] on the desirable features of
parallel packet processing for NFs.

First, these solutions only work in deployments where all parallelizable NFs of a chain

are on the same server. While running NFs on the same server reduces bandwidth consump-

tion [118], in real-world networks, it is difficult to allocate required resources using a single

server for all NFs in a chain. Many existing NFs are resource intensive when handling large

volumes of traffic [37], and a server can often support a very limited number of concurrent

NFs [136]. Dynamics of network services and elastic scalability offered by NFV also prevent

single server deployments.

Second, during SFC analysis, the existing two works try to parallelize a sequential SFC as

much as possible. However, maximal parallelism may not be beneficial since it could waste

some resources. Hence, HydraNF constructs an SPG to reduce parallelism overhead.

Third, enterprise-grade NFs are constructed with large amount of engineering efforts, and

some companies even design customized operating systems to support NF functionalities [137,

138]. Hence, HydraNF enables parallelism without NF modification.

SFC Optimization. The SFC optimization has attracted a flurry of research interests in

recent years. NetVM [36] is the first to utilize DPDK to provide zero-copy packet deliv-

ery across a chain of vNFs running as VMs on the same physical server. Inspired by Click-

Router [139], BESS [127, 140] develops a modular software switch tailored for NFV by utiliz-

ing DPDK to achieve more than 10 Gbps processing speed using a single CPU core. Flurry [30],

NFVnice [29], and E2 [118] exploit flow-level traffic parallelism for smart CPU core scheduling

to improve scalability of NFV, whereas OpenBox [141] decomposes vNFs into re-usable mod-

ules to further speed up the packet processing pipeline. Metron [119] synthesizes vNFs in an

SFC and executes the SFC in a single core with hardware offloading to achieve (near) line-speed

packet processing. The statefulness of vNFs is a major hurdle in the SFC optimization. Many
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studies have been carried out to address these issues, e.g. [142–148]. For example, CHC [148]

leverages an external state store coupled with state management algorithms and metadata main-

tenance for correct operation even under a range of failures. S6 [147] supports elastic scaling of

NFs without compromising performance. In contrast, HydraNF focuses on parallelism at both

NF and traffic level to optimize SFC. In addition, unlike [2, 118, 119, 141, 149], HydraNF can

accommodate to both open-source and proprietary vNFs with no NF modifications.

SFC Provisioning. The SFC provisioning has also attracted a plethora of research studies,

as partially summarized in [150]. For example, Steering [28] proposes a network function

placement algorithm in a given network topology with the goal of minimizing the delay or

distance to be traversed by all subscriber’s traffic. Sun et al. [151] model the placement of SFC

in SDN networks as an integer linear programming problem to minimize the overall energy

consumption. Li et al. [152] construct a deep learning model to provision on-demand SFCs.

However, these works do not consider SFC parallelism optimization as HydraNF does.

6.8 Discussion

In this section, we discuss how to extend HydraNF and highlight several open issues.

Implementing Merge in Programmable Switches. We have currently implemented mir-

ror function in hardware switches, but merge function in software switches. As discussed in

§ 6.5.2, placing both functions in hardware switches is the ideal solution which introduces

almost no overhead in terms of bandwidth utilization. Even for OpenFlow switches, it is chal-

lenging to implement the merge functions, as the required xor and or operations are not yet

supported by the OpenFlow specification 1.3. However, it is possible to implement the merge

function with P4 [128] switches. P4 exposes a standard set of primitive actions, including bit or

and bit xor [125]. Given this support, we are currently implementing the merge function of Hy-

draNF on P4 switches.

NF Scaling In/Out. To support NF scaling, HRC needs to integrate with the NF application

controller/orchestrator. One possible approach is to inform HRC about the creation/deletion of

NF instances and their locations. Based on the notification, the mirror function would be aware

of the new instances and start mirroring traffic to them, or stop duplicating packets for the

removed NF instances. This will require adding the support for NF instance tracking inside the

Flow Steering table as well as modifications to the merge function. Furthermore, we plan to
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support asymmetric NF scaling, i.e., HydraNF can dynamically scale in/out any hop of a chain,

instead of scaling the whole chain.

NF Decomposition. Recent proposals virtualize and decompose NF at different granularity.

For example, EdgePlex [153] assigns a single VM for the control plane and a dedicated VM for

the data plane of each customer provisioned on a provider edge router. HydraNF should be able

to handle this type of decoupling of control and data planes due its ability to work at flow-level.

OpenBox [141] performs fine-grained decomposition at the software module level of NFs. In

this case, the components of a service chain will be NF modules, instead of NFs. Despite this,

it should still be feasible for HydraNF to parallelize packet processing for these NF modules in

a chain.

The Gain of Parallelization depends on the dominating NFs in a chain in terms of process-

ing latency. For example, if a traffic shaper adds 100 µs extra latency to a service chain with

two other NFs having 10 µs processing latency each, employing parallelize packet processing

will reduce the latency from ∼ 120 µs to ∼ 100 µs (i.e., merely a 16.7% reduction). However,

if the traffic shaper adds only 20 µs, HydraNF can reduce the latency by ∼ 50% (from 40 µs

to 20 µs). In cases where parallelization gain is not high enough, it would be prudent to revert

back to the sequential chain.

Other Limitations. We have not considered other types of NFs, e.g., mobility NFs [154]

which include virtual Packet Data Network Gateway, Serving Gateway, Mobility Management

Entity etc., for parallel data processing. We have also not investigated the parallelization for

layer-3 virtual routers. These NFs either create various tunnels or determine the next hop,

creating order dependency with other NFs.

6.9 Summary

In this project, we have designed, implemented, and evaluated HydraNF, a novel mechanism to

utilize parallelism for SFC acceleration. In contrast to existing approaches, HydraNF performs

both NF and traffic level parallelism without NF modification. HydraNF supports not only NFs

within a multi-core server, but also those spanning multiple machines by provisioning SPG in an

optimized way. The data plane of HydraNF runs as an extension of the BESS virtual switch to

achieve high performance and programmability. Our evaluation through synthetic and practical

SFCs demonstrates that HydraNF can improve SFC performance with manageable overhead.



Chapter 7

Conclusion, Lessons Learned &
Thoughts for the Future

In this dissertation, we have argued that by following the blueprint of joint design, networks

equipped with VNFs can be made more effective and efficient.

7.1 Summary of Contributions

Our main contributions in this dissertation are as follows:

In Durga (Chapter 3), we designed, implemented, and evaluated a novel SD-WAN solution

for fast failover with minimal application performance degradation under WAN link failures.

We mitigated the impacts of WAN failures on application performance by joint architectural

innovation at both VNFs running on SD-WAN gateways and connected end systems. Durga

combines an innovative WAN-aware MPTCP mechanism which enables applications to gener-

ate multiple MPTCP flows even with a single physical interface. This is further augmented with

an MPTCP proxy to accommodate end systems without native MPTCP support. Through exten-

sive evaluation in emulated testbed and real-world deployment, we demonstrated the superior

performance of Durga over existing SD-WAN solutions.

In SAMPO (Chapter 4), we facilitated VNFs aware of MPTCP for the benefits of network

performance and the quality of VNFs. Instead of designing a customized solution in every

VNF to conquer this common challenge (facilitating VNFs aware of MPTCP), we implemented

SAMPO as an online service to be readily integrated into VNFs. SAMPO is a first step towards

97
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this goal by solving online MPTCP subflow association problem. Both our theoretical analysis

and experimental results show that SAMPO can detect and associate MPTCP subflows with

high accuracy even when only a very small portion of each MPTCP subflow is available.

In Network-Assisted Raft (Chapter 5), following the same principle, we implemented con-

sensus as a service in software defined network. We use Raft to illustrate new failure scenarios

in the design of distributed SDN controllers. We discussed PrOG to circumvent these issues.

Also, by leveraging programmable devices, we proposed to partially offload certain Raft func-

tionality to P4 switches for reducing Raft processing latency, while not sacrificing scalability.

Our evaluation results show the effectiveness of PrOG and Raft-aware P4 switches in improving

the availability of leadership in Raft used by critical applications like SDN controller clusters.

In HydraNF (Chapter 6), we re-considered VNFs deployed in a network from the perspec-

tive of network administrators. HydraNF explores parallelism in service function chains com-

posing a sequence of VNFs that are typically traversed in-order by data flows. The evaluation

through synthetic and practical SFCs demonstrates that HydraNF can improve SFC performance

with manageable overhead.

7.2 Lessons Learned & Thoughts for the Future

We now discuss a few broad lessons learned over the course of this dissertation, and what they

suggest about future VNF development and deployment.

Jointly designing VNFs for enhancing networks involves interactions among VNFs and
hence requires unified programming interfaces and platform.

In 2012, the European Telecommunications Standards Institute (ETSI) issued a proposal

named as Network Functions Virtualization (NFV) [155]. The incentives of proposing NFV is

that modern telecoms networks contain an ever increasing variety of proprietary hardware, and

thus the launch of new services often demands network reconfiguration and on-site installation

of new equipment which in turn requires additional floor space, power, and trained maintenance

staff. NFV accelerates and requires greater flexibility and dynamism than hardware-based ap-

pliances allow. Hard-wired network with single functions boxes are tedious to maintain, slow to

evolve, and prevent service providers from offering dynamic services similar as the motivation

for joint design blueprint proposed in this dissertation.

Along these lines, several projects were designed to conquer the open challenges in the
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joint design blueprint. For example, VNF orchestraters [118, 156] were proposed for automat-

ically instantiating or closing VNF instances as traffic load changes. The SFC working group

in IETF [25] is actively investigating how to best implement routing through multi-middlebox

topologies and enforce policies about which traffic receives processing by which VNFs. Many

research studies have been carried out to address statefulness of VNFs, e.g. [142–147]. In terms

of NFV behavior modeling, synthesis, testing as well as policy analysis and traffic steering,

various novel techniques have been proposed, see, e.g., [26–28,157–163]. The NFV placement

problem has also attracted a plethora of research studies, mostly employing mathematical op-

timization techniques [150]. While we can see the benefits brought by joint design, how to

design unified programming interfaces for supporting interactions among VNFs and implement

a general platform for the integration of VNFs is required.

Jointly designing can be extended to offload certain functions down to hardware pro-
grammable switches.

Several recent projects investigate offloading consensus algorithms to either switches [22]

or FPGA devices [23]. NetPaxos [22] proposes to implement the Paxos consensus algorithm

in network by leveraging programmable switches. Besides the Paxos roles implemented on

servers, NetPaxos requires one switch serving as a Paxos coordinator and several others as

Paxos acceptors. NetPaxos can be implemented using P4 [5], a domain specific language that

allows the programming of packet forwarding planes. However, Paxos consensus algorithm

is very difficult to understand and implement due to its notoriously opaque explanation and

lack of details for building practical systems [4]. Thus, offloading such a complex consensus

algorithm to network is error-prone. István et al. [23] takes the efforts of implementing the

entire ZAB consensus algorithm [24] on FPGA devices using a low-level language which is

difficult to program. Moreover, this hardware-based solution may not be scalable as it requires

the storage of potentially large amounts of consensus states, logic, and even the application

data. Even though offloading VNFs to networks is a promising area to explore, it would be

demanded to formally validate the correctness of such a decoupled architecture. Moreover, it

is also interesting to compare the solution implemented in real P4 switches with other existing

FPGA-based or RDMA-based solutions.

Decomposing VNFs opens the door to pursue further performance enhancement.
Recent proposals virtualize and decompose NF at different granularity. For example, Edge-

Plex [153] assigns a single VM for the control plane and a dedicated VM for the data plane
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of each customer provisioned on a provider edge router. OpenBox [141] performs fine-grained

decomposition at the software module level of NFs. In this case, the components of a service

chain will be NF modules, instead of VNFs. It would be more challenging to parallelize packet

processing at a finer grained level in a chain.

Enhancing networks equipped with VNFs in the context of 5G technologies.
In the emerging 5G technologies – besides innovations in radio technologies such as 5G

new radio [164, 165], NFV will be a key enabling technology [166–171] underpinning the en-

visioned 5G “Cloud RANs”, MECs and packet core networks for support of network slicing

and diverse services ranging from enhanced mobile broadband to massive machine type com-

munications and ultra-reliable low latency communications. For example, upon a request for

a service (e.g., from a mobile user or a machine, say, an autonomous vehicle or an industrial

controller), a SFC will be dynamically constructed using a series of VNFs such as firewalls,

mobility managers, network address translators, traffic shapers and so forth that are deployed

on demand at appropriate locations within a (dynamic) network slice to meet the desired service

requirements. It would be challenging to jointly design VNFs in the context of 5G technology,

and leverage various 5G VNFs and SFCs to support the development of 5G end-to-end facil-

ities, network slicing, 5G services and vertical trials. Through end-to-end evaluations and 5G

service trials, NFV platforms can be further refined and expanded.
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