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Abstract

Network problems arise in all aspects of bioengineering, including biomechanics. For

decades, the mechanical importance of highly interconnected networks of macromolec-

ular fibers, especially collagen fibers, has been recognized, but models at any scale

that explicitly incorporate fiber-fiber interactions into a mechanical description of

the tissue have only started to emerge more recently. The mechanical response of

networks shows an inherent non-linearity arising from the network architecture, and

the non-affine deformations occurring within it. Thus, the overarching goal of this

dissertation was to model the steady-state and time-dependent behaviors of discrete

fiber networks to understand better how the behavior of an individual fiber differs

from that of a network, and to study the effect of a network’s structure on its me-

chanics. First, viscoelastic relaxation of networks composed of linear viscoelastic

fibers was analyzed, throwing light on two different contributions to the network re-

laxation process: a material contribution due to the intrinsic viscoelasticity of the

fibers, and a kinematic contribution due to the structure of the network. The ef-

fect of network composition on its relaxation spectrum was also analyzed revealing a

constant evolution of structure-dependent characteristic relaxation times with chang-

ing composition. Next, network fatigue behavior was modeled using a fiber-based

cumulative damage model to obtain stress-life (SN) curves for the network, and to

compare fatigue behaviors of different network structures. Finally, the network model

was used in a multiscale finite element approach to model actin-myosin motor-driven

cell cytoskeletal contraction. The multiscale model was also used to highlight the

importance of the choice of microstructure in predicting tissue pre-failure and failure

behaviors.
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Chapter 1

Introduction

1.1 Background

Networks of different kinds are extremely common in nature (Figure 1.1). In biologi-

cal systems, networks formed from interconnected fibers and filaments (e.g., collagen,

elastin) greatly influence the mechanics of most load-bearing tissues, e.g., skin, ten-

dons, ligaments. Networks of actin in the cytoskeleton of a cell allow it to make

drastic changes to its shape and apply forces on its external environment. Vascular

networks play an important role in the circulation of blood, and networks of neurons

determines the complex response of organisms to external stimuli. To understand

better these phenomena, it is crucial to gain an insight into the behavior and the

effects of the underlying network structure.

In the latter half of the 20th century, understanding the mechanics of networks

became important for modeling the behavior of crosslinked polymers such as rubber

under large strains and complex deformation states. The need to match the non-

linear behavior of such materials in various deformation states drove the development

of constitutive equations utilizing networks. Initial attempts [Gordon, 1976] assumed

1Image (a) courtesy V. Lai; for more information, see [Lai et al., 2012], Image (b) courtesy P.
Alford; for more information, see [Win et al., 2014], Image (c) courtesy R. Tranquillo; for more
information, see [Morin et al., 2013], Image (d) courtesy V. Zarei
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Gaussian statistics (i.e., the fibers never attained their fully extended length), and

affine deformations to obtain an expression for strain energy. Follow-up work mod-

ified these models to include larger deformations and utilized non-Gaussian fibers

in networks composed of three [Wang and Guth, 1952] and four [Flory and Rehner,

1943, Treloar, 1946] chains. This was followed by the Arruda-Boyce model [Arruda

and Boyce, 1993] which used a cubic representative element with eight chains, con-

nected to a common node at the center, extending along the main diagonals to the

corners of the cube (Figure 1.2). The models assumed the tissue to deform in an affine

manner. The affine assumption is very useful as it eliminates the need to consider

microstructural interactions, and it dates back to the work of Lanir [Lanir, 1983]. An-

other constitutive equation assuming affine deformation was proposed by Holzapfel

et al. [Holzapfel and Gasser, 2000]. This model took into account fiber alignment in

the material. Subsequent modifications to this model included parameters to define

concentration of fibers and distribution around a given primary direction [Driessen

et al., 2005]. While the models described above performed better at capturing the

mechanics of polymer networks compared to a bulk model (e.g., neo-Hookean), they

were passive, and assumed the tissue to deform in an affine manner. They did not

model the various network components along with their interactions individually. In

reality, the deformation of networks is not necessarily affine (Figure 1.3).

More recent attempts have incorporated the non-affine motion of fibers into the

network model while some have also included fiber-fiber and fiber-matrix interactions

as well. These non-affine models have used networks of various geometries (selected

based on histological studies, desired accuracy of the results, available computational

resources, etc). Some models (lens capsule by Bird [Burd, 2008] and lung alveolar

wall models by Suki et al. [Oliveira et al., 2014, Suki et al., 2012, Ritter et al.,

2009, Black et al., 2008]) have used regular polygonal networks with pin joints to

model the underlying collagen construct within tissues. Regular polygonal networks
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violate the Maxwell constraint [Maxwell, 1864], and thus must use external constraints

to stabilize the network simulation (e.g., adding a rotational energy term to the pin

jointed network which essentially transforms the truss into a frame [Black et al.,

2008]). Other models have chosen a more stochastic approach to generating network

models, e.g., Hoger et al. [Hansen et al., 1996] used appropriately generated Delaunay

networks to model the RBC cytoskeleton, Huisman et al. [Huisman et al., 2007] used a

random network generation scheme to study the mechanics of networks. The methods

used for simulating these fiber networks and their mechanics have also varied. Some

models have represented the fibers as linear [Ritter et al., 2009, Burd, 2008, Oliveira

et al., 2014] or non-linear [Black et al., 2008, Maksym et al., 1998] spring elements,

some have used a molecular dynamics approach [Li et al., 2007] while others have

discretized the fibers into finite beam elements, e.g., Timoshenko beam elements

[Abhilash et al., 2014, Žagar et al., 2015, Ma et al., 2013]. These different models

have shown that the network structure and its numerical representation are both

crucial to obtain an accurate numerical representation of the tissue being modeled.

The underlying network structure becomes particularly important at large strains.

Numerous experiments probing the nonlinear stress-strain response of biopolymer

networks have observed a strain stiffening behavior [Gardel et al., 2004a, Gardel et al.,

2004b, Shin et al., 2004, Wagner et al., 2006, Gardel et al., 2006]. This stiffening is

also accompanied by an increase in the shear modulus of the network. Zagar et al.

[Žagar et al., 2015] have shown that during deformation, a rigidly cross-linked network

passes through two phases. The first phase occurs at low strains and is mainly bending

dominated. In this phase, stretching the network leads to realignment of fibers and

pulling out of fiber undulations. This phase also leads to the presence of a toe region

in the stress-strain curve. The second phase, at large deformations, is dominated by

the axial loading of fibers and cross-links. This phase leads to considerable increase in

the stiffness of the network. Several studies have looked into relating this transition to
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network topological parameters (e.g., [van Dillen et al., 2008] quantified the network

connectivity using mean fiber length and the cross-linking density and derived a

scaling relation between connectivity and network modulus). Similar scaling relations

have also been derived for other types of networks (e.g., entangled networks [Picu,

2011]). Keeping in mind this influence of network geometry on its mechanics, it is

thus important to identify topological measures that affect a network’s response to

mechanical deformation.

Biological tissues are also viscoelasatic in nature. Figure 1.4 shows the viscoelas-

tic relaxation response observed in a collagen gel. Some viscoelastic tissue models,

e.g. [Bottino, 1998] have assumed a perfectly elastic network immersed in a viscous

fluid. This approach models the network mechanics as well as its interaction with

the surrounding nonfibrillar matrix. Others [Tanaka and Edwards, 1992] have chosen

to represent the network fibers using appropriate viscoelastic constitutive equations,

e.g. as Maxwell or Kelvin-Voigt elements.

While several network models, purely elastic as well as viscoelastic, have been

proposed to simulate various biological tissues, there is still a need to develop a more

general network model taking into account the interactions between the fibrous and

non-fibrous components. The time-dependent behavior of such networks also needs

to be investigated.

1.2 Research aims

Several aims have shaped the course of this dissertation, and these aims have evolved

over the duration of this research. The overall goal of this project was to develop

an accurate model to simulate the mechanics of viscoelastic fiber networks, and to

apply this model to study how non-affinity within the network architecture affects the

passive mechanical characteristics, the time-dependent mechanical response, and the
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failure properties of networks. Broadly, the following three aims guided the research:

• Aim 1 : Model the viscoelastic relaxation of fiber networks to investigate the

presence of structure-dependent relaxation times in the relaxation spectra

• Aim 2 : Model fatigue failure of networks undergoing cyclic loading to study

how the fatigue behavior of an individual fiber differs from that of a network,

and how network architecture affects it’s fatigue life

• Aim 3 : Model active contraction of network fibers to simulate the effect of

actin-myosin kinetics in the cytoskeleton of cells, and to incorporate this active

fiber model in a multiscale finite element modeling method to simulate the

contraction of cells fixed on substrates

1.3 Resulting research

The research studies resulting from the above mentioned aims form the chapters of

this dissertation, and address a single aim, or a combination of aims. A brief overview

of the chapters follows below.

Relaxation spectra of viscoelastic networks (Chapter 2)

Viscoelasticity plays an important role in the mechanical behavior of biological tis-

sues undergoing dynamic loading. Exploring viscoelastic relaxation spectra of the

tissue is essential for predicting its mechanical response. Most load-bearing tissues,

however, are also composed of networks of intertwined fibers and filaments of, e.g.,

collagen and elastin. In this work, we showed how non-affine deformations within

fiber networks affect the relaxation behavior of the material leading to the emergence

of structure-dependent time scales in the relaxation spectra. In particular, we see two

different contributions to the network relaxation process: a material contribution due
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to the intrinsic viscoelasticity of the fibers, and a kinematic contribution due to non-

affine rearrangement of the network when different fibers relax at different rates. We

also present a computational model to simulate viscoelastic relaxation of networks,

demonstrating the emergent time scales and a pronounced dependence of the network

relaxation behavior on whether components with different relaxation times percolate

the network. Finally, we observed that the simulated relaxation spectrum for De-

launay networks is comparable to that measured experimentally for reconstituted

collagen gels by others.

Fatigue failure of fiber networks (Chapter 3)

Fatigue as a mode of failure becomes increasingly relevant with age in tissues that

experience repeated fluctuations in loading. While there has been a growing focus on

the mechanics of networks of collagen fibers, which are recognized as the predominant

mechanical components of soft tissues, the network’s fatigue behavior has received less

attention. Specifically, it must be asked (1) how the fatigue of networks differs from

that of its component fibers, and (2) whether this difference in fatigue behaviors is

affected by changes in the network’s architecture. In the present study, we simulated

cyclic uniaxial loading of Voronoi networks to model fatigue experiments performed on

reconstituted collagen gels. Collagen gels were cast into dog-bone shape molds and

were tested on a uniaxial machine under a tension-tension cyclic loading protocol.

Simulations were performed on networks modeled as trusses of, on average, 600 non-

linear elastic fibers connected at freely rotating pin joints. We also simulated fatigue

failure of Delaunay, and Erdős-Rényi networks, in addition to Voronoi networks,to

compare fatigue behavior among different architectures. The uneven distribution of

stresses within the fibers of the unstructured networks resulted in all three network

geometries being more endurant than a single fiber or a regular lattice under cyclic

loading. Among the different network geometries, for low to moderate external loads,
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the Delaunay networks showed the best fatigue behavior while at higher loads, the

Voronoi networks performed better.

Multiscale model of contractile response of cells on substrates (Chapter 4)

Cell cytoskeletal contraction is a crucial phenomenon in various cellular functions

such as cell migration, and morphogenesis. The interconnected network of filamentous

biopolymers in the cytoskeleton, notably actin, plays an important role in bearing

both external loads acting on the cell, and contractile forces generated within the

cell. In this study, the contractile response of the actin cytoskeleton was modeled

using a multiscale approach and a discrete fiber microstructure. Tension generation

within fibers was achieved by adapting a previously published 2-D phenomenological

constitutive equation of actin-myosin motor kinetics. The model was used to simulate

the behavior of cells fixed on concave substrates, and with appropriate calibration, it

accurately captured the steady-state shape and stress-fiber distributions observed in

experiments. The effect of microstructure on the steady-state configuration of the cell

was also investigated using three different network architectures – Delaunay, Voronoi,

and Arruda-Boyce. The steady-state shape of the cell showed a significant difference

for the three microstructure choices, with the inherently affine and isotropic Arruda-

Boyce-like networks showing little effect on the shape of the cell as compared to the

non-affine Delaunay and Voronoi networks.

Structure-based multiscale model of failure of porcine aorta (Chapter 5)

The ascending thoracic aorta is poorly understood mechanically, especially its risk of

dissection. To make better predictions of dissection risk, more information about the

multidimensional failure behavior of the tissue is needed, and this information must be

incorporated into an appropriate theoretical/computational model. Toward the cre-

ation of such a model, uniaxial, equibiaxial, peel, and shear lap tests were performed

on healthy porcine ascending aorta samples. Uniaxial and equibiaxial tests showed
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anisotropy with greater stiffness and strength in the circumferential direction. Shear

lap tests showed catastrophic failure at shear stresses (150-200 kPa) much lower than

uniaxial tests (750-2500 kPa), consistent with the low peel tension (≈60 mN/mm).

A novel multiscale computational model, including both prefailure and failure me-

chanics of the aorta, was developed. The microstructural part of the model included

contributions from a collagen- reinforced elastin sheet and interlamellar connections

representing fibrillin and smooth muscle. Components were represented as nonlinear

fibers that failed at a critical stretch. Multiscale simulations of the different exper-

iments were performed, and the model, appropriately specified, agreed well with all

experimental data, representing a uniquely complete structure-based description of

aorta mechanics. In addition, the model demonstrates the very low strength of the

aorta in radial shear, suggesting an important possible mechanism for aortic dissec-

tion.
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Figure 1.1: Examples of networks in nature1
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Figure 1.2: Arruda-Boyce model RVE
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Figure 1.3: Example of non-affine deformation
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Figure 1.4: Viscoelastic relaxation behavior observed in a collagen gel (courtesy C.
Korenczuk)
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Chapter 2

Emergent Structure-dependent

Relaxation Spectra in Viscoelastic

Fiber Networks in Extension

2.1 Background

At a very basic level, a linear viscoelastic material can be modeled by combining

elements with elastic and viscous mechanical characteristics, e.g., the Maxwell fluid

combines a spring and a dashpot in series, and the standard linear solid has a Maxwell

element and a dashpot in parallel. In such cases, under the assumption of linearity,

it is straightforward to calculate a characteristic time scale over which the stress

relaxes under constant strain. In general, however, a viscoelastic material can exhibit

multiple relaxation time scales, and these characteristic relaxation times can depend

on a variety of factors, such as magnitude of initial stress, temperature, or rate of

loading, and thus more complex models are required to predict stress relaxation [Suki

et al., 1994, Rogers, 1983, Koeller, 1984].

Most biological soft tissues exhibit some degree of viscoelasticity [Fung, 1981],
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and their viscoelastic mechanical properties affect their characteristic functions, es-

pecially if the tissue undergoes dynamic loading, e.g., tendons, lung. Because of its

analytical and experimental convinience, the stress relaxation test (i.e., monitoring

stress following a step stretch) is an attractive tool. Stress relaxation also has the

advantage of interrogating multiple time scales in a single experiment. Thus, the vis-

coelasticity of tissues has been widely studied with stress relaxation tests, including

tendons [Johnson et al., 1994, Screen, 2008], ligaments [Provenzano et al., 2001, Woo

et al., 1981], arteries [Zatzman et al., 1954, Gow and Taylor, 1968], and skin [Purslow

et al., 1998]. To explain these experimental findings, various models have been ex-

plored, e.g., models using combinations of the Maxwell, and Voigt materials described

above [Puxkandl et al., 2002]; models utilizing a simple exponential decay function

[Sasaki et al., 1993, Liao et al., 2006]. By far, however, the most popular models

used to explain the viscoelastic behavior of connective tissues have been based on

the quasilinear viscoelastic (QLV) model developed by Fung [Fung, 1967, Edwards,

1973, Abramowitch and Woo, 2004, Sarver et al., 2003].

While viscoelastic behavior of tissues at the macroscale has been widely observed

and modeled, the origins of this viscoelasticity and how it is affected by the lower

hierarchical structures within the tissue are less well studied. The microstructure

of many biological materials is composed of an intertwined network of fibers and

filaments of, e.g., collagen, embedded in the non-fibrillar portion of the extracellular

matrix. Several studies using rheological protocols have experimentally probed the

non-linear viscoelastic properties of biopolymer networks, e.g., [Jabbari-Farouji et al.,

2008, Broedersz et al., 2010b, Shin et al., 2004]. These studies have observed and

modeled several interesting behaviors such as strain-stiffening [Münster et al., 2013,

Žagar et al., 2015], crosslink-dependent stiffening [Broedersz et al., 2010a], and strain-

dependent relaxation rates [Nam et al., 2016]. The majority of this existing body of

work has focused on shear deformations, especially, small-strain sinusoidal oscillations
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of gels in shear. The non-linear viscoleastic response under extension – which, for

connective tissues is often a more relevant mode of deformation – has received less

attention.

Furthermore, the heterogeneity within networks, i.e., the presence of fibers with

different mechanical properties, and its effect on the viscoelastic behavior of the net-

work has been less studied. The mechanical functionality of the network derives

directly from the composition, organization, and mechanics of its microstructure.

Obviously, a network composed of viscoelastic fibers will exhibit viscoelastic stress

relaxation, and the characteristic time scales over which the network relaxes will

be determined in large part by the rate of relaxation of the constituent fibers. We

hypothesized, however, that the structure of the network can also influence the relax-

ation time spectrum, and it is this aspect of network relaxation which we explored in

the current work. For instance, if the fibers in the network relax at different rates, the

resulting changes in internal loads over time could lead to non-affine reorganization

of the network fibers, which in turn could affect the overall stress relaxation behavior

of the network.

2.2 Methods

We begin this section with a theoretical analysis of stress relaxation of a network, and

then describe an approach to modeling the non-affine mechanics of a network and its

stress relaxation behavior.

The convention used in the rest of this work, except when stated otherwise, is

as follows: superscript indices denote node or fiber number, and subscript indices

indicate direction, e.g., fni is the force acting on node n along direction i, i = 1, 2, or 3.

The summation convention applies both to subscript and to superscript indices. This

indexing convention will give rise to some terms which can be interpreted as higher
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order tensors. We note that it is possible to reduce the dimensions of the tensors

in subsequent equations by using indices calculated by combining the corresponding

superscripts and subscripts, e.g., the matrix of nodal positions in 3-D xbi can also

be reordered as a vector x3b+i−1, and similarly the fourth order tensor Gbn
ik can be

reorganized as a matrix G3b+i−1 3n+k−1. While reducing the dimensions of the higher

order tensors would be helpful if we want to apply tools of linear algebra to analyze

equations containing such quantities, in this work, we will only investigate special

cases with node motions restricted to only one axis, which will automatically restrict

the maximum dimension of the tensors involved to 2. Thus, all derivations will be

done using the top and bottom index notation described above which, we believe, is

more concise and easier to follow. When an equation is shown in matrix notation,

we use bold lower case font to denote vectors, bold uppercase font for matrices, and

script letters for higher order tensors.

Additionally, Cauchy stresses are denoted by Sij, or S, and σ is used to refer to

the force in a network fiber. We consider only networks of highly flexible fibers, i.e.,

the contour length of the fibers is much greater than its persistence length. Thus, no

strain energy is stored in bending the fibers, and only axial deformations generate a

resisting force within the fiber.

2.2.1 Theoretical analysis of network relaxation

Calculation of average network stress

Consider a representative volume element (RVE) containing a network with N nodes,

i.e., points where fibers intersect either with each other, or with the RVE boundary.

Let N = Nb + Ni, where Nb and Ni are boundary and internal nodes, repectively.

Under an imposed deformation, the average Cauchy stress in the network 〈Sij〉 can be

calculated from the forces on the boundary nodes using a volume averaging method
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described in [Chandran and Barocas, 2005] and briefly shown below.

〈Sij〉 =
1

V

∫
SijdV

〈Sij〉 =
1

V

∫
SikδjkdV

〈Sij〉 =
1

V

∫
Sikxj,kdV

〈Sij〉 =
1

V

∫
(xjSik),kdV −

1

V

∫
xjSik,kdV

where V is the volume of the box enclosing the deformed network. Applying the

divergence theorem to the first term and using the fact that the second term is zero

by the requirement of local equilibrium, Sik,k = 0, we write

〈Sij〉 =
1

V

∮
nkxjSikds.

The traction on the boundary nkSik, however, is entirely provided by the fiber forces

acting on boundary nodes. Thus, assuming that the fiber diameter is very small

compared to the RVE dimension, we obtain

〈Sij〉 =
1

V

∮
xjfids =

1

V
f bi x

b
j (2.1)

where xbj is the coordinate along the j direction, f bi is the force in the i direction,

acting on the boundary node b, and summation occurs over all boundary nodes, i.e.,

1 ≤ b ≤ Nb. In matrix form, Equation 4.4 may be written as

〈S〉 =
1

V
XT
BFB =

1

V



x11 x12 x13

x21 x22 x21
...

...
...

xNb1 xNb2 xNb3



T 

f 1
1 f 1

2 f 1
3

f 2
1 f 2

2 f 2
3

...
...

...

fNb1 fNb2 fNb3


. (2.2)
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where XB is the matrix of boundary node positions, and FB is the matrix of boundary

node forces, with rows indicating node number, and columns denoting direction.

Network relaxation

For the following section, it is assumed that the network is stretched and held such

that the nodes lying on the network boundary do not move, but that the internal

nodes are free to reorganize as the network relaxes. Differentiating Equation 4.4 with

respect to time and recognizing that the volume of the network domain does not

change during relaxation

d〈Sij〉
dt

=
1

V

(
dxbj
dt

f bi + xbj
df bi
dt

)
, and

dxbj
dt

= 0

∴
d〈Sij〉

dt
=

1

V
xbj

df bi
dt

(2.3)

Since the network boundaries are held fixed in a stress relaxation experiment, the

force on boundary nodes f bi depends only on the positions of the internal nodes, i.e.,

f bi = f bi (t, x
n
j ), where 1 ≤ n ≤ Ni, and i, j = 1, 2, 3. Thus, the derivative on the RHS

of Equation 2.3 can be written as

df bi
dt

=
∂f bi
∂t

∣∣∣∣
x

+
∂f bi
∂xnk

∣∣∣∣
t

dxnk
dt

(2.4)

Now consider a differential change in the force on an internal node m of the network

dfmp =
∂fmp
∂xnk

∣∣∣∣
t

dxnk +
∂fmp
∂t

∣∣∣∣
x

dt (2.5)

The requirement of equilibrium of the internal nodes requires that dfmp = 0.

∴
dxnk
dt

= −
(
∂fmp
∂xnk

)−1 ∂fmp
∂t

(2.6)
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From Equations 2.6 and 2.4,

df bi
dt

=
∂f bi
∂t

∣∣∣∣
x

−
(
∂f bi
∂xnk

)(
∂fmp
∂xnk

)−1 ∂fmp
∂t

∣∣∣∣
x

(2.7)

LetGbn
ik =

∂f bi
∂xnk

∣∣∣∣
t

be the Jacobian matrix relating internal node motion to boundary

forces, and Jmnpk =
∂fmp
∂xnk

∣∣∣∣
t

be the Jacobian matrix for the internal nodal forces. Then

Equation 2.7 becomes

df bi
dt

=
∂f bi
∂t

∣∣∣∣
x

−Gbn
ik

(
Jmnpk

)−1 ∂fmp
∂t

∣∣∣∣
x

, (2.8)

and Equation 2.3,

d〈Sij〉
dt

=
1

V
xbj
∂f bi
∂t

∣∣∣∣
x︸ ︷︷ ︸

Material

− 1

V
xbjG

bn
ik

(
Jmnpk

)−1 ∂fmp
∂t

∣∣∣∣
x︸ ︷︷ ︸

Kinematic

. (2.9)

The first term on the RHS of Equation 2.9 arises due to the relaxation of the fibers

connected to the boundary nodes, and it can be viewed as the material contribution

to the network relaxation as its rate of change depends solely on the material, i.e., the

constitutive equation, of the fibers. The second term arises from the reorganization of

the internal nodes occurring within the network as its fibers relax, and thus, represents

the kinematic part of the relaxation which depends on the structure of the network.

The product GJ −1 works as a transformation matrix relating the changes in internal

nodal forces to the resultant changes in boundary forces.

The force balance at every network node at each time step introduces additional

algebraic constraints that relate nodal forces to forces in the network fibers. Thus, we

can write f bi = Cbr
i σ

r, and fmp = Cmr
p σr for boundary and internal nodes, respectively,
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where σr is the force in fiber r. Equation 2.9 then becomes

d〈Sij〉
dt

=
1

V
xbj

(
∂
(
Cbr
r σ

r
)

∂t

∣∣∣∣
x

−Gbn
ik

(
Jmnpk

)−1 ∂ (Cmr
p σr

)
∂t

∣∣∣∣
x

)
, (2.10)

or, in matrix notation

d〈S〉
dt

=
1

V
(XB)T

(
∂CBσ
∂t

∣∣∣∣
x

− GJ −1∂CIσ
∂t

∣∣∣∣
x

)
. (2.11)

where σ is the vector of fiber forces, and CB, and CI are tensors relating fiber forces

to forces on boundary and internal nodes, respectively.

2.2.2 Network modeling

Stress relaxation of networks was simulated by representing networks as trusses com-

posed of viscoelastic cylindrical members (fibers) connected by means of pin-joints

(nodes) allowing free rotation.

Single fiber mechanics

Individual fibers within a network were modeled as one-dimensional viscoelastic ele-

ments following the Maxwell constitutive law (Figure 2.1(a))

σ̇

E
+
σ

η
= λ̇, (2.12)

where σ is the force generated in the fiber, E is the stiffness of the linear spring

element, η is the viscosity of the dashpot element, λ is the fiber stretch, and a dot

over the symbol indicates a derivative with respect to time. When a fiber is stretched

and held,

σ̇ = −E
η
σ = −1

τ
σ, (2.13)
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where the ratio τ =
η

E
is the characteristic time over which the force in the fiber

decays and approaches a steady state value of zero.

Network mechanics

Networks formed by connecting Maxwell fibers at nodes were stretched uniaxially by

imposing a displacement on all nodes lying on one face of the network while keeping

the opposite face fixed in space. The surfaces facing in the other two coordinate

directions were displaced such that the total volume of the box containing the network

remained constant. Network nodes were identified as either boundary nodes, which

included all nodes lying on a network face and constrained to move with the network

face, or internal nodes, which were free to move and equilibrate. Fiber stretching

due to the motion of the network boundary generated forces on all network nodes,

boundary as well as internal. At every time step, however, the equilibrium solution

of the network force problem had no net force on any internal node. The nodal

positions corresponding to this equilibrium solution were calculated using Newton’s

method by computing the Jacobian matrix J such that Jij =
∂fi
∂xj

, where f is total

force on a node, and x is its position. We used backward-Euler integration for the time

dependent terms in the fiber constitutive equations. Newton iteration was applied

at every time step until the net force on all internal nodes was less than a specified

tolerance. The volume-averaged Cauchy stress in the network was then calculated

using Equation 4.4. All computations were carried out through scripts written in

MATLAB [MATLAB, 2013].

Network stress relaxation

Network relaxation was simulated by stretching the network uniaxially in the X di-

rection in the first time step, and subsequently holding the network in the deformed

configuration to obtain the evolution of network stress with time. At every time step,
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an instantaneous relaxation time was calculated as

τinst = −〈S11〉
(

d 〈S11〉
dt

)−1
. (2.14)

Additionally, a relaxation spectrum was computed for the network by fitting the

stress-time curve to a Prony series (or a Generalized Maxwell model, Figure 2.1(b))

using a discrete spectral fitting algorithm developed by Babaei et al. [Babaei et al.,

2015]. Briefly, using a non-negative least squares regression method, the algorithm

computed values for En corresponding to an interval of time constants τn =
En
ηn

selected a priori, and spaced equidistantly on a logarithmic scale. For our network

relaxation data, the chosen interval of the time constants was discretized into 1000

parts, i.e., the data was fit to a Prony series with 1000 Maxwell branches; the range of

the time constant interval was selected such that its lower bound was at least a decade

lower than the characteristic relaxation time of the fastest fiber in the network, and

similarly, the upper bound was a decade larger than the slowest fiber relaxation time

in the network.

2.2.3 Case studies

First, we applied the theoretical and modeling approaches described above to a simpli-

fied end-to-end chain of fibers. We used the simplified case to compare the theoretical

prediction and the model, and to better understand the kinematic contribution to net-

work relaxation. We then simulated stress relaxation of 3-D Delaunay networks, and

used the 3-D networks to study the effect of network composition on its effective

relaxation behavior.
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A three-fiber four-node 1-D arrangement (3F-4N)

We used the simple arrangement of fibers shown in Figure 2.2 to confirm a match

between the relaxation behavior predicted by Equation 2.10 and that obtained from

the network model. Restricting the nodal motions to 1-D removes any non-linearities

arising from fiber rotation, i.e., CB, and CI are constant over time as the network

reorganizes, which makes it easy to calculate a predicted time constant from Equation

2.10.

3-D networks

We next used the network model to obtain relaxation spectra for 3-D networks com-

prising of fibers with two different characteristic relaxation times, and we compared

our results to the spectrum obtained experimentally for reconstituted collagen gels by

Pryse et al. [Pryse et al., 2003]. Briefly, Pryse et al. strained collagen gel specimens

to a strain of 2% in under 20 ms using a specially designed loading apparatus. The

stretched gels were then held isometrically while force was recorded for 30 minutes

at a sampling frequency of 5 Hz. The experimental data were subsequently fit to a

Prony series with three Maxwell branches, which Pryse et al. identified as the optimal

number of branches they needed to obtain a good fit to their data. We also compared

our simulated viscoelastic spectra to that reported by Babaei et al. [Babaei et al.,

2015] for the same collagen gel data. Babaei et al. used their discrete spectral fitting

algorithm, described briefly above, to reanalyze the data of Pryse et al.

Network generation We generated networks using a Delaunay [Delaunay, 1934]

tessellation wherein connections were formed between randomly generated points such

that the circumsphere of any tetrahedron formed by a set of four connected nodes

did not contain any other network node (Figure 2.3(a)). Networks were generated

using the MATLAB function delaunay [MATLAB, 2013]. Delaunay networks have
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been used in previous studies modeling fibrous tissues [Aghvami et al., 2016].

Networks generated were isotropic and were trimmed to fit within a unit cube in

the computational domain. The physical space represented by this unit volume of

computation domain was calculated from the equation [Chandran and Barocas, 2005]

X =

√
πr2ltotal

φ
(2.15)

where X is the conversion factor relating the physical and computational domains, r

is the fiber radius, ltotal is the total fiber length in the network in the computational

domain, and φ is the fiber volume fraction. All fibers in the network had the same

radius of r = 100 nm [Lai et al., 2012], and the number of nodes and fibers was selected

such that the unit cube containing the network represented a physical domain of side

X ≈ 10µm. Prior to simulating stress relaxation, the network was also confirmed to

be sufficiently resolved, i.e., there was no change in the elastic network stress-stretch

response with a further increase in the number of nodes and fibers.

Network relaxation spectra and comparison with reconstituted collagen

The fibers in the network were divided into two types: fast relaxers and slow relaxers

(Figure 2.3(a)). The characteristic relaxation time of the fast relaxers was less than

that of the slow ones, i.e., τfast < τslow. Values for the characteristic times were

selected to match the fastest and slowest relaxation times identified by Pryse et al.

for reconstituted collagen gels with τfast = 4.73 seconds, and τslow = 775.35 seconds.

Next, we simulated stress relaxation of the network for different compositions of

the two types of fibers. Starting with a network composed of all fast relaxing fibers,

we increased the composition of the slow relaxers by changing 2% of the fibers at a

time. Fibers to be changed to slow relaxers in each step were selected at random.

This process of simulating stress relaxation of the network at different compositions

was repeated for 5 networks. The relaxation protocol simulated was similar to that
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used by Pryse et al., where the network was stretched by 2% in 20 ms and held.

The stress-time curves obtained from the simulated relaxation of each of the differ-

ent compositions of the networks were compared to the relaxation data of Pryse et al.

to find the composition that best matched the experimental data and the simulated

curves. Since we used Maxwell fibers in our model, the network stress always dropped

to zero over time, in contrast to the experimental data, for which the gels exhibited

a non-zero steady state stress. Thus, to compare the experimental and simulated

stress-time curves, we subtracted the steady state stress from the data of Pryse et

al., and normalized both datasets to the peak stress, i.e., the stress at 2% stretch.

Mean squared error (MSE) was used as the measure of goodness of fit between the

experimental data and simulated curves.

Fiber percolation As the composition of the slow relaxers was gradually increased,

we also probed the network for percolating slowly-relaxing paths, i.e., continuous

paths of only slow fibers connecting the two loaded faces of the network (Figure

2.3(b)). Fiber percolation was evaluated by calculating the shortest path between

all pairs of nodes lying on the two opposite faces using a Floyd-Warshall algorithm

[Floyd, 1962]. Paths of only slow fibers were identified by appropriately modifying the

adjacency matrix A of the network such that for every pair of nodes in the network

Ai,j =


1 if node i is connected to node j by a slow fiber

0 otherwise
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2.3 Results and Discussion

2.3.1 3F-4N network relaxation

Theoretical prediction of relaxation behavior

For the node and fiber numbering as shown in Figure 2.2, nodes 1 and 4 are boundary

nodes, while nodes 2 and 3 are interior. A linear arrangement such as this provides two

benefits, Firstly, since the nodes are restricted to move along a line, the dimensions of

the quantities involved in Equation 2.10 reduce. For instance, f bi = f b1 = fB = [f 1
1 f

4
1 ],

and

Gbn
ij = Gbn

11 =
∂f bi
∂xnj

, or G =


∂f 1

1

∂x21

∂f 1
1

∂x31
∂f 4

1

∂x21

∂f 4
1

∂x31

 .
Similarly,

Jmnij = Jmn11 =
∂fmi
∂xnj

, or J =


∂f 2

1

∂x21

∂f 2
1

∂x31
∂f 4

1

∂x31

∂f 3
1

∂x31

 .
Another benefit of the linear arrangement is that the forces in all the fibers are

equal since there can be no net force on the internal nodes at equilibrium. Also, the

magnitude of the boundary node forces are equal to the fiber forces, and they point

in opposite directions, i.e., |f 1
1 | = |f 4

1 | = σ, and f 1
1 = −f 4

1 . From Equation 4.4 then,

〈S11〉 =
1

V
σ
(
x11 − x41

)
.

The volume of the network box for this linear arrangement is, however, simply the

end-to-end length of the arrangement, i.e., V = (x11 − x41). Thus,

〈S11〉 = σ. (2.16)
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For the 3F-4N arrangement from Figure 2.2,

G =

E1 0

0 E3

 , and J =

−(E1 + E2) E2

E2 −(E2 + E3)

 .
and the constraint matrices relating nodal forces to fiber forces are

CB =

1 0 0

0 0 −1

 , and CI =

−1 1 0

0 −1 1

 .
Substituting in Equation 2.11, we get

d 〈S〉
dt

=
1

V
XT
B


1 0 0

0 0 −1


−

E1 0

0 E3


−(E1 + E2) E2

E2 −(E2 + E3)


−1 −1 1 0

0 −1 1


 ∂σ

∂t

∣∣∣∣
x

(2.17)

where σ = [σ1, σ2, σ3]T = σ[1, 1, 1]T , and from Equation 2.13, for Maxwell fibers,

∂σ

∂t

∣∣∣∣
x

= T−1σ = −σ


τ1 0 0

0 τ2 0

0 0 τ3


−1 

1

1

1


Following some algebraic manipulation, and using Equation 2.16, Equation 2.17 be-

comes,

d 〈S11〉
dt

=
1

V
XT
B

 E1E2E3

E1E2 + E2E3 + E1E3

 1

E1τ1

1

E2τ2

1

E3τ3
−1

E1τ1

−1

E2τ2

−1

E3τ3




1

1

1

 〈S11〉

 (2.18)
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From Equation 2.18, it is clear that the stress in the system of fibers relaxes with

a constant effective relaxation time of

τinst =

(
1

E1

+
1

E2

+
1

E3

) 1
1

E1τ1
+

1

E2τ2
+

1

E3τ3

 (2.19)

which can be viewed as a scaled harmonic mean of the relaxation times of the indi-

vidual fibers, weighted by their respective stiffness moduli. The effective relaxation

time is not necessarily equal to the relaxation time of any individual fiber τ1, τ2, or

τ3. If the fibers are identical, then the network relaxes at the same rate as the fibers.

The above result can also be generalized to any number of fibers arranged end-to-end.

For such an arrangement with Nf fibers, the relaxation time of the system will be

given by

τinst =

Nf∑
i=1

1

Ei

 1∑Nf
i=1

1

Eiτi

 .

Simulation of relaxation behavior

Stress relaxation of the 3F-4N arrangement with various spatial combinations of fast

and slow relaxation times was simulated to obtain the instantaneous relaxation time,

and stress-time curves like the ones shown in Figure 2.4(a) and (b) for the case where

the relaxation time of the middle fiber (τ2 = 1 s) was longer than that of the two

outer ones (τ1 = τ3 = 0.1 s). The value of the effective relaxation time predicted by

Equation 2.19 always matched that calculated from the simulations. Note that the

effective relaxation time of the system is constant and does not change over time as

the nodes are constrained to move on a line, and CB, and CI are constant.
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2.3.2 3-D Delaunay network relaxation

Effect of network composition on relaxation

Instantaneous relaxation time Figure 2.5(a) shows plots of the evolution of the

instantaneous relaxation times of a network for different compositions. The two

dashed lines show the effective relaxation time of the network when all fibers have

the same relaxation time, i.e., τfiber = τslow = 775.35, or τfiber = τfast = 4.73 seconds.

As expected, if all the fibers relax at the same rate, the forces on internal nodes

are always balanced, reducing the kinematic contribution to zero. The solid lines in

Figure 2.5(a) show the instantaneous relaxation time for the same network at different

intermediate compositions of slow and fast relaxers – ratios of 70-30, 50-50, and 30-

70% slow and fast relaxers, respectively – with the arrow indicating the direction of

increasing fast relaxer composition. In these cases, the instantaneous relaxation times

for the 3-D network vary over time as the constraint tensors CB and CI evolve with

the equilibration of forces on internal nodes. The instantaneous relaxation time of

the network immediately following the stretch lies between τfast and τslow, but at long

times, the contribution of the fast relaxing fibers to the overall network behavior drops

significantly, and the instantaneous behavior of the network is dominated by the slow

relaxers. Figure 2.5(b) shows the normalized stress-time curve for the network at the

three compositions mentioned above, again, with the arrow pointing in the direction

of increasing composition of rapidly-relaxing fibers.

The variation of the instantaneous relaxation time right after the stretch, and as

the system approaches steady-state, with change in network composition is shown

in Figure 2.6. As the percentage of slowly-relaxing fibers in the networks increases,

the initial effective relaxation time (dots) increases slowly. The near-steady-state

relaxation time (triangles), however, increases rapidly and approaches that of the

slow relaxers in the network. Since the fast relaxers decay out more quickly over time,
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the instantaneous relaxation time is always greater near steady-state than during the

initial relaxation. The effect of fiber percolation can also be seen in Figure 2.6. The

dashed vertical line on the left shows the network composition for which slow fiber

percolation was first detected, while the dashed vertical line on the right indicates the

network composition at which the fast relaxing fibers stop percolating. Before the

slow relaxers percolate, the steady-state network relaxation time does not reach the

slow rate. Once a percolating path of slow relaxers has formed, however, the steady-

state relaxation behavior of the network is governed by the slow relaxers. Žagar et al.

[Žagar et al., 2015] have shown a similar effect of fiber percolation on the non-linear

strain-stiffening trend observed in biopolymer networks.

Relaxation spectra Evolution of the relaxation spectrum with changing network

composition can be viewed in the series of snapshots shown in Figure 2.7. At the two

extreme cases, when the network is made up of only one type of fiber, the spectrum

shows a solitary peak. As the network composition changes, however, we see evolution

of the spectral landscape with multiple peaks arising, shifting, and disappearing. For

instance, for the case of the network composed of an equal number of slow and fast

relaxers (Figure 2.7(c)), the spectrum shows four distinct peaks. The two extreme

peaks at 4.9 s, and 722.5 s are close to the relaxation times of the two fiber types.

The intermediate peaks at 10.6 s, and 64.2 s, different from the characteristic times

of the two fiber types, arise due to the contribution of the kinematic term.

The relaxation spectrum of reconstituted collagen gels

Since all five network architectures tested showed similar relaxation trends, for the

next part, we picked one network at random. The relaxation response of that network

when it was composed of 43.7% slow relaxers was identified as being the best fit to

the experimental stress relaxation data based on the mean squared error (Figure
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2.8(a)). The relaxation spectrum of the network with this composition is shown in

Figure 2.8(b) along with the three time constants calculated by Pryse et al. for

collagen gels. The intermediate structure-dependent time constants in the simulated

spectrum were on the same order of magnitude as the middle time constant identified

by Pryse et al.

The simulated relaxation spectrum is also consistent with the findings of Babaei et

al. (Figure 2.9). Falling roughly within the interval of time constants defined by our

fast and slow relaxers, they identified four peaks at 2.6 s, 16.1 s, 72.7 s, and 1520 s.

They also found two additional time constants that were less than the characteristic

time we used for our fast relaxers, and thus were not seen in our simulations.

We did not aim to describe accurately the viscoelastic relaxation of reconstituted

collagen gels with our model. Neither was it our goal to explore the source of vis-

coelasticity in individual fibers via an analysis of overall network behavior, e.g., as

done by Gardel et al. [Gardel et al., 2004b] to study single F-actin filament mechan-

ics. Rather, our goal was to investigate how structure-based effects of interactions

between multiple viscoelastic elements manifest in the relaxation spectrum of a net-

work. Similar to the theory developed by Storm et al. [Storm et al., 2005] exploring

the in-built strain-stiffening effect of crosslinked networks, we show that a system of

interconnected viscoelastic fibers can exhibit certain relaxation time scales that are in-

herently related to their network structure. The similarity between the experimental

and simulated spectra seen above suggests that the viscoelastic response of collagen

is at least in part influenced by its network structure, and that some of the time

constants identified by Babaei et al. possibly arise as a result of the reorganization

of fibers within the network.

The non-affine reorganization of internal nodes is by no means the sole mechanism

behind the broad relaxation spectrum of biopolymer gels. Certainly, other factors

also contribute to the overall relaxation behavior, e.g., Broedersz et al. [Broedersz
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et al., 2010a] showed the presence of multiple relaxation times arising out of crosslink

binding and unbinding within the gel. The model presented here assumed that the

only source of viscoelasticity was the deformation of fibers and not, e.g., fiber motion

through the embedding material, fiber sliding through physical crosslinks, or bond

breaking and remodeling. Furthermore, there could be a range of individual fiber

relaxation times within a gel, and the distinction between those characteristic times

likely is not as clear-cut as assumed in our model. While we consider this a suitable

first approximation, further research will need to address the effects of these factors

on the relaxation behavior of networks.
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Nomenclature

superscript index node/fiber number
subscript index direction

Nb number of nodes on network boundary
Ni number of internal nodes
Nf number of fibers in the network
f bi force on node b along direction i
xbi position of node b along direction i
V volume of network domain
Sij Cauchy stress

Gbn
ij

Jacobian matrix relating motion of internal
node n to force on boundary node b

Jmnij

Jacobain matrix relating motion of internal
node n to force on internal node m

σf force generated in network fiber f

Cbf
i component of force in fiber f along direction i acting on node b
E stiffness of linear elastic element
η viscosity of dashpot element
τ characteristic relaxation time
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Figure 2.1: (a) A spring and dashpot model of the Maxwell fluid, (b) A Prony series
with multiple branches of Maxwell elements in parallel with an elastic spring element.
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Figure 2.2: Simplified arrangement of three Maxwell fibers connected end-to-end.
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Figure 2.3: (a) A Delaunay network composed of fibers with two distinct relaxation
times, τslow (pink), and τfast (black), (b) Similar network, but with two percolating
connections of slow relaxers (shown in red).

36



(a) (b)

0.00

0.25

0.50

0.75

1.00

0.00

0.02

0.04

0.06

0.08

0.0 0.5 1.0 1.5

Time (sec)

N
o

rm
a

liz
e

d
 s

tr
e

s
s

D
is

p
la

c
e

m
e

n
t o

f in
te

rn
a

l n
o

d
e

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0 1.5

Time (sec)

In
s
ta

n
ta

n
e

o
u

s
 r

e
la

x
a

tio
n

 t
im

e
 (

s
e

c
)

Figure 2.4: (a) Instantaneous relaxation time versus time for the simulated end-to-
end arrangement of three Maxwell fibers of equal stiffness (i.e., E1 = E2 = E3). The
characteristic relaxation times of the two outer fibers was 0.1 s (lower dashed line),
and that of the middle fiber was 1 s (upper dashed line). The effective relaxation
time of the arrangement was 0.143 s (solid line) – different from that of any individual
fiber. (b) The normalized stress in the fibers as a function of time (solid line - left
Y axis), and the displacement (in the computational domain) of an internal node as
the fiber stresses relax over time (dashed line - right Y axis).
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Figure 2.5: (a) Instantaneous relaxation times for a network with different compo-
sitions of slow and fast relaxers. The instantaneous relaxation time for a network
comprising of 70-30, 50-50, and 30-70% slow and fast relaxers, respectively, (solid
lines) varies over time within the interval bounded by the instantaneous relaxation
times for the network with all fast relaxers (lower dashed line), and all slow relaxers
(upper dashed line). The arrow indicates the direction of increasing percentage of
fast relaxing fibers within the network. (b) Stress in the network over time for the
three intermediate compositions shown in (a).
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Figure 2.6: Change in the instantaneous relaxation time of the network immediately
following the stretch (dots), and near steady-state (triangles) for different composi-
tions of the networks (n = 5, error bars represent standard error of the mean). Note
how the initial relaxation time increases gradually as the percentage of slow relaxers
in the network rises. The steady-state time, however, rapidly approaches that of the
slow relaxers. The left vertical dashed line indicates the average network composi-
tion at which slow relaxers percolate, while the right vertical line marks the average
composition at which fast relaxers stop percolating within the network.
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Figure 2.7: Relaxation spectra for a network as its composition changes from all fast
relaxers (a) to all slow relaxers (e). The intermediate compositions (b,c, and d) shown
are 30-70, 50-50, and 70-30 % slow and fast relaxers, respectively.
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Figure 2.8: Comparison of the simulated relaxation spectrum to that of reconstituted
collagen gels. (a) A network composed of 43.7 % slow relaxers best matched the
experimental data of Pryse et al. [Pryse et al., 2003](MSE = 0.0019). (b) Relaxation
spectrum of the simulated network showing peaks at 5.1 s, 14 s, 75.8 s, and 712.6 s.
Red lines mark the relaxation times computed by Pryse et al.
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Figure 2.9: Comparison of the simulated relaxation spectrum to that computed by
Babaei et al. [Babaei et al., 2015] for the collagen gel relaxation data of Pryse et al.
[Pryse et al., 2003]. Red lines mark the relaxation times computed by Babaei et al.
near the interval bound by the slow and fast characteristic relaxation times of the
fibers used in the simulation.
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Chapter 3

Multiscale Model of Fatigue of

Collagen Gels

The content of this chapter was published as a research article in Biomechanics and

Modeling in Mechanobiology by Dhume, Shih, and Barocas [Dhume et al., 2018].

3.1 Background

Structures composed of fiber networks are extremely prevalent in our world. A number

of consumer products, such as paper and open-cell foams, are composed of networks of

polymeric elements with diameters on the order of micrometers. Networks composed

of interconnected filaments or fibers are also a common occurrence in biology. These

networks can form hierarchical structures ranging in size from a few micrometers,

e.g., the actin filament network of the cytoskeleton [Mitchison and Cramer, 1996],

to larger-scale structures on the order of millimeters, e.g., connective tissues such

as the facet capsular ligament [Ban et al., 2017], or the fibrin network in a clot

[Weisel and Nagaswami, 1992]. Biopolymeric materials, such as collagen gels, are

hydrated fibrous networks [Flory, 1953]. Electrospun materials, such as the scaffolds

used in tissue engineering to mimic the mechanical properties of the native tissue, are
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networks composed of nano/microscale fibers [Barnes et al., 2007].

The literature on the mechanics of networks is vast, with a tremendous amount

of work being done in particular on flexible macromolecular networks such as rub-

ber. A major objective of such macromolecular materials science has been to derive

constitutive equations governing the macroscale mechanics of the material [Flory and

Rehner, 1943, Wang and Guth, 1952, Arruda and Boyce, 1993]. Analogous techniques

have also been developed and used extensively in the study of other heterogeneous

materials like metallic foams [Ashby et al., 2000]. Due to their importance in various

industries, several studies have focused on characterizing the pre-failure mechanics

[Deshpande and Fleck, 2000], fatigue failure [McCullough et al., 1999], and creep

behavior of foams [Andrews et al., 1999].

Recent advances in multiscale modeling have further motivated this research, guid-

ing it in the direction of relating macroscale material behavior to parameters of the

underlying microscale network [Sarvestani and Picu, 2004, Ban et al., 2016, Abel

et al., 2013]. For more information on the present understanding of mechanics of

random networks, the reader is referred to the review by Picu [Picu, 2011]. The in-

creasing use of synthetic materials with a fibrous microstructure in the manufacture

of commercial products has also necessitated a better understanding and modeling of

network failure and fatigue behavior, e.g., failure of electrospun scaffolds [Koh et al.,

2013].

More recently, network modeling has been used by the biological community to

describe the behavior of various soft tissues and tissue analogs, e.g., [Stylianopoulos

and Barocas, 2007, Suki et al., 2005, Abhilash et al., 2014, Broedersz and MacKin-

tosh, 2014, Zhang et al., 2013]. Network models have also been expanded to model

catastrophic failure of tissues, e.g., [Suki et al., 2012, Witzenburg et al., 2016]. In

spite of the advances made, fatigue failure of biological networks is still not well un-

derstood. Over the lifespan of a living being, tissues undergo many cycles of varying

44



loads, e.g., tendons in the body experience fluctuating tensile stress during daily ac-

tivities, the tissues of the lung expand and contract with breathing, and the aorta

expands with every heartbeat to accommodate the flow of blood. While damage

can be repaired as biological tissues remodel over time, fatigue can still become in-

creasingly relevant in certain tissues with age as the collagen turnover rate slows

down [Freeman, 1999]. The tendency to fatigue can lead to injuries and a reduction

in quality of life. For example, fatigue damage resulting from overuse can lead to

tendinopathies [Andarawis-Puri and Flatow, 2011], fatigue failure is one of the major

modes of failure of bioprosthetic heart valves [Martin and Sun, 2014], and some forms

of osteoarthrosis have been attributed to the fatigue of the collagen fiber network in

articular cartilage [Weightman et al., 1978].

Obviously, the fatigue behavior of a fibrous network must depend on the properties

of the individual fibers that constitute it. Given, however, that a network material’s

pre-failure stress-strain behavior and tensile strength in a stretch-to-failure experi-

ment depend on both the fiber properties and the network architecture [Shasavari

and Picu, 2012, Picu, 2011], one must ask whether the fatigue process is similarly

affected. That is, if two networks are constructed of the same fibers but with different

fiber connectivity, will the macroscopic fatigue behavior of the two networks differ,

and if so, how? We examined that question in the context of different simulated net-

works subjected to cyclic uniaxial loading until failure,complemented by experiments

on reconstituted collagen gels.

3.2 Modeling Approach

3.2.1 Network generation

Three-dimensional fiber networks were represented as trusses composed of non-linear

elastic cylindrical members (fibers) connected by means of pin-joints (nodes) allowing
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free rotation. Initially, the networks were generated using a Voronoi [Voronoi, 1908]

tessellation. Voronoi networks have been shown to provide a close approximation to

collagen gel mechanics[Nachtrab et al., 2011] and have been used in previous studies

modeling the mechanics of collagenous connective tissues [Zhang et al., 2013]. Voronoi

networks have also been used to model cellular solids e.g., sponges, foams [Roberts

and Garboczi, 2001, Roberts and Garboczi, 2002].

To construct Voronoi networks, three-dimensional space was divided among the

initial seed points, forming polyhedral regions, such that every point inside a poly-

hedron was located closest to the seed point corresponding to that region and lo-

cated within it. The edges of the Voronoi polyhedra calculated from the seed points

represented fibers, and their vertices represented network nodes. Three-dimensional

Voronoi cells were generated using the MATLAB function voronoin [MATLAB, 2013].

Fiber networks generated using the above algorithm were isotropic and were

trimmed to fit within a unit cube in the computational domain. The physical space

represented by the computational domain was related to the dimensions of the fibers

and their desired volume fraction within the network by the relation

X =

√
πr2Σl

φ
(3.1)

where X is the conversion factor relating the physical and computational domains, r

is the fiber radius, Σl is the total fiber length in the network within the computational

domain, and φ is the fiber volume fraction. Every network had fibers of the same

radius but a different length. In this work, we took r = 100nm [Lai et al., 2012] and

φ = 0.05. The total fiber length Σl was typically around 150− 200, so the unit cube

represented a physical domain of side X ≈ 10µm.
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3.2.2 Single fiber mechanics and failure

Network fibers were modeled as one-dimensional non-linear springs with the consti-

tutive equation

f =
EA

B
(eB(λ

2−1
2

) − 1) (3.2)

where f is the force generated within the fiber, A is its cross-sectional area, E denotes

fiber stiffness, B controls its non-linearity, and λ is the fiber stretch. At infinitesimal

stretch, Equation 3.2 reduces to a linear material with Young’s modulus E. The

constitutive equation was adapted from a previous structural model [Billiar and Sacks,

2000] and has been used in multiscale modeling of the collagen microstructure in soft

tissues [Lai et al., 2012, Sander et al., 2009a]. While the non-linearity introduced by

Equation 3.2 is not essential in understanding the fatigue behavior of networks, it is

a more accurate model of collagenous tissue as it accounts for the lack of compression

stiffness of the fibers. Similar non-linearity can also be added in the model in other

ways, e.g., by assuming a linear elastic response for the fiber and introducing fiber

waviness [De Vita and Slaughter, 2007], or by using bilinear fiber stiffness [Chandran

and Barocas, 2006a].

Failure was introduced into the network by removing individual fibers, which

was achieved in the model by reducing the small-strain modulus of a failed fiber

(E in Equation 3.2) by several orders of magnitude (Table 3.1). Grossly reducing

the magnitude of a failed fiber ensured that it did not contribute to the mechanical

response of the network, while maintaining stability of the numerical approach used

to model the network. Fiber failure occurred either due to a fiber stretching beyond a

critical stretch or due to fatigue. As the network was stretched by an external cyclic

loading, the stress experienced by individual fibers within the network changed from

cycle to cycle since the stress within a network is distributed over many fibers, and this

distribution changed as fibers failed and the network structure reorganized. A stress-
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life (SN) curve determined the fatigue behavior of the fibers by relating the number

of cycles of repeated loading required to fail a fiber to the amplitude of the oscillating

load applied to it. To account for the varying stress amplitudes experienced by a

fiber, a damage fraction was calculated for each fiber, which measured the fraction of

its life consumed by exposure to cycles at different stresses. Fatigue failure occurred

when the value of this cumulative damage fraction exceeded 1 (Miner’s rule [Miner,

1945]). A fiber’s properties remained unchanged during the fatigue process until

failure occurred. Additionally, it was assumed that the loading and unloading phases

of the applied cyclic load on the network occurred instantaneously, so fiber fatigue

failure was evaluated only at the peak of each loading cycle.

3.2.3 Network mechanics and failure

Repeated loading to the same averaged network stress was applied to simulate the

fatigue process. Since the properties of the network changed as fibers failed, the

amount of displacement required to achieve the imposed stress changed during the

course of the simulation. Thus, an iterative approach was used to apply the same

stress at each cycle (Figure 3.1).

Uniaxial deformation of the network was simulated by imposing a displacement

on all nodes lying on one face of the network while keeping the opposite face fixed

in space. The surfaces facing in the other two principal directions were assumed

to be stress-free. Network nodes were identified as either boundary nodes, which

included all nodes lying on a network face and constrained to move with the network

face, or internal nodes, which were free to move and equilibrate. Stretching of fibers

due to the motion of the network boundary generated forces on all network nodes,

boundary as well as internal. For a given network boundary displacement, however,

the equilibrium solution of the boundary value problem had no net force on any

internal node. The nodal positions corresponding to this equilibrium solution were
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calculated using Newton’s method by computing the Jacobian matrix J such that

Jij =
∂fi
∂xj

(3.3)

where f is total force on a node, x is its position, and i and j are the unconstrained de-

grees of freedom of the network, i.e., every node had 3 degrees of freedom correspond-

ing to translations in the 3 principal directions. Using the Jacobian, a displacement

step was calculated for the internal nodes of the network

∆x = −J−1R (3.4)

where ∆x is the displacement step, and R is the vector of residual forces on the

internal nodes. This calculation was performed iteratively until the net force on all

internal nodes was less than a specified tolerance. The volume-averaged Cauchy stress

in the network was obtained from the forces acting on nodes lying on the network

boundary[Chandran and Barocas, 2006a]:

σnetij =
1

V

∑
bnd nodes

xbjf
b
i (3.5)

where σnet is the volume-averaged Cauchy stress on the network, xb is the nodal

position of a boundary node, f b is the force acting on the node, and V is the volume

of the network. The network deformation/equilibration cycle described above was

performed iteratively using a bisection search to calculate a suitable network stretch

such that the boundary forces matched the applied boundary loading. The initial

stretches bounding the bisection search were selected such that the interval between

the boundary force values generated by the network at these two stretches contained

the external applied load. All computations were carried out through scripts written

in MATLAB [MATLAB, 2013].
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Failure of the network was defined as no change in the volume-averaged stress for

any further increase in network stretch. By this definition, a network was determined

to have reached failure once the following condition was met

dσnet

dλnet
< ε (3.6)

where σnet and λnet are the stress and stretch of the overall network respectively,

measured in the direction of deformation, and 0 < ε � 1. The slope
dσnet

dλnet
was

computed numerically by making a small displacement increment with no additional

fatigue and recalculating the network stress. Ten Voronoi networks were subjected to

a cyclic load-to-failure test to simulate fatigue and obtain an SN curve.

3.3 Collagen gel fatigue – experiments and model

3.3.1 Gel preparation and testing

Collagen gels were synthesized as described previously [Lake and Barocas, 2012].

Briefly, a 2 mg/mL collagen solution was prepared by combining the following (by vol-

ume fraction): 14.2% 1 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES,

ThermoFisher), 2.6% 1 M sodium hydroxide (NaOH, Sigma-Aldrich), 10% 10x Modi-

fied Eagle’s Medium (MEM, ThermoFisher), 6% fetal bovine serum (FBS, GE Health-

care), 0.1% penicillin-streptom-ycin, 0.1% fungizone, 1% L-glutamine (Invitrogen),

and 66% 3 mg/mL rat-tail collagen I (ThermoFisher). All ingredients were mixed

on ice in a centrifuge tube and then cast into acrylic dog-bone molds sealed at the

bottom with vacuum grease to prevent leaking. The collagen solution was incubated

in the molds for 3 hours at 37 ◦C to facilitate polymerization. Polymerized gels were

removed from the molds and immersed in a 1x phosphate buffered saline (PBS) bath

prior to and during testing.
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Uniaxial mechanical tests were performed on gels using a universal test machine

with a 5N force transducer (TestResources, Shakopee, MN). First, five gels were tested

in a displacement-controlled, uniaxial stretch-to-failure test to determine an average

yield force for the gels, which was used to determine the load amplitudes in the

subsequent fatigue tests. For stretch-to-failure tests, gels were stretched at a rate of

1 mm/min, and data were collected at 2 Hz. Next, load-controlled, uniaxial tension-

tension fatigue tests were performed on collagen gels with the loading amplitudes

varying cyclically between a lower limit of 10% and upper limit of 20-90% of the

average yield force. For the fatigue tests, gels were stretched at a rate of 30 mm/min

with a data sampling rate of 2 Hz; tests continued either until the sample failed from

fatigue or until the duration of the test exceeded 30 minutes. The number of cycles

at failure was recorded to obtain an SN curve.

3.3.2 Gel simulation

The fatigue experiments described in Section 3.3.1 were simulated using the network

model wherein Voronoi networks were used to represent collagen gels. The param-

eters for the fiber constitutive equation (Equation 3.2) in the network model were

selected based on previous research modeling the mechanics of collagen fiber net-

works[Witzenburg et al., 2016] (Table 3.1). The fatigue behavior of a single fiber

was defined by the SN curve of a human extensor digitorum longus (EDL) tendon,

obtained from the literature [Schechtman and Bader, 1997]:

Snorm = 101.25− 14.83× log(N) (3.7)

where Snorm is the normalized load amplitude expressed as a percentage of the UTS

and N is the number of cycles to failure. The high degree of collagen fiber alignment

in the tendon made its fatigue behavior an acceptable approximation – and the closest

51



Parameter Meaning Value

r Fiber cross-section radius 100 nm

E Fiber stiffness 10 MPa

B Fiber non-linearity 2.5

λcritical Failure stretch 1.42

Efailure Stiffness value of failed fibers 10−7 Pa

Table 3.1: Values for the parameters of the constitutive equation (Equation 3.2) and
the failure stretch of a fiber.

one we could find – to that of a single collagen fiber.

The simulation of gel fatigue proceeded in a manner analogous to the procedure

employed in testing the collagen gels. First, the simulated networks were stretched to

failure to obtain an ultimate tensile strength (UTS) which was used to calculate the

load amplitudes used in subsequent fatigue simulations. The cyclic loading applied

to the simulated networks ensured that the networks always remained under tension.

The upper load limit was equal to the external applied stress while the lower limit

was 10% of the UTS.

3.4 Network architecture and fatigue

Having confirmed that (1) the network SN curve differs from that of an individual

fiber, and (2) our network fatigue model showed a similar SN trend as that obtained

from the collagen gel experiments, we investigated the effect of network geometry

on its fatigue behavior. We compared the simulated SN curves obtained for three

different network types with the same fiber properties.

3.4.1 Network generation and structure

In addition to the Voronoi networks generated previously, we also used networks

created using the following two algorithms:
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• Delaunay [Delaunay, 1934]: The initial randomly selected seed points formed

the final nodes of the network. Connections were formed between those points

such that the circumsphere of any tetrahedron formed by a set of four connected

nodes did not contain any other network node. Networks were generated using

the MATLAB function delaunay [MATLAB, 2013]. Delaunay networks have

been used in previous studies modeling fibrous tissues [Aghvami et al., 2016].

• Erdős-Rényi [Erdős and Rényi, 1959]: For networks created using the

Erdős-Rényi (ER) algorithm, seed points represented network nodes, and con-

nections were formed randomly between pairs of nodes such that shorter con-

nections were favored over longer ones. The probability distribution used to

connect nodes varied inversely with the Euclidean distance between the pair of

nodes and was given by

p(i, j)|i 6=j = 1− dist(i, j)

max dist
(3.8)

where p(i, j) is the probability of forming a connection between network nodes i

and j, dist(i, j) is the Euclidean distance between nodes i and j, and max dist is

the maximum Euclidean distance between two nodes calculated for the initial set

of seed points. The average value of max dist was 1.4 units in the computational

domain. ER networks were chosen to explore the space of possible networks

more thoroughly.

Networks generated using the above algorithms were also isotropic, and had the same

network dimensions as the Voronoi networks detailed in Section 3.2.1. Networks

were chosen to be isotropic as we wanted to eliminate any direction-dependent effects

arising due to fiber anisotropy within the networks. Table 3.2 shows the average

values of some measures of network topology obtained for each of the three network

types – Delaunay, Voronoi, and ER.
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Network type
Total
fiber

length

Mean
fiber

length

Mean
nodal
degree

Number
of

nodes

Number
of

fibers

Physical
dimension

of
network, µm

(equation 3.1)
Delaunay 127.90 0.23 15 397 560 8.90
Voronoi 68.40 0.11 4 430 612 6.50

Erdős-Rényi 366.38 0.60 74 590 660 15.10

Table 3.2: Average network parameter values for the three different network types
(n = 10 for each network type.)

Delaunay and Voronoi networks were generated from the same number of initial

seed points, but the Voronoi networks, on average, had more nodes. The ER networks

required a larger number of seed points to form a completely connected network, i.e.,

a network without any isolated clusters, conforming to the physical network size

requirement, which resulted in the ER networks having a higher number of nodes.

The internal nodes in the Delaunay and ER networks were highly connected while all

the internal nodes in the Voronoi networks had a connectivity of 4 (Figure 3.2).

On average, the Voronoi networks were composed of a greater number of shorter

fibers (Figure 3.2). The Delaunay networks showed a nearly uniform fiber distribution

(linear CDF in Figure 3.2) of fibers with length 0 to 0.45 units and then a tail to

about 0.6 units. The Voronoi networks, in contrast, showed a steady decrease in

probability with length (concave down CDF) and had only one fiber above length 0.4

units. The ER networks showed considerably longer fibers, including some of length

greater than 1.0 units. The mean fiber length was observed to be considerably longer

in the ER networks compared to the Delaunay and Voronoi geometries. The longer

fibers spanning the ER networks resulted in a greater number of boundary nodes

than internal ones when the network was trimmed to fit within the computational

unit cube.
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3.4.2 Fatigue simulation

Fatigue failure of the different networks was simulated to obtain an SN curve for each

of the three network types. The parameters of the constitutive equation (Equation

3.2) governing the pre-failure behavior of an individual fiber remained unchanged

from those noted in Table 3.1. Since the primary focus of this portion of the study

was to compare the fatigue behaviors of different network geometries composed of the

same fiber, any reasonable choice of fiber fatigue properties would have sufficed. The

fiber SN curve used thus far (Equation 3.7) to model collagen gels required a large

number of cycles to fatigue, especially at lower loads. Thus, to reduce simulation time,

fibers were assigned an SN curve that was also an exponential, plus an offset, with

parameters selected such that the fiber failed within a computationally acceptable

number of cycles (Equation 3.9). The offset introduced a threshold value of stress,

selected to be the stress generated in a fiber at a stretch of 1%, below which the fiber

life was infinite.

S = (1.27× 106)× e−
N
2 + 1× 104 (3.9)

Cyclic loading was simulated on 10 networks of each type and the amplitude of the

oscillating load on the networks was varied to produce network fatigue between 1 to

30 cycles.

3.5 Results and Discussion

We begin this section by discussing the behavior of a representative network under

cyclic loading, followed by a comparison of the fatigue behavior of collagen gels sim-

ulated using our model and that obtained experimentally. Finally, we examine the

differences seen in the mechanics and fatigue of the different network types – Voronoi,

Delaunay, and ER. Prior to simulating fatigue failure, however, the networks were

confirmed to be sufficiently resolved, i.e., there was no change in the network stress-
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strain response with a further increase in the number of nodes and fibers. As seen

in Figure 3.3, there was almost no change in the stress-stretch curve with change in

number of fibers.

3.5.1 Network response to cyclic loading

In the initial cycles with all fibers intact, the networks showed a non-linear stress-

stretch response with overlapping loading and unloading phases, i.e., no hysteresis

(path oao in Figure 3.4A). With the onset of fiber fatigue failure, however, the network

became more compliant and stretched more at the peak load. The peak stretch then

remained stable until additional fiber failure events led to further increases in network

compliance (Figure 3.4A, locations (b-d)). The jumps seen in the stress-stretch curve

at peak loads suggested a loss of elasticity of the material due to accumulation of fiber

failure in the network similar to the stress-softening effects included in macroscale

constitutive models for describing damage in soft tissues, e.g., [Pena, 2011, Martin

and Sun, 2013].

The number of failed fibers within the network accumulated over time until the

network lost integrity. This gradual accumulation of damage within the network

through progressive failure of fibers is similar to that observed by Linka et al. [Linka

et al., 2018] in their study of soft tissue fatigue using a multiscale constitutive model.

Figure 3.4B shows the evolution of network strain with time. While the applied stress

remained the same over all the loading cycles, with the onset of fiber failure, a larger

network strain was required for the network to support the applied load.

Because of the purely elastic fibers used in the model, the networks did not show

any permanent deformation, or hysterises, prior to failure like that observed in fa-

tigue tests on, e.g., bioprosthetic heart valves [Sun et al., 2004], and included in more

recent constitutive models of tissue fatigue [Pena, 2011, Martin and Sun, 2013, Mar-

tin and Sun, 2014]. Compared to these currently existing macroscale constitutive
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models, however, our model captured the non-affine nature of deformations within

the network. At any given stretch, only a small number of fibers carried a majority

of the load (Figure 3.4C); the load shifted as fibers failed and the remaining fibers

reorganized.

3.5.2 Collagen gel fatigue

Figure 3.5A shows the average load-stretch curve for the collagen gel stretch to failure

experiments. The large dot in Figure 3.5A shows the average failure stretch (19 ±

1.7 % ) and ultimate tensile load (UTS, 0.06 ± 0.023 N) for all of the experiments

(n = 6; mean ± 95% CI). Figure 3.5B shows the progressive increase in gel strain

with time. Fatigue experiments on collagen gels were limited to a duration of 30

minutes (≈ 2000 cycles). Gels tested at peak loads greater than or equal to 40%

of the UTS exhibited failure, as shown in Figure 3.5C. Also shown is the SN curve

obtained from the fiber network model using fiber properties based on those of a

tendon as reported by Schechtman et al.[Schechtman and Bader, 1997]. The model

curve, with no fitting parameters, showed good agreement with the collagen gel data

at the higher stresses. The deviation of the model from the experiments at lower

stresses, however, suggests that the fatigue behavior of an individual collagen fiber

is not well approximated by the fatigue properties of a tendon. These results also

indicate that fiber rearrangement within a collagen fiber network increases fatigue life

for a given normalized stress.

3.5.3 Effects of network architecture

Pre-fatigue behavior

Networks of all three types showed a non-linear stress-stretch response with no hys-

teresis in the initial cycles. The distribution of load within all three network types was
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uneven, with only a small fraction of the fibers bearing a majority of the load. This

skewed distribution is visualized in Figure 3.6 by plotting the cumulative probability

distribution of fiber stresses. For example, at a low applied stress of 300 Pa, a major-

ity of the fibers (≈50%) remained stress-free for all three network types. At a higher

stress of 1500 Pa, however, the fraction of unloaded fibers in the Voronoi network

dropped considerably (≈14%). The percentage of stress-free fibers in the other two

network types did not vary as much with the external network load. The variation of

the fraction of stress-free fibers with external load seen in the Voronoi networks was

indicative of a prominent ’toe-region’. A stability analysis of the truss-like networks

provides a possible explanation for this variation. For large networks, the Maxwell

criterion [Maxwell, 1864] requires that the mean nodal degree be greater than 6 for

a three-dimensional truss to be stable. The Voronoi network, failing to satisfy this

condition, possesses a larger number of nodal degrees of freedom, thus increasing the

extent of fiber reorganization possible at lower loads and allowing a wider variation

in the number of fibers aligning in the direction of stretch and supporting the applied

force on the network.

The Kolmogorov-Smirnoff (K-S) test for cumulative distribution functions further

corroborates that the differences seen in the network behavior arise due to a funda-

mental difference in the architectures of the three network types. The high values of

the K-S statistic (Table 3.3) demonstrate that the cumulative probability distribu-

tions of fiber stresses within each network in Figure 3.6 are not drawn from the same

underlying distribution (p < 0.05 for all comparisons).

Whole-network-scale failure and fatigue

Prior to fatigue testing, a stretch-to-failure test was simulated on each network to

obtain the UTS for the three network types (Figure 3.7). The failure stresses for the

Voronoi and Delaunay networks did not differ significantly, however, the ER networks
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Delaunay Voronoi Erdős-Rényi

Delaunay - 0.41 0.12

Voronoi 0.41 - 0.32

Erdős-Rényi 0.12 0.32 -

Table 3.3: Kolmogorov-Smirnoff statistic values comparing the cumulative probability
distribution of fiber stresses for each network type prior to the onset of fiber fatigue
failure. Rows and columns denote different network types, and the values indicate
the K-S statistic for a comparison between the network type indicated by the row
with that shown in the column. A lower value of the K-S statistic implies higher
similarities in the distributions being compared.

consistently showed a lower UTS.

Semi-log plots of the mean SN data for all three network types are shown in Figure

3.8, with the stress offset by the network fatigue limit and normalized to the network

UTS, i.e.,

S =
σnet − σ∞

σuts − σ∞
(3.10)

where σnet is the stress applied to the network face, σ∞ is the fatigue limit, i.e., the

network stress below which the network possesses infinite life, and σuts is the mean

UTS for the network. Under this transformation, the SN curve for the fiber, i.e.,

Equation 3.9 would be a straight line on the semi-log plot, and any deviation from

linearity in the SN curves of the networks would then indicate an effect arising due

to the network structure-induced non-linearity. The semi-log SN plots fit well to a

line in the high stress-low cycle regime with slight deviation from linearity in the low

stress-high cycle limit.

Exponential curve fits to the mean values of the SN data were used to make a

comparison between networks and fiber behavior (Figure 3.9). On account of the low

fiber volume fractions, fibers experienced a magnitude of stress that was substantially

larger than the volume-averaged stress obtained for the network. To make a mean-

ingful comparison between fiber and network fatigue properties, the fiber SN curve

was scaled by a factor of
φ

3
. This scaling factor would make the fiber and network
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SN curves identical for a regular cubic lattice of fibers.

For all three network types tested, at low to moderate loads, the network structure

was mechanically more endurant than the single fiber (Figure 3.9). As observed in

Figure 3.4C, only a few fibers supported most of the applied load and thus only a

fraction of fibers accumulated significant fatigue damage with each loading cycle that

the network underwent. As those few loaded fibers eventually fatigued to failure, load

was transferred to fresh fibers that could still endure multiple loading cycles, and so

on. This geometric shielding effect occurring within the network allowed it to endure

the repeated loading longer compared to an individual fiber.

At higher magnitudes of loading, however, in addition to fatigue, fibers also began

to fail because of being overstretched. The network stretch generated to support the

higher applied loads was sufficient to extend some fibers beyond their critical stretch

value, especially in the highly connected Delaunay and ER networks, which resulted

in fiber, and subsequently, network failure leading the fiber SN curve to cross over

the network curves in the high-stress low-cycle region of Figure 3.9.

Among the different network geometries, the ER networks consistently performed

worst on the fatigue tests. The longer average fiber length and high connectivity

in the ER networks resulted in many fibers traversing between two opposite faces

of the network in just a few connections. Thus, at a given network load, the fibers

experienced larger stretches, and consequently larger stresses, compared to those in

the other two network types, reducing the overall life of the ER networks.

Over most of the range of loading simulated, the Delaunay networks outlasted the

Voronoi. The short fiber lengths and well-connected nature of the Delaunay networks

led to the uneven distribution of fiber stresses seen in Figure 3.6A with a large number

of stress-free fibers. This distribution meant that the Delaunay networks had more

backup fibers, i.e., fibers unstretched in the initial failure-free loading cycles, but which

experienced gradually increased loading as network failure progressed over time and
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the network reorganized.

3.5.4 Limitations of the model and future research directions

The model described in this paper simulates fatigue failure of truss-like fiber networks

undergoing cyclic loading. This study assumed that fatigue and failure occur only

within the fibers themselves, and not in the connections between fibers. Although

we consider this assumption to be reasonable for our choice of flexible fiber networks,

and a good first step in studying network fatigue behavior, we recognize that in many

systems, e.g., in metallic foams [McCullough et al., 1999], fatigue and failure can also

occur at fiber connections, requiring a different theoretical framework.

Additionally, the model analyzed network fatigue minus any growth, remodeling,

and chemical effects that are present in biological tissues, e.g., mechanical overloading

of collagen fibrils places them in a stable, denatured state [Veres et al., 2014], poten-

tially delaying failure. Denaturation of collagen can also lead to changes in the rest

length of fibers, and affect the local stiffness of the tissue and its capacity to remodel

[Dittmore et al., 2016]. Thus, the increase in fatigue life of a network compared to an

individual fiber could be magnified in a tissue that can repair itself. Further research

of long-term damage of fibrous tissues will need to address such mechanobiological

effects of growth and remodeling of the network components.
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(
)
(a) (b) (c)

Figure 3.1: Basic outline of the force-controlled deformation model of a fiber network
showing three loops. The outermost loop (a) specifies the desired loading cycle.
The intermediate loop (b) adjusts the boundary displacements of the network so
as to match the specified load. The innermost loop (c) calculates the equilibrium
internal nodal positions for a boundary displacement specified by the intermediate
loop. Upon convergence, the inner loop passes a stress value to the intermediate loop
for comparison to the target stress
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B

A Delaunay Voronoi ER(a)

(b)

(c)

Figure 3.2: Histograms of nodal connectivity (a), cumulative probability distribution
of fiber lengths in the computational domain (b), and representative images (c) of
the three different network structures used – Delaunay, Voronoi, Erdős-Rényi
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Figure 3.3: Stress-stretch plots for a network with 300, 400, 800, 1200, and 1600
nodes without fiber failure. The curves do not show any significant differences and
overlap each other
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(a) (b)

(c)

Figure 3.4: (a) A representative set of stress-stretch curves for a Voronoi network
failing under fiber fatigue, (b) Evolution of network stress and strain with time, (c)
Instantaneous snapshots of the network at the locations (a-d) indicated on the stress-
stretch curve. The color bar shows the stress generated within each fiber and black
dashed lines indicate failed fibers
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Figure 3.5: (a) Average load-stretch curve obtained for collagen gels. The dot indi-
cates the mean failure load and stretch (n=6), with the box around the dot indicating
the 95 % confidence interval. (b) The evolution of strain over time for a represen-
tative gel undergoing fatigue testing. Strain values were normalized to the strain at
failure for that gel. (c) Fatigue behavior of collagen gels. Collagen gels (dots) showed
a fatigue life similar to that reported previously for tendon ([Schechtman and Bader,
1997], dashed line). A Voronoi network model (solid red line) assuming tendon prop-
erties for each fiber, showed a longer fatigue life than the tendon, suggesting that the
network structure increased fatigue life at a given normalized stress.
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Figure 3.6: Cumulative probability distribution of fiber stresses in the different net-
work types at a network load of 300 Pa (dashed) and 1500 Pa (solid). Inset bar
graphs show the percentage of total fibers that remain stress free for the two applied
network loads
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Figure 3.7: Failure stresses obtained for each network type in a stretch-to-failure
simulation showing the mean ± 95 % confidence intervals (n=10)
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Figure 3.8: Stress-life (SN) plots obtained from simulations of the three different
network structures (n = 10 for each network type) shown on a semi-log plot. Error
bars indicate 95% confidence intervals. The stress indicated on the vertical axes
is normalized to the ultimate tensile strength of the respective network type. The
dashed lines are drawn passing through the first and last data points in each plot to
show the deviation from linearity of the SN data, if any.
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Figure 3.9: Comparison of the network and fiber SN plots. Network SN data for each
network type was fit to an exponential curve
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Chapter 4

Multiscale Model of Contractile

Response of Cells Fixed on

Substrates

4.1 Background

The contractility of the cell cytoskeleton plays a crucial role in many phenomena

including cell migration [Beningo et al., 2001, Ingber, 2003], wound healing [Wood

et al., 2002], and morphogenesis [Beloussov et al., 2000, Kiehart et al., 2000]. Addi-

tionally, cell contraction-driven reorganization of fibrous extracellular matrix (ECM)

is important in long-range communication between cells [Harris et al., 1981, Vader

et al., 2009, Abhilash et al., 2014], and has significant impact on tissue behavior over

a range of length scales [Ladoux, 2009, Guo et al., 2012]. The cytoskeleton consists

of a network of interconnected structural biopolymers, mainly actin, microtubules,

and intermedeate filaments [Amos and Amos, 1991]. These interlinked networks play

a major role in carrying and distributing both (1) the forces generated actively by

actin-myosin interactions in the cell, and (2) external loads acting on the cell. Thus,
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understanding and modeling the mechanics of the cytoskeletal network has funda-

mental implications in understanding how living cells respond to mechanical stresses.

Generally, structure-based models of the cell cytoskeleton have taken one of two

different approaches: open-cell foams, and stress-supported structures. For detailed

information on each of these modeling techniques, the intersted reader is directed to

review article by Hatami-Marbini and Mofrad [Hatami-Marbini and Mofrad, 2015].

Briefly, open-cell foam models have used networks of interconnected struts, wherein

the stretching or bending of the struts provide mechanical stiffness. Stress-supported

structures have used prestressed structural members to maintain mechanical stability,

with the prestress arising from the structure’s external attachments, or from internal

elements, e.g., tensegrity models [Ingber, 2003]. While both strategies have led to

successful descriptions of the passive mechanical characteristics of the cytoskeleton,

chemically-mediated events, such as actin-myosin kinetics, have proven a great chal-

lenge. Later models have added effects of molecular scale phenomena like thermal

motions [MacKintosh et al., 1995, Boey et al., 1998], and the dynamic remodeling

[Fabry et al., 2001, Isabey et al., 2016, Rajagopal et al., 2018] to accurately capture

the behavior of the cytoskeleton.

On the other hand, several continuum models have also been developed to describe

cell mechanics. Prominent among these models are models representing the cell as a

liquid contained in a cortical shell [Evans and Yeung, 1989, Dong et al., 1991], models

treating the whole cell as a solid continuum [Mijailovich et al., 2002, Peeters et al.,

2005, Isabey et al., 2016], and biphasic models [Shieh and Athanasiou, 2003, Barreto

et al., 2013, Sakamoto et al., 2016]. Continuum models have also included coupled

thermodynamic and mechanical constitutive equations to predict the development

and alignment of actin stress-fibers [Pathak et al., 2008], substrate stiffness-dependent

cytoskeletal forces [Deshpande et al., 2006], and effects of cyclic loading [Wei et al.,

2008].
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While continuum models are easier to use and capture accurately the mechanical

behavior at the whole-cell level, such models provide little insight into molecular level

mechanisms in the cytoskeleton. Continuum models also assume all deformations

occuring within the load-bearing cytoskeletal structure to be affine. Fiber networks,

however, deform in a non-affine manner, which introduces inherent nonlinearities in

their mechanical response. Thus, the objective of this work was to incorporate the

phenomenological constitutive model of cytoskeletal contraction developed by Desh-

pande et al. [Deshpande et al., 2006], and modified by Pathak et al. [Pathak et al.,

2008], in a multiscale framework utilizing a discrete fiber network microstructure. We

use the multiscale model to simulate contracting cells adhered to substrates, and com-

pare the predictions of stress-fiber formation with those calculated by Pathak et al.

We also look at the effect of changing the network microstructure on the steady-state

configuration of the contracting cell.

4.2 Methods

4.2.1 Multiscale model

Our multiscale model (Figure 4.1) consisted of a finite element (FE) mesh of the cell

(∼ µm), with representative volume elements (RVEs) comprising of discrete fiber

networks (∼ nm), in parallel with a compressible neo-Hookean material, located at

the Gauss points of each FE (with eight Gauss points assigned to each FE). The

fibers represented actin networks within the cell, while the neo-Hookean material

accounted for the non-fibrillar matrix surrounding the fibers. Macroscale cell stresses

were determined primarily by the deformation of the microscale RVE networks, with

an additional contribution arising from the neo-Hookean material. The cell nucleus

was not modeled.

The commercial FE software ABAQUS [ABAQUS, 2009] was used to generate FE
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meshes, and to visualize results, while all other computations were performed using

an in-house FE code written in C.

Microscale mechanics

RVE networks were modeled as trusses of cylindrical nonlinear elastic members (fibers)

connected at pin joints (nodes) allowing free rotation.

Single-fiber mechanics Each fiber in the RVE networks was assigned a passive

constitutive behavior of the form

σp =
E

B

(
eB

λ2−1
2 − 1

)
(4.1)

where σp is the passive stress generated within the fiber at a stretch λ, E is its stiffness,

and B controls fiber nonlinearity. At infinitesimal stretch, Equation 4.1 reduces to

a linear material with Young’s modulus E. The constitutive equation was adapted

from a previous structural model [Billiar and Sacks, 2000].

Additionally, fiber contractility was introduced in the model by using the Hill-like

[Hill, 1938] model described by Pathak et al. [Pathak et al., 2008], translated from

Pathak’s continuum contraction model to our discrete networks. Fiber contractility

within the cell is initiated by a signaling cascade triggered by an external biochemical

or mechanical perturbation. This external signal was modeled as an exponentially

decaying signal given by C = exp

(
−t
θ

)
, where C is the strength of the signal at

time t, and θ controls its rate of decay. The external signal affected the activation

level η of each fiber in the network, which depended on the active contractile stress

within the fiber σa, and was governed by a linear kinetic law having the form

η̇ = (1− η)
Ckf
θ
−
(

1− σa
σ0

)
ηkb
θ

(4.2)
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where kf and kb are constants governing the rates of the forward and backward

kinetics, respectively, σ0 is the maximum isometric tension possible in a fiber, and

the overdot indicates a time derivative (Figure 4.2(a)). Physically, η represents the

ratio of the polymerized actin and phosphorylated myosin concentrations within a

stress-fiber bundle to the maximum concentrations permitted by biochemistry. Thus,

higher actin-myosin concentrations would result in higher η values and thus higher

contractile forces in the network. The stress dependence in Equation 4.2 accounted for

the depolymerization of actin fibers while ensuring stability of fibers under isometric

tension, i.e., σa = σ0.

Finally, the active tension generated in a fiber was related to its rate of stretch λ̇

as

σa
σ0

=



0 λ̇ <
−η
kv

1 +
kv
η
λ̇
−η
kv
≤ λ̇ ≤ 0.

1 λ̇ > 0

(4.3)

where kv is a constant representing the sensitivity of the fiber to the activation signal

(Figure 4.2(b)). The active contraction stress in a fiber in Equation 4.3 arises due

to the spontaneous cycling of myosin motors on actin filaments. Contractile tension

in the fiber is greatest when it is held in an isometric condition, similar to the Hill-

Huxley model [Huxley, 1957], and the tension in the fiber falls as the fiber is allowed

to shrink due to the reduced likelihood of the myosin heads engaging actin fibers. If

the fiber experiences extension, then the tension generated within it is equal to the

maximum isometric tension σ0.

Network mechanics Motion of the RVE network boundaries caused the fibers

within the network to deform and apply forces on all network nodes. At every time

step, however, the equilibrium solution of the network force problem had no net force

on any internal node, i.e., nodes not lying on the boundary of the network domain.
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The nodal positions corresponding to this equilibrium solution were calculated using

Newton’s method by computing the Jacobian matrix J such that Jij =
∂fi
∂xj

, where

f is total force on a node, and x is its position. We used backward-Euler integration

for the time dependent terms in the fiber constitutive equations. Newton iteration

was applied at every time step until the net force on all internal nodes was less

than a specified relative tolerance (10−8). The volume-averaged Cauchy stress in the

deformed network was then calculated as [Chandran and Barocas, 2006b]

〈
σnetworkij

〉
=

1

V

∮
xjfids =

1

V

∑
b

f bi x
b
j (4.4)

where 〈·〉 denotes volume-average, xbj is the coordinate along the j direction, f bi is the

force in the i direction, acting on the boundary node b, and summation occurs over

all boundary nodes.

Microscale network structure

Network generation We used networks with three different architectures (Figure

4.3) to investigate the effect of microstructure on the contraction of the cell:

• Delaunay [Delaunay, 1934] tessellation: Connections were formed between

randomly generated seed points such that the circumsphere of any tetrahedron

formed by a set of four connected nodes did not contain any other network node.

Networks were generated using the MATLAB function delaunay [MATLAB,

2013]. Delaunay networks have been used previously in modeling fibrous tissues

[Aghvami et al., 2016]. They are highly connected, with an average nodal degree

of 12.

• Voronoi [Voronoi, 1908] tessellation: Three-dimensional space was divided

among the initial randomly generated seed points, forming polyhedral regions,

such that every point inside a polyhedron was located closest to the seed point
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corresponding to that region and located within it. The edges of the Voronoi

polyhedra calculated from the seed points represented fibers, and their vertices

represented network nodes. Three-dimensional Voronoi cells were generated

using the MATLAB function voronoin [MATLAB, 2013]. Voronoi networks

have been shown to provide a close approximation to collagen gel mechanics

[Nachtrab et al., 2011], and have been used in previous studies modeling the

mechanics of collagenous connective tissues [Zhang et al., 2013]. Voronoi net-

works are considerably looser than Delaunay networks, with nodal degree of 4

for each interior node.

• Arruda-Boyce-like network [Arruda and Boyce, 1993]: This network

consisted of eight nodes located at each corner of a cube, connected to a node

in the center of the cube. Arruda-Boyce networks have previously been used to

describe the elasticity of isotropic polymers such as rubber [Arruda and Boyce,

1993], as well as the mechanics of tissues, e.g., tendons [Kuhl et al., 2005]. For

identical fibers as used here, deformations in the Arruda-Boyce model are affine

with the macroscopic scale.

Network fiber alignment Fiber alignment within a network was measured using

a length-weighted 3-D orientation tensor [Sander et al., 2009a] defined as

Ωnet =

∑
li

ltotal


cos2 αi cosαi cos βi cosαi cos γi

cosαi cos βi cos2 βi cos βi cos γi

cosαi cos γi cos βi cos γi cos2 γi

 , (4.5)

where αi, βi, and γi are the angles between the ith fiber and the X, Y, and Z axes,

respectively, li is the length of the fiber, ltotal is the total length of fibers in the network,

and summation occurs over all fibers. The diagonal entries of Ωnet vary from 0, for

no alignment, to 1, indicating all fibers aligned in a single direction. For isotropic
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networks, all diagonal entries equal 0.3. The eigenvector of Ωnet corresponding to the

maximum eigenvalue indicated the preferred direction of alignment of fibers, and the

difference between the maximum and middle eigenvalues was used as a measure of

the strength of alignment.

Length scale coupling

The method by which macroscale and microscale were coupled has been described

previously [Chandran and Barocas, 2006b]. Briefly, macroscale deformations were

mapped to deformations of the boundaries of RVEs located at Gauss points using

tri-linear basis functions. Next, a force balance was performed on the RVE network

as described above, and volume-averaged microscale stresses were computed using

Equation 4.4. The microscale network stresses were then appropriately scaled and

passed back to the macroscale as stresses at the corresponding Gauss points within

each FE. The scaling factor relating the macroscale and the microscale was determined

by the volume fraction of fibers in the RVE networks and the dimensions of the fibers.

X =

√
πr2ltotal

φ
(4.6)

where X is the physical dimension of the RVE network, r is the radius of the fibers,

ltotal is the total length of fibers in the network in computational units, and φ is the

desired fiber volume fraction. The macroscale deformation that balanced stresses

within the continuum was then determined iteratively. This method of coupling

length scales has been used previously to simulate the passive mechanical behavior

of a range of soft tissues [Sander et al., 2009b, Witzenburg et al., 2016, Zhang et al.,

2018].
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4.2.2 Cells on concave ligand patterns on rigid surfaces

Using the multiscale model described above, we first simulated cells fixed on concave-

pattern substrates following the experiments of Théry et al. [Théry et al., 2006] and

the computations of Pathak et al. [Pathak et al., 2008]. We compared our results

with those obtained by the 2-D continuum model of Pathak.

Théry et al. [Théry et al., 2006] analyzed the structure of cells adhered onto V,

T, Y, and U shaped ligand patterns printed on an otherwise non-adherent surfaces

(Figure 4.4). Among other data, Théry et al. recorded the actin stress-fiber distri-

bution in cells fixed on concave patterns, and they measured the radius of curvature

of the non-adhered edge of the cell at steady-state. The radius of curvature r of the

free edge was calculated using

r =
(l2/4) + h2

2h
, (4.7)

where l is the length of the line segment connecting the ends of the non-adhered edge,

and h is the perpendicular distance from that line segment to the midpoint of the

free edge in the deformed cell. The ends of the free edge were defined as the points

where the non-adhered edge first makes contact with the ligand patch. In our model,

this corresponded to the first points on both ends of the non-adhered edge that were

fixed.

Material parameters used in the multiscale model are shown in Table 4.1. All

parameters governing the active contraction of fibers, except σ0, were selected to

match those used by Pathak et al. The maximum contration force possible in a fiber

σ0 was used as a single fitting parameter. The passive stiffness and non-linearity

parameters for fibers were selected from a previous multiscale model of the passive

mechanical behavior of a cell embedded in extra cellular matrix [Lai et al., 2013].

First, using a Delaunay microstructure, we calibrated our model to match the
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Parameter Value

Passive fiber parameters
[Lai et al., 2013, Knappeis and Carlsen, 1962]

(Eq. 4.1)

E 10 GPa
B 2.5

fiber radius 3.25 nm

Active fiber parameters
[Pathak et al., 2008] (Eqs. 4.2, 4.3)

θ 720 sec
kf 10
kb 1
σ0 3 GPa
kv 2.14×104 sec

neo-Hookean parameters
[Pathak et al., 2008]

Young’s modulus 80 Pa
Poisson’s ratio 0.3

Table 4.1: Parameters used in the multiscale model RVE networks.

steady-state radius of curvature of the free edge of the V shape measured by Théry

et al. With the appropriately calibrated model, we then simulated cells fixed on the

remaining patterns, i.e., T, Y, and U. Next, using the same parameters as above,

we reran the V shape simulation with Voronoi and Arruda-Boyce-like networks to

investigate whether the contracting network microstructure affected the steady-state

of the cell.

FE meshes of the cells were generated to match the planar dimensions reported

by Théry et al., assuming a uniform thickness of 1 µm. Each FE was assigned a

network picked randomly from a pool of networks, and all networks in the undeformed

configuration were generated to be as close as possible to perfectly isotropic.

4.3 Results and Discussion

4.3.1 Stress distribution and fiber alignment

Figure 4.5 shows the distribution of the normalized maximum principal stress for each

concave pattern as computed by the continuum model of Pathak et al. (Figure 4.5(a)),

and as predicted by our multiscale model (Figure 4.5(b)). The stress distributions

in the multiscale model (Figure 4.5(b)) are not symmetric since the RVE networks

80



in the undeformed configuration were almost, but not entirely, isotropic. Assigning

a different RVE network to each FE – chosen at random from a pool of networks –

also contributed to the spatial inhomogeneity of the material properties.

Fiber orientations predicted by the multiscale code are also consistent with the

experimental results of Théry et al., and agree well with the predictions of Pathak

et al. The lines in Figure 4.5(b) indicate the direction of fiber alignment, i.e., the

direction of the eigenvector corresponding to the maximum eigenvalue, and the length

of the lines indicates strength of alignment, calculated as described in the ’Methods’

section. This measure of fiber alignment is similar to the circular variance measure

used by Pathak et al. to predict stress-fiber directions (lines in Figure 4.5(a)). Net-

work fibers primarily orient along the non-adhered edge as the cell contracts. The

orientation of the networks in the interior of the cell where the cell is fixed to the

substrate remains almost isotropic. The regions of high and low fiber alignment are

indicated on the V shape in Figure 4.5(b) with the labels H and L, respectively.

With proper calibration of the maximum possible isometric tension in a network

fiber, the radii of curvature of the non-adhered edges predicted by the multiscale

model agree well with the experimental results of Théry et al. (Figure 4.6). The

change in the radii for the different substrate patterns – V, T, Y, and U – shows a

trend similar to the predictions of the continuum model, however, for each shape,

the non-adhered edges in the multiscale model show higher contraction resulting in

a smaller radius of curvature. This difference can in part be attributed to different

stress calibrations, and it may also have been affected by the three-dimensionality of

our model vs. Pathak’s 2-D model.

4.3.2 Effect of RVE microstructure on steady-state shape

The effect of microscale network architecture can be seen in Table 4.2. For an Arruda-

Boyce-like microstructure, the radius of curvature of the free edge of the cell fixed
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Network type Radius of curvature (µm)

Delaunay 44.78
Voronoi 57.49

Arruda-Boyce >1000

Table 4.2: Steady-state radius of curvature of the free edge for a cell fixed on a
V-shaped substrate for different choices of RVE network structures.

on a V-shaped substrate is much larger than that obtained using a Delaunay or

Voronoi network. The Arruda-Boyce network structure is inherently affine, and when

constructed to fit in a cube as we did, it also becomes perfectly isotropic prior to

contraction. The cell model using the Arruda-Boyce-like network mainly deformed

along the thickness of the cell, flattening the cell as the fibers contracted, resulting

in a mainly straight free edge. The Delaunay and Voronoi networks on the other

hand show non-affine deformations within the network, with the latter being more

non-affine than the former.

The steady-state radius of curvature of the non-adhered edge when using a Voronoi

microstructure was slightly greater than that obtained using Delaunay networks with

the same set of material parameters. A possible explanation for this difference in

curvature lies in the low nodal connectivity of Voronoi networks. As shown by Žagar

et al. [Žagar et al., 2015], the resistance to deformation arising in a cross-lined

network is governed by two fundamental mechanisms, first, a regime dominated by

fiber rotation, followed by a regime wherein axial deformation of the fibers is the

primary mode of deformation. Given their low nodal connectivity, there is a greater

capacity for fiber rotation and reorganization within the Voronoi networks, resulting

in the reduced contraction of the free edge over time.
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Step	4: Calculate	volume	
averaged	stress	over	RVE

Step	2: Deform	RVEs	based	
on	element	deformation

Step	3:	 Solve	RVE	force	balance

Iterate	until	macro	
force	balance	is	

achieved

boundary

𝜎macroscale = 𝜎network + 𝜎neoHookean

𝜎network = "
#
∑ 𝑥&𝑓(�
*+,

Ffiber = Fpassive + Factive

Step	1:	Apply	boundary	 condition	and	make	an	initial	guess	for	nodal	displacements

Step	5: Pass	stress	up	
to	finite	elements

Figure 4.1: Schematic showing the working of the multiscale approach using the
deformation of microscale discrete fiber networks to calculate macroscale stresses.
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Figure 4.3: Representative images of (a) Delaunay, (b) Voronoi, and (c) Arruda-Boyce
network structures.
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(a) (b)

(c) (d)

Figure 4.4: Distribution of actin obtained for cells fixed on (a) V, (b) T, (c) Y, and (d)
U shaped substrates. Image reproduced with some modification from [Théry et al.,
2006]. Copyright ©John Wiley & Sons, Ltd.
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Figure 4.5: Stress distribution within the cell showing the normalized maximum
principal stress for (a) the continuum model of Pathak et al. [Pathak et al., 2008],
and (b) the multiscale model. The lines in each plot show the direction and strength
of alignment of fibers as predicted by the respective models. The H and L labels on
the V shape in (b) show the regions of high and low fiber alignment, respectively.
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Chapter 5

Failure of the Porcine Ascending

Aorta: Multidirectional

Experiments and a Unifying

Microstructural Model

The content of this chapter was published as a research article in the Journal of

Biomechanical Engineering by Witzenburg, Dhume, Shah, Korenczuk, Wagner, Al-

ford, and Barocas [Witzenburg et al., 2016]. My contribution was to the modeling

aspect of this work, including generating microscale networks to match histological

data, setting up the multiscale model, and appropriately calibrating the multiscale

model to match experimental data.

5.1 Background

The ascending thoracic aorta (Figure 5.1(a)) supports tremendous hemodynamic

loading, expanding (≈ 11% area change [Mao et al., 2008]) during systole and elas-
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tically recoiling during diastole to augment the forward flow of blood and coronary

perfusion [2]. Although it is only about 5 cm long [Gray et al., 2000, Dotter et al.,

1950] (15% of the total length of the thoracic aorta), the ascending aorta is involved

in 60% of all thoracic aortic aneurysms [Isselbacher, 2005]. Aneurysm dissection and

rupture (resulting in imminent death) are the primary risks associated with ascending

thoracic aortic aneurysm (ATAA), occurring when the remodeled tissue is no longer

able to withstand the stresses generated by the arterial pressure. Unfortunately, sur-

gical repair of an ATAA also involves considerable risk. Statistically, death from

rupture becomes more likely than death during surgery at an ATAA diameter over

5.5 cm, setting the current interventional guidelines [Isselbacher, 2005, Davies et al.,

2002, Davies et al., 2006, Elefteriades, 2010]. Aortic dissection and rupture remain

difficult to predict, however, occurring in a significant number of patients with smaller

aneurysms [Isselbacher, 2005, Davies et al., 2006, Pape et al., 2007] while many pa-

tients with ATAA diameters above 5.5 cm do not experience aortic dissection or

rupture. New surgical guidelines have been proposed based on aneurysm growth rate

[Davies et al., 2002, Elefteriades, 2010] and normalized aneurysm size [Davies et al.,

2006, Svensson et al., 2003, Kaiser et al., 2008], but growth rates can be difficult to

determine and require sequential imaging studies [Berger and Elefteriades, 2012], and

normalizing aneurysm size is still a controversial strategy [Matura et al., 2007, Nijs

et al., 2014, Holmes et al., 2013, Etz et al., 2012]. A better understanding of aortic

wall mechanics, especially failure mechanics, is imperative.

Because of the complex geometry of the aortic arch (aggravated in the case of

aneurysm) and the complex mechanical environment surrounding an intimal tear,

the stress field in a dissecting aorta involves many different shear and tensile stresses.

It is therefore necessary to study tissue failure under as many loading conditions as

possible. Tissue from the ascending aorta has been tested in a variety of configurations

(reviewed by Avanzini et al. [Avanzini et al., 2014]), with uniaxial and equibiaxial
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stretch tensile tests being the most common. In-plane uniaxial [Vorp et al., 2003, Il-

iopoulos et al., 2009, Pichamuthu et al., 2013] and biaxial tension tests [Shah et al.,

2014, Okamoto et al., 2002, Azadani et al., 2013, Babu et al., 2015] provide informa-

tion on tensile failure in the plane of the medial lamella (σθθ, σzz), and the biaxial

tests can provide some additional information on in-plane shear (σθz). Although the

dominant stresses in these tests may be the primary stresses during vessel rupture,

they are not those driving dissection. Stresses near an advancing dissection include

a combination of radial tension (σrr) and transmural shear (σrθ, σrz) [van Baardwijk

and Roach, 1987], which are more difficult to test experimentally. Peel tests on pieces

of artery [Sommer et al., 2008, Tong et al., 2011, Tsamis et al., 2014, Kozuń, 2016] or

aneurysm [Pasta et al., 2012] provide insight into the failure behavior of the tissue in

radial tension (σrr), loading perpendicular to the medial lamella, as does direct exten-

sion to failure in the radial direction [Sommer et al., 2008]. To examine transmural

shear stresses (σrθ, σrz), the shear lap test, well established in the field of adhesives

[ASTM, 2014] and used by Gregory et al. [Gregory et al., 2011] to study interlamellar

mechanics of the annulus fibrosus of the intervertebral disk, is an attractive option. In

the present work, our first objective was to obtain a more complete picture of artery

failure mechanics by using a combination of in- plane uniaxial and equibiaxial, shear

lap, and peel tests to cover all three-dimensional loading modalities (Figs. 5.1(b) and

5.1(c)). To the best of our knowledge, this study was the first to generate data on

the interlamellar shear strength of aortic tissue in this manner.

The need for better experiments is complemented by the need for better computa-

tional models of tissue failure. Many theoretical models have been utilized to describe

ATAAs, but only a few have addressed failure and dissection [Volokh, 2008, Gasser

and Holzapfel, 2006, Ferrara and Pandolfi, 2008, Wang et al., 2014]. Volokh [Volokh,

2008] used a softening hyperelastic material model and a two-fiber family strain en-

ergy density function within the context of a bilayer arterial model to examine the
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failure of arteries during inflation. This model yields valuable results concerning rup-

ture but does not address dissection. An impressive model of dissection mechanics

was put forward by Gasser and Holzapfel [Gasser and Holzapfel, 2006], employing

a finite-element (FE) model with independent continuous and cohesive zones. The

Gasser-Holzapfel model combines a nonlinear continuum mechanical framework with

a cohesive zone model to investigate the propagation of arterial dissection, and it

agreed well with experimental peel test results [Sommer et al., 2008]. However, the

reliance on the a priori definition of the location and size of the cohesive zone, the

zone in which microcrack initialization and coalescence are confined, limits the model.

In addition, the model does not address microscale failure; that is, it does not cap-

ture the complex fiberfiber and fibermatrix interactions during dissection and does

not account for the lamellar structure of the vessel wall. Similar results to those

of Gasser and Holzapfel were found by Ferrara and Pandolfi [Ferrara and Pandolfi,

2008], who investigated the impacts of mesh refinement and cohesive strength on

dissection. Alternatively, Wang et al. [Wang et al., 2014] used an energy approach,

rather than a cohesive zone, to simulate dissection in two dimensions. In addition to

tear propagation, Wangs model was capable of simulating tear arrest, reflecting the

clinical observation that dissection often occurs in stages. The energy approach pre-

sented, however, requires a priori definition of crack direction, does not allow changes

in propagation direction, and does not address microscale failure. Advantages of a

multiscale model include its ability to link observed macroscale properties to changes

in microscale structure and its allowance of spontaneous failure initiation location

and growth.

Recently, we utilized a multiscale model to describe ex vivo testing results of

porcine ascending aorta in both uniaxial and equibiaxial extension [Shah et al., 2014].

The tissue microstructure was idealized as a single network of uniform-diameter fibers

functioning in parallel with a neo-Hookean component that accounted for all nonfib-
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rillar contributions. Although that model worked well for in-plane behavior, the

lack of an accurate representation of the lamellar structure rendered it inaccurate

for out-of-plane data and failed to take advantage of the full capabilities of the mul-

tiscale computational framework. It was clearly necessary to modify the simplified

microstructural organization of our earlier work and consider the layered structure of

the medial lamellae, including in particular the interlamellar connections, in order to

capture the tissues biomechanics in all loading conditions more relevant to dissection.

Therefore, the second and third objectives of this study were to generate a tissue-

specific microstructure based on the layered structure of the aorta and to utilize the

new microstructure to build a multiscale model capable of replicating experimental

results from all the mechanical tests (uniaxial extension to failure, equibiaxial exten-

sion, peel to failure, and shear lap failure) performed.

5.2 Methods

5.2.1 Experiments

Ascending aortic tissue was obtained from healthy adolescent male swine (≈6 months;

87.4 ± 9.6 kg, mean ± SD) following an unrelated in vivo study on right atrial radio

frequency ablation and stored in 1% phosphate-buffered saline (PBS) solution at 4◦

C. Tissue specimens were tested within 48 h of harvest while immersed in 1% PBS

at room temperature. Per our previous study [Shah et al., 2014], a ring of tissue

was dissected from the ascending aorta and cut open along its superior edge (Figs.

5.2(a) and 5.2(b)). The tissue specimen was cut into small samples, both axially and

circumferentially aligned, for mechanical testing. Several samples were obtained from

each aorta (a typical dissection and testing plan is shown in Figure 5.2(c)).

Four different loading modalities were utilized to characterize the tissue mechan-

ically: uniaxial, equibiaxial, peel, and lap tests (Figure 5.3). Planar uniaxial and
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equibiaxial tests, which characterized the tissue in tension along the medial lamella

(σθθ, σzz, σθz), were performed and described previously [Shah et al., 2014]. The

intima, adipose tissue, and adventitia were removed from samples tested uniaxially

and biaxially. While these testing modalities are relevant to the rupture of the vessel,

dissection of the ascending aorta occurs when the medial lamellae separates into two

layers and thus is highly dependent on the behavior of the tissue across lamellae.

Thus, two additional mechanical testing modes were utilized. Peel tests (cf. [Sommer

et al., 2008, Tong et al., 2011, Pasta et al., 2012]) were performed to quantify the

tissues tensile response perpendicular to the medial lamellae (σrr) and subsequent

dissection of the media into two layers. Shear lap tests were performed to quantify

the tissues response when exposed to shear along the medial lamella (σrz, σrθ). The

two protocols are described in detail below.

Peel Tests : The peel test (Figure 5.3(c)) measures the adhesive force between

two layers as they are pulled apart. For each rectangular sample designated for

peel testing, a ≈4 mm incision was made parallel to the plane of the aortic wall to

initiate delamination. The incision was made such that the delamination plane was

approximately centered within the medial layer, thus separating the sample into two

flaps of approximately equal thickness. Images of the sample were taken to determine

its initial unloaded dimensions. There was a moderate variation in the exact location

of the incision with respect to the center of the media due to sample size and cutting

technique. If the delamination plane was outside the middle third of the sample

thickness, the sample was discarded. Lines were drawn on the side of the sample with

Verhoeffs stain in order to track the progress of failure.

The two flaps of the delaminated section of the tissue sample were then mounted

in a custom gripping system with sandpaper on either side to prevent slipping and

secured to a uniaxial tester. Samples were cut and mounted on a uniaxial testing
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machine (MTS, Eden Prairie, MN) such that the vertical direction, as shown in Figure

5.3(c), was either axial or circumferential with respect to the vessel. The two flaps

were peeled apart, causing the tissue sample to delaminate, at a constant displacement

rate of 3 mm/min, and force was measured with a 5 N load cell. Preliminary tests

showed no significant dependence on grip speed in the range of 1-10 mm/min, so a

single velocity was used for all the subsequent experiments. Images of the side of

the sample were recorded every 5 s throughout testing to capture the progression of

failure. Peel tension was computed as force divided by undeformed sample width for

both axially and circumferentially oriented samples.

Shear Lap Failure : The shear lap test (Figure 5.3(d)) produces large shear

stresses in the overlap region. Rectangular samples designated for shear lap test-

ing were specially shaped to test their shear strength. A ≈3.5 mm incision was made

on each end of the sample centered within the medial layer and separating each end

of the sample into two flaps of approximately equal thickness. The flap containing

the intimal surface was removed from one end, and the flap containing the adventitial

surface was removed from the other, resulting in the shear lap sample shape with an

overlap length (black-dotted line in Figure 5.3(d)) of 3.0 mm. Images of the sample

were taken to determine its initial unloaded dimensions. Again, there was moderate

variation in incision location with respect to the center of the media due to sample

size and cutting technique; therefore, if either incision surface was measured to be

outside, the middle third of the sample thickness the sample was discarded. Verhoeffs

stain was used to texture the side of the sample for optical displacement tracking.

The specially cut sample was then mounted in a custom gripping system with

sandpaper on either side to prevent slipping and secured to a uniaxial tester (MTS,

Eden Prairie, MN). The height of the grips was adjusted such that the overlap surface

was along the horizontal, and an image of the sample was taken to determine its initial
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unloaded dimensions. Each sample was extended to failure at a constant displacement

rate of 3 mm/min, and force was measured with a 5 N load cell. During testing, digital

video of the side of the sample was obtained at 24 fps, 1080p HD resolution, and

spatial resolution of ≈ 103 pixels/mm. Image analysis and dis- placement tracking

were performed per our previous studies [Raghupathy et al., 2011, Witzenburg et al.,

2012].

Shear stress was computed as force divided by the undeformed overlap area (sam-

ple width multiplied by overlap length). Unlike the peel test, which has been used

previously to investigate aortic tissue [Sommer et al., 2008, Pasta et al., 2012], to the

best of our knowledge the shear lap test has never been used to investigate aorta or

other cardiovascular soft tissues (though Gregory et al. used a similar test to inves-

tigate the shear properties of the annulus fibrosus [Gregory et al., 2011]). Therefore,

displacement tracking was performed to verify that the shear lap test, as applied to

the ascending thoracic aorta, produced large shear strains in the overlap region.

5.2.2 Statistical analysis and presentation

Unless otherwise stated, the p-values are based on unpaired two-tailed t-tests, and

p-values less than 0.05 were deemed significant. Values are reported as mean ± 95%

confidence interval (CI).

5.2.3 Model

The multiscale model employed was an extension of the previously presented model

of collagen gel mechanics [Chandran et al., 2008, Hadi et al., 2012] applied recently

to porcine aortic failure during in-plane tests [Shah et al., 2014]. It consisted of

three scales: the FE domain at the millimeter (mm) scale, representative volume

elements (RVEs) at the micrometer (µm) scale, and fibers with radii at the 100

nanometer (nm) scale. Each finite element contained eight Gauss points, and each
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Equation Description Scale

σij,j = 1
V

∮
∂V
(
σLij − σij

)
uk,jnkdS

σ:macroscale averaged Cauchy stress
V : RVE volume
σL: microscale stress
u: RVE boundary displacement
n: normal vector to RVE boundary

Macroscale
volume-averaged stress

balance
Tissue

σij = 1
V

∫
σLijdV = 1

V

∑
b fixj

b: RVE boundary cross links
x: boundary coordinate
f : force acting on boundary

Volume-averaged
RVE stress

Network

Ff = EA
β

(
eβ

λ2−1
2
−1
)

Ff : fiber force
E: fiber stiffness
A: fiber cross-sectional area
β: fiber non-linearity
λ: fiber stretch

Fiber constitutive
equation

Fiber

σMij = G
J

(Bij − δij) + 2Gν
J(1−2ν)δijln(J)

σM : matrix Cauchy stress
G: matrix shear modulus
J : deformation tensor determinant
B: left Cauchy-Green tensor
ν: Poisson’s ratio

neo-Hookean matrix
constitutive equation

Tissue

Table 5.1: Governing equations applied within the multiscale model, as well as the
length scale at which each equation was applied.

Gauss point was associated with an RVE. Each RVE was comprised of a discrete

fiber network in parallel with a nearly incompressible neo-Hookean component (to

represent the nonfibrous material). The governing equations are given in Table 5.1.

The major advance to the model was the implementation of a new tissue-specific

network, specifically designed to capture the different components of the aortic wall.

The aorta is organized into thick concentric medial fibrocellular layers which can

be represented by discrete structural and functional units. The lamellar unit, de-

tailed by Clark and Glagov [Clark and Glagov, 1985], consists of an elastic lamina
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sandwiched between two sheets of smooth muscle cells. The small-scale network

in our computational model was designed to simulate the architecture of this dis-

crete lamellar unit (Figure 5.4), as visualized by histological analysis. Portions of

unloaded porcine ascending aorta were cut such that the transmural structure was

aligned in the circumferential, i.e., horizontal, direction and fixed in 10% buffered

neutral formalin solution overnight, embedded in paraffin, and prepared for histolog-

ical investigation per standard techniques. Sections were stained consecutively with

hematoxylin and eosin (HE) stain (Figure 5.4(a)) to visualize smooth-muscle cell

nuclei, Massons trichrome stain (Figure 5.4(b)) to visualize collagen, and Verhoeffs

Van Gieson stain (Figure 5.4(c)) to visualize elastin. The final network structure is

shown in Figure 5.4(d), and the net- work parameters are given in Table 5.2. The

volume fraction for the tissue-specific network was set to 5% per the porcine aorta

volume fraction measurements of Snowhill et al. [Snowhill et al., 2004]]. The elas-

tic lamina was represented by a 2-D sheet of elastin and collagen fibers. Collagen

fibers within the elastincollagen sheet were generated such that they exhibited strong

circumferential orientation, based on the known tissue structure [Clark and Glagov,

1985, Tonar et al., 2015, Snowhill et al., 2004, Timmins et al., 2010, Sokolis et al.,

2008]. Histological and compositional studies show more elastin than collagen within

each lamina of the ascending aortic wall. Based on the histological observations of

Sokolis et al. [Sokolis et al., 2008], the overall ratio of elastin-to-collagen within the

2-D sheet was set to 1.6. Elastin fibers were generated such that orientation was

approximately isotropic within the plane. The radial properties of the aorta are less

well established [Dobrin, 1978, MacLean et al., 1999] but are extremely important

because failure of the interlamellar connections dictates delamination and thus aortic

dissection. Within the model network, the interlamellar connections were designed

to encompass the combined effect of all structural components (smooth muscle cells,

fine collagen fibers, and fine elastin fibers) contributing to radial strength.
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Parameter Value References

Collagen fibers

Network orientation,
[Ωzz,Ωθθ,Ωrr]

[0.1 0.9 0] ± [0.05 0.05 0]
Mean ± 95% CI

[Clark and Glagov, 1985],
[Tonar et al., 2015],

[Snowhill et al., 2004],
[Timmins et al., 2010]

Fiber stiffness (E × A) 340 nN [Lai et al., 2012]
Fiber non-linearity (β) 2.5 [Lai et al., 2012]
Failure stretch (λcritical) 1.42 [Lai et al., 2012]

Elastin fibers
Network orientation,
[Ωzz,Ωθθ,Ωrr]

[0.5 0.5 0] ± [0.05 0.05 0]
Mean ± 95% CI

Fiber stiffness (E × A) 79 nN [Shah et al., 2014]
Fiber non-linearity (β) 2.17 [Shah et al., 2014]
Failure stretch (λcritical) 2.35 [Shah et al., 2014]

Interlamellar connections

Network orientation,
[Ωzz,Ωθθ,Ωrr]

[0.2 0.6 0.2] ± [0.05 0.05 0.05]
Mean ± 95% CI

[Clark and Glagov, 1985],
[Tonar et al., 2015],

[Snowhill et al., 2004],
[Timmins et al., 2010]

Fiber stiffness (E × A) 36.4 nN [MacLean et al., 1999]
Fiber non-linearity (β) 0.01 [MacLean et al., 1999]
Failure stretch (λcritical) 2 [MacLean et al., 1999]

neo-Hookean matrix
Poisson’s ratio (ν) 0.49
Shear modulus (G) 1.7 kPa [Shah et al., 2014]

Proportions
Network volume
fraction (φ)

0.05
[Snowhill et al., 2004]

[Humphrey, 1995]
Elastin to collagen
ratio (R)

8:5
[Tonar et al., 2015]

[Sokolis et al., 2008]
Ratio of interlamellar
connections to elastic
lamina fibers (r)

1:1 [Snowhill et al., 2004]

Table 5.2: Model parameter values and sources
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Smooth-muscle cells within the media exhibit preferential circumferential align-

ment [Clark and Glagov, 1985, Timmins et al., 2010, Dingemans et al., 2000], so

interlamellar connections were aligned with circumferential preference. Since the

interlamellar connections encompass the combined effect of all the structural compo-

nents contributing to radial strength (smooth muscle cells, fine collagen fibers, and

fine elastin fibers), it is somewhat unclear how to define the proportion of interlamellar

connections-to-elastic lamina fibers. Snowhill et al. [Snowhill et al., 2004] determined

the volume ratio of collagen to smooth muscle to be 1:1 in porcine vessels. While

clearly the interlamellar connections encompass some collagen, and the elastic lamina

contains large amounts of elastin, we utilized this 1:1 ratio.

Initial estimates of the fiber parameters (fiber stiffness, nonlinearity, and failure

stretch) for collagen and elastin were based on our previous works [Shah et al., 2014,

Lai et al., 2012], and those for the interlamellar connections were specified based on

MacLeans experimental stressstrain behavior of the upper thoracic aorta subjected

to radial failure [MacLean et al., 1999]. Properties were subsequently adjusted such

that a single set of model parameters matched results from the suite of experiments

performed herein; the final parameter values are given in Table 5.2.

In addition to the smooth-muscle cells and connective tissue present within the

lamellar unit, there is also fluid, primarily extracellular water [Humphrey, 1995],

that combines with the smooth-muscle cells cytoplasm to make tissue deformation

nearly isochoric. A nonfibrous, neo-Hookean matrix was added to the network to

make it nearly incompressible (ν = 0.49). The fiber network and nonfibrous matrix

operated as functionally independent until failure, at which point network failure

dictated simultaneous matrix failure. Stresses developed by the new tissue-specific

network and matrix were treated as additive, as in other constrained mixture mod-

elsciteHumphrey2003, Alford2008, Alford2008a, Gleason2004. The matrix material

was considered homogeneous throughout the global sample geometry; each element,
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however, was assigned a unique set of fiber networks. New networks were generated

for each of the five model simulation replicates for the uniaxial test; the uniaxial

simulations showed almost no variability in repeated runs (SD < 1% of value), so no

replicates were performed for the other tests.

Macroscale and microscale stress and strain were coupled as described previously

[Chandran et al., 2008, Stylianopoulos and Barocas, 2007]. Briefly, displacements

applied to the macroscale model were passed down to the individual RVEs. The tissue-

specific network within the RVE responded by stretching and rotating, generating

net forces on the RVE boundary. A volume-averaged stress was determined for each

Gauss point within the element from the net forces on the network boundary and the

nonfibrous resistance to volumetric deformation. The macroscopic displacement field

was updated until the global Cauchy stress balance was satisfied. Grip boundaries

were enforced using rigid boundary conditions and the remaining sample surfaces

were stress-free. All model simulations were run using 256-core parallel processors at

the Minnesota Supercomputing Institute, Minneapolis, MN; clock times averaged 10

h per simulation.

Finally, we ran a brief simulation of uniaxial extension in the radial direction to

compare with the experimental results of MacLean et al. [MacLean et al., 1999],

who performed uniaxial extension to failure of porcine aorta samples in the radial

direction as noted earlier. The MacLean study represented an important test for our

approach since the experiments were performed on the same tissue (healthy porcine

thoracic ascending aorta) but in a mode that we did not use to generate and fit the

model (radial extension to failure). Although MacLean did not report the tensile

stress at failure, they reported the average tangent modulus at failure as well as the

status of different samples at specific values of stretch; these data provided a basis

for comparison with the model.
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5.3 Results

Experiments were performed in four different geometries: uniaxial, biaxial, peel, and

lap. In the uniaxial, peel, and lap tests, samples were prepared and pulled in two

different directions, with some samples being tested in the axial direction and others

in the circumferential direction. The multiscale model was used to describe all of

the different experiments; the same set of model parameters was used for all of the

experiments, including both prefailure and failure behavior.

5.3.1 Uniaxial extension to failure

Uniaxial samples (Figure 5.5(a)) aligned both circumferentially (n = 11) and axially

(n = 11) were loaded to failure. In Figure 5.5(b), the first Piola-Kirchhoff (PK1)

stress, defined as the grip force divided by the undeformed crosssectional area of

the neck of the dogbone, was plotted as a function of grip stretch along with the

best-fit tissue-specific model curves for samples aligned circumferentially and axially,

respectively. The specified and regressed model parameters of Table 5.2 allowed the

model to match the experimental prefailure and failure results to within the 95%

confidence intervals for both orientations, matching the roughly threefold difference

in failure stress (2510 ± 979 kPa for samples aligned circumferentially as compared

to 753 ± 228 kPa for those aligned axially) and similar to stretch to failure (1.99

± 0.07 for samples aligned circumferentially as compared to 1.91 ± 0.16 for those

aligned axially) in the circumferential case vis-á-vis the longitudinal case. The neck

region of the simulated uniaxial samples (both circumferential and axial) experienced

the largest stresses (as expected) and also a large degree of fiber reorientation, as can

be seen in Figure 5.5(b). For the simulated experiments oriented circumferentially,

the collagen fibers, which were already preferentially aligned in the circumferential

direction, became more strongly aligned and were stretched, leading to the relatively
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high stresses observed. In contrast, for the simulated experiments oriented axially, the

collagen fibers tended to pull apart by stretching the surrounding elastin, leading to

a significantly lower stress and more failure of the elastin fibers. In both simulations,

the collagen fibers were most likely to fail due to the extremely large extensibility of

the elastin fibers, but the tendency of the collagen fibers to break was much higher

in the circumferentially aligned simulated experiments (Figure 5.5(c)). This shift is

attributed to the collagen fibers being aligned in the direction of the pull and thus

being forced to stretch more during circumferential extension, whereas there is more

elastin and interlamellar connection stretch in the axial extension.

5.3.2 Equibiaxial extension

The averaged experimental PK1 stress was plotted as a function of grip stretch (n

= 9; also used in our previous analysis [Shah et al., 2014]) along with the best-fit

tissue-specific model curves in Figure 5.6(a). The equibiaxial extension test was not

performed to failure but instead was stopped at a stretch of 1.4 to ensure that the

sample did not fail during testing (based on initial experiments to estimate the safe

stretch limit). Thus, the peak circumferential (139 ± 43 kPa) and axial (102 ± 30

kPa) stresses were not failure stresses. The equibiaxial model results (lines) were in

good agreement with the experiments in both directions but slightly overpredicted the

degree of anisotropy, i.e., the separation between the two lines. In particular, stresses

in the circumferential direction were slightly overpredicted but remained within the

95% confidence interval for the experiment. The arms of the sample showed behavior

similar to the uniaxial experiments, as can be seen in the stress plots of Figure 5.6(b),

but our primary interest is in the central region that was stretched equibiaxially. As

expected for equibiaxial extension, in-plane fiber orientation of the elements in this

region showed little change (Figure 5.6(c)); there was, however, a deviation from

affinity because the stiffer collagen fibers did not stretch nearly as much as the more
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compliant elastin fibers. At the final stretch step, for example, the collagen fibers

were extended to an average of 13% stretch, but the elastin fibers had an average of

118% stretch.

5.3.3 Peel to failure

Peel samples from both the circumferential (n = 13) and axial (n = 23) orientations

were loaded to failure. Peel tension, defined as the grip force divided by the sample

width, was used to quantify delamination strength. When plotted as a function of grip

displacement, the peel tension rose to an initial peak and then plateaued until total

sample failure (Figure 5.7(a)); importantly, the rise in each individual experiment

was quite steep, but since the rise occurred at different grip stretches in different

experiments (because of variation in sample size and initial notch depth), the average

data of Figure 5.7(a) appear to rise smoothly. The simulation results were thus similar

to individual experiments, but we did not introduce the sample-to-sample variation

necessary to smooth out initial rise.

The initial point and end point of the plateau region were computed by splining

the data into 20 sections and determining where the slope of a linear fit of the points

in a section was not significantly different from zero. The value of peel tension in the

plateau region was averaged in order to determine the peel strength of each sample.

The standard deviation of peel tension within the plateau region was evaluated to

assess the degree of fluctuation during the peeling process. The average peel tension

was significantly higher (p < 0.01) for samples aligned axially versus circumferen-

tially (97.0 ± 12.7 versus 68.8 ± 14.2 mN/mm, respectively) with an anisotropy ratio

of 1.4, similar to the results reported by others [29,30]. The standard deviation of

peel tension showed similar anisotropy (p < 0.001) for samples aligned axially ver-

sus circumferentially (12.66 ± 2.22 versus 5.78 ± 1.04 mN/mm, respectively). The

anisotropic response was present even when the standard deviation was normalized by
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average peel tension (p < 0.05, 0.145 ± 0.037 versus 0.088 ± 0.017, respectively, for a

ratio of 1.65). Simulation results showed similar but less pronounced anisotropy (80.35

versus 67.01 mN/mm, ratio = 1.20). For both the circumferentially and axially ori-

ented simulated experiments, the first Piola-Kirchhoff stress was concentrated around

the peel front (Figure 5.7(b)), and there was extensive stretching of the interlamellar

connections. In sharp contrast to the simulated uniaxial failure experiments (Figure

5.5), the vast majority of failed fibers in the simulated peel failure experiments were

interlamellar connections; this result highlights the need for a detailed anisotropic

model because different physiologically relevant loading configurations impose very

different mechanical demands on the tissues components.

Regional analysis was performed to determine whether sample location, i.e., loca-

tion along the aortic arch, had an effect on mean average or mean standard deviation

of peel tension. First, samples, taken from both the axial and circumferential di-

rections from multiple specimens, were grouped according to their distance from the

inner and outer curvature of the aortic arch. No significant difference (all the p-values

> 0.10, n > 4 for all groups) was observed. Then, axially oriented samples taken from

a single specimen were grouped by where peel failure was initiated (proximal or distal

to the heart, n = 4 for both groups). No significant difference was seen in mean av-

erage peel tension (paired t-test, p-value = 0.26) or mean standard deviation of peel

tension (p-value = 0.84) between the two groups. Pairing was done based on sample

location within the specimen.

5.3.4 Shear lap failure

As expected, the displacements were primarily in the pull direction, and shear strain

was largest in the overlap region (Figs. 5.8(a) and 5.8(b)). In order to investigate the

strain behavior of the tissue more fully, a line was drawn at the edge of the overlap

surface, and strains tangential and normal to the overlap edge were calculated (n
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= 15 and n = 19 for axial and circumferential samples, respectively; some samples

were not analyzed due to poor speckling). The maximum strain in each direction

was determined (Figs. 5.8(c) and 5.8(d)). For both the axially and circumferentially

aligned samples, the shear strain, Ent, was large in the overlap region, as desired. For

the axially oriented samples, the shear strain was higher than both the normal (p <

0.1) and tangential strains (p < 0.01). For the circumferentially oriented samples it

was significantly higher than the tangential strain (p < 0.05) and comparable to the

normal strain (p = 0.26).

Shear lap samples from both the circumferential (n = 28) and axial (n = 26)

orientations were loaded to failure. The nominal (average first Piola-Kirchhoff) shear

stress, the force per overlap area (Figure 5.9(a)), exhibited catastrophic failure similar

to that seen in the uniaxial tests and unlike the steady failure of a peel test. Cir-

cumferentially oriented samples exhibited significantly higher (p = 0.013) peak shear

stresses than axially aligned samples (185.4 ± 28.4 versus 143.7 ± 16.0 kPa, respec-

tively). In both the axial and circumferential directions, the shear lap failure stress

was less than 20% of the failure stress necessary for uniaxial failure, indicating that

the tissue is far weaker in shear than in uniaxial tension. The grip strain at failure

was used to quantify further the compliance of the tissue. Greater grip strain (p =

0.07) was necessary to fail samples aligned in the axial direction compared with those

in the circumferential direction (1.63 ± 0.16 versus 1.43 ± 0.17, respectively). As

can be seen in Figure 5.9(a), the multiscale model predicted the shear lap behavior of

circumferentially oriented samples well (within the 95% CI). It was less successful at

predicting the shear lap behavior of axially oriented samples (below the 95% CI), thus

overestimating tissue anisotropy. The overlap region edges of the simulated uniaxial

samples (both circumferential and axial) experienced the largest stresses and also the

largest degree of fiber reorientation (Figure 5.9(b)). Interlamellar fibers within the lap

region were rotated and stretched strongly by the shearing; the collagen and elastin
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fibers were stretched more than in the peel test but considerably less than in the

uniaxial and biaxial tests. As a result (Figure 5.9(c)), the distribution of failed fibers

was split more between the different fiber types than during peel or uniaxial failure.

Even though the interlamellar connections, being much weaker than the others, were

the most common to fail, there was also significant damage to the collagen and elastin

fibers, perhaps due to the tangential component of the strain during the test (Figure

5.8(d)).

5.3.5 Summary comparison of model and experiment

Since a stated goal of this work was construct a multiscale model of aortic tissue me-

chanics that predicts failure in many different physiologically relevant loading modali-

ties, we present a brief summary of the experimental and model failure results. Figure

5.10 shows the failure PK1 stress in uniaxial tests, failure tension in peel tests, and

failure shear stress in shear lap tests for both the experiments and simulations for

samples aligned in both the circumferential and axial directions. A single model

with one set of parameters matches all of the experimental results well. It captures

both the anisotropy exhibited in the different tests as well as the magnitude of stress

or tension. In particular, the model predicts the considerably lower tissue strength

observed in shear lap tests than that seen in uniaxial extension.

5.3.6 Uniaxial extension to failure in the radial direction

MacLean et al. [MacLean et al., 1999] reported that the average tangent modulus

before failure was 61.4 ± 43 kPa. For our simulations, we found that the tangent

modulus before failure was 58 kPa, in obvious good agreement with MacLeans ex-

perimental result. The stretch ratio at failure in the model was 3.1, and MacLean

reported that there was noticeable elastin layer separation at a stretch ratio of 2, and

that a stretch ratio of 3.5 was past the value at which the wall can maintain stress.
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Although the report of MacLean is obviously vague, the model results all appear to be

consistent with MacLeans observations. The ability to make a reasonable prediction

of an experiment performed using loading modality different from those used in the

creation and specification of the model is a necessary feature for broader application

in the future.

5.4 Discussion

Two important results came from the current work. First, a more complete picture

of the failure behavior of aortic tissue was generated, demonstrating and quantifying

the pronounced difference between the relatively high tissue strength in the lamellar

plane (longitudinal and especially circumferential directions) and the low strength of

the interlamellar connections (radial direction, demonstrated by peel and lap tests).

Second, a novel multiscale, microstructural model was presented that, with proper

adjustment of the model parameters, was able to reproduce the wide range of exper-

imental observations accurately. This section focuses first on the experiments and

then on the model, addressing them in the context of previous work by ourselves and

others.

The current study used two novel test methods, the peel test and the shear lap

test, to measure material failure in radial tension and transmural shear, respectively.

The peel test is relatively new but has been used by others [Sommer et al., 2008, Tong

et al., 2011, Pasta et al., 2012], and our results are consistent with their findings in

terms of peel tension as well as the observation that the anisotropy typically expected

of arteries in in-plane tests (higher circumferential versus axial stiffness) is reversed

in peeling. Sommer et al. [Sommer et al., 2008] suggested that the anisotropic

behavior may be a protective mechanism since dissection in the axial direction is often

associated with failure across elastic laminae, whereas dissection in the circumferential
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direction typically prop- agates between adjacent laminae. Pal et al. [Pal et al., 2014]

suggested based on histology of peeled samples that the anisotropy may be due to

stitching of the fibers, with failure in circumferential peeling occurring via a pull-

out mechanism, whereas failure in axial peeling occurs via a tearing mechanism. This

interesting conceptual description cannot be captured in our current model but clearly

merits further investigation.

Although the shear lap test has been used on annulus fibrosus [Gregory et al.,

2011], to the best of our knowledge it has not been applied to cardiovascular soft

tissues. The loading curve for the shear lap test of ascending aorta showed catas-

trophic failure similar to that of a uniaxial test rather than the sliding behavior seen

by Gregory et al., perhaps attributable to differences in the structure and properties

between the annulus fibrosus and the ascending aorta. The failure behavior observed

for the shear lap test retained the typical anisotropy expected of arteries, but re-

quired a much lower stress than that of uniaxial failure, presumably because the

failure did not require as much breaking of collagen and elastin fibers. The shear lap

and peel test results directly test the connections between lamellar units, and they

are therefore critical in the case of a dissecting ascending aortic aneurysm. As our

community moves forward to more patient-based geometries and simulations involv-

ing realistic geometries that necessarily lead to complex stress fields, validation of

models in multidimensional loading is crucial. For example, it is common [Wisneski

et al., 2014, Krishnan et al., 2015, Trabelsi et al., 2015, Martin et al., 2015, Martufi

et al., 2014] to report results in terms of principal stresses, which are informative

but do not address the fact that a stress acting radially or in shear is more likely to

lead to tissue failure than one acting circumferentially. Martin et al. [Martin et al.,

2015] used a potentially generalizable energy-based failure threshold, but they based

the failure criterion on uniaxial circumferential tests. Although Martins work rep-

resents a significant advance and demonstrates the potential of the patient-specific
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FE approach, there is clear need for a more accurate failure model, which could be

informed by the current work. Another major challenge is that the tissue proper-

ties surely change during aneurysm formation, growth, and remodeling. The current

work used only healthy porcine tissue, so our results are useful in guiding thought

but should not be considered representative of human aneurysm tissue. There is also

great need to develop better tools to estimate tissue mechanical properties in vivo,

which would allow the construction of patient-specific constitutive models to match

the patient-specific geometries currently in use.

Another goal of this study was to generate a tissue-specific microstructural de-

scription based on the layered structure of the aorta. Such a description, when incor-

porated into our multiscale modeling framework, could replicate mechanical behavior

of arteries in lamellar tension, radial tension, and transmural shear, thereby linking

microscale failure to the macroscale response. The simplified microstructural organi-

zation of our previous work [Shah et al., 2014] was replaced with a new lamellar model

to capture the microstructure more faithfully. The lamellas structure is an essential

component in modeling dissection of ATAA since radial and shear loading involve fail-

ure of the interlamellar connections rather than the lamina itself. The microstructure

design of Figure 5.4 mimics the lamellar unit, detailed by Clark and Glagov [Clark

and Glagov, 1985], and visualized here histologically. The unit is represented by a 2-D

sheet of elastin and collagen fibers (which forms an elastic lamina) attached radially

by interlamellar connections (which collectively encompass smooth-muscle cells and

fine elastin and collagen fibers). Network parameters were selected to reflect the bio-

logical roles of each component and were adjusted to match the experimental results.

This approach was successful in matching a wide range of tissue mechanical tests,

including one – radial extension to failure – that was not used during the fitting pro-

cess, and it has the potential to be extended to the more disorganized (and thus more

complex) architecture of the aneurysm, especially as better imaging and image-based
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modeling methods emerge [Koch et al., 2014, Tsamis et al., 2013]. The work of Pal

et al. [Pal et al., 2014] represents an excellent example of this approach, developing

a theoretical model of peel failure based on known structure. Pals approach could be

extended to a more general stress field using a strategy similar to ours. Finally, it

is important to note that abnormal loading and damage can change tissue structure.

For example, Todorovich-Hunter et al. [Todorovich-Hunter et al., 1988] observed the

formation of islands of elastin within the pulmonary arteries of rats in which they

induced pulmonary hypertension. Thus, moving forward imaging-based alterations

to the network design may be necessary to capture the structure of a damaged or

diseased aorta.

There are, of course, further opportunities to construct a more realistic microme-

chanical model of the healthy and the aneurysmal ascending thoracic aorta. As

already noted, the work of Pal et al. [Pal et al., 2014] provides a different and

intriguing view of interlamellar failure by tearing versus pull-out effects. Addition-

ally, our current model used collagen orientation tensor with eigenvalues of 0.9 and

1.0, corresponding roughly to collagen aligned within 18◦ of the circumferential axis

(sin2(18◦) = 0.1). That number was based on the observed circumferential align-

ment of collagen fibers in the vessel wall but is an estimate and could be modified

to provide a better match to the experimental data. In fact, the collagen and elastin

fiber orientations within the zθ plane could also be treated as fitting parameters,

which would likely improve the model fit, but we chose to use the best estimate from

structural data rather than introduce further flexibility to an already highly parame-

terized model. Finally, the Fung-type model of fiber mechanics (Table 5.1, Equation

(3)) could be replaced with a recruitment model, e.g., [Zulliger et al., 2004], which

would provide an alternative mechanism to capture the nonlinear behavior associated

with fiber waviness [Haskett et al., 2012] and might provide a better fit of the exper-

imental data. All of these modifications are possible and could be implemented as
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additional data emerge about the arrangement and properties of the components of

the arterial wall.

In summary, a microstructurally based multiscale model of prefailure and failure

behaviors was able to match the experimentally measured properties of the healthy

porcine ascending aorta in four different loading configurations and two different

directions, and it was successful when applied to experiments in the literature that

were not used during the fitting and specification project. This model could provide

new insight into the failure mechanisms involved in aortic dissection and could be

incorporated into patient-specific anatomical models, especially if model parameters

associated with specific patients or patient groups can be obtained.
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Figure 5.1: The ascending thoracic aorta. (a) Illustration of the heart with the
ascending aorta highlighted [Gray et al., 2000], (b) Geometry and coordinate system
describing the ascending aorta, and (c) The three-dimensional stress tensor for the
aorta, marked to show how different testing modes were used to target specific stress
components.
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Figure 5.2: Specimen dissection. (a) Porcine aortic arch with ascending aortic ring
removed. The white star represents a marker used to keep track of tissue sample
orientation. (b) The ring was cut open along its superior edge and laid flat with
the intimal surface up and the axial, Z, and circumferential, θ, directions along the
vertical and horizontal directions, respectively. Axial and circumferential directions
are shown with black arrows. (c) Schematic showing a typical sectioning and testing
plan for an ascending aortic specimen.
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Figure 5.3: Schematics of all mechanical tests. (a) Uniaxial test: samples were cut
and mounted such that the direction of pull corresponded with either the axial or
circumferential orientation of the vessel. (b) Equibiaxial test: samples were cut and
mounted such that the directions of pull corresponded with the axial and circumfer-
ential orientations of the vessel. (c) Peel test: samples were cut and mounted such
that the vertical direction corresponded with either the axial or circumferential ori-
entation of the vessel. (d) Lap test: samples were cut and mounted such that the
direction of pull corresponded with either the axial or circumferential orientation of
the vessel; dotted black line indicates overlap length.
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Figure 5.4: Multiscale model based on aortic media structure. (a) Hematoxylin and
eosin stain shows smooth muscle cell nuclei (dark purple) and elastic lamina (pink).
(b) Massons trichrome stain shows collagen (blue) within the lamina and smooth mus-
cle (red). (c) VerhoeffVan Gieson shows elastin (black/purple). (d) A microstructural
model based on the histology contains a layer of elastin (red) reinforced by collagen
fibers (black). The collagen fibers are aligned preferentially in the circumferential
direction, and the elastin sheet is isotropic. Lamellae are connected by interlamellar
connections (green) representing the combined contribution of fibrillin and smooth
muscle. The interlamellar connections are aligned primarily in the radial direction
but also have some preference for circumferential alignment to match smooth muscle
alignment in vivo. (e) An RVE with eight gauss points. (f) FE geometry showing a
uniaxial shaped sample (equibiaxial, lap, and peel geometries were also used).
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Figure 5.5: Uniaxial extension to failure. (a) First Piola-Kirchhoff (PK1) stress ver-
sus grip stretch for circumferentially (n = 11) and axially (n = 11) orientated samples
(dots, mean ± 95% CI). Error bars are only shown for stretch levels up to the point
at which the first sample failed. The final dot shows the average stretch and stress
at tissue failure, and the dashed rectangle indicates the 95% confidence intervals of
stretch and stress at failure. The red lines show the model results for PK1 stress
as a function of grip stretch. (b) PK1 stress distributions along the axis of applied
deformation for both the circumferentially (Sθθ) and axially (Szz) aligned simulations,
accompanied by an enlarged view of a network with the upper interlamellar connec-
tions removed to make the collagen and elastin visible. (c) Fraction of failed fibers of
each type in the simulated experiment. Because the collagen fibers are preferentially
aligned in the circumferential direction, more of the failed fibers were collagen for the
circumferentially aligned simulation, whereas for the axially aligned simulation more
of the failed fibers were interlamellar connections (I.C. = interlamellar connections).
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Figure 5.6: Equibiaxial extension. (a) Mean PK1 stress as a function of grip stretch
(dots) for equibiaxial extension. The 95% CI was 3035% of the measured value but
was omitted from the figure to improve visual clarity. The red lines show the model
results for PK1 stress versus grip stretch. (b) Circumferential (Sθθ) and axial (Szz)
PK1 stress distributions predicted by the model. (c) Enlarged view of a micronetwork
with the upper interlamellar connections removed to make the collagen and elastin
visible.
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Figure 5.7: Peel to failure. (a) Peel tension versus grip stretch for both circumfer-
entially and axially oriented samples (dots, mean ± 95% CI). The red lines indicate
the model results. (b) PK1 stress (Srr) distributions along the axis of applied defor-
mation for both the circumferentially and axially aligned simulations, accompanied
by an enlarged view of a network with the upper interlamellar connections removed
to make the collagen and elastin visible.
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(a) (b)

(c) (d)

Figure 5.8: Kinematics of the shear lap test. (a) Displacement of a representative
shear lap sample, adjusted to zero displacement at the center. (b) Strain of the
representative sample in the XY-direction. (c) Dotted line showing overlap surface
edge and vectors with normal and tangential directions. (d) Average strain on the
overlap surface edge for both axially (n = 15) and circumferentially (n = 19) oriented
samples. Error bars indicate 95% confidence intervals. +p < 0.10, ++p < 0.05, and
+++p < 0.01.
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Figure 5.9: Shear lap failure. (a) PK1 stress versus grip stretch for circumferentially
(n = 28) and axially (n = 26) orientated samples (dots, mean ± 95% CI). Error bars
are only shown for stretch levels up to the point at which the first sample failed. The
final dot shows the average stretch and stress at tissue failure and the dashed rect-
angle indicates the 95% confidence intervals of stretch and stress at failure. The red
lines show the model results. (b) Shear stress distributions along the axis of applied
deformation for both the circumferentially (Srθ) and axially (Srz) aligned simulations,
accompanied by an enlarged view of a network with the upper interlamellar connec-
tions removed to make the collagen and elastin visible. (c) Fraction of failed fibers of
each type in the simulated experiment (I.C. = interlamellar connections).
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Figure 5.10: Summary of experimental and model results. (a) Experimental and
model failure PK1 stress (Sθθ and Szz) in uniaxial tension tests for samples oriented
circumferentially and axially. (b) Experimental and model failure tension in peel tests
for samples oriented circumferentially and axially. (c) Experimental and model failure
shear stress (Srθ and Srz) in shear lap tests for samples oriented circumferentially and
axially. All the experimental data show mean ± 95% CI. (d) The model showed failure
at a stretch ratio of 3.1 with a tangent modulus of 58 kPa in the region prior to failure,
comparing well to MacLeans [MacLean et al., 1999] reported tangent modulus of 61
kPa.
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Chapter 6

Conclusions and Future Work

6.1 Summary

The research studies presented in the chapters of this dissertation help frame an

understanding of the microscopic mechanisms affecting the mechanical properties of

native and engineered soft tissues.

Using discrete fiber networks of linear viscoelastic members, we showed in Chapter

2 the presence of evolving time scales in the relaxation spectrum of the network

that arise from its heterogeneous structure and the non-affine deformations occurring

within it. For a 3-D network composed of only fibers with two different characteristic

relaxation times, the instantaneous relaxation time of the system evolved over time

and showed a highly non-linear behavior. The relaxation spectrum for such a network

showed multiple peaks, and it was very similar to that obtained for reconstituted

collagen gels, suggesting that some of the relaxation time scales observed in the

viscoelastic spectra of collagenous tissues might be purely structure-based, arising

from their inherent network arrangement.

In Chapter 3, we used fiber-level failure rules to compute the fatigue behavior

of the whole network. We observed that, for reasonable magnitudes of loads, an
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irregular fiber network structure can undergo more loading cycles than a single fiber

or a regular fiber lattice. The network geometry enables an uneven distribution

of stresses within the network fibers, with some fibers bearing higher loads than

others. This nonuniform stress distribution leads to a gradual progression of fatigue

within the network resulting in the network structure outlasting the individual fiber.

Furthermore, a comparison of the fatigue failure behavior of networks having the same

fiber mechanical properties but different network topologies suggested that geometric

interactions between the fibers also affects the failure properties of the network. We

simulated the fatigue behavior of three different network geometries — Delaunay,

Voronoi, and Erdős-Rényi. The Delaunay network geometry showed the best low-

stress, high-cycle behavior, so a Delaunay architecture might be preferable for fibrous

structures undergoing repeated low to moderate loads.

Finally, in Chapters 4 and 5, we used a multiscale approach to highlight the

effect of microscale network behavior and structure on the macroscale mechanics of

tissues. We used networks of contracting fibers to simulate actin-myosin kinetics in

the cell cytoskeleton (Chapter 4). This model of cell contraction was applied to study

contracting cells fixed on concave substrates. The model matched a key experimental

observation of stress-fibers forming primarily along free edges of the cells. We also

observed that the steady-state shape of the cell was significantly affected by the

choice of network architecture used to represent the cytoskeletal actin network. In

Chapter 5, we presented a histology-based multiscale model of pre-failure and failure

behavior of the aorta. The multiscale model was able to match the experimentally

measured properties of the healthy porcine ascending aorta in four different loading

configurations and two different directions, and it was successful when applied to

experiments in the literature that were not used during the fitting and specification

project.
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6.2 Future work

The network model presented in this dissertation simulated biopolymer networks

minus any chemical effects present in biological tissues. The only chemical mech-

anism simulated was the actin-myosin motor kinetics, which was modeled using a

phenomenological Hill-like constitutive model; external biochemical signals initiating

the contraction of fibers were not explicitly modeled. Chemical effects, however, can

significantly affect both the active and the passive mechanics of tissues, e.g., mechani-

cal overloading of collagen fibrils places them in a stable, denatured state [Veres et al.,

2014]. Denaturation of collagen can also lead to changes in the rest length of fibers,

and affect the local stiffness of the tissue and its capacity to remodel [Dittmore et al.,

2016]. Thus, a logical extension to the model would be to include these mechanobio-

logical effects in the model which could have significant effects on the mechanics and

failure of the network.

Additionally, the network model did not account for growth and remodeling taking

place in living tissues. Even in the cytoskeleton of cells, the actin fiber network

structure is dynamic, and it changes as the cell migrates, and as the concentration of

focal adhesions between the cell and the extracellular matrix evolves. Thus, another

area for future work will be to include the effects of remodeling in the network. Fiber-

based rules to create cross links between fibers, or to remove connections can be easily

added to the model. The network can also be remodelled by conditionally changing

the radius of fibers. Such a model can then be used to gain a better insight into, e.g.,

experimental observations resulting from micromanipulation of single stress-fibers

within cell cytoskeletons using laser ablation [Strahs and Berns, 1979, Kumar et al.,

2006].

Finally, failure in networks was assumed to occur only within the fibers, and not

in the connections between fibers. In certain network constructs, e.g., metallic foams

[McCullough et al., 1999], however, fatigue and failure can also occur at fiber cross
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links. Furthermore, the network model assumed highly flexible fibers. While this

assumption is reasonable for the biopolymer networks considered in this disserta-

tion, networks where the fiber persistence length is comparable to its contour length

may require a modified theoretical framework, e.g., bending of fibers can become an

important mode of deformation in addition to axial deformation.
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Appendix A

Automatic Segmentation of
Mechanically Inhomogeneous
Tissues Based on Deformation
Gradient Jump

Although the primary emphasis of this dissertation was to study the mechanics and
failure of viscoelastic fiber networks, this appendix section briefly describes a method
to automatically segment tissues into mechanically inhomogeneous regions, and pro-
vides two examples of the application of this technique. We use network theory to
identify clustering within the network, and the network is then partitioned based on
these clusters. While the segmentation process itself is not directly related to deter-
mining the mechanics of the network, the partitions resulting from segmentation of
the network can be assigned different mechanical properties to simulate the behavior
of inhomogeneous tissues.

The content of this appendix section is part of a research article published in
IEEE Transactions on Medical Imaging by Witzenburg, Dhume, Lake, and Barocas
[Witzenburg et al., 2014]. For a detailed description of the segmentation algorithm,
and results from the entire set of simulated and experimental data sets used to test the
algortihm, the interested reader is directed to the full research article. I contributed
to the programming part of this study, and implemented the network partitioning
algorithm using C and MATLAB [MATLAB, 2013].

A.1 Introduction

Variations in properties, active behavior, injury, scarring, and/or disease can all cause
a tissue’s mechanical behavior to be heterogeneous. Advances in imaging technology
allow for accurate full-field displacement tracking of both in vitro and in vivo deforma-
tion from an applied load. While detailed strain fields provide some insight into tissue
behavior, material properties are usually determined by fitting stress-strain behavior
with a constitutive equation. However, the determination of the mechanical behavior
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of heterogeneous soft tissues requires a spatially varying constitutive model, i.e., one
in which the material parameters vary with location. If the strain field is to be used
for partitioning, the next issue is how to implement the strain-based segmentation
process efficiently and effectively. Manual thresholding is common, but an automated
scheme capable of determining partitions from a strain field would be attractive.

In this work, we developed an approach that computationally dissected the sam-
ple domain into many homogeneous subdomains, wherein subdomain boundaries were
formed by applying a betweenness-based graphical analysis to the deformation gra-
dient field to identify locations with large discontinuities. This novel partitioning
technique successfully determined the shape, size and location of regions with locally
similar material properties for: (1) a series of simulated soft tissue samples prescribed
with both abrupt and gradual changes in anisotropy strength, prescribed fiber align-
ment, stiffness, and nonlinearity, (2) tissue analogs (PDMS and collagen gels) which
were tested biaxially and speckle tracked (3) and soft tissues which exhibited a natu-
ral variation in properties (cadaveric supraspinatus tendon), a pathologic variation in
properties (thoracic aorta containing transmural plaque), and active behavior (con-
tracting cardiac sheet). The routine enables the dissection of samples computationally
rather than physically, allowing for the study of small tissues specimens with unknown
and irregular inhomogeneity.

A.2 Methods

A.2.1 Full-field displacement tracking

Accurate estimation of full-field displacements from motion capture of soft tissue de-
formation is crucial for tissue segmentation. Accordingly, high-resolution digital video
was captured of various tissue equivalent and soft tissue samples during deformation
and digital image correlation was utilized to determine full-field displacement per
Raghupathy [Raghupathy and Barocas, 2010, Raghupathy et al., 2011]. The video
was synchronized and downsampled to construct grayscale image sequences corre-
sponding to the loading curves of each extension. The image of the sample before the
start of test was used as the reference configuration. Using Abaqus (6.11, Simulia,
Inc., Providence, RI), the tissue boundary was sketched on top of the reference image
and meshed with quadrilateral elements. Successive pairs of images were correlated
to track the movement of the mesh throughout the loading sequence. Displacement
fields were constructed from movement of the mesh and smoothed to reduce noise.

A.2.2 Deformation gradient jump calculations

The deformation gradient tensor at the midpoint of each element edge (Figure A.1)
was calculated from the bilinear isoparametric representation of the displacement
field. For each element edge, the deformation gradient tensor was calculated as fol-
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lows:

F =
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where (X, Y ) is the initial position, (x, y) is the final position, and (ξ, η) is the com-
putational coordinate.

The deformation gradient tensor for each element edge point j was

F =

(
4∑
j=1

[
xj

yj

] [
∂φj

∂ξ

∂φj

∂η

])( 4∑
j=1

[
Xj

Y j

] [
∂φj

∂ξ

∂φj

∂η

])−1

where φ is the bilinear function and j is the index variable looping through the four
basis functions for a given element. All shared edges were identified (Figure A.1), and
the deformation gradient jump was defined as the double contraction of the difference
between the deformation tensors across the edge with itself,

∆k =
4∑
i=4

(
F element1
i − F element2

i

)2
where elements 1 and 2 are the two elements sharing the edge k and i is the index
variable looping through the four components of the deformation gradient tensor.

A.2.3 Tissue segmentation

The flow chart in Figure A.2 summarizes the tissue segmentation scheme. In order
to segment the tissue into homogeneous subregions, the finite element geometry for
a sample was converted into an equivalent unweighted network. A network node was
created for each finite element and if two elements shared an edge, their corresponding
network nodes were considered connected (Figure A.1). Once the unweighted network
was constructed, it was analyzed to determine the shortest path between each pair of
network nodes. Then, a betweenness value for each connection was determined using
a breadth-first search algorithm (per [Newman, 2001]). The betweenness value for a
connection, as defined by Newman [Newman, 2001, Newman, 2004], is the number
of shortest paths between any given pair of nodes that run along that connection.
If there was more than one geodesic path joining a pair of network nodes, then
each path contributed a fractional amount to the betweenness. Next, the network
connection betweenness values were multiplied by the deformation gradient jump for
the corresponding finite element edge. Thus, the final weighted value of betweenness
for each network connection was determined both by the sample geometry and by the
deformation gradient jump. Following [Newman, 2001, Newman, 2004], the network
connection with the largest value of weighted betweenness was removed. The new,
less-connected network was then reanalyzed to determine the new set of shortest paths
and the process was repeated. When the network split into disconnected subnetworks,
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communities were formed, and the network modularity was calculated. Modularity
[Newman, 2004] is defined to be the difference between the fraction of connections that
fall within communities and the expected value of the same quantity if connections
are assigned at random.

A.3 Results

A.3.1 Heterogeneous polydimethysiloxane (PDMS) sample

Deformation data from equibiaxial and two strip biaxial extensions performed on a
heterogeneous PDMS cruciform was analyzed. The sum of the normalized deforma-
tion gradient jumps for the three extensions (equibiaxial, vertical strip biaxial, and
horizontal strip biaxial) and the partitions resulting from the automatic segmentation
scheme for the PDMS sample are shown in Figure A.3. It is readily apparent from
Figure A.3a that the 3-D nature of the modification and the deformation leads to a
thick ring of high deformation gradient jumps around the compliant central region
rather than a sharp, well-defined boundary as would occur in a purely 2-D experiment.
The partitioning scheme immediately and compellingly identified the compliant cen-
tral region of the sample, Figure A.3b. Figure A.3c shows the modularity for the
partitioning scheme as connections are removed. For this sample, we stopped the
partitioning scheme after two communities had been formed.

A.3.2 Arteriosclerotic plaque

A segment of fresh diseased thoracic human aorta was obtained from the Anatomy
Bequest Program at the University of Minnesota. A portion of the ascending thoracic
aorta was cut into a cruciform such that a large transmural arteriosclerotic plaque
resided in the central region of the sample, and the circumferential and axial orien-
tations of the aorta coincided with the cruciform axes. The sample then underwent
an equibiaxial and two strip biaxial extension tests to obtain strain fields.

The sum of the normalized deformation gradient jumps from all three extensions
for the sample containing the large arteriosclerotic transmural plaque is shown in
Figure A.4a. The partitioning results are overlaid on an image of the intimal surface
sample taken prior to testing in which visible location of the plaque was noted, arrow
in Figure A.4b. The sample was segmented into 10 separate partitions. Of the
resulting partitions, one encompasses the plaque with little extraneous tissue. In
addition, other partitions seem to identify visually similar regions of the tissue. Figure
A.4c shows the modularity for the partitioning scheme as connections are removed.
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Figure A.1: (a) Schematic showing two finite elements indicating the midpoint of
each element edge. A deformation gradient tensor was determined for every edge
midpoint within the finite element (FE) mesh. (b) Schematic showing two finite
elements indicating their shared edge. A deformation gradient jump was calculated
for every shared edge. (c) Schematic showing two finite elements and indicating how
the FE mesh geometry is converted into a network. The deformation gradient jump
was utilized when weighting the network connection.
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Figure A.2: Flowchart summarizing tissue segmentation scheme.
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Figure A.3: (a) Sum of normalized deformation gradient jumps for all three extensions
for the heterogeneous PDMS sample. (b) Partitions, overlaid on sample geometry,
strongly mirror sample heterogeneity. (c) Modularity as a function of connections
removed. Blue dots indicate values when a connection is removed and the green star
mark when the final community formed.
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Figure A.4: (a) Sum of normalized deformation gradient jumps for all three exten-
sions for the aortic sample containing a large arteriosclerotic transmural plaque. (b)
Partitions are overlaid on an image of the sample taken prior to testing in which the
plaque was identified. (c) The modularity as a function of connections removed. Blue
dots indicate values when a connection is removed, open red circles indicate when a
community is formed, and the green star mark when the final community was allowed
to form.
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