
Essays in Applied and Computational Game Theory

A Dissertation
SUBMITTED TO THE FACULTY OF THE

UNIVERSITY OF MINNESOTA
BY

Taylor Jay Canann

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS

FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Advisor: Jan Werner

JUNE 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Minnesota Digital Conservancy

https://core.ac.uk/display/226939702?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Taylor Jay Canann, 2019, c©

Acknowledgements

I am extremely grateful to my patient advisor, Jan Werner, for all of his help and

guidance in completing this dissertation.

I would also like to thank to Brennan Platt, Richard Evans, Kerk Phillips, the

BYU MCL workshops, David Rahman, Aldo Rustichini, the Minnesota Workshop on

Mathematical Economics, Brad Greenwood, Robert Mrkonich, Samuel Kaplan and

Ryne Belliston for very helpful comments, advice, and direction.

i

Dedication

I dedicate this dissertation to my wonderful wife, Cait, and my children, Austin, Tay-

lor June, Anderson, and Walter, for their love, devotion, and understanding through

this entire process.

ii

Abstract

This dissertation considers computational and applied aspects of cooperative and

non-cooperative game theory. The first chapter discusses a novel applied game theory

approach within the field of vulnerability disclosure policy. I introduce a three-player

game between software vendors, software users, and a hacker in which software ven-

dors attempt to protect software users by releasing updates, i.e. disclosing a vulnera-

bility, and the hacker is attempting to exploit vulnerabilities in the software package

to attack the software users. The software users must determine whether the protec-

tion offered by the update outweighs the cost of installing the update. Following the

model set up, I describe why low-type software users, software users that do not get

much value out of the software and are thus not very damaged by an attack, prefer

Non-Disclosure, and Disclosure can only be an optimal policy in cases when the cost

to the hacker of searching for a zero-day vulnerability is small.

Many economic problems are inherently non-linear, so in the second chapter we

introduce the MGBA, the Modular Gröbner Basis Approach, which is a solution

technique from Algebraic Geometry that can be used to “triangularize” polynomial

systems. The MGBA is a computational tool that overcomes the typical computa-

tional problems of intermediate coefficient swell and solving for lucky primes that

can limit the ability to compute Gröbner bases. The Gröbner basis is an all-solution

computational technique that can be applied to many fields in economics. This chap-

ter focuses on applying the MGBA to Bertrand games with multiple equilibria and a

manifold approach to solving dynamic programming problems.

Advances in computational power and techniques have greatly benefited both

economic theory, in allowing economists to solve more realistic models, and data

analysis, such as machine learning. However, the field of cooperative game theory

has fallen behind. Therefore, in the final chapter, I introduce the compression value,

iii

a computationally efficient approximation technique for the non-transferable utility

(NTU) Shapley value. This algorithm gives a reasonable approximation of the NTU

Shapley value if the initial guess of Pareto weights is near the actual solution.

iv

Contents

List of Figures viii

Introduction 1

1 Toward a Theory of Vulnerability Disclosure Policy: A Hacker’s

Game 5

1.1 Introduction . 5

1.2 Literature Review . 10

1.3 Static Game . 12

1.3.1 Non-Disclosure Regime . 15

1.3.2 Low Search Costs . 16

1.3.3 Disclosure Regime . 17

1.4 Welfare Analysis . 26

1.4.1 High Search Costs . 27

1.4.2 Medium Search Costs . 27

1.4.3 Low Search Costs . 29

1.5 Discussion . 34

1.5.1 Extension: Microsoft’s New Disclosure Policy 35

1.6 Conclusion . 53

2 The User’s Guide to Solving Games via the Modular Gröbner Basis

Approach 55

2.1 Introduction . 55

2.2 Literature Review . 57

2.3 Preliminaries . 57

2.3.1 Definitions/Notation . 58

v

2.3.2 Gröbner Basis Introduction 60

2.3.3 Intermediate Coefficient Swell 62

2.4 The Theory of MGBA . 63

2.4.1 Polynomial System Mod p . 65

2.4.2 Modular Gröbner Basis . 66

2.4.3 Lifting/Checking to the Solution 66

2.5 Example 1: Duopoly Model . 69

2.6 Example 2: Manifold Dynamic Programming 73

2.7 Conclusions . 78

3 The Compression Value 80

3.1 Introduction . 80

3.2 Preliminaries . 82

3.3 Compression Value . 84

3.3.1 Properties . 87

3.3.2 Algorithm . 87

3.4 Example . 88

3.5 Conclusion and Future Research . 92

Bibliography 93

A Mathematical Appendix 98

A.1 The Knife-Edge Case . 98

A.1.1 Non-Disclosure: Knife-Edge Case 98

A.1.2 Disclosure: Knife-Edge Case 99

A.1.3 Welfare: Knife-Edge Case . 99

A.1.4 Microsoft Non-Disclosure Best Response: Knife-Edge Case . . 101

A.1.5 Microsoft Disclosure Best Response: Knife-Edge Case 101

A.2 Continuum of Workers Disclosure Game Equilibrium 101

vi

A.3 Microsoft’s New Policy Best Response Derivation 104

A.3.1 Non-Disclosure Worker Best Response 104

A.3.2 Non-Disclosure Hacker Best Response 105

A.3.3 Disclosure Worker Best Response 107

A.3.4 Disclosure Hacker Best Response: High Search Cost 114

A.3.5 Disclosure Hacker Best Response: Medium Search Cost 115

A.3.6 Disclosure Hacker Best Response: Low Search Cost 115

A.4 Microsoft Nash Equilibrium: Other Cases 118

A.4.1 Medium Search Cost: Knife Edge Worker Costs 118

A.4.2 Low Search Cost . 119

A.5 Microsoft Welfare: Low Search Cost 122

B CRT Algorithm 122

C Lucky Primes 122

vii

List of Figures

Chapter 1

Figure 1.1 . Non-Disclosure Game Tree

Figure 1.2 .Disclosure Game Tree

Figure 1.3 . Non-Disclosure Game Tree Under Microsoft Policy

Figure 1.4 . Disclosure Game Tree Under Microsoft Policy

Figure 1.5 Search Branch of Disclosure Game Tree Under Microsoft Policy

Chapter 2

Figure 2.1 . The MGBA Algorithm

Figure 2.2 . Computations of Coefficient Functions

Chapter 3

viii

Introduction

Game theory is a very versatile tool, and, within this dissertation, I will be exploiting

this versatility by using game theory in the fields of cyber-security and computa-

tional economics. In chapter one, I discuss the implications on optimal vulnerability

disclosure policies of a game between hackers, software users, and software vendors.

Following this, I examine a novel computational technique, the Modular Groebner

Basis Approach (MGBA) in chapter two. The MGBA provides an algorithm to solve

both static and dynamic games. I conclude with chapter three by introducing a

computationally efficient solution technique for NTU games.

On May 7, 2018, Baltimore was hit by a debilitating ransomware attack. Was

Baltimore targeted? No. This is believed to be a crime of opportunity, meaning the

hackers scanned a large number of online systems for known vulnerabilities. These

known vulnerabilities are known as N-Day vulnerabilities, i.e. vulnerabilities that

have been known to software users and vendors for some days. When a vulnerability

is found, software vendors release an update to protect users from being exploited

by the newly found vulnerability. However, this type of protection policy, called

Disclosure policy, requires software users to update their machines in order to not

be vulnerable to attack. Given that most users do not automatically or immediately

update their machines, see 1.1, Disclosure reveals the holes in the software to hackers

and thus decreases the cost hackers face when searching for a vulnerability. As a

result of Disclosure policy and Baltimore’s failure to keep their servers updated, it

is estimated that the city of Baltimore has had to pay $18 million to repair their

systems.

Thus, whether software vulnerabilities should be disclosed, and, if so, what type

of vulnerabilities are the biggest threats, are still open and pressing questions in

cybersecurity. In the first chapter I analyze whether vulnerabilities should be disclosed

1

by examining the welfare effects of both the network externalities of a set of workers

and hacker behavior on vulnerability disclosure policy.

In order to describe the best type of disclosure policy, I build a model of a het-

erogeneous IoT network, which is made up of an interconnected set of software users,

that are attempting to defend themselves against a profit-maximizing hacker. Within

my model, there are three decisions to be made: (i) The strategy of attack to be

played by the hacker, (ii) The optimal disclosure policy, and (iii) The updating deci-

sion made by the software user. I formulate welfare maximizing policies to decrease

a hacker’s efforts in infiltrating networks and increase the software users’ utility.

The optimal policy is dependent both on the distribution of software users on the

network and how costly finding a previously unknown vulnerability, i.e. a Zero-Day

vulnerability, is for the hacker. Software users that do not expect to bear the majority

of the burden of an attack, known as low-type users, do not want vulnerabilities to

be disclosed, i.e. a Non-Disclosure policy, since they will not update their machines,

deeming it too costly. Thus, if there is a large enough contingent of low-type users,

Non-Disclosure is the optimal policy.

Also, if the cost of searching for a Zero-Day exploit is high, then the hacker is

not willing to expend the energy searching for a Zero-Day, and Non-Disclosure is an

optimal policy since there are no vulnerabilities available to the hacker. Therefore,

the only case in which Disclosure can be an optimal policy is when search costs are

low and there are enough users that desire to update their machines.

In the second chapter, we introduce the Modular Gröbner Basis Approach, the

MGBA, which is a computational tool that can be used to overcome the difficulties

of solving for all equilibria of non-linear systems. This problem is especially rampant

when solving economics problems where there is strategic interaction. The problem

of multiple equilibria is not new to economic theory or applied theory. For example,

Maghsudi and Hossain (2016) setup a multi-agent, multi-armed bandit game in or-

2

der to design the next generation wireless networks to move toward new networking

paradigms that are able to efficiently support resource-demanding applications such

as personalized mobile services. In many cases, they find that there exist multiple

equilibria, and the problem then turns to guiding the agents to the most efficient equi-

librium. In order to do this, all equilibria must be solved for, then the determination

of the most efficient equilibrium is possible.

There have been many attempts to solve these problems, but these other methods

require stringent simplifications of the models and do not allow economists to solve

for all equilibria of the complex models. We build off of Arnold (2003), and have

developed the MGBA, which can solve for all equilibria in non-linear economic models

via Groebner bases. We discuss the application of the MGBA to Bertrand pricing

games as well as an application of a manifold approach to dynamic programming.

In the third chapter of this dissertation, I introduce a new solution technique for

NTU games, the compression value, an algorithm to solve for the compression value,

and I discuss how the compression value can be used as an approximation for the

NTU Shapley value. The NTU Shapley value is a solution concept from cooperative

game theory introduced in Shapley (1969) that states that “an outcome is acceptable

as a value of a game only if there exist scaling factors for the individual (cardinal)

utilities under which the outcome is both equitable and efficient”. The compression

value is a solution technique that does not require modifications or simplifications of

the original game. This chapter presents a step toward a general algorithm to solve

for the NTU Shapley value for a given game.

Computational power and techniques have drastically increased over the last cou-

ple of decades, and economics has greatly benefited from this increased accessibility.

However, the field of cooperative game theory has not taken full advantage of these

computational advancements. The compression value is a linear scaling of the Shap-

ley value of the TU representation of the original NTU game. This solution technique

3

satisfies a reasonable set of properties for an NTU solution technique.

4

1 Toward a Theory of Vulnerability Disclosure Pol-

icy: A Hacker’s Game

1.1 Introduction

Every piece of software, no matter what care is taken by a software vendor, is riddled

with vulnerabilities, which leaves users open to attack by hackers. To protect users,

software vendors release patches to address these found vulnerabilities, but this is

a double-edged sword. Releasing updates, a.k.a. vulnerability disclosure, may in

fact increase the vulnerability of current users, in particular, those who chose not

immediately install the updates. In other words, as new versions of a software package

are released, via an update, then the holes, or vulnerabilities, in the old software

version are made explicitly clear for hackers. These types of hacks have been gaining

in prevalence over the last couple of years.

The first set of attacks I want to discuss were all propagated via slight deviations of

the EternalBlue exploit. In May of 2017 the WannaCry attacks1 infected over 300,000

systems in 150 countries and the approximate estimated cost that these attacks is

$4 billion. One month later, in June, the NotPetya attacks, another major global

attack that primarily targeted Ukrainian systems2, began. The approximated costs

of the NotPetya attacks were even larger than the WannaCry attacks and have been

estimated at around $10 billion. Following the NotPetya attacks, the Retefe banking

Trojan began leveraging the EternalBlue exploit in September. Finally, in August of

2018 the Taiwan Semiconductor Manufacturing Company, an Apple chip supplier, was

hit by a new variant of the WannaCry attack that cost the company approximately

$170 million. The problem was not that Windows is an inherently flawed system, but

1Ransomware attacks that targeted Windows systems demanding payment in Bitcoin.
2Approximately 80% of the attacks were in Ukraine.

5

instead that these attacks could have been avoided if users/firms had only updated. In

March of 2017, Microsoft patched this vulnerability in their monthly, second Tuesday,

update.

Another major attack that received global notoriety was the Equifax hack that

compromised 145.5 million American accounts. This exploit attacked Apache Struts3

and spread through Equifax’s systems between May and July of 2017. This data

breach is estimated to have cost $439 million, and, yet again, this hack was not

inevitable; Apache released an update for this vulnerability on March 7, 2017.

These are just a couple examples of what are called N-Day vulnerabilities4. N-Day

exploits have been on the rise, and have gained a significant amount of notoriety. The

other type of vulnerability analyzed in this paper is known as a Zero-Day attack. A

Zero-Day attack is an attack that exploits a previously unknown vulnerability. Many

of the largest hacks over the last couple of years have been N-Day exploits, and, since

the users of the software did not update their machines, hackers were able to easily

exploit these vulnerabilities in the software.

According to Symantec5, “The use of zero days continues to fall out of favor. In

fact, only 27 percent of the 140 targeted attack groups that Symantec tracks have

been known to use zero-day vulnerabilities at any point in the past.” Since hacker

behavior is shifting away from Zero-Days and toward the exploitation of N-Days,

policy makers and software vendors should also think about what type of changes,

if any, should be made to disclosure policies. By “disclosure policy”, I mean how

often, if ever, should the vendor release updates and thus disclose the location of a

vulnerability found by the vendor.

I build a model of a network, made up of an interconnected set of workers, that

is attempting to defend itself against a profit-maximizing hacker. Within the model,

3A software published by the Apache Software Foundation.
4Known vulnerabilities.
5See Sym (2018) and Sym (2016).

6

there are three decisions to be made, (i) The strategy of attack to be played by the

hacker6, (ii) The optimal disclosure policy is determined by the vendor/social planner,

and (iii) The workers must decide whether to update their machines if a vulnerability

is disclosed.

To motivate this approach the set of workers can be thought of as a Mobile Ad

Hoc Network (MANET). A MANET is a collection of wireless mobile hosts forming

a temporary network without the aid of any centralized administration or standard

support services. Mobile nodes have a limited communication range and are thus

connected only to the devices located within some given radius of the node7. The

model in this paper is a static game8 between the network of workers and a single

hacker.The encryption of packets on a MANET are hard to secure, so we assume that

the vulnerabilities in the MANET are in the encryption packages.

The demand for MANETs has been expanding rapidly as of late. MANETs have

many military applications, such as communications networks since MANETs are

able to quickly re-route communications as the military units change their locations.

However, these networks are not only used by the military, but there is an ever

growing demand by the average households to use MANETs. The first example

of these networks are Vehicular Ad-hoc Network (VANET), in which vehicles and

roadside equipment communicate with each other. This is a very relevant field as

self-driving cars are starting to hit the roads and we need to understand the potential

risks associated with different types of vulnerabilities and different types of disclosure

policy regimes.

6A lot of the literature, e.g. see Hong and Neilson (2018), model hacker behavior as similar to a
Becker model (Becker (1968)), but this approach assumes that (i) Law enforcement can easily track
and find a hacker and (ii) that hackers can easily be prosecuted. These assumptions, however, are
not realistic. For example, the WannaCry and NotPetya attacks were launched by, as far as we
know, North Korean and Russian hackers, respectively. It is very difficult to extradite and prosecute
foreign hackers.

7Therefore, we can use a random geometric network to model a MANET at any point in time.
8MANET are typically dynamic with nodes entering and leaving the network as well as changing

their set of neighbors over time, but this would require a dynamic model, and that is the aim of
future research

7

Another example that needs particular attention is that of Smart Phone Ad-

hoc Networks (SPANs). These are a specific example of Internet of Things (IoT)

networks that use Bluetooth and/or Wi-Fi to create P2P networks. As the number

of devices that are available to be linked to these SPANs grows, so will the amount of

vulnerabilities across these networks. The amount of information available to hackers

will also increase if they are able to exploit the network structure within an attack.

Thus, one of the questions that needs to be answered within this field, is how software

producers should think about releasing updates9.

In addition to the contribution of modeling the set of workers as a network, and

thus MANET disclosure policies can be analyzed, this is the first model to attempt to

incorporate hacker decisions into the discussion on vulnerability disclosure analysis.

The hacker must decide whether to search for a Zero-Day vulnerability, exploit the

N-Day disclosed by the vendor, or do not hack, i.e. exit the game, while attacking the

network. In doing so, they maximize an expected profit10 function. This approach

allows for a better understanding of disclosure policy, because any optimal disclosure

policy should be dependent on the attack strategy of the hacker.

1) Networks matter 2) Theorems 3) Given the fall in Zero-Days and increase in

N-Days, then should shift toward Non-Disclosure

Now to outline the major findings of the paper. The first contribution of this

paper is to introduce a formal game between a hacker and a network of software users

in order to inform optimal disclosure policies. This is important since the hacker’s

action has a large impact optimal workers’ decisions, and thus should impact the

policy maker’s choice. For example, as the hacker spends less time searching for Zero-

Days and more time exploiting the known vulnerabilities, then workers are going to

9Since the vendor’s actions are not interesting until a dynamic model is developed, I am assuming
that there is only one software vendor. This assumption will need to be relaxed within future
research.

10The logic could be extended to utility, but then the intuition behind the weight parameters
would be changed.

8

increase their willingness to update since even though updating is costly, updating

will protect the worker from being attacked.

Additionally, I find that as the cost of searching for Zero-Days increases, as in the

data discussed in Section 1.2, the hacker will tend toward exploiting the vulnerability

in the released update instead of searching for a Zero-Day. Therefore, the policy that

maximizes the workers’ utility is to decrease disclosure. This is not a new idea, but a

formalization of previous arguments, e.g. see Rescorla (2005). This analysis can also

be used to analyze how effective different disclosure policies are in protecting users

in a MANET due to the generality of the distribution of software users within the

model. Probably the most important implication is that for any cost of searching for

a Zero-Day, Non-Disclosure can be the optimal11 policy.

Starting in January of 2020, Microsoft will no longer support Windows 7, unless

the users enroll in “Extended Support”. This new type of disclosure policy is discussed

in Section 1.5.1. That section also contains the final result of the paper, which is that

Microsoft’s new policy increases the cost of exploiting the disclosed vulnerability,

and, even though the policy increases the cost of updating, causes the software uses

to receive higher payoffs. This new approach to disclosure policy increases overall

welfare relative to the policy of disclosing all vulnerabilities.

The sections of the paper are as follows: Section 1.2 is the literature review,

followed by an introduction to the model as well as the first main contribution: A

discussion of optimal policy when the hacker are decision making agents in Section

1.3. Following the baseline models is a discussion of both policy implications of the

baseline models and a newly proposed policy by Microsoft12 in Section 1.5. Finally,

we conclude in Section 1.6.

11The policy that maximizes the welfare of all workers.
12For Windows 7.

9

1.2 Literature Review

In a seminal paper in the field of vulnerability disclosure, Rescorla (2005) asked if

finding vulnerabilities is optimal for social welfare. Since then, vulnerability disclosure

policy has been greatly debated in the literature. There have been many attempts,

both empirical and theoretical, to understand the underlying factors influencing the

key decision makers in the game.

The model outlined in this paper explores the decisions made by both the network

of workers and a hacker given a policy regime followed by the vendor. The interaction

between vendors and firms was first modeled by Arora et al. (2008), in which they

find that vendors will always want to delay the release of patches, but this action is

not socially optimal. However, Arora et al. (2008) do not pose an answer to whether

a vendor should engage in disclosing vulnerabilities, which is the main focus of this

paper.

One of the first papers on the economic modeling of hacker behavior was devel-

oped in Png et al. (2006), where they attempt to estimate the effects of the fixed costs

of hacking on the incentives of a profit maximizing hacker. We introduce this style

of hacker modeling into the vulnerability disclosure debate. The hacker behaving as

a profit maximizer allows for an investigation into the problem of under investment

in cyber-defense by individual workers. The network framework is an extension of

the work in Choi et al. (2010)13, where they focus on the welfare effects of disclosure

policy for a representative set of workers with the vendor facing a monopolistically

competitive market. Their analysis does not take the hacker’s decision or the possibil-

ity of different distributions of workers into account while solving for optimal policies.

That approach is especially problematic when attempting to model diverse network

configurations such as MANETs.

13I follow the notation in Choi et al. (2010) rather closely so as to maintain a constant notational
scheme within the vulnerability disclosure literature.

10

Others have examined how attack propensity changes under different disclosure

regimes (e.g. Arora et al. (2006)), and have found that releasing patches tends to

increase the number of attacks. This model also predicts that attacks may increase

with disclosure14, but this is due to the fact that workers will desire more disclosure as

the average desirability15 of each worker to the hacker increases, the cost of searching

for Zero-Days increases16, or the cost of updating decreases. Therefore, this model is

able to give a causal relationship between attack propensity and disclosure regimes

which strengthen the story behind these correlations.

There is also a subset of the literature that focuses on what types of vulnerabilities

are/should be disclosed17. This paper does not contribute to this literature since

every disclosed vulnerability and every found Zero-Day can inflict the same amount of

damage. It would be very interesting to model both the hacker and the vendor drawing

vulnerabilities from specific distributions, but that should be done in a dynamic game

so as to truly capture the vendor’s optimal decision making process.

Our model also makes contributions in the growing applied information security

literature. Optimal network defense18 is a growing field in which they use game theo-

retical models to discuss how to defend a network from attack. Adding in vulnerability

disclosure via the software vendor and having the network players making decisions

would allow for a framework to analyze a wider range of games with strategic attack.

Additionally, allowing the attacker to choose from a set of potential attack strategies,

such as searching for Zero-Days or attacking with some portfolio of N-Days, with

defenders able to dynamically update would create fascinating dynamic strategies.

Lastly, the model contributes to the ever growing MANET literature. The litera-

14Except under the new policy proposed by Microsoft discussed in Section 1.5.1.
15Worker desirability can be though of as network centrality.
16Implying that, as the vendor discloses more vulnerabilities, the hacker will choose to exploit the

N-Days instead of paying the large cost of searching for Zero-Days, and thus increase the number of
hacks, e.g. see Pon (2016).

17See K.C. (2012) for a full literature review.
18Dziubinski and Goyal (2017), Cerdeiro et al. (2017), and Goyal and Vigier (2014)

11

ture has mainly focused on the types of vulnerabilities and attacks (such as sinkhole

or eavesdropping) and methods to defend against those attacks (such as key man-

agement or intrusion detection systems)19. This is the only paper that attempts to

discuss vulnerability disclosure policy in MANETS instead of focusing on the techni-

calities associated with specific attack or defense methods20.

1.3 Static Game

The actors within this static model are the hacker and the software users (called

workers). The software vendor follows a welfare maximizing disclosure policy, and

thus determines the rules of the game. Hackers maximize their profits by choosing a

hacking strategy of exploiting either a Zero-Day, the patch released by the software

vendor, i.e. an N-Day attack, or he can exit the game. Lastly, the workers must

decide whether or not to update their machines if a vulnerability is disclosed, i.e. an

update is released21).

Software is assumed to be produced by a single vendor that is only concerned

with maximizing worker welfare, similar to a social planner. The vendor is unable to

detect all vulnerabilities before selling the software, but the vendor, under a Disclosure

policy, will attempt to find these vulnerabilities ex post22. The probability that the

vendor is able to find a vulnerability is is exogenously given as α∈(0,1).

Let I={1,...,m} be a set of interconnected workers within a firm, where each

worker has an associated weight parameter23, θi∈(0,1). The set of workers can be

described by θ≡{θ1,...,θm}. As each worker i uses the software produced by the

19See Goyal et al. (2010), Lalar (2014), and Kalambe and Apte (2017)
20Future research will attempt to incorporate a more sophisticated set of attacks and defenses,

but this work is laying a groundwork for future modeling.
21The notion of disclosure timing being weighed against updating intensity will be the focus of a

dynamic model which will be examined in future research.
22This can either be thought of as individual vendors searching for vulnerabilities by themselves

or as bounty systems such as Microsoft’s Bounty System (E.g. See: Ozment (2004), Coyne and
Leeson (2005), Laszka et al. (2016), and Kuehn and Mueller (2016))

23This weight parameter can be thought of as the network centrality of the worker, or as how
desirable the worker’s information is to the hacker.

12

vendor, they receive a value of θiv, for some constant v>0.

Due to the existence of hackers and the inability of vendors to solve all vulner-

abilities ex ante, each worker is vulnerable to an attack. To allow for heterogeneity

of damages across workers; the damage, D>0, done to worker i is scaled by their

associated weight parameter, θiD. Meaning that the hacker is only able to extract24

as much information as is available to worker i. To make purchasing the software

worthwhile to every worker, the damage done by a hacker exploiting a vulnerability

must be less than the value added by the software (D<v).

The vendor does not usually charge the workers to install the updates25, but

the updates are still costly in terms of opportunity costs, i.e. the time to install

the update. Updates often require workers to stop working or even shutdown their

machines, we call this cost cu>0. For simplicity, this cost is assumed to be a fixed

cost to be paid if the worker decides to update26. To model the fact that some people

do not update under any policy27 I make the following assumption.

Assumption 1.1. Let θ1≤θ2≤···≤θm and θ1<
cu
v+D

<θm.

A single hacker attempts to exploit vulnerabilities to maximize profits via gaining

access to the network of workers. The hacker must maximize profits dependent on

both the chosen policy and the workers’ optimal updating decision. The hacker

has two types of exploitation available to them, he is able to hack via a known

vulnerability, an N-Day exploit, or by a previously unknown vulnerability, a Zero-

Day attack. The information available to the hacker consists of the distribution of

24This could also be thought of a direct transfer from the worker to the hacker.
25In Section 1.5.1, I analyze the impacts of charging for updates.
26As in Choi et al. (2010), “While there are considerable differences among consumers regarding

the potential damage of an attack, the cost of installing an update is likely fairly uniform among
consumers because it typically involves shutting the system down and restarting it, as well as possibly
conducting some tests before installing the updates. This cost is likely to be more uniform across
users than the potential damage.” This results of this model are also robust to an increasing cost
of updating, by types, at a decreasing rate.

27Which can be observed by the examples given in Section ?? and in papers such as Ion et al.
(2015).

13

worker weights, θ, the strategies available to the workers28, and the probability of a

successful Zero-Day attack. This probability is dependent on whether a patch has

been released. If the vendor releases an update, then the probability of a successful

search is δ̂, whereas, when no update is released, then δ is the probability that the

hacker is successful in his search.

Hacking, however, is not cost-less. A constant hacking cost, or opportunity cost,

of searching for a Zero-Day, cs>0 is imposed. If the hacker decides to exploit a known

vulnerability, meaning to attack vulnerability that was just patched by the vendor29,

then the hacker’s cost of hacking is assumed to be zero30. This is to account for the

relative ease of reverse engineering an update to find the vulnerability in the code. To

say this another way, hackers are able to pull apart the code in an update to find the

vulnerability, and attack any non-updating worker without having to pay the search

cost cs. If the vendor releases an update, then the hacker’s probability of finding a

Zero-Day decreases from δ to δ̂, where δ̂<δ.

Under a Non-Disclosure regime, the hacker is only able to search for Zero-Day

exploits, Search or S, or exit the game, Exit or X; while the worker makes no decision

under this regime31. If policy dictates a Disclosure regime is optimal, then the hacker

can still search for Zero-Day exploits, Search or S, or exit the game, Exit or X, as in

the Non-Disclosure regime, but he can also choose to exploit the updated vulnerability,

Exploit or E, on all machines that have not had the patch installed. Given a disclosed

vulnerability, the workers are able to update their software, Update or u, or they are

allowed to choose to not update, Not Update or nu.

The remainder of the section is broken down according to the two following

regimes: (i) The software vendor does not release updates, i.e. the vendor adheres

28If the software is of poor quality, then the hacker does not have to work as hard to gain access
to the network. In other words, successful hacks increase as vendors produce software that contains
more vulnerabilities.

29I.e. an N-Day attack.
30This assumption is relaxed in Section 1.5.1.
31Again, this is relaxed in as an extension in Section 1.5.1.

14

to a Non-Disclosure policy, (ii) The software vendor releases updates when a vulner-

ability is found, i.e. the vendor adheres to a Disclosure policy. Following this, I will

determine which policy maximizes worker welfare32.

1.3.1 Non-Disclosure Regime

If the vendor chooses not to release updates, or is forced to withhold this information,

then everyone is living under a Non-Disclosure regime. In this case the worker does

not make any decisions, they just use the software to gain, at most, vθi. Therefore,

the description of the payoffs of worker i can be found in the following figure, Figure

1.1.

Nature

(vθi,0)

Exit

(vθi,− cs
m)

Search

1−δ

(vθi,0)

Exit

(−Dθi,Dθi− cs
m)

Search

δ

Hacker

Figure 1.1: Non-Disclosure Game for Worker i

If the hacker decides to leave the game, Exit, then the worker always receives the

full value of the software, i.e. vθi. Otherwise, the hacker is searching for a Zero-Day

exploit, i.e. Search, and payoffs are reliant on the probability of a successful search

δ. In other words, the utility payoff of worker i, U i
nd :{Search, Exit}×θi→R, maps

from the hacker’s action and worker i’s type into the real numbers.

32See Definition 1.1 for the formal definition of welfare.

15

The next step is to set up the expected payoffs of the hackers under both Search

or Exit. I will start with the trivial case: Exit. If the hacker chooses to exit the game,

then the hacker’s profits are trivially

ΠND
X (θ)=0.

Whereas, when the hacker chooses to search for a zero-day vulnerability, their only

other available strategy under a Non-Disclosure regime, he receives

ΠND
S (θ)=δ(n)

[
D
∑
i

θi

]
−cs.

Zero-day exploits are very costly for the hacker to find, but the payoff of finding

one is large, i.e. the ability to extract all information from the network.

Under Non-Disclosure, the only actions played are by the hacker, and thus the

optimal strategy of the hacker can be split into three cases, that of low search costs,

high search costs, and the knife-edge case of equal costs and revenues33.

High Search Costs

Now that the cost of searching for a Zero-Day is greater than the expected profits,

i.e. cs>δD
∑

i∈I θi, then under Non-Disclosure, the unique Nash equilibrium is to exit

the game, A∗nd=(X).

1.3.2 Low Search Costs

Lastly, when the cost of searching for a Zero-Day is exceeded by the expected prof-

its of Searching, i.e. cs<δD
∑

i∈I θi, then under a Non-Disclosure regime the Nash

Equilibrium is that hacker will search for Zero-Days, A∗nd=(S).

33In some sense, this is a zero-profit condition for the hackers. This can be found in Appendix
A.1.

16

1.3.3 Disclosure Regime

In the second case, the vendor chooses to, or is forced to, release updates every time

they find a vulnerability. The workers then must choose whether to update, and thus

endogenously define the two sets Γnu and Γu as the set of workers that do not update

and the set of workers that do update, respectively. If worker i installs the update,

i∈Γu, then she protects her device from the known vulnerability, but her machine is

still vulnerable to attack since she still has a positive probability of being attacked

via a Zero-Day exploit. However, when a worker decides not to install the released

update, i∈Γnu, she increases her probability of being hacked via the attack strategy

Exploit, but does not have to pay the opportunity cost, cu. Hence, the game facing

worker i is given in Figure 1.2.

Now there are two stages within the game, the first being the possible release

of updates by the vendor, which happen with probability α, followed by the game

between the hacker and the workers. When the vendor is unable to find a vulnerability,

the 1−α branch, the game is identical to that of the Non-Disclosure regime where the

hacker must choose between searching for Zero-Days and exiting the game, and as in

Figure 1.1. The hacker’s action set under the Non-Disclosure branch of the Disclosure

game is A1−α
d . Recall, the worker does not make any decision when no vulnerability

is found34.

When the vendor finds a vulnerability and releases an update, then both the

hacker and the worker must choose their actions, Aαd and Ai, respectively. When

a worker chooses to update, she protects her machine from N-Day exploits, but is

still vulnerable to Zero-Days. However, due to the costly nature of updating, some

workers may still choose not to update35, and leave their computers open to both

Zero-Day and N-Day hacks.

34See Figure 1.1
35e.g. Ion et al. (2015)

17

Nature
See Figure 1.1

1−α

Hacker

(θiv−cu,0)

Update

(θiv,0)

Not Update

Exit

(θiv−cu,0)

Update

(−θiD,θiD)

Not Update

Exploit

Nature

(θiv−cu,−
cs
m

)

1−δ̂

(−θiD−cu,θiD−
cs
m

)

δ̂

Update

Nature

(θiv,−
cs
m

)

1−δ̂

(−θiD,θiD−
cs
m

)

δ̂

Not Update

Search

α

Worker Worker

Figure 1.2: Disclosure Policy Game for Worker i

18

In Figure 1.2, the payoffs are laid out for the workers and the payoff of the

hacker as the payoff from attacking that specific worker. The utility of worker i,

U i
d :{Search, Exploit, Exit}×{Search, Exit}×{Update, Not Update}×θi, is now

dependent on the actions of the hacker when a vulnerability is both found and when

one is not found, worker i’s action, and the worker i’s type.

Now I present the payoff to the hacker under a Disclosure regime in the form36:

(Aαd ,A
1−α
d)∈{Search, Exploit, Exit}×{Search, Exit}.

When the hacker chooses (Exploit, Search), he receives the expected payoff of

ΠD
(E,S)(θ,{Γu,Γnu})=α

[
D
∑
i∈Γnu

θi

]
+(1−α)

[
δD
∑
i

θi−cs

]

The payoff is equivalent to the sum of damages done to of all the workers that do

not update, if an update is released, as well as, the probability of successfully finding

a Zero-Day times the damages done to all members of the network less the cost of

searching for a Zero-Day when the vendor is unable to find a vulnerability.

The hacker could also choose to Exit when the vendor is unable to find the

vulnerability, yielding

ΠD
(E,X)(θ,{Γu,Γnu})=α

[
D
∑
i∈Γnu

θi

]

However, if the hacker chooses to search for a Zero-Day when the vendor finds a

vulnerability, and he chooses to Search or Exit when the vendor when no update is

released, respectively. Therefore, his expected payoffs are

ΠD
(S,S)(θ,{Γu,Γnu})=

[
αδ̂+(1−α)δ

]
D
∑
i

θi−cs

36(action when a vulnerability is found and released (α), action when a vulnerability is not found
(1−α)). Each action is denoted as follows: Search as S, Exploit as E, and Exit as X.

19

ΠD
(S,X)(θ,{Γu,Γnu})=α

[
δ̂D
∑
i

θi−cs

]
Note that when the vendor releases an update, the probability of a successful hack

decreases to δ̂.

Lastly, the hacker could choose to leave the game when the vendor releases the

update while either choosing Search or Exit when no update is released.

ΠD
(X,S)(θ,{Γu,Γnu})=(1−α)

[
δD
∑
i

θi−cs

]

ΠD
(X,X)(θ,{Γu,Γnu})=0

Equilibrium

There are three main drivers of the Nash equilibria under Disclosure37:

(a) Do there exist any workers that choose not to update when an update is

released38?

(b) Under the “Non-Disclosure” branch of the game, does the cost of finding a

Zero-Day exceed the expected profits of searching? I.e.

cs≶δD
∑
i∈I

θi. (1.1)

(c) Under the “Disclosure” branch of the game, does the cost of finding a

Zero-Day exceed the expected profits of searching? I.e.

cs≶δ̂D
∑
i∈I

θi. (1.2)

Under Disclosure, we must solve for the actions of both the workers and the hacker.

37For a closed form solution with a continuum of workers, see Appendix A.2
38Via Assumption 1.1, these workers exist.

20

Each worker i must choose an action when the vendor is able to find a vulnerability,

the α branch of Figure 1.2. The hacker is able to make decision under both a found

vulnerability, α, and when no vulnerabilities are found, 1−α.

1.3.3.1 High Search Costs

The first case to examine is when the cost of searching exceeds the expected profits

on the Non-Disclosure branch of the tree, i.e. cs>δD
∑

iθi. Similar to the Non-

Disclosure case when there are high search costs in the Disclosure game and when no

vulnerability is found, the 1−α branch of the game, A1−α∗
d =(X) is the equilibrium

of the sub-game.

Since the search costs are so high for the hacker, and as long as there exists at

least one worker that does not update39, then Aα∗d =(E) is the only strategy to survive

elimination of strictly dominant strategies for the hacker, and is thus the only strategy

in the best response for the hacker. Given the hacker strategy (E), the best response

of worker i is to not update, i.e. i∈Γ∗nu, if θi<
cu
v+D

. Otherwise, for worker j such that

θj>
cu
v+D

, updating is optimal40, j∈Γ∗u.

Therefore, the Nash equilibrium of the Disclosure game is

((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I)=((E,X),(nu)i∈Γ∗nu ,(u)j∈Γ∗u) (1.3)

Where Γ∗nu=
{
i∈I|θi< cu

v+D

}
and Γ∗u=

{
j∈I|θj> cu

v+D

}
.

1.3.3.2 Medium Search Costs

The next case is when searching is profitable on the Non-Disclosure branch but not

on the Disclosure branch since δ>δ̂, i.e. δ̂D
∑

i∈I θi≤cs<δD
∑

i∈I θi. On the “Non-

Disclosure” branch of the tree, the cost of searching is still exceeded by the expected

39Recall that this is assumed to happen.
40If θi=

cu
v+D , then any mixture pj∈[0,1] of Update and Not Update are all equivalent to the

worker.

21

profits of searching, and thus A
(1−α)∗
d =(S) is his best response. However, when the

vendor finds a vulnerability41, then the expected profits of searching for a Zero-Day

are surpassed by the cost of searching for a Zero-Day, then the action of (S) on the

α branch yields a strictly lower payoff then exiting, A
(1−α)∗
d =(X). Since there always

exist workers that do not update, then the best action for the hacker is Aα∗d =(E).

Then, notice that all workers such that θi<
cu
v+D

will be in Γ∗nu, and all workers42

θj>
cu
v+D

will be in Γ∗u. Therefore, the Nash equilibrium is

((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I)=((E,S),(nu)i∈Γ∗nu ,(u)j∈Γ∗u) (1.4)

Where Γ∗nu=
{
i∈I|θi< cu

v+D

}
and Γ∗u=

{
j∈I|θj> cu

v+D

}
.

1.3.3.3 Low Search Costs

The final case is to determine what happens when searching yields positive profits, i.e.

cs<δ̂D
∑

iθi. Since both the hacker and the workers know whether an update has been

released, then the solution can be split into the Non-Disclosure and the Disclosure

sub-games. With probability 1−α, no update is released and we obtain the same

solution as in the Non-Disclosure game in Section 1.3.1. Then the equilibrium of that

sub-game is, as above, A
(1−α)∗
d =(S).

Next is to determine the best response of both workers and the hacker when an

update is released. The first thing to notice is that (X) is never a best response

since exiting gives a payoff of zero while (S) and (E) both yield positive expected

payoffs. Now I will set up the workers’ best response, then determine the hacker’s

best response, followed by an analysis of the Nash equilibrium.

Given the hacker strategy (E), not updating, i∈Γ∗nu, is the worker i’s best response

so long as θi<
cu
v+D

. However, when θj>
cu
v+D

, then worker j’s best response is j∈Γ∗u.

41The α branch of Figure 1.2.
42As with the above cases, if there exists a worker k such that θk= cu

v+D , then worker k will mix
with any probability pk∈[0,1] in the Nash Equilibrium.

22

Whenever the hacker plays (S), updating will not protect the worker from a hack,

and thus, i∈Γ∗nu is the best response for all i∈I.

Allowing for the hacker to use mixed-strategies introduces the probability ρ∈(0,1),

where ρ is the probability that the hacker chooses (E) and (1−ρ) gives (S). Then,

notice that as the hacker increases the probability of searching for Zero-Days, the

set of workers that will want to update decreases. Using the expected payoffs of the

workers given ρ, then any worker i’s best response is to not update43, i.e. i∈Γ∗nu when

θi<
cu

ρ(v+D)
. For all workers j such that θj>

cu
ρ(v+D)

, updating is their optimal action,

i.e. j∈Γ∗u. For any worker k such that θk= cu
ρ(v+D)

, the worker is indifferent between

updating and not updating, and will mix with any probability pk∈[0,1], where pk is

the probability of choosing update.

Now to examine the best response of the hacker on the Disclosure branch of the

game given the workers’ strategies. If all of the workers update, i.e. Γu=I, then the

best response is for the hacker to search, Aα∗d =(S). Similarly, the worker strategy is

Γnu=I, then Aα∗d =(E) is the only strategy in the best response for the hacker.

Define Ω≡
{
j∈I|θj≥ cu

v+D

}
as the set of high-type workers that will update with

positive probability if the hacker chooses (E). For some k∈Ω, define Γknu={i∈I|θi<θk}

and Γku={j∈I|θj>θk}. Given a worker strategy of (Γknu,(pk(u),(1−pk)(nu)),Γku), for

some mixed strategy pk∈[0,1] for worker k, then the hacker’s expected payoff of mix-

ing with ρ∈[0,1] between exploiting and searching is

ρ

[
D
∑
i∈Γknu

θi+(1−pk)Dθk
]

+(1−ρ)

[
δ̂D
∑
i∈I

θi−cs
]

(1.5)

For all ρ∈[0,1], if

cs>δ̂D
∑
i∈I

θi−D
∑
i∈Γknu

θi−
(
1−pk

)
Dθk (1.6)

43Notice that for any ρ∈[0, cu
θm(v+D)), (nu) is the best response for all workers.

23

then ρ∗=1 is the best response for the hacker given the workers’ strategy.

However, if for every value ρ∈[0,1],

cs<δ̂D
∑
i∈I

θi−D
∑
i∈Γknu

θi−
(
1−pk

)
Dθk (1.7)

then the hacker will send ρ∗ to zero.

The last case is if there exists a pk∈[0,1] such that Inequality 1.6 holds with

equality, i.e.

cs=δ̂D
∑
i∈I

θi−D
∑
i∈Γknu

θi−
(
1−pk

)
Dθk (1.8)

then any ρ∗∈[0,1] is the hacker’s best response to the workers’ strategy of (Γknu,(pk(u),(1−

pk)(nu)),Γku).

Now to solve for the Nash equilibrium.

Theorem 1.1. Let kmin∈Ω be the minimal worker in Ω. If Inequality 1.6 holds for

pkmin=1, then the Nash Equilibrium is

((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I)=((E,S),(nu)i∈Γ∗nu ,(u)j∈Γ∗u) (1.9)

Where Γ∗nu=
{
i∈I|θi< cu

v+D

}
and Γ∗u=

{
i∈I|θi> cu

v+D

}
.

Otherwise, there exists a pivotal worker44 k∗∈Ω and a mixed strategy for worker

k∗, p∗k∗∈[0,1], such that Equation 1.8 holds, and the Nash equilibrium is

((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I)=((ρ∗(E,S),(1−ρ∗)(S,S)),(nu)i∈Γk∗nu

,(p∗k∗(u),(1−p∗k∗)(nu)),(u)j∈Γk∗u
)

(1.10)

Where ρ∗= cu
θk∗ (v+D)

, Γk∗nu={i∈I|θi<θk∗}, and Γk∗u a={i∈I|θi>θk∗}.

Proof. Under Non-Disclosure, the hacker will search for Zero-Days, (S). Then, recall

that, that if for all workers k∈Ω and all pk∈[0,1] for each k such that Inequality 1.6

44I.e. a worker that is indifferent between updating and not in the Nash equilibrium.

24

holds, then the hacker’s best response is to always exploit, (E), when a vulnerability

is disclosed. Next, given the hacker strategy of (E), then all workers i∈I such that

θi<
cu
v+D

will not update, i.e. i∈Γ∗nu. If θj>
cu
v+D

, then j∈Γ∗u is worker j’s best response.

Therefore, ((E,S),(nu)i∈Γ∗nu ,(u)j∈Γ∗u) is in the best response of the hacker and all of

the workers, and is thus a Nash equilibrium.

However, given a worker k∗∈Ω and a pk∗∈[0,1] such that Equation 1.8 holds, then

the hacker’s best response is to mix, with any ρ∈[0,1], between E and S. Next,

given the hacker strategy of (ρ(E),(1−ρ)(S)), where ρ= cu
θk∗ (v+D)

and k∗∈Ω, then all

workers i∈I such that θi<
cu

ρ(v+D)
will not update, i.e. i∈Γk∗nu. If θj>

cu
ρ(v+D)

, then

j∈Γk∗u is worker j’s best response. Lastly, notice that, given ρ= cu
θk∗ (v+D)

, worker k∗

is indifferent between updating and not updating. Then worker k∗’s best response

is to mix between (u) and (nu) with any probability pk∗∈[0,1], which includes p∗k∗ .

Therefore, ((ρ∗(E,S),(1−ρ∗)(S,S)),(nu)i∈Γk∗nu
,(p∗k∗(u),(1−p∗k∗)(nu)),(u)j∈Γk∗u

) is in the

best response of the hacker and all of the workers, and is thus a Nash equilibrium.

MANET Example

Let there be 3 worker nodes on the MANET such that the weights of each worker

are θ=
{

1
4
, 1

2
, 3

4

}
. Assume that the cost of updating is one hour45, cu=1. Each worker

has a valuation of the network v=2 and damage parameter D=1. Observe that

cu
v+D

= 1
3
, yielding Ω≡{2,3}, or, in other words, worker 1 will never update, while

workers 2 and 3 are sometimes willing to update.

Now to setup the hacker problem. If the hacker attempts to find a Zero-Day when

a vulnerability has not been disclosed, then he is successful half the time, i.e. δ= 1
2
.

However, if the vendor is able to find a vulnerability and release an update, then the

hacker’s probability of success falls to one-third, δ̂= 1
3
. Lastly, assume that the cost

of finding a Zero-Day is cs=
1
8
.

45This is a reasonable assumption as an average time spent installing the update since a minor
update could take minutes, but major updates could take hours.

25

The first step is to determine which cost scenario this parameterization falls under.

By these assumed values, cs<δD
∑

i∈I θi since 1
8
< 3

4
. The next step is to determine

which part of Theorem 1.1 is satisfied. For k=2, notice that Equation 1.8 holds when

p∗k= 3
4
. Solving for the optimal mixed strategy of the hacker, ρ∗= cu

θ2(v+D)
= 2

3
. Giving

a Nash equilibrium of

((
2

3
(E,S),

1

3
(S,S)

)
,(nu)i=1,

(
3

4
(u),

1

4
(nu)

)
k=2

,(u)j=3

)

The final check is to see if this is the only equilibrium of the game. For the other

case of k=3, the only solution to Equation 1.8 is pk= 3
2
>1. Therefore, the solution is

unique.

1.4 Welfare Analysis

The “Optimal Disclosure Policy” must first be defined followed by solving for the

optimal policy for each of the different search cost scenarios found in Section 1.3.

Definition 1.1. The optimal policy Ψ∗∈{Disclosure, Non−Disclosure} is chosen

such that:

Ψ∗=argmaxψ∈{d, nd}

{∑
i∈I

Ud(A
α∗
d ,A

(1−α)∗
d ,A∗i ,θi),

∑
i∈I

Und(A
∗
nd,θi)

}
(1.11)

Where ((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I) and (A∗nd) are the Nash equilibria under Disclosure and

Non-Disclosure, respectively.

The optimal policy is to either force the Disclosure or Non-Disclosure regime in

order to maximize the sum of worker utility. In the following sections, I examine the

the optimal policies under the Nash equilibria listed above for each of the four cases:

High Search Cost, Knife-Edge46, Medium Search Cost, and Low Search Cost.

46In Appendix A.1.

26

1.4.1 High Search Costs

Under High Search Costs, recall that in the Nash equilibrium47 the hacker chooses to

exploit the N-Day under Disclosure and to exit the game under Non-Disclosure. Under

Disclosure, all low-type workers, the workers in Γ∗nu, are hacked if a vulnerability is

found; while all other workers must pay the cost of updating, which is assumed to be

strictly greater than zero. Under Non-Disclosure, the hacker exits the game, and all

workers obtain θiv. Defining ξ∗=|Γ∗u|, i.e. the number of workers that update under a

Disclosure policy, then the optimal policy can be solved for via the following theorem.

Theorem 1.2. If cs>δD
∑

i∈I θi, then Non-Disclosure is the optimal policy.

Proof. Notice that

∑
i∈I

Ud(A
α∗
d ,A

(1−α)∗
d ,A∗i ,θi) = v

∑
j∈Γ∗u

θj−ξ∗cu−D
∑
i∈Γ∗nu

θi

< v
∑
j∈Γ∗u

θj+v
∑
i∈Γ∗nu

θi

=
∑
i∈I

Und(A
∗
nd,θi)

(1.12)

Therefore, Ψ∗={Non−Disclosure}.

Hence, when the hacker faces high search costs, Non-Disclosure is the optimal

policy.

1.4.2 Medium Search Costs

In this case48, under a Non-Disclosure regime the hacker searches for a Zero-Day.

However, under Disclosure, the hacker chooses to exploit the released vulnerability.

47((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I)=((E,X),(nu)i∈Γ∗

nu
,(u)j∈Γ∗

u
)

48δ̂D
∑
i∈I θi≤cs<δD

∑
i∈I θi

27

Then comparing the sum of the utilities, under Non-Disclosure the workers receive

∑
i∈I

Und(A
∗
nd,θi)=(1−δ)

(
v
∑
i∈I

θi

)
−δ

(
D
∑
i∈I

θi

)
(1.13)

Then the welfare under the Disclosure regime is

∑
i∈I

Ud(A
α∗
d ,A

(1−α)∗
d ,A∗i ,θi)=α

v∑
j∈Γ∗u

θj−D
∑
i∈Γ∗nu

θi

+(1−α)

[
v
∑
i∈I

θi

]
−ξ∗cu (1.14)

Therefore, solving for the optimal policy is dependent on

∑
i∈Γ∗nu

θi+ξ
∗ cu
v+D

≶δ
∑
i∈I

θi (1.15)

Where49 the left-hand side is the sum of the hacked low-type workers plus the value

paid by high-type workers to update their machines. While, the right-hand side are

the expected losses to all workers because of the ability of the hacker to successfully

find a Zero-Day and hack all of their machines.

Thus, the optimal policy under medium search costs is as follows.

Theorem 1.3. If δ̂D
∑

i∈I θi≤cs<δD
∑

i∈I θi then there exist three cases under In-

equality 1.15,

1. If
∑

i∈Γ∗nu
θi+ξ

∗ cu
v+D

<δ
∑

i∈I θi, then Disclosure is the optimal policy.

2. If
∑

i∈Γ∗nu
θi+ξ

∗ cu
v+D

>δ
∑

i∈I θi, then Non-Disclosure is the optimal policy.

3. If
∑

i∈Γ∗nu
θi+ξ

∗ cu
v+D

=δ
∑

i∈I θi, then both Non-Disclosure and Disclosure are op-

timal policies.

49Notice that, given arbitrary Pareto weights, λi for all i∈I, Disclosure is the optimal policy if∑
i∈Γ∗

nu

λiθi+
cu

v+D

∑
i∈Γ∗

u

λi<δ
∑
i∈I

λiθi

28

Proof. Notice that the welfare of the workers can be calculated via Equations 1.13

and 1.14. In case 1, given
∑

i∈Γ∗nu
θi+ξ

∗ cu
v+D

<δ
∑

i∈I θi,

∑
i∈I

Ud(A
α∗
d ,A

(1−α)∗
d ,A∗i ,θi)>

∑
i∈I

Und(A
∗
nd,θi) (1.16)

Therefore, Ψ∗={Disclosure}.

The other cases trivially follow.

In other words, so long as the expected losses from a Zero-Day exceed the cost of

the low type workers being hacked since they did not update and the cost of updating

for all ξ∗ of the high type workers, then Disclosure is the optimal policy.

1.4.3 Low Search Costs

Now50 the vendor, or policy maker that forces the vendor to follow a specific policy,

must decide which policy maximizes the sum of the utility of the workers. Recall that

the Nash equilibrium of the Non-Disclosure game is A
(1−α)∗
d =(S), while the Nash

equilibria of the Disclosure game take the form of mixing between (E) and (S) for

the hacker while the workers split into (Γk∗nu,(p
∗
k(u),(1−p∗k)(nu)),Γk∗u). I will begin by

analyzing the optimal policy for all low-type workers, followed by the optimal policy

for all high-type workers. To conclude the section I will then combine these results

to find the optimal policy.

For all workers i∈Γk∗nu, then we are able to analyze which policy they would prefer

by solving

−δD
∑
i∈Γk∗nu

θi+(1−δ)v
∑
i∈Γk∗nu

θi≶−ρ∗D
∑
i∈Γk∗nu

+(1−ρ∗)

−δ̂D∑
i∈Γk∗nu

θi+(1−δ̂)v
∑
i∈Γk∗nu

θi

(1.17)

50cs<δ̂D
∑
i∈I θi

29

First, notice that if ρ∗=1, then Γ∗nu=
{
i∈I|θi< cu

v+D

}
and Equation 1.17 becomes

−δD
∑
i∈Γ∗nu

θi+(1−δ)v
∑
i∈Γ∗nu

θi≶−D
∑
i∈Γ∗nu

θi (1.18)

Since δ<1, then Non-Disclosure is always optimal for workers that do not update.

Next, for any ρ∗∈[0,1), I analyze the effects of search on the workers’ welfare.

Notice that

−δD
∑
i∈Γk∗nu

θi+(1−δ)v
∑
i∈Γk∗nu

θi<−δ̂D
∑
i∈Γk∗nu

θi+(1−δ̂)v
∑
i∈Γk∗nu

θi (1.19)

since δ>δ̂ is strictly increasing. This could indicate that Disclosure may be welfare

improving, since there are fewer vulnerabilities for hackers to find. However, since

ρ>0, then the right-hand side decreases due to the fact that the hacker may choose

to exploit the released vulnerability instead of searching for a Zero-Day.

Disclosure is the optimal policy for all workers that do not update so long as

ρ∗<

[
−δ̂D+(1−δ̂)v

]
−[−δD+(1−δ)v]

(1−δ̂)(v+D)

⇐⇒ρ∗<
δ−δ̂
1−δ̂

(1.20)

Notice that both the left-hand side and the right-hand side are strictly positive. Thus,

the workers that do not update, workers in Γk∗nu, will sometimes want Disclosure to

be the chosen policy.

30

Workers51 j∈Γk∗u , then face the welfare decision of

−δD
∑
j∈Γk∗u

θj+(1−δ)v
∑
j∈Γk∗u

θj≶ρ
∗
(
v
∑
j∈Γk∗u

θj−ξcu
)

+(1−ρ∗)

−δ̂D∑
j∈Γk∗u

θj+(1−δ̂)v
∑
j∈Γk∗u

θj−ξ∗cu

 (1.21)

As with the low-type workers, the first analysis to be done is when ρ∗=1 and Γ∗u={
j∈I|θj> cu

v+D

}
. Accordingly, Equation 1.21 can now be written as

−δD
∑
j∈Γ∗u

θj+(1−δ)v
∑
j∈Γ∗u

θj≶v
∑
j∈Γ∗u

θj−ξ∗cu (1.22)

Disclosure is then optimal as long as δ
∑

j∈Γ∗u
θj>

ξ∗cu
v+D

, i.e. the expected losses of a

search for Zero-Days exceeds the cost of installing updates.

For any ρ∗∈[0,1), such that Γk∗u =
{
j∈I|θj> cu

ρ∗(v+D)

}
, Disclosure is optimal when

−δD
∑
j∈Γk∗u

θj+(1−δ)v
∑
j∈Γk∗u

θj<−δ̂D
∑
j∈Γk∗u

θj+(1−δ̂)v
∑
j∈Γk∗u

θj

Leading to the notion that, again, Disclosure might be the optimal choice for these

workers. On the grounds that ρ∗>0 and cu>0, for Disclosure to be the optimal choice

of workers j∈Γ∗u, the following must hold.

ξ∗cu<
(
δ−(1−ρ∗)δ̂

) ∑
j∈Γk∗u

θj (1.23)

For workers i∈Γk∗nu, Disclosure decreases the probability of being hacked by a Zero-

Day, but it also increases their probability of being hacked since the hacker can exploit

the N-Day vulnerability that these workers are not willing to defend against. However,

51These are the high-type workers such that they are not the pivotal worker. The pivotal worker
is the worker with θk= cu

ρ∗(v+D) that is indifferent between updating and not updating.

31

workers j∈Γk∗u are more likely to want a Disclosure regime since they both obtain the

benefit of hackers having less vulnerabilities to search over as well as protection from

the N-Day exploits since they will sometimes update.

Now to examine the welfare over all the workers, where the optimal policy depends

on the welfare equations

∑
i∈I

Ud(A
α∗
d ,A

(1−α)∗
d ,A∗i ,θi)=ρ∗

v∑
j∈Γk∗u

θj+p
∗
k(vθk−cu)−(1−p∗k)Dθk−D

∑
i∈Γk∗nu

θi

+(1−ρ∗)

(
δ̂

(
−D

∑
i∈I

θi

)
+(1−δ̂)

(
v
∑
i∈I

θi

))
−ξ∗cu

(1.24)

∑
i∈I

Und(A
∗
nd,θi)=(1−δ)

(
v
∑
i∈I

θi

)
−δ

(
D
∑
i∈I

θi

)
(1.25)

Then by comparing the two welfare equations, the following condition describes

the optimal policy.

∑
i∈Γk∗nu

θi+

(
D

v+D
−p∗k−δ̂

)
θk+

(ξ∗+p∗k)cu
ρ∗(v+D)

≶

(
δ−(1−ρ∗)δ̂

ρ∗

)∑
i∈I

θi (1.26)

As with the medium cost case, the left-hand side represents the cost under a

Disclosure policy and the right-hand side represents the Non-Disclosure regime. The

first term on the left-hand side is the value of the set of low-type workers lost due to

the exploitation of the disclosed vulnerability. The following term are the expected

costs faced by the pivotal worker k. The final term on the left-hand side is the cost

associated with updating for the high-type workers.

The right-hand side is the expected damages done by search under Non-Disclosure

less the damages done by search under Disclosure52. Since cu
ρ∗(v+D)

=θk, then Equation

52Recall that the hacker is now willing to mix between Search and Exploit.

32

1.26 can be written as

∑
i∈Γk∗nu

θi+

(
D

v+D
−δ̂+ξ∗

)
θk≶

(
δ−(1−ρ∗)δ̂

ρ∗

)∑
i∈I

θi (1.27)

Hence, the optimal policy under low search costs is as follows.

Theorem 1.4. Let cs<δ̂D
∑

i∈I θi. Then Inequality 1.27 yields three distinct cases.

1. If
∑

i∈Γk∗nu
θi+

(
D
v+D
−δ̂+ξ∗

)
θk<

(
δ−(1−ρ∗)δ̂

ρ∗

)∑
i∈I θi, then Disclosure is the op-

timal policy.

2. If
∑

i∈Γk∗nu
θi+

(
D
v+D
−δ̂+ξ∗

)
θk>

(
δ−(1−ρ∗)δ̂

ρ∗

)∑
i∈I θi, then Non-Disclosure is the

optimal policy.

3. If
∑

i∈Γk∗nu
θi+

(
D
v+D
−δ̂+ξ∗

)
θk=

(
δ−(1−ρ∗)δ̂

ρ∗

)∑
i∈I θi, then both Disclosure and

Non-Disclosure are optimal.

Proof. Notice that the welfare of the workers is given by Equations 1.24 and 1.25 the

following is obtained,

∑
i∈Γk∗nu

θi+

(
D

v+D
−p∗k−δ̂

)
θk+

(ξ∗+p∗k)cu
ρ∗(v+D)

<

(
δ−(1−ρ∗)δ̂

ρ∗

)∑
i∈I

θi

Notice that cu
ρ∗(v+D)

=θk, and thus the equation can be rewritten as

∑
i∈Γk∗nu

θi+

(
D

v+D
−δ̂+ξ∗

)
θk<

(
δ−(1−ρ∗)δ̂

ρ∗

)∑
i∈I

θi

Hence, Ψ∗={Disclosure}.

The other cases trivially follow.

Disclosure is the optimal policy so long as the losses of being exploited by an

N-Day and paying the cost of updating is less than the expected losses of a Zero-Day

attack.

33

1.5 Discussion

According to Sym (2016) the cost of finding Zero-Days has significantly increased

over the last couple of years. This shift has altered the environment from one akin to

the Medium Search Cost case to one more closely approximated by the High Search

Cost case. Thus, under the games listed above, the optimal policy will shift from

Disclosure being sometimes optimal toward Non-Disclosure always being optimal.

This is also due to the findings in Sym (2018) that clearly shows that the ease of

hacking machines that have not updated has increased. For example, only 2.3% of

people are on the latest version of Android. As vendors continue to release updates,

and workers are refusing to update their machines, hackers can take full advantage

of easy hacks. Therefore, the complementary effects of the cost of finding Zero-Days

increasing while the vendors are attempting to release more updates that are not

being updated by workers should cause a change in policy.

However, the policy change may not have to take the form of forcing Non-Disclosure.

Instead, what if the vendor can choose to change the game? In Section 1.5.1, I analyze

how the forthcoming change to Microsoft 7 and 10 updating procedures could change

the game. I will set up the following game under which Microsoft has just introduced

a new monthly charge to receive updates. Microsoft intends to implement this policy

starting on January 14th, 2020, which, coincidentally, is the same day that Windows

7 will no longer be supported. But with a large number of Windows users still using

Windows 7, Microsoft needed to come up with a policy to protect these users and

maintain their market share. Even though the policy, as outlined below, not only

affects Windows 7, but will also have significant impacts on Windows 10 users, I will

focus on Windows 7 users decisions on and after January 14th, 2020.

34

1.5.1 Extension: Microsoft’s New Disclosure Policy

On September 6th, 2018, Microsoft posted a blog article entitled53 “Helping Customers

Shift to a Modern Desktop” in which they laid out their new updating, i.e. disclosure,

policy. Starting on January 14th, 2020, Windows 7 users will no longer receive their

usual second Tuesday updates, but will be able to pay for “Extended Support” from

Microsoft under which Microsoft will release updates for your machine for a given

fee54.

To model this, the cost of updating must increase due to this forthcoming fee. Let

φu>0 be the new service charge paid by the worker to keep their machine up to date.

However, this is not the only available choice to the worker anymore. The worker can

also choose to shift toward using a different version, i.e. Windows 10, for which the

worker must pay a cost cv>0. If the worker shifts toward using the new version of the

software, then the hacker is not able to attack the worker, not even via Zero-Days.

Assumption 1.2. The cost of changing to the new version of the software, cv, is

assumed to be such that there potentially exists at least one worker that is now willing

to change to the new version, i.e. cv
δ(v+D)

∈(θ1,θm).

The first thing to notice is that, due to the availability of other version of software

to the worker, the hacker is immediately effected by the new policy. The hacker’s

payoffs are now decreasing in the number of workers that are willing to install the

new software version.

I make the following assumption on the availability of the released vulnerability,

N-Day, to the hacker55

53See https://www.microsoft.com/en-us/microsoft-365/blog/2018/09/06/

helping-customers-shift-to-a-modern-desktop/
54The size of the fee has yet to be revealed, but this fee will increase over time.
55This is a strong assumption, but reasonable in a static model. In a dynamic model this assump-

tion could be relaxed to account for the timing between the disclosure of a vulnerability and the
release of an update. A dynamic model could also allow for external groups reporting and disclosing
vulnerabilities.

35

https://www.microsoft.com/en-us/microsoft-365/blog/2018/09/06/helping-customers-shift-to-a-modern-desktop/
https://www.microsoft.com/en-us/microsoft-365/blog/2018/09/06/helping-customers-shift-to-a-modern-desktop/

Assumption 1.3. In order to observe the released vulnerability, the hacker must pay

φu, but does not have to pay cu.

If the hacker wants to gain access to the disclosure of the vulnerability, the hacker

must pay the subscription fee for the “Extended Support”, φu. However, the hacker

does not have to pay cu since the hacker could do something like enroll an old computer

in the updating scheme in order to be notified of vulnerabilities. Consequently, the

cost of exploiting N-Days has increased since φu>0. To be clear, Microsoft’s new

policy is fascinating since it has the potential to increase the cost of exploiting N-

Days while also decreasing the effectiveness of Zero-Days against Windows 7.

New Policy Game Given this new policy, I now explicitly define the new game

by the following game tree for this new type of Disclosure policy. To make the game

tree more readable, I have split it into two sub-games determined by nature, the

Non-Disclosure branch in Figure 1.3 and the Disclosure branch in Figure 1.4. I still

assume that the probability of the vendor, Microsoft, finding a vulnerability56 is α.

Since the worker can now change the version of software she is using, she is able to

make strategic decisions in both games.

Now to set up the Non-Disclosure branch of the game tree. The vendor was unable

to find a vulnerability, and thus the hacker is only able to search for a Zero-Day, i.e.

the hacker can only choose an action, A
(1−α)
M , from the set {Search, Exit}. Searching

for a Zero-Day is not as effective as in the above games due to the fact that workers

are now able to change their software version to avoid being attacked. The worker

choice is to either continue using the old version Old, or to start using the new version

of the software, New, with an action A
(1−α)
M,i .

In Figure 1.3, the payoffs are laid out for the workers as well as the payoffs for

the hacker attacking that worker. The utility of worker i, U i
M ;nd :{Search,Exit}×

{New,Old}×θi, is dependent on the actions of the hacker, worker i’s action, and the

56Should we assume that this is constant? Will α decrease due to a decreasing investment in
finding these vulnerabilities? These are good questions, but they are beyond the scope of this paper.

36

worker i’s type. I am going to include all players that use the old software in Γnu,

and all workers that switch versions in Γv. Recall, there are no directed attacks in

this game, hence the payoff functions for the hacker still need to be presented.

I will start here with the trivial case of the hacker choosing to leave the game:

Exit. If this is the case, then the hacker’s payoff

Π
M(1−α)
X (θ,{Γnu,Γv})=0

When the hacker decides to search for a Zero-Day in the old version of the software,

he receives a payoff of

Π
M(1−α)
S (θ,{Γnu,Γv})=δ(n)

(
D
∑
i∈Γnu

θi

)
−cs

The next step is to formalize the Disclosure branch of the tree under Microsoft’s

new policy. As the vendor has found and released an update with the probability α,

both the hacker and workers have an extra action they could take. The hacker has

the same set of actions in this case as in the Disclosure case above to pick from, i.e.

he picks an action, AαM , from the set {Exploit,Search,Exit}. This new policy also

allows the worker the ability to not update, update, or switch software versions, or

choose AαM,i∈{New V ersion,Update,Not Update}.

The utility of worker i is now U i
M ;d :{Exploit,Search,Exit}×{New V ersion,Update,

Not Update}×θi. Leaving the final step in establishing the game created by Mi-

crosoft’s new policy as describing the payoff functions of the hacker.

37

Nature

(vθi−cv,0)

New

(vθi,0)

Old

Exit

(vθi−cv,− cs
m)

New

(vθi,− cs
m)

Old

Search

1−δ

(vθi−cv,0)

New

(vθi,0)

Old

Exit

(vθi−cv,− cs
m)

New

(−Dθi,Dθi− cs
m)

Old

Search

δ

Hacker

Worker Worker

Figure 1.3: Non-Disclosure Branch of Game for Worker i

38

When the hacker chooses (Exploit,Search), he receives the expected payoff of

ΠM
(E,S)(θ,{Γnu,Γu,Γv})=α

[
D
∑
i∈Γnu

θi−φu

]
+(1−α)

[
δD

∑
i∈Γnu∪Γu

θi−cs

]
(1.28)

In expectation, the hacker receives the sum of damages done to all workers in Γnu

when a vulnerability is disclosed, and, when the vulnerability is not found, he receives

the expected value of a Zero-Day less the cost of searching. The expected value of a

Zero-Day has decreased since the hacker is now unable to attack any worker that has

decided to shift toward the use of the new version.

However, if the hacker decides to Exit instead of Search when no vulnerability is

disclosed, then the expected payoff of the hacker is

ΠM
(E,X)(θ,{Γnu,Γu,Γv})=α

[
D
∑
i∈Γnu

θi−φu

]
(1.29)

If the hacker decides to search for Zero-Days when an update is released, then

the expected payoff to the hacker from searching or exiting when no vulnerability is

found by the vendor are as follows.

ΠM
(S,S)(θ,{Γnu,Γu,Γv})=α

[
δ̂D

∑
i∈Γnu∪Γu

θi

]
+(1−α)

[
δD

∑
i∈Γnu∪Γu

θi

]
−cs (1.30)

ΠM
(S,X)(θ,{Γnu,Γu,Γv})=α

[
δ̂D

∑
i∈Γnu∪Γu

θi−cs

]
(1.31)

39

Nature
See F igure 1.3

1−α

Hacker

(θiv−cv ,0)

New

(θiv−(cu+φu),0)

Update

(θiv,0)

Not Update

Exit

(θiv−cv ,0)

New

(θiv−(cu+φu),0)

Update

(−θiD,θiD)

Not Update

Exploit

See Figure 1.5

Search

α

Worker Worker

Figure 1.4: Disclosure Policy Game for Worker i

40

Worker

Nature

(−Dθi−cv,Dθi− cs
m)

δ̂

(vθi−cv,− cs
m)

1−δ̂

New V ersion

Nature

(−Dθi−(cu+φu),Dθi− cs
m)

δ̂

(vθi−(cu+φu),− cs
m)

1−δ̂

Update

Nature

(−Dθi,Dθi− cs
m)

δ̂

(vθi,− cs
m)

1−δ̂

Not Update

Figure 1.5: Search Sub-Branch of Disclosure Game for Worker i

41

The final set of payoffs the hacker could receive are given by the hacker deciding

to exit the market when a vulnerability is disclosed.

ΠM
(X,S)(θ,{Γnu,Γu,Γv})=(1−α)

[
δD

∑
i∈Γnu∪Γu

θi−cs

]
(1.32)

ΠM
(X,X)(θ,{Γnu,Γu,Γv})=0 (1.33)

Equilibria Now that the game is formalized, the hacker and the workers can solve

for the Nash equilibrium of the game given Microsoft’s new policy. There are four

main drivers of the Nash equilibria in this model,

(a) Do there exist any workers using the old version of the software? If so,

do there exist any workers that choose not to update when an update is

released?

(b) Under the “Non-Disclosure” branch of the game, does the cost of finding a

Zero-Day exceed the expected profits of searching? I.e.

cs≶δD
∑
i∈I

θi. (1.34)

(c) Under the “Disclosure” branch of the game, does the cost of finding a

Zero-Day exceed the expected profits of searching? I.e.

cs≶δ̂D
∑
i∈I

θi. (1.35)

(d) Does the cost of updating exceed the cost of switching to the new version

of the software package? I.e.

cv≶cu+φu (1.36)

42

Notice that the first three impact the hacker’s decision, while the last point is

going to impact the high-type workers’ best response functions. The derivation of the

best response functions for this policy are in Appendix A.3. While in this section I

will describe the Nash equilibria under the different cost scenarios57.

For every case listed below, there also exist three cases on the Disclosure branch

of the game as the answer to: Does the cost of searching for an N-Day exceed the

payoff?

φu≶D
∑
i∈I

θi (1.37)

In order to simplify the notation, I will first solve for the equilibria in the Non-

Disclosure game followed by the equilibria in the Disclosure game.

1.5.1.1 Non-Disclosure

When search costs exceed the expected payoff of search under Non-Disclosure58, the

hacker will always play (X). Given the hacker strategy of exiting the game, all

workers will not update. Therefore, the equilibrium of the Non-Disclosure branch is

((X),(nu)i∈I).

Next, if cs<δD
∑

i∈I θi, then search costs are less than the expected payoff of

search under Non-Disclosure. Via the best responses of both workers and the hacker in

Section A.3, the Nash equilibria under medium search costs are as follows in Theorem

1.5. Define ΩM≡
{
k∈I|θk≥ cv

δ(v+D)

}
.

Theorem 1.5. Let kmin∈ΩM be the minimal worker in ΩM . Then Under Non-

Disclosure and low search costs, if

cs<δD
∑

i∈I\ΩM

θi (1.38)

57The Knife-Edge Case and the Low Search Cost case are in Appendix A.1 and A.4, respectively.
58I.e. cs>δD

∑
i∈I θi

43

Then the Nash equilibrium is

(
A

(1−α)∗
M ,

(
A

(1−α)∗
M,i

)
i∈I

)
=
(

(S),((nu)
i∈Γ

kmin,nd∗
nu

,(v)
j∈Γ

kmin,nd∗
v

)
)

(1.39)

Where Γkmin,nd∗nu ={i∈I|θi<θkmin}, and Γkmin,nd∗v ={j∈I|θj≥θkmin}.

Otherwise, there exists a pivotal worker k∗∈ΩM and a mixed strategy for worker

k∗ strategy, pv∗k∗∈[0,1], such that

cs=δ

D ∑
i∈Γk

∗,nd∗
nu

θi+(1−pv∗k)Dθk∗

 (1.40)

Then the Nash equilibrium is

(
A

(1−α)∗
M ,

(
A

(1−α)∗
M,i

)
i∈I

)
=
(

(ρ∗(S),(1−ρ∗)(X)),((nu)
i∈Γk

∗,nd∗
nu

,(pv∗k∗(v),(1−pv∗k∗)(nu)),(v)
j∈Γk

∗,nd∗
v

)
)

(1.41)

Where ρ∗= cv
θk∗δ(v+D)

, Γk
∗,nd∗
nu ={i∈I|θi<θk∗}, and Γk

∗,nd∗
v ={j∈I|θj>θk∗}.

Proof. Notice that, if Inequality 1.38 holds, then the best response of the hacker is

to search for a Zero-Day. Given the hacker strategy of always searching, then the

best response of high-type workers, workers j∈ΩM , is to install the new version of

the software. The best response for all other workers is to do nothing, i.e. i∈Γ∗nu.

Thus 1.39 is the Nash Equilibrium.

Given the hacker strategy of (ρ∗(S),(1−ρ∗)(X)) where ρ∗= cv
θk∗δ(v+D)

, then all

workers i∈I such that θi<
cv

ρ∗(v+D)
have the best response of i∈Γk

∗,nd∗
nu . Then if

θj>
cv

ρ∗(v+D)
, then worker j will install the new version of the code, i.e. j∈Γk

∗,nd∗
v .

Additionally, for worker k∗ such that θk∗=
cv

ρ∗(v+D)
is indifferent between installing the

new version and not updating the old version with any probability pvk∈[0,1]. Since

pv∗k∗∈[0,1], then (pv∗k∗(v),(1−pv∗k∗)(nu)) is in worker k∗’s best response.

Given the worker strategy ((nu)
i∈Γk

∗,nd∗
nu

,(pv∗k∗(v),(1−pv∗k∗)(nu)),(v)
j∈Γk

∗,nd∗
v

) such

44

that there exists k∗∈ΩM and pv∗k∗∈[0,1] to satisfy Equation 1.40, then the hacker

is indifferent between (S) and (X), and is willing to play any mixed strategy ρ∈[0,1].

Since ρ∗= cv
θk∗ (v+D)

∈[0,1], then ρ∗ is the best response of the hacker. Therefore, Equa-

tion 1.41 is the Nash equilibrium.

1.5.1.2 Disclosure

Now to solve for the Nash equilibria under the Disclosure branch of the game in Figure

1.4. On the Disclosure branch, both the hacker and the workers have three actions

they could each take. In Section 1.3.3, the equilibria cases followed from the relation

between the cost of searching and the expected payoffs from searching. However, due

to the new action available to the workers, (v), and the enrollment fee, φu, there now

exist extra cases dependent on Equations 1.36 and 1.37.

Beginning with high exploitation costs and either medium, knife-edge, or high

search costs, then the Nash Equilibrium is as follows.

Theorem 1.6. If there are both high or medium search costs and high exploitation

costs, i.e. cs>δ̂D
∑

i∈I θi and φu>D
∑

i∈I θi, then the Nash equilibrium of the game is

(Aα∗M ,(A
α∗
M,i)i∈I)=((X),(nu)i∈I) (1.42)

Proof. Notice that both searching for Zero- and N-Days are too costly, therefore, the

hacker will always exit the game. Given this strategy, the workers will all not update.

Hence, this is the Nash equilibrium.

The other case to examine is when the exploitation costs of the N-Day are low. In

other words, the last case is to examine when the updating fee charged by Microsoft is

smaller than the profits gained by the hacker when no worker updates the old version

of the software or installs the new version of the software.

45

Theorem 1.7. If cs>δ̂D
∑

i∈I θi and φu≤D
∑

i∈I θi, while the workers face cv<cu+

φu, and

φu<D
∑

i∈I\ΩM

θi (1.43)

Then the Nash equilibrium is

(Aα∗M ,(A
α∗
M,i)i∈I)=

(
(E),

(
(nu)i∈Γd∗nu

,(v)j∈Γd∗v

))
(1.44)

Where Γd∗nu={i∈I\ΩM} and Γd∗v ={j∈ΩM}.

Otherwise if cs>δ̂D
∑

i∈I θi and φu≤D
∑

i∈I θi, while the workers face cv<cu+φu,

and there exists k∗∈ΩM and a mixed strategy for worker k∗, pv∗k∗∈[0,1], such that

φu=D
∑
i∈Γ∗nu

θi+(1−pv∗k∗)Dθk∗ (1.45)

Then the Nash equilibrium of the game is

(Aα∗M ,(A
α∗
M,i)i∈I)=

(
(ρ∗(E),(1−ρ∗)(X)),

(
(nu)i∈Γd∗nu

,(pv∗k∗(v),(1−pv∗k∗)(nu)),(v)j∈Γd∗v

))
(1.46)

Where Γd∗nu={i∈I|θi<θk∗}, Γd∗v ={j∈I|θj>θk∗}, and ρ∗= cv
θk∗ (v+D)

.

Proof. If Inequality 1.43 holds, then the best response of the hacker is to exploit the

N-Day. Given that the hacker is playing (E) and the cost of installing the new version

is cheaper than installing the updates on the old version, workers j∈ΩM will play (v),

and workers i∈I\ΩM will play (nu). Therefore, this is the Nash equilibrium.

Given (ρ∗(E),(1−ρ∗)(X)) where ρ∗= cv
θk∗ (v+D)

, then for any worker i such that

θi<θk∗ , then i∈Γd∗nu. For worker j such that θj>θk∗ , then i∈Γd∗v . Lastly, worker

k∗ is indifferent between (v) and (nu), thus, since pv∗k∗∈[0,1], (pv∗k∗(v),(1−pv∗k∗)(nu)) is

worker k∗’s best response.

46

Next, if there exists k∗∈ΩM and pv∗k∗∈[0,1] such that

φu=D
∑
i∈Γ∗nu

θi+(1−pv∗k∗)Dθk∗ (1.47)

Then the hacker is indifferent between any mixed strategy of the form (ρ(E),(1−

ρ)(X)) for ρ∈[0,1]. Since ρ∗= cv
θk∗ (v+D)

∈[0,1], then this is in the hacker’s best response.

Thus, it is a Nash equilibrium.

Corollary 1.1. If cs>δ̂D
∑

i∈I θi and φu≤D
∑

i∈I θi, while the workers face cv>cu+

φu, and Inequality 1.43 holds, then the Nash equilibrium is

(Aα∗M ,(A
α∗
M,i)i∈I)=

(
(E),

(
(nu)i∈Γd∗nu

,(u)j∈Γd∗u

))
(1.48)

Where Γd∗nu={i∈I\ΩM} and Γd∗u ={j∈ΩM}.

Otherwise if cs>δ̂D
∑

i∈I θi and φu≤D
∑

i∈I θi, while the workers face cv>cu+φu,

and there exists k∗∈ΩM and a mixed strategy for worker k, pv∗k∗∈[0,1], such that

φu=D
∑
i∈Γ∗nu

θi+(1−pu∗k∗)Dθk∗ (1.49)

Then the Nash equilibrium of the game is

(Aα∗M ,(A
α∗
M,i)i∈I)=

(
(ρ∗(E),(1−ρ∗)(X)),

(
(nu)i∈Γd∗nu

,(pu∗k∗(u),(1−pu∗k∗)(nu)),(v)j∈Γd∗u

))
(1.50)

Where Γd∗nu={i∈I|θi<θk∗}, Γd∗u ={j∈I|θj>θk∗}, and ρ∗= cu+φu
θk∗ (v+D)

.

Again, since updating protects the worker the same amount as installing the new

version, but since updating is cheaper, then the high-type workers will update, and

thus follows similarly to Theorem 1.7.

Welfare Analysis

Now to investigate whether this new “Extended Coverage” will be a welfare im-

47

proving policy. This section flows as follows: First, define the optimal policy; Then,

under each of the different cost scenarios59, the welfare improving policy will be solved

for.

Definition 1.2. The optimal policy Ψ∗∈{Microsoft, Disclosure,Non−Disclosure}

is chosen such that:

Ψ∗=argmaxψ∈{M,d,nd}

{∑
i∈I

UM (Aα∗M ,A
(1−α)∗
M ,Aα∗M,i,A

(1−α)∗
M,i ,θi),

∑
i∈I

Ud(A
α∗
d ,A

(1−α)∗
d ,A∗i ,θi),

∑
i∈I

Und(A
∗
nd,θi)

}
(1.51)

Where ((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I), (A∗nd), and ((Aα∗M ,A

(1−α)∗
M),(Aα∗M,i,A

(1−α)∗
M,i)i∈I) are the

Nash equilibria of the Disclosure, Non-Disclosure, and Microsoft policies, respectively.

As in Section 1.4, the optimal policy is determined by the utility maximizing

policy. The optimal policy is dependent on the types of search costs that are faced by

the hackers, and thus the following sections outline the optimal policies under both

high and medium search costs60.

1.5.1.3 High Search Cost

Recall that the equilibria of the Microsoft policy game are split into two cases: when

φu is high and when φu is low. Notice that when φu>D
∑

i∈I θi, then the Nash

equilibrium of the Microsoft game is for the hacker to always exit and the workers

to never update or install the new version of the software. These two cases can be

identified by

φu≶D
∑
i∈I

θi (1.52)

Theorem 1.8. Let cs>δD
∑

i∈I . Then the two cases satisfying Inequality 1.52 are

1. If φu>D
∑

i∈I θi, then both Microsoft and Non-Disclosure are optimal policies.

59I will focus on the High and Medium search cost cases in this section, the Low cost case is in
Appendix A.5.

60Low search cost welfare is discussed in Appendix A.5

48

2. If φu≤D
∑

i∈I θi, then Non-Disclosure is the optimal policy.

Proof. Notice that

∑
i∈I

UM(Aα∗M ,A
(1−α)∗
M ,Aα∗M,i,A

(1−α)∗
M,i ,θi)=v

∑
i∈I

θi (1.53)

Then by Theorem 1.2

∑
i∈I

UM(Aα∗M ,A
(1−α)∗
M ,Aα∗M,i,A

(1−α)∗
M,i ,θi)=

∑
i∈I

Und(A
∗
nd,θi)>

∑
i∈I

Ud(A
α∗
d ,A

(1−α)∗
d ,A∗i ,θi)

(1.54)

Therefore, Ψ∗={Microsoft, Non−Disclosure}.

The other case trivially follows.

Therefore, for the new policy to be effective under high search costs, the extended

service fee must be large. Also notice that if φu≤D
∑

i∈I θi, i.e. the exploitation fee

is low, then the Nash equilibrium of the hacker exit when a vulnerability is not found

and to mix between exploitation of the N-Day and exiting the game. Then, Microsoft

is preferred to Disclosure when

ρ∗M

 ∑
i∈ΓM∗nu

θi+(1−pM∗k∗)θk∗

+ξM∗cv<(v+D)
∑
i∈Γd∗nu

θi (1.55)

1.5.1.4 Medium Search Cost

Under medium search costs, the optimal policy decision must be split into cases that

are firstly dependent on the exploitation fee to solve for the Nash equilibria of the

Microsoft game, as in the high search cost case. Differing from high search costs, now

the optimal policy is also relies on the cost of installing updates relative to the cost of

the new version of the software61. If there are high exploitation costs, φu>D
∑

i∈I θi,

61Recall that under the Non-Disclosure policy, the hacker will search for a Zero-Day. When an
update is released in the Disclosure policy, the hacker will play (E).

49

then via Theorem 1.6, the hacker will always leave the game, i.e. play (X). On the

other hand, if exploitation costs are low, i.e. Theorem 1.7, then the hacker will either

exploit the N-Day or mix between (E) and (X).

Under high exploitation costs all workers will not update nor switch versions.

However, under low exploitation costs, the low-type workers choose to not update

their machines nor switch to the new version of the software, while high-type workers

will either install the new software version or update their machines dependent on

the relative cost of updating to installation of the new version.

Notice that, under high exploitation costs, the welfare equation for all workers is

∑
i∈I

UM(Aα∗M ,A
(1−α)∗
M ,Aα∗M,i,A

(1−α)∗
M,i ,θi)=v

∑
i∈I

θi (1.56)

Therefore, compared to Disclosure, the workers do not need to either update or be

hacked via the released patch, and compared to Non-Disclosure, the hacker is not

going to be searching for a Zero-Day, and thus the workers will not bear the burden of

the expected damages. Hence, as discussed in Theorem 1.9, the new policy proposed

by Microsoft is optimal.

The next case to discuss is when the exploitation cost is low, φu≤D
∑

i∈I θi, and

the cost of installing the new version is less than the cost of updating, cv≤cu+φu.

Therefore, the workers’ welfare equation is

50

∑
i∈I

UM(Aα∗M ,A
(1−α)∗
M ,Aα∗M,i,A

(1−α)∗
M,i ,θi)=α

v∑
j∈Γ∗v

θj+p
v∗
k∗(vθk∗−cv)−(1−pv∗k∗)Dθk−D

∑
i∈Γ∗nu

θi−ξ∗vcv

+(1−α)

[
v
∑
j∈Γ∗v

θj−ξ∗vcv+pv∗k∗(vθk∗−cv)

+((1−δ)(v−cv)−δD)(1−pv∗k∗)θk∗

−δD
∑
i∈Γ∗nu

θi+(1−δ)v
∑
i∈Γ∗nu

θi

]
(1.57)

Comparing the new Microsoft policy to Disclosure and Non-Disclosure, the following

inequality describes when the new Microsoft policy is optimal.

αρ∗M (1−δ)

 ∑
i∈ΓM∗nu

θi+(1−pv∗k∗)θk∗

+ξ∗v
cv

v+D
≤min

δ∑
i∈I

θi, α
∑
i∈Γd∗nu

θi+(1−α)δ
∑
i∈I

θi+ξ
∗
v

cu
v+D

(1.58)

The left-hand side is the cost paid by the workers under the “Extended Support”

policy for Windows 7, where as the right-hand side describes the costs associated with

Non-Disclosure and Disclosure, respectively. Now to break down the left-hand side.

The first term are the costs paid by low-type workers and the pivotal worker when

she does not install the new version of the code when the hacker is able to exploit the

N-Day. The final term on the left hand side is the cost paid by the high-type workers

when they install the new version of the software.

Finally, if exploitation costs are low but the cost of installing the new version

is higher than that of updating the old version, i.e. cv>cu+φu, then, under the

Disclosure branch of the Microsoft game, the high-type workers will update. Whereas,

in the Non-Disclosure branch of the Microsoft game, the high-type workers will install

51

the new version of the software to protect their computers62. This yields the following

condition for when “Extended Support” of Windows 7 is the optimal policy.

αρd∗M

 ∑
i∈ΓM∗nu,nd

θi+(1−pu∗k∗)θk∗

+(1−α)ρnd∗M

 ∑
i∈ΓM∗nu,nd

θi+(1−pv∗k∗)θk∗

+ξ∗
α(cu+φu)+(1−α)cv

v+D

≤min

δ∑
i∈I

θi, α
∑
i∈Γd∗nu

θi+(1−α)δ
∑
i∈I

θi+ξ
∗ cu
v+D

(1.59)

Again, the left-hand side is the cost paid by workers under the Microsoft policy,

while the right-hand side is the minimum of the costs paid by the workers under

Non-Disclosure and Disclosure, respectively. The first term on the left-hand side is

the damage done to the low-type workers since they do not update and the pivotal

worker k when she does not update on the Disclosure branch of the Microsoft game

due to the hacker exploiting the N-Day. The second term is the damage done on

the Non-Disclosure branch of the Microsoft game to the low-type workers and the

pivotal worker k when she does not install the new version of the code given the

hacker is searching for a Zero-Day. The final term is the cost of either updating when

a vulnerability is found or installing the new version when the vendor does not find

a vulnerability that the high-type workers pay.

Given these conditions, Microsoft’s new policy is an element of the optimal policy

set, Ψ∗, under the conditions given in the following theorem.

Theorem 1.9. Let δ̂D
∑

i∈I θi≤cs<δD
∑

i∈I θi. Then the cases satisfying Inequality

1.52 are

1. If there are high exploitation costs, i.e. φu>D
∑

i∈I θi, then Microsoft is the

optimal policy.

62Therefore, ρd∗M 6=ρnd∗M

52

2. If there are low exploitation costs, φu≤D
∑

i∈I θi, low version costs, cv≤cu+φu,

and Inequality 1.58 is satisfied, then Microsoft is an optimal policy.

3. If there are low exploitation costs, low version costs, and Inequality 1.58 is not

satisfied, then Microsoft is not an optimal policy.

4. If there are low exploitation costs, high version costs, i.e. cv>cu+φu, and In-

equality 1.59 is satisfied, then Microsoft is an optimal policy.

5. If there are low exploitation costs, high version costs, and Inequality 1.59 is not

satisfied, then Microsoft is not an optimal policy

Proof. For Case 1, Notice that by Equation 1.56 and Theorem 1.3, Ψ∗={Microsoft}.

For Case 2, Notice that by Equation 1.57 and given Equation 1.58, Microsoft∈Ψ∗.

Notice that Microsoft is the only element if Equation 1.58 is strict.

The other cases trivially follow.

Notice that φu can be used as a weapon to harm hackers. In order for Microsoft’s

new policy to be effective under medium search costs, the optimal extended service fee

and cost of installing the new version are interdependent. The first way for Microsoft

to maximize worker welfare is to pick a very large support fee, i.e. high exploitation

costs. This prices the hacker out of the market, while also allowing for the workers to

not have to pay to install updates or update their software version since the hacker

is priced out of the exploitation market. However, under low exploitation costs, for

the Microsoft policy to maximize worker welfare they must choose cv such that either

Inequality 1.58 or Inequality 1.59 hold.

1.6 Conclusion

The optimal policy debate should be centered around how these policies influence

both the hacker’s and workers’ behavior63. The ease with which the hacker is able to
63As Sun Tzu said: “Know thy self, know thy enemy. A thousand battles, a thousand victories.”

53

infiltrate the network can be decreased via appropriate disclosure policies. Since the

cost of searching for Zero-Days has drastically increased over the last couple of years,

the hacker desires more disclosure to decrease his costs. The policies of Non-Disclosure

and Microsoft’s new policy both decrease hacker interference in the network as well

as increase overall worker welfare.

54

2 The User’s Guide to Solving Games via the Mod-

ular Gröbner Basis Approach

2.1 Introduction

Many economic problems are highly non-linear which, in many cases, pose significant

computational challenges. There have been many attempts to solve these problems,

but these methods require stringent simplifications of the models and do not allow

economists to solve for all equilibria of the complex models. Building off of Arnold

(2003), we have developed a tool, the Modular Groebner Basis Approach (MGBA),

which can solve for all equilibria in highly non-linear economic models via Groebner

bases.

In rough terms, a Gröbner basis is a generalization of Gaussian elimination to

polynomial systems. The idea is to “triangularize” a system of polynomial equations

symbolically, not numerically, in order to find all solutions to the initial system.

However, Gröbner basis computation can have some difficulties, that are discussed in

detail in Section 2.3.3. This paper describes the Modular Gröbner Basis Approach

(MGBA) that is able to overcome these computational obstacles to solve for the

Gröbner basis of the original system.

The following is a “triangularized” polynomial system.

0=x+z17+z4+z2+5

0=y−4z23+8z2−12

0=z7−8z4+z2−z+1

The final equation is entirely in z and thus, in this case, we can solve for all seven roots

of z. The other important fact to notice about polynomial “triangularization” is that

55

all equations, other than the final one, are linear in the remaining variables, x and y;

therefore, plugging in the roots of z, the solutions for x and y can be obtained. Given

an initial system of polynomial equations, Buchberger’s algorithm64 can be applied

to solve for the Gröbner basis of the initial system, i.e. the “triangularized” system

that has the same roots as the initial system. The beauty of a Gröbner basis is that

the “triangularized” system has the same roots as the initial polynomial system.

A perceived issue is that many economics problems may not be polynomial, but

these problems can be “polynomialized”, i.e. converted into a set of polynomial

equations. For example, suppose that the following equation containing rational

powers is included in the system of otherwise polynomial equations,

K
1
3L

2
3−Y =0

In order to “polynomialize” this equation, we must first apply the following change of

variables: K3=K and L3=L2. Then, by removing the initial equation and adjoining

the equations in 2.1, we have a system of polynomial equations.

0=KL−Y (2.1)

0=L3−L2 (2.2)

0=K3−K (2.3)

Therefore, a Gröbner basis can be found for any non-linear economic problem that

can be solved via a system of “polynomializable” equations, e.g. rational functions,

functions with rational powers, etc.

The paper is layed-out as follows: The literature review can be found in Section

2.2, followed by a formal introduction to the definitions from algebraic geometry used

within this paper in Section 2.3. Then, the core section of the paper, a description

64For more information on Buchberger’s algorithm, see Cox et al. (2007) and Section 2.3.

56

of the algorithm of the MGBA is in Section 2.4. The next two sections, Sections 2.5

and 2.6, build up examples of how to apply the MGBA. We then conclude in Section

2.7.

2.2 Literature Review

The literature describing modular Gröbner basis methods has been around since Ebert

(1983), and has focused on describing lucky primes65. Our paper builds off of the work

found in Arnold (2003), by applying high-power computing to resolve the problem of

finding lucky primes.

A growing literature has recently emerged applying techniques from algebraic ge-

ometry to economic problems. Including how to solve for all pure-strategy equilibria,

Judd et al. (2012) and Kubler et al. (2014), applying polynomial programming to

solve for generalized Nash equilibria, Couzoudis and Renner (2013), solving dynamic

quantity precommitment games, Renner (2015), and apply polynomial optimization

techniques to principal-agent problems, Renner and Schmedders (2015).

2.3 Preliminaries

In order to define a Gröbner Basis, we will begin by defining a set of notation followed

by an explanation of the solution method for finding a Gröbner basis, Buchberger’s

Algorithm. The last step is to describe intermediate coefficient swell, which is the

main computational problem facing Buchberger’s algorithm.

65For a description of lucky primes, see Appendix C.

57

2.3.1 Definitions/Notation

Let R be a ring66 and K be a field67. Then, a polynomial ring is defined as

Definition 2.1. A polynomial ring, K[x], in x over a field K is defined as the set of

polynomials in x of the form:

p0+p1x+···+pmxm

where p0,...,pm∈K.

Note that x can be a vector of variables, i.e. x≡(x0,...,xn), where xα=
∏n

i=1x
α1
1 ···xαnn

for any multi-index α=(α1,...,αn). Next we define a polynomial ideal.

Definition 2.2. An ideal, I, is a subset of elements of ring R that forms an additive

group68 s.t. ∀x∈R and y∈I, then xy∈I and yx∈I.

For simplicity69, let C[x] denote the multivariate polynomial ring over the field of

complex numbers.

Definition 2.3. A subset I⊂C[x] is an ideal if it satisfies:

1. 0∈I

2. If f,g∈I, then f+g∈I

3. If f∈I and g∈C[x], then f ·g∈I
66A ring, R, is a set S together with two binary operators + and ∗ satisfying the following

conditions: 1) Additive associativity, 2) Additive commutability, 3) Additive identity, 4) Additive
inverse, 5) Multiplicative distributivity, 6) Multiplicative associativity.

67A field, K, is a ring, R, that also satisfies the following conditions: 1) Multiplicative commuta-
tivity, 2) Multiplicative identity, 3) Multiplicative inverse.

68A group is a non-empty set Θ on which there is defined a bianary operation · satisfying the
following properties: 1) Closure: If a and b belong to Θ, then a·b is also in Θ, 2) Associativity:
a·(b·c)=(a·b)·c for all a,b,c∈Θ, 3) Identity: There is an element 1Θ∈Θ such that a·1Θ=1Θ ·a=a
for all a∈Θ, 4) Inverse: If a∈Θ, then there exists an element a−1∈Θ such that a·a−1=a−1 ·a=1.

69Economic problems tend to live within the set of complex numbers.

58

The type of ideal we are concerned with are those generated by a finite set of

polynomials {f1,...,fs} which is defined as:

〈f1,...,fs〉≡{f |f=g1f1+···+gsfs, gi∈C[x1,...,xn]}

Hence, we will denote the polynomial ideal I as I=〈f1,...,fs〉, where f1,...,fs, such

that fi, for each i, is drawn from the polynomial ring C[x1,...,xn].

The next step is to define the ordering of monomials followed by the formal defini-

tion of a Gröbner basis. Monomial ordering answers the question: Which monomial

should come first x3y2z or x3yz2?

Definition 2.4. Let C be the field of complex numbers. A monomial ordering on

C[x1,...,xn] is any relation � on Zn+, i.e. all weakly positive integers, s.t.:

1. � is a total ordering on Zn+

2. � is a well-ordering on Zn+

3. If α�β and γ∈Zn+, then α+γ�β+γ

Then we say xα�xβ if and only if α�β.

One example of monomial ordering is lexicographical ordering. Let α=(α1,...,αn)

and β=(β1,...,βn), such that α,β∈Zn+. An ordering is lexicographical, α�lexβ if and

only if, in the difference α−β∈Zn, the left-most non-zero entry is positive. So we say

that xα�lexxβ if α�lexβ. For example, given x1�lexx2�lexx3, then x2
1�lexx1x2�lex

x1x3�lexx2
2�lexx2x3�lexx2

3.

Another example of a monomial ordering, and the main ordering used in Section

2.4, is the Degree Reverse Lexicographical ordering, or degrevlex. For degrevlex,

xα�degrevlexxβ if and only if either: (1) α1+···+αn>β1+···+βn or (2) α1+···+αn=

β1+···+βn and if there exists an i∈{1,...,n} such that αj=βj for all j>i, and

59

αi>βi. For example, given x1�degrevlexx2�degrevlexx3, then x2
1�degrevlexx1x2�degrevlex

x2
2�degrevlexx1x3�degrevlexx2x3�degrevlexx2

3.

2.3.2 Gröbner Basis Introduction

Let C[x1,...,xn] be the polynomial ring over the complex numbers, � be a mono-

mial ordering, and I=〈f1,...,fs〉 be a polynomial ideal for fi∈C[x1,...,xn] for all

i∈{1,...,s}. First, we provide a few key polynomial definitions.

Definition 2.5. Let f≡p0+p1x+···+pmxm be any polynomial, then we have the

following terms:

1. LC(f) is the leading coefficient of f , i.e. pm.

2. LM(f) is the leading monomial70 of f , i.e. xm.

3. LT (f) denote the leading term of f , i.e. pmx
m.

Notice that each term is determined by the monomial ordering on f .

Definition 2.6. Let a monomial ordering on C[x1,...,xn] be fixed. If I=〈f1,...,fs〉 is

a polynomial ideal over C[x1,...,xn], then a finite subset G={g1,...,gs}⊂K[x1,...,xn]

is a Gröbner basis71 if

〈LT (g1),...,LT (gs)〉=〈LT (f1),...,LT (fs)〉.

The next step is to setup all of the terms required to define Buchberger’s algo-

rithm, i.e. an algorithm used to solve for the Gröbner basis of a given polynomial

ideal I. In order to solve Buchberger’s algorithm, we define an S-polynomial of any

two polynomials f and g, denoted as S(f,g). Let f,g∈C[x1,...,xn] be non-zero poly-

nomials, and let α be the powers of the LT (f) and β be the powers of the LT (g).

70This is also known as a leading power product.
71Notice that the Gröbner basis is a monomial ideal.

60

Then define γ=(γ1,...,γn), where γi≡max(αi,βi) for all i∈{1,...,n}. We call xγ the

least common multiple of LM(f) and LM(g), written as xγ=LCM(LM(f),LM(g)).

Definition 2.7. The S-polynomial of f and g is the combination:

S(f,g)=
xγ

LT (f)
f− xγ

LT (g)
g

Recall that, for every pair of polynomials (f0,f1) s.t. f1 6=0, polynomial division

provides a quotient Q and a remainder R s.t. f0=f1Q+R and either R=0 or the

degree of R is less than the degree of f1, i.e. deg(R)<deg(f1). Moreover, (Q,R) is

the unique pair of polynomials having this property, and the process of obtaining the

uniquely defined polynomials Q and R from f0 and f1 is called Euclidean division.

In order to determine if a Gröbner basis G has been obtained, we must first define

the term “the remainder on division of a polynomial by a list of polynomials”. Let f̂G

be the remainder on division of f by the list of polynomials G={g1,...,gs}, meaning

that f is divided, in some order, by each element of G.

Definition 2.8. Buchberger’s Criterion: Let I be a polynomial ideal. Then a

basis G={g1,...,gs} is a Gröbner basis for I iff for all pairs i 6=j, the remainder on

division of S(gi,gj) by G is zero.

Let I=〈f1,...,fs〉6=〈0〉 be a polynomial ideal. Then I has a Gröbner basis and it

can be constructed in a finite number of steps72.

Buchberger’s Algorithm73: Let F={f1,...,fs} be a set of polynomials defining74

I 6={0}. For each pair of polynomials fi,fj∈F , calculate S(fi,fj) and divide it by

the polynomials in F obtaining ŜF . If ŜF 6=0, add ŜF to F , and start again with

F
′
=F∪{ŜF}. Repeat until all S-polynomials of the polynomials in F

′
have remainder

0 after division by F
′
.

72Computational Problem: If it does not reduce to a zero dimensional variety, then we must worry
about witness sets (this is for later research using a computer algebra language called Bertini.).

73For more information on Buchberger’s algorithm, see Cox et al. (2007).
74I.e. I=〈f1,...,fs〉.

61

2.3.3 Intermediate Coefficient Swell

The major obstacle that the algorithm in Section 2.4 overcomes in Gröbner basis

computations is called intermediate coefficient swell. During the computation of

Buchberger’s algorithm, many intermediate polynomial are computed. In some of

these intermediate polynomials, the coefficients that are computed explode in length.

This is called intermediate coefficient swell.

For example, consider the following quadratic system of polynomials75 over the

variables x0, x1,..., x8.

f0≡x0+2x1+2x2+2x3+2x4+2x5+2x6+2x7+2x8−1

f1≡2x1x8+2x0x7+2x1x6+2x2x5+2x34−x7

f2≡2x2x8+2x1x7+2x0x6+2x1x5+2x2x4+x2
3−x6

f3≡2x3x8+2x2x7+2x1x6+2x0x5+2x1x4+2x2x3−x5

f4≡2x4x8+2x3x7+2x2x6+2x1x5+2x0x4+2x1x3+x2
2−x4

f5≡2x5x8+2x4x7+2x3x6+2x2x5+2x1x4+2x0x3+2x1x2−x3

f6≡2x6x8+2x5x7+2x4x6+2x3x5+2x2x4+2x1x3+2x0x2+x2
1−x2

f7≡2x7x8+2x6x7+2x5x6+2x4x5+2x3x4+2x2x3+2x1x2+2x0x1−x1

f8≡x2
0+2x2

1+2x2
2+2x2

3+2x2
4+2x2

5+2x2
6+2x2

7+2x2
8−x0

In order for this system of quadratic polynomials to be a polynomial ideal, it must

satisfy the conditions in Definition 2.3. Let I≡〈f0,f1,f2,f3,f4,f5,f6,f7,f8〉.

1. Notice that if x0=x1=···=x8=0, then f8=0, and thus 0∈I.

2. Since 0,1∈C[x0,...,x8], then notice that for any f,g∈I, 1·f+1·g+0·
∑

h∈I{f,g}h

is an element in I.

75This is known as Katsura 8 from physics to describe the random Ising model, See Katsura
(1986).

62

3. Again, by the definition of the set generated by I, notice that if f∈I and

g∈C[x0,...,x8]. Then, since 0∈C, then f ·g+0·
∑

h∈I\{f}∈I.

Therefore, I≡〈f0,f1,f2,f3,f4,f5,f6,f7,f8〉 is a polynomial ideal.

Notice that no polynomial in I has a coefficient greater than two, and there is no

term that is of a power larger than quadratic. However, while computing one of the

S-polynomials in Buchberger’s algorithm, the following polynomial is produced:

(667943...)x3x
2
4x

2
5x

2
7x8+...

Where the coefficient contains roughly 55,000 digits, causing the computation to

slowdown and eventually to fail. Notice that there are no large coefficients or pow-

ers within the original ideal I that would indicate that the coefficients within the

intermediate steps of triangularization of the polynomials would explode in size.

Due to intermediate coefficient swell, directly computing the Gröbner basis, G,

of the system F is not possible, so we present the MGBA, and give a few economic

examples of how to use the algorithm.

2.4 The Theory of MGBA

This section presents the Modular Gröbner Basis Approach (or MGBA), which is

a computationally efficient method of eliminating intermediate coefficient swell as a

problem faced when trying to compute a Gröbner basis via techniques from number

theory76. We build up the algorithm by first discussing the three steps of the algo-

rithm, and then present how the MGBA overcomes the intermediate coefficient swell

problem77.

The MGBA can be broken into three distinct steps, as seen in Figure 2.1. Given

76Mostly from modular arithmetic.
77In Appendix C we define “Lucky Primes” and discuss how to feasibly overcome the computa-

tional issues surrounding them.

63

Figure 2.1: MGBA

an initial system of polynomial equations F , thus initial ideal I=〈f1,...,fs〉, and a

set of primes P={p1,...,pm}, the first step78 is to compute the coefficients modulo a

prime p. The second step79 is to then compute the modular Gröbner basis, denoted as

G(mod p), of the system F (mod p). The final step80 is to use the Chinese Remainder

Theorem81 (CRT) to lift a set of modular Gröbner bases, given a set of prime numbers,

and check whether we have obtained the correct solution G.

In order to apply modular arithmetic, let K[x1,...,xn]=Z[x1,...,xn] be the polyno-

mial ring over the integers82 and given an initial polynomial system F⊂K[x1,...,xn],

the monomial ordering used is degrevlex, and a set of primes P , then we can apply

the MGBA to solve for the Gröbner basis G.

78The vertical lines on the left-hand side of Figure 2.1.
79The lower horizontal lines of Figure 2.1.
80The vertical lines on the right-hand side of Figure 2.1.
81Arnold (2003) also describes via p-Adic methods, see her paper for more details.
82Many economic problems can be converted into such a form, for example see Equations 2.20-

2.22.

64

2.4.1 Polynomial System Mod p

The first goal is to transform the initial set of polynomials, F , into F (mod pi), denoted

as Fpi , i.e. the set such that the coefficients are elements of the field83 Kpi=Zpi instead

of K, for all pi∈P .

Let’s examine the following example system F≡{f1, f2, f3}.

f1≡3245xy+476z5−z

f2≡436x−56z2−z+89

f3≡56z9+z5−78

Let p=29, then to compute F29, we must compute every coefficient in fi modulo

29 for all i∈{1,2,3}. For example, the first coefficient in f2 is 436 which is congruent

to 1 modulo 29. Therefore, the first coefficient in f2,29 is 1. Then computing the other

coefficients in F29, we obtain

f29,1≡26xy+12z5+28z

f29,2≡x+2z2+28z+2

f29,3≡27z9+z5+9

Let Φ≡{Fp1 ,...,Fpm} be the set of modular initial polynomial systems for each

pi∈P . Notice that computing Φ is easy to parallelize, i.e. we can compute each Fpi

separately.

83Let p 6=0 be an integer. We say that two integers a and b are congruent modulo p if there is an
integer k s.t. a−b=kp, and in this case we write

a≡b(mod p).

65

2.4.2 Modular Gröbner Basis

The next stage of the algorithm is to compute the modular Gröbner basis Gpi for each

Fpi in Φ, creating a set of modular Gröbner bases Γ={Gp1 ,...,Gpm}. The benefit of

this modular approach is that there is no possibility of intermediate coefficient swell.

Now we can simply apply Buchberger’s algorithm84 to compute Gpi for each pi∈P .

To continue with the example from above, we obtain G29:

g29,1≡x+2z2−z+2

g29,2≡−y−4z8−14z7−3z6−2z5+4z4+8z3−8z−4

g29,3≡z9+14z5+10

Again, notice that finding the modular Gröbner basis for each Fpi∈Φ is also trivial

to parallelize.

2.4.3 Lifting/Checking to the Solution

In this section, we will define how to lift the elements of Γ to find a potential solution,

then how to check to see if the lifted potential solution is a Gröbner basis of the initial

set F . We will first define how coefficients are lifted via the Chinese Remainder

Theorem (CRT), followed by an example.

Chinese Remainder Theorem85 (CRT): Let p and q be two relatively prime odd

integers. For every system of simultaneous congruences:

x≡a(mod p)

x≡b(mod q)

84Using degrevlex as the monomial ordering.
85Notice that this definition can easily be extended to the simultaneous congruences of more than

two modular equations. For a formal definition of the CRT algorithm see Appendix B.

66

There exists a unique solution x̄ modulo pq, i.e. x̄≡c(mod pq), where −pq
2
≤x̄≤ pq

2
.

Given the set of prime numbers P , the goal of the CRT is to lift the coefficients

of a given subset of modular Gröbner bases. Let Ω be a subset of the set of modular

Gröbner bases for each pi∈P , i.e. Ω⊂Γ≡{G(mod p1),G(mod p2),...,G(mod pm)}.

Then, lifting all of the coefficients of gpi,j over all primes contained in Ω, we create a

potential solution ĜΩ.

As an example, suppose that we have Ω≡{G5,G7,G11,G13}⊂Γ such that

g5,1≡4x5+3x+1

g7,1≡3x5+x+6

g11,1≡9x5+7x+4

g13,1≡8x5+6x+11

By applying the CRT, we notice that the coefficient for x5 modulo 5,005 is -2,124.

Then, computing the other coefficients, we have the following polynomial gΩ,1∈ĜΩ:

gΩ,1≡−2124x5−202x+1896

Now, returning to the example in Section 2.4.1, if we lift the modular Gröbner

bases until the coefficients are in the integers86, then we obtain a ĜΩ, for some Ω,

defined in Equations 2.4-2.6.

86I.e. the coefficients are no longer changing as the lifting continues.

67

ĝΩ,1≡436x−56z2−z+89 (2.4)

ĝΩ,2≡26445714624043051560485490998640640y−1985952505752215348295327138447360z8

−12418033817859479908323464035958784z7−2934495342751565823035011630104576z6

−19683402043691824036031308706611200z5−4347725642266959813613929526984704z4

−1224578064592983931940596306935808z3−6887910787449400704994627349905408z2

−1823206017166538736387829356560384z−10914300965461252214430964371161088

(2.5)

ĝΩ,3≡56z9+z5−78 (2.6)

After every lifting, a ĜΩ, for the given Ω, is obtained. Notice that the creation of

ĜΩ is independent of the creation of a ĜΩ′ , for some Ω
′ 6=Ω. Therefore, the CRT step

of the algorithm can also be computed in parallel.

The last step is to check if ĜΩ is the Gröbner basis, G, of the initial system of

polynomial equations F .

Theorem 2.1. Let ĜΩ be a set of polynomials such that LM(ĜΩ)=LM(Gpi) for all

pi that are contained in Ω, ĜΩ is a Gröbner basis for the ideal that it generates,
〈
ĜΩ

〉
,

and I⊆
〈
ĜΩ

〉
. Then I=

〈
ĜΩ

〉
.

Proof. See Theorem 7.1 in Arnold (2003).

Notice that, since only I⊆
〈
ĜΩ

〉
is required, and we do not have to test the inverse

set containment, the computation is simplified. Showing the inverse containment,

I⊇
〈
ĜΩ

〉
, “is as difficult a problem as computing a Gröbner basis for I,” Arnold

(2003). Another noteworthy aspect of the MGBA is that P is not mentioned in

Theorem 2.1. The algorithm is able to solve for the Gröbner basis so long as there

exists a set of lucky primes. Since, given a large enough set of primes P , and enough

68

computing ability, we do not need to solve for lucky primes, hence more discussion of

lucky primes can be found in Appendix C.

Since we have created a large set of potential Gröbner bases, each can be checked

separately, and thus this last step is also ideal for a parallel environment. Hence the

entire algorithm can be paralellized.

2.5 Example 1: Duopoly Model

The first example we discuss is a Bertrand pricing game with two firms and three

types of consumers. This is a pedagogical example given to illustrate the various

steps that are needed to transform an economic problem into a system of polynomial

equations such that the MGBA can be applied to find all pure-strategy Nash equilibria

in a single game with continuous strategies. We will begin by setting up the game,

followed by defining demand and production, then we transform the equations into a

system of polynomial equations F , and concluding by applying the MGBA to solve

the game.

Game Setup: Following the typical setup of a Bertrand duopoly game, the two

firms, X and Y , simultaneously choose their prices in order to maximize their profits

and face the same marginal cost87 m. However, instead of the typical setup of a

representative agent, let there be three types of consumers, N={1,2,3}, and let the

two goods be imperfect substitutes, denoted x and y, that are produced by firms X

and Y , respectively. Then denote the price of x (y) as px (py).

Demand: Consumers of type 1 and 3 both have linear demand and only want to

consume good x and y, respectively. Then Consumer 1’s demand for goods x and y

87This is not a requirement to use MGBA, but is used as a simplifying assumption.

69

are

D1
x(px,py)=A−px (2.7)

D1
y(px,py)=0 (2.8)

While Consumer 3’s demand functions are

D3
x(px,py)=0 (2.9)

D3
y(px,py)=A−py (2.10)

For type 2 consumers, the two goods are imperfect substitutes with a constant

elasticity of substitution between the two goods, (σ), and a constant elasticity of

demand for the composite good, (γ). Also, let n be a constant. Thus, the demand

functions for this consumer type are given by

D2
x(px,py)=np−σx

(
p1−σ
x +p1−σ

y

) γ−σ
σ−1 (2.11)

D2
y(px,py)=np−σy

(
p1−σ
x +p1−σ

y

) γ−σ
σ−1 (2.12)

Therefore, the total demand for each good are defined as

Dx(px,py)=D1
x(px,py)+D2

x(px,py)+D3
x(px,py) (2.13)

Dy(px,py)=D1
y(px,py)+D2

y(px,py)+D3
y(px,py) (2.14)

Production: Now we define the firms’ problems. First we assume that m is the

unit cost of production for both firms. Therefore, the profit to firm X is

Πx(px,py)=(px−m)Dx(px,py) (2.15)

70

Similarly, the profit for firm Y is

Πy(px,py)=(py−m)Dy(px,py) (2.16)

The marginal profits for each firm are then δΠx(px,py)

δpx
and δΠy(px,py)

δpy
. The equilib-

rium prices must satisfy the necessary conditions of

δΠx(px,py)

δpx
=
δΠy(px,py)

δpy
=0 (2.17)

Polynomial Form: As a simple example, we will choose the following param-

eterization of the model88: m=1, A=50, n=2700, γ=2, and σ=3. Therefore, the

marginal profits are

Π
′

x=0=50−px+(px−1)

(
2700

p6
x

(
p−2
x +p−2

y

) 3
2

−1− 8100

p4
x

(
p−2
x +p−2

y

) 1
2

)
+

2700

p3
x

(
p−2
x +p−2

y

) 1
2

(2.18)

Π
′

y=0=50−py+(py−1)

(
2700

p6
y

(
p−2
x +p−2

y

) 3
2

−1− 8100

p4
y

(
p−2
x +p−2

y

) 1
2

)
+

2700

p3
y

(
p−2
x +p−2

y

) 1
2

(2.19)

The solutions of the game are defined as the solutions of Equations 2.18 and

2.19; however, to apply the MGBA all of the equations must be in polynomial form.

Therefore, the next step is to “polynomialize” these equations.

Define Z=
(
p−2
x +p−2

y

) 1
2 . Then, by squaring both sides we obtain

0=Z2−
(
p−2
x +p−2

y

)
Note that this is still not polynomial, but if we multiply through by p2

xp
2
y, then it is

88For this to be a tractable example, the parameters of γ and σ must be rational numbers.
Otherwise, the marginal profits can not be converted into polynomials. Notice that m, A, and n
must be elements of a field.

71

in polynomial form.

f1≡−p2
x−p2

y+Z2p2
xp

2
y (2.20)

With this definition of Z, we obtain the following marginal profits from Equations

2.18 and 2.19.

f2≡−2700+2700px+8100Z2p2
x−5400Z2p3

x+51Z3p6
x−2Z3p7

x (2.21)

f3≡−2700+2700py+8100Z2p2
y−5400Z2p3

y+51Z3p6
y−2Z3p7

y (2.22)

Now we can define our initial set of polynomial equations F as Equations 2.20,

2.21, and 2.22. Then, following the method shown in the Katsura example above,

we have our initial ideal I=〈f1,f2,f3〉. Then, given I we can compute the ideal J

generated by the Gröbner basis G. The system G has the same roots as the initial

system F . Now by applying the MGBA to the initial system F to solve for the

Gröbner basis G, we are able to obtain the solutions to the Bertrand game.

Solutions: Applying the MGBA as described in Section 2.4, we obtain all possible

solutions to the initial system of equations F . The goal is to eliminate all solutions

that are not economically relevant.

In this case there are 62 solutions, of which 44 are complex and 18 are real. Nine

of the real solutions contain negative values, which are not feasible prices. Thus, there

are nine candidates for equilibria. Checking the second-order conditions of the firms’

optimization problems eliminates another five solutions. Lastly, checking for global

optimality, we observe there are two Bertrand equilibria.

(px,py)=(2.168, 25.157) (2.23)

(px,py)=(25.157, 2.168) (2.24)

Comments: In general, when can Bertrand duopoly games be solved as a system

72

of polynomial equations, i.e. via the MGBA? Notice that the answer is derived by

the form of aggregate demand, Di, for each firm and the first order condition of each

aggregate demand function, δDi
δpi

.

To be more precise, in order to solve for the equilibrium set of prices, the necessary

condition of

δΠi

δpi
=(1−m)Di+(pi−m)

δDi

δpi
=0 (2.25)

must be satisfied for each firm. Notice that, for each firm i∈{X,Y }, the necessary

condition takes the form of a sum of two terms with a polynomial times the aggregate

demand function, Di, and the first order condition of Di in terms of pi.

The first case in which MGBA can be applied to Bertrand duopoly games89 is

when Di and δΠi
δpi

, for all i, are “polynomializable”. A function is “polynomializable”

if there exists a change of variables such that the original function can be replaced

by a system of polynomials, see Equations 2.20-2.22 as an example.

The other case in which the MGBA can be applied is when Di and δΠi
δpi

, for all

i, can be approximated via polynomials90. This can be reasonably applied to many

Bertrand systems.

2.6 Example 2: Manifold Dynamic Programming

Now to present a novel all-solution technique for dynamic games and dynamic general

equilibrium models, a manifold approach to dynamic programming. I will first discuss

the conventional setup to dynamic programming, followed by the manifold dynamic

programming approach via a simple growth example, and concluding with a discussion

of complexity reduction for the algorithm.

Conventional DP: Let k0 be the current state and k be the next period’s state.

The payoff function of the state variables is U(k0,k), and the value function for the

89Notice that there is no requirement that there need be only two firms, this solution technique
could be applied to models with a larger number of firms.

90E.g. Chebyshev polynomials.

73

next period is Vold(k) while Vnew(k) i the value function for today.

Given this notation, the Bellman equation is

Vnew(k0)=max
k

U(k0,k)+βVold(k) (2.26)

Where the objective function is U(k0,k)+βVold(k), and the choice variable is k.

Manifold DP Approach: In order to solve a dynamic programming problem we

will first create an implicit expression for the value function, followed by describing

the Bellman equation and creating the system of equations that can be solved via the

MGBA.

The first step is to create an implicit expression for the value function tomorrow

valold=ImpVold(v,k) (2.27)

Where v=V (k) if and only if valold=0. The Bellman equation for the implicitly

defined Vold can now be defined as

max
v,k

U(k0,k)+βv

s.t. ImpVold(v,k)=0

(2.28)

Notice that the objective function is now U(k0,k)+βv, with choice variable of v

and k, given the constraint ImpVold(v,k)=0. Therefore, the Lagrangian is

L=U(k0,k)+βv+λImpVold(v,k) (2.29)

74

With the following first-order conditions

Lk=Uk(k0,k)+λImpVold,k(v,k) (2.30)

Lv=β+λImpVold,v(v,k) (2.31)

The new value function, valnew, can now be defined as

valnew=vnew−vβ−U(k0,k) (2.32)

Where vnew=Vnew(k0) if and only if valnew=0.

Collecting all of the equations that define the solution to the Bellman equation at

a typical k0, we obtain

valold=ImpVold(v,k) (2.33)

Lk=Uk(k0,k)+λImpVold,k(v,k) (2.34)

Lv=β+λImpVold,v(v,k) (2.35)

valnew=vnew−vβ−U(k0,k) (2.36)

Simple Growth Example: In order to show how to apply a manifold approach

to dynamic games and dynamic general equilibrium problems, we will describe how

to convert a simple growth example into a system of equations that can be solved via

the MGBA. First we specify the production function, utility function, and discount

factors, then we solve for the corresponding equations to Equations 2.33-2.36.

To set up the model, we will need to describe both a production function and

a utility function, as well as giving values to the parameters of the model, i.e. the

depreciation rate, δ, and the discount rate, β. First, we describe the firm problem,

then the household problem. Let the production function be f(k)=(1−δ)k+k
1
3 ,

where δ= 1
5
. Then, let the utility function be u(c)=−1

c
and β= 9

10
.

75

Now we can specify the value and payoff functions. Let the initial guess be

Vold(k)=−k−2 (2.37)

ImpVold(v,k)=v3k+1 (2.38)

U(k0,k)=u(f(k0)−k)=
−1

k
1
3− k

5

(2.39)

valnew(k)=v3k+1 (2.40)

By computing Equations 2.33-2.36 for this problem, we obtain

valold=1+kv3 (2.41)

Lk=
−1(

k
1
3
0 −k+ 4

5
k0

)2 +v3λ (2.42)

Lk=
9

10
+3kv2λ (2.43)

valnew=vnew−
9

10
v+

−1

k
1
3
0 −k+ 4

5
k0

(2.44)

In order to apply the MGBA, we must first “polynomialize” the system, yielding

the following system of equations.

0=k0−K3
0 (2.45)

valold=1+kv3 (2.46)

Lk=−50−45kv+45K0v+36K3
0v+50kvnew−50K0vnew−40K3

0vnew (2.47)

Lv=3
(
3+10kv2λ

)
(2.48)

valnew=−25+25k2v3λ−50kK0v
3λ+25K2

0v
3λ−40kK3

0v
3λ+40k4

0v
3λ+16K6

0v
3λ

(2.49)

Notice that this is a system with four unknowns, (λ, k, v, vnew), and one parameter,

k0.

76

A Gröbner basis of this system yields a triangularization of the system defined

in Equations 2.45-2.49, and, most importantly, the first polynomial will involve vnew

and k0. This then gives an implicit function solution for vnew, today’s value, in terms

of k0, today’s capital. Therefore, we feed in an implicit function for tomorrow’s value

function, and get out an implicit definition of today’s value function.

To solve via value function iteration, we back up in time, so the “tomorrow” value

is the solution to the last iteration

0=2196−7200k+25200k2−50400k3+63000k4−50400k5+25200k6−7200k7

+900k8−
(

2800−19200k+76800k2−227200k3+496800k4−792000k5

+924000k6−792000k7+495000k8−220000k9+66000k10−12000k11

+1000k12

)
v+

(
228−2400k+8400k2−16800k3+21000k4−16800k5+8400k6

−2400k7+300k8

)
v2+

(
30−120k+180k2−120k3+30k4

)
v3+v4

(2.50)

0=20
(
−1−k+2k0−k2

0

)
+2kvλ (2.51)

0=
9

10
+k2λ (2.52)

0=10
(
−1−k+2k0−k2

0

)2− 9

10
v+vnew (2.53)

Now we compute the Gröbner basis again to obtain the new value function implic-

itly expressed in terms of k0. The solution explodes very quickly. The complexity of

the value function is increasing rapidly. Could it be that we have to give up on value

function iteration? No. We will discuss how to reduce the computational complexity

in the next section.

Complexity Reduction: The value function we have computed holds for all k,

even for negative, very large, and complex k’s. We care only about k in a small range

of economically reasonable values. Let’s study the polynomial valnew: It is degree 14

77

in v, and the coefficients are polynomials in k.

Let’s plot the coefficient functions over the relevant range of capital.

Figure 2.2: Coefficient Functions

Notice that in Figure 2.2 the functions are rather well behaved, thus implying that

we can approximate them with low degree polynomials over this relevant range. By

applying Chebyshev polynomial approximation of the high-degree coefficient functions

in k, we can now decrease the highest power of vnew in valnew from a 52 degree

polynomial to an 11 degree polynomial. If we do this for each power of vnew in valnew,

then we get an approximation of valnew, which can now be the old value function

manifold for the next iteration of value function iteration.

2.7 Conclusions

Many problems in economics focus on solving for an unknown function. Polynomial

methods vastly increase the flexibility of the available models economists can use.

Advances in algorithms and hardware make possible problems that were intractable

78

20 years ago. With the MGBA implemented both in Mathematica and in high-power

computing environments, we can solve economics problems vastly more realistic than

currently possible. Some potential applications and extensions of the MGBA are:

economics of imperfect competition, competition analysis, dynamic games, equilib-

rium problems with equilibrium conditions, and financial markets. This work will

also be of interest to the general community that uses Gröbner basis methods to

solve polynomial systems91.

91E.g. See the physics example in Section 2.3.3.

79

3 The Compression Value

3.1 Introduction

The field of cooperative game theory is centered on analyzing cooperation between

different coalitions of players, and how to distribute payments across these players.

There are two types of cooperative games: Transferable Utility (TU) games and Non-

Transferable Utility (NTU) games. A game in which the players within each coalition

are able to divide a single number, such as money, that can be interpreted as the pay-

off or utility, among themselves in a mutually agreeable manner. NTU games, on the

other hand, are described by a set of pay-off, or utility, vectors that are indexed by

the members of the coalition for each of the available coalitions.

The theory of TU and NTU games have a long and storied history in economics.

I will be focusing on one of the most prevalent solution techniques found in both the

theoretical and applied cooperative game theory literature, the Shapley value. The

Shapley value was introduced in Shapley (1953) for TU games to provide a solution

technique that was characterized by a reasonable set of axioms92. The two main

arguments that the Shapley value makes are that each player should be paid according

to their marginal contribution and that each player’s pay-off is not determined by their

name. The NTU Shapley value, described in Shapley (1969), attempts to apply an

axiomatic approach similar to that of TU games to NTU games93.

As computational abilities have drastically increased over the last twenty years,

however the field of cooperative games has fallen behind. That being said, there

has been considerable work done to develop efficient computational methods to solve

TU games. Chalkiadakis et al. (2012) describes the two major issues of identifying

92The axioms that characterize the Shapley value are: 1) Symmetry 2) Null Player Condition 3)
Efficiency 4) Additivity. See Shapley (1953) for more information.

93The set of axioms for the NTU Shapley value are: 1) Non-Emptiness 2) Efficiency 3) Conditional
Additivity 4) Unanimity 5) Scale Covariance 6) IIA 7) Closure Invariance. See Aumann (1985b).

80

compact representations for games and efficiently computing solution concepts for

these games. They lay out the major solution concepts for TU games, and build up

a framework for many games, but the difficulty of solving for many NTU solution

concepts means that computational techniques are scarce.

Within the large applied theory literature that uses the Shapley value, many

simplifications on the models must be made to allow for computational techniques to

be feasibly applied. The first common simplifying assumption is to use a TU game.

For example, van Campen et al. (2017) discusses both the computational problems

facing the TU Shapley value and the need for “better approximations for the Shapley

value . . . in the ranking procedure of individuals in networks of a terrorist, insurgent

or criminal nature.”

CoinJoin games have also used the Shapley value to describe how coalitions are

formed within the exchange of cryptocurrencies. For example, Arce and Böhme

(2018) build an NTU game to describe the price that cryptocurrency users place

on anonymity. In order to solve for the Shapley value of the given NTU game, they

enforce that the optimal Pareto weights of the NTU Shapley value are egalitarian94.

In this chapter of the dissertation, I discuss a new solution technique, the compression

value, that is able to approximate the NTU Shapley value to allow for more complex

models to be built to appropriately reflect CoinJoin games as well as coalition forma-

tion within criminal circuits such as hacking rings and terrorist groups.

In order to create an algorithm to solve for the NTU Shapley value, Andersen

and Lind (1999) introduce a simplex approach to solve for the NTU Shapley value

for games that are defined by a multiple objective linear program, MOLP. While this

can be effective as for MOLP games or games that can be closely approximated by

such a game, there still does not exist a general solution algorithm.

To advance the field of computational cooperative game theory and move toward

94I.e. λ∗=(1,...,1).

81

a general solution algorithm for the NTU Shapley value, I begin by defining a new

solution technique, the compression value, and present an efficient algorithm to solve

for the compression value. Lastly, I describe how the compression value can be used

to approximate the NTU Shapley value.

The compression value of an NTU game is the linearly scaled TU Shapley value

of the TU representation of the original game. This solution technique satisfies a

reasonable set of properties that are discussed in Section 3.3.1. The compression value

allows for an efficient algorithm to solve for this solution technique. The algorithm

to solve for the compression value that is presented in this paper also presents an

algorithm that is able to approximate the NTU Shapley value. The compression

value has the primary benefit of giving a good approximation of the NTU Shapley

value if the vector of Pareto weights associated with the NTU Shapley value is near

the initial guess.

The paper begins with a brief introduction to TU and NTU games and the notation

used in this paper within Section 3.2, followed by the main result, found in Definition

3.3, of this paper, the definition of the compression value and the algorithm used to

solve for it, in Section 3.3. I then present a descriptive example of the compression

value in Section 3.4, then I conclude in Section 3.5.

3.2 Preliminaries

A TU coalitional game is the tuple G=(N,v), where N={1,...,n} is the set of players

and v(·) is a characteristic function that assigns a real number, v(S), to each coalition

S⊂N . In any characteristic function, the empty set of players, ∅ is assumed to give

a zero payoff, i.e. v(∅)=0.

An NTU coalitional game is defined as the tuple Γ=(N,V), where N={1,...,n}

is still the set of players and V (·) is a function that assigns a subset V (S) of RS to

each coalition S⊂N , such that:

82

Assumption 3.1. For each coalition S, the set V (S) is closed, convex, and compre-

hensive. Moreover, 0∈V (S) and V (S)∩RS
+ is bounded.

Assumption 3.2. V (N) is smooth95.

Assumption 3.3. If x,y∈δV (N) and x≥y, then x=y.

Assumptions 3.1 and 3.2 are standard properties. Assumption 3.3 says that the

frontier of the grand coalition payoff-set contains only strict Pareto-optima.

The TU Shapley value96, φ(v), of a TU game v on N attempts to provide a “fair”

distribution of payments to each player in the sense that each player is rewarded

according to their contribution. This payoff distribution is defined as the vector,

φ(v)∈RN , such that the ith coordinate of the vector is given by

φi(v)≡
∑

S⊆N\{i}

|S|!(|N |−|S|−1)!

|N |!
(v(S∪{i})−v(S)) (3.1)

The TU Shapley value provides a unique solution for each game G that satisfies a

desirable set of properties. These properties have been studied in great detail in the

literature, e.g. see Shapley (1953), Andersen and Lind (1999), etc. For example, if

v is superadditive97, then the TU Shapley value must be individually rational in the

sense that φi(v)≥v({i}) for each player i in N .

Due to the nice properties exhibited by the TU Shapley value, there was a desire to

find an appropriate NTU counterpart. Thus, the NTU Shapley value was introduced

in Shapley (1969). The NTU Shapley value is defined as follows.

95A convex set V (N) in RN is said to be smooth if it has a unique supporting hyperplane at each
point of its frontier, δV .

96See Shapley (1953).
97A characteristic function v is superadditive if and only if, for every pair of coalitions S,T⊂N ,

if S∩T=∅, then v(S∩T)≥v(S)+v(T).

83

Definition 3.1. Let λ∈RN
++ and let S⊂N , then define

vλ(S)≡sup

{∑
i∈S

λixi|x∈V (S)

}
(3.2)

Then, a vector x∈V (N) is an NTU Shapley value of V , Φ(V,λ), if there exists a

vector λ∈RN
++ such that λixi=φi(v

λ) for all i∈N .

Since Φ(V,λ) is equivalent to a TU Shapley value for the characteristic function

vλ over N , then it is reasonable to assume that the NTU Shapley value may be a

“fair” distribution of payoffs for the game Γ. For more on this see Chapter 9.9 of

Myerson (1997). Given Assumption 3.1, then the NTU Shapley value exists, but is

not necessarily unique. Similar to many numerical root finding methods, the com-

pression value algorithm described in the following section, Section 3.3, provides an

approximation of one of the NTU Shapley values98.

3.3 Compression Value

The compression value is a solution technique that satisfies a reasonable set of proper-

ties, that will be discussed later in this section, as well as providing an approximation

of the NTU Shapley value that is easy to compute. This section begins with a defi-

nition of the compression value and a description of the algorithm. I then prove the

existence of the compression value under a certain set of assumptions, and discuss

the number of solutions that exist. Following this, I present a discussion of some of

the properties satisfied by the compression value in Section 3.3.1.

In order to define the compression value and establish the algorithm to solve for

this solution technique, I will first define the Egalitarian TU Representation. The

Egalitarian TU Representation of an NTU game is the separating hyperplane that

98Future work is needed to examine which NTU Shapley value the compression value tends
toward, if there are multiple solutions.

84

describes the TU version of Γ=(N,V) with equal Pareto weight for each player99.

Definition 3.2. The Egalitarian TU Representation of (N,V) is ve such that for all

S⊂N

ve(S)≡sup

{∑
i∈S

eixi|x∈V (S)

}
(3.3)

Where e=(1,...,1)∈RN
+ , i.e. there are equal Pareto weights.

Now that all of the hardware in place, I will define the compression value and

describe the algorithm that can be applied to the NTU game Γ to obtain the com-

pression value that is denoted as Φ(ve,t∗).

Definition 3.3. Let Γ=(N,V) be an NTU game and ve is the Egalitarian TU Rep-

resentation of Γ. Then there exists t∗∈R+ such that t∗ ·φ(ve)∈δV where φ(ve) is

the TU Shapley value of the game (N,ve). The compression value is defined as

Φ(ve,t∗)=t∗ ·φ(ve).

The compression value is so named since it takes the TU representation Shapley

value, and “compresses”, or linearly scales, φ(ve) until it is feasible within the NTU

game. The next question to be dealt with is: Does the compression value exist, and

is it unique? In the following theorem, Theorem 3.1, I show that under Assumptions

3.1 and 3.2, the compression value exists. I also discuss when the compression value

is unique.

Theorem 3.1. Let Γ=(N,V) be an NTU game such that V satisfies Assumptions

3.1-3.2, then the compression value exists. Moreover, if V satisfies Assumption 3.3,

then there either exist one, two, or infinite compression values.

Proof. Let φ(ve) be the Shapley value of the Egalitarian TU Representation of Γ.

Then there are two cases.

99This is an initial guess of the appropriate Pareto weights. If there is a reason to assume that
the Pareto weights will not be equivalent across players, then an alternate λ̂∈RN+ should be used to
increase the accuracy of the compression value approximation.

85

1. φ(ve)∈δV , then existence is proved.

2. φ(ve) 6∈δV , then construct Φ(ve,t) as a linear function through 0 and φ(ve).

Notice that, via Assumptions 3.1-3.2, δV is a smooth, bounded, and convex

function. Since 0∈V (S), and Φ(ve,t) has at least one point, 0, that is feasible

and one point, φ(ve), that is not feasible, then there exists a t∗ such that Φ(ve,t∗)

is on the Pareto frontier.

Given a strict Pareto frontier, i.e. Assumption 3.3 holds, then there exist two cases.

1. Given 0∈V (S) for all S, but if 0 6∈δV , then Φ(ve,t) intersects δV at a single

point.

2. If 0∈δV , then 0 is a solution. If 0 is the only solution, then the proof is

complete. Otherwise, there exist two cases:

(a) If the Egalitarian TU Representation is equivalent to δV , then every ele-

ment x of the Pareto frontier is a solution100.

(b) The last case is when δV is strictly convex, 0 is not an element of the

Egalitarian TU Representation, and 0∈δV . Then either 0 is the only

solution, or Φ(ve,t) passes through the interior of V (N), thus there exists

y∈δV such that y=Φ(ve,t∗) for some t∗∈R+.

Now that the compression value has been defined and existence has been proved,

the properties of this solution technique are discussed.

100In this case, the NTU Shapley value is equivalent to the φ(ve), so computing the compression
value is not necessary.

86

3.3.1 Properties

The goal of this section is to introduce a set of properties that the compression value

satisfies101.

Non-Emptiness Notice that via Theorem 3.1, so long as V satisfies Assumptions

3.1 and 3.2, then Φ(ve,t∗) is non-empty.

Efficiency The compression value is also efficient, i.e. Φ(ve,t∗)⊂δV . Notice that

this is obtained by definition.

Closure Invariance As with efficiency, closure invariance holds by definition.

Unanimity If UT is the unanimity game on a coalition T , then Φ(ueT ,t
∗)=

{
1T
|T |

}
,

by definition of the Shapley value on the TU game.

Scale Covariance If η∈RN
+ , then the solution to Γ=(N,ηV) is ηΦ(ve,t∗), by the

affine nature of the solution.

Inessential Games If 0∈δV , then 0∈Φ(ve,t∗), by the construction of Φ(ve,t).

3.3.2 Algorithm

Now I will describe the steps of the algorithm to solve for the compression value,

Φ(ve,t∗), of Γ.

Step 1: Construct the Egalitarian TU Representation

The first step is to construct the Egalitarian TU Representation of Γ. Following

Definition 3.2, ve is obtained.

Step 2: Compute the Shapley value of ve

Since ve is a TU game, then the game G=(N,ve) has a unique Shapley value φ(ve)

that can be solved via Equation 3.1.

Step 3: Construct a linear function Φ(ve,t)

Given the points φ(ve) and 0=(0,...,0), both in R|N |, then define Φ(ve,t)≡t·φ(ve) for

t∈R+, i.e. the line in |N | dimensions through the points φ(ve) and 0.

101Future research will be spent finding a full set of axioms that identify the compression value.

87

Step 4: Solve for the optimal t∗ to obtain the compression value Φ(ve,t∗)

The last step is to set the linear function Φ(ve,t) equal to the set of strictly Pareto

optimal allocations, δV , i.e. t∗ ·φ(ve)∈δV for some t∗∈R+. Due to Assumptions

3.1-3.3, there exists a t∗, and thus a solution set denoted Φ(ve,t∗), that solves δV =

t∗ ·φ(ve). This is discussed in the following theorem.

3.4 Example

Within this section, I will show how to solve for the compression value, and discuss

the conditions under which the compression value is able to approximate the NTU

Shapley value of a classic NTU games found in the cooperative game theory literature,

the market for gloves102.

Suppose there is a pure exchange economy with three players, N={1,2,3}, and

two goods X={x,y}. Let x and y be be perfect complements, e.g. x be left gloves

and y be right gloves.

Consider the following initial endowments for a given ε∈[0,1]:

z1=(1−ε,0) (3.4)

z2=(0,1−ε) (3.5)

z3=(ε,ε) (3.6)

Now to describe the utility function for each player in N .

u1(x,y)=min{x,y} (3.7)

u2(x,y)=min{x,y} (3.8)

u3(x,y)=
x+y

2
(3.9)

102See Shafer (1980), Roth (1980), Roth (1986), Aumann (1985a), and Vidal-Puga (2008)

88

Players 1 and 2 want “matching pairs of gloves”, whereas player 3 just wants to use

the material from the gloves.

This economy can be described as an NTU game via the following characteristic

function V .

V ({1})={(x1)|x1≤0} (3.10)

V ({2})={(x2)|x2≤0} (3.11)

V ({3})={(x3)|x3≤ε} (3.12)

V ({1,2})={(x1,x2)|x1+x2≤1−ε,x1≤1−ε,x2≤1−ε} (3.13)

V ({1,3})=

{
(x1,x3)|x1+x3≤

1+ε

2
,x1≤ε,x3≤

1+ε

2

}
(3.14)

V ({2,3})=

{
(x2,x3)|x2+x3≤

1+ε

2
,x2≤ε,x3≤

1+ε

2

}
(3.15)

V ({1,2,3})={(x1,x2,x3)|x1+x2+x3≤1,x1≤1,x2≤1,x3≤1} (3.16)

The NTU Shapley value103 gives a payoff of
(

5(1−ε)
12

, 5(1−ε)
12

, 5ε+1
6

)
.

By applying the algorithm in Section 3.3, I will show that the compression value

of the game (N,V) is
(

5−3ε
4(3+ε)

, 5−3ε
4(3+ε)

, 5ε+1
2(3+ε)

)
.

Step 1: Construct the Egalitarian TU Representation

103See Shafer (1980).

89

The Egalitarian TU representation of the game is:

ve({1})=v({2})=0 (3.17)

ve({3})=ε (3.18)

ve({1,2})=1−ε (3.19)

ve({1,3})=v({2,3})=
1+ε

2
(3.20)

ve({1,2,3})=1 (3.21)

(3.22)

Step 2: Compute the Shapley value of ve

Now given (N,v), the Shapley value of the TU game is φ(ve)=
(

5−3ε
12
, 5−3ε

12
, 5ε+1

6

)
.

Step 3: Construct a linear function Φ(ve,t)

Solving for the line between the origin and φ(ve), the following is obtained.

x1(t)=
5−3ε

12
t (3.23)

x2(t)=
5−3ε

12
t (3.24)

x3(t)=
5ε+1

6
t (3.25)

Step 4: Solve for the optimal t∗ to obtain the compression value Φ(ve,t∗)

When ε=0, then φ(ve)=
(

5
12
, 5

12
, 1

6

)
, which is feasible since

∑
i∈Nφi(v

e)=1 and φi(v
e)≤

1 for all i∈N . Therefore, for ε=0, the compression value is
(

5
12
, 5

12
, 1

6

)
.

However, if ε>0, then φ(ve) is not feasible since
∑

i∈Nφi(v
e)=1+ 1

3
ε>1. Solving

90

for the line between the origin and φ(ve), the following is obtained.

x1(t)=
5−3ε

12
t (3.26)

x2(t)=
5−3ε

12
t (3.27)

x3(t)=
5ε+1

6
t (3.28)

The next goal is to find the feasible allocation, which means
∑

i∈N xi(t
∗)=1. Notice

that t∗= 3
3+ε

, implying Equations 3.26-3.28 are equivalent to

x1(t∗)=
5−3ε

4(3+ε)
(3.29)

x2(t∗)=
5−3ε

4(3+ε)
(3.30)

x3(t∗)=
5ε+1

2(3+ε)
(3.31)

Therefore, the compression value is Φ(ve,t∗)=
(

5−3ε
4(3+ε)

, 5−3ε
4(3+ε)

, 5ε+1
2(3+ε)

)
.

Approximation: The key point to be discussed is how good of an approximation

the compression value is for the NTU Shapley value. A distance measure between

the compression value and the NTU Shapley value can be obtained for this example.

||Φ(V,λ∗)−Φ(ve,t∗)||2=

√
2

(
5(1−ε)

12
− 5−3ε

4(3+ε)

)2

+

(
5ε+1

6
− 5ε+1

2(3+ε)

)2

(3.32)

Notice that when ε=0, the compression value and the Shapely value both equal(
5
12
, 5

12
, 1

6

)
since the Pareto weight vector of the NTU Shapley value is the egalitarian

solution. Hence, when the initial guess of the Pareto weights is near the NTU Shapley

value Pareto weights, λ∗, the approximation is very good.

However, as ε goes to one, the two values diverge. When ε=1, then under the

Shapley value, player 3 has full control of the game and keeps all of the “gloves” for

himself, i.e. the Shapley value is (0,0,1). However, under the compression value, the

91

solution is
(

1
8
, 1

8
, 3

4

)
. Therefore, as λ∗ moves away from e, the compression value loses

its power as an approximation of the NTU Shapley value.

3.5 Conclusion and Future Research

The compression value is a novel solution technique that has a computationally effi-

cient algorithm. The compression value can be used as an approximation of the NTU

Shapley value so long as λ∗ is near the egalitarian Pareto weights.

The goal of future research on this solution technique will both include an axiomi-

tization of the compression value, as well as, applications of the compression value

within price anonymity games104 and hacker crime rings in order to better under-

stand coalition formation. I will also continue on this work to improve the algorithm

to give a better approximation of the NTU Shapley value when the Egalitarian TU

Representation is far from λ∗.

104See Arce and Böhme (2018).

92

Bibliography

(2016). 2016 internet security threat report (istr). Technical report, Symantec.

(2016). Flipping the Economics of Attacks. Technical report, Ponemon Institute.

(2018). 2018 internet security threat report (istr). Technical report, Symantec.

Andersen, K. A. and Lind, M. (1999). Computing the ntu-shapley value of ntu-

games defined by multiple objective linear programs. International Journal of

Game Theory, 28(4):585–597.

Arce, D. and Böhme, R. (2018). Pricing anonymity. Financial Cryptography and

Data Security.

Arnold, E. (2003). Modular algorithms for computing gröbner bases. Journal of

Symbolic Computation, 35(4):403–419.

Arora, A., Nandkumar, A., and Telang, R. (2006). Does information security attack

frequency increase with vulnerability disclosure? an empiricial analysis. Informa-

tion Systems Frontiers, 8(5):350–362.

Arora, A., Telang, R., and Xu, H. (2008). Optimal policy for software vulnerability

disclosure. Management Science, 54(4):642–656.

Aumann, R. (1985a). On the non-transferable utility value: A comment on the roth-

shafer examples. Econometrica, 53:667–677.

Aumann, R. J. (1985b). An axiomization of the non-transferable utility value. Econo-

metrica, 53:599–612.

Becker, G. S. (1968). Crime and punishment: An economic approach. Springer.

93

Blume, L. and Zame, W. (1992). The algebraic geometry of competetive equilibrium.

Economic Theory and International Trade, pages 53–66.

Blume, L. and Zame, W. (1994). The algebraic geometry of perfect and sequential

equilibrium. Econometrica, 62(4):783–794.

Borkovsky, R. (2017). The timing of version releases: A dynamic duopoly model.

Quantitative Marketing and Economics, 15(3):187–239.

Borkovsky, R., Doraszelski, U., and Kryukov, Y. (2010). A user’s guide to solv-

ing dynamic stochastic games using the homotopy method. Operations Research,

58(4):1116–1132.

Borkovsky, R., Doraszelski, U., and Kryukov, Y. (2012). A dynamic quality ladder

model with entry and exit: Exploring the equilibrium correspondence using the

homotopy method. Quantitative Marketing and Economics, 10(2):197–229.

Brandes, U. and Fleischer, D. (2005). Centrality measures based on current flow.

Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS ‘05), pages

533–544.

Cerdeiro, D., Dziubinski, M., and Goyal, S. (2017). Individual security, contagion,

and network design. Journal of Economic Theory, 170:182–226.

Chalkiadakis, G., Elkind, E., and Wooldridge, M. (2012). Computational Aspects of

Cooperative Game Theory. Morgan & Claypool Publishers, Williston, VT.

Choi, J. P., Fershtman, C., and Gandal, N. (2010). Network security: Vulnerabilities

and disclosure policy. The Journal of Industrial Economics, 58(4):868–894.

Couzoudis, E. and Renner, P. (2013). Computing generalized nash equilibria by poly-

nomial programming. Mathematical Methods of Operations Research, 77(3):459–

472.

94

Cox, D., Little, J., and O’Shea, D. (2007). Ideals, Varieties, and Algorithms:

An Introduction to Computational Algebraic Geometry and Commutative Algebra.

Springer-Verlag New York, 3 edition.

Coyne, C. and Leeson, P. (2005). Who’s to protect cyberspace? Journal of Law,

Economics & Policy, 2:473–496.

Dziubinski, M. and Goyal, S. (2017). How do you defend a network? Theoretical

Economics, 12(1):331–376.

Ebert, G. (1983). Some comments on the modular approach to gröbner bases. ACM

SIGSAM Bulletin, 17:28–32.

Frei, S., Schatzmann, D., Plattner, B., and Trammell, B. (2010). Modeling the secu-

rity ecosystem – the dyanmics of (in)security. Economics of Information Security

and Privacy Chapter 6.

Goyal, P., Batra, S., and Singh, A. (2010). A literature review of security attack in

mobile ad-hoc networks. International Journal of Computer Applications, 9(12).

Goyal, S. and Vigier, A. (2014). Attack, defense and contagion in networks. Review

of Economic Studies, 81(4):1518–1542.

Grossklags, J., Johnson, B., and Christin, N. (2010). The price of uncertainty in

security games. Economics of Information Security and Privacy Chapter 2.

Hong, Y. and Neilson, W. (2018). Cybercrime and punishment: A rational victim

model. Working Paper.

Ion, I., Reeder, R., and Consolvo, S. (2015). “...no one can hack my mind”: Compar-

ing expert and non-expert security practices. Symposium on Usable Privacy and

Security (SOUPS).

95

Judd, K. (1998). Numerical Methods in Economics. MIT Press.

Judd, K., Renner, P., and Schmedders, K. (2012). Finding all pure–strategy equilibria

in games with continuous strategies. Quantitative Economics, 3(2).

Kalambe, K. and Apte, S. (2017). An exhaustive survey on security solutions in

manets. International Journal of Computer Science and Engineering, 5.

Katsura, S. (1986). Theory of spin glass by the method of the distribution function

of an effective field. Progress of Theoretical Physics Supplement, 87:139–154.

K.C., A. (2012). Software vulnerabilities: Key factors impacting on response time of

software vendors in releasing patches for software vulnerabilities. LAP LAMBERT

Academic Publishing.

Kubler, F., Renner, P., and Schmedders, K. (2014). Chapter 11 – computing all

solutions to polynomial equations in economics. Handbook of Computational Eco-

nomics, 3:599–652.

Kubler, F. and Schmedders, K. (2010a). Competitive equilibria in semi-algebraic

economies. Economic Theory and International Trade, 145(1):301–330.

Kubler, F. and Schmedders, K. (2010b). Tackling multiplicity of equilibria with

gröbner bases. Operations Research, 58(4):1037–1050.

Kuehn, A. and Mueller, M. (2016). Analyzing bug bounty programs: An institutional

perspective on the economics of software vulnerabilities. TPRC Conference Paper.

Lalar, S. (2014). Security in manet: Vulnerabilities, attacks & solutions. International

Journal of Multidisciplinary and Current Research.

Laszka, A., Zhao, M., and Grossklags, J. (2016). Banishing misaligned incentives for

validating reports in bug-bounty platforms. European Symposium on Research in

Computer Security, pages 161–178.

96

Maghsudi, S. and Hossain, E. (2016). Mulit-armed bandits with application to 5g

small cells. IEEE Wireless Communications, 23:64–73.

Myerson, R. B. (1997). Game theory - Analysis of Conflict. Harvard University Press.

Owen, G. (1972). A value for non-transferable utility games. International Journal

of Game Theory, 1:95–109.

Ozment, A. (2004). Bug auctions: Vulnerability markets reconsidered. Workshop on

the Economics of Information Security.

Png, I. P., Tang, C. Q., and Wang, Q.-H. (2006). Hackers, users, information security.

WEIS Conference Precedings.

Renner, P. (2015). Quantity precommitment and bertrand competition: A dynamic

games approach. SSRN.

Renner, P. and Schmedders, K. (2015). A polynomial optimization approach to

principal-agent problems. Econometrica, 83(2):729–769.

Rescorla, E. (2005). Is finding security holes a good idea? Security Privacy, IEEE,

3(1):14–19.

Roth, A. (1980). Values of games without side payments: some difficulties with

current concepts. Econometrica, 48:457–465.

Roth, A. (1986). The non-transferable value: a reply to aumann. Econometrica,

54:981–984.

Schanuel, S., Simon, L., and Zame, W. (1991). The algebraic geometry of games and

the tracing procedure. Game Equilibrium Models II, pages 9–43.

Shafer, W. (1980). On the existence and interpretation of value allocations. Econo-

metrica, 48:467–477.

97

Shapley, L. (1953). A value for n-person games. In Kuhn, H. and Tucker, A., editors,

Contributions to the Theory of Games II, pages 307–317. Princeton University

Press, Princeton NJ.

Shapley, L. (1969). Utility comparison and the theory of games. In Kuhn, H. and

Tucker, A., editors, La Decision, Agregation et Dynamique des Ordres de Prefer-

ence, pages 251–263. Editions du Centre de la Recherche Scientifique, Paris.

Stephenson, K. and Zelen, M. (1989). Rethinking centrality: Methods and examples.

Social Networks, 11:1–37.

van Campen, T., Hamers, H., Husslage, B., and Lindelauf, R. (2017). A new ap-

proximation method for the shapley value applied to the wtc 9/11 terrorist attack.

Social Network Analysis and Mining, 8(1).

Vidal-Puga, J. (2008). Forming coalitions and the shapley ntu value. European

Journal of Operational Research, 190:659–671.

A Mathematical Appendix

A.1 The Knife-Edge Case

The following cases satisfy cs=δD
∑

i∈I θi.

A.1.1 Non-Disclosure: Knife-Edge Case

In the the knife-edge case, cs=δD
∑

i∈I θi, which causes the expected profits of search-

ing for Zero-Days to be equal to zero, which is equivalent to the hacker’s the out-

side option. Notice that in the Non-Disclosure game, all payoffs available to the

hacker are equal zero, thus all strategies are in the best response. Since the hacker

98

is the only decision maker, the Nash equilibria of the Non-Disclosure game are

A∗nd={(ρndS+(1−ρnd)X)}∀ρnd∈[0,1].

A.1.2 Disclosure: Knife-Edge Case

In the case where the expected costs of a Zero-Day attack in the “Non-Disclosure”

branch equals the search cost, then the hacker will be indifferent between A
(1−α)∗
d =(S)

and A
(1−α)∗
d =(X). Notice that the expected value of searching for a Zero-Day under

the “Disclosure” branch is δ̂D
∑

iθi which is strictly less than δD
∑

iθi. Therefore,

searching for Zero-Days gives negative payoffs, while exiting the game yields a zero

payoff. Given that at least one worker will never update, then exploiting the N-Day

will give strictly positive payoffs, hence Aα∗d =(E)

Thus, the set {(ρd(E,S)+(1−ρd)(E,X))}ρd∈[0,1] is the best response for the hacker105.

By the same reasoning as in Section 3.2.1.1, the best response of worker i is to not

update, i.e. i∈Γnu, if θi<
cu
v+D

. Otherwise, for worker j such that θj>
cu
v+D

, updating

is optimal106. Then the Nash equilibria are

((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I)=((ρd(E,S)+(1−ρd)(E,X)),(nu)i∈Γnu ,(u)j∈Γu) ∀ρd∈[0,1]

(A.1)

A.1.3 Welfare: Knife-Edge Case

For all workers i such that107 i∈Γ∗nu, Non-Disclosure is the optimal strategy since

the hacker will always exploit any released update. Thus, the only workers that

may prefer Disclosure are the workers that have a positive probability of updating.

Disclosure is only an optimal policy so long as the following is satisfied.

105Given that there exists at least one worker that will not update, i.e. there exists a worker i
such that θi<

cu
v+D . If this were not assumed then all strategies could yield the same payoff, and any

mixed strategy over all strategies would give the same value.
106If θi=

cu
v+D , then any mixture pj∈[0,1] of Update and Not Update are all equivalent to the

worker.
107Here Γ∗nu≡{i∈I|θi< cu

v+D}.

99

α
[
(1−ρ∗dδ)

∑
i∈Γ∗nu

θi−ρ∗dδ
∑
j∈Γ∗u

θj+ξ
∗ cu
v+D

]
<(ρ∗nd−ρ∗d)δ

∑
i∈I

θi (A.2)

To analyze when Disclosure is optimal, the equation must be broken down into

cases. The first case is when both Equations A.3 and A.4 are positive or both cases

are negative.

(1−ρ∗dδ)
∑
i∈Γ∗nu

θi−ρ∗dδ
∑
j∈Γ∗u

θj+ξ
∗ cu
v+D

(A.3)

And

(ρ∗nd−ρ∗d) (A.4)

Notice that in this case, increasing α decreases the desirability of Disclosure. This

happens because Disclosure is useful for the workers as a way of decreasing the prob-

ability of a successful Zero-Day attack, since δ>δ̂.

Then when Equation A.3 is negative while Equation A.4 is positive, then the

damage done when a hacker searches exceeds the damages done when the hacker

exploits only. The hacker also has a higher probability of searching under Non-

Disclosure than under Disclosure. Therefore, Disclosure is always the optimal policy.

Lastly, if Equation A.3 is positive while Equation A.4 is negative, then the hacker

has a higher probability of searching under Disclosure than under Non-Disclosure.

While all workers pay damages from the exploitation of the Zero-Days, these damages

are exceeded by losses of the non-updating workers’ hack as well as the cost assumed

by the updating workers of cu. Hence, Non-Disclosure is optimal.

As a note, Frei et al. (2010) find that hacker behavior has not changed despite the

massive efforts by both security engineers and software vendors to find vulnerabilities,

i.e. increases in α in this model. Even though α is included in both the hacker’s profit

function and the worker’s problem, it does not show up in the optimal policy decision

except in the knife-edge case.

100

A.1.4 Microsoft Non-Disclosure Best Response: Knife-Edge Case

Given the worker strategy Γnu=I, then the hacker is indifferent between Search and

Exit. However, for any worker strategy such that Γnu⊂I, then A
(1−α)∗
M =(X) is the

best response.

A.1.5 Microsoft Disclosure Best Response: Knife-Edge Case

Given that the cost of searching is equivalent to the expected revenue if the vendor

does not release an update, then

cs>δ̂D
∑
i∈I

θi

Therefore, (S) is not in the best response for any worker action since δ>δ̂.

Given a worker strategy (Γnu,Γu,Γv), the hacker’s best response is Aα∗M =(X) if

Equation A.37 holds. However, if Equation A.38 holds, then the hacker’s best re-

sponse is Aα∗M =(E).

A.2 Continuum of Workers Disclosure Game Equilibrium

To present a clean, closed form solution for the Nash equilibria within the low search

cost case, I will present the case of a continuum of workers distributed over [0,1].

The value of worker i is now defined by the function θ :I→[0,1], where I=[0,1]. Also,

define Ω≡
{
j∈I|θ(j)≥ cu

v+D

}
As above, the first step is to derive the best response of the workers. Notice that,

again, if the hacker chooses the action (E,S), then worker i is willing to update so

long as

θ(i)>
cu

v+D
(A.5)

On the other hand, if θ(i)< cu
v+D

, then the cost of updating is too large for worker

101

i to be willing to update. Lastly, for the pivotal worker i such that θ(i)= cu
v+D

, she is

willing to mix between updating, p(i), and not, 1−p(i), for any probability p(i).

Next is to examine the best response of the workers if the hacker plays (S,S). Since

updating does not protect the worker from being hacked and the cost of updating, cu,

is strictly greater than zero, then updating is not worthwhile for any worker. Thus,

the best response for every worker is to not update.

Lastly, analysis of the workers’ best response wouldn’t be complete without their

response to any mixed strategy, ρ∈(0,1) of (E,S) and 1−ρ of choosing (S,S), of the

hacker. Given that the hacker chooses the mixed strategy with the probability ρ∗ of

choosing (E,S), worker i’s best response is to update so long as

θ(i)>
cu

ρ∗(v+D)
(A.6)

Otherwise, worker i will not update if θ(i)< cu
ρ∗(v+D)

. The last case is that worker i

will be the pivotal worker if θ(i)= cu
ρ∗(v+D)

.

Now we need to derive the best response of the hacker to any strategy of the

workers. Recall that, under Non-Disclosure A
(1−α)∗
d =(S). Then, under Disclosure, if

all workers do not update, then Aα∗d =(E) is the hacker’s best response since the cost

of searching is strictly positive and the probability of finding a Zero-Day is strictly

less than one.

To analyze all other cases, Equation 1.5 must first be rewritten as

ρ

[
D

∫
i∈Γ∗nu

θ(i)

]
+(1−ρ)

[
δ̂D

∫ 1

0

θ(i)−cs
]

(A.7)

Hence, for any worker strategy (Γnu,Γu), there exists a threshold value θ∗∈[0,1] such

that all workers i with θi<θ
∗ do not update, i∈Γ∗nu, and workers j such that θj>θ

∗

update, j∈Γ∗u. Given a specific threshold value, the hacker’s best response is to set

ρ∗=1 if the cost of searching in addition to the loss in exploitation benefits exceed

102

the expected value of searching for a Zero-Day, i.e. Equation A.8 holds.

cs>δ̂D

∫ 1

0

θ(i)−D
∫ θ∗

0

θ(i) (A.8)

However, if Equation A.9 holds, then the hacker’s best response is to search for

Zero-Days. In other words, the hacker will send ρ→0 giving a best response of

Aα∗d =(S,S).

cs<δ̂D

∫ 1

0

θ(i)−D
∫ θ∗

0

θ(i) (A.9)

The final case is given by the following equation.

cs=δ̂D

∫ 1

0

θ(i)−D
∫ θ∗

0

θ(i) (A.10)

Then the best response of the hacker is to mix with any ρ∗∈[0,1] since he is indifferent

between Exploit and Search.

Theorem A.1. If, for θ∗(k∗)= cu
v+D

i.e. the minimal worker in Ω, Inequality A.8

holds, then the Nash Equilibrium is

((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I)=((E,S),(nu)i∈Γ∗nu ,(p(k)∗(u),(1−p(k)∗)(nu)),(u)j∈Γ∗u)

Where θ∗(k)= cu
v+D

, Γ∗nu={i∈I|θ(i)<θ(k)}, Γ∗u={i∈I|θ(i)>θ(k)}, and p∗k is any mix-

ture of updating and not updating.

Otherwise, there exists a Nash equilibrium such that there exists a pivotal worker

k∗∈Ω such that Equation A.10 holds, and the Nash equilibrium is

((Aα∗d ,A
(1−α)∗
d),(A∗i)i∈I)=((ρ∗(E,S),(1−ρ∗)(S,S)),(nu)i∈Γ∗nu ,(p(k

∗)∗(u),(1−p(k∗)∗)(nu)),(u)j∈Γ∗u)

For any mixed strategy for worker108 k∗, p(k∗)∗∈[0,1], and where ρ∗= cu
θ(k∗(v+D)

, Γ∗nu=

108Since worker k∗ is measure zero, and thus does not impact Equation A.10.

103

{i∈I|θ(i)<θ∗(k∗)}, and Γ∗u={i∈I|θ(i)>θ∗(k∗)}.

Proof. If Inequality A.8 holds, then the hacker’s best response is (E,S). Then,

given the hacker strategy of (E,S), the best response of low-type workers is Γ∗nu={
i∈I|θ(i)< cu

v+D

}
, while high-type workers’ best response is Γ∗u=

{
j∈I|θ(j)> cu

v+D

}
,

and worker k∗ is indifferent between updating and not updating. Since worker k∗ is

of measure zero, then for every p(k∗)∈[0,1] are Nash equilibria.

If Equation A.10 holds, then the hacker is indifferent between any mixture of

exploiting and searching. Then the strategy ρ∗= cu
θ(k∗(v+D)

makes the worker k∗ in-

different between updating and not updating since θ∗(k∗)= cu
ρ∗(v+D)

. Therefore, all

low-type workers’ best response is Γ∗nu={i∈I|θ(i)<θ∗(k∗)}, and high-type workers

will update, i.e. Γ∗u={i∈I|θ(i)>θ∗(k∗)}. Since this solution is in the best response of

all workers and the hacker, this is the Nash equilibrium.

A.3 Microsoft’s New Policy Best Response Derivation

I will describing the best response functions for the workers and hacker under the

“Non-Disclosure” branch, followed by the best response of the workers and hacker

under “Disclosure” branch of the game. Once the best responses are solved for,

A.3.1 Non-Disclosure Worker Best Response

Beginning with the best response of the workers on the “Non-Disclosure” branch of

the game, i.e. Figure 1.3, the worker can choose between switching to the new version

or continue using the old version of the software. If the hacker’s action is Exit, then

worker i will continue to use the old version, i∈Γnu, since they are not at risk of being

attacked and don’t have to pay the fee of switching software versions, cv.

The other pure-strategy available to the hacker is Search. The worker then must

decide whether the payoff of changing versions exceeds the expected loss from using

104

the old version.

vθi−cv≶−δDθi+(1−δ)vθi (A.11)

Which can be written in a similar manner as was observed above

θi≶
cv

δ(v+D)
(A.12)

By Assumption 1.2, there exist workers that will be willing to switch to the new

version, while others will want to continue using the old software package. For high-

type worker j, meaning that θj>
cv

δ(v+D)
, then the best response to Search is to switch

to the new version of the software, i.e. j∈Γv. However109, if θi<
cv

δ(v+D)
, then worker

i would prefer to continue using the old software, i∈Γnu.

The last strategy the workers need to have a response to is the mixed strategy

(ρ(S),(1−ρ)(X)). The set of workers whose best response is to not update, i∈Γ∗nu,

so long as worker i’s expected payoffs satisfy θi<
cv

ρδ(v+D)
. However, if θj>

cv
ρδ(v+D)

,

then worker j’s best response is to install the new version of the software, i.e. j∈Γ∗v.

Finally, if there exists a worker k such that θk= cv
ρδ(v+D)

, then worker k is indifferent

between using the old and the new software versions, and will be willing to mix with

any probability pndk ∈[0,1] of installing the new version.

A.3.2 Non-Disclosure Hacker Best Response

The hacker’s best response is dependent on the relationship between the cost of

searching for and the expected payoff of exploiting Zero-Days.

cs≶δD
∑
i∈Γnu

θi (A.13)

109As in the previous cases, if θi=
cv

δ(v+D) , then worker i is indifferent between software packages.

105

A.3.2.1 High Search Cost

Given any worker strategy, if cs>δD
∑

i∈I θi, then, in expectation, Search is too

costly. Therefore, the best response of the hacker is (X).

A.3.2.2 Low Search Cost

Now to examine the low cost case, i.e. cs<δD
∑

i∈I θi. Given a workers’ strategy

(Γnu,(pk(v),(1−pk)(nu)),Γv), then we define Ωnd
M≡

{
i∈I|θi≥ cv

δ(v+D)

}
. Therefore, the

expected payoff of the hacker for a mixed strategy ρ(S),(1−ρ)(X) is

ρ

[
D
∑
i∈Γnu

θi+(1−pk)Dθk−cs

]
(A.14)

Then the hacker’s best response is Exit, ρ→0, if the expected value of searching

is less than the opportunity cost of searching for a Zero-Day, i.e.

cs>δ

[
D
∑
i∈Γnu

θi+(1−pk)Dθk

]
(A.15)

On the other hand, if the inequality is inverted, then the best response of the

hacker is ρ→1.

cs<δ

[
D
∑
i∈Γnu

θi+(1−pk)Dθk

]
(A.16)

The last possible case is when, for some k∈Ωnd
M and there exists a pk∈[0,1],

cs=δ

[
D
∑
i∈Γnu

θi+(1−pk)Dθk

]
(A.17)

Then the hacker is indifferent between Search and Exit.

106

A.3.3 Disclosure Worker Best Response

On to the best responses of the “Disclosure” branch of the game. There are three

separate cases to analyze to solve for the best response of the workers. Under each

case, I will begin with the best response of the workers to hacker pure strategies

followed by mixed hacker strategies.

A.3.3.1 Low New Version Costs

The first case is when the cost of switching to the new software version is less than the

cost to keep the old version up to date against all disclosed vulnerabilities, cv<cu+φu.

Given the hacker plays (X), then to avoid paying any cost of updating or switching

versions, the best response of all workers is to not update, i.e. Γ∗nu=I.

When the hacker decides to search for a Zero-Day, (S) is played, then worker i

will either switch to the new version or not update. If i were to update, then she

would have to pay cu+φu, which is greater than the cost of switching versions, but

would not be protected from search. However, if i installs the new version of the

software, then she only has to pay φu and is protected if the hacker is successful in his

attack. For high-type workers, j∈I such that θj>
cv

δ(v+D)
, j∈Γ∗v is the best response.

For low-type workers, i∈I such that θi<
cv

δ(v+D)
, i∈Γ∗nu is the best response. If ∃ k∈I

such that θj=
cv

δ(v+D)
, then worker k is indifferent between any mixture, pk∈[0,1], of

switching to the new version and not updating. Thus, Γ∗u=∅ if the hacker searches

for a Zero-Day and cv<cu+φu.

The last pure strategy that can be played by the hacker is (E). Given the Then

the worker must balance the cost of installing the new software version against the

cost of being hacked if she chooses not to update or purchase the new version of the

software. Since updating and installing the new version of the software both protect

the worker, then, given the fact that cv<cu+φu, every worker would choose installing

the new version over updating. Therefore, high-type workers, j∈I such that θj>
cv
v+D

,

107

will install the new version of the code, j∈Γ∗v, while low-type workers, workers i∈I

such that θi<
cv
v+D

, will not update, i∈Γ∗nu. Then, as in each of these cases, if there is

a worker k such that θk= cv
v+D

, worker k is indifferent between not updating the old

version or switching to the new version. Again, Γ∗u=∅.

The final cases, under the assumption that cv<cu+φu, are to examine are when

the hacker plays a mixed strategy. Since installing the new version of the software is

cheaper than updating, the worker will never update since the new version protects

against both N-Day and Zero-Day exploits and is cheaper.

Then given a mixed strategy (ρ2
M(S),(1−ρ2

M)(X)) of the hacker, then each worker

i∈I much choose between not updating or installing the new version110. If the worker

is a high-type worker, i.e.

θi>
cv

ρ2
M δ̂(v+D)

(A.18)

she will choose to install the new software version, i.e. i∈Γ∗v. However, if Equation

A.18 is inverted, then worker i will not update, i∈Γ∗nu. Lastly, if Equation A.18 holds

with equality, then the worker is indifferent between joining Γ∗nu and Γ∗v. Thus the

worker’s best response is to mix with any probability pi∈[0,1], such that pi is the

probability of installing the new version.

Next, given the hacker strategy of (ρ1
M(E),ρ2

M(S)), such that both ρ1
M ,ρ

2
M∈[0,1]

and ρ1
M+ρ2

M=1, then worker i will install the new version of the software if

θi>
cv

ρ1
MD+ρ2

M δ̂(v+D)
(A.19)

For similar reasons as above, if Equation A.19 is inverted, then not updating is the

best response, and when it holds with equality, then any mixture of not updating and

installing the new version is in the best response.

Moreover, if the hacker decides to play (ρ1
M(E),(1−ρ1

M)(X)), then worker i’s best

110This is due to the fact that installing the update is costly and does not protect against Zero-
Days.

108

response is i∈Γ∗v when

θi>
cv

ρ1
M(v+D)

(A.20)

Conversely, when θi<
cv

ρ1M (v+D)
, her best response is i∈Γ∗nu. Finally, if θi=

cv
ρ1M (v+D)

,

then any mixture of not updating and installing the new version of the software is in

the best response for worker i.

The final hacker strategy that needs to be analyzed under the assumption that cv<

cu+φu is (ρ1
M(E),ρ2

M(S),(1−ρ1
M−ρ2

M)(X)). Worker i’s best response to this strategy

is to switch to the new software version, i∈Γ∗v, so long as

θi>
cv

(ρ1
M+ρ2

M δ̂)(v+D)
(A.21)

Again, if this equation is inverted, then i∈Γ∗nu is her best response, while she is willing

to mix, with any probability, between not updating and using the new software version

if it holds with equality.

A.3.3.2 High New Version Costs

The next case is when the cost of switching to the new version of the code is more

expensive than simply updating the old version, cv>cu+φu. Again, I will begin by

solving for the workers’ best response to the pure strategies of the hacker followed by

the workers’ best response to mixed hacker strategies.

Now to start the analysis of the workers’ best response under the condition cv>cu+

φu and given the hacker strategy of X. Since cv>cu+φu>0, then the best response

for every worker is to not update, i.e. Γ∗nu=I and Γ∗u=Γ∗v=∅.

The following case is when the hacker decides to search for a Zero-Day, (S). Notice

that the protection to a worker of updating the old software version is equivalent to

not updating, but if the worker updates she must pay cu+φu. Hence the worker

would prefer not updating the old software over updating the old software if the

109

hacker is going to play (S). Installing the new version, however, does protect the

worker from a potential Zero-Day attack. Again, for high-type workers111, j∈I such

that θj>
cv

δ(v+D)
, will install the new software version, while low-type workers, i∈I

such that θi<
cv

δ(v+D)
, will not update and risk the possibility of being hacked. If there

exists k∈I such that θk= cv
δ(v+D)

, then worker k is indifferent between installing the

new version of the software and not updating the old version.

Furthermore, the hacker could play (E). Given the exploitation of the N-Day by

the hacker, workers i∈I such that θi<
cu+φu
v+D

will not want to update or download

the new version, and thus i∈Γ∗nu is their best response. Since both updating and

the new software version both defend against Zero-Day attacks, and due to the fact

that updating is less costly than the new version, high-type workers112 will want to

update, i.e. j∈Γ∗u. Additionally, as in every case, if there exists a worker k such that

θk= cu+φu
v+D

, then worker k is indifferent between updating and not updating. Therefore,

Γ∗v=∅.

The next set of hacker actions to analyze are when the hacker mixes, beginning

with (ρ2
M(S),(1−ρ2

M)(X)). Recall that updating is costly, but will do nothing to

protect the worker from being attacked, thus i∈Γu is not a best response to this

hacker strategy. Therefore, the worker must decide between the new version or using

the old version with no updates. If Equation A.18 holds, then i∈Γ∗v is worker i’s

best response to (ρ2
M(S),(1−ρ2

M)(X)). As in the above case, if the inequality is

inverted, the worker will not update, and if Equation A.18 holds with equality, then

the worker is indifferent between the new version of the software and not updating

the old software version.

Now, if the hacker plays (ρ1
M(E),(1−ρ1

M)(X)) for some ρ1
M∈(0,1), then the worker

is unwilling to install the new version since updating will protect the worker just as

well as the new version will and the new version costs more than updating. Thus,

111Recall that these workers do exist via Assumption 1.2.
112j∈I such that θj>

cu+φu

v+D

110

the worker will decide between updating and not updating via the cutoff equation

θi≶
cu+φu

ρ1
M(v+D)

(A.22)

The best response is to update if greater, not update if less, and indifferent if equal.

When the hacker plays (ρ1
M(E),ρ2

M(S)), where ρ1
M ,ρ

2
M∈[0,1] and ρ1

M+ρ2
M=1, then

no strategy can be immediately eliminated. Worker i will not update, i∈Γ∗nu is the

best response, so long as

θi<min

{
cv

ρ1
MD+ρ2

M δ̂(v+D)
,

cu+φu
ρ1
M(v+D)

}
(A.23)

The other evaluation left is whether high-type workers will update the old software

or install the new version of the software. When the three following questions hold

cv

ρ1
MD+ρ2

M δ̂(v+D)
≥ cu+φu
ρ1
M(v+D)

(A.24)

ρ2
M δ̂(v+D)−ρ1

Mv=0 (A.25)

θi>
cu+φu

ρ1
M(v+D)

(A.26)

Then, since cu+φu<cv, all high-type workers will update, i.e. Γ∗u is the best re-

sponse113. On the other hand, if

cv

ρ1
MD+ρ2

M δ̂(v+D)
<

cu+φu
ρ1
M(v+D)

(A.27)

113However, if Inequality A.24 holds while θi=
cu+φu

ρ1M (v+D)
, then worker i is indifferent between up-

dating and not updating the old version of the software.

111

Then when Inequalities A.25 and A.26 hold, then114 i∈Γ∗u. But when

cv

ρ1
MD+ρ2

M δ̂(v+D)
<θi<

cu+φu
ρ1
M(v+D)

(A.28)

i∈Γ∗v is her best response.

The last case to be examined under this hacker strategy is when ρ2
M δ̂(v+D)−

ρ1
Mv 6=0. As above, any worker i such that Inequality A.23 holds, then i∈Γ∗nu is her

best response. Then, for all workers j such that

θj>min

{
cv

ρ1
MD+ρ2

M δ̂(v+D)
,

cu+φu
ρ1
M(v+D)

}
(A.29)

then she will either install the new version or update the old version. Worker j will

install the new version of the software, j∈Γ∗v, when

θj>
cv−(cu+φu)

ρ2
M δ̂(v+D)−ρ1

Mv
(A.30)

However, when

θj<
cv−(cu+φu)

ρ2
M δ̂(v+D)−ρ1

Mv
(A.31)

Worker j’s best response is j∈Γ∗u. Worker j will be indifferent between updating the

old version and installing the new version of the software when

θj=
cv−(cu+φu)

ρ2
M δ̂(v+D)−ρ1

Mv
(A.32)

The final hacker strategy is (ρ1
M(E),ρ2

M(S),(1−ρ1
M−ρ2

M)(X)). The best response

of the workers is the same as the (ρ1
M(E),ρ2

M(S)) case if Inequalities A.23 and A.31

114Of course, if Inequality A.27 holds while θi=
cu+φu

ρ1M (v+D)
, then worker i is indifferent between

updating the old version and purchasing the new version of the software. Also, if θi=
cv

ρ1MD+ρ2M δ̂(v+D)
,

then worker i is indifferent between not updating the old version and installing the new version.

112

are replaced by

θi<min

{
cv

(ρ1
M+ρ2

M δ̂)(v+D)
,

cu+φu
ρ1
M(v+D)

}
(A.33)

θi<
cv

ρ2
mδ̂(v+D)

(A.34)

respectively.

A.3.3.3 Knife-Edge New Version Costs

The final case in examining the best response function of the workers is when the

cost of changing the old software to the new version es equal to the cost of updating

the old software, cv=cu+φu. Building up the best response of the workers as in the

above cases, I first describe the workers’ best response to the hackers exiting the

game. Given that updating and installing the new version are costly, all workers will

not update, Γ∗nu=I, as in the above cases.

Given that the hacker chooses the action (S), then, as discussed above, the only

action available to the worker that ensures protection is (v). Therefore, if the worker

is of a high-type, which in this case means j∈I such that θj>
cv

δ(v+D)
, will install the

new version, j∈Γ∗v, while workers such that θi<
cv

δ(v+D)
will not update, i∈Γ∗nu. If there

is a worker k such that θk= cv
δ(v+D)

, then worker k is indifferent between purchasing the

new version of the software and not updating the old version of the software package.

The last pure strategy that could be played by the hacker is (E). Given this

strategy, the best response of worker i is dependent on115

θi≶
cu+φu
v+D

=
cv

v+D
(A.35)

Workers i∈I with low θi values best response is i∈Γ∗nu, while workers j∈I with high

θj values are indifferent between installing the update or downloading the new version

115Notice that both updating and installing the new version will protect the worker.

113

of the software.

The next set of hacker actions to analyze are when the hacker mixes, beginning

with (ρ2
M(S),(1−ρ2

M)(X)). This case is identical to the case in Section A.3.3.2.

Given the hacker strategy (ρ1
M(E),(1−ρ1

M)(X)), any worker i∈I such that

θi<
cu+φu

ρ1
M(v+D)

=
cv

ρ1
M(v+D)

(A.36)

will not update, i.e. her best response is i∈Γ∗nu. All the high-type workers are

indifferent between updating the old version and installing the new version, thus, all

high-type workers will mix with any probability pj∈[0,1], where pj is the probability

that j∈Γ∗v. Notice that if θk= cu+φu
ρ1M (v+D)

= cv
ρ1M (v+D)

, then worker k is indifferent between

every strategy available.

If the hacker plays (ρ1
M(E),ρ2

M(S)) for some ρ1
M ,ρ

2
M∈[0,1] and ρ1

M+ρ2
M=1, then

the best response of the worker is identical to the (ρ1
M(E),ρ2

M(S)) case in Section

A.3.3.2. Similarly, when the hacker plays (ρ1
M(E),ρ2

M(S),(1−ρ1
M−ρ2

M)(X)), all of

the workers’ best responses satisfy the same equations as in Section A.3.3.2 when the

hacker plays (ρ1
M(E),ρ2

M(S),(1−ρ1
M−ρ2

M)(X)).

A.3.4 Disclosure Hacker Best Response: High Search Cost

Now to describe the best response of the hacker under a worker strategy of (Γnu,Γu,Γv),

then the hacker’s best response is dependent on the cost of being allowed to observe

the update, φu.

When the cost of learning of the vulnerability exceeds the profits of hacking all of

the workers, i.e.

φu>D
∑
i∈Γnu

θi (A.37)

Then the best response of the hacker is Aα∗M =(X) since both the expected payoff of

the N-Day and the Zero-Day are strictly negative. Nevertheless, if the cost of the

114

N-Day is strictly less than the exploitation revenues,

φu<D
∑
i∈Γnu

θi (A.38)

The result will be that the hacker’s best response is Aα∗M =(E).

A.3.5 Disclosure Hacker Best Response: Medium Search Cost

Notice that, as in the above cases, search under Disclosure yields a negative expected

payoff, and, since exiting the game gives a zero payoff, (S) is not in the hacker’s

best response. Again, as in the above case, given a worker strategy (Γnu,Γu,Γv),

the hacker’s best response is to exit the game, Aα∗M =(X), if Equation A.37 holds.

However, if Equation A.38 holds, then the hacker’s best response is Aα∗M =(E).

A.3.6 Disclosure Hacker Best Response: Low Search Cost

The final best response to solve for is when searching gives positive expected payoffs

to the hacker. When the workers’ strategy is Γv=I, then the hacker’s best response

is Aα∗M =(X). However, if Γu=I, then116 Aα∗M =(S). Then if Γnu=I, the hacker must

evaluate whether (E) or (S) yields higher expected payoffs. The hacker’s best response

is Aα∗M =(E) when

(1−δ̂)D
∑
i∈I

θi>φu−cs (A.39)

However, search becomes optimal, Aα∗M =(S), if

(1−δ̂)D
∑
i∈I

θi<φu−cs (A.40)

116When cs=δ̂D
∑
i∈I θi, then the hacker is indifferent between exiting the game and searching for

a Zero-Day.

115

The last case is where the hacker is indifferent between searching and exploiting, i.e.

willing to choose any probability ρ∈[0,1] of exploiting.

(1−δ̂)D
∑
i∈I

θi=φu−cs (A.41)

Define Γm={k∈I|k 6∈Γv∪Γu∪Γnu} as the set of all workers that will play some

mixed strategy. All other a worker strategies can be written as117 (Γnu,(p
u
k(u),pvk(v),(1−

puk−pvk)(nu))k∈Γm ,

Γu,Γv) for some puk , p
v
k∈[0,1]. To solve for the hacker’s best response, this must be

broken down into cases since exploiting the N-Day is no longer free.

A.3.6.1 High Updating Fees

The first case to examine is when φu≥D
∑

i∈I θi. Under this condition, the hacker

will never choose (E) since gaining access to the N-Day is too expensive, relative to

searching for a Zero-Day. Therefore, the best response of the hacker is Aα∗M =(X) so

long as

cs>δ̂D

[∑
i∈Γnu∪Γu

θi+
∑
k∈Γm

(1−pvk)θk

]
(A.42)

Whereas, if

cs<δ̂D

[∑
i∈Γnu∪Γu

θi+
∑
k∈Γm

(1−pvk)θk

]
(A.43)

Then Aα∗M =(S). The last case is when the hacker is indifferent between choosing any

probability ρ∈[0,1] of (S) and 1−ρ of (X).

cs=δ̂D

[∑
i∈Γnu∪Γu

θi+
∑
k∈Γm

(1−pvk)θk

]
(A.44)

117None of the Γ sets are equal to I since these have been covered above.

116

A.3.6.2 Low Updating Fees

When φu<D
∑

i∈I θi, the hacker may be willing to exploit, and thus his expected

payoff is

ρ1

[
D

(∑
i∈Γnu

θi+
∑
k∈Γm

(1−puk−pvk)θk

)]
+ρ2

[
δ̂D

(∑
i∈Γnu∪Γu

θi+
∑
k∈Γm

(1−pvk)θk

)
−cs

]
(A.45)

Where ρ1+ρ2≤0, since the hacker could always choose (X).

When both

D

(∑
i∈Γnu

θi+
∑
k∈Γm

(1−puk−pvk)θk

)
<0 (A.46)

δ̂D

(∑
i∈Γnu∪Γu

θi+
∑
k∈Γm

(1−pvk)θk

)
−cs<0 (A.47)

The hacker will send both ρ1 and ρ2 to zero, i.e. AαM=(X). If Inequality A.46

instead holds with equality, then the hacker would be indifferent between (E) and

(X). Similarly, the hacker would be indifferent between (S) and (X) if Inequality

A.47 held with equality. If both Inequalities A.46 and A.47 hold with equality, then

the hacker is indifferent between all three actions.

Now, assuming at least one of the following hold, the hacker will either choose to

exploit the N-Day or search for a Zero-Day.

D

(∑
i∈Γnu

θi+
∑
k∈Γm

(1−puk−pvk)θk

)
>0

δ̂D

(∑
i∈Γnu∪Γu

θi+
∑
k∈Γm

(1−pvk)θk

)
−cs>0

Thus, the hacker’s best response is AαM=(E), i.e. ρ→1, when

cs>D

(
δ̂
∑
j∈Γu

θj+(1−δ̂)
∑
i∈Γnu

θi+
∑
k∈Γm

[
(1−puk−pvk)−δ̂(1−pvk)

]
θk

)
(A.48)

117

Otherwise, if

cs<D

(
δ̂
∑
j∈Γu

θj+(1−δ̂)
∑
i∈Γnu

θi+
∑
k∈Γm

[
(1−puk−pvk)−δ̂(1−pvk)

]
θk

)
(A.49)

Then the hacker will send ρ2 to one, i.e. AαM=(S).

However, when

cs=D

(
δ̂
∑
j∈Γu

θj+(1−δ̂)
∑
i∈Γnu

θi+
∑
k∈Γm

[
(1−puk−pvk)−δ̂(1−pvk)

]
θk

)
(A.50)

Then the hacker will choose any strategy such that ρ1+ρ2=1.

A.4 Microsoft Nash Equilibrium: Other Cases

A.4.1 Medium Search Cost: Knife Edge Worker Costs

Theorem A.2. If cs>δ̂D
∑

i∈I θi and φu<D
∑

i∈I θi, while the workers face cv=cu+

φu, and Equation 1.43 holds, then the Nash equilibria are any convex combinations of

(Aα∗M ,(A
α∗
M,i)i∈I)=

(
(E),

(
(nu)i∈Γd∗nu

,(v)j∈Γd∗v

))
(A.51)

And

(Aα∗M ,(A
α∗
M,i)i∈I)=

(
(E),

(
(nu)i∈Γd∗nu

,(v)j∈Γd∗u

))
(A.52)

Where Γd∗nu=
{
i∈I|θi< cv

(v+D)

}
and Γd∗v =

{
j∈I|θj> cv

(v+D)

}
.

Otherwise, if there exists k∗∈ΩM and a mixed strategy for worker k, pv∗k∗∈[0,1],

such that

φu=D
∑
i∈Γ∗nu

θi+(1−pv∗k∗−pu∗k∗)Dθk (A.53)

118

Then the Nash equilibrium of the game is

(Aα∗M ,(A
α∗
M,i)i∈I)=

(
(ρ∗(E),(1−ρ∗)(X)),

(
(nu)i∈Γd∗nu

,(pv∗k∗(v),pu∗k∗(u),(1−pv∗k∗−pu∗k∗)(nu)),(v)j∈Γd∗v

))
(A.54)

Where Γd∗nu={i∈I|θi<θk∗}, Γd∗v ={j∈I|θj>θk∗}, and ρ∗= cv
θk∗ (v+D)

= cu+φu
θk∗ (v+D)

.

Notice that this is equivalent to Theorem 1.7, only that the worker is indifferent

between updating the old software and installing the new version. Since the hacker

does not search, whether the worker installs the new version or updates both yield

the same payoff to the hacker.

A.4.2 Low Search Cost

Notice that the Non-Disclosure equilibrium is the same as in the medium search cost

case, i.e. Theorem 1.5 holds. Then the Disclosure equilibrium is as follows.

Theorem A.3. Let kmin∈ΩM be the minimal worker in ΩM . Under Disclosure, if

φu≥D
∑

i∈I θi and

cs<δ̂D
∑
i∈I

θi (A.55)

Then the Nash equilibrium is

(
Aα∗M ,

(
Aα∗M,i

)
i∈I

)
=
(
(S),((nu)i∈Γd∗nu

,(v)j∈Γd∗v
)
)

(A.56)

Where Γd∗nu={i∈I|θi<θkmin}, and Γd∗v ={j∈I|θj≥θkmin}.

Otherwise, there exists a pivotal worker k∗∈ΩM and a mixed strategy for worker

k∗ strategy, pv∗k∗∈[0,1], such that

cs=δ

D∑
i∈Γd∗nu

θi+(1−pv∗k)Dθk∗

 (A.57)

119

Then the Nash equilibrium is

(
Aα∗M ,

(
Aα∗M,i

)
i∈I

)
=
(
(ρ∗(S),(1−ρ∗)(X)),((nu)i∈Γd∗nu

,(pv∗k∗(v),(1−pv∗k∗)(nu)),(v)j∈Γd∗v
)
)

(A.58)

Where ρ∗= cv
θk∗δ(v+D)

, Γk
∗,d∗
nu ={i∈I|θi<θk∗}, and Γk

∗,d∗
v ={j∈I|θj>θk∗}.

Proof. If Inequality A.55 holds, then the hacker’s best response is to play (S). Given

the hacker strategy of (S), then Γd∗nu={i∈I|θi<θkmin} and Γd∗v ={j∈I|θj≥θkmin} are

the workers’ best responses. Therefore, A.56 is the Nash equilibrium.

If Equation A.62 holds, then the hacker is indifferent between searching for a

Zero-Day and exiting the game. Then notice that ρ∗= cv
θk∗δ(v+D)

causes worker k∗ to

be indifferent between moving to the new version and not updating the old version.

Accordingly, A.63 is the Nash equilibrium.

Theorem A.4. Let kmin∈ΩM be the minimal worker in ΩM . Under Disclosure, if

φu<D
∑

i∈I θi, cv≤cu+φu, and cs<δ̂D
∑

i∈I θi, then there are three cases for the Nash

Equilibrium

1. If D
∑

i∈I θi−φu<δ̂D
∑

i∈I θi−cs, then the Nash equilibrium is

(
Aα∗M ,

(
Aα∗M,i

)
i∈I

)
=
(
(S),((nu)i∈Γd∗nu

,(v)j∈Γd∗v
)
)

(A.59)

Where Γd∗nu={i∈I|θi<θkmin}, and Γd∗v ={j∈I|θj≥θkmin}.

2. If D
∑

i∈I θi−φu>δ̂D
∑

i∈I θi−cs, then the Nash equilibrium is

(
Aα∗M ,

(
Aα∗M,i

)
i∈I

)
=
(
(E),((nu)i∈Γd∗nu

,(v)j∈Γd∗v
)
)

(A.60)

Where Γd∗nu={i∈I|θi<θkmin}, and Γd∗v ={j∈I|θj≥θkmin}.

120

3. If D
∑

i∈I θi−φu=δ̂D
∑

i∈I θi−cs, then the Nash equilibrium is

(
Aα∗M ,

(
Aα∗M,i

)
i∈I

)
=
(
(ρd(E),(1−ρd)(S)),((nu)i∈Γd∗nu

,(v)j∈Γd∗v
)
)
∀ρd∈[0,1] (A.61)

Where Γd∗nu={i∈I|θi<θkmin}, and Γd∗v ={j∈I|θj≥θkmin}.

Otherwise, there exists a pivotal worker k∗∈ΩM and a mixed strategy for worker

k∗ strategy, pv∗k∗∈[0,1], such that

cs=δ

D∑
i∈Γd∗nu

θi+(1−pv∗k)Dθk∗

 (A.62)

Then the Nash equilibrium is

(
Aα∗M ,

(
Aα∗M,i

)
i∈I

)
=
(
(ρ∗(S),(1−ρ∗)(X)),((nu)i∈Γd∗nu

,(pv∗k∗(v),(1−pv∗k∗)(nu)),(v)j∈Γd∗v
)
)

(A.63)

Where ρ∗= cv
θk∗δ(v+D)

, Γk
∗,d∗
nu ={i∈I|θi<θk∗}, and Γk

∗,d∗
v ={j∈I|θj>θk∗}.

121

A.5 Microsoft Welfare: Low Search Cost

B CRT Algorithm

input : x≡ai(mod pi) for i=1,...,m and ∀i,j∈{1,...,m}, gcd(pi,pj)=1

output: x≡x̄(mod P)

Define: P←p1 ···pm;

for i←1 to m do

Define: zi← P
pi

;

Solve: yi←z−1
i (mod pi);

end

Define: x̄←a1y1z1+···+amymzm
Algorithm 1: Chinese Remainder Theorem

C Lucky Primes

A formal discussion of Lucky Primes can be found in Arnold (2003). We present a far

more brief description for two reasons, the formal description can be found elsewhere,

and by using high-power computing environments we do not have to worry about

solving for lucky primes upfront.

As Arnold (2003) states: “Roughly, a prime p is lucky for the computation if we

do not lose too much algebraic information when viewing the object to be computed

modulo p.” Arnold’s algorithm is as follows:

1. Find a lucky prime with high probability

2. Use a Hensel algorithm or the CRT to lift

3. Check the result

122

The main difference in our approach, found in Figure 2.1, is that we do not

attempt to solve for lucky primes, but instead, using a very large set of primes, we

use the highly parallel nature of the algorithm to allow the computer to worry about

lucky primes. We compute a large number of modular Gröbner bases, one for each

prime, then we lift over subsets of the primes, checking results as we go, until we

find a solution. Notice that this type of computation, while it would benefit from

low-latency, is able to be computed easily in high-latency systems.

123

	List of Figures
	Introduction
	Toward a Theory of Vulnerability Disclosure Policy: A Hacker's Game
	Introduction
	Literature Review
	Static Game
	Non-Disclosure Regime
	Low Search Costs
	Disclosure Regime

	Welfare Analysis
	High Search Costs
	Medium Search Costs
	Low Search Costs

	Discussion
	Extension: Microsoft's New Disclosure Policy

	Conclusion

	The User's Guide to Solving Games via the Modular Gröbner Basis Approach
	Introduction
	Literature Review
	Preliminaries
	Definitions/Notation
	Gröbner Basis Introduction
	Intermediate Coefficient Swell

	The Theory of MGBA
	Polynomial System Mod p
	Modular Gröbner Basis
	Lifting/Checking to the Solution

	Example 1: Duopoly Model
	Example 2: Manifold Dynamic Programming
	Conclusions

	The Compression Value
	Introduction
	Preliminaries
	Compression Value
	Properties
	Algorithm

	Example
	Conclusion and Future Research

	Bibliography
	Mathematical Appendix
	The Knife-Edge Case
	Non-Disclosure: Knife-Edge Case
	Disclosure: Knife-Edge Case
	Welfare: Knife-Edge Case
	Microsoft Non-Disclosure Best Response: Knife-Edge Case
	Microsoft Disclosure Best Response: Knife-Edge Case

	Continuum of Workers Disclosure Game Equilibrium
	Microsoft's New Policy Best Response Derivation
	Non-Disclosure Worker Best Response
	Non-Disclosure Hacker Best Response
	Disclosure Worker Best Response
	Disclosure Hacker Best Response: High Search Cost
	Disclosure Hacker Best Response: Medium Search Cost
	Disclosure Hacker Best Response: Low Search Cost

	Microsoft Nash Equilibrium: Other Cases
	Medium Search Cost: Knife Edge Worker Costs
	Low Search Cost

	Microsoft Welfare: Low Search Cost

	CRT Algorithm
	Lucky Primes

