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Introduction 

Human activity is a dominant force shaping the structure and function of Earth’s 

ecosystems. Some of these impacts are direct and local: phosphorus-rich runoff from 

urban landscapes causes excessive siltation, eutrophication, and biodiversity reduction in 

waterways (Carpenter et al. 1998, Paul and Meyer 2001). Other impacts are indirect and 

regional: ozone precursors released from vehicles in cities can travel downwind and form 

ozone harmful to plants, animals, and people (Keiser et al. 2018). Still other 

anthropogenic impacts have profound consequences worldwide, namely fossil fuel 

combustion and the release of carbon dioxide, a greenhouse gas, into a globally-mixed 

troposphere (Hayhoe et al. 2018). 

Due to these teleconnections between human action and environmental impact, 

ecosystems that appear remote from direct human modification are still molded by our 

societal behavior. This is particularly true of northern high-latitude ecosystems, including 

arctic tundra and boreal forest. Cold temperatures and nitrogen limitation of terrestrial 

primary productivity make these biomes highly sensitive to warming and atmospheric 

nitrogen deposition, two widespread impacts of fossil fuel combustion (Elser et al. 2007, 

LeBauer and Treseder et al. 2008, Elmendorf et al. 2012a, Shaver et al. 2014).  

Background on anthropogenic changes 

This dissertation will examine high-latitude ecosystem responses to warming and 

atmospheric nitrogen deposition. The following two subsections provides background on 

these topics. 

High latitude warming 
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The arctic tundra biome is warming twice as fast as the global average (Cohen et al. 

2012). Paleoclimate proxies indicate that such polar amplification has been a reliable 

response to rising temperatures for at least the last three million years of Earth’s climate 

history (Miller et al. 2010). This phenomenon is largely caused by the ice-albedo 

feedback, but other contributing factors include changes in oceanic and atmospheric heat 

transfer, increased near-surface cloud cover and atmospheric water vapor, and soot 

deposition (Serreze and Barry, 2011). 

A rapidly warming arctic is a source of considerable uncertainty in climate 

projections due to poorly constrained biophysical carbon cycle feedbacks. Soils of high-

latitude permafrost regions contain nearly 1,700 Pg of organic carbon, equivalent to 

roughly double the global atmospheric carbon pool (Tarnocai et al. 2009). As permafrost 

thaws, much of the permafrost organic carbon pool will be metabolized by microbes into 

atmospheric methane (in wet environments) or carbon dioxide (in dry environments). The 

magnitude and rate of change in land-to-atmosphere carbon fluxes from permafrost 

remains a topic of vigorous debate—“Methane bomb” media headlines may be too 

sensationalized (Petrenko et al. 2017), but a gradual and sustained carbon release (Schuur 

et al. 2015) may be too optimistic. 

In addition to permafrost carbon feedbacks, high-latitude vegetation changes 

could trigger both positive and negative feedbacks to climate change. For example, the 

expansion of woody deciduous shrubs in circumarctic tundra could accelerate climate 

change through positive feedback mechanisms including albedo reduction, competitive 

exclusion of permafrost-insulating Sphagnum spp., and the capture of deep snowpacks 

that increase microbial respiration through elevated winter soil temperatures (Sturm et al. 
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2001, Cornelissen et al. 2001, Blok et al. 2011a, Chapin et al. 2005, Lawrence and 

Swenson 2011). Alternatively, shrub expansion could mitigate climate change through 

negative feedback mechanisms including increased primary productivity, woody stem 

production, recalcitrant litter chemistry, and shading of carbon-rich permafrost soils in 

summer (Shaver 1986, Sweet et al. 2015, Cornelissen et al. 2007, Blok et al. 2011a, 

Nauta et al. 2015). While the balance of such positive and negative feedbacks remains an 

area of active research, integrating these feedbacks into earth systems models will 

ultimately require accurate predictions of shrub expansion rates across space. In other 

words, shrub expansion has not and will not proceed at a uniform pace throughout the 

tundra. Chapters 1 and 2 of this dissertation seek to determine which factors underlie the 

variable rates of shrub expansion across environmental gradients in arctic tundra. 

Nitrogen deposition 

Humans have doubled the amount of bio-reactive nitrogen entering the biosphere in the 

industrial era through fertilization, biomass and fossil fuel combustion, and volatilization 

from agricultural materials such as manure (Galloway et al. 2004, Galloway et al. 2008). 

Despite major improvements in agricultural production, the rapid increase in nitrogen 

availability has wide-ranging consequences for human health, ecosystem function, and 

community structure. For example, nitrate-loading in groundwater aquifers in highly 

fertilized agricultural regions is linked to methemoglobinemia (blue-baby syndrome) and 

is believed to be a risk factor for certain cancers and birth defects (Spalding and Exner 

1993, Weyer et al. 2008, Brender et al. 2013). In nitrogen-limited terrestrial ecosystems, 

increased availability boosts primary productivity, often causing community shifts toward 

dominance by species with low nitrogen-use efficiencies (Stevens et al. 2004, Clark and 
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Tilman 2008). Elevated delivery of nitrogen to nitrogen-limited (or nitrogen and 

phosphorus co-limited) freshwater and marine ecosystems can fuel algae blooms that 

harm plants and animals through light attenuation and oxygen depletion (Howarth and 

Marino 2006, Conley et al. 2009, Finlay et al. 2013). There is an urgent need to assess 

the capability of global ecosystems to buffer this nitrogen cycle intensification through 

nitrogen uptake by organisms and denitrification. 

Understanding ecosystem response to elevated nitrogen deposition is particularly 

crucial at high latitudes, where nitrogen limitation is widespread across the boreal forest 

and arctic tundra biomes (Elser et al. 2007, LeBauer and Treseder et al. 2008, Shaver et 

al. 2014). Primary productivity and community composition in these systems is highly 

sensitive to changes in nitrogen availability (Wookey et al. 1994, Chapin and Shaver 

1996, Van Wijk et al. 2004, Hobbie et al. 2005). Therefore, future changes in 

atmospheric nitrogen deposition, which tend to be regional in scale, could restructure 

ecosystem function and community composition in some areas. 

Strategies for studying ecosystem response to anthropogenic changes 

The following two subsections review methods used to research ecosystem impacts of 

warming and elevated nitrogen availability. The four chapters of this dissertation will 

both incorporate and build upon some of these methods. 

Shrub expansion 

Researchers have employed a variety of experimental and observational techniques to 

determine environmental drivers of shrub expansion in arctic tundra. Early factorial 

experiments crossing nutrient addition, warming, and insolation reduction suggested that 

nitrogen availability was the limiting factor to primary productivity in arctic tundra 
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(Wookey et al. 1994, Chapin and Shaver 1996). This limitation was believed to be caused 

by low mineralization rates, despite large pools of soil organic nitrogen (Shaver and 

Jonasson 1999). Nitrogen addition appeared to lend a competitive advantage to species 

with low nitrogen-use efficiencies, such as deciduous shrubs (Bret-Harte et al. 2001). 

Subsequent experiments throughout the arctic tundra have further supported this idea 

(DeMarco et al. 2014). Additional evidence for tundra shrub expansion has been 

provided through observational techniques including repeat photography and remote 

sensing (Tape et al. 2006, Myers-Smith et al. 2011). 

Dendrochronology, the study of annual growth of woody plants, is becoming an 

increasingly popular observational approach for studying shrub response to climate 

(Myers-Smith et al. 2015a). This technique can provide a centennial-scale growth record, 

longer than any experimental manipulation or remote sensing measure in the arctic 

(Weijers et al. 2010). Further, the chronology of annual ring widths or other anatomical 

measurements is a vast improvement in temporal resolution over previously used 

methods such as repeat photography (Tape et al. 2006). Dendrochronological studies 

have revealed historic relationships between climate and shrub growth in a wide range of 

shrub growth forms, from prostrate evergreen species, e.g. Cassiope tetragona, to erect 

deciduous species, e.g. Alnus viridis, Salix pulchra, and Betula nana (Weijers et al. 2010, 

Blok et al. 2011a, Tape et al. 2012). 

While dendrochronology appears to be a promising method, challenges remain in 

connecting climate and environmental variability to individual plant response. The 

traditional way to analyze arctic shrub dendrochronology data is to construct a site-based, 

annually-resolved chronology of the central tendency of growth (usually a mean or 
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median of individually detrended ring-width indices) for the sample site (Cook and 

Pederson 2011). This approach yields a uniform growth signal shared among shrubs at a 

site, but it discards information related to the variability in climate response among 

individuals (Galván et al. 2014, Young et al. 2016). An overarching goal of chapters 1 

and 2 of this dissertation is to compare microsites and use individual-based statistical 

modeling frameworks to examine variability in the climate-growth relationship among 

individual shrubs on the North Slope of Alaska. 

Nitrogen cycling 

Long-term measurements of atmospheric nitrogen deposition are available for some high 

latitude sites, but deposition estimates remain poorly constrained for many regions of the 

vast arctic tundra and boreal forest biomes (Vet et al. 2014). Spatial models of nitrogen 

deposition tend to have low, centennial-scale temporal resolution (Galloway et al. 2004). 

Such models are insufficient for understanding nitrogen dynamics on shorter timescales, 

because interannual nitrogen deposition in remote areas of the arctic can vary widely 

based on stochastic weather and atmospheric transport events (Choudhary et al. 2016). 

This uncertainty complicates the construction of nitrogen budgets for high-latitude 

watersheds. Chapter 3 attempts to resolve this uncertainty by creating a spatially explicit 

model of global nitrogen deposition with annual- to decadal-scale temporal resolution. 

Little is known about the drivers of variability in nitrogen retention among 

watersheds at a circumpolar scale. Studies on nitrogen retention rates often focus on 

individual water bodies, rather than whole watersheds (Kankaala et al. 2002). Those that 

do examine whole watershed-scale retention at large spatial scales are limited to lower 

latitudes (Schaefer and Alber 2007, Howarth et al. 2012). An improved accounting of 



7 
 

environmental controls on nitrogen retention across boreal forest and arctic tundra 

watersheds, the aim of chapter 4, will shed light on the fate of atmospheric nitrogen 

inputs to high latitude systems—how much is retained in inland systems, and how much 

is exported, potentially fueling algal blooms in downstream systems? 

Outline of the remaining chapters of this dissertation 

In chapter 1 I use dendrochronology to examine how hillslope position (dry upland 

versus moist riparian site) influences shrub climate response of the deciduous shrub Salix 

pulchra on the North Slope of Alaska. I build upon prior research in this field in two 

ways. First, I allow my calculated climate-growth relationship to vary based on second-

order coefficients, as is predicted by ecological theory on diminishing returns to increases 

in a single growth-limiting factor. Second, I use my dendrochronology data on 

retrospective growth in combination with established shrub allometry models to predict 

changes in shrub aboveground primary production under a 2-degree celcius warming 

scenario. I find that both upland and riparian shrubs respond positively to June 

temperature, but marginal growth response to temperature is diminishing at the dry 

upland site, possibly indicative of temperature-induced moisture limitation in particularly 

warm years. Further, I find that 2 degrees of warming will increase shrub biomass by 

about 36% at the riparian site, but only by about 19% at the upland site, emphasizing the 

importance of microsite variability in understanding ecosystem response to climate. 

In chapter 2 I construct an individual-based linear mixed effects model that 

incorporates Salix pulchra dendrochronology data from sites across the North Slope that 

vary not only in hillslope position, but also in glacial landscape age (a proxy for soil 

nutrient availability). I find that ring growth is remarkably coherent among individuals 
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and sites, responding strongly to June temperature. The strength of this climate response 

is not systematically related to glacial landscape age. This result indicates a regionally-

coherent shrub growth response to early season temperature, with local soil properties 

exerting only a minor influence on the climate-growth relationship. 

In chapter 3 I use a global Chemical Transport Model to estimate historic rates of 

atmospheric nitrogen deposition in the late 20th and early 21st century. From 1984 to 

2016, I find that global inorganic nitrogen deposition increased by 8%, but trends varied 

regionally. For example, deposition declined in the European boreal and sub-arctic zones, 

while deposition increased in Western Canada and Eastern Siberia. Quantifying these 

spatially-explicit trajectories of change at high latitudes can help us predict how recent 

and future trends in nitrogen deposition impact ecosystem processes like primary 

productivity, species turnover, and nitrogen retention.  

In chapter 4 I use the model results from the preceding chapter to conduct a 

systematized review of the environmental factors influencing nitrogen retention in 

watersheds throughout the circumpolar north. I find that mean annual air temperature is 

positively related to the proportion of atmospherically deposited nitrogen retained. Other 

variables including watershed area, annual runoff, and watershed soil properties did not 

have an apparent effect on retention rates. This outcome suggests that future warming 

could raise the proportion of nitrogen retained in boreal and tundra watersheds, favoring 

plant species with low nitrogen-use efficiencies while reducing nitrogen export. 

However, this effect may be reversed by rapid permafrost thaw, which could mobilize 

and export large stores of soil nitrogen. 
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Chapter 1 

Arctic shrub growth trajectories differ across soil moisture levels 

Summary 

The circumpolar expansion of woody deciduous shrubs in arctic tundra alters key 

ecosystem properties including carbon balance and hydrology. However, landscape-scale 

patterns and drivers of shrub expansion remain poorly understood, inhibiting accurate 

incorporation of shrub effects into climate models. Here, we use dendroecology to 

elucidate the role of soil moisture in modifying the relationship between climate and 

growth for a dominant deciduous shrub, Salix pulchra, on the North Slope of Alaska, 

USA. We improve upon previous modeling approaches by using ecological theory to 

guide model selection for the relationship between climate and shrub growth. Finally, we 

present novel dendroecology-based estimates of shrub biomass change under a future 

climate regime, made possible by recently developed shrub allometry models. We find 

that S. pulchra growth has responded positively to mean June temperature over the past 

2.5 decades at both a dry upland tundra site and an adjacent mesic riparian site. For the 

upland site, including a negative second-order term in the climate-growth model 

significantly improved explanatory power, matching theoretical predictions of 

diminishing growth returns to increasing temperature. A first-order linear model fit best 

at the riparian site, indicating consistent growth increases in response to sustained 

warming, possibly due to a lack of temperature-induced moisture limitation in mesic 

habitats. These contrasting results indicate that S. pulchra in mesic habitats may respond 

positively to a wider range of temperature increase than S. pulchra in dry habitats. Lastly, 

we estimate that a 2°C increase in current mean June temperature will yield a 19% 

increase in aboveground S. pulchra biomass at the upland site and a 36% increase at the 
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riparian site. Our method of biomass estimation provides an important link toward 

incorporating dendroecology data into coupled vegetation and climate models. 

 

Background 

Rapid warming at high latitudes is linked to expansion and accelerated growth of woody 

shrubs in arctic tundra, yielding feedbacks to global climate (Tape et al., 2006; Myers-

Smith et al. 2011, Elmendorf et al., 2012b). Such feedbacks, occurring through litter 

chemistry, snow-shrub interactions, land surface reflectance, and shading of carbon-rich 

permafrost soils, have been intensively studied through plot-level experimentation 

(Hobbie 1996, Sturm et al., 2001; Schimel et al., 2004; Chapin et al., 2005; Blok et al., 

2010; Nauta et al., 2015, Gough et al., 2016). However, a relative scarcity of landscape-

scale investigation has made it difficult to connect plot-level experimentation to regional 

greening trends (Hobbie & Kling 2014). Landscape factors like topography, disturbance, 

and biotic interactions may modulate rates of shrub expansion (Schuur et al., 2007; 

Olofsson et al., 2009; Christie et al., 2015; Ropars et al., 2015; Ackerman & Breen, 

2016). A poor understanding of the heterogeneity of shrub expansion across arctic 

landscapes inhibits accurate incorporation of shrub feedbacks into mechanistic climate 

models such as dynamic global vegetation models (e.g. Sitch et al., 2003). Therefore, an 

improved understanding of the interaction between edaphic factors and climate in 

determining rates of shrub expansion is urgently needed. 

By creating long-term, annually-resolved growth records, dendroecology has 

proven useful in understanding how shrubs respond to interannual variability in climate 

(Rayback & Henry, 2005; Bär et al., 2006; Forbes et al., 2010; Weijers et al., 2010; 
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Buchwal et al., 2013; Hollesen et al., 2015; Young et al., 2016). For erect deciduous 

shrubs in the rapidly expanding genera Salix, Betula, and Alnus (respectively willow, 

birch, and alder), secondary growth quantified by annual ring width in stem cross 

sections can provide an uninterrupted record of over a century of shrub growth that may 

be correlated with climate variables (Blok et al., 2011; Tape et al., 2012; Jørgensen et al., 

2015). 

A recent meta-analysis of arctic shrub dendroecology research hypothesizes that 

soil moisture is a key variable in determining climate sensitivity of arctic shrub growth 

(hereafter the Soil Moisture Hypothesis; Myers-Smith et al., 2015a). The Soil Moisture 

Hypothesis states that climate sensitivity of shrubs, defined as the magnitude of the slope 

(i.e. first-order coefficient) relating growth and summer temperature, is positively 

correlated with moisture (Myers-Smith et al., 2015a). However, the studies included in 

this meta-analysis were largely single-site investigations not designed to test for 

heterogeneity of shrub response to climate across levels of soil moisture. As of yet, there 

is no landscape-scale empirical test of the Soil Moisture Hypothesis. 

Previous arctic shrub dendroecology work has assumed a first-order linear 

relationship between shrub growth and the controlling climate variable(s) of interest. This 

assumption of first-order linearity across the domain of observed temperatures does not 

consider a large body of ecological work on co-limitation theory and plant physiology, 

which predicts a decelerating relationship: marginal growth should diminish with 

increases in temperature or any other limiting factor (Bloom et al., 1985; Gleeson & 

Tilman, 1992). At the extreme, high temperatures or excessive nutrient concentrations of 

course may harm growth. 
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The functional form of the climate-growth relationship, first-order linear or decelerating, 

has major implications for ecosystem response to climate change. For example, if we find 

a decelerating relationship, it follows that a modest temperature increase may have highly 

variable effects on shrub growth, depending on the exact location of initial temperature 

along the climate axis (Figure 1.1). Using ecological theory to inform model selection in 

dendroecology is necessary to generate robust predictions of shrub response to future 

climate (Fritts, 1976). 

Prior shrub dendroecology work has also been limited in its scope of inference to 

growth indices such as ring width index or stem elongation, which are of lesser utility 

that biomass estimates for climate and carbon cycle models. A poor understanding of 

shrub architecture and growth form variability has prevented dendroecology studies from 

making direct inference about biomass change. However, recent advances in arctic shrub 

allometry (Berner et al., 2015) have opened the door for using growth ring data to predict 

how total shrub biomass in a given landscape may respond to a change in climate.  

In this study, we combine empirical data collection with ecological theory and 

modeling to fill the aforementioned knowledge gaps through three research questions: 

(1) Is there empirical support for the Soil Moisture Hypothesis in a landscape-

scale analysis of climate response in a dominant shrub at two levels of soil moisture on 

the North Slope of Alaska? 

(2) What is the functional form of the climate-growth relationship at these sites? 

(3) How will shrub biomass respond to future warming at these sites? 

Methods 

Site description and chronology development 



13 
 

In July 2015 we sampled Salix pulchra (Cham.) stems at two sites, riparian and upland, 

separated by 100 m adjacent to the Upper Kuparuk River (68.67°N, -149.44°W), a 4th 

order stream fed by surface runoff on the North Slope of Alaska, USA. The sites receive 

312 mm of precipitation annually, with 60% falling during the summer months (Cherry et 

al., 2014). Mean annual air temperature is -8.5°C, with temperatures averaging above 

freezing for June, July, and August (Cherry et al., 2014).  

These low-arctic sites fall within subzone E of the Circumpolar Arctic vegetation 

map (Walker et al., 2005). We selected the erect deciduous shrub S. pulchra for our study 

because it is frequently the canopy dominant plant in shrub tundra, including both 

riparian and upland areas. We delimited the riparian site as the vegetated area within the 

bankfull width of the Kuparuk River, generally 3-10 meters from the edge of the river 

during summer baseflow conditions (Slavik et al., 2004). The riparian site had greater 

soil moisture, thaw depth, and average shrub size and growth rate than the upland site 

(Table 1.1). Riparian vegetation was dominated by woody shrubs (Salix spp. and Betula 

nana) with a sparse understory including Sphagnum spp., while the upland site had 

vegetation typical of moist-acidic tundra in the region (Gough et al., 2000), including 

woody shrubs (Salix spp. and Betula nana), Eriophorum vaginatum, and Sphagnum spp. 

To ensure our resulting chronologies were representative of the 140 km2 Upper 

Kuparuk watershed, we used transect-based sampling covering a larger area and a greater 

number of individuals than is typical for shrub dendroecology studies (Blok et al., 2011; 

Buchwal et al., 2013; Holleson et al., 2015; Young et al., 2016). Specimens were cut 

every 10 meters along the transects to avoid stem size bias and resampling of genetically 

identical clones. We collected specimens from 27 riparian and 35 upland individuals by 
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cutting the stem at the root collar. Serially sectioned disks (Myers-Smith et al. 2015b) 

were subsampled from the root collar and 10 centimeters further up the stem. Thin 

sections were cut to 15 μm with a microtome and stained with a safranin and astra-blue 

mixture to enhance optical contrast, following Gärtner et al. (2015). Ring widths along 

two radii per disk were measured using CooRecorder (Larsson, 2013). Calendar year 

dating of the microscopic growth increments was determined through the classical 

method of crossdating, with pairwise comparison of ring width time series within and 

between shrubs (Stokes & Smiley, 1968). The four radii measured per individual were 

averaged to obtain a single series of annual growth per individual. In total, 7,228 (3304 

riparian, 3924 upland) annual growth increments along 248 radii (108 riparian, 140 

upland) from 62 individuals (27 riparian, 35 upland) were measured for this study. 

 Growth increment time series were standardized with methods typical to 

dendroecology (Cook & Kairiukstis, 1990) using the program ARSTAN (Cook, 1985). 

Time series were detrended to remove age-related trends, consistent across shrubs at both 

sites, of rapidly declining ring width in the first 5-10 years of stem growth. We selected a 

flexible 20-year cubic smoothing spline for detrending (Cook & Peters, 1981), which is 

equivalent to 2/3 of the mean length of our ring width time series, though we additionally 

attempted a less flexible negative exponential function to minimize the impact of the 

chosen detrending function on our results. Ring width indices were calculated as the ratio 

of the measurement value to the detrending curve fitted value for each year, yielding a 

dimensionless ring width index (RWI) with a mean of one, so that individuals could be 

integrated into a site-level chronology (Larsson, 2013). Low order autocorrelation was 

assessed and removed if determined to be statistically significant (Cook, 1985). Site level 
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chronologies were calculated as the median RWI value for each year. Chronology 

statistics including mean interseries correlation (rbar), expressed population signal (EPS), 

mean sensitivity, and mean first-order autocorrelation, were calculated in ARSTAN to 

validate our mean chronology estimates (Cook, 1985; Briffa & Jones, 1990). 

Climate sensitivity comparison 

We calculated correlation coefficients between RWI and monthly mean temperature and 

total precipitation, including both current- and previous-year temperature and 

precipitation, using treeclim (Zang & Biodi, 2015). Correlations were deemed 

statistically significant for a site if they achieved alpha = 0.05 across both detrending 

strategies. Slopes of significant relationships produced by treeclim were compared 

between the upland and riparian sites. To improve temporal precision of the climate 

signal being expressed by the shrubs, we conducted a moving-window analysis (sensu 

Fonti et al., 2006) during a three month interval centered on the month found to be 

significant from the treeclim analysis. Variable window sizes of 5, 10, 20, 30, and 40 

days were tested. Climate data for the site has been continuously collected at Toolik Field 

Station since 1989 (Environmental Data Center Team, 2016). 

Climate-growth model 

Using the significant monthly relationships indicated by the climate sensitivity analysis 

above, we used multiple linear regression to test for negative second-order (i.e. 

decelerating) relationships between climate and shrub growth. We used model 

explanatory power, quantified by adjusted R2, as the basis of comparison between our 

decelerating models and the first-order models typically used in dendroecology analysis. 

A likelihood ratio test was conducted to determine whether the decelerating model 
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provided a better goodness-of-fit at the alpha = 0.05 level. If the decelerating model was 

preferred at a given site, we compared this model with a sigmoidal model to test for 

asymptotic behavior. We used model difference in Akaike information criterion (ΔAIC) 

of 2 as a cutoff for selecting the sigmoidal model over the decelerating model. Finally, 

we used individual-based hierarchical mixed model analysis to confirm that the detected 

deceleration was consistent across all (or most) shrubs at the site by preserving 

individual-level variability and maximizing temporal replication (Pinheiro et al., 2014; 

Myers-Smith et al., 2015a; Young et al., 2016). Year and individual shrub were treated as 

random effects in individual-based the model. 

Biomass simulation 

We estimated aboveground S. pulchra biomass at our sites for both the current 

temperature regime and a +2°C warming scenario using output from our climate-growth 

model and shrub allometry equations. From our climate-growth model, we determined 

the percent increase in basal diameter expected for a 2°C increase in mean temperature. 

We then constructed normal distributions for stem basal diameter and stem density using 

the means and standard deviations of these variables from our on-site measurements. 

Variable estimates were randomly selected from these distributions 1,000 times and used 

in the allometric equation modified from Berner et al. (2015; Equation 1) to estimate total 

aboveground biomass per square meter. This simulation was repeated three times using 

low, medium, and high parameter estimates (Berner et al., 2015). 

Results 

Chronology development 
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RWI chronologies for both sites (Figure 1.2) showed high inter-series correlations and 

EPS ≥ 0.85 for the 1989-2014 period in common between the chronologies and the local 

climate data (Table 1.2). Neither site showed significant low-order autocorrelation. 

Climate sensitivity comparison 

Climate sensitivity (slope of the relationship between RWI and its strongest climate 

correlate, mean June temperature) was not significantly different between sites (Figure 

1.3), but climate sensitivity was more robust to detrending strategy at the upland site than 

at the riparian site. Analysis with treeclim revealed significant climate sensitivity at the 

upland site, with current year mean June temperature controlling RWI (slope estimate = 

0.49, p<.05). This result remained significant across both detrending strategies (see 

Supplemental Material Tables S1.1-S1.4 for full treeclim output). For the riparian site, 

June temperature was a significant predictor of RWI for the 20-year cubic spline 

chronology (slope estimate = 0.28, p<.05), but this result was not significant for the less 

flexibly detrended chronology (Table 1.3). Neither monthly, nor seasonal, nor annual 

precipitation significantly predicted RWI at either site. 

Our moving window analysis (Figure 1.4) confirmed that June is the key period 

for S. pulchra growth at the upland site, as effect size of mean temperature peaked for 30- 

and 40-day windows centered in mid-June (day of year = 166). Effect sizes for the 

riparian site peaked in late June (day of year = 179). 

Climate-growth model 

Regression tests for the upland site (Figure 1.5a, top) revealed a decelerating relationship 

between RWI and current-year mean June temperature. This decelerating model, 

employing a negative second-order temperature term as predicted by ecological theory, 



18 
 

showed greater explanatory power (adjusted R2=0.45, p<.001) than the first-order 

relationship (adjusted R2=0.33, p =0.001) typically used in dendroecology models. The 

likelihood ratio test revealed that the decelerating model was preferred at the upland site 

(p = 0.02). The sigmoidal model did not meet our ΔAIC cutoff (ΔAIC = 1.06), so we 

proceeded with the decelerating model for the remainder of our analysis. Results from the 

individual-based hierarchical mixed model were consistent with the decelerating trend, 

estimating a significant negative coefficient for the second-order temperature term (p = 

0.03, see Supplemental Material Tables S1.5 and S1.6 for model output and Figure S1.1 

for individual curve fits). 

For the riparian site (Figure 1.5a, bottom), the second-order model (adjusted 

R2=0.27, p=0.01) performed similarly to the first-order model (adjusted R2=0.30, 

p=0.002). Including a negative second-order temperature term did not improve 

explanatory power at the riparian site, and the likelihood ratio test revealed that the two 

models were equivalent (p = 0.75). Slopes of the first-order regression models for the two 

sites were not significantly different (0.085 ± 0.024 standard error of the mean for 

upland, and 0.104 ± 0.031 for riparian). 

The second-order relationship between June temperature and upland RWI 

predicted that a 2°C increase in temperature, from the present-day June mean of 8.77°C 

to 10.77°C, would increase RWI from 1.029 to 1.111, representing an 8% increase in 

basal diameter growth. The first-order relationship for the riparian site predicted than an 

identical temperature increase would yield a RWI increase from 0.981 to 1.190, a 21% 

increase in basal diameter growth. 

Biomass simulation 
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Our simulations predicted that the 8% growth increase at the upland site in 

response to 2°C of warming would yield a mean aboveground biomass increase of 19%, 

from 939 to 1121 grams dry weight per m2, using mean parameter estimates from Berner 

et al. (2015). At the riparian site, a 21% growth increase would yield a 36% biomass 

increase, from 5,455 to 8,502 grams dry weight per m2. Within each site, the use of low 

and high parameter estimates yielded similar percent increases in biomass (Figure 1.6). 

Discussion  

Climate sensitivity comparison and climate-growth relationship 

Contrary to our expectation outlined in the Soil Moisture Hypothesis, the mesic riparian 

site did not show greater climate sensitivity as defined by the slope of the relationship 

between RWI and mean June temperature. Slopes were nearly identical for the riparian 

and upland sites (Figure 1.3). While the moving window analysis confirmed June as the 

key period for shrub growth, the overall June climate signal may result from a 

“smearing” of two shorter term peaks in effect size, especially apparent for 5- and 10-day 

windows at the upland site (Figure 1.4). These peaks, centered on the final days of May 

and the second half of June, respectively align with bud break and leaf out for S. pulchra 

in this region (Sweet et al., 2014).  

Our finding of similar first-order slope coefficients for the two sites does not 

imply that soil moisture plays no role in modulating shrub response to temperature. 

Rather, our use of ecologically-based models to explore the functional form of the 

climate-growth relationship suggests that soil moisture may become increasingly 

important in determining whether shrubs will take advantage of sustained increases in 

June temperature (Figure 1.7). Upland S. pulchra growth was explained better by a 
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decelerating model, incorporating a negative second-order term for mean June 

temperature, than by the first-order model. In contrast, a first-order linear model fit best 

at the riparian site. A potential explanation for these distinct results is that riparian shrubs 

growing in mesic soils are not subject to temperature-induced moisture limitation that 

could affect shrubs growing in the drier, upland site during warm growing seasons 

(Wilmking et al. 2005; D’Arrigo et al., 2008; D’Arrigo et al., 2009; Myers-Smith et al., 

2015a). Therefore, while modest warming may affect riparian and upland shrubs 

similarly, sustained warming (e.g. greater than 2°C above present mean) may have 

positive effects on riparian shrub growth, with negligible to negative effects on upland 

shrub growth. This combination of effects represents a new definition of climate 

sensitivity, where contrasting responses to climate may be detected by examining the 

functional form of climate response. 

It is possible that a functional relationship besides quadratic, such as sigmoidal, 

may usefully describe the climate response of shrubs at sites similar to our upland S. 

pulchra. We could not distinguish here between the quadratic and sigmoidal functions 

using ΔAIC. Still, our comparison of the first-order linear and quadratic functions 

demonstrates that moving beyond estimates of first-order linearity may provide a more 

realistic representation of shrub growth dynamics. We believe this approach will improve 

predictive power of dendroecology models and produce outcomes that are more useful 

for climate and carbon cycle models. 

Our finding that June mean temperature is the primary driver of S. pulchra growth 

is of particular importance given the disproportionately rapid warming for this month. 

June mean temperature has increased by .49°C per decade since 1965 (p<.001; NOAA 
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North Slope divisional climate data), faster than any other month of the growing season. 

At this rate, the conservative 2°C temperature increase used in our biomass simulation 

will be exceeded within the next 50 years (IPCC, 2013). 

Biomass simulation 

Our biomass simulation predicted that a 2°C increase in mean June temperature will 

increase S. pulchra biomass by 19% at our upland site and by 36% at our riparian site. 

These are conservative estimates that account only for accelerated individual growth, not 

the proliferation of new shrub stems across the landscape. However, we emphasize that 

factors besides soil moisture, such as topography, biotic interactions, or disturbance, may 

modify shrub growth trajectories (Schuur et al., 2007; Olofsson et al., 2009; Christie et 

al., 2015; Ropars et al., 2015; Ackerman & Breen, 2016). As reviewed by Myers-Smith 

et al. (2011), biomass increases like those predicted here will likely have significant 

impacts on surface energy balance, primary productivity, and soil temperature and gas 

exchanges. Suitable nesting habitat for birds, as well as food quantity and quality for 

herbivores, may also be altered (Ehrich et al., 2012; Boelman et al., 2015; Tape et al., 

2016). These effects will be particularly strong at the riparian site, where predicted 

percent increase in biomass is nearly double that of the upland site. In the context of 

Equation 1, this doubling may be largely attributed to greater stem basal diameter at the 

riparian site (Table 1.1). Increases in transpiration at the riparian site may have the 

potential to alter local hydrologic regimes. 

Summer mean temperature commonly drives growth in arctic shrubs, often 

indirectly via elevated nitrogen mineralization rates (e.g. Hobbie & Chapin, 1998; Zamin 

& Grogan, 2012), so biomass increases similar in magnitude to those described here are 
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likely to be pan-Arctic. Direct estimates of shrub biomass increases on this scale may be 

possible using our biomass simulation method, which connects dendroecology analysis to 

allometric biomass equations. To accomplish this goal, we call for the coupling of 

allometry measurements with future dendroecology studies, as well as improved spatial 

coverage of such investigations. This would facilitate the inclusion of growth ring data 

into dynamic vegetation models and carbon cycle models. 

Future directions 

We have demonstrated that S. pulchra at a dry upland and a mesic riparian site have 

similar sensitivities to modest temperature increases based on first-order coefficient 

estimates, an unexpected outcome given the Soil Moisture Hypothesis. However, our 

examination of the functional form of the climate-growth relationship revealed that site-

level growth responses diverged with more sustained temperature increase (e.g. >2° C 

increase in mean June temperature), with riparian shrubs responding positively over a 

wider range of temperatures. Finally, we used results of our climate-growth model 

coupled with allometric equations to simulate a greater percent increase in biomass at the 

riparian site than at the upland site, given a +2°C temperature increase. 

We believe that dendroecology will continue to yield unique insight into the 

dynamics of arctic shrub growth by providing long-term, annually resolved growth 

chronologies that can be compared to climate records. The functional form analysis 

developed here could usefully be applied to existing chronologies of tree and shrub 

growth at sites with different climate histories and edaphic conditions. To maximize the 

applicability of such research for global dynamic vegetation modeling, we advocate the 

use of ecologically-based model selection in dendroecology, as well as the coupling of 
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growth ring studies with allometric measurements. This way, dendroecology data 

collected across landscape gradients of circumpolar north may be the key to accurately 

incorporating shrub expansion into predictions of future shifts in climate and wildlife 

habitat structure. 
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AGB = SD(a(BD(1 + PI))b) 

  

Equation 1.  Aboveground biomass (AGB, grams of dry weight m-2) estimation adapted from 
Berner et al. (2015), where: SD = stem density (stems m-2); BD = stem basal diameter (cm); PI 
= % increase in growth based on the climate-growth model (PI=0 for present-day 
temperature regime); a and b are fitted parameters. 
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Figure 1.1  Diminishing growth returns to increasing temperature. A 2°C increase in 
temperature may have highly variable effects on plant growth, depending on the location of 
current mean temperature along the x-axis. 
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Figure 1.2  (a) Example of S. pulchra radius, with growth increments from 1964 to 2014. (b) 
Ring width index chronologies for riparian (top) and upland (bottom) sites. Median 
chronology is shown in black, and the interval bounding the 25-75 percentile is shown by the 
red band. 



27 
 

 

 

  

Figure 1.3  First-order linear relationship between ring width index and mean June 
temperature does not differ significantly between the upland (red) and riparian (blue) site. 
Mean RWI estimates are bounded by 95% confidence intervals. 
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Figure 1.4.  Moving window analysis for upland (top) and riparian (bottom) sites. Effect 
sizes are defined as the coefficient relating RWI to mean temperature for variable-length 
time windows (represented by line color) centered on each day of year (x-axis) between 
May 1 and July 31. Solid line portions represent significant effect sizes at the alpha = 0.05 
level, while dashed line portions are not significant. 
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Figure 1.5  (a) Scatterplots relating ring width index (RWI) to mean June temperature (T) for 
upland (top) and riparian (bottom) sites. First-order linear and quadratic fits are shown 
respectively by the black dashed and solid red lines. Quadratic model best explains variation 
in upland RWI, while models perform similarly for the riparian site. (b) Time series of scaled 
RWI for upland (red) and riparian (blue) cohere with mean June temperature (black). 
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Figure 1.6  Aboveground S. pulchra biomass for present-day temperature regime and +2°C 
increase in mean June temperature at upland and riparian sites. Three bar groups represent 
variable parameter estimates from allometric equations provided by Berner et al. (2015). 
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Figure 1.7  Overlay of best-fit models relating ring width index to mean June temperature for 
upland (red) and riparian (blue) sites over the domain of observed temperatures during the 
last 2.5 decades. Growth responses for the two sites are similar for present-day mean June 
temperature (8.8°C, vertical dashed line), but responses are likely to diverge as temperature 
increases beyond +2°C. 
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Site characteristic Upland Riparian Significance 
Soil moisture (% volumetric 
water content) 

9.05 (2.01) 27.54 (4.23) * 

Thaw depth (cm) 32.50 (1.09) 57.65 (2.20) * 
Stem height (cm) 48.51 (1.95) 114.93 (5.44) * 
Stem length (cm) 67.50 (3.38) 162.87 (6.74) * 
Stem basal diameter (cm) 1.45 (.08) 3.01 (0.21) * 
Stem age (years) 28.03 (1.83) 30.59 (2.40)  

 

  

Table 1.1. Site characteristics (standard error of mean). Asterisks in Significance 
column indicate difference between sites at an alpha = 0.05 level in a two-tailed t-test 
with 30 samples per site. 
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Site Mean age Mean ring width EPS rbar MS 1r snr 
Upslope 28.03 (1.83) .197 (0.014) 0.85 0.356 0.260 0.018 5.536 
Riparian 30.59 (2.40) .403 (0.030) 0.87 0.367 0.329 0.058 6.949 

 

  

Table 1.2. Chronology statistics. Mean age and ring width are measured respectively in years 
and mm. Parenthetical values represent standard error of the mean. EPS = Expressed 
population signal; rbar = mean interseries correlation; MS = mean sensitivity; 1r = first-order 
autocorrelation; snr = signal/noise ratio 
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Site Climate sensitivity  Climate-growth adjusted R
2 

  20-year cubic spline Negative exponential   1
st

-order model 2
nd

-order model 
Upslope 0.492 (0.075, 0.736)* 0.390 (0.035, 0.653)*  0.33 0.45 
Riparian 0.276 (0.029, 0.547)* 0.292 (-0.033, .632)   0.30 0.27 

Table 1.3. Summary of climate sensitivity and climate-growth relationship analyses. Climate 
sensitivity values (95% confidence interval) are based on June mean temperature and 
derived from treeclim analysis (Zang & Biondi, 2015) using two detrending strategies for each 
site chronology. Asterisks indicate climate sensitivities are significantly different from zero at 
an alpha = 0.05 value.  
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Chapter 2 

Uniform shrub growth response to June temperature across the North Slope of 
Alaska 

Summary 

The expansion of woody shrubs in arctic tundra alters many aspects of high-latitude 

ecosystems, including carbon cycling and wildlife habitat. Dendroecology, the study of 

annual growth increments in woody plants, has shown promise in revealing how climate 

and environmental conditions interact with shrub growth to affect these key ecosystem 

properties. However, a predictive understanding of how shrub growth response to climate 

varies across the heterogeneous landscape remains elusive. Here we use individual-based 

mixed effects modeling to analyze 19,624 annual growth ring measurements in the stems 

of Salix pulchra (Cham.), a rapidly expanding deciduous shrub. Stem samples were 

collected at six sites throughout the North Slope of Alaska. Sites spanned four landscapes 

that varied in time since glaciation and hence in soil properties, such as nutrient 

availability, that we expected would modulate shrub growth response to climate. Ring 

growth was remarkably coherent among sites and responded positively to mean June 

temperature. The strength of this climate response varied slightly among glacial 

landscapes, but in contrast to expectations, this variability was not systematically 

correlated with landscape age. Additionally, shrubs at all sites exhibited diminishing 

marginal growth gains in response to increasing temperatures, indicative of alternative 

growth limiting mechanisms in particularly warm years, such as temperature-induced 

moisture limitation. Our results reveal a regionally-coherent and robust shrub growth 

response to early season growing temperature, with local soil properties contributing only 

a minor influence on shrub growth. Our conclusions strengthen predictions of changes to 
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wildlife habitat and improve the representation of tundra vegetation dynamics in earth 

systems models in response to future arctic warming. 

Background 

Woody shrubs are expanding in arctic tundra, with cascading effects on terrestrial carbon 

balance and wildlife habitat (Tape et al. 2006, Myers-Smith et al. 2011). Establishing the 

drivers of shrub expansion is therefore key to predicting future shifts in both ecosystem 

and community processes at high latitudes, where half of Earth’s terrestrial organic 

carbon is stored (Tarnocai et al. 2009, Hugelius et al. 2014). Recent meta-analyses 

(Myers-Smith et al. 2015a, Martin et al. 2017) suggest that shrub growth variability is 

driven by temperature and precipitation, and modified by ecosystem properties like soil 

moisture and nutrient status. However, very few empirical studies have tested these ideas 

by measuring shrub growth on decadal timescales across landscapes with varying 

ecosystem properties. 

One over-arching “master” variable controlling ecosystem properties in arctic 

Alaska is the time since last glaciation. Due to the heterogeneous nature of glacial 

advance and retreat in this region, adjacent watersheds can vary in landscape age by more 

than an order of magnitude (Hamilton 2003). This patchwork of glacial histories gives 

rise to spatial variation in ecosystem properties among landscapes. Older glacial 

landscapes have greater plant biomass, cation exchange capacity, soil acidity, and net 

nitrogen mineralization (Hobbie and Gough 2002, Hobbie et al. 2002, Walker et al. 

2014). Because of these legacy effects of glaciation, Oswald et al. (2014) argue that 

glacial history is a key regional control on vegetation response to future climate changes. 

Nitrogen availability, the strongest limiting factor to plant growth in the region, varies 
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widely among landscapes of different ages. For example, Hobbie and Gough (2002) 

found 10 times greater rates of annual net nitrogen mineralization in an older landscape 

(120,000-60,000 years since glaciation) compared to an adjacent younger landscape 

(25,00-11,500 years since glaciation). Therefore, it may be expected that shrub growth is 

more responsive to climate variability in older glacial landscapes where nitrogen 

limitation is less severe (Chapin 1983, Chapin et al. 1995, Whittinghill and Hobbie 2011, 

Walker et al. 2014, Shaver et al. 2014). 

Within glacial landscapes, variability in local soil conditions has further 

consequences for vegetation response to climate. For example, while shrub growth often 

responds positively to growing season temperature, temperature-induced moisture 

limitation may constrain growth during particularly hot years at drier locations such as 

uplands (Ackerman et al. 2017, Gamm et al. 2017). Such local variability in soil 

conditions interacts with regional glacial geology and broad-scale climate patterns to 

create a hierarchical structure of controls on tundra vegetation growth (Myers-Smith et 

al. 2015a). This hierarchy poses a major challenge to building a predictive understanding 

of arctic shrub growth. 

Dendroecology, the study of annual growth increments in woody plants, has 

become a popular method within the last two decades for analyzing climate response of 

arctic vegetation (See studies included in Myers-Smith et al. 2015a, Young et al. 2016, 

Ackerman et al. 2017, Gamm et al. 2017). This method is particularly well-suited for 

arctic tundra, since many plant species are long-lived and interannual climate is highly 

variable. Further, the use of individual-based mixed effects models in the analysis of 

dendroecological data yields estimates of the strength of controls on shrub growth across 



38 
 

all levels of the aforementioned hierarchy (Myers-Smith et al. 2015a, Myers-Smith et al. 

2015b). In contrast to the traditional site-level standardization approach that extracts a 

uniform growth signal shared among individuals at a site, the mixed-modeling approach 

maintains information related to the variability in climate response among individuals 

(Galván et al. 2014). Therefore, this method is ideal for comparing individualistic climate 

responses of shrubs sampled from distinct glacial landscapes and from multiple 

microsites within those landscapes (Galván et al. 2014, Myers-Smith et al. 2015b). 

In this study, we present results of dendroecological analysis from six populations 

of Salix pulchra (diamond-leaf willow), a rapidly expanding deciduous shrub, growing 

across four landscapes of different glacial ages on the North Slope of Alaska. This work 

builds on a prior study by Ackerman et al. (2017) that revealed shrub growth sensitivity 

to mean June temperature at upland and riparian sites within a single glacial landscape. 

Diminishing marginal growth gains to increasing temperature were evident only at the 

upland site, a potential indicator of temperature-induced moisture limitation during 

particularly warm years. Here we explore whether such patterns hold at a regional scale 

encompassing four landscapes ranging in age from 14,000 to over 900,000 years since 

glaciation. We use individual-based mixed modeling to test two hypotheses: 

1. Shrub growth on older glacial landscapes will respond more strongly to climate 

variability, because older landscapes are less nitrogen-limited. 

2. In upland areas (but not in riparian areas), shrubs will show diminishing 

marginal growth gains in response to increasing temperature, because fewer soil 

resources such as moisture are available in upland areas to facilitate elevated growth in 

warm years.  
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Methods 

During the summers of 2015 and 2016, we sampled six populations of Salix pulchra 

(cham.) on the North Slope of Alaska across four landscapes of different glacial ages, 

ranging between 14,000 and >900,000 years old (Figure 2.1). Within two of the 

landscapes, Kuparuk and Inigok, we replicated our sampling of 40 stems at both upland 

and streamside riparian sites. Within the other two landscapes, Itkillik and Roche 

Moutonee in the Brooks Range, we sampled only from upland sites. Detailed description 

of the geologic histories of the sampling sites can be found in the references in Table 2.1. 

At each site, shrub sampling protocol (including serial sectioning along the stem), 

microscope slide preparation, image-based ring width measurements, and cross-dating 

were conducted following methods described by Ackerman et al. (2017). In total, we 

cross-dated 19,624 annual ring (i.e. secondary stem growth) measurements across 184 

individuals to assemble the ring width dataset. Measurements from the Kuparuk 

landscape have been previously published (Ackerman et al. 2017), while data from the 

rest of the landscapes are presented here for the first time. For visualization purposes, 

traditional dendroecological standardization (following Ackerman et al. 2017) was used 

to calculate time-stable ring width indices for each individual, and site-level chronologies 

were calculated as the median of all ring-width index values available in a given year 

(Figure 2.2). We ran a principal component analysis of the six site-level chronologies to 

assess coherence in the growth signal among the sites. 

Expanding on the more traditional dendroecological standardization approaches 

used in Ackerman et al. (2017), we used linear mixed effects modeling to analyze the 

raw, unstandardized ring width data of individual shrubs. Compared with traditional 
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methods, mixed effects modeling is more effective in preserving individual-level 

variation in shrub growth while accounting for the influence of intrinsic factors, such as 

stem age, on ring width (Galván et al. 2014, Myers-Smith et al. 2015b). We used the R 

package nlme (Pinheiro et al. 2014) to run our models, with ring width (log transformed 

to achieve normality of residuals) as the response variable, individual shrub as a random 

effect, and a first-order autocorrelation structure. 

To determine which climate variables to test as fixed effects in our model, we 

used the R package treeclim (Zang and Biondi 2015) to correlate growth chronologies 

from each site with monthly climate variables including precipitation and minimum, 

mean, and maximum temperatures. Climate data for Kuparuk, Itkillik, and the Brooks 

Range landscapes come from Toolik Field Station (Environmental Data Center Team 

2017), which is within 50 km of each of these sites and has continuously monitored 

climate conditions since 1989. Climate data for Inigok come from the NOAA Climate 

Divisional Dataset for the North Slope of Alaska (NOAA, Vose et al. 2014), a regional 

climate monitoring product, as no individual meteorological station has a continuous 

multi-decadal record of climate near Inigok. Monthly climate variables found to be 

significant predictors of shrub growth across multiple sites were selected for inclusion as 

fixed effects. The other fixed effects were stem length, glacial landscape (categorical, 4 

levels), and position (categorical, 2-levels: upland or riparian). We included a term for the 

interaction between climate variables and glacial landscape, to test whether shrub 

response to climate varied among landscapes (Hypothesis 1). We also tested for second-

order relationships between significant climate variables and shrub growth, to account for 

potential decreasing marginal growth gains in response to increasing temperature. A 
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negative second-order relationship between temperature and ring width would be 

consistent with temperature-induced moisture limitation during warm growing seasons 

(Ackerman et al. 2017). Finally, we tested for an interaction between this second-order 

relationship and position, to determine whether temperature-induced moisture limitation 

was stronger at the upland sites (Hypothesis 2). We ran the model for ring width 

measurements from 1989 to 2014, the common period between the shrub growth 

measurements and the instrumental record across all sites.  

After running the full model described above, we tested a more parsimonious 

model that excluded terms not found to be statistically significant at alpha = 0.05. To 

compare the full model with the parsimonious model, we used both the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC), which 

imposes a stronger penalty for increasing model complexity.  

Results 

Climate correlation analysis in treeclim revealed strong positive correlations between 

standardized ring-width index and June mean temperature (hereafter June T) across all 

sites (Figures 2.2 and 2.3). May minimum temperature had a weak negative correlation 

with ring-width index. Shrub growth was highly coherent among the six sites, as the first 

principal component captured 72.4% of the total variance in ring-width indices. Ring-

width measurements are available from the International Tree Ring Data Bank 

(http://www.ncdc.noaa.gov/paleo/treering.html). 

In our individual-based mixed modeling analysis of the raw ring width 

measurements, the parsimonious model (AIC = 5568, BIC = 5562) was preferred over the 

full model (AIC = 5584, BIC = 5691). Both models explained 45% of the variability in 
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ring width, using Nakagawa and Schielzeth’s (2013) calculation of conditional R2. 

Therefore, we focus on results of the parsimonious model, but we present complete 

output for both models in Table 2.2.  

June T was the climate variable with the greatest effect size on ring width. 

Further, there was a statistically significant interaction between June T and glacial 

landscape. However, in contrast to our prediction arising from Hypothesis 1, the strength 

of this interaction did not vary systematically with landscape age. For example, shrub 

growth was most sensitive to climate in the youngest landscape, Brooks Range, while 

shrub growth was least sensitive to climate the second youngest landscape, Itkillik. Shrub 

growth sensitivities to June T at the two oldest landscapes were intermediate. There was 

also a negative second-order relationship between ring width and June T, which is 

consistent with temperature-induced moisture limitation of growth in warm growing 

seasons. However, in contrast to our expectation in Hypothesis 2, the strength of this 

temperature-induced moisture limitation did not vary by position within the landscape 

(upland versus riparian), because position itself was not a significant term in the model. 

Longer stems were positively associated with ring width, while stem age was 

negatively associated with ring width (Table 2.2). Though position was not included as a 

significant term in the parsimonious model, it should be noted that position was 

correlated with stem length, which was a significant predictor of ring width (Figure 2.4; 

Table 2.3). Riparian shrubs had greater mean ring widths than upland shrubs. Mean 

annual stem elongation was also greater for riparian individuals than for upland 

individuals, as stem age did not differ across populations (Table 2.3).  

Discussion 
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Our analysis revealed an overwhelming effect of June temperature on shrub 

growth, despite substantial variation in ecosystem properties (e.g. pH, soil moisture, 

nitrogen availability) associated with glacial landscape age and position (Chapin et al. 

1988, Hobbie and Gough 2002, Hobbie et al. 2002, Walker et al. 2014, Ackerman et al. 

2017). Contrary to our expectation in Hypothesis 1, shrubs growing on older glacial 

landscapes were not more sensitive to climate variability, though shrub response to 

climate did vary slightly among landscapes. Contrary to our expectation in Hypothesis 2, 

within-landscape shrub response to climate did not vary based on position (upland versus 

riparian). Temperature-induced moisture limitation (as indicated by a negative, second-

order relationship between temperature and ring width) was evident across our entire set 

of samples, regardless of position. At the site level, interannual shrub growth was 

remarkably coherent across the North Slope (Figure 2.2), likely driven by the strength of 

the June temperature signal. 

Mean June temperature was the only climate variable to significantly affect 

individual shrub growth in all six populations sampled, and in all cases it provided the 

strongest growth signal of any climate variable (Figure 2.2). This coherence in climate 

response across the North Slope contrasts with a meta-analysis (Myers-Smith et al. 

2015a) that found significant variability in shrub response to climate at both regional and 

local scales. However, the studies included in this meta-analysis are largely single-site 

investigations with varied methodologies not designed to test for uniformity-versus-

heterogeneity in climate response among sites. The uniform climate response we found in 

shrubs across the North Slope emphasizes the importance of consistency in sampling and 

measurement protocols, as outcomes of shrub dendroecological analyses vary based on 
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the specific measurement techniques used (Myers-Smith et al. 2015b). For example, 

climate sensitivity of shrub growth appears greater when ring measurements are taken at 

the root collar compared with higher up the stem (Ropars et al. 2017). In our analysis, we 

used serial sectioning (Myers-Smith 2015b) to ensure that the June temperature signal in 

the shrubs we sampled was indicative of secondary growth throughout the stem, not just 

in a specific part of the stem (e.g. the root collar). 

Shrub climate response varied among glacial landscapes, indicated by a 

significant interaction between landscape and June T. However, the strength of this 

interaction was not systematically related to landscape age. Shrubs in older landscapes 

reported to have greater nitrogen availability did not respond more strongly to June T 

than shrubs in younger landscapes reported to have lower nitrogen availability (Hobbie 

and Whittinghill 2011). This outcome did not support Hypothesis 1, perhaps due to the 

difficulty of measuring nitrogen availability for plants in tundra soils. Although older 

landscapes have greater net nitrogen mineralization rates (Hobbie et al. 2002), this may 

not be the best indication of nitrogen availability, as some tundra plant species can use 

organic forms of nitrogen (Schimel and Chapin 1996, Schimel and Bennet 2004). 

Additionally, other factors associated with landscape properties (e.g. pH, herbivory rates, 

disturbance regimes, availability of other nutrients, etc.) may impact shrub climate 

response more than nitrogen availability or landscape age per se.  

Within-landscape variability in position (upland versus riparian) did not alter 

shrub climate response, nor was its main effect a significant predictor of ring width. 

However, stem length, which was partially determined by position, was positively 

correlated with ring width. Favorable landscape positions such as riparian zones tend to 



45 
 

host taller shrubs with greater growth rates (Ackerman et al. 2017). In turn, taller shrubs 

have stronger climate responses (Myers-Smith et al. 2015a), perhaps due to release from 

competition with shorter conspecific neighbors (Saccone et al. 2017). Therefore, while 

position was not directly useful in modeling shrub growth, stem length, often an indirect 

effect of position, was a highly significant predictor of secondary growth. Separating the 

often correlated effects of shrub size and position within the landscape would not have 

been possible using a traditional site-based chronology approach to the analysis of our 

ring width data, as individual (within-site) variability in stem size would have been lost. 

Our mixed modeling approach thus provided unique ecological insight on the importance 

of shrub size and competition in growth variability (Myers-Smith et al. 2015a, Myers-

Smith et al. 2015b, Young et al. 2016). 

We found evidence supporting temperature-induced moisture limitation of shrub 

growth, indicated by the negative second-order relationship between ring width and June 

T. In other words, shrubs across the North Slope showed decreasing marginal growth 

gains in response to increasing June T. This second-order relationship did not depend on 

shrub position within the landscape. This result differs from findings by Ackerman et al. 

(2017), who found temperature-induced moisture limitation at a dry upland site, but not 

at a nearby moist riparian site. The contrasting results described in the present study may 

be due either to greater individual replication, or to the difference in model specification, 

which here includes more individual-level information (e.g. stem length). Alternatively, 

the standardization procedure used by Ackerman et al. (2017) may have removed low- to 

medium-frequency variability in ring-width index that would be diagnostic of 

temperature-induced moisture limitation at both sites, given the monotonic increase in 
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mean June air temperature on the North Slope in recent decades (NOAA). In this study, 

we avoided this potential issue by analyzing raw ring width data using an individual-

based model, which preserved growth variability at all temporal frequencies and 

maintained shrub-level information in the model (Galván et al. 2014, Myers-Smith et al. 

2015a, Myers-Smith et al. 2015b). Regardless of the exact cause of the discrepancy, our 

results further support the idea that greater temperatures do not always lead to consistent 

increases in shrub growth, due to interactions with other limiting resources such as 

moisture (Ackerman et al. 2017, Gamm et al. 2017). We cannot rule out that another 

variable besides moisture might become a limiting factor to shrub growth at high 

temperatures. 

The early season response in secondary stem growth across all our sites is 

consistent with the findings of Chapin and Shaver (1989), who showed that biomass 

accumulation in the leaves and twigs of deciduous shrubs was restricted to the early 

growing season. Shaver (1986) found that secondary growth accounts for half of 

aboveground net primary productivity in Salix shrubs from the region (the other half 

being stem elongation and leaf growth). Therefore, we can infer that almost all 

aboveground net primary productivity in Salix occurs early in the growing season. 

Radville et al. (2016) also documented early season peaks in belowground productivity 

of tundra communities near Kangerlussuaq, Greenland, though phenology of deciduous 

shrub roots in particular were not reported. 

Our results suggest that as June temperatures continue to warm, shrub growth will 

increase across all glacial landscapes of the North Slope. Based on allometric 

relationships between secondary stem growth and aboveground biomass, large shrubs 
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with high growth rates will add proportionally more biomass in response to increased 

temperatures than smaller shrubs (Berner et al. 2015, Ackerman et al. 2017). 

Consequently, areas favorable for large shrubs, such as riparian zones and water tracks, 

may continue to yield improved habitat quality for shrub-reliant species such as moose 

and ptarmigan (Tape et al. 2010, Tape et al. 2016). Greater aboveground shrub biomass 

in these areas may also impact rates of soil carbon turnover, and increased secondary 

stem growth in particular affects water balance (Bret-Harte et al. 2002). Across both 

riparian and upland habitats, biomass increase may be limited by soil moisture in 

particularly warm growing seasons. 

The robust and highly coherent shrub growth response to temperature early in the 

growing season raises prospects for climate reconstruction using a multi-proxy approach. 

Otolith growth in long-lived fish of tundra lakes has been introduced as an effective 

annually-resolved climate proxy beyond latitudinal treeline (Black et al. 2013, Torvinen 

2017). In contrast to the June signal embedded in the shrub rings, otolith growth in lake 

trout (Salvelinus namaycush) on the North Slope of Alaska responds positively to mean 

August air temperature (Black et al. 2013, Torvinen 2017). June and August air 

temperatures in this region are not correlated (R2 = 0.02, p = 0.44 for the period 1989-

2014; NOAA). Therefore, reconstructing past temperature conditions over the course of 

entire growing seasons necessitates the use of both shrub and otolith proxies, which are 

each tuned to distinct, uncorrelated periods of the growing season. We believe the 

prospects for such a multi-proxy reconstruction are strong, given the large range overlap 

between S. namaycush and deciduous shrubs in the Arctic. Multi-proxy climate 

reconstruction in the Arctic would be useful because of the poorly resolved 
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spatiotemporal climate record during the instrumental period (Overland et al. 2004, 

Simmons and Poli 2014, Cowtan and Way 2014, Simmons et al. 2017). On the North 

Slope of Alaska, for example, the NOAA divisional dataset (NOAA) incorporates data 

from just a single inland meteorological station. Multi-proxy reconstructions from the 

North Slope could be used to evaluate spatial patterns in climate where instrumental data 

are lacking. 

Conclusion 

Our dendroecological analysis of S. pulchra revealed remarkable coherence in secondary 

growth and climate response across four glacial landscapes of the North Slope of Alaska. 

June mean temperature was the dominant control on annual shrub growth at all sites. 

Shrub response to climate varied slightly among glacial landscape, but there was no 

systematic correlation between landscape age and climate sensitivity of shrub growth. 

Position (upland versus riparian) had no direct effect on growth, though taller shrubs, 

more common in riparian areas, had higher growth rates. As June temperatures continue 

to increase, deciduous shrubs are likely to continue expanding across all glacial 

landscapes of the North Slope. However, this expansion may be limited by temperature-

induced moisture limitation, or by another factor, in particularly warm years. Together, 

these outcomes highlight the preeminence of climate in controlling shrub growth 

variability across the North Slope. When combined with future climate scenarios, our 

model of shrub growth may strengthen predictions of changes to habitat structure and 

improve the representation of tundra communities in dynamic vegetation models. 
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Figure 2.1. Landscape age in the circumpolar Arctic tundra (a) and on the North Slope of Alaska 
(b), where Salix pulchra were sampled across four glacial landscapes. At the Kuparuk (c) and the 
Inigok landscapes, S. pulchra were sampled from both upland and riparian positions. Only 
upland samples were taken at the Brooks Range and Itkillik landscapes. Landscape age data was 
provided by Raynolds and Walker (2009). 
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Figure 2.2. Z-scores of median ring-width index (black) correlate with mean June air 
temperature (red) in six Salix pulchra populations across the North Slope of Alaska. Gray ribbons 
represent 25th and 75th percentile of ring-width index at each site. Growth was strongly coherent 
among the six sites, as the first principal component explained 72.4% of the variance in ring 
width indices for the period of overlap with the climate record (1989-2014). Raw ring widths 
were standardized for visualization using a 20-year cubic smoothing spline following Ackerman 
et al. (2017). 
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Figure 2.3. Mean June air temperature correlates positively with ring-width index in Salix 
pulchra individuals across four glacial landscapes on the North Slope of Alaska. Raw ring widths 
were standardized for visualization using a 20-year cubic smoothing spline following Ackerman 
et al. (2017). Calculations of best-fit curves for each landscape include both first- and second-
order temperature terms, to account for potential effects of temperature-induced moisture 
limitation. 
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Figure 2.4. Stem length correlates with mean ring width in individuals from Inigok and Kuparuk, 
where both upland and riparian populations were sampled. Riparian individuals had longer 
stems and larger ring widths than upland individuals.  

  



54 
 

Table 2.1. Characteristics of four glacial landscapes sampled across the North Slope of Alaska for this project. 
Basal diameter, stem length, stem age, and stem elongation rate represent mean (standard error) values for shrub 
individuals sampled in each landscape. Geology reference 1 = Badding et al. 2013; 2 = Hamilton 2003; 3 = Walker 
et al. 2014; 4 = Hobbie and Gough 2002; 5 = Hobbie et al. 2002; and 6 = Carter 1981. 

Site Latitude, 
Longitude 

Landscape 
age 
(years) 

Populations 
sampled 

Basal 
diameter 
(mm) 

Stem 
length 
(cm) 

Stem age 
(years) 

Stem 
elongation 
rate 
(cm/year) 

Geology 
reference 

Brooks 
Range 

68.375, 
-149.295 14,000 Upland 19.04 (1.62) 111.4 (9.5) 26.14 (1.38) 4.48 (0.15) 1 

Itkillik 68.641, 
-149.614 21,000 Upland 16.13 (0.60) 82.0 (2.6) 30.52 (1.95) 3.06 (0.22) 2, 3, 4, 5 

Kuparuk 68.660, 
-149.423 500,000 Riparian 

& upland 23.83 (1.90) 122.7 (8.6) 31.17 (1.68) 4.50 (0.42) 2, 3 

Inigok 70.000, 
-153.097 > 900,000 Riparian 

& upland 14.06 (0.66) 82.6 (3.4) 24.31 (1.00) 3.70 (0.07) 6 
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Table 2.2. Fixed effect coefficient estimates for the parsimonious and full mixed models predicting Salix pulchra ring width (mm, log-
transformed) across the North Slope of Alaska. The parsimonious model was preferred based on both AIC and BIC. Conditional R2 (Nakagawa and 
Schielzeth 2013) was 0.45 for both models. Temperatures (T) are in units of °C, and stem age is measured in years. 

 Parsimonious model Full model 
 AIC = 5568, BIC = 5562 AIC = 5584, BIC = 5691 
Parameter Estimate St. error p-value Estimate St. error p-value 
Intercept -4.42 0.244 < 0.001 -4.36 0.271 < 0.001 
June mean T 0.324 0.048 < 0.001 0.329 0.049 < 0.001 
(June mean T)2 -0.007 0.001 0.01 -0.006 0.003 0.028 
May minimum T -0.035 0.003 < 0.001 -0.035 0.003 < 0.001 
Stem length 0.018 0.001 < 0.001 0.016 0.001 < 0.001 
Landscape Inigok 0.87 0.152 < 0.001 0.88 0.169 < 0.001 
Landscape Itkillik 1.064 0.165 < 0.001 1.046 0.165 < 0.001 
Landscape Kuparuk 1.005 0.151 < 0.001 1.04 0.168 < 0.001 
Stem age -0.035 0.002 < 0.001 -0.035 0.002 < 0.001 
June mean T*Landscape Inigok -0.069 0.017 < 0.001 -0.079 0.019 < 0.001 
June mean T*Landscape Itkillik -0.102 0.017 < 0.001 -0.102 0.017 < 0.001 
June mean T*Landscape Kuparuk -0.086 0.016 < 0.001 -0.096 0.018 < 0.001 
Position_upland Not included -0.028 0.082 0.73 
(June mean T)2*Position_upland Not included -0.001 0.001 0.21 
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Table 2.3. Shrub characteristics from upland and riparian populations. Shrubs included in these results were sampled from the Kuparuk and 
Inigok landscapes, where shrubs at both positions were sampled. Riparian shrubs were generally larger and faster growing than upland shrubs. 
Values are reported as means (standard errors) of individual shrub measurements. All differences between upland and riparian shrubs were 
significantly different at the alpha = 0.05 level, except for stem age (p = 0.18). 

Position 
Basal diameter 

(mm) 
Mean ring width 

(mm) 
Stem length 

(cm) 
Stem age 

(years) 
Stem elongation rate 

(cm/year) 
Upland 12.391 (0.530) 0.182 (0.003) 66.825 (2.399) 25.626 (1.396) 2.938 (0.150) 
Riparian 22.643 (1.464) 0.301 (0.005) 125.589 (5.912) 28.159 (1.271) 4.952 (0.300) 
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Chapter 3 

Global Estimates of Inorganic Nitrogen Deposition Across Four Decades 

Summary 

Atmospheric deposition of inorganic nitrogen is critical to the function of ecosystems and 

elemental cycles. During the industrial period, humans have doubled the amount of 

inorganic nitrogen in the biosphere and radically altered rates of atmospheric nitrogen 

deposition. Despite this rapid change, estimates of global nitrogen deposition patterns 

generally have low, centennial‐scale temporal resolution. Lack of information on annual‐ 

to decadal‐scale changes in global nitrogen deposition makes it difficult for scientists 

researching questions on these finer timescales to contextualize their work within the 

global nitrogen cycle. Here we use the GEOS‐Chem Chemical Transport Model to 

estimate wet and dry deposition of inorganic nitrogen globally at a spatial resolution of 2° 

× 2.5° for 12 individual years in the period from 1984 to 2016. During this time, we 

found an 8% increase in global inorganic nitrogen deposition from 86.6 to 93.6 Tg 

N/year, a trend that comprised a balance of variable regional patterns. For example, 

inorganic nitrogen deposition increased in areas including East Asia and Southern Brazil, 

while inorganic nitrogen deposition declined in areas including Europe. Further, we 

found a global increase in the percentage of inorganic nitrogen deposited in chemically 

reduced forms from 30% to 35%, and this trend was largely driven by strong regional 

increases in the proportion of chemically reduced nitrogen deposited over the United 

States. This study provides spatially explicit estimates of inorganic nitrogen deposition 

over the last four decades and improves our understanding of short‐term human impacts 

on the global nitrogen cycle. 

Background 
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Humans have doubled the amount of bio‐available inorganic nitrogen (IN) in the 

biosphere, radically altering ecosystem structure and function across the terrestrial‐

aquatic‐marine continuum (Fowler et al., 2013). Much of this anthropogenic IN enters 

ecosystems by atmospheric deposition of IN species following combustion and 

atmospheric transportation and transformation. Once deposited to land or surface water, 

IN may stimulate primary productivity, reduce plant species richness, acidify aquatic and 

terrestrial ecosystems, and alter rates of decomposition (Bobbink et al., 2010; Bobbink & 

Hicks, 2014; Grennfelt & Hultberg, 1986; Knorr et al., 2005; Phoenix et al., 2006; 

Stevens et al., 2004). Despite these effects of IN deposition on fundamental ecosystem 

and community processes, comprehensive inventories of global IN deposition with high 

spatial and temporal resolutions are lacking. 

Even with considerable advances in recent decades, significant gaps remain in the 

monitoring of both wet and dry IN deposition. Large‐scale networks measuring IN 

deposition in precipitation have aided in detecting regional trends in IN deposition 

quantity and redox state (i.e., the proportion of oxidized vs. reduced compounds). For 

example, Du et al. (2014) report that while overall IN deposition across the United States 

remained stable between 1985 and 2012, the proportion of chemically reduced nitrogen 

in wet IN deposition significantly increased. However, describing such patterns at a 

global scale is difficult, because the spatial coverage of IN wet deposition monitoring 

networks is low in many continental areas and absent in most marine areas (Dentener et 

al., 2014). Sparser still are measurements of dry IN deposition, due to the analytical 

challenge of measuring particle and trace gas fluxes in ambient air (Dentener et al., 

2014). 
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Modeling of global IN deposition has filled some of these monitoring gaps. The 

spatial resolution of IN deposition models has improved in recent years due to increased 

computing power, though the temporal resolution of available data sets remains low 

(Lamarque et al., 2013). For example, Galloway et al. (2004) demonstrated the 

increasing human dominance of the global nitrogen cycle by modeling IN deposition at a 

single time point in each of the 19th, 20th, and 21st centuries. This tendency toward 

centennial‐scale IN deposition modeling is useful for considering such long‐term trends. 

However, ecologists, biogeochemists, and others working on annual‐ or decadal‐scale 

questions are often left with few resources to contextualize their work within the broader 

global nitrogen cycle. For example, researchers who have conducted a 3‐year experiment 

of plant response to nitrogen fertilization may not have access to reliable IN deposition 

data over the specific duration of their experiment, potentially limiting the 

generalizability of their results. This lack of global‐scale, high‐temporal resolution IN 

deposition data contrasts with the wide availability of other variables of ecological 

interest such as climate parameters, soil moisture, and primary productivity (Cook et al., 

2007, 2010, 2015; Fan & van den Dool, 2004; Running et al., 2004). 

Here we present a new, spatially explicit data set of global wet and dry 

atmospheric IN deposition spanning the last four decades. We have two primary 

objectives with this work: 

(1) create a data product for researchers seeking estimates of IN deposition from 

anywhere on Earth (including both continental and oceanic locales) during the last 40 

years and (2) determine recent decadal‐scale trends in IN deposition across the globe, 

with special focus on areas with rapidly changing rates of IN deposition. 
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Methods 

GEOS‐Chem Chemical Transport Model 

We applied the GEOS‐Chem Chemical Transport Model (v11–01; www.geos‐chem.org) 

to obtain global gridded estimates of annual dry and wet deposition of IN. The model 

includes detailed HOx‐NOx‐VOC‐ozone‐BrOx tropospheric chemistry (Mao et al., 2013; 

Millet et al., 2015; Parrella et al., 2012) and aerosol thermodynamics (Fountoukis & 

Nenes, 2007; Pye et al., 2009). Chemical species included in the wet IN deposition 

calculations were NH3, NH4, NO3, and HNO3. Dry IN deposition calculations included 

these species plus N2O5 and NO2. The model also explicitly accounts for the deposition 

of nitrogen contained in organic nitrates. However, GEOS‐Chem does not simulate 

certain biogenic nitrogen‐bearing compounds, such as amino acids and urea, which can 

constitute a significant component of organic nitrogen deposition (Cornell et al., 2003). 

Therefore, our estimates of organic nitrogen deposition, reported in the supporting 

information, should be considered lower‐bound estimates. The organic nitrates simulated 

by GEOS‐Chem included propanone nitrate, isoprene hydroxynitrate, methyl vinyl 

ketone + methacrolein nitrates, ≥C4 alkylnitrates, methyl peroxy nitrate, 

peroxyacetylnitrate, peroxypropionylnitrate, and peroxymethacryloyl nitrate. We did not 

include halogen nitrates in our deposition analysis. 

Our model runs used assimilated meteorological data (the Modern‐Era 

Retrospective Analysis for Research and Applications, version 2; MERRA‐2; Gelaro et 

al., 2017) from the NASA Global Modeling and Assimilation Office at a degraded 

horizontal resolution of 2° × 2.5° with 47 vertical layers. The MERRA‐2 product begins 

in 1980, and it has 3‐hr temporal resolution for 3‐D meteorological parameters and 1‐hr 
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resolution for surface quantities and planetary boundary layer (PBL) height. The 

simulation applied the TPCORE advection algorithm (Lin & Rood, 1996), convective 

mass fluxes from the MERRA‐2 archive (Wu et al., 2007), and nonlocal PBL mixing 

(Lin & McElroy, 2010). Our simulation was configured with a 15‐min time step for 

transport/convection/PBL mixing and a 30‐min time step for emissions/dry 

deposition/chemistry. 

Anthropogenic emissions of NOx/NH3/CO/SO2 are from the Emission Database 

for Global Atmospheric Research (EDGAR v4.2; 

edgar.jrc.ec.europa.eu/overview.php?v=42) inventory, which covers the years from 1970 

to 2010. For later years, we scaled the 2010 emissions inventory for each year and grid 

square based on an interpolation of species‐specific Representative Concentration 

Pathways 8.5 scenarios (Riahi et al., 2011) between 2010 and 2020. NOx emissions from 

microbial processes in soil are estimated, following Hudman et al. (2012). We use 

monthly biomass burning emissions from the Global Fire Emissions Database version 4 

(GFED4s; implemented as GFED4s in GEOS‐Chem; van der Werf et al., 2017). Because 

the GFED4s data are available from 1997, fire emissions simulated for prior years were 

set to 1997 levels. Other NOx emissions include maritime shipping (Holmes et al., 2014), 

aviation (Stettler et al., 2011), and lightning (Murray et al., 2012). Methane 

concentrations were prescribed based on observational data (Dlugokencky et al., 2018) as 

a meridional gradient imposed on four latitudinal bands assumed vertically uniform 

throughout the troposphere. 

The wet deposition scheme in the GEOS‐Chem simulation includes scavenging of 

particulate and soluble gaseous compounds in convective updrafts, in‐cloud rainout 
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(removal of species from the atmosphere into cloud droplets and subsequent rainwater), 

and below‐cloud washout by precipitation (Liu et al., 2001; Wang et al., 2011, 2014). Re-

evaporation is not considered. Dry deposition is based on the resistance‐in‐series scheme 

implemented as described by Wang et al. (1998) with coupled aerosol deposition 

(Alexander et al., 2005; Fairlie et al., 2007; Fisher et al., 2011; Jaeglé et al., 2011; Zhang 

et al., 2001). 

Due to the computational costs, we ran GEOS‐Chem for 4 years per decade 

(1983–1986, 1993–1996, 2003–2006, and 2013–2016), treating the first year run for each 

decade as the model spin‐up time, which was later discarded from our final data set. 

Thus, our model output included strings of three consecutive years in each decade, 

allowing us to assess both interannual and interdecadal trends in IN deposition. 

The model‐estimated deposition fluxes were converted to units of 

kgN·km−2·year−1 for each surface grid pixel, and species‐specific deposition values were 

then summed to determine overall IN dry and wet deposition. This allowed us to 

calculate the fraction of total IN deposited through (a) wet scavenging or (b) surface 

uptake and gravitational settling for each model pixel. Wet deposition fluxes at Earth's 

surface for each model pixel were calculated by aggregating the 3‐D loss rate over 47 

vertical model layers. 

Model Evaluation 

To evaluate the performance of the GEOS‐Chem model across space, we compared our 

results with measured values of wet and total IN deposition for the year 2006, for which 

measured data sets are available (Vet et al., 2018). We used a global data set (Vet et al., 

2018) to evaluate wet IN deposition. To evaluate total IN deposition, we used a North 
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American data set (Vet et al., 2018), because this region hosts the only major monitoring 

networks that routinely estimate regionally representative dry deposition fluxes of IN 

(Dentener et al., 2014). We used linear regression to compare our modeled deposition 

values with the measured values at every measurement location for 2006 to determine 

correlation coefficients between the modeled and measured values. 

In addition to the above spatial assessments, we evaluated the temporal trends in 

our model output against IN deposition measurements conducted by long‐term 

monitoring programs including the United States' National Atmospheric Deposition 

Program (National Atmospheric Deposition Program (NADP), 2018) and the European 

Monitoring and Evaluation Programme (Tørseth et al., 2012). We selected four sites from 

across the spatial domain of these monitoring programs with IN deposition measurements 

dating back to at least 1984, the beginning of our simulation. The sites include New York 

(United States), Westerland (Germany), Denali (United States), and North Dakota 

(United States). For each site, we estimated the annual rate of change in IN deposition, 

and we compared these values to our modeled rate of change for the corresponding grid 

cell. We transformed all IN deposition time series into Z‐scores before making these 

comparisons to account for methodological differences in quantifying IN deposition 

between the monitoring programs. 

Regional nitrogen emissions regulate the strength of IN deposition. Therefore, we 

generated maps of the distribution of nitrogen emissions from the various sources (e.g., 

anthropogenic emissions, biomass burning, industry, natural emissions, and biomass 

burning) used to drive the GEOS‐Chem simulation of nitrogen transport and 

transformation. 
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Analysis of Model Output 

After running and evaluating the GEOS‐Chem model, we used the output to calculate a 

rate of change in IN deposition during the last four decades. This calculation was done by 

dividing the difference between 2016 and 1984 IN deposition values for each grid cell by 

the number of intervening years (33). We then mapped these values to visualize mean 

annual rate of change in IN deposition across the globe. We conducted a similar analysis 

to visualize the proportion of IN deposited in chemically reduced molecules. 

Results 

Model Evaluation 

The GEOS‐Chem simulation reliably reproduced measured IN deposition patterns across 

space for both total and wet deposition (Figures 3.1a and 3.1b). For total IN deposition 

over North America, we found a correlation coefficient of 0.83 for modeled versus 

measured values, with a slope between 0.76 and 1.06 (95% confidence interval), 

indicating no statistically significant model bias. For the global comparison of wet IN 

deposition, we found a correlation coefficient of 0.77 for modeled versus measured 

values, with a slope between 0.43 and 0.50 (95% confidence interval), indicating a low 

bias in the modeled values. The spatial patterns in IN deposition produced by the GEOS‐

Chem simulation closely matched patterns reported in the literature for the industrialized 

period (Dentener et al., 2006; Galloway et al., 2004; Kanakidou et al., 2016; Lamarque et 

al., 2013; Vet et al., 2014). 

In addition to these spatial patterns, the model reliably reproduced measured 

temporal trends at the four long‐term monitoring sites across North America and Europe. 
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Our model estimates of annual change at these sites matched measured trends in both 

direction and magnitude (Figure 3.1c). 

Contemporary patterns in IN deposition 

Our global maps (Figure 3.2) revealed hotspots of IN deposition in eastern Asia, Europe, 

eastern North America, and southern Brazil. The highest modeled IN deposition rate for 

2016 was 5,155.6 kgN·km−2·year−1 in central China (28°N, 105°E), compared to a global 

average of 183.5 kgN·km−2·year−1. In total, 93.6 TgN were deposited as IN chemical 

species in 2016, closely matching output from other models of contemporary IN 

deposition, such as Galloway et al. (2004), who estimated 92.3 TgN/year in the early 

1990s (for direct comparison, our simulation estimated 93.8 TgN in 1994). IN deposition 

tended to be low over marine environments, deserts, and polar regions. At the North and 

South Poles, IN deposition for 2016 was, respectively, 27 and <1 kgN·km−2·year−1. The 

fraction of IN deposited by precipitation was generally greater than 50%, except in areas 

with low mean annual precipitation (Supplemental Material Figure S3.1). Across grid 

cells, nitrogen emission levels alone explained 58% of the variability in IN deposition. 

Change through time 

Overall, global IN deposition rose by 8%, from 86.6 TgN in 1984 to 93.6 TgN in 2016, 

though our change map (Figure 3.3) revealed variable regional trends during the period 

simulated. Major reductions in IN deposition have occurred in Europe and the Central 

Indo‐Pacific, with the greatest reduction occurring over Borneo (2°S, 115°E), where 

simulated IN deposition fell by an average of 124 kgN·km−2·year−1, from a high flux of 

5,066 kgN·km−2·year−1 in 1984. Modest reductions in IN deposition also occurred over 

the northeastern United States. Reductions in IN deposition in Europe and the 
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northeastern United States were associated with decreased nitrogen emissions from 

anthropogenic activity (Supplemental Material Figure S3.2). IN deposition in the Central 

Indo‐Pacific was heavily influenced by biomass burning (Supplemental Material Figure 

S3.2), which has high interannual variability, making it difficult to infer decadal‐scale 

trends in this source of atmospheric nitrogen. 

Significant increases in IN deposition have occurred over a widespread area in 

eastern Asia. The greatest increase in deposition rate, 111.5 kgN·km−2·year−1, has 

occurred in central China (28°N, 105°E). Modest increases in IN deposition have also 

occurred over areas of northwestern Canada, southern Brazil, and eastern Siberia. 

Increased IN deposition in eastern Asia and southern Brazil was associated with 

increased nitrogen emissions from anthropogenic activity in those regions (Supplemental 

Material Figure S3.2). IN deposition in northwestern Canada and eastern Siberia was 

strongly influenced by biomass burning (Supplemental Material Figure S3.2). Changes in 

IN deposition rates were generally minor over oceans, where we do not expect significant 

change in deposition due to low nitrogen emission rates. 

The rate of change in IN deposition has varied through time in some regions 

(Supplemental Material Figure S3.3). For example, IN deposition rate declined more 

slowly in Europe between 2004 and 2016 than during earlier periods of the simulation. In 

the eastern United States, both the magnitude and the direction of the change have varied; 

IN deposition increased from 1984 to 1996, remained steady from 1994 to 2006, and 

declined from 2004 to 2016. 

During the period simulated, the percentage of IN deposited in reduced molecules 

(NH3 and NH4) increased globally from 30.3% to 35.3% (p = 0.001), though regional 
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trends varied (Figure 3.4). Increases in the percentage of IN deposited in reduced 

molecules were found in most continental and marine areas, though decreases occurred 

over Russia and the Arctic Ocean. 

Discussion 

Our simulation showed a global increase in IN deposition between 1984 and 2016, 

though trends varied strongly by region. Our simulation successfully reproduced spatial 

patterns reported by other authors and matched IN deposition levels at locations where it 

has been measured directly (Dentener et al., 2006; Galloway et al., 2004; Jia et al., 2014; 

Kanakidou et al., 2016; Lamarque et al., 2013; Vet et al., 2014; Zhang et al., 2018). This 

study extends upon prior work by providing a data set with high temporal replication (12 

years modeled between 1984 and 2016). This focus on annual‐ and decadal‐scale 

variation in IN deposition provides a more detailed understanding of how the global 

nitrogen cycle has changed in the last four decades. 

IN deposition generally correlates with regional emissions (Tamm, 1991), a 

pattern evident in our model output. Our change map (Figure 3.3) shows that IN 

deposition has increased in regions where emissions have also grown in recent decades. 

For example, we found significant growth in IN deposition in east Asia, where emissions 

from fossil fuel combustion and excess fertilizer application have increased (Jia et al., 

2014; Liu et al., 2013). Similarly, we found decreased deposition where emissions have 

fallen in recent decades, such as Europe, where nitrogen emissions from fossil fuel 

combustion have declined (Fowler et al., 2007). Therefore, local management of IN 

deposition levels will rely on local‐to‐regional‐scale control of nitrogen emissions. This 

situation contrasts with management strategies for other atmospheric components that are 
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less chemically reactive and thus mix well globally, such as anthropogenic carbon 

dioxide, and require global‐scale emission control. 

Our finding of an increased proportion of IN deposited in chemically reduced 

forms (NH3 and NH4) between 1984 and 2016 is likely reflective of regional policies to 

manage nitrogen emissions. For example, the global trend appears to be strongly driven 

by sharp increases in the proportion of chemically reduced nitrogen deposited over the 

United States (Figure 3.4), in accord with reports by Du et al. (2014) and Li et al. (2016). 

The United States has implemented controls on the emission of oxidized nitrogen, 

primarily caused by combustion processes, but not on the emission of reduced nitrogen, 

primarily caused by volatilization from livestock waste and fertilizer (Li et al., 2016; Reis 

et al., 2009). The continuation of this trend toward an increased proportion of chemically 

reduced nitrogen in IN deposition is likely to impact the competitive balance among 

plants with differing affinities for various nitrogen forms (Choudhary et al., 2016; 

Kahmen et al., 2006; Kanakidou et al., 2018; Liu et al., 2018). 

The IN deposition data product can serve the needs of ecologists, biogeochemists, 

and others in search of IN deposition data during the last four decades. Potential 

applications include completing nitrogen budgets for experimental sites or making 

management decisions based on recent trends in IN deposition. Moving forward, the 

development of a similar annually updated IN deposition data set would allow 

researchers to better contextualize their work within the global nitrogen cycle. Such 

products are already available for other variables of ecological interest (Cook et al., 2007, 

2010, 2015; Fan & van den Dool, 2004; Running et al., 2004). Mapping changes to IN 

deposition on annual to decadal scales will improve our understanding of short‐term 
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human impacts on global elemental cycles and improve predictions of ecosystem change 

across the globe. 
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Figure 3.1. Evaluation of simulated spatial and temporal trends in inorganic nitrogen 
(IN) deposition. For spatial patterns, modeled values of wet IN deposition across the 
globe (a) show a strong correlation with measured values (r = 0.77, measurements from 
Vet et al., 2014), with a negative bias (95% confidence interval for slope = [0.43, 0.50]) 
from the one‐to‐one line. Modeled values of total IN deposition across North America (b) 
show a strong correlation with measured values (r = 0.83, measurements from Vet et al., 
2014), with no significant bias (95% confidence interval for slope = [0.76, 1.06]) from 
the one‐to‐one line. For temporal trends, (c) slopes of modeled versus observed 
standardized (Z‐scores) IN deposition time series from 1984 to 2016 match in magnitude 
and direction for four sites across North America and Europe. Error bars represent 
standard errors of slope estimates. 
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Figure 3.2. Mean annual inorganic nitrogen deposition (wet + dry) as simulated for the 
past four decades. Total global flux (annual mean) shows inset for each decade. 
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Figure 3.3. Mean annual rate of change in simulated total inorganic nitrogen deposition 
between 1984 and 2016. 
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Figure 3.4. Change in percent of inorganic nitrogen deposited as chemically reduced 
molecules (NH3 and NH4) from 1984 to 2016. Direction and magnitude of change (a) 
varied regionally, but (b) increased on a global scale. The R2 values associated with the 
percent change in chemically reduced inorganic nitrogen deposition through time indicate 
(c) the trend was most coherent in areas such as the United States, eastern Europe, and 
western China. 
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Chapter 4 
 

Temperature controls the nitrogen balance of circumarctic watersheds 
 

Summary 
 
Boreal and tundra ecosystem function is impacted by the combined effects of 

atmospheric nitrogen deposition and warming of extremely cold landscapes. Nitrogen 

retention, defined here as the balance of atmospheric inputs and streamflow loss, shapes 

the response of terrestrial, freshwater, and marine ecosystems to rising temperatures. 

Changes to nitrogen balance are particularly impactful at high latitudes, where terrestrial 

productivity is often limited by low mineral nitrogen levels, and where soils contain large 

stocks of organic nitrogen. Here we used linear mixed effects modeling with previously 

published data to assess the role of temperature and other environmental factors in 

determining nitrogen retention for watersheds throughout the circumpolar north. We 

found that mean annual temperature was positively related to the proportion of 

atmospherically deposited nitrogen retained, but we found no significant effects of other 

variables including watershed area, annual runoff, and watershed soil properties. Notably, 

we found a net loss of nitrogen from a subset of watersheds, particularly those with 

continuous permafrost and relatively mean annual temperatures. Overall, our results 

suggest that warming could increase the proportion of atmospheric nitrogen inputs 

retained in high-latitude watersheds. This could favor the growth of plant species with 

relatively low nitrogen-use efficiencies, due to greater nitrogen availability from gradual 

permafrost thaw and subsequent soil mineralization. Nitrogen inputs to coastal marine 

systems may also become more limited with warming. However, we caution that these 
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potential effects of increased nitrogen retention rates with warming may be counteracted 

by rapid permafrost thaw, which could mobilize soil nitrogen and export it downstream. 

Background 

Humans have doubled the amount of reactive nitrogen (N) entering the biosphere 

(Vitousek et al. 1997, Galloway et al. 2004). Excess N boosts primary productivity, 

reduces plant diversity, and can alter competitive balance between species (Stevens et al. 

2004, Clark and Tilman 2008, Bobbink et al. 2010). Effects of anthropogenic N may be 

particularly pronounced in N-limited ecosystems, which are common across the boreal 

and tundra biomes (Shaver et al. 1992, Elser et al. 2007, Holtgrieve et al. 2011). 

Temperatures are rising rapidly throughout high-latitude systems, with the 

potential to further influence N fluxes and transformations (Baron et al. 2013). Such 

alterations could promote ecosystem retention of atmospherically-derived N by raising 

rates of N uptake (by plants, microbes, soils) and removal (through denitrification). For 

example, warming has been shown to stimulate N mineralization and raise metabolic 

rates, thereby elevating N uptake by plants and microbes at high latitudes (Schmidt et al. 

2002). This process could lend a competitive advantage to plant species with low N-use 

efficiency such as deciduous shrubs in arctic tundra (Chapin and Shaver 1989), 

accelerating the trend of tundra shrub expansion (Myers-Smith et al. 2011, Mekonnen et 

al. 2018). Further, warming and warming-induced changes to plant communities could 

increase denitrification because of greater microbial activity and labile carbon inputs to 

terrestrial and aquatic systems, as demonstrated by Myrstener et al. (2016).  
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Alternatively, higher temperatures could promote hydrologic N export from 

ecosystems, rather than retention, by accelerating leaching from N-rich soils, including 

those exposed by thawing permafrost (Frey et al. 2007, Frey and McClelland 2009, 

Harms et al. 2014, Treat et al. 2016, Harms et al. 2019). High-latitude soils contain large 

pools of organic N (Shaver et al. 1992) and most inorganic N deposited is converted to 

organic forms (Yano et al. 2010), so leaching losses would likely occur as dissolved 

organic N. Inorganic N loss, primarily as nitrate, may also occur if soil nitrification and 

transport are enhanced (Shaver et al. 2014, Bowden et al. 2014, Kendrick et al. 2018). 

Elevated N export to aquatic systems could fuel algal blooms in N-limited freshwaters 

(Myrstener et al. 2018) and coastal high-latitude oceans (Tank et al. 2012). 

Understanding the net effect of temperature and other watershed characteristics on N 

retention (Figure 4.1) is vital to predicting the partitioning of N between inland regions 

and downstream coastal marine systems. 

Prior studies of temperature effects on N retention at various spatial scales have 

yielded mixed results. In a pond warming experiment in Finland, Kankaala et al. (2002) 

found that warming did not influence N retention during the three-year study period. On a 

regional scale, Schaefer and Alber (2007) found that warmer temperatures positively 

impacted N retention for watersheds in the eastern United States. Howarth et al. (2012) 

found similar results for watersheds in the United States and western Europe. The net 

effect of temperature increase on N retention at a circumpolar scale remains uncertain 

due to a unique confluence in the northern high latitudes of large N pools, low rates of 

biological activity, and the potential for rapid changes to flow paths as permafrost thaws. 
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Here, we aimed to clarify the effect of temperature variability on N retention 

using mixed effects modeling to disentangle the drivers of N retention for watersheds 

spanning the tundra and boreal forest biomes. Our results will shed light on the fate of 

anthropogenic N inputs at high latitudes—what proportion is retained versus exported, 

with implications for altering N-mediated dynamics in inland systems and downstream 

marine systems? In particular, we test two alternate hypotheses: 

(a) Temperature will have a net positive impact on N retention by stimulating processes 

including organismal N uptake and denitrification. 

(b) Temperature will have a net negative impact on N retention by stimulating processes 

including permafrost thaw and N leaching from soils. 

Methods 

To test our hypotheses, we created a database of watersheds from the tundra and boreal 

zones containing previously published information available in the literature about 

atmospheric N deposition, watershed characteristics, and N export (Table S4.1). We 

included data from observational monitoring sites or control watersheds in an 

experimental setting; we excluded experimentally-manipulated watersheds. 

We conducted a systematized review (Grant et al. 2009) of literature reporting 

annual export load of total nitrogen (TN) for watersheds of all sizes in boreal and tundra 

biomes. We searched for such data in both peer-reviewed journals and government 

monitoring reports. In contrast to a systematic review, our systematized review was not 

limited to literature returned from a rigid, pre-determined keyword-based search 

algorithm or set of methods (Grant et al. 2009). Given the broad, multi-disciplinary array 

of research that quantifies TN export, we felt this systematized review method would 
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capture the widest range of suitable sites for our analysis. In total we obtained annual TN 

export values for 98 combinations of watershed and year from 66 unique watersheds to 

include in our analysis (Figure 4.2). Some entries in the dataset (38 of 98) reported TN 

export as the annual average of a multi-year period; these multi-year average entries were 

each treated as a single replicate in our mixed modeling analysis (described below). 

Seven watersheds in the dataset reported annual TN export values for multiple individual 

years; in these cases, each year within site was treated as its own replicate, and “site” was 

treated as a random effect in the model. 

In cases where specific chemical forms of TN export were reported (49 of 98 

cases), loss of dissolved organic nitrogen dominated, accounting for a mean proportion of 

0.802 of TN export (standard error = 0.039). This percentage correlated positively with 

both mean annual temperature (℃; coefficient estimate = 0.018, standard error = 0.006) 

and atmospheric deposition of inorganic nitrogen (kg N km-2 yr-1; coefficient estimate = 

0.004, standard error = 0.001). 

For the watersheds in our analyses, we also extracted characteristics including 

temperature, runoff, watershed area, soil organic carbon content, and presence of 

permafrost in the watershed. These characteristics were selected for their potential to 

influence N retention, either directly or by proxy. For example, both runoff and 

permafrost presence could reduce retention via rapid hydrologic removal of soluble N 

forms. Further, larger watersheds may provide greater total N stocks for mobilization and 

aquatic export (Perakis and Hedin 2007). Soil organic carbon content is associated with 

organic N concentration (Murphy 2015, Palmer et al. 2017), thus serving as a proxy of 

the dominant high-latitude soil N pool available for export.  
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Some of these characteristics were not reported in the studies we analyzed. In 

such cases, we extracted the values for the corresponding watershed and time period from 

spatially explicit, publicly available datasets. For example, where mean annual 

temperature and/or annual precipitation totals were not reported for a given watershed, 

we obtained these values from Matsuura and Willmott (2015a, 2015b). Where nitrogen 

deposition levels were not reported, we obtained these values from Ackerman et al. 

(2018). Where permafrost presence and extent were not reported, permafrost data were 

obtained from Brown et al. (2002). Soil organic carbon content data for the top 30 cm of 

soil were obtained from Wieder et al. (2014).  

Some watershed characteristics that likely influence N retention could not be 

incorporated into our analysis due to a lack of suitable circumarctic data; such 

characteristics include watershed residence time, soil N pool size, N fixation, and 

denitrification. 

Mixed effects modeling 
We created two linear mixed effects models with proportional N retention as a response 

variable. The proportion of nitrogen retained within a watershed (Rp) was calculated as: 

 

where E is the area-normalized stream export of total N (kg N km-2 yr-1), and I is the 

area-normalized atmospherically deposited inorganic N across the watershed (kg N km-2 

yr-1). We used these proportional (rather than absolute) deposition models to control for 

variability in atmospheric N deposition among watersheds, thereby isolating some of the 

key watershed characteristics hypothesized to mediate N retention. This approach is 

similar to that described by Howarth et al. (1996), who calculated N retained as a 

proportion of net anthropogenic nitrogen inputs (NANI). In their framework, agriculture 

𝑅𝑅𝑃𝑃 = 1 −  𝐸𝐸 𝐼𝐼�  
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and atmospheric deposition are the principal NANI sources, whereas in our study 

atmospheric deposition alone dominates NANI sources.  

 The first mixed effects model (hereafter “full proportional retention model”) 

included all relevant predictor variables in our dataset, which were mean annual 

temperature, watershed area, annual runoff, topsoil organic carbon content, and 

permafrost presence within the watershed. Next, we created a “parsimonious proportional 

retention model,” which excluded the terms from the full model that were not shown to 

be significant at the alpha = 0.05 level. In both the full and parsimonious proportional N 

deposition models, we included site as a random effect. 

Complementary to these two proportional deposition models, we created a model 

(hereafter “absolute retention model”) with total N retained per km2 (RA) as the response 

variable, calculated as: 

 

where I and E are area-normalized N atmospheric inputs and stream exports, respectively, 

as in the prior equation. This absolute retention model was intended to test our 

assumption that variability in absolute rates of N retention in circumarctic watersheds 

was strongly related to atmospheric deposition. This model included just temperature and 

atmospheric N deposition as predictor variables. We included site as a random effect. 

 Finally, to explore the factors controlling watershed N export, we created a model 

with area-normalized N export (kg N km-2 yr-1) as the response variable. Fixed effects 

included mean annual temperature, area-normalized atmospheric N deposition, annual 

runoff, topsoil organic carbon content, and permafrost presence within the watershed. We 

𝑅𝑅𝐴𝐴 = 𝐼𝐼 − 𝐸𝐸 



81 
 

included site as a random effect. All mixed effects models were run with the R package 

nlme (Pinheiro et al. 2018). 

Results 

Our full proportional retention model revealed a positive relationship between 

proportional N retention and mean annual temperature (Table 4.1). N retention increased 

with temperature, matching expectations of alternate hypothesis (a). Other predictor 

variables were not significantly related to nitrogen retention at the alpha = 0.05 level, 

including watershed area, annual runoff, surface soil organic carbon content, and 

permafrost presence. The marginal R2 of the full model, which accounts for variability 

explained by the model’s fixed effects, was 0.25 (Nakagawa & Schielzeth 2013). 

Conditional R2, which additionally accounts for variability explained by random effects 

(i.e. site), was 0.38. 

Similar to the full model, the parsimonious model showed mean annual 

temperature was a highly significant predictor of nitrogen retention (p < 0.001). 

However, the marginal R2 of the parsimonious model was just 0.16, indicating that 84% 

of the variability in proportional nitrogen retention was not explained by temperature 

(Figure 4.3). The conditional R2 of the parsimonious model was 0.42. Comparison of 

Akaike information criteria (AIC) suggested that the full proportional model (AIC = 452) 

was preferable to the parsimonious model (AIC = 519). 

Our absolute retention model strongly supported our assumption that atmospheric 

N deposition was a highly significant driver of the total mass of N retained within 

strongly N-limited high-latitude watersheds (p < 0.001, Figure 4.4, Table 4.2). The other 

fixed effect in the absolute retention model, mean annual temperature, was not significant 
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at the alpha = 0.05 level. Marginal R2 was 0.95 and conditional R2 was 0.97, indicating 

the dominance of N deposition alone as a driver of total ecosystem N retention. The 

intercept in this model was estimated to be -79 kg N km-2 yr-1 (standard error = 21; Table 

4.2), due to a range of negative retention values (i.e. net N loss) for watersheds with near-

zero rates of atmospheric N deposition. 

We found that annual watershed N export was weakly positively related to both 

annual runoff (p = 0.03) and a second-order coefficient for N deposition (p = 0.04). No 

other fixed effects were associated with N export at an alpha = 0.05 level (Table S4.2). 

Discussion 

Nitrogen retention 

Watershed retention of external N inputs is a key ecosystem function that determines 

terrestrial and aquatic production, and an important indicator of response to human-

driven perturbations. In our analyses of N balance of circumpolar watersheds, 

temperature was the only factor significantly associated with proportion of 

atmospherically deposited N retained. This positive relationship supports a net positive 

impact of warming on N retention (hypothesis a), likely by stimulating organismal N 

uptake and denitrification. This outcome also matches results of Schaefer and Alber 

(2007) and Howarth et al. (2012), who conducted similar analyses in temperate 

watersheds. Schaefer and Alber (2007) additionally reported a threshold in N retention, 

whereby watersheds with mean annual temperatures below a breakpoint of 10-12℃ 

retained a smaller proportion of N inputs, likely due to lower denitrification rates below 

this temperature breakpoint. We did not find a similar temperature breakpoint in our 

proportional N retention model, because mean annual temperature in all of our 
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watersheds analyzed was well below 10-12℃. However, we did find differences in 

proportional N retention among categories of permafrost cover; watersheds with 

continuous or discontinuous permafrost generally retained a smaller proportion N inputs 

compared to watersheds with less permafrost cover (Figure S4.2; see also nitrogen export 

section). 

As temperatures continue to warm across boreal and tundra biomes, our results 

suggest that an increasing proportion of atmospherically deposited N will be retained 

within most high-latitude watersheds, potentially fueling denitrification and/or 

accelerating a vegetation shift toward low N-use efficiency species like deciduous shrubs 

(Mekonnen et al. 2018). Consequently, proportionally less N may be exported to 

downstream systems. However, these potential effects of rising temperatures may be 

weak or variable among watersheds, indicated by the unexplained variability in our 

proportional N retention model. Schaefer and Alber (2007) found that proportional N 

retention was inversely related to runoff in temperate regions. Our high-latitude model 

did not reproduce this finding, perhaps due to the considerable variability in watershed 

structure in our study, which included multiple stream orders and runoff rates ranging 

from 124 to 3667 mm yr-1. The presence of permafrost in many of our study watersheds 

may further complicate a potential relationship between runoff and N retention.  

Our model of absolute N retention (rather than proportional N retention) supports 

our assumption that atmospheric N deposition is the principal determinant of the total 

mass of N retained within the watershed. Many studies, including our own proportional 

retention models, control for atmospheric deposition by reporting only proportional N 

retention and/or export. However, a quantitative understanding of the relationship 
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between absolute N deposition and retention is useful for constructing N budgets and 

predicting N export to downstream ecosystems. This task is particularly pressing as N 

deposition levels change throughout the Arctic. For example, N deposition is declining in 

Scandinavia but increasing in western Canada (Ackerman et al. 2018), while extreme 

deposition events modify these long-term trends (Hodson et al. 2005, Choudhary et al. 

2016). Along with warming temperatures, these changes in N inputs to high-latitude 

watersheds will likely impact N-mediated ecosystem processes like productivity or 

denitrification. 

Nitrogen export 

We found that annual N export was weakly positively related to annual runoff and 

to a second-order coefficient of N deposition rate (i.e., the effect size of N deposition on 

export was greater for higher deposition values). These two relationships are likely 

explained by hydrologic N mobilization and increasing availability of mobile N forms 

with higher rates of deposition, respectively. The lack of significant relationship with the 

other variables in the dataset may be due to limited availability of spring seasonal data. 

Because the spring freshet is responsible for a disproportionately high level of annual N 

export (Holmes et al. 2012, McClelland et al. 2014), poorly resolved spring sampling 

may result in some error in annual export values. 

Notably, our analysis revealed 13 unique watersheds (and a total of 28 unique 

combinations of year-within-watershed) with significant N export, despite near-zero 

atmospheric deposition rates. For these watersheds, total N export exceeded atmospheric 

inputs by between 11 and 653 kg N km-2 yr-1 (Figure 4.5). Conditions in these watersheds 

were representative of much of the arctic tundra biome—generally cold and remote from 
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direct anthropogenic modification. Mean annual temperature did not explain variability in 

N retention/export among these particular watersheds (Table S4.3), as was the case for 

our broader circumarctic dataset. We suggest three potential causes of the apparent net 

loss of nitrogen from these watersheds. 

First, atmospheric N deposition could be underestimated if, for example, organic 

N deposition were disproportionately greater at these colder sites. However, we are not 

aware of evidence supporting this potential explanation. Organic N deposition comprises 

less than 5 percent of total N (inorganic plus organic) deposition across most high-

latitude regions (Ackerman et al. 2018), so organic N deposition is thus highly unlikely to 

account for the differences of up to 653 kg N km-2 yr-1 between export and deposition. 

Our estimates of inorganic N deposition are well-validated across space and time 

(Ackerman et al. 2018; Table S4.4). Overall, error in N deposition estimates are not 

likely to account for net N losses from the 13 watersheds. 

The second potential cause of apparent net N loss for these watersheds could be 

linked to inputs from biological N fixation. Biological N fixation is generally low at 

higher latitudes (Wang et al. 2009) and suppressed by colder temperatures (Hobara et al. 

2006, Houlton et al. 2008, but see Rousk et al. 2018). Still, biological fixation can exceed 

atmospheric N deposition by an order of magnitude where atmospheric deposition is low 

(Shaver et al. 2014). However, annual N fixation across the colder regions of the high 

latitudes, which varies between 7 and 380 kg N km-2 yr-1 (Table S4.4), is likely 

insufficient to account for the N loss from all 13 watersheds, for which export exceeds 

deposition by up to 653 kg N km-2 yr-1, with an average exceedance of 126 kg N km-2 yr-

1. 
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Finally, ongoing warming-induced permafrost thaw and leaching could export N 

that has long been part of the soil N pool, stored in permafrost or in the active layer. We 

believe this to be the primary explanation for net N loss from watersheds with near-zero 

atmospheric deposition, given that all of the watersheds with net N export were in areas 

of continuous or discontinuous permafrost. Jones et al. (2005) and Walter Anthony et al. 

(2014) have also noted a connection between permafrost and N mobilization at high 

latitudes. N export associated with permafrost thaw is also consistent with a long-term 

trend of increasing N export at high latitudes (Frey et al. 2007, Frey and McClelland 

2009, Harms et al. 2014, Abbott et al. 2015, Treat et al. 2016, Kendrick et al. 2018).  

Permafrost-derived N is dominated by organic N forms and is mobilized 

predominantly during spring snowmelt (McClelland et al. 2014). Given the cold 

temperatures and low nitrate availability at this time of year, most permafrost-derived N 

is likely exported to downstream systems with relatively little denitrification. While 

freshwater productivity at high latitudes is most often phosphorus-limited (Peterson et al. 

1993, Slavik et al. 2004, Kendrick et al. 2018), N-limited freshwater hotspots, including 

stream biofilms in arctic Sweden (Myrstener et al. 2018), and coastal zones could be 

particularly sensitive to elevated N fluxes (Levine and Whalen 2001, Tank et al. 2012). 

In addition to permafrost thaw, meltwater from receding glaciers and ice caps may 

additionally export N from high-latitude watersheds (Telling et al. 2011, Wadham et al. 

2013, Lawson et al. 2014, Wadham et al. 2016). 

The Arctic Ocean is the ultimate receiving body for a majority of the N exported 

from watersheds examined in this study. Changes in high-latitude N export caused by 

increased N deposition or temperature could therefore impact Arctic Ocean primary 
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productivity, especially in nearshore regions (Tank et al. 2012). Our finding of a positive 

relationship between temperature and the proportion of N retained across high latitude 

watersheds indicates that future warming could limit riverine N export to the Arctic 

Ocean, assuming constant N deposition rates. Alternatively, this potential reduction in N 

export could be outweighed in some watersheds by increased export of N (particularly 

organic N forms) leached from gradually thawing soils or abrupt thermokarst events 

(Lepistö et al. 2008, Treat et al. 2016, Kendrick et al. 2018). Future increases in high-

latitude precipitation and subsequent runoff could also elevate downstream N delivery, as 

suggested by our finding of a positive association between annual watershed runoff and 

N export (Table S4.2). Finally, some high-latitude watersheds, particularly those in 

northern Europe, may act as N sources following years of elevated N deposition rates 

(Worral et al. 2012). Further research is needed to determine the relative importance of 

these processes within a given watershed. Understanding connections between 

continental nutrient inputs and marine productivity is particularly urgent as sea ice 

coverage declines and light availability for phytoplankton increases (Post et al. 2008). 

Conclusion 

Proportional N retention in high-latitude watersheds remained remarkably 

constant across a range of environmental variables. Mean annual temperature was the 

only significant (positive) control on proportional N retention, though accounting for 

temperature still left significant unexplained variability in retention rates across 

watersheds. These results suggest that continued warming may on average increase the 

proportion of atmospherically deposited N retained in watersheds versus exported to 

downstream systems including the Arctic Ocean, though the strength of this trend will be 
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difficult to predict for any given watershed and may be counteracted by rapid permafrost 

thaw. Our study also highlighted the dominant influence of atmospheric N deposition on 

absolute rates of N retention at high latitudes. This finding implies that future changes in 

N emissions will have strong impacts on high-latitude nitrogen dynamics, including 

export rates from inland watersheds to N-limited marine systems. Our study suggests that 

anthropogenic changes to temperature and N deposition will continue to impact arctic and 

boreal landscapes. Further research into the controls on N fixation and denitrification in 

these systems will allow for the development of more accurate process-based models of 

N dynamics across the circumpolar north.  
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Figure 4.1. Conceptual model of nitrogen transport and watershed retention. The top row 
of boxes indicates the broad flow of nitrogen from atmosphere to watershed to 
downstream freshwater and marine ecosystems. For each watershed in our dataset, we 
tested five hypothesized drivers (“Characteristics tested”) for impacts on N retention, 
which may occur via a range of potential processes (“N-cycle processes”). 
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Figure 4.2. Circumpolar stream and river sites with total annual N export measurements 
used in this analysis. Some sites report export data for individual years (green circles), 
while other sites report export data as the annual average of multi-year periods (pink 
squares). Shaded overlay indicates the permafrost extent in a given region (Brown et al. 
2002). 
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Figure 4.3. Proportional (i.e. area-normalized) N retention was positively related to mean 
annual temperature for 98 combinations of watersheds and years (from 66 unique 
watersheds) across the circumpolar north. Gray shaded area represents the standard error 
of the slope coefficient. Horizontal dashed line indicates a value of 0, where area-
normalized retention equals export. Watersheds above this line had positive net N 
retention, while watersheds below this line had net N loss. Horizontal bars below graph 
indicate the temperature range of watersheds with various permafrost extents (Brown et 
al. 2002). Only two watersheds had “sporadic” permafrost extent, so this category was 
combined with “isolated.” 
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Figure 4.4. Absolute mass of nitrogen retained was positively related to both (a) 
atmospheric N deposition and (b) mean annual temperature. However, N deposition and 
mean annual temperature themselves were autocorrelated (r = 0.67), as shown by colors 
in (b). Mixed effects modeling reveals that N deposition, not temperature, was the 
primary driver of absolute N retention rates. 
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Figure 4.5. Annual nitrogen export via streams and rivers and watershed retention versus 
atmospheric deposition for 98 high-latitude watersheds. Retention and export values for 
corresponding watersheds are connected by vertical lines. Export exceeded retention for 
28 combinations of watershed and year, in 13 unique watersheds with low deposition 
levels. Deposition is displayed on a log scale. 
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Table 4.1. Fixed effects coefficient estimates for the full and parsimonious proportional nitrogen retention models.  

 Full model 

 

Parsimonious model 

 AIC = 452 AIC = 519 

 R2conditional = 0.38, R2marginal = 0.25 R2conditional = 0.42, R2marginal = 0.16 

Parameter Estimate Standard Error p Estimate Standard Error p 

Intercept 0.334 0.820 0.686  -0.233 0.391 0.55 
Mean annual temperature (°C) 0.282 0.125 0.041  0.257 0.065 <0.001 
Watershed area (km2) <0.001 <0.001 0.245  Excluded 
Runoff (mm/yr) -0.001 0.001 0.294  Excluded 
Soil organic carbon (% weight) 0.017 0.053 0.750  Excluded 
Permafrost presence -1.447 1.439 0.319  Excluded 
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Table 4.2. Fixed effect coefficient estimates for the absolute nitrogen deposition model. 

Absolute retention model 
R2conditional = 0.97, R2marginal = 0.95 

Parameter Estimate Standard Error p-value 
Intercept -78.525 21.356 <0.001 
N deposition (kgN km-2 yr-1) 0.828 0.040 <0.001 
Mean annual temperature (°C) 1.965 2.606 0.456 

 

 
  



96 
 

Bibliography 

Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R., & Bowden, W. B. (2015). 
Patterns and persistence of hydrologic carbon and nutrient export from collapsing 
upland permafrost. Biogeosciences, 12(12), 3725-3740. 

Ackerman, D. & Breen, A. (2016). Infrastructure Development Accelerates Range 
Expansion of Trembling Aspen (Populus tremuloides, Salicaceae) into the Arctic. 
Arctic, 69, 130-136. 

Ackerman, D., Griffin, D., Hobbie, S. E., & Finlay, J. C. (2017). Arctic shrub growth 
trajectories differ across soil moisture levels. Global Change Biology, 23(10), 4294-
4302. 

Ackerman, D., Millet, D. B., & Chen, X. (2018). Global estimates of inorganic nitrogen 
deposition across four decades. Global Biogeochemical Cycles. 

Badding, M. E., Briner, J. P., & Kaufman, D. S. (2013). 10Be ages of late Pleistocene 
deglaciation and Neoglaciation in the north‐central Brooks Range, Arctic 
Alaska. Journal of Quaternary Science, 28(1), 95-102. 

Bär, A, Bräuning, A, & Löffler, J. (2006). Dendroecology of dwarf shrubs in the high 
mountains of Norway–A methodological approach. Dendrochronologia, 24, 17-27. 

Baron, J. S., Hall, E. K., Nolan, B. T., Finlay, J. C., Bernhardt, E. S., Harrison, J. A., 
Chan, F. & Boyer, E. W. (2013). The interactive effects of excess reactive nitrogen 
and climate change on aquatic ecosystems and water resources of the United 
States. Biogeochemistry, 114(1-3), 71-92. 

Berner LT, Alexander HD, Loranty MM, Ganzlin P, Mack MC, Davydov SP, Goetz SJ 
(2015) Biomass allometry for alder, dwarf birch, and willow in boreal forest and 
tundra ecosystems of far northeastern Siberia and north-central Alaska. Forest Ecology 
and Management, 337, 110-118. 

Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. Field, A. M. Fiore, Q. Li, H. Liu, L. 
J. Mickley, and M. Schultz. 2001. Global modeling of tropospheric chemistry with 
assimilated meteorology: Model description and evaluation. J. Geophys. Res., 106, 
23,073-23,096. 

Black, B. A., Von Biela, V. R., Zimmerman, C. E., & Brown, R. J. (2013). Lake trout 
otolith chronologies as multidecadal indicators of high-latitude freshwater ecosystems. 
Polar biology, 36(1), 147-153. 

Blok, D., Heijmans, M. M. P. D., Schaepman‐Strub, G., Kononov, A. V., Maximov, T. C., 
& Berendse, F. (2010). Shrub expansion may reduce summer permafrost thaw in 
Siberian tundra. Global Change Biology, 16(4), 1296-1305. 

Blok, D., et al. "The cooling capacity of mosses: controls on water and energy fluxes in a 
Siberian tundra site." Ecosystems 14.7 (2011a): 1055-1065. 

Blok, D., Sass-Klaassen, U., Schaepman-Strub, G., Heijmans, M. M. P. D., Sauren, P., & 
Berendse, F. (2011b). What are the main climate drivers for shrub growth in 
Northeastern Siberian tundra?. Biogeosciences, 8(5), 1169-1179. 

Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants--an economic 
analogy. Annual review of Ecology and Systematics, 363-392. 



97 
 

Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., ... & 
Emmett, B. (2010). Global assessment of nitrogen deposition effects on terrestrial 
plant diversity: a synthesis. Ecological applications, 20(1), 30-59. 

Bobbink, R., & Hicks, W. K. (2014). Factors affecting nitrogen deposition impacts on 
biodiversity: An overview. In Nitrogen Deposition, Critical Loads and 
Biodiversity (pp. 127-138). Springer, Dordrecht. 

Boelman NT, Gough L, Wingfield J, et al. (2015) Greater shrub dominance alters 
breeding habitat and food resources for migratory songbirds in Alaskan arctic 
tundra. Global Change Biology, 21, 1508-1520. 

Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological 
economics, 29(2), 293-301. 

Bowden, W. B., Peterson, B. J., Deegan, L. A., Huryn, A. D., Benstead, J. P., Golden, H., 
... & Hobbie, J. E. (2014). Ecology of streams of the Toolik region. Alaska’s changing 
arctic: Ecological consequences for tundra, streams, and lakes, ed. JE Hobbie, and 
GW Kling, 173-258. 

Brender, J. D., Weyer, P. J., Romitti, P. A., Mohanty, B. P., Shinde, M. U., Vuong, A. M., 
... & Huber Jr, J. C. (2013). Prenatal nitrate intake from drinking water and selected 
birth defects in offspring of participants in the National Birth Defects Prevention 
Study. Environmental health perspectives, 121(9), 1083-1089. 

Bret-Harte, M. S., Shaver, G. R., Zoerner, J. P., Johnstone, J. F., Wagner, J. L., Chavez, A. 
S., ... & Laundre, J. A. (2001). Developmental plasticity allows Betula nana to 
dominate tundra subjected to an altered environment. Ecology, 82(1), 18-32. 

Bret‐Harte, M. S., Shaver, G. R., & Chapin, F. S. (2002). Primary and secondary stem 
growth in arctic shrubs: implications for community response to environmental 
change. Journal of Ecology, 90(2), 251-267. 

Briffa K, Jones PD (1990) Basic chronology statistics and assessment. In Methods of 
Dendrochronology: Applications in the Environmental Sciences (Eds Cook ER, 
Kairiukstis LA), pp. 137–152, Kluwer Academic Publishers, Dordrecht, Netherlands. 

Brown, J., O. Ferrians, J. A. Heginbottom, and E. Melnikov. 2002. Circum-Arctic Map of 
Permafrost and Ground-Ice Conditions, Version 2. Boulder, Colorado USA. NSIDC: 
National Snow and Ice Data Center. [Accessed 6/1/2017]. 

Buchwal A, Rachlewicz G, Fonti P, Cherubini P, Gärtner H (2013) Temperature 
modulates intra-plant growth of Salix polaris from a high Arctic site (Svalbard). Polar 
Biology, 36, 1305-1318. 

Carlson, K. M., Curran, L. M., Asner, G. P., Pittman, A. M., Trigg, S. N., & Adeney, J. M. 
(2013). Carbon emissions from forest conversion by Kalimantan oil palm 
plantations. Nature Climate Change, 3(3), 283. 

Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, 
V. H. (1998). Nonpoint pollution of surface waters with phosphorus and 
nitrogen. Ecological applications, 8(3), 559-568. 

Carter, L. D. (1981). A Pleistocene sand sea on the Alaskan Arctic coastal plain. Science, 
211: 381-383. 

Chapin, F. S. (1983). Direct and indirect effects of temperature on arctic plants. Polar 
Biology, 2(1), 47-52. 



98 
 

Chapin, F. S., Fetcher, N., Kielland, K., Everett, K. R., & Linkins, A. E. (1988). 
Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil 
water. Ecology, 69(3), 693-702. 

Chapin, F. S., & Shaver, G. R. (1989). Differences in growth and nutrient use among 
arctic plant growth forms. Functional Ecology, 73-80. 

Chapin, F. S., Shaver, G. R., Giblin, A. E., Nadelhoffer, K. J., & Laundre, J. A. (1995). 
Responses of arctic tundra to experimental and observed changes in 
climate. Ecology, 76(3), 694-711. 

Chapin, F. S., & Shaver, G. R. (1996). Physiological and growth responses of arctic plants 
to a field experiment simulating climatic change. Ecology, 77(3), 822-840. 

Chapin, F. S., et al. "Role of land-surface changes in Arctic summer 
warming." Science 310.5748 (2005): 657-660. 

Cherry JE, Dery SJ, Cheng Y, Stieglitz M, Jacobs AS, Pan F (2014). Climate and 
Hydrometeorology of the Toolik Lake Region and the Kuparuk River Basin. In: 
Alaska’s Changing Arctic (Eds Hobbie JE, Kling GW), pp. 21-60, Oxford University 
Press, New York, United States. 

Choudhary, S., Blaud, A., Osborn, A. M., Press, M. C., & Phoenix, G. K. (2016). Nitrogen 
accumulation and partitioning in a High Arctic tundra ecosystem from extreme 
atmospheric N deposition events. Science of the Total Environment, 554, 303-310. 

Christie KS, Bryant JP, Gough L, Ravolainen VT, Ruess RW, Tape K (2015) The role of 
vertebrate herbivores in regulating shrub expansion in the Arctic: a synthesis. 
BioScience, 65, 1123-1133. 

Clark, C. M., & Tilman, D. (2008). Loss of plant species after chronic low-level nitrogen 
deposition to prairie grasslands. Nature, 451(7179), 712. 

Cohen, J. L., Furtado, J. C., Barlow, M. A., Alexeev, V. A., & Cherry, J. E. (2012). Arctic 
warming, increasing snow cover and widespread boreal winter cooling. Environmental 
Research Letters, 7(1), 014007. 

Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. 
E., ... & Likens, G. E. (2009). Controlling eutrophication: nitrogen and 
phosphorus. Science, 323(5917), 1014-1015. 

Cook ER, Kairiukstis, LA (Eds.) (1990) Methods of dendrochronology: applications in 
the environmental sciences. Springer, Netherlands. 

Cook ER (1985) A Time Series Approach to Tree-Ring Standardization. Dissertation. 
University of Arizona, Tucson, Arizona, USA. 

Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest 
interior tree-ring width series for dendroclimatic studies. Tree-ring bulletin. 

Cook, E. R., Seager, R., Cane, M. A., & Stahle, D. W. (2007). North American drought: 
Reconstructions, causes, and consequences. Earth-Science Reviews, 81(1-2), 93-134. 

Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C., & 
Wright, W. E. (2010). Asian monsoon failure and megadrought during the last 
millennium. Science, 328(5977), 486-489. 

Cook, E. R., & Pederson, N. (2011). Uncertainty, emergence, and statistics in 
dendrochronology. In Dendroclimatology (pp. 77-112). Springer, Dordrecht. 



99 
 

Cook, E. R., Seager, R., Kushnir, Y., Briffa, K. R., Büntgen, U., Frank, D., ... & Baillie, 
M. (2015). Old World megadroughts and pluvials during the Common Era. Science 
advances, 1(10), e1500561. 

Cowtan, K., & Way, R. G. (2014). Coverage bias in the HadCRUT4 temperature series 
and its impact on recent temperature trends. Quarterly Journal of the Royal 
Meteorological Society, 140(683), 1935-1944. 

Choudhary, S., Blaud, A., Osborn, A. M., Press, M. C., & Phoenix, G. K. (2016). Nitrogen 
accumulation and partitioning in a High Arctic tundra ecosystem from extreme 
atmospheric N deposition events. Science of the Total Environment, 554, 303-310. 

Cornelissen, J. HC, et al. "Global change and arctic ecosystems: is lichen decline a 
function of increases in vascular plant biomass?." Journal of Ecology 89.6 (2001): 
984-994. 

Cornelissen, J. HC, et al. "Global negative vegetation feedback to climate warming 
responses of leaf litter decomposition rates in cold biomes."Ecology letters 10.7 
(2007): 619-627. 

Cornell, S. E., Jickells, T. D., Cape, J. N., Rowland, A. P., & Duce, R. A. (2003). Organic 
nitrogen deposition on land and coastal environments: a review of methods and 
data. Atmospheric Environment, 37(16), 2173-2191. 

Crippa, Monica, Greet Janssens-Maenhout, Frank Dentener, Diego Guizzardi, Katerina 
Sindelarova, Marilena Muntean, Rita Van Dingenen, Claire Granier: Forty years of 
improvements in European air quality: regional policy-industry interactions with 
global impacts, Atmos. Chem. Phys., 16, 3825-3841, doi:10.5194/acp-16-3825-2016, 
2016. 

D'Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’in 
northern forests: a review of the tree-ring evidence and possible causes. Global and 
Planetary Change, 60, 289-305. 

D'Arrigo R, Jacoby G, Buckley B et al. (2009) Tree growth and inferred temperature 
variability at the North American Arctic treeline. Global and Planetary Change, 65, 
71-82. 

DeMarco, J., Mack, M. C., Bret-Harte, M. S., Burton, M., & Shaver, G. R. (2014). Long‐
term experimental warming and nutrient additions increase productivity in tall 
deciduous shrub tundra. Ecosphere, 5(6), 1-22. 

Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., Fiore, A. M., ... & 
Lawrence, M. (2006). Nitrogen and sulfur deposition on regional and global scales: a 
multimodel evaluation. Global biogeochemical cycles, 20(4). 

Dentener, F., Vet, R., Dennis, R. L., Du, E., Kulshrestha, U. C., & Galy-Lacaux, C. 
(2014). Progress in monitoring and modelling estimates of nitrogen deposition at local, 
regional and global scales. In Nitrogen Deposition, Critical Loads and 
Biodiversity (pp. 7-22). Springer Netherlands. 

Dlugokencky, E.J., P.M. Lang, A.M. Crotwell, J.W. Mund, M.J. Crotwell, and K.W. 
Thoning (2018), Atmospheric Methane Dry Air Mole Fractions from the NOAA 
ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1983-2017, Version: 
2018-08-01, Path: ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask/surface/. 



100 
 

Du, E., de Vries, W., Galloway, J. N., Hu, X., & Fang, J. (2014). Changes in wet nitrogen 
deposition in the United States between 1985 and 2012. Environmental Research 
Letters, 9(9), 095004. 

Ehrich D, Henden JA, Ims RA et al. (2012b) The importance of willow thickets for 
ptarmigan and hares in shrub tundra: the more the better?, Oecologia, 168, 141-151. 

Elmendorf, S. C., Henry, G. H., Hollister, R. D., Björk, R. G., Bjorkman, A. D., 
Callaghan, T. V., ... & Fosaa, A. M. (2012). Global assessment of experimental 
climate warming on tundra vegetation: heterogeneity over space and time. Ecology 
letters, 15(2), 164-175. 

Elmendorf SC, Henry GH, Hollister RD et al. (2012b) Plot-scale evidence of tundra 
vegetation change and links to recent summer warming. Nature Climate Change, 2, 
453-457. 

Elser, J. J., Marzolf, E. R., & Goldman, C. R. (1990). Phosphorus and nitrogen limitation 
of phytoplankton growth in the freshwaters of North America: a review and critique of 
experimental enrichments. Canadian Journal of fisheries and aquatic sciences, 47(7), 
1468-1477. 

Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S., Hillebrand, H., 
... & Smith, J. E. (2007). Global analysis of nitrogen and phosphorus limitation of 
primary producers in freshwater, marine and terrestrial ecosystems. Ecology 
letters, 10(12), 1135-1142. 

Environmental Data Center Team. 2016. Meteorological monitoring program at Toolik, 
Alaska. Toolik Field Station, Institute of Arctic Biology, University of Alaska 
Fairbanks, Fairbanks, AK 99775. 
http://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php 

Environmental Data Center Team (2017). Meteorological monitoring program at Toolik, 
Alaska. Toolik Field Station, Institute of Arctic Biology, University of Alaska 
Fairbanks, Fairbanks, AK. 
http://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php 

Fairlie, T.D., D.J. Jacob, and R.J. Park, The impact of transpacific transport of mineral 
dust in the United States, Atmos. Environ., 1251-1266, 2007. 

Fan, Y., & van den Dool, H. (2004). Climate Prediction Center global monthly soil 
moisture data set at 0.5 resolution for 1948 to present. Journal of Geophysical 
Research: Atmospheres, 109(D10). 

Field, R. D., Van Der Werf, G. R., & Shen, S. S. (2009). Human amplification of drought-
induced biomass burning in Indonesia since 1960. Nature Geoscience, 2(3), 185. 

Finlay, J. C., Small, G. E., & Sterner, R. W. (2013). Human influences on nitrogen 
removal in lakes. Science, 342(6155), 247-250. 

Fisher, J.A., D.J. Jacob, Q. Wang, R. Bahreini, C.C. Carouge, M.J. Cubison, J.E. Dibb, T. 
Diehl, J.L. Jimenez, E.M. Leibensperger, M.B.J. Meinders, H.O.T. Pye, P.K. Quinn, S. 
Sharma, A. van Donkelaar, & R.M. Yantosca, Sources, distribution, and acidity of 
sulfate-ammonium aerosol in the Arctic in winter-spring, Atmos. Environ., 45, 7301-
7318, 2011. 

http://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php
http://toolik.alaska.edu/edc/abiotic_monitoring/data_query.php


101 
 

Fonti P, Solomonoff N, García‐González I (2007) Earlywood vessels of Castanea sativa 
record temperature before their formation. New Phytologist, 173, 562-570. 

Forbes BC, Macias-Fauria M, Zetterberg P (2010) Russian Arctic warming and ‘greening’ 
are closely tracked by tundra shrub willows. Global Change Biology, 16, 1542-1554. 

Frey, K. E., McClelland, J. W., Holmes, R. M., & Smith, L. C. (2007). Impacts of climate 
warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to 
the Kara Sea. Journal of Geophysical Research: Biogeosciences, 112(G4). 

Frey, K. E., & McClelland, J. W. (2009). Impacts of permafrost degradation on arctic river 
biogeochemistry. Hydrological Processes: An International Journal, 23(1), 169-182. 

Fountoukis, C., and A. Nenes, ISORROPIA II: A computationally efficient 
thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3--Cl-
H2O aerosols, Atmos. Chem. Phys., 7(17), 4639-4659, 2007. 

Fowler, D., Smith, R., Muller, J., Cape, J. N., Sutton, M., Erisman, J. W., & Fagerli, H. 
(2007). Long term trends in sulphur and nitrogen deposition in Europe and the cause 
of non-linearities. Water, Air, & Soil Pollution: Focus, 7(1-3), 41-47. 

Fowler, D., Coyle, M., Skiba, U., Sutton, M. A., Cape, J. N., Reis, S., ... & Vitousek, P. 
(2013). The global nitrogen cycle in the twenty-first century. Phil. Trans. R. Soc. B, 
368(1621), 20130164. 

Fritts HC (1976) Tree Rings and Climate, Academic Press, New York, New York. 
Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, 

S. P., ... & Karl, D. M. (2004). Nitrogen cycles: past, present, and 
future. Biogeochemistry, 70(2), 153-226. 

Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., ... 
& Sutton, M. A. (2008). Transformation of the nitrogen cycle: recent trends, questions, 
and potential solutions. Science, 320(5878), 889-892. 

Galván, J. D., Camarero, J. J., & Gutiérrez, E. (2014). Seeing the trees for the forest: 
drivers of individual growth responses to climate in Pinus uncinata mountain 
forests. Journal of Ecology, 102(5), 1244-1257. 

Gamm, C. M., Sullivan, P. F., Buchwal, A., Dial, R. J., Young, A. B., Watts, D. A., ... & 
Post, E. Declining growth of deciduous shrubs in the warming climate of continental 
western Greenland. Journal of Ecology. 

Gärtner H, Cherubini P, Fonti P et al. (2015) A Technical Perspective in Modern Tree-
ring Research-How to Overcome Dendroecological and Wood Anatomical 
Challenges. Journal of visualized experiments, 97. 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., ... & Wargan, 
K. (2017). The modern-era retrospective analysis for research and applications, 
version 2 (MERRA-2). Journal of Climate, 30(14), 5419-5454. 

GEOS-Chem. <GEOS-Chem.org>. Retrieved April 6, 2018. 
Gleeson SK, Tilman D (1992) Plant allocation and the multiple limitation 

hypothesis. American Naturalist, 1322-1343. 
Grennfelt, P., & Hultberg, H. (1986). Effects of nitrogen deposition on the acidification of 

terrestrial and aquatic ecosystems. Water, Air, and Soil Pollution, 30(3-4), 945-963. 



102 
 

Gough L, Shaver GR, Carroll J, Royer DL, Laundre JA (2000) Vascular plant species 
richness in Alaskan arctic tundra: the importance of soil pH. Journal of Ecology, 88, 
54-66. 

Gough L, Bettez ND, Slavik KA et al. (2016) Effects of long-term nutrient additions on 
Arctic tundra, stream, and lake ecosystems: beyond NPP. Oecologia, 182, 653-665. 

Hamilton, T. D. (2003). Glacial geology of the Toolik Lake and upper Kuparuk River 
regions. University of Alaska. Institute of Arctic Biology. 

Harms, T. K., Abbott, B. W., & Jones, J. B. (2014). Thermo-erosion gullies increase 
nitrogen available for hydrologic export. Biogeochemistry, 117(2-3), 299-311. 

Harms, T. K., Cook, C. L., Wlostowski, A. N., Gooseff, M. N., & Godsey, S. E. Spiraling 
Down Hillslopes: Nutrient Uptake from Water Tracks in a Warming 
Arctic. Ecosystems, 1-15. 

Hayhoe, K., D.J. Wuebbles, D.R. Easterling, D.W. Fahey, S. Doherty, J. Kossin, W. 
Sweet, R. Vose, and M. Wehner, 2018: Our Changing Climate. In Impacts, Risks, 
and Adaptation in the United States: Fourth National Climate Assessment, Volume 
II [Reidmiller, D.R., C.W. Avery, D.R. Easterling, K.E. Kunkel, K.L.M. Lewis, T.K. 
Maycock, and B.C. Stewart (eds.)]. U.S. Global Change Research Program, 
Washington, DC, USA, pp. 72–144. doi: 10.7930/NCA4.2018.CH2 

Hobara, S., McCalley, C., Koba, K., Giblin, A. E., Weiss, M. S., Gettel, G. M., & Shaver, 
G. R. (2006). Nitrogen fixation in surface soils and vegetation in an Arctic tundra 
watershed: a key source of atmospheric nitrogen. Arctic, Antarctic, and Alpine 
Research, 38(3), 363-372. 

Hobbie SE (1996) Temperature and plant species control over litter decomposition in 
Alaskan tundra. Ecological Monographs, 66, 503-522. 

Hobbie SE, Chapin III FS (1998) The response of tundra plant biomass, aboveground 
production, nitrogen, and CO2 flux to experimental warming. Ecology, 79, 1526-1544. 

Hobbie, S. E., & Gough, L. (2002). Foliar and soil nutrients in tundra on glacial 
landscapes of contrasting ages in northern Alaska. Oecologia, 131(3), 453-462. 

Hobbie, S. E., Miley, T. A., & Weiss, M. S. (2002). Carbon and nitrogen cycling in soils 
from acidic and nonacidic tundra with different glacial histories in Northern Alaska. 
Ecosystems, 5(8), 0761-0774. 

Hobbie, S. E., Gough, L., & Shaver, G. R. (2005). Species compositional differences on 
different‐aged glacial landscapes drive contrasting responses of tundra to nutrient 
addition. Journal of Ecology, 93(4), 770-782. 

Hobbie JE, Kling GW (2014) Ecological Consequences of Present and Future Changes in 
Arctic Alaska. In: Alaska’s Changing Arctic (Eds Hobbie JE, Kling GW), pp. 303-
324, Oxford University Press, New York, United States. 

Hodson, A. J., Mumford, P. N., Kohler, J., & Wynn, P. M. (2005). The High Arctic glacial 
ecosystem: new insights from nutrient budgets. Biogeochemistry, 72(2), 233-256. 

Hollesen J, Buchwal A, Rachlewicz G, Hansen BU, Hansen MO, Stecher O, Elberling B 
(2015) Winter warming as an important co‐driver for Betula nana growth in western 
Greenland during the past century. Global Change Biology, 21, 2410-2423. 

Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglinton, T. 
I., ... & Staples, R. (2012). Seasonal and annual fluxes of nutrients and organic matter 



103 
 

from large rivers to the Arctic Ocean and surrounding seas. Estuaries and 
Coasts, 35(2), 369-382. 

Holmes, C. D., Prather, M. J., and Vinken, G. C. M. (2014). The climate impact of ship 
NOx emissions: an improved estimate accounting for plume chemistry, Atmos. Chem. 
Phys., 14, 6801-6812, doi:10.5194/acp-14-6801-2014. 

Holtgrieve, G. W., Schindler, D. E., Hobbs, W. O., Leavitt, P. R., Ward, E. J., Bunting, L., 
... & Lisac, M. J. (2011). A coherent signature of anthropogenic nitrogen deposition to 
remote watersheds of the northern hemisphere. Science, 334(6062), 1545-1548. 

Houlton, B. Z., Wang, Y. P., Vitousek, P. M., & Field, C. B. (2008). A unifying 
framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454(7202), 327. 

Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., ... & 
Berendse, F. (1996). Regional nitrogen budgets and riverine N & P fluxes for the 
drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen 
cycling in the North Atlantic Ocean and its watersheds (pp. 75-139). Springer, 
Dordrecht. 

Howarth, R. W., & Marino, R. (2006). Nitrogen as the limiting nutrient for eutrophication 
in coastal marine ecosystems: evolving views over three decades. Limnology and 
Oceanography, 51(1part2), 364-376. 

Howarth, R., Swaney, D., Billen, G., Garnier, J., Hong, B., Humborg, C., ... & Marino, R. 
(2012). Nitrogen fluxes from the landscape are controlled by net anthropogenic 
nitrogen inputs and by climate. Frontiers in Ecology and the Environment, 10(1), 37-
43. 

Hudman, R.C., N.E. Moore, R.V. Martin, A.R. Russell, A.K. Mebust, L.C. Valin, and 
R.C. Cohen. (2012). A mechanistic model of global soil nitric oxide emissions: 
implementation and space based-constraints. Atm. Chem. Phys., 12, 7779-7795, 
doi:10.5194/acp-12-7779-2012,  

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E., Ping, C. L., ... & 
O'Donnell, J. A. (2014). Estimated stocks of circumpolar permafrost carbon with 
quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573-
6593. 

IPCC (2013) Annex I: Atlas of Global and Regional Climate Projections (eds van 
Oldenborgh GJ, Collins M, Arblaster JH, et al.). In: Climate Change 2013: The 
Physical Science Basis. Contribution of Working Group I to the Fifth Assessment 
Report of the Intergovernmental Panel on Climate Change (eds Stocker TF, Qin D, 
Plattner GK, et al.). Cambridge University Press, Cambridge, United Kingdom and 
New York, NY, USA. 

Jaeglé, L., P.K. Quinn, T. Bates, B. Alexander, and J.-T. Lin, Global distribution of sea 
salt aerosols: New constraints from in situ and remote sensing observations, Atmos. 
Chem. Phys., 11, 3137-3157, doi:10.5194/acp-11-3137-2011, 2011. 

Jia, Y., Yu, G., He, N., Zhan, X., Fang, H., Sheng, W., ... & Wang, Q. (2014). Spatial and 
decadal variations in inorganic nitrogen wet deposition in China induced by human 
activity. Scientific Reports, 4, 3763. 



104 
 

Jørgensen RH, Hallinger M, Ahlgrimm S, Friemel J, Kollmann J, Meilby H (2015) 
Growth response to climatic change over 120 years for Alnus viridis and Salix glauca 
in West Greenland. Journal of Vegetation Science, 26, 155-165. 

Kahmen, A., Renker, C., Unsicker, S. B., & Buchmann, N. (2006). Niche 
complementarity for nitrogen: an explanation for the biodiversity and ecosystem 
functioning relationship?. Ecology, 87(5), 1244-1255. 

Kanakidou, M., Stelios Myriokefalitakis, Nikos Daskalakis, G. Fanourgakis, Athanasios 
Nenes, A. R. Baker, K. Tsigaridis, and N. Mihalopoulos. (2016). Past, present, and 
future atmospheric nitrogen deposition. Journal of the Atmospheric Sciences, 73(5), 
2039-2047. 

Kanakidou, M., Myriokefalitakis, S., & Tsigaridis, K. (2018). Aerosols in atmospheric 
chemistry and biogeochemical cycles of nutrients. Environmental Research Letters, 
13(6), 063004. 

Kankaala, P., Ojala, A., Tulonen, T., & Arvola, L. (2002). Changes in nutrient retention 
capacity of boreal aquatic ecosystems under climate warming: a simulation 
study. Hydrobiologia, 469(1-3), 67-76. 

Keiser, D., Lade, G., & Rudik, I. (2018). Air pollution and visitation at US national 
parks. Science advances, 4(7), eaat1613. 

Kendrick, M. R., Huryn, A. D., Bowden, W. B., Deegan, L. A., Findlay, R. H., Hershey, 
A. E., ... & Schuett, E. B. (2018). Linking permafrost thaw to shifting biogeochemistry 
and food web resources in an arctic river. Global change biology. 

Knorr, M., Frey, S. D., & Curtis, P. S. (2005). Nitrogen additions and litter decomposition: 
A meta‐analysis. Ecology, 86(12), 3252-3257. 

Lamarque, J. F., Dentener, F., McConnell, J., Ro, C. U., Shaw, M., Vet, R., ... & Faluvegi, 
G. (2013). Multi-model mean nitrogen and sulfur deposition from the Atmospheric 
Chemistry and Climate Model Intercomparison Project (ACCMIP): evaluation of 
historical and projected future. Atmospheric Chemistry and Physics, 13(LLNL-JRNL-
644459). 

Larsson L (2013) CooRecorder and Cdendro programs of the CooRecorder/Cdendro 
package version 7.6. 

Lawrence, D. M., & Swenson, S. C. (2011). Permafrost response to increasing Arctic 
shrub abundance depends on the relative influence of shrubs on local soil cooling 
versus large-scale climate warming. Environmental Research Letters, 6(4), 045504. 

Lawson, E. C., Bhatia, M. P., Wadham, J. L., & Kujawinski, E. B. (2014). Continuous 
summer export of nitrogen-rich organic matter from the Greenland Ice Sheet inferred 
by ultrahigh resolution mass spectrometry. Environmental science & technology, 
48(24), 14248-14257. 

LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity 
in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371-379. 

Lepistö, A., Kortelainen, P., & Mattsson, T. (2008). Increased organic C and N leaching in 
a northern boreal river basin in Finland. Global Biogeochemical Cycles, 22(3). 

Levine, M. A., & Whalen, S. C. (2001). Nutrient limitation of phytoplankton production in 
Alaskan Arctic foothill lakes. Hydrobiologia, 455(1-3), 189-201. 



105 
 

Li, Y., Schichtel, B. A., Walker, J. T., Schwede, D. B., Chen, X., Lehmann, C. M., ... & 
Collett, J. L. (2016). Increasing importance of deposition of reduced nitrogen in the 
United States. Proceedings of the National Academy of Sciences, 113(21), 5874-5879. 

Lin, S.-J., and R.B. Rood, 1996: Multidimensional flux form semi-Lagrangian transport 
schemes, Mon. Wea. Rev., 124, 2046-2070 

Lin, J.-T., and M. McElroy, Impacts of boundary layer mixing on pollutant vertical 
profiles in the lower troposphere: Implications to satellite remote sensing, 
Atmospheric Environment, 44(14), 1726-1739, doi:10.1016/j.atmosenv.2010.02.009, 
2010. 

Liu, H., D.J. Jacob, I. Bey, and R.M. Yantosca, Constraints from 210Pb and 7Be on wet 
deposition and transporting a global threee-dimensional chemical tracer model driven 
by asimilated meteorological fields, J. Geophys. Res., 106, 12,109-12,128, 2001. 

Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., ... & Fangmeier, A. (2013). 
Enhanced nitrogen deposition over China. Nature, 494(7438), 459. 

Liu, X. Y., Koba, K., Koyama, L. A., Hobbie, S. E., Weiss, M. S., Inagaki, Y., ... & 
Sommerkorn, M. (2018). Nitrate is an important nitrogen source for Arctic tundra 
plants. Proceedings of the National Academy of Sciences, 115(13), 3398-3403. 

Mao, J., F. Paulot, D.J. Jacob, R.C. Cohen, J.D. Crounse, P.O. Wennberg, C.A. Keller, 
R.C. Hudman, M.P. Barkley, and L.W. Horowitz, Ozone and organic nitrates over the 
eastern United States: sensitivity to isoprene chemistry, J. Geophys. Res., 
118, 11,256–11,268, 2013a. 

Martin, A. C., Jeffers, E., Petrokofsky, G., Myers-Smith, I., & Macias-Fauria, M. (2017). 
Shrub growth and expansion in the Arctic tundra: an assessment of controlling factors 
using an evidence-based approach. Environmental Research Letters. 

Matsuura, K., and C. J. Willmott. 2015a. Terrestrial Air Temperature: 1900-2014 Gridded 
Monthly Time Series. 
http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.GlobalTsT2
014.html. Accessed 10 January 2018. 

Matsuura, K., and C. J. Wilmott. 2015b. Terrestrial Precipitation: 1900-2014 Gridded 
Monthly Time Series. 
http://climate.geog.udel.edu/~climate/html_pages/Global2014/README.GlobalTsP20
14.html Accesses 10 January 2018. 

McClelland, J. W., Townsend‐Small, A., Holmes, R. M., Pan, F., Stieglitz, M., Khosh, M., 
& Peterson, B. J. (2014). River export of nutrients and organic matter from the North 
Slope of Alaska to the Beaufort Sea. Water Resources Research, 50(2), 1823-1839. 

Meko D, Graybill DA (1995) Tree-ring reconstruction of Upper Gila River discharge. 
Journal of the American Water Resources Association, 31, 605-616. 

Mekonnen, Z. A., Riley, W. J., & Grant, R. F. (2018). Accelerated nutrient cycling and 
increased light competition will lead to 21st century shrub expansion in North 
American Arctic tundra. Journal of Geophysical Research: Biogeosciences, 123(5), 
1683-1701. 

http://climate.geog.udel.edu/%7Eclimate/html_pages/Global2014/README.GlobalTsT2014.html
http://climate.geog.udel.edu/%7Eclimate/html_pages/Global2014/README.GlobalTsT2014.html
http://climate.geog.udel.edu/%7Eclimate/html_pages/Global2014/README.GlobalTsP2014.html
http://climate.geog.udel.edu/%7Eclimate/html_pages/Global2014/README.GlobalTsP2014.html


106 
 

Miller, G. H., Alley, R. B., Brigham-Grette, J., Fitzpatrick, J. J., Polyak, L., Serreze, M. 
C., & White, J. W. (2010). Arctic amplification: can the past constrain the 
future?. Quaternary Science Reviews, 29(15-16), 1779-1790. 

Millet, D.B., M. Baasandorj, D.K. Farmer, J.A. Thornton, K. Baumann, P. Brophy, S. 
Chaliyakunnel, J.A. de Gouw, M. Graus, L. Hu, A. Koss, B.H. Lee, F.D. Lopez-
Hilfiker, J.A. Neuman, F. Paulot, J. Peischl, I.B. Pollack, T.B. Ryerson, C. Warneke, 
B.J. Williams, and J. Xu (2015), A large and ubiquitous source of atmospheric formic 
acid, Atmos. Chem. Phys., 15, 6283-6304, doi:10.5194/acp-15-6283-2015. 

Murphy, B. W. (2015). Impact of soil organic matter on soil properties—a review with 
emphasis on Australian soils. Soil Research, 53(6), 605-635. 

Murray, L.T., D.J. Jacob, J.A. Logan, R.C. Hudman, and W.J. Koshak. (2012). Optimized 
regional and interannual variability of lightning in a global chemical transport model 
constrained by LIS/OTD satellite data, , J. Geophus. Res., 117, D20307. 

Myers-Smith, I. H., Forbes, B. C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., ... & 
Boudreau, S. (2011). Shrub expansion in tundra ecosystems: dynamics, impacts and 
research priorities. Environmental Research Letters, 6(4), 045509. 

Myers-Smith, I. H., Elmendorf, S. C., Beck, P. S., Wilmking, M., Hallinger, M., Blok, D., 
... & Speed, J. D. (2015a). Climate sensitivity of shrub growth across the tundra 
biome. Nature Climate Change, 5(9), 887. 

Myers-Smith IH, Hallinger M, Blok D et al. (2015b) Methods for measuring arctic and 
alpine shrub growth: a review. Earth-Science Reviews, 140, 1-13. 

Myrstener, M., Jonsson, A., & Bergström, A. K. (2016). The effects of temperature and 
resource availability on denitrification and relative N2O production in boreal lake 
sediments. Journal of Environmental Sciences, 47, 82-90. 

Myrstener, M., Rocher‐Ros, G., Burrows, R. M., Bergström, A. K., Giesler, R., & 
Sponseller, R. A. (2018). Persistent nitrogen limitation of stream biofilm communities 
along climate gradients in the Arctic. Global change biology. 

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 
from generalized linear mixed‐effects models. Methods in Ecology and 
Evolution, 4(2), 133-142. 

National Atmospheric Deposition Program (NADP). (2018). NADP Program Office, 
Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706. < 
http://nadp.slh.wisc.edu/data/NTN/>. Retrieved April 6, 2018. 

Nauta AL, Heijmans MM, Blok D et al. (2015) Permafrost collapse after shrub removal 
shifts tundra ecosystem to a methane source. Nature Climate Change, 5, 67-70. 

NOAA Gridded Climate Divisional Dataset (CLIMDIV), North Slope, Alaska. NOAA 
National Climatic Data Center. Retrieved from https://www.ncdc.noaa.gov/cag/ 
(Accessed September 1, 2016). 

Olofsson J, Oksanen L, Callaghan T, Hulme PE, Oksanen T, Suominen O (2009) 
Herbivores inhibit climate‐driven shrub expansion on the tundra. Global Change 
Biology, 15, 2681-2693. 

https://atmoschem.umn.edu/sites/atmoschem.umn.edu/files/millet_2015.pdf
https://atmoschem.umn.edu/sites/atmoschem.umn.edu/files/millet_2015.pdf
http://nadp.slh.wisc.edu/data/NTN/
https://www.ncdc.noaa.gov/cag/


107 
 

Oswald, W. W., Brubaker, L. B., Hu, F. S., & Kling, G. W. (2014). Late-Quaternary 
environmental and ecological history of the Arctic Foothills, northern Alaska. Alaska's 
Changing Arctic, Oxford University Press, New York, NY, 81-89. 

Overland, J. E., Spillane, M. C., Percival, D. B., Wang, M., & Mofjeld, H. O. (2004). 
Seasonal and regional variation of pan-Arctic surface air temperature over the 
instrumental record. Journal of Climate, 17(17), 3263-3282. 

Palmer, J., Thorburn, P. J., Biggs, J. S., Dominati, E. J., Probert, M. E., Meier, E. A., ... & 
Parton, W. J. (2017). Nitrogen cycling from increased soil organic carbon contributes 
both positively and negatively to ecosystem services in wheat agro-
ecosystems. Frontiers in plant science, 8, 731. 

Parrella, J.P., D.J. Jacob, Q. Liang, Y. Zhang, L.J. Mickley, B. Miller, M.J. Evans, X. 
Yang, J.A. Pyle, N. Theys, and M. Van Roozendael, Tropospheric bromine chemistry: 
implications for present and pre-industrial ozone and mercury, Atmos. Chem. 
Phys., 12, 6,723-6,740, 2012. 

Paul, M. J., & Meyer, J. L. (2001). Streams in the urban landscape. Annual review of 
Ecology and Systematics, 32(1), 333-365. 

Perakis, S. S., & Hedin, L. O. (2007). State factor relationships of dissolved organic 
carbon and nitrogen losses from unpolluted temperate forest watersheds. Journal of 
Geophysical Research: Biogeosciences, 112(G2). 

Peterson, B. J., Deegan, L., Helfrich, J., Hobbie, J. E., Hullar, M., Moller, B., ... & Lock, 
M. A. (1993). Biological responses of a tundra river to fertilization. Ecology, 74(3), 
653-672. 

Petrenko, V. V., Smith, A. M., Schaefer, H., Riedel, K., Brook, E., Baggenstos, D., ... & 
Fain, X. (2017). Minimal geological methane emissions during the Younger Dryas–
Preboreal abrupt warming event. Nature, 548(7668), 443. 

Phoenix, G. K., Hicks, W. K., Cinderby, S., Kuylenstierna, J. C., Stock, W. D., Dentener, 
F. J., ... & Ashmore, M. R. (2006). Atmospheric nitrogen deposition in world 
biodiversity hotspots: the need for a greater global perspective in assessing N 
deposition impacts. Global Change Biology, 12(3), 470-476. 

Pye, H.O.T., H. Liao, S. Wu, L.J. Mickley, D.J. Jacob, D.K. Henze, and J.H. Seinfeld, 
Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol 
levels in the United States, J. Geophys. Res., 114, D01205, 2009. 

Pinheiro J, Bates D, DebRoy S, Sarkar D (2014) R Core Team. nlme: linear and nonlinear 
mixed effects models. R package version 3.1-117. Available at h ttp://CRAN. R-
project. org/package= nlme. 

Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2018). nlme: Linear and 
Nonlinear Mixed Effects Models. R package version 3.1-137 

Post, E., et al. (2013). Ecological consequences of sea-ice decline. Science, 341(6145), 
519-524. 

Radville, L., Post, E., & Eissenstat, D. M. (2016). Root phenology in an Arctic shrub-
graminoid community: the effects of long-term warming and herbivore exclusion. 
Climate Change Responses, 3(1), 4. 

Rayback SA, Henry GH (2005) Dendrochronological potential of the Arctic dwarf-shrub 
Cassiope tetragona. Tree-Ring Research, 61, 43-53. 



108 
 

Raynolds, M. K., & Walker, D. A. (2009). Effects of deglaciation on circumpolar 
distribution of arctic vegetation. Canadian Journal of Remote Sensing, 35(2), 118-129. 

Reis, S., Pinder, R. W., Zhang, M., Lijie, G., & Sutton, M. A. (2009). Reactive nitrogen in 
atmospheric emission inventories. Atmospheric Chemistry and Physics, 9(19), 7657-
7677. 

Riahi, K., Rao, S., Krey, V., Cho, C. H., Chirkov, V., Fischer, G., Kindermann, G., 
Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5-A scenario of comparatively high 
greenhouse gas emissions. Clim. Change, 109(1−2), 33−57. 

Ropars P, Levesque E, Boudreau S (2015) How do climate and topography influence the 
greening of the forest‐tundra ecotone in northern Québec? A dendrochronological 
analysis of Betula glandulosa. Journal of Ecology, 103, 679-690. 

Ropars, P., Angers‐Blondin, S., Gagnon, M., Myers‐Smith, I. H., Lévesque, E., & 
Boudreau, S. (2017). Different parts, different stories: climate sensitivity of growth is 
stronger in root collars vs. stems in tundra shrubs. Global change biology. 

Rousk, K., Sorensen, P. L., & Michelsen, A. (2018). What drives biological nitrogen 
fixation in high arctic tundra: Moisture or temperature?. Ecosphere, 9(2). 

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. 
(2004). A continuous satellite-derived measure of global terrestrial primary 
production. BioScience, 54(6), 547-560. 

Schaefer, S. C., & Alber, M. (2007). Temperature controls a latitudinal gradient in the 
proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry, 
85(3), 333-346. 

Schimel, J. P., & Chapin, F. S. (1996). Tundra plant uptake of amino acid and NH4+ 
nitrogen in situ: plants complete well for amino acid N. Ecology, 77(7), 2142-2147. 

Schimel, J. P., & Bennett, J. (2004). Nitrogen mineralization: challenges of a changing 
paradigm. Ecology, 85(3), 591-602. 

Schimel JP, Bilbrough C, Welker JM (2004) Increased snow depth affects microbial 
activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology 
and Biochemistry, 36, 217-227. 

Schmidt, I. K., Jonasson, S., Shaver, G. R., Michelsen, A., & Nordin, A. (2002). 
Mineralization and distribution of nutrients in plants and microbes in four arctic 
ecosystems: responses to warming. Plant and Soil, 242(1), 93-106. 

Schuur EA, Crummer KG, Vogel JG, Mack MC (2007) Plant species composition and 
productivity following permafrost thaw and thermokarst in Alaskan tundra. 
Ecosystems, 10, 280-292. 

Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., ... & 
Natali, S. M. (2015). Climate change and the permafrost carbon 
feedback. Nature, 520(7546), 171. 

Schaefer, S. C., & Alber, M. (2007). Temperature controls a latitudinal gradient in the 
proportion of watershed nitrogen exported to coastal ecosystems. Biogeochemistry, 
85(3), 333-346. 

Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification: A 
research synthesis. Global and planetary change, 77(1-2), 85-96. 



109 
 

Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 
2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National 
Academy of Sciences, 109(40), 16083-16088. 

Shaver, G. R. (1986). Woody stem production in Alaskan tundra shrubs. Ecology, 67(3), 
660-669. 

Shaver, G. R., Billings, W. D., Chapin III, F. S., Giblin, A. E., Nadelhoffer, K. J., Oechel, 
W. C., & Rastetter, E. B. (1992). Global change and the carbon balance of arctic 
ecosystems: Carbon/nutrient interactions should act as major constraints on changes in 
global terrestrial carbon cycling. Bioscience, 42(6), 433-441. 

Shaver, G. R., & Jonasson, S. (1999). Response of Arctic ecosystems to climate change: 
results of long‐term field experiments in Sweden and Alaska. Polar Research, 18(2), 
245-252.er, G. R. (1986). Woody stem production in Alaskan tundra shrubs.Ecology, 
660-669. 

Shaver, G. R., Laundre, J. A., Bret-Harte, M. S., Chapin, F. S., Mercado-Dıaz, J. A., 
Giblin, A. E., ... & Gould, W. A. (2014). Terrestrial ecosystems at toolik Lake, 
Alaska. Alaska’s changing Arctic: Ecological consequences for tundra, streams, and 
lakes, ed. JE Hobbie, and GW Kling, 90-142. 

Simmons, A. J., & Poli, P. (2015). Arctic warming in ERA‐Interim and other analyses. 
Quarterly Journal of the Royal Meteorological Society, 141(689), 1147-1162. 

Simmons, A. J., Berrisford, P., Dee, D. P., Hersbach, H., Hirahara, S., & Thépaut, J. N. 
(2017). A reassessment of temperature variations and trends from global reanalyses 
and monthly surface climatological datasets. Quarterly Journal of the Royal 
Meteorological Society, 143(702), 101-119. 

Sitch S, Smith B, Prentice et al. (2003) Evaluation of ecosystem dynamics, plant 
geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. 
Global Change Biology, 9, 161-185. 

Slavik K, Peterson BJ, Deegan LA, Bowden WB, Hershey AE, Hobbie JE (2004) Long-
term responses of the Kuparuk River ecosystem to phosphorus 
fertilization. Ecology, 85, 939-954. 

Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater—a 
review. Journal of environmental quality, 22(3), 392-402. 

Stettler, M.E.J., S. Eastham, S.R.H. Barrett, Air quality and public health impacts of UK 
airports. Part I: Emissions, Atmos. Environ., 45, 5415-5424, 2011. 

Stevens, C. J., Dise, N. B., Mountford, J. O., & Gowing, D. J. (2004). Impact of nitrogen 
deposition on the species richness of grasslands. Science, 303(5665), 1876-1879. 

Stokes MA, Smiley TL (1968) Tree-ring dating. University of Chicago Press, Chicago, 
Illinois. 

Sturm, Matthew, et al. "Snow-shrub interactions in Arctic tundra: a hypothesis with 
climatic implications." Journal of Climate 14.3 (2001): 336-344. 

Sweet SK, Gough L, Griffin KL, Boelman NT (2014) Tall deciduous shrubs offset 
delayed start of growing season through rapid leaf development in the Alaskan arctic 
tundra. Arctic, Antarctic, and Alpine Research, 46, 682-697. 

Sweet, SK., et al. "Greater deciduous shrub abundance extends tundra peak season and 
increases modeled net CO2 uptake." Global change biology 21.6 (2015): 2394-2409. 



110 
 

Tamm, C. O. (1991). Introduction: geochemical occurrence of nitrogen. Natural nitrogen 
cycling and anthropogenic nitrogen emissions. In Nitrogen in Terrestrial 
Ecosystems (pp. 1-6). Springer, Berlin, Heidelberg. 

Tank, S. E., Manizza, M., Holmes, R. M., McClelland, J. W., & Peterson, B. J. (2012). 
The processing and impact of dissolved riverine nitrogen in the Arctic 
Ocean. Estuaries and Coasts, 35(2), 401-415. 

Tape, K. E. N., Sturm, M., & Racine, C. (2006). The evidence for shrub expansion in 
Northern Alaska and the Pan‐Arctic. Global Change Biology, 12(4), 686-702. 

Tape, K. D., Lord, R., Marshall, H. P., & Ruess, R. W. (2010). Snow-mediated ptarmigan 
browsing and shrub expansion in arctic Alaska. 

Tape, K. D., Hallinger, M., Welker, J. M., & Ruess, R. W. (2012). Landscape 
heterogeneity of shrub expansion in Arctic Alaska. Ecosystems, 15(5), 711-724. 

Tape KD, Gustine DD, Ruess RW, Adams LG, Clark JA (2016) Range Expansion of 
Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat. PloS 
one, 11, e0152636. 

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. 
(2009). Soil organic carbon pools in the northern circumpolar permafrost 
region. Global biogeochemical cycles, 23(2). 

Telling, J., Anesio, A. M., Tranter, M., Irvine‐Fynn, T., Hodson, A., Butler, C., & 
Wadham, J. (2011). Nitrogen fixation on Arctic glaciers, Svalbard. Journal of 
Geophysical Research: Biogeosciences, 116(G3). 

Throop, H. L., & Lerdau, M. T. (2004). Effects of nitrogen deposition on insect herbivory: 
implications for community and ecosystem processes. Ecosystems, 7(2), 109-133. 

Tørseth, K., Aas, W., Breivik, K., Fjæraa, A. M., Fiebig, M., Hjellbrekke, A. G., ... & 
Yttri, K. E. (2012). Introduction to the European Monitoring and Evaluation 
Programme (EMEP) and observed atmospheric composition change during 1972–
2009. Atmospheric Chemistry and Physics, 12(12), 5447-5481. 

Torvinen, E. S. (2017). Lake Trout (Salvelinus Namaycush) Otoliths as Indicators of Past 
Climate Patterns and Growth in Arctic Lakes (Doctoral dissertation, University of 
Alaska Fairbanks). 

Treat, C. C., Wollheim, W. M., Varner, R. K., & Bowden, W. B. (2016). Longer thaw 
seasons increase nitrogen availability for leaching during fall in tundra 
soils. Environmental Research Letters, 11(6), 064013. 

van der Werf, G. R., Randerson, J. T., Giglio, L., Van Leeuwen, T. T., Chen, Y., Rogers, 
B. M., ... & Yokelson, R. J. (2017). Global fire emissions estimates during 1997–
2016. Earth System Science Data, 9(2), 697. 

Van Wijk, M. T., Clemmensen, K. E., Shaver, G. R., Williams, M., Callaghan, T. V., 
Chapin III, F. S., ... & Lee, J. A. (2004). Long‐term ecosystem level experiments at 
Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences 
in ecosystem and plant type responses to global change. Global Change 
Biology, 10(1), 105-123. 

Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C. U., Aas, W., ... & Hou, A. (2014). A 
global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea 



111 
 

salt, base cations, organic acids, acidity and pH, and phosphorus. Atmospheric 
Environment,93, 3-100. 

Vet, R., R.S. Artz, S. Carou, M. Shaw, C.-U. Ro, W. Aas, A. Baker, V.C. Bowersox, F. 
Dentener, C. Galy-Lacaux, A. Hou, J.J. Pienaar, R. Gillett, M.C. Forti, S. Gromov, H. 
Hara, T. Khodzher, N.M. Mahowald, S. Nickovic, P.S.P. Rao, N.W. Reid. 2018. Data 
associated with the following publication: Vet et al. (2014). A global assessment of 
precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, 
organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 93, 3-100, 
August 2014, doi.org/10.1016/j.atmosenv.2013.10.060. [Data files: Global Wet 
Concentration and Deposition Observations: 2005-2007; North American Dry 
Deposition Observations: 2005-2007] accessed from the World Data Centre for 
Precipitation Chemistry (http://wdcpc.org/assessment). 

Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. 
W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global 
nitrogen cycle: sources and consequences. Ecological applications, 7(3), 737-750. 

Vose, R. S., Applequist, S., Squires, M., Durre, I., Menne, M. J., Williams Jr, C. N., ... & 
Arndt, D. (2014). Improved historical temperature and precipitation time series for US 
climate divisions. Journal of Applied Meteorology and Climatology, 53(5), 1232-
1251. 

Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., Lawson, E., ... & 
Nienow, P. (2016). Sources, cycling and export of nitrogen on the Greenland Ice 
Sheet. Biogeosciences Discussions. 

Wadham, J. L., De'Ath, R., Monteiro, F. M., Tranter, M., Ridgwell, A., Raiswell, R., & 
Tulaczyk, S. (2013). The potential role of the Antarctic Ice Sheet in global 
biogeochemical cycles. Earth and Environmental Science Transactions of the Royal 
Society of Edinburgh, 104(1), 55-67. 

Walker DA, Raynolds MK, Daniëls FJ et al. (2005) The circumpolar Arctic vegetation 
map. Journal of Vegetation Science, 16, 267-282. 

Walker, D. A., Hamilton, T. D., Maier, H. A., Munger, C. A., & Raynolds, M. K. (2014). 
Glacial history and long-term ecology in the Toolik Lake region. Alaska's changing 
Arctic: Ecological consequences for tundra, streams, and lakes. Oxford, New York, 
61-80. 

Walter Anthony, K., et al. (2014). A shift of thermokarst lakes from carbon sources to 
sinks during the Holocene epoch. Nature, 511(7510), 452. 

Wang, Y., D.J. Jacob, and J.A. Logan, Global simulation of tropospheric O3-NOx-
hydrocarbon chemistry, 1. Model formulation, J. Geophys. Res., 103/D9, 10,713-
10,726, 1998 

Wang, Y. P., & Houlton, B. Z. (2009). Nitrogen constraints on terrestrial carbon uptake: 
Implications for the global carbon‐climate feedback. Geophysical Research 
Letters, 36(24). 

Wang, Q., D.J. Jacob, J.A. Fisher, J. Mao, E.M. Leibensperger, C.C. Carouge, P. Le 
Sager, Y. Kondo, J.L. Jimenez, M.J. Cubison, and S.J. Doherty, Sources of 
carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: 
implications for radiative forcing, Atmos. Chem. Phys., 11, 12,453-12,473, 2011. 

http://wdcpc.org/assessment


112 
 

Wang, Q., D.J. Jacob,J.R Spackman, A.E. Perring, J.P. Schwarz, N. Moteki, E.A. Marais, 
C. Ge, J. Wang, and S.R.H. Barrett, Global budget and radiative forcing of black 
carbon aerosol: constraints from pole-to-pole (HIPPO) observations across the Pacific, 
J. Geophys. Res., 119, 195-206, 2014. 

Weijers, S., Broekman, R., & Rozema, J. (2010). Dendrochronology in the High Arctic: 
July air temperatures reconstructed from annual shoot length growth of the 
circumarctic dwarf shrub Cassiope tetragona. Quaternary Science Reviews, 29(27-28), 
3831-3842. 

Weyer, P. J., Kantamneni, J. R., Lu, X., Ward, M. H., & Cerhan, J. R. (2008). Nitrate 
Ingestion from drinking water and diet and cancer risk. Epidemiology, 19(6), S55. 

Whittinghill, K. A., & Hobbie, S. E. (2011). Effects of Landscape Age on Soil Organic 
Matter Processing in Northern Alaska. Soil Science Society of America Journal, 75(3), 
907-917. 

Wieder, W.R., J. Boehnert, G.B. Bonan, and M. Langseth. (2014). Regridded Harmonized 
World Soil Database v1.2. Data set. Available on-line [http://daac.ornl.gov] from Oak 
Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, 
USA.http://dx.doi.org/10.3334/ORNLDAAC/1247 . 

Williams, N. S., Schwartz, M. W., Vesk, P. A., McCarthy, M. A., Hahs, A. K., Clemants, 
S. E., ... & McDonnell, M. J. (2009). A conceptual framework for predicting the 
effects of urban environments on floras. Journal of ecology, 97(1), 4-9. 

Wilmking M, D'arrigo R, Jacoby GC, Juday GP (2005) Increased temperature sensitivity 
and divergent growth trends in circumpolar boreal forests. Geophysical Research 
Letters, 32. 

Wookey, P. A., Welker, J. M., Parsons, A. N., Press, M. C., Callaghan, T. V., & Lee, J. A. 
(1994). Differential growth, allocation and photosynthetic responses of Polygonum 
viviparum to simulated environmental change at a high arctic polar semi-desert. Oikos, 
131-139. 

Worrall, F., Clay, G. D., Burt, T. P., & Rose, R. (2012). The multi-annual nitrogen budget 
of a peat-covered catchment—Changing from sink to source?. Science of the total 
environment, 433, 178-188. 

Wu, S, L.J. Mickley, D.J. Jacob, J.A. Logan, and R.M. Yantosca, Why are there large 
differences between models in global budgets of tropospheric ozone?, J. Geophys. 
Res, 112, D05302, doi:10.1029/2006JD007801, 2007 

Yano, Y., Shaver, G. R., Giblin, A. E., Rastetter, E. B., & Nadelhoffer, K. J. (2010). 
Nitrogen dynamics in a small arctic watershed: retention and downhill movement of 
15N. Ecological Monographs, 80(2), 331-351. 

Young, A. B., Watts, D. A., Taylor, A. H., & Post, E. (2016). Species and site differences 
influence climate-shrub growth responses in West Greenland. Dendrochronologia, 37, 
69-78. 

Zamin TJ, Grogan P (2012) Birch shrub growth in the low Arctic: the relative importance 
of experimental warming, enhanced nutrient availability, snow depth and caribou 
exclusion. Environmental Research Letters, 7, 034027. 

http://dx.doi.org/10.3334/ORNLDAAC/1247


113 
 

Zang C, Biondi F (2015) treeclim: an R package for the numerical calibration of proxy‐
climate relationships. Ecography, 38, 431-436. 

Zhang, L.M., S.L. Gong, J. Padro, and L. Barrie, A size-segregated particle dry deposition 
scheme for an atmospheric aerosol module, Atmos. Environ., 35(3), 549-560, 
doi:10.1016/s1352-2310(00)00326-5, 2001. 

Zhang, Y., Mathur, R., Bash, J. O., Hogrefe, C., Xing, J., & Roselle, S. J. (2018). Long-
term trends in total inorganic nitrogen and sulfur deposition in the US from 1990 to 
2010. Atmospheric Chemistry and Physics, 18, 9091-9106. 

 

  



114 
 

Appendix 1 

Chapter 1 Supplemental Material 

Table S1.1  Monthly climate correlation analysis for upland chronology detrended with cubic 
smoothing spline. Output is from treeclim (Zang & Biondi, 2015). CL = confidence limit. 

Month Variable Coefficient 
estimate 

p < 0.05 Lower 95% CI Upper 95% 
CI 

Previous October Precipitation 0.194 FALSE -0.025 0.311 
Previous 
November 

Precipitation -0.131 FALSE -0.35 0.049 

Previous 
December 

Precipitation -0.106 FALSE -0.284 0.18 

Current January Precipitation 0.069 FALSE -0.132 0.239 
Current February Precipitation -0.241 FALSE -0.48 0.068 
Current March Precipitation 0.136 FALSE -0.037 0.317 
Current April Precipitation 0.029 FALSE -0.291 0.19 
Current May Precipitation -0.023 FALSE -0.229 0.2 
Current June Precipitation -0.12 FALSE -0.258 0.126 
Current July Precipitation -0.216 TRUE -0.4 -0.018 
Current August Precipitation 0.058 FALSE -0.109 0.331 
Previous October Temperature -0.012 FALSE -0.213 0.333 
Previous 
November 

Temperature -0.066 FALSE -0.259 0.225 

Previous 
December 

Temperature 0.079 FALSE -0.192 0.231 

Current January Temperature -0.001 FALSE -0.148 0.173 
Current February Temperature -0.138 FALSE -0.33 0.19 
Current March Temperature 0.198 FALSE -0.009 0.398 
Current April Temperature 0.078 FALSE -0.153 0.285 
Current May Temperature -0.212 FALSE -0.395 0.023 
Current June Temperature 0.489 TRUE 0.097 0.727 
Current July Temperature -0.025 FALSE -0.257 0.18 
Current August Temperature 0.032 FALSE -0.182 0.33 

 

Table S1.2  Monthly climate correlation analysis for upland chronology detrended with negative 
exponential function. Output is from treeclim (Zang & Biondi, 2015). CL = confidence limit. 

Month Variable Coefficient 
estimate 

p < 0.05 Lower 95% 
CL 

Upper 95% 
CL 

Previous October Precipitation 0.131 FALSE -0.055 0.279 
Previous 
November 

Precipitation -0.199 FALSE -0.437 0.062 

Previous 
December 

Precipitation 0.024 FALSE -0.271 0.43 

Current January Precipitation -21 FALSE -0.229 0.169 
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Current February Precipitation -0.28 FALSE -0.599 0.075 
Current March Precipitation 0.057 FALSE -0.117 0.227 
Current April Precipitation -0.022 FALSE -0.28 0.18 
Current May Precipitation -0.013 FALSE -0.235 0.248 
Current June Precipitation -0.13 FALSE -0.374 0.17 
Current July Precipitation -0.093 FALSE -0.303 0.107 
Current August Precipitation 0.142 FALSE -0.112 0.443 
Previous October Temperature -0.099 FALSE -0.333 0.234 
Previous 
November 

Temperature 0.056 FALSE -0.214 0.307 

Previous 
December 

Temperature 0.067 FALSE -0.156 0.32 

Current January Temperature 0.032 FALSE -0.235 0.209 
Current February Temperature 0.009 FALSE -0.311 0.258 
Current March Temperature 0.143 FALSE -0.176 0.394 
Current April Temperature -0.005 FALSE -0.261 0.251 
Current May Temperature -0.119 FALSE -0.401 0.146 
Current June Temperature 0.388 TRUE 0.063 0.663 
Current July Temperature -0.095 FALSE -0.437 0.163 
Current August Temperature 0.029 FALSE -0.246 0.272 
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Table S1.3  Monthly climate correlation analysis for riparian chronology detrended with cubic 
smoothing spline. Output is from treeclim (Zang & Biondi, 2015). CL = confidence limit. 

Month Variable Coefficient 
estimate 

p < 0.05 Lower 95% CL Upper 95% CL 

Previous October Precipitation 0.03 FALSE -0.151 0.185 
Previous November Precipitation -0.2 FALSE -0.458 0.032 
Previous December Precipitation 0.051 FALSE -0.213 0.325 
Current January Precipitation -0.046 FALSE -0.228 0.107 
Current February Precipitation -0.077 FALSE -0.284 0.109 
Current March Precipitation -0.046 FALSE -0.181 0.125 
Current April Precipitation -0.179 FALSE -0.439 0.007 
Current May Precipitation 0.051 FALSE -0.234 0.284 
Current June Precipitation -0.058 FALSE -0.296 0.115 
Current July Precipitation 0.106 FALSE -0.084 0.295 
Current August Precipitation -0.101 FALSE -0.359 0.208 
Previous October Temperature 0.121 FALSE -0.123 0.358 
Previous November Temperature -0.021 FALSE -0.249 0.202 
Previous December Temperature -0.17 FALSE -0.434 0.023 
Current January Temperature -0.066 FALSE -0.297 0.172 
Current February Temperature -0.195 FALSE -0.476 0.096 
Current March Temperature -0.086 FALSE -0.322 0.161 
Current April Temperature -0.048 FALSE -0.32 0.173 
Current May Temperature -0.058 FALSE -0.271 0.192 
Current June Temperature 0.283 TRUE 0.021 0.53 
Current July Temperature 0.118 FALSE -0.134 0.361 
Current August Temperature -0.001 FALSE -0.234 0.207 
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Table S1.4  Monthly climate correlation analysis for riparian chronology detrended with 
negative exponential function. Output is from treeclim (Zang & Biondi, 2015). CL = confidence 
limit. 

Month Variable 
Coefficient 
estimate p < 0.05 Lower 95% CL Upper 95% CL 

Previous October Precipitation -0.014 FALSE -0.248 0.133 

Previous November Precipitation -0.164 FALSE -0.432 0.065 

Previous December Precipitation 0.044 FALSE -0.293 0.317 

Current January Precipitation -0.023 FALSE -0.263 0.193 

Current February Precipitation 0.003 FALSE -0.221 0.257 

Current March Precipitation -0.025 FALSE -0.23 0.162 

Current April Precipitation -0.13 FALSE -0.412 0.083 

Current May Precipitation 0.022 FALSE -0.274 0.294 

Current June Precipitation 0.004 FALSE -0.265 0.21 

Current July Precipitation 0.142 FALSE -0.05 0.35 

Current August Precipitation -0.079 FALSE -0.323 0.254 

Previous October Temperature 0.09 FALSE -0.182 0.359 

Previous November Temperature 0.02 FALSE -0.322 0.264 

Previous December Temperature -0.258 FALSE -0.556 0.006 

Current January Temperature -0.067 FALSE -0.32 0.201 

Current February Temperature -0.175 FALSE -0.507 0.198 

Current March Temperature -0.134 FALSE -0.425 0.192 

Current April Temperature -0.142 FALSE -0.487 0.156 

Current May Temperature -0.068 FALSE -0.292 0.248 

Current June Temperature 0.302 FALSE -0.021 0.636 

Current July Temperature 0.072 FALSE -0.227 0.338 

Current August Temperature 0.024 FALSE -0.287 0.281 
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Table S1.5  Fixed effects output of individual-based hierarchical mixed effects model, using 
detrended (20-year cubic smoothing spline) upland ring width index as a response variable. 
Mean June temperature (“temp”) was a fixed effect, as was a second-order temperature term. 
Year and individual were random effects. Output is from R package nlme (Pinheiro et al., 2014). 

Term Value Std. error df t p 
Intercept -1.922 0.953 442 -2.06 0.044 
temp 0.581 0.214 23 2.71 0.013 
I(temp^2) -0.028 0.012 3 -2.33 0.029 

 

Table S1.6  Fixed effects output of individual-based hierarchical mixed effects model, using raw 
upland ring width (mm) as a response variable. Mean June temperature (“temp”) was a fixed 
effect, as was a second-order temperature term. Year and individual were random effects. 
Output is from R package nlme (Pinheiro et al., 2014). Raw data are available at the 
International Tree-Ring Data Bank (https://data.noaa.gov/dataset/international-tree-ring-data-
bank-itrdb). 

Term Value Std. error df t p 
Intercept -0.393 0.348 442 -1.13 0.259 
temp 0.125 0.078 23 1.61 0.122 
I(temp^2) -0.007 0.004 23 -1.516 0.143 
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Fig S1.1  Individual curve fits (red) for second order relationship between ring width index and 
June temperature for upland (top) and riparian (bottom) shrubs. Site mean relationships are 
shown in black. All but one individual from the upland site show a decelerating relationship 
between ring width index and temperature, whereas the climate-growth relationship varies for 
individuals at the riparian site, with riparian site mean showing minimal deceleration. 
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Appendix 2 
 
Chapter 3 Supplemental Material 

 

Figure S3.1. Wet IN deposition as a fraction of total (wet + dry) IN deposition as simulated for 
2016. 

  

 

Figure S3.2. Mean annual change in nitrogen emissions from 1984 to 2016. Nitrogen emissions 
due to biomass burning, including agricultural fires (a) and emissions from fossil fuel combustion 
(b) show variable rates of change across the globe. Total nitrogen emissions (c) constitute the 
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sum of emissions from biomass burning, fossil fuel combustion, agriculture, and natural sources 
(including soils, lightning, and biogenic compounds). 

 

 

 

Figure S3.3. Modeled interdecadal trends in IN deposition. Table to the left of each interdecadal 
period compares the modeled change with observed change in IN deposition over the same 
time period for four long-term monitoring sites (NADP 2018). 
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Figure S3.4. Proportion of IN deposited as reduced molecules (NH3 and NH4) as simulated for 
each decade. 

 

 

Figure S3.5. Mean annual total nitrogen emissions as simulated for each decade. 
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Figure S3.6. Mean annual nitrogen emissions due to biomass burning as simulated for each 
decade. 

 

 

Figure S3.7. Mean annual nitrogen emissions from fossil fuel combustion as simulated for each 
decade. 
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Figure S3.8. Mean annual nitrogen emissions from soils (natural and agricultural) simulated for 
each decade. 

 

 

 

 

Figure S3.9. Mean annual deposition of nitrogen in organic compounds, as simulated for each 
decade. Compounds included in the simulation are propanone nitrate, isoprene hydroxynitrate, 



125 
 

methyl vinyl ketone + methacrolein nitrates, ≥C4 alkylnitrates, methyl peroxy nitrate, 
peroxyacetylnitrate, peroxypropionylnitrate, and peroxymethacryloyl nitrate. 

 

 

Figure S3.10. Organic nitrogen deposition as a proportion of total nitrogen deposition, as 
simulated for 2016. These values represent lower-bound estimates, as some nitrogen-containing 
organic compounds, such as amino acids and urea, are not represented in the GEOS-Chem 
simulations. 
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Appendix 3 
 
 
 
Chapter 4 Supplemental Material 
 
 
 
 

 

Figure S4.1. Relationship between proportion of N retained and mean annual temperature for 
watershed with positive net nitrogen retention value. This figure is a subset of figure 3, here 
detailing only watersheds with proportions of N retained greater than 0. 
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Figure S4.2. (a) Relationship between mean annual temperature and proportional N retention 
by permafrost coverage. Watersheds with greater permafrost coverage 
(continuous/discontinuous) generally retained less nitrogen. Further, temperature explained 
less of the variability in retention for these watersheds. (b) Map of N export measurement sites, 
color coded with positive versus negative retention values. Watersheds with negative retention 
values tended to be further north and have greater permafrost coverage. 

 

Table S4.1. Dataset for analyzing nitrogen retention is attached as “Table S4.1.csv”. Metadata 
and references are below. 

 

Table S4.1 metadata. 
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Variable name Description Units (for 
numerical 
variables) 

Site Site name, as indicated in the primary 
literature 

 

Location General location of site 
 

Basin_type Categorical indicator (boreal, tundra, or 
glacial) 

 

Latitude Latitude at site of nitrogen export 
measurement for each watershed 

decimal degrees 

Longitude Longitude at site of nitrogen export 
measurement for each watershed 

decimal degrees 

Period Temporal period over which 
quantitative variables are measured and 
averaged on an annual basis 

Years (c.e.) 

Mean_annual_temperature_C Mean annual surface air temperature in 
watershed. From Matsuura and 
Willmott (2015a) 

Degrees celcius 

N_retention Absolute area-normalized annual 
watershed nitrogen retention calculated 
as: (N_deposition) - (N_export) 

kgN km-2 yr-1 

N_export Annual area-normalized export of total 
nitrogen from watershed, measured at 
stream outlet 

kgN km-2 yr-1 

N_deposition Annual area-normalized atmospheric 
deposition of inorganic nitrogen in 
watershed. From Ackerman et al. 2018 

kgN km-2 yr-1 

Runoff_mm Annual watershed runoff mm2 

Watershed_area_km2 Area of watershed km2 

Permafrost_presence Binary indicator of presence/absence of 
permafrost within watershed. From 
Brown et al. (2002) 

 

Permafrost_extent Categorical indicator of permafrost 
extent within watershed. From Brown et 
al. (2002) 

 

Topsoil_organic_carbon_percent_wei
ght 

Organic carbon content for top 30 cm of 
soil (from Wieder et al. 2014) 

% weight 

Reference Original source for nitrogen export data 
and watershed description. Full citation 
available in Supplemental Information 
file. 

  

 

Table S4.1 references: 

Clair, T. A., Pollock, T. L., & Ehrman, J. M. (1994). Exports of carbon and nitrogen from river 
basins in Canada's Atlantic Provinces. Global Biogeochemical Cycles, 8(4), 441-450. 

Clair, T. A., Dennis, I. F., & Bélanger, S. (2013). Riverine nitrogen and carbon exports from the 
Canadian landmass to estuaries. Biogeochemistry, 115(1-3), 195-211. 
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De March, L. (1975). Nutrient budgets for a high arctic lake (Char Lake, NWT) With 3 figures and 
3 tables in the text. Internationale Vereinigung für theoretische und angewandte Limnologie: 
Verhandlungen, 19(1), 496-503. 

Dittmar, T., & Kattner, G. (2003). The biogeochemistry of the river and shelf ecosystem of the 
Arctic Ocean: a review. Marine chemistry, 83(3-4), 103-120. 

Fölster, J. (2000). The near-stream zone is a source of nitrogen in a Swedish forested 
catchment. Journal of environmental quality, 29(3), 883-893. 

Hodson, A. J., Mumford, P. N., Kohler, J., & Wynn, P. M. (2005). The High Arctic glacial 
ecosystem: new insights from nutrient budgets. Biogeochemistry, 72(2), 233-256. 

Kaste, Ø., & Skjelkvåle, B. L. (2002). Nitrogen dynamics in runoff from two small heathland 
catchments representing opposite extremes with respect to climate and N deposition in 
Norway. Hydrology and Earth System Sciences Discussions, 6(3), 351-362. 

Kortelainen, P., Saukkonen, S., & Mattsson, T. (1997). Leaching of nitrogen from forested 
catchments in Finland. Global Biogeochemical Cycles, 11(4), 627-638. 

Lafrenière, Melissa J., Nicole L. Louiseize, and Scott F. Lamoureux. "Active layer slope 
disturbances affect seasonality and composition of dissolved nitrogen export from High Arctic 
headwater catchments." Arctic Science 3.2 (2017): 429-450. 

Lepistö, A., Andersson, L., Arheimer, B., & Sundblad, K. (1995). Influence of catchment 
characteristics, forestry activities and deposition on nitrogen export from small forested 
catchments. Water, Air, and Soil Pollution, 84(1-2), 81-102. 

Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S., & Johnson, N. M. (1977). The Northern 
Hardwood Ecosystem at Hubbard Brook in Relation to Other Forested Ecosystems in the World. 
In Biogeochemistry of a Forested Ecosystem (pp. 103-112). Springer, New York, NY. 

Lundin, L., (1994). Impacts of forest drainage on flow regime. Technical Report. Uppsala. 
Sveriges lantbruksuniversitet. Studia forestalia Suecica ; 192. 

MacLean, R., Oswood, M. W., Irons, J. G., & McDowell, W. H. (1999). The effect of permafrost on 
stream biogeochemistry: a case study of two streams in the Alaskan (USA) 
taiga. Biogeochemistry, 47(3), 239-267. 

Mattsson, T., Finér, L., Kortelainen, P., & Sallantaus, T. (2003). Brook water quality and 
background leaching from unmanaged forested catchments in Finland. Water, Air, and Soil 
Pollution, 147(1-4), 275-298. 

Peterson, B. J., Hobbie, J. E., & Corliss, T. L. (1986). Carbon flow in a tundra stream 
ecosystem. Canadian Journal of Fisheries and Aquatic Sciences, 43(6), 1259-1270. 

Petrone, K. C., Jones, J. B., Hinzman, L. D., & Boone, R. D. (2006). Seasonal export of carbon, 
nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. Journal of 
Geophysical Research: Biogeosciences, 111(G2). 

Stottlemyer, R. (1992). Nitrogen mineralization and streamwater chemistry, Rock Creek 
watershed, Denali National Park, Alaska, USA. Arctic and Alpine Research, 24(4), 291-303. 

USGS National Water Quality Assessment Program. <https://water.usgs.gov/nawqa/>. Accessed 
1 June 2017. 
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Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., Lawson, E., ... & Nienow, P. 
(2016). Sources, cycling and export of nitrogen on the Greenland Ice Sheet. Biogeosciences 
Discussions. 

 

Table S4.2. Fixed effects coefficients for model of area-normalized nitrogen export. Annual 
runoff and a second-order coefficient for nitrogen deposition were the only factors significantly 
associated with export at the alpha = 0.05 level. Site was included as a random effect.  

Parameter Estimate Standard Error p-value 
Intercept 226.688 81.110 0.007 
Mean annual temperature (°C) 2.639 2.882 0.378 
N deposition (kgN km-2 yr-1) -0.474 0.240 0.072 
N deposition2  0.0004 0.0002 0.036 
Annual runoff (mm) 0.058 0.024 0.033 
Topsoil organic carbon content (%) -0.15 1.551 0.920 
Permafrost extent_Discontinuous -76.374 65.564 0.249 

 

Table S4.3. Nitrogen retention in watersheds with net nitrogen export 

Of the 98 combinations of watershed and year in our overall dataset (table S1), 28 cases showed 
net nitrogen export, rather than retention (i.e. annual stream export of total N exceeded 
atmospheric inputs to the watershed). All 28 such cases were in regions of continuous or 
discontinuous permafrost extent. Linear mixed effects modeling (below) revealed no significant 
effect of mean annual temperature or permafrost extent on area-normalized nitrogen retention 
in these watersheds. 

Parameter Estimate Standard Error p-value 
Intercept -5.55 5.37 0.32 
Mean annual temperature (°C) -0.003 0.444 0.99 
Permafrost extent_Discontinuous 2.57 4.47 0.56 

 

 

Table S4.4. Representative rate measurements of nitrogen processes on an annual, per-area 
basis. Units for all three processes (N fixation, denitrification, and N deposition) have been 
converted to kgN km-2 yr-1. Value ranges represent spatial variation of the measured rate within 
the described location. 

Process Rate Location Reference 
N fixation 25-30 Canadian high arctic tundra Chapin et al. 1991 

80 - 131 Alaskan low arctic tundra Shaver et al. 2014 
25-350 Swedish boreal forest DeLuca et al. 2008 
110 Frost-heave circles in Northern 

Sweden 
Sorensen et al. 2018 
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25 Heath vegetation Northern 
Sweden 

Sorensen et al. 2018 

88 Moss bed in Northern Sweden Sorensen et al. 2018 
20-200 Tundra-wide biome estimate Stewart et al. 2014 
7 - 380 Alaskan high arctic tundra Gersper et al. 1980, 

Robinson & Wookey 1997 
136 - 
349 

Northern Finland sub-arctic tundra Robinson & Wookey 1997 

Denitrification 2.4 - 3.4 Alaskan high arctic Barsdate and Alexander 
1975, Gersper et al. 1980 

100-200 Alaskan low arctic (potential rates, 
unlikely to occur under field 
conditions) 

Shaver et al. 2014 

N deposition 14 - 64 Alaskan low arctic tundra Shaver et al. 2014 
200 Icelandic post-glacial lavafield Jónsdóttir et al. 1995 
4 - 35 Alaskan alpine tundra Vet et al. 2014 
26-37 Swedish subarctic alpine tundra Bergstrom et al. 2013 
40 - 110 Swedish boreal forest DeLuca et al. 2008 

 

Table S4.4 references 

Barsdate, R. J., & Alexander, V. (1975). The Nitrogen Balance of Arctic Tundra: Pathways, Rates, 
and Environmental Implications 1. Journal of Environmental Quality, 4(1), 111-117. 

Bergström, A. K., Faithfull, C., Karlsson, D., & Karlsson, J. (2013). Nitrogen deposition and 
warming–effects on phytoplankton nutrient limitation in subarctic lakes. Global Change 
Biology, 19(8), 2557-2568. 

Chapin, David M., L. C. Bliss, and L. J. Bledsoe. "Environmental regulation of nitrogen fixation in 
a high arctic lowland ecosystem." Canadian Journal of Botany 69.12 (1991): 2744-2755. 

DeLuca, T. H., Zackrisson, O., Gundale, M. J., & Nilsson, M. C. (2008). Ecosystem feedbacks 
and nitrogen fixation in boreal forests. Science, 320(5880), 1181-1181. 

Gersper, P. L., Alexander, V., Barkley, S. A., Barsdate, R. J., & Flint, P. S. (1980). The soils and 
their nutrients. An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska, 12. 

Jónsdóttir, I. S., Callaghan, T. V., & Lee, J. A. (1995). Fate of added nitrogen in a moss-sedge 
Arctic community and effects of increased nitrogen deposition. Science of the Total 
Environment, 160, 677-685. 

Robinson, C. H., & Wookey, P. A. (1997). Microbial ecology, decomposition and nutrient cycling. 
Ecology of Arctic Environments, ed. S. J. Woodin and Mick Marquiss, 41-68. 

Shaver, G. R., Laundre, J. A., Bret-Harte, M. S., Chapin, F. S., Mercado-Dıaz, J. A., Giblin, A. E., ... 
& Gould, W. A. (2014). Terrestrial ecosystems at toolik Lake, Alaska. Alaska’s changing Arctic: 
Ecological consequences for tundra, streams, and lakes, ed. JE Hobbie, and GW Kling, 90-142. 



132 
 

Stewart, K. J., Grogan, P., Coxson, D. S., & Siciliano, S. D. (2014). Topography as a key factor 
driving atmospheric nitrogen exchanges in arctic terrestrial ecosystems. Soil Biology and 
Biochemistry, 70, 96-112. 

Sorensen, P. L., Jonasson, S., & Michelsen, A. (2006). Nitrogen fixation, denitrification, and 
ecosystem nitrogen pools in relation to vegetation development in the subarctic. Arctic, Antarctic, 
and Alpine Research, 38(2), 263-272. 

Vet, R., Artz, R. S., Carou, S., Shaw, M., Ro, C. U., Aas, W., ... & Hou, A. (2014). A global 
assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, 
organic acids, acidity and pH, and phosphorus. Atmospheric Environment, 93, 3-100. 

 


	Figure S3.1. Wet IN deposition as a fraction of total (wet + dry) IN deposition as simulated for 2016.
	Figure S3.2. Mean annual change in nitrogen emissions from 1984 to 2016. Nitrogen emissions due to biomass burning, including agricultural fires (a) and emissions from fossil fuel combustion (b) show variable rates of change across the globe. Total ni...
	Figure S3.3. Modeled interdecadal trends in IN deposition. Table to the left of each interdecadal period compares the modeled change with observed change in IN deposition over the same time period for four long-term monitoring sites (NADP 2018).
	Figure S3.4. Proportion of IN deposited as reduced molecules (NH3 and NH4) as simulated for each decade.
	Figure S3.5. Mean annual total nitrogen emissions as simulated for each decade.
	Figure S3.6. Mean annual nitrogen emissions due to biomass burning as simulated for each decade.
	Figure S3.7. Mean annual nitrogen emissions from fossil fuel combustion as simulated for each decade.
	Figure S3.8. Mean annual nitrogen emissions from soils (natural and agricultural) simulated for each decade.
	Figure S3.9. Mean annual deposition of nitrogen in organic compounds, as simulated for each decade. Compounds included in the simulation are propanone nitrate, isoprene hydroxynitrate, methyl vinyl ketone + methacrolein nitrates, ≥C4 alkylnitrates, me...
	Figure S3.10. Organic nitrogen deposition as a proportion of total nitrogen deposition, as simulated for 2016. These values represent lower-bound estimates, as some nitrogen-containing organic compounds, such as amino acids and urea, are not represent...

