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Abstract 

Individual variation in infectiousness is generated by heterogeneities in the host, 

the pathogen, and the environment. However, many models of disease transmission, 

especially those designed for wildlife and livestock populations, do not typically allow 

for such variation in individual infectiousness. The objective of my research is to explore 

the effects of heterogeneity in individual infectiousness on disease modeling predictions 

within and across populations. My dissertation research explores three different types of 

heterogeneity that can alter individual infectiousness: (i) host heterogeneity resulting 

from individual differences in susceptibility, infectiousness, and behavioral contact rates, 

(ii) contact heterogeneity that arises within a population from underlying social systems 

and interactions; and (iii) spatial heterogeneity that arises from variation in host density 

as a function of resource quality and variable individual movement rates across a 

landscape. An improved understanding of the factors that lead to variability in individual 

infectiousness and the conditions that necessitate the inclusion of such variability in 

future disease models will be critical to address the growing global threats of zoonoses 

and emerging infectious diseases.   
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1 

Introduction 

Emerging infectious diseases pose substantial risks to humans, livestock and 

wildlife, in the forms of human disability and death, loss of livestock productivity, and 

species extinctions (Daszak, Cunningham & Hyatt 2000; Jones et al. 2008). Since the 

majority of emerging infectious diseases that affect humans are zoonotic in origin (Jones 

et al. 2008), it is imperative to understand the conditions under which such pathogens 

spread and persist in wildlife and domestic animal populations. Although theoretical 

models can provide important insights into these conditions, many models of animal 

disease transmission do not allow for variation in individual differences in behavior and 

physiology. For example, an underlying assumption of traditional disease transmission 

models is that each individual in a population has an equal probability of contacting and 

infecting any other individual (Anderson & May 1979, 1991; Keeling & Eames 2005). 

 In natural systems, however, these assumptions do not necessarily hold true—in 

fact, empirical studies suggest that unequal contact rates are the rule rather than the 

exception (Böhm, Hutchings & White 2009; Clay et al. 2009; Craft et al. 2011). 

Moreover, contact rates can vary with infection-induced behavioral changes, and these 

changes are likely non-uniform across individuals (Lopes, Block & König 2016). Finally, 

there is evidence that the first individual infected in a population (the index case), and the 

relative composition of behavioral phenotypes (e.g. bold vs. shy continuum) can 

substantially affect how effectively a pathogen spreads within a population (Adelman et 

al. 2015; Keiser et al. 2016).  
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However, there is no consistent framework that outlines when individual 

heterogeneity in pathogen transmission is important and when it is necessary to account 

for those differences in sampling or interventions, even though allowing for such 

differences can markedly change predictions of an epidemic’s duration and behavior 

(Keeling & Eames 2005; Meyers 2007). The assumptions of traditional models are 

further violated when the processes governing heterogeneity in transmission occur at 

multiple scales, including within hosts, within groups of hosts, between groups, and 

across landscapes (Restif et al. 2012). There is also no guarantee that the transmission 

process, data collection, and potential interventions are necessarily taking place at the 

same scale (Riley et al. 2015). Thus, when designing experiments to analyze factors 

contributing to transmission, disease ecologists face several challenges: they must 

determine which scale is appropriate for the system, determine if it is necessary to 

account for heterogeneity, and choose a sampling strategy that adequately addresses both.  

Most disease models seek to predict the rate at which a pathogen will spread in a 

host population. This quantity is the product of the number of infected individuals (I), the 

number of susceptible individuals (S), and the rate (β) at which infectious individuals 

successfully transmit the pathogen. This transmission rate, β, can further be broken down 

into behavioral (βc) and physiological (βp) components: (i) the intraspecific behavioral 

rate of contact (βc) between infected and uninfected individuals depends upon both local 

processes like group size, mate choice, or sickness behaviors and broad-scale processes 

like resource availability, host-density, and migration (Lloyd-Smith et al. 2005a); and (ii) 

the transmission efficiency (βp) is determined by a host’s innate physiological 
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characteristics such as immunocompetence, shedding rate, latency period, and co-

infection (Lehmer et al. 2010; Telfer et al. 2010; Hawley & Altizer 2011; Lass et al. 

2013).  Notably, physiology can covary with behavior, so disease models need to 

incorporate possible interactions between these two components, not just heterogeneity in 

contact rate (Hawley et al. 2011).   

Network models are tools that can capture individual variability in the number 

and rate of contacts (βc). In these networks, nodes represent individuals or groups, while 

edges describe a connection or contact between nodes. Pathogens spread through the 

network from node to node via connecting edges. Thus, a contact is any interaction that 

could allow for transmission of an infectious agent between a pair of individuals, groups 

of individuals, or geographic regions. Despite their advantages, however, network models 

are not used extensively for domestic animal and wildlife populations, in part because of 

the added expense and effort required to adequately parameterize such models (Krause et 

al. 2013). 

The overall objective of my dissertation research is to explore the effects of 

heterogeneity in behavioral and immune competence on disease modeling predictions 

within and across populations. Here, I have used a modeling approach to explore three 

different types of heterogeneity that can alter individual infectiousness: (i) host 

heterogeneity (host βp and βc); (ii) contact heterogeneity (local-scale βc); and (iii) spatial 

heterogeneity (broad-scale βc). I have modelled these types of heterogeneity in domestic 

and wild animal populations for specific host-pathogen systems (e.g., influenza A virus in 
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swine herds) and more generally for theoretical systems. These models differ in the 

behavioral processes that they encompass and the spatial scale at which they operate. 

In Chapter 1, I conducted a review of how contact networks have been used to 

study macro- and microparasite transmission in wildlife. This review: (1) explains why 

contact heterogeneity is relevant for wildlife populations; (2) explores theoretical and 

applied questions that contact networks have been used to answer; (3) gives an overview 

of unresolved methodological issues; and (4) suggests improvements and future 

directions for contact network studies in wildlife. 

In Chapter 2, I explored how the behavioral and physiological components of 

transmission (host βc and βp, respectively) interact to determine epidemic outcomes. I 

also considered how sickness-induced behavioral changes might affect epidemic 

outcomes. I used a dynamic network, individual-based modeling approach to allow for 

covariation between the behavioral and physiological components of transmission 

(White, Forester & Craft 2018a). My results demonstrate that: (a) individual variability in 

susceptibility or infectiousness, which is typically unaccounted for in disease models, can 

have profound effects on population-level disease dynamics; (b) when contact rate and 

susceptibility or infectiousness negatively covary, it takes substantially longer for 

epidemics to spread throughout the population; and (c) reductions in contact rate resulting 

from infection-induced behavioral changes can prevent the pathogen from reaching most 

of the population. 

In Chapter 3, I investigated how heterogeneity in contact rate (local-scale βc) and 

infection risk, as governed by variable movement through an industrial farm system and 
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production stage, could affect epidemic dynamics. Recent modelling and empirical work 

on influenza A virus (IAV) suggests that piglets play an important role as an endemic 

reservoir. The objective of this study was to test intervention strategies aimed at reducing 

the incidence of IAV in piglets and ideally, preventing piglets from becoming exposed in 

the first place. These interventions include biosecurity measures, vaccination, and 

management options that swine producers may employ individually or jointly to control 

IAV in their herds. I developed a stochastic Susceptible-Exposed-Infectious-Recovered-

Vaccinated (SEIRV) model that reflects the spatial organization of a standard breeding 

herd and accounts for the different classes of pigs therein including gilts, sows, and 

piglets in various production and immune stages (White, Torremorell & Craft 2017d). 

The findings show that piglets are a high risk sub-group and that combined biosecurity 

and vaccination efforts can reduce, but are unlikely to eliminate, IAV after it has been 

introduced into the breeding herd.  

In Chapter 4, I asked: how does individual movement behavior, governed by 

perceptual distance and individual selection for resource availability and conspecific 

density, interact with spatial heterogeneity (broad-scale βc) via resource availability and 

clustering to affect epidemic dynamics? Spatial heterogeneity can sometimes lead to non-

linear or counterintuitive outcomes depending on the host and pathogen system (Tracey 

et al. 2014; White, Forester & Craft 2017a). I employed a stochastic, individual-based, 

Susceptible Infectious Recovered (SIR) model where a resource selection function (RSF) 

governed individual movement choices. Our results support studies showing that, 

counterintuitively, increased fragmentation can promote pathogen persistence (Tracey et 
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al. 2014), but this finding was largely dependent upon movement rules controlled by 

perceptual range and strength of selection for conspecifics. For simulations with high 

conspecific density, slower recovery rates, and strong selection for conspecifics, more 

complex epidemic dynamics emerge, and the most fragmented landscapes are not 

necessarily the most conducive to outbreaks or disease persistence. Thus, our findings 

point to the importance of interactions between landscape structure, individual movement 

behavior, and pathogen transmission for determining disease dynamics. 
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Chapter 1. Using contact networks to explore mechanisms of 

parasite transmission in wildlife 

White, L.A., Forester, J.D. and Craft, M.E. (2017). Using contact networks to explore 

mechanisms of parasite transmission in wildlife. Biol. Rev., 92, 389-409. 

doi:10.1111/brv.12236 

1.1 Abstract 

A hallmark assumption of traditional approaches to disease modelling is that 

individuals within a given population mix uniformly and at random. However, this 

assumption does not always hold true; contact heterogeneity or preferential associations 

can have a substantial impact on the duration, size, and dynamics of epidemics. Contact 

heterogeneity has been readily adopted in epidemiological studies of humans, but has 

been less studied in wildlife. While contact network studies are becoming more common 

for wildlife, their methodologies, fundamental assumptions, host species, and parasites 

vary widely. The goal of this article is to review how contact networks have been used to 

study macro- and microparasite transmission in wildlife. The review will: (1) explain 

why contact heterogeneity is relevant for wildlife populations; (2) explore theoretical and 

applied questions that contact networks have been used to answer; (3) give an overview 

of unresolved methodological issues; and (4) suggest improvements and future directions 

for contact network studies in wildlife. 
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1.2 Introduction 

Why model parasite transmission in wildlife? 

 Wildlife diseases pose substantial challenges to species conservation, 

maintenance of biodiversity, ecosystem stability, livestock welfare, and public health 

(Daszak, Cunningham & Hyatt 2000; Lloyd-Smith et al. 2009; Restif et al. 2012), but the 

impacts of wildlife disease in these different areas give rise to competing priorities and 

ethical dilemmas when monitoring, preventing outbreaks, and deciding on interventions 

(McCallum & Hocking 2005). For instance, culling of wildlife is often the default 

management strategy for a wildlife-derived pathogen that spills over to livestock, but this 

strategy must be re-examined if the wildlife species in question is of conservation 

concern. Culling can also disrupt contact patterns in ways that are counterproductive to 

reducing disease prevalence (McDonald et al. 2008). Moreover, treating species of 

conservation concern can be controversial in of itself – especially when handling affects 

survival rates (McCallum & Hocking 2005). Limited resources, funding, and logistical 

challenges are also likely to constrain the number and type of interventions that can be 

implemented. Modelling provides an ethical and economical way to test hypotheses about 

which factors are most influential in the spread of the parasites and which interventions 

might prove most effective (Lloyd-Smith et al. 2009). Combined with the fact that 

collecting disease data can be especially difficult in wildlife systems, scientists, policy-

makers, and managers should prioritize a model-informed management and data-

collection approach (Restif et al. 2012). 
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Assumptions of traditional approaches to disease modelling 

 Disease models can further two, sometimes incompatible, objectives: (1) to 

deepen our understanding of the mechanisms of disease dynamics, and (2) to offer 

accurate or precise predictions of future epidemics or the impact of interventions 

(Keeling & Rohani 2008a). Levins (1966) framed this conflict more broadly, arguing that 

modelling the natural world will always involve irrevocable trade-offs between precision, 

generality, and realism – that is, it is possible to achieve two of the three qualities, but 

always at the expense of the third. Anderson & May (1979) popularized compartmental 

models in epidemiology, which arguably sacrifice realism, especially when making 

assumptions about how individuals come into contact with one another. In the tradition of 

particle physics, these compartmental or mass-action models assume that individuals mix 

like molecules in an ideal gas – with random mixing and no difference in contact 

frequency or duration between individuals (McCallum, Barlow & Hone 2001). Thus, 

compartmental models are general and can give precise results, but they may not 

realistically incorporate the fundamental contact patterns of a population if non-random 

mixing occurs (Meyers 2007). Here, the goal is not to undermine the utility of 

compartmental models in providing new ideas and inferences in epidemiology, but rather 

to think critically about situations where a more accurate portrayal of contact duration 

and frequency can improve our predictions and understanding of disease models – 

essentially to be able to discern when averaging across a population is no longer ‘good 

enough’. 
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 The traditional compartmental model is the SIR (susceptible–infectious–removed) 

model (Kermack & McKendrick 1927; Anderson & May 1991). Here individuals exist in 

any one compartment as defined by their disease status. ‘Susceptible’ individuals (S) 

become ‘infected’ (I) based on the transmission parameter (β) and ‘removed’ (R, through 

death or recovery with immunity) at rate γ. Transmission is most commonly modelled as 

either density or frequency-dependent. When contact rate increases with the density of 

individuals in a population, density-dependent transmission applies (Equations 1.1-1.3). 

Generally, animal and plant systems are modelled as density-dependent (Keeling & 

Rohani 2008a).   

𝑑𝑆

𝑑𝑡
=  −𝛽𝑆  Equation 1.1 

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼  Equation 1.2 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼  Equation 1.3 

When the number of contacts scales independently of population size (N), a system 

exhibits frequency-dependent transmission (Equations 1.4-1.6).  

𝑑𝑆

𝑑𝑡
=  −

𝛽′𝑆𝐼

𝑁
   Equation 1.4 

𝑑𝐼

𝑑𝑡
=

𝛽′𝑆𝐼

𝑁
− 𝛾𝐼 Equation 1.5 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼  Equation 1.6 

The transmission parameter (β or β') is defined as the product of the contact rate and the 

conditional probability of transmission given contact or transmission efficiency, but 

depending on the form of the transmission function will have different dimensions 

(Begon et al. 2002). For frequency-dependent transmission, the contact rate component 



 

11 

of the transmission parameter (β') remains constant (Begon et al. 2002). However, both 

these forms of global transmission are functionally equivalent for a population of 

constant size and occupying a constant area (Turner, Begon, & Bowers, 2003; Ferrari et 

al., 2011).  

It is important to note that these compartmental models describe transmission 

globally (i.e. within a population) for what is fundamentally a local process (i.e. between 

individuals) (Turner et al., 2003; Ferrari et al., 2011). Thus it is perhaps not surprising 

that observed epidemics often exhibit a range of transmission functions rather than being 

strictly density or frequency-dependent (Ferrari et al., 2011). To account for this, other 

forms of transmission functions have been proposed, but density- and frequency-

dependent transmission functions still predominate in the literature (Ferrari et al., 2011). 

In some instances, density-dependent transmission has been assumed to be the same as 

random, homogeneous mixing, while frequency-dependent transmission has been equated 

correspondingly with some form of heterogeneity (Begon et al., 2002; Ferrari et al., 

2011). In fact, Begon et al. (2002), argue that contact structure operates on an axis 

independent from that of the transmission function, such that a frequency-dependent 

system could have heterogeneity in local contact structure, but would appear 

homogeneous at a global level. Recent work suggests that observed ‘intermediate’ 

transmission may result from a transition from density-dependent transmission at low 

densities to frequency-dependent transmission at high densities (Davis et al. 2015). In 

much of the discussion that follows in Section 1.3, we will invoke the assumptions and 

limitations of density-dependent transmission, as this form is commonly used when 
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modelling wildlife diseases. Nevertheless, the nomenclature and choice of the 

transmission function are still controversial and for readers looking for greater detail on 

the issue we recommend McCallum, Barlow, & Hone (2001) and Begon et al., (2002). 

What are contact networks?  

Regardless of the form of the transmission function, deriving accurate predictions 

of the transmission parameter, β, is challenging, especially in free-living wildlife systems 

(McCallum et al., 2001; Caley & Ramsey, 2001). In reality, non-random association 

patterns that affect the contact rate component of β are common in humans, livestock, and 

wildlife (Mossong et al. 2008; Martínez-López, Perez & Sánchez-Vizcaíno 2009; Craft & 

Caillaud 2011a). Contact network models expand the relevance of compartmental models 

by incorporating these heterogeneous interactions. Contact networks represent possible 

transmission pathways through the population of interest. In these networks, nodes 

represent individuals or groups, while edges represent a connection or contact between 

nodes. For readers less familiar with network terminology, key network terms are 

italicized upon their first use and defined in Appendix A. Less commonly in models of 

spatial heterogeneity, nodes may represent larger geographic areas such as counties or 

states (Maher et al. 2012; Buhnerkempe et al. 2014; Grange et al. 2014). Thus, a 

‘contact’ is any interaction that could potentially allow for transmission of an infectious 

agent between a pair of individuals, groups of individuals, or geographic regions. What 

constitutes a contact will depend on host life history, the parasite or pathogen’s life cycle 

and its mode of transmission. For instance, transmission of Ebola virus in socially living 

primates may occur through aerosolized particles (Nunn et al. 2008; Ryan, Jones & 
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Dobson 2013; Rushmore et al. 2013), while transmission of Devil Facial Tumour Disease 

(DFTD) in the more solitary Tasmanian devil (Sarcophilus harrisii) depends on 

aggressive interactions between individuals (Hamede et al. 2009). Thus biting another 

Tasmanian devil may serve as an effective contact for DFTD, while simply being within 

a certain distance of an infected primate may serve as an effective contact for Ebola. 

For contact network models describing transmission, pathogens can spread through the network from node 

to node via connecting edges. Any given node has a certain number of contacts, which is termed as a 

node’s degree. The contact rates assumed by the traditional compartmental model could be considered a 

special case of network model since a compartmental model is equivalent to a network model where an 

edge exists between every single node (i.e. a fully connected network, Figure 1.1A) (Craft & Caillaud 

2011a). There are a variety of metrics (e.g. centrality, degree, etc.) that describe an individual’s position or 

influence in the network or that describe the properties of the network as a whole. Such metrics are 

important because at an individual level, they can predict the risk of infection or exposure, and at a 

population level they can explain observed variation in epidemic dynamics (Christley et al. 2005; Ames et 

al. 2011; Godfrey 2013). 

 Figure 1.1A demonstrates how individuals in a population with heterogeneous contact structure 

will have different degrees and different centralities depending on their position in the network. All nodes 

in Figure 1.1A have equal centrality and equal degree, while nodes with the highest normalized 

betweenness centrality are shown in red in Figure 1.1B and Figure 1.1C. In sparser networks, some nodes 

may be unconnected such that there may be more than one component in the network (Figure 1.1C).  

Aims 

 Social network analysis in wildlife was originally used to address questions in 

behaviour and behavioural ecology, but social network structure has since gained 

recognition for its importance in governing a variety of evolutionary and ecological 
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processes including social evolution, co-evolution and population stability (Proulx, 

Promislow & Phillips 2005; Kurvers et al. 2014). In the field of disease ecology, contact 

networks address questions at the intersection of epidemiology, ecology, and animal 

behaviour. While such contact network studies are becoming more common in wildlife 

systems, their methodologies, fundamental assumptions, host species, and parasites vary 

widely (Table 1.1). The objective of this review is to highlight and synthesize the ways 

that contact networks can further our understanding of parasite transmission in wildlife, 

while critically analysing the way this tool has been used. This article will: (1) explain 

why contact heterogeneity matters for wildlife populations; (2) explore theoretical and 

applied questions that contact networks have been used to answer; (3) give an overview 

of unresolved methodological issues; and, (4) suggest improvements and future directions 

for contact network studies in wildlife.  

 This review is meant to give a comprehensive, but not exhaustive, overview of 

relevant literature. In Sections 1.5 and 1.6, we identify and discuss seven critical 

theoretical and applied questions along with four unresolved methodological questions. 

Table 1.1 provides a compilation of the empirical network studies cited for those 

questions. For each study, Table 1.1 lists the focal host, focal pathogen or disease, 

method of data collection, and the questions addressed by each study. The numbered 

topics in the last eleven columns of the table correspond to the questions highlighted in 

Sections 1.5 and 1.6 in order of appearance: theoretical and applied questions (Columns 

Q1–Q7) and unresolved methodological questions (Columns M1–M4). The grey shading 

indicates studies of particular relevance to each section.  In some columns, there are 
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studies that are highlighted as pertinent, but that are not discussed explicitly in the main 

text under that particular heading. Even so, this remains a conservative demarcation of 

studies that address each respective topic, since many studies address more of the 

questions than are highlighted in the text or indicated in the table. Empirical articles for 

this review were obtained through a cross referencing of Web of Science and PubMed 

during September and October 2014. Search terms included: “Wildlife AND disease 

AND ‘contact network’” and “‘social network’ AND disease and animals NOT 

livestock.” Papers were also obtained by tracing references in sources already obtained 

through prior searches.  

 In this review, parasite is defined broadly in the ecological sense to encompass 

macro- and microparasites (Anderson & May 1979). Macroparasites are typically larger 

organisms (e.g. helminths, flukes, arthropods) that have free-living infectious stages 

outside the host, while microparasites are generally smaller (e.g. bacteria, viruses, 

protozoa, prions) and reproduce within the host, usually with correspondingly shorter 

generation times (Keeling & Rohani 2008a). In this article, microparasites will also be 

referred to interchangeably as pathogens. Parasites can be further classified as directly or 

indirectly transmitted. Directly transmitted infections result from close contact between a 

susceptible and infectious individual, while indirectly transmitted infections result from 

second-hand exposure to the infectious agent through the environment. In general, most 

microparasites are directly transmitted because they cannot survive for a long time 

outside a host, and most macroparasites are indirectly transmitted because of their free-

living infectious stages (Keeling & Rohani 2008a).  
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1.3 Why does contact heterogeneity matter for wildlife?  

 Compartmental models have given rise to a ubiquitous parameter in epidemiology 

that underlies many disease-intervention strategies: R0. This parameter, known as the 

basic reproductive number, represents the number of secondary cases arising from one 

infectious individual in an entirely susceptible population (Anderson & May 1991). If R0 

is greater than 1, then the pathogen has the potential to spread throughout the population, 

while if R0 is less than 1, the number of infected cases should subside. Yet, contact 

heterogeneity or preferential associations can have a substantial impact on the duration, 

size, and dynamics of epidemics such that R0 may not be a reliable predictor of disease 

dynamics (Keeling & Eames 2005; Meyers 2007). This concept has been readily 

acknowledged in epidemiological studies of humans (Ames et al. 2011), but has been less 

studied in wildlife (Craft & Caillaud 2011a). Arising from the calculation of R0 in a 

density-dependent SIR model is the idea that there is a corresponding population 

threshold below which an epidemic cannot occur (McCallum et al. 2001; Lloyd-Smith et 

al. 2005a). Thus, disease control in wildlife often relies on methods like culling that are 

justified by assumptions that transmission rates increase with host density(Carter et al. 

2007). However, there is often a non-linear relationship between density and parasite 

prevalence in wildlife, which may result from factors like sociality, territoriality, 

individual movement, variable reproductive rates, and multi-host reservoirs (Lloyd-Smith 

et al. 2005a; Viana et al. 2014).  
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 Consider the pitfalls of assuming random-mixing and density-dependent 

transmission in the case of the European badger (Meles meles), which is a wildlife 

reservoir for bovine tuberculosis (bTB, Mycobacterium bovis). Badger culling has been 

implemented for many years as a means of controlling bTB in cattle, but more recent 

reviews and studies of this practice have found mixed evidence in support of culling 

(Vicente et al. 2007; White et al. 2008). In the UK, culling reduced bTB in the immediate 

area, but increased incidence in neighbouring areas (McDonald et al. 2008). In fact, large 

group size (i.e. high density) of badgers appears to be less of a risk factor than the 

perturbation of badger social systems through culling (Vicente et al. 2007). 

While bTB is a complicated multi-host pathogen, the unintended side effects of 

culling arguably resulted in part from not accounting for the role of contact heterogeneity 

in disease transmission. Badgers live in territorial, social groups called setts. In a radio-

tracking study of an undisturbed badger population, contacts between badgers of the 

same sett accounted for almost 90% of contacts relative to contacts between individuals 

of different setts (Böhm et al. 2008). Culling disrupts setts such that surviving badgers 

range into new territories, potentially increasing inter-sett contacts and the risk of bTB 

transmission to new locales (Carter et al. 2007; McDonald et al. 2008; Prentice et al. 

2014). In network terminology, the undisturbed badger populations had a higher 

modularity than post-culling populations because of their stronger intra-sett associations. 

Communities with high modularity or greater community structure are more resistant to 

disease invasions (Salathé & Jones 2010). Many factors complicate bTB transmission in 

the UK, but eradication efforts in badgers highlight the complexities of wildlife ecology, 
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especially for a multi-host pathogen. It also highlights how the assumptions implicit to 

compartmental models may be inadequate for describing critical complexity in wildlife 

systems.  

 

1.4 Overview of empirical studies  

 The 39 empirical studies highlighted here investigate a wide variety of hosts and 

parasites (Table 1.1). The use of contact network methods for describing parasite 

transmission in wildlife systems is still relatively novel, with the majority of studies 

published in 2008 or later. Roughly three-quarters of studies targeted mammalian hosts 

with only five studies targeting reptiles, two targeting fish, and two targeting 

invertebrates. Most studies targeted directly transmitted parasites; roughly a third of 

which dealt with bTB in different wildlife systems. Comparatively few papers addressed 

indirectly transmitted, vector-borne, or trophically transmitted parasites. The majority of 

studies relied on behavioural observations or capture–mark–recapture methods to 

establish contact network patterns, but new methods like proximity data loggers and 

genetic strain comparison of commensal microparasites are gaining traction. The 

definition of a ‘contact’ varies widely in terms of required proximity, duration of 

association, and permitted time-lag for shared or asynchronous space use (Table 1.1: 

Column M1). Replication in the same host–pathogen system is relatively infrequent. 

Moreover, when the studies are grouped by the types of questions that they answer, there 

is a marked scarcity of studies for any given question that makes it difficult to generalize 
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findings to other systems. A detailed discussion of those theoretical and applied questions 

and relevant findings follows in Sections 1.5 and 1.6.  

1.5 Theoretical and applied questions that contact networks have been used 

to answer  

Uncovering superspreaders: do wildlife populations exhibit contact heterogeneity? 

 The impacts of contact heterogeneity on pathogen transmission have been well 

demonstrated for humans and livestock (Martínez-López et al. 2009; Ames et al. 2011). 

However, uncovering contact heterogeneity and determining its effects on epidemic 

outcomes are still motivating objectives for wildlife studies (Craft & Caillaud 2011a). If a 

wildlife population exhibits contact heterogeneity, a corresponding question is: are there 

superspreaders in the population? Superspreaders are individuals that disproportionately 

contribute to the spread of pathogens by virtue of a high number of contacts – or a high 

degree in network terminology (Lloyd-Smith et al. 2005b). Identification of 

superspreaders is critical because they can be targeted for surveillance and control 

measures (Christley et al. 2005). Monitoring individuals or sub-populations that act as 

‘hubs’ for the population can increase the efficiency of outbreak detection (Eubank et al. 

2004), and targeted treatment of high-risk individuals in endangered wildlife species can 

enable lower coverage of vaccination than conventional methods (Haydon et al. 2006). 

 There have been multiple studies demonstrating that contact heterogeneity exists 

in wildlife, and that accounting for this heterogeneity while modelling the spread of 

pathogens is important for making predictions. For instance, deer mice (Peromyscus 

maniculatus), susceptible to Sin Nombre virus (SNV, Bunyaviridae: Hantavirus), exhibit 
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non-normal distributions of contacts, such that a small proportion of the individuals are 

responsible for a majority of contacts (Clay et al. 2009). This supports the concept of 

superspreaders or the ‘20/80 rule’ where 20 per cent of the individuals account for 80 per 

cent of transmission (Clay et al. 2009). Similarly in brushtail possums (Trichosurus 

vulpecula), contact rate was not proportional to density suggesting frequency-dependent 

transmission (Ji, White & Clout 2005), and observed degree distributions were non-

normal and best described by a negative binomial fit (Porphyre et al. 2008). Moreover, 

observed networks were small world networks that yielded mean estimates for R0 roughly 

1.5 times greater compared to disease simulations on randomly generated networks of 

comparable size (Porphyre et al. 2008).  

However, superspreaders may not always be present, even if associations are not 

random. For Tasmanian devils at risk of DFTD, the degree distribution of contacts was 

neither random nor highly aggregated, and no particular class of individual was more 

highly connected overall (Hamede et al. 2009). Nevertheless, including these observed 

distributions in a contact network model resulted in a lower epidemic threshold, but a 

higher probability of pathogen extinction, than in an equivalent mean field model 

(Hamede et al. 2012). 

 

What factors mediate individual variability in susceptibility and exposure? 

Individual variability in contributing to the spread of pathogens is not merely 

limited to a heightened ability to transmit as a result of a disproportionally high number 

of contacts; it may also be necessary to account for super-shedders, super-susceptibles or 
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super-recipients, and super-movers (Craft 2015). For instance, co-infection with other 

parasites may make an individual more susceptible to infection or dramatically increase 

the rate of shedding (Cattadori, Boag & Hudson 2008; Lass et al. 2013). In a study that 

tracked the obligate blood-sucking lice (Lemurpediculus verruculosus) occurring on 

individual mouse lemurs (Microcebus rufus), both ‘superspreader’ and ‘super-recipient’ 

mouse lemurs existed concurrently in the population. Super-recipients, in this case, were 

individuals with the highest parasite loads but low lice turnover – that is, they did not 

disproportionately spread lice to conspecifics like the superspreaders did (Zohdy et al. 

2012). Additionally, mobile individuals that are not central to a network, but that connect 

otherwise disparate components of a network may function as ‘super-movers’. For 

instance, in a network study of Kenyan ungulates, zebras (Equus burchelli) had the 

highest cut-point potential and second highest betweenness scores (e.g. betweenness 

centrality) of all the studied species, suggesting that their high mobility and large home 

range brought them into contact with other less-wide-ranging species (VanderWaal et al. 

2014a). 

Contact networks can parse out the competing effects of variable contact rates and 

individual variability in susceptibility that can result from differing levels of hormones. 

For example, a directly transmitted helminth (Heligmosomoides polygyrus) had 

inexplicably been shown to have a roughly equal prevalence in male and female yellow-

necked mice (Apodemus flavicollis) despite demonstrated male-biased transmission 

(Perkins, Ferrari & Hudson 2008). To explore the unexpected equal prevalence in both 

sexes, the authors used a contact network combined with a susceptible–infectious (SI) 
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model to test the relative roles of contact heterogeneity and sex-biased transmission. The 

mice exhibited dissassortative mixing where males preferentially mixed with females 

instead of members of the same sex – but just accounting for empirical contact patterns 

did not yield an equal parasite prevalence between males and females; the male-biased 

transmission had to be increased tenfold over the observed contact networks to yield 

model predictions of prevalence that matched observed values. 

However, testosterone may aid male-biased infection through immunosuppressive 

effects and behavioural changes that increase exposure. By experimentally manipulating 

testosterone levels in male white-footed mice (Peromyscus leucopus), Grear, Perkins, & 

Hudson (2009) showed that males with higher levels of testosterone induced higher 

contact rates than untreated males, not only for themselves, but for their entire study plot. 

Elevated cortisol levels may also make individuals more susceptible to infection 

(Sapolsky 2005). In a group of Japanese macaques (Macaca fuscata yakui), MacIntosh et 

al. (2012) sought to parse out the effects of socially mediated exposure and individual 

susceptibility. The authors found that more-dominant females had higher parasite-

shedding rates and higher parasite richness. Female centrality, which roughly mirrored 

the dominance hierarchy, also correlated with infection prevalence. However, cortisol 

levels did not differ among females of different rank, supporting the idea that social 

interaction rather than individual susceptibility was most important in predicting infection 

risk in this population. 

Individuals may also mediate their risk of exposure by inherent temperament or 

behavioural type (Bell 2007). Animals can exhibit a range of consistent behaviour 
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roughly correlating to ‘bold’ and ‘shy’ temperaments (Natoli et al. 2005). For instance, in 

feral domestic cats (Felis catus L.), bold male cats are more likely to contract feline 

immunodeficiency virus (Natoli et al. 2005). Similarly, in a study of bTB risk in cattle, 

the most dominant animals in the herd (i.e. ‘bold’) were more likely to explore and 

interact with sedated brushtail possums, which behaved like terminally ill, tuberculosis-

infected possums. Roughly 90% of bTB positive cattle were in the top 20% of the 

dominance hierarchy (Sauter & Morris 1995). An analogous pattern was seen in a 

proximity data-logger study of cattle and badgers, where cattle with the highest intra-herd 

contact rates also had the highest interspecific contact rates (Böhm, Hutchings & White 

2009). 

How do community structure and group living affect the spread of parasites?  

Group living can have significant consequences for epidemic outcomes in wildlife 

populations. Factors like group size, variance in group size, and individual movement 

between groups all potentially play a role in epidemic outcomes (Cross et al. 2005; 

Rifkin, Nunn & Garamszegi 2012; Caillaud, Craft & Meyers 2013). In hierarchical 

populations that contain sub-grouping within larger social groups, understanding disease 

persistence may depend more on the transmission of the disease between sub-groups 

rather than characteristic properties of individual transmission events such as R0 (Cross et 

al. 2007b). One characteristic of networks that incorporates the effects of group living is 

community structure; a population has community structure when group members have 

more connections between themselves then between members of other groups. In 

network terminology, a higher modularity (Q) corresponds to higher density of intra-
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group connections relative to inter-group connections (Figure 1.2). Standard network 

measures like degree distributions may not fully capture the properties of networks with 

higher modularity (Salathé & Jones 2010).  

According to theory, networks with less clustering or fewer sub-groups are more 

vulnerable to larger-sized epidemics (Keeling 1999). This is consistent for honey bees 

(Apis mellifera) where colonies with lower clustering and more robust networks had 

greater pathogen transmission potential (Naug 2008). In meerkats (Suricata suricatta), as 

group size increased, so did the clustering coefficient, suggesting that transmission of 

bTB might be limited by the predominance of smaller cliques within larger groups 

(Drewe et al. 2011). Similarly primates living in larger social groups have networks with 

higher modularity and a correspondingly lower parasite richness (Griffin & Nunn 2011).  

 In some populations, mobile individuals or nomads can increase the connectivity 

and potential transmission risk in the network. In Belding’s ground squirrels 

(Spermophilus beldingi), higher transitivity, a measure of clustering, correlated 

negatively with the prevalence of Cryptosporidium. Moreover, highly mobile juvenile 

males reduced clustering in the population, which was in turn associated with higher 

parasite prevalence. By lowering transitivity, these juvenile males functioned as potential 

superspreaders (VanderWaal et al. 2013). By contrast, nomads moving between 

Serengeti lion (Panthera leo) prides increased the overall connectivity of the network, but 

did not function as critical superspreaders. As territorial animals, Serengeti lions were 

hypothesized to be less vulnerable to epidemics because of social segregation into prides. 

However, because of inherent small-world properties of the pride-to-pride network, lions 



 

25 

living in prides exhibited a few, key long-range contacts, which made the effects of 

transient nomads negligible (Craft et al. 2011). 

 Even if group dynamics are more fluid, as occurs in species exhibiting fission–

fusion sociality, accounting for community structure can be important. For example, in a 

study of African buffalo (Syncerus caffer) association data, buffalo exhibited a more 

dynamic herd structure than previously thought; instead of maintaining highly segregated 

herds, the population became more uniformly mixed over longer time intervals (Cross et 

al. 2004). Association data were highly variable from month to month and year to year. 

Simulating disease across these networks showed that tighter clustering in one year 

would have made the population less permeable to disease compared to another year. 

Overall, even when accounting for a highly dynamic network with monthly ‘rewiring’ 

events, transmission potential was much lower than if movement between groups was 

truly random (Cross et al. 2004). 

 

Are there feedbacks between network position and infection status? 

 In an evolutionary context, parasitism is theorized to be a cost of group living; 

generally, directly and indirectly transmitted parasites increase in prevalence, if not 

necessarily richness, with larger group size (Rifkin et al. 2012; Patterson & Ruckstuhl 

2013). An intriguing question in the realm of behavioural ecology is whether being 

central in a network leads to higher parasite load or infection risk, and conversely, 

whether having a high parasite load or being infected alters behaviour such that an 

individual becomes more central (Godfrey 2013). 
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(a) How does network position affect infection status? 

 Several studies have investigated this question for indirectly transmitted parasites 

in reptiles, constructing delayed-transmission networks based on asynchronous den or 

crevasse use. For gidgee skinks (Egernia stokesii), well-connected lizards were more 

likely to be tick-infested and be infected with two or more protozoan parasite species 

(Godfrey et al. 2009). For the tuatara (Sphenodon punctatus), a solitary lizard species, 

territory overlap indices were used to construct directed, weighted networks. There was a 

strong relationship between in-strength or the sum of all edge weights directed at an 

individual and infection with ticks. For both males and females, connections with males 

were particularly good predictors of parasite load. Mite loads, by contrast, were better 

explained by individual-level traits like sex, body size and territory size (Godfrey et al. 

2010). In Australian sleepy lizards (Tiliqua rugosa), highly connected lizards – or lizards 

that often used their neighbours’ refuges – had higher tick loads (Leu, Kappeler & Bull 

2010).  

 For brushtail possums experimentally infected with bTB, animals that naturally 

contracted bTB from experimentally infected individuals were more likely to be central 

to the network. Specifically they had higher closeness and flow-betweenness scores 

relative to individuals that did not become infected naturally (Corner, Pfeiffer & Morris 

2003). By contrast, meerkats more central to the network were not de facto more likely to 

be infected with bTB. Rather infection status was behaviour dependent with grooming 

initiators and aggression recipients having the highest risks of infection (Drewe 2010). 
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(b) How does an individual’s state of infection affect network position and topology?  

 The first two phases of transmission depend upon (1) individual behaviour that 

leads to contact between infectious and susceptible hosts, and (2) the transmission 

efficiency of the agent, which depends on the physiological characteristics of the 

pathogen and host. Thus, the first phase of transmission can be altered by individual 

changes in behaviour, which may include (1) seeking out or avoiding infectious 

individuals, (2) infection-induced changes in behaviour, or (3) covariation between 

reduced or heightened individual susceptibility and likelihood of contact with infectious 

individuals. For an excellent overview of the topic and review of potential mechanisms of 

covariation between the behavioural and physiological components of transmission, see 

Hawley et al. (2011). 

 While networks are commonly portrayed as a static entity across which pathogens 

can spread, it has been demonstrated in numerous experimental systems that individual 

host behaviour changes upon infection. Often, these changes make it easier for the 

pathogen or parasite to change hosts, especially for trophically transmitted parasites 

(Berdoy, Webster & Macdonald 2000; Goodman & Johnson 2011); however, behaviours 

exhibited during sickness like fever, lethargy, and anorexia could reduce intraspecific 

contacts by limiting mobility and foraging activity (Adelman, Moyers & Hawley 2014). 

Yet, there has been very little investigation into how infection-induced changes to 

individual-level behaviour might scale up to changes in contact frequency at a population 

level (Hawley et al. 2011). 
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 Initial experimental findings suggest that accounting for infection-induced 

changes in behaviour may be very important. Using Trinidadian guppies (Poecilia 

reticulata) and directly transmitted trematodes (Gyrodactylus spp.), Croft et al. (2011) 

explored how groups of fish reacted to the introduction of either an infected or uninfected 

individual. They found that infected guppies associated less with the group than their 

uninfected counterparts. Moreover, in infected treatments, uninfected individuals were 

more likely to initiate shoal fission – or split the group – than in uninfected treatments, 

which may serve as a possible avoidance mechanism. 

 Even if the exact manifestations that infection may incur on contact frequency are 

not known, modellers can begin to explore how behavioural changes could affect 

epidemic dynamics. For instance, when modelling the hypothesized effects of dumb and 

furious rabies on raccoon (Procyon lotor) contact patterns, both the final outbreak size 

and speed of rabies spread varied in response to these simulated behavioural changes 

(Reynolds et al. 2015). 

 

Are certain populations more vulnerable to disease epidemics? 

 The field of graph theory has provided numerous theoretical insights on how 

network structure affects epidemic behaviour (Keeling, 1999; Keeling & Eames, 2005). 

However, applying these findings to the realm of conservation to help protect endangered 

or threatened wildlife populations is relatively novel. In this context, the term 

‘population’ may correspond to a species, sub-species, or any group of individuals within 

a designated geographic range. This has been done for at-risk or threatened populations 
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such as chimpanzees (Pan troglodytes schweinfurthii) and orangutans (Pongo pygmaeus 

wurmbii) (Carne et al. 2013), and mammal-eating killer whales (Orcinus orca) 

(Guimarães et al. 2007). Even individuals that may be considered relatively asocial, like 

Tasmanian devils or raccoons, may turn out to be more vulnerable than anticipated 

because the population is completely or highly well connected (Hamede et al. 2009; 

Hirsch et al. 2013). Similarly, populations exhibiting small world networks – consisting 

of mostly local, but a few long range contacts – may be particularly vulnerable to 

epidemics (Porphyre et al. 2008; Craft et al. 2011). 

How important are heterogeneities in interspecific interactions for maintenance or 

spillover of multi-host pathogens? 

 The contraindications of badger culling illustrate the challenges of designing 

interventions for multi-host pathogens like bTB. Contact network studies can help 

elucidate intra- and interspecific contact patterns, especially when transmission pathways 

are unclear. In the UK, the prevailing belief was that badgers generally avoided cattle, so 

most management strategies to date have focused on reducing indirect transmission 

scenarios, i.e. exposure to bacilli from contaminated pasture or feeding troughs (Garnett, 

Delahay & Roper 2002; Garnett, Roper & Delahay 2003). However, in a study of 

interspecific contacts between badgers and cattle in the UK, contacts between badgers 

and cattle occurred more frequently than intraspecific contacts between badgers of 

different setts. Although interspecific contacts were still relatively infrequent, direct 

contacts occurred more often than previously suspected, and these contacts usually 

occurred with cattle that were very central to their intraspecific networks. This suggests 
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that direct interspecific interactions between badgers and cattle could be more important 

than inter-sett badger contacts in spreading bTB (Böhm et al. 2009). One of the 

limitations of contact network studies is the challenge associated with determining the 

directionality of transmission (i.e. badger to cattle versus cattle to badger), but there is 

now genetic evidence supporting interspecies transmission in this system. A whole-

genome study of M. bovis in sympatric badger and cattle populations found evidence that 

suggested that M. bovis had likely persisted in the region for several years, despite cattle 

herds testing bTB negative, and that recent transmission events between the two species 

were probable (Biek et al., 2012). Accounting for both direct and indirect transmission 

scenarios between badgers and cattle will be an important consideration for future 

management strategies (Böhm et al. 2009).  

 Contact networks can also be used to explore disease dynamics and persistence 

for potential wildlife reservoirs or spillover events into wildlife populations. A reservoir 

is a population, or group of connected populations, capable of maintaining an infection 

indefinitely and, further, is capable of transmitting the infection to a ‘target species’ for 

which elimination or control of the disease is the desired outcome (Haydon et al. 2002; 

Viana et al. 2014). The transmission of a pathogen from a reservoir to a target species 

constitutes a spillover event (Power & Mitchell 2004). Detailed contact network 

information was used to explore retroactively the dynamics of the 1994 canine distemper 

virus (CDV) outbreak in Serengeti lions. The question of interest was whether the 

Serengeti lion population would have been able to self-sustain the epidemic or whether 

the outbreak involved repeated spillover from sympatric hosts like hyenas (Crocuta 
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crocuta) or jackals (Canis adustus, C. aureus, and C. mesomelas). In this case, the lions 

were found to be a ‘non-percolating’ population incapable of acting as a maintenance 

host for CDV, thus requiring multiple spillover events from other hosts to give rise to the 

observed epidemic (Craft et al. 2009). Therefore eliminating CDV from the system will 

require interventions directed at other hosts rather than just lions.  

 Just as it is possible to identify a superspreader within a population, for multi-host 

pathogens, it is also possible to ask whether a particular species is functioning as a 

superspreader relative to the community. In a study of wild and domestic ungulate 

species in Kenya, association data was combined with E. coli genetic strain information 

to infer a transmission network. Based on this information, Grant’s gazelle (Gazella 

granti) were found to be most central to the network, while zebra were most likely to act 

as bottlenecks or conduits between two otherwise unconnected sub-groups (VanderWaal 

et al. 2014a). 

Are there ‘trait-based’ features that are predictive of superspreader status?  

 While many studies try to find superspreaders based on observed contact patterns, 

an equally important but neglected question is whether there are any ‘trait-based’ 

characteristics that are predictive of an individual being a superspreader. This is 

particularly important in wildlife populations where elucidating a contact network can be 

time consuming and costly. So far only a few studies have investigated this question, 

yielding mixed results. As previously mentioned in the case of Tasmanian devils, no 

particular class of individual was more highly connected overall, making targeted 

interventions against DFTD of limited utility (Hamede et al. 2009). Otterstatter & 
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Thomson (2007) explored how different social and labour roles in bumble bee (Bombus 

impatiens) colonies correlate with infection status, and found that an individual’s unique 

position in the network was the best predictor of infection risk. Centrality was a poor 

predictor because infection depended specifically on the contact rate with other infected 

hive mates rather than just having a high contact frequency overall. In this way, their 

results mirror findings in human sexually transmitted disease network studies (Friedman 

et al. 1997; Wylie & Jolly 2001; Neaigus et al. 2001; Liljeros, Edling & Amaral 2003). 

 However, some studies have found that age, morphological traits, or position 

within the social hierarchy can indicate high-risk individuals. In honeybees, age of the 

individual dictates spatial organization of the colony. This means that older, foraging 

bees are most likely to be the first infected and thus introduce the pathogen into the 

colony (Naug 2008). For deer mice, body mass rather than sex or breeding condition was 

the best predictor of well-connected individuals (Clay et al. 2009). Wild chimpanzees 

with large families and highly ranked males were more likely to be more connected 

within networks (Rushmore et al. 2013), and targeting these classes of individuals with 

simulated vaccine interventions was found to be more effective than random vaccination 

(Rushmore et al. 2014). The evidence of trait-based characteristics and the 

corresponding, theoretical support for trait-based interventions could allow for more cost-

efficient and targeted management strategies even when the entire contact structure of a 

population is not known. While initial findings have been mixed, this is perhaps one way 

that scientists and managers can generalize the results of contact network studies that 

otherwise originate from specific host–pathogen systems.  
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1.6 Unresolved methodological questions 

Not all contacts are created equal: what is a ‘contact’? 

 How researchers collect data for contact network models and the assumptions 

they make while doing so have implications for the resultant network and the predictions 

that can safely be made from it. Transmission consists of three stages: (1) the susceptible 

and infectious individual coming into contact, (2) the transfer of the pathogen from 

infectious to susceptible individual, and (3) the development of infection from that 

transfer. It is important to recognize that contact networks only give insight into the first 

step (Hamede et al. 2009). The type of contact needed for a possible transmission event 

varies with the targeted species and pathogen, and in many cases, what truly constitutes a 

‘contact’ may still be unknown.  

 The variability in contact definition has been recognized as a challenge for 

modelling pathogen spread in humans. For example, a network representing possible 

transmission of a sexually transmitted disease like syphilis might contain only a subset of 

the edges for a network representing an airborne disease like measles (Keeling & Eames 

2005). Assumptions about what constitutes a ‘contact’ in wildlife vary widely across 

systems and may be limited by the method of data collection. For example, ‘contact’ has 

been defined as: being in the same herd (Cross et al. 2004); being caught in the same trap 

on the same day (VanderWaal et al. 2013); two individuals found within a certain 

distance according to proximity data (Böhm et al. 2009); kernel density estimates based 

on trap location (Porphyre et al. 2008); shared but asynchronous refuge use (Godfrey et 

al. 2009); and even asynchronous territory overlap for a solitary species (Godfrey et al. 
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2010)(Table 1.1: Column M1). Different transmission modes may be captured by 

different measures of contact. For instance, contacts for faecal–oral parasites may be 

accurately captured through shared space use, while directly transmitted parasites may 

require more restrictive definitions of spatial and temporal proximity. 

Consequently, the type or length of contact may be important in determining 

transmission. For example: does the interaction have to be solely aggressive as is 

suspected for DFTD and rabies or can it be mere proximity? Network topology and 

density can change dramatically when different time requirements are used to limit the 

definition of a contact. In monthly contact networks for raccoons, increasing the amount 

of time required to constitute a contact decreased social connectivity measures (Hirsch et 

al. 2013). Similarly, for deer mice and Sin Nombre virus, contact frequency alone was 

not a predictor of infection status until combined with contact duration (Clay et al. 2009). 

Such challenges in defining a contact can even be seen in the same host for different 

pathogens. For instance, den sharing has been shown to be critical for bTB transmission 

in brushtail possums (Corner et al. 2003), but is of secondary importance compared to 

brief nocturnal interactions for transmission of commensal E. coli (Blyton et al. 2014). 

 The epidemiological characteristics of the parasite of interest should also be 

considered when defining a contact. Such factors include the length of incubation or 

latency and infectious periods and, in the case of indirectly transmitted parasites, the 

persistence of the parasite off the host. Naug & Smith (2007) experimentally manipulated 

the infectious period for a gut-pathogen proxy in honey bees and compared the resultant 

networks derived from food transfer interactions. Since only food that remains in a bee’s 
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crop can be transferred to other bees, they created long and short ‘infectious periods’ by 

manipulating the bees’ rate of digestion: higher concentrations of sucrose resulted in a 

slower rate of crop emptying such that the gut-pathogen proxy remained available for 

mouth-to-mouth transfer for longer. And vice versa, lower concentrations of sucrose 

created the shorter infectious period treatment. Not surprisingly, the network derived 

from the longer infectious period treatment had higher prevalence, but lower intensity of 

‘infection’ (Naug & Smith 2007), as well as a higher mean degree and greater flow than 

the network for the shorter ‘infectious period’ (Naug 2008). Although no actual pathogen 

was present, this experiment hints at the importance of accounting for relevant exposure 

and infectious periods during data collection. Ultimately, several factors should be taken 

into account when defining a contact: the type and length of contact needed for a 

transmission event, the data collection method available for a given species, and the 

epidemiological characteristics of the parasite of interest.  

How does the method of data collection affect the perceived network? 

 As suggested by the number of definitions for a ‘contact’, there is no standard 

method of data collection for association data. The contact structure of a population can 

be collected through capture–mark–recapture, behavioural observations, powder marking, 

and various forms of remote monitoring such as telemetry, proximity loggers, or cameras 

[see Craft & Caillaud (2011) for a summary of methods and Krause et al. (2013) for a 

review of biologging and telemetry techniques]. In the same way that different definitions 

of a contact will result in networks with different properties, different methods of data 

collection will also provide different portrayals of association data. Comparing the 
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perceived networks obtained from different data-collection methods and different 

definitions of a contact may help to determine what type of contact is important 

(VanderWaal et al. 2014b). 

 In a comparison of methods to quantify contact networks using radio telemetry 

and capture–mark–recapture data, Perkins et al. (2009) found that both methods of data 

collection produced similar contact distributions for a population of yellow-necked mice. 

However, while betweenness was similar, other network metrics like closeness and 

connectance were statistically different. This difference may have arisen as a result of 

changing rodent density, since capture–mark–recapture data were more informative at 

higher densities and radio-telemetry networks provided better resolution at low 

population densities (Perkins et al. 2009). Similarly, in a methods comparison study with 

three modes of data collection, cameras and global positioning system (GPS) units 

documented fewer contacts relative to proximity loggers in white-tailed deer (Odocoileus 

virginianus) (Lavelle et al. 2014). Other studies indicate that capture–mark–recapture 

methods may underestimate potential contacts. In mouse lemurs, contact networks were 

derived from both capture–mark–recapture of lemurs and individual tagging of an 

obligate lice species. The turnover of lice on lemurs was consistent with more numerous 

and less-spatially limited contacts than indicated by recapture data alone (Zohdy et al. 

2012). 
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Are social networks effective pathways for transmission of indirectly transmitted 

parasites? 

 Although contact networks have been traditionally employed for directly 

transmitted parasites, an active area of interest in the realm of behavioural and disease 

ecology is exploring the ability of contact networks to predict indirectly transmitted 

parasites from asynchronous space use (Godfrey 2013). This is commonly done with 

‘delayed-transmission’ networks, where individuals using the same space within a 

designated interval of time (but not necessarily at the same time) are considered to have 

an edge between them in the network. This edge may be weighted based on the frequency 

of the space-sharing or the distance between individuals, giving rise to a weighted 

network.  

 The effectiveness of using networks to predict indirectly transmitted parasite 

loads seems to be parasite and host dependent. For the Australian sleepy lizard and its 

ectoparasitic tick, transmission networks derived from asynchronous den use accurately 

predicted that highly connected lizards had higher tick loads (Leu et al. 2010). Similarly, 

when documenting the infection of Pygmy bluetongue lizards (Tiliqua adelaidensis) with 

ticks and nematodes, lizards infected with ticks were more connected in the network, but 

lizards infected with nematodes did not differ in their connectivity when compared with 

uninfected individuals (Fenner, Godfrey & Michael Bull 2011). In the solitary tuatara, 

there was a strong relationship between in-strength and infection with ticks and tick-

borne protozoans, but mite loads were better explained by personal traits like sex, body 

size or territory size (Godfrey et al. 2010). Ultimately, however, the empirical results 
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supporting indirect pathogen/parasite transmission are largely correlative because it is 

very difficult to separate the contributions of spatial heterogeneity and contact frequency 

(Bull, Godfrey & Gordon 2012).  

 A new direction that some studies have taken is simultaneously to track the social 

network and the strains of a commensal proxy like E. coli or Salmonella species; this 

provides greater resolution than simply treating a parasite or pathogen as a uniform 

entity. In the Australian sleepy lizard, individuals sharing the same genotype of 

Salmonella enterica were more likely to be connected in the social network; by contrast, 

spatial proximity was not a predictor of a shared genotypes (Bull et al. 2012). Similarly 

for giraffes (Giraffa camelopardalis), an individual’s position in the social network, but 

not spatial network, correlated to its position in a transmission network even for E. coli, 

which transmits via indirect faecal–oral routes (VanderWaal et al. 2014b). 

 While the body of work supporting the use of contact networks as transmission 

routes for indirectly transmitted pathogens is growing, researchers should be vigilant in 

defining the network in a suitable way that matches host life history and pathogen life 

cycle. For example, for helminths (e.g. Capillaria tamiasstriati and Citellinema 

bifurcatum) in chipmunks (Tamias striatus), transmission of faecal–orally transmitted 

species only correlated with contact networks that allowed for a time delay that 

corresponded to the parasites’ off-host development stage. Social contact networks that 

represented synchronous space use were not representative of transmission. Moreover, 

transmission of trophically transmitted species (i.e. those with mobile intermediate hosts) 
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did not correlate with either delayed-transmission or social contact networks (Grear, 

Luong & Hudson 2013). 

 

Dynamic networks and rewiring: how do temporal changes in networks affect 

epidemic outcomes?  

 Dynamic networks are networks that allow for changes in contact structure over 

time. These changes are called rewiring events. Blonder et al. (2012) warn against the 

consequences of treating a network as if its topology is fixed, when it is in fact changing. 

But for most pathogens especially in wildlife populations, it is not always clear how 

important it is to account for these dynamic interactions (Pellis et al. 2014). While 

dynamic network studies in wildlife are not usually employed (but see Cross et al., 2004; 

Hamede et al., 2012; Wilson et al., 2014), theoretical work suggests that using static 

networks in lieu of dynamic networks can greatly alter epidemic outcomes (Fefferman & 

Ng 2007). For example, accounting for temporal changes in livestock contact networks 

has significant ramifications for epidemic behaviour, especially for diseases with lower 

reproductive numbers (i.e. R0 < 2) (Chen et al. 2014). Another important consideration is 

that the pathogen itself may contribute to rewiring of the network (Eames et al., 2015). 

Accounting for this rewiring may be more important for some host–pathogen systems 

than others. For instance, a highly virulent pathogen that causes high mortality will 

eliminate nodes in the network, and a highly mutable pathogen may re-infect recovered 

nodes.  
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 In general, wildlife networks appear to be very dynamic in nature, and thus may 

have important implications for predicting disease dynamics (Craft & Caillaud 2011a). 

Observed meerkat monthly grooming and aggression networks were stable through time 

(Drewe et al. 2011), but wild chimpanzee networks were highly dynamic over time 

(Rushmore et al. 2013) as were inter- and intraspecific contact patterns for badgers and 

cattle (Böhm et al. 2009). Other species exhibit different patterns of association between 

breeding and non-breeding seasons including Tasmanian devils, possums, and mouse 

lemurs (Ji et al. 2005; Hamede et al. 2009; Zohdy et al. 2012; Rushmore et al. 2013). 

This means that accounting for seasonal variations in networks may be sufficient for 

certain species and, in some cases, knowing more about the dynamicity of networks 

could inform decisions for timing of interventions like oral bait vaccine administration 

for rabies prevention in raccoons (Reynolds et al. 2015). 

 

1.7 Discussion 

Using, developing, and comparing contact networks with discernment 

 While this review has emphasized cases where contact heterogeneity has been 

found to explain infection patterns in wildlife, it may be impractical and unfeasible to 

account for contact heterogeneity in all cases. Before undertaking a contact network 

study in wildlife, researchers should consider whether accounting for non-random mixing 

would substantially change predictions or potential interventions. Returning to Levins’ 

modelling trade-offs, researchers must evaluate the costs of realism (Levins 1966). It is 

the exception, rather than the rule, that targeted interventions are realistic options in 



 

41 

wildlife (Vial et al. 2006; Haydon et al. 2006). For this reason, future studies should seek 

out trait-based characteristics that can enable network interventions even if the whole 

network structure is not known (Salathé & Jones 2010; Pellis et al. 2014). Based on work 

that has been done so far, it seems that directly transmitted pathogens in systems with 

high spatial organization or clear social hierarchy would be most likely to exhibit trait-

based characteristics, i.e. social insects (Naug, 2008) or primates (Rushmore et al., 2013, 

2014). Uncovering populations where trait-based methods can be used effectively is 

essential since data collection for networks can be both costly and time intensive, and 

since projecting results for an entire population from a subsample is often necessary (e.g. 

Craft et al., 2009; Reynolds et al., 2015). 

 If researchers opt for association data, it is very important that they define 

contacts and collect data at intervals that are relevant to the epidemiology of the pathogen 

of interest (Cross et al. 2004; Keeling & Eames 2005; Grear et al. 2013). Data collection 

should take into account host life history and the relevant infectious and exposure periods 

for pathogens in order for the contact network to be meaningful. For instance, when 

evaluating a population’s vulnerability to epidemics, combining months and years of data 

into a single contact network can suggest an extremely interconnected population, when 

in fact, the infectious period is much shorter in duration than the time between when 

individuals come into contact (Cross et al. 2005). This is especially true for very solitary 

species or sparse populations where contacts are infrequent.  

Finally, researchers should be wary of comparing systems that do not lend themselves to 

comparison. As evidenced in this review, empirical studies of networks in wildlife detail 
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a huge range of hosts, pathogens, ‘contact’ definitions, and data-collection methods. 

Comparing results from studies on tick transmission in lizards and tuberculosis in 

meerkats without acknowledging the different biological and methodological processes at 

hand may lead to spurious conclusions. 

 

Current dilemmas: separating correlation from causation 

 In many aspects of network studies, it is challenging to separate correlation from 

causation. For example, is a social network truly reflective of transmission patterns or 

would transmission be explained better by spatial heterogeneities that lead to preferential 

host clumping or parasite survival? For the majority of papers exploring parasite load as a 

function of sociality, contact occurs when different individuals share the same space even 

if that use is asynchronous, but empirical evidence supporting indirect parasite 

transmission through social networks is lacking (Bull et al. 2012). 

 The goal for understanding the dynamics of indirectly transmitted parasites or 

faecal–oral pathogens should be to separate the effects of shared space use and contact 

frequency. It is worth considering that some pathogens, which are generally thought to be 

directly transmitted, can persist for a long time in the environment. For instance, a large 

proportion of wildlife network studies involve bTB (e.g. Porphyre et al., 2008; Böhm, 

Hutchings, & White, 2009; Drewe, 2010), which can certainly be transmitted directly, but 

also can persist for almost three months in soil depending on conditions (Fine et al. 

2011). Similarly, certain prion diseases like chronic wasting disease (CWD) have been 

shown to remain infectious in soil for an undetermined period (Johnson et al. 2006), but 
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modelling attempts and interventions have focused on density effects and direct contacts 

between hosts (Almberg et al. 2011). Questions of environmental persistence are also 

important for commensal proxies like E. coli; not all studies have identified a relationship 

between social contact and strain similarity (Chiyo et al. 2014). Lastly, it is unclear how 

much turnover or variability occurs for commensal bacteria within individuals, although 

by some estimations this turnover may be extremely high (Blyton et al. 2013). Such 

microbial community turnover is an important consideration for contact network studies 

because only bacterial strains with relatively high individual turnover are likely to reflect 

recent contact patterns (Blyton et al. 2014). If turnover rates are low relative to contact 

rates, resolution of contact patterns may be lost, and thus, turnover rates may also be 

important to consider when determining sampling frequency.  

 Network studies that track proxy pathogens or commensal species offer the 

opportunity to separate out the roles of shared space and contact frequency because they 

glean information from both the genetics of the pathogen and the contacts of the host 

(Bull et al. 2012; VanderWaal et al. 2014a; b; Blyton et al. 2014). However, the 

intersection of how individual behaviour and overall network topology change in 

response to infection is not well studied (Croft et al. 2011; Hawley et al. 2011). With 

these potential limitations, it is important to recognize that contact networks identified for 

a commensal species may be vastly different than those for a pathogenic species 

(VanderWaal et al. 2014b).  

 Consequently, another priority should be to explore the reciprocal relationship of 

how pathogens spread on a network and conversely, how a social network changes in 
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response to disease. Modelling studies in humans have begun to incorporate the effects of 

behavioural changes in response to disease, including: adherence to vaccination 

programs, fear-induced contact reduction, hygiene improvement, or changes in mobility 

or travel (Epstein et al. 2008; Coelho & Codeço 2009; Funk, Salathé & Jansen 2010; 

Funk et al. 2015; Meloni et al. 2011). For wildlife studies, this may require dynamic 

network methods and experimentation that involves introducing parasitized individuals to 

healthy, established groups. Studies where infection status is monitored while observing 

contact network structure in wildlife are relatively rare (e.g. Corner, Pfeiffer, & Morris, 

2003; Croft et al., 2011). Disease ecologists should seek out and test systems that are 

amenable and ethical for observing the spread of fast-spreading, directly transmitted 

pathogens; social insects might provide better opportunities for this (Naug & Smith 2007; 

Otterstatter & Thomson 2007; Naug 2008; Konrad et al. 2012; Charbonneau, Blonder & 

Dornhaus 2013). These tractable systems would enable the continuous monitoring of an 

entire population, a feat that is challenging at best in larger, more mobile species. Such 

investigations will help to elucidate another causation–correlation dilemma: is infection a 

result of network position or does being infected alter host behaviour and thus a host’s 

contacts?  

  A final goal should be to investigate further the relative importance of population 

heterogeneity (i.e. contact frequency) and intrinsic individual heterogeneity as manifested 

in host susceptibility or immune response. Networks can be used to elucidate population 

contact patterns and then test different transmission biases in order to match actual 

population prevalence. This has only been done in a handful of wildlife systems so far 
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(Perkins et al. 2008; Grear et al. 2009; MacIntosh et al. 2012). Collaboration between the 

fields of disease ecology and ecological immunology offers new opportunities for 

answering these questions (Hawley & Altizer 2011), and the increasing capabilities of 

remote biomonitoring hold great promise with smaller devices that will enable the 

collection of both contact data and individual physiological responses to disease 

(Adelman et al. 2014). 

 

Future directions 

 When used judiciously, contact networks are a valuable extension to traditional 

disease modelling approaches. Contact networks can offer insights to questions of 

parasite transmission across a broad range of fields and applications. Cross-disciplinary 

efforts are already leading to novel approaches and questions from ecologists, 

epidemiologists, veterinarians, geneticists, and conservation scientists. Behavioural 

ecologists have expanded contact network use into the realm of indirectly transmitted 

parasites. The convergence of disease ecology with genetics (Archie, Luikart & Ezenwa 

2009) and ecological immunology (Hawley & Altizer 2011) has offered some of the most 

promising inroads towards a better understanding of actual transmission patterns and 

individual susceptibility.  

 A novel technique that holds great promise for inferring transmission is the 

simultaneous tracing of parasites and contact data. This has been done selectively for 

individual macroparasites (Zohdy et al. 2012) and commensal strains of bacteria like E. 

coli and Salmonella spp. (Bull et al. 2012; Blyton et al. 2014; VanderWaal et al. 2014b). 
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In fact, with higher through-put metagenomic sequencing methods, it may soon be 

feasible to trace genetic strain information across a contact network, not just for a single 

pathogen of interest, but for a microbial community from any given individual (Archie & 

Theis 2011; Thomas, Gilbert & Meyer 2012; Kao et al. 2014; Zhou et al. 2015). One 

study demonstrated that adjacent chimpanzee community members exhibited different 

microbiota profiles, and that community members that had immigrated long ago still 

retained traces of their former community’s microbiota profile (Degnan et al. 2012). At 

present, there is still a poor understanding of how environment and genetics interact to 

create an individual’s microbiome (Benson et al. 2010), but eventually metagenomic 

sequencing methods could provide another tool for eliminating confounding factors like 

shared space, diet, or individual microbial turnover. 

 Technological advances also mean that real-time tracking of contact patterns will 

continue to become more accessible to a greater number of scientists. Biologging 

technologies are becoming smaller, longer lasting, further-ranging and more affordable 

(Krause et al. 2013). Scientists may be able to deploy more devices per study and 

potentially track smaller species that currently have device weight limitations. 

Additionally, more studies are beginning to parse out how data-collection method affects 

empirical results (e.g. Perkins et al., 2009; Lavelle et al., 2014). Relatively novel 

biomonitoring devices will offer the chance to collect simultaneous contact and 

physiological data to parse out questions of individual susceptibility versus variability in 

contact rate (Adelman et al. 2014). 
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 With such advances, contact network studies that implement direct, experimental 

manipulations of natural systems should also become more feasible. Given the 

confounding factors inherent to any natural system, it is not surprising that wildlife 

network studies that use direct experimental manipulation are still rare and typically 

employ captive wildlife populations (Corner et al. 2003; Croft et al. 2011) – Grear et al. 

(2009) is a notable exception. In other areas of ecology, studies that have experimentally 

manipulated wildlife populations to study disease hint at ways in which experimental 

methods could be employed to deconstruct unresolved issues in contact network studies. 

For instance, administration of anthelmintics to rodent populations might provide an 

opportunity to study how social networks change in the presence or absence of parasites 

(Knowles et al., 2013; Pedersen & Antonovics, 2013). 

Ultimately the strengths of a contact network approach are also its weaknesses. 

Realism and precision can limit the applicability of contact data to general contexts. How 

can scientists extrapolate from these often limited and system-specific data sets and begin 

to inject realism into more general models? Approaches that are common in human 

studies like exponential random graph models (ERGMs) have seen little use so far in 

wildlife studies, but would enable researchers to begin inferring disease dynamics for a 

larger population from a subset of individuals (e.g. Reynolds et al., 2015). Since network 

studies are often limited in the number of individuals that they can follow, new statistical 

approaches are being developed to tackle the challenges of boundary effects and 

sampling bias (Cross et al. 2012). Finally, Bayesian techniques of statistical inference 

may enable more generalized conclusions about the overall properties of networks or 
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transmission behaviour from specific data sets (Welch, Bansal & Hunter 2011; 

Groendyke, Welch & Hunter 2011; Lindström et al. 2013). Collectively, these 

technological and statistical improvements will make contact network studies feasible for 

more investigators and for new host–pathogen systems, and ideally, lead to the 

identification of broad-scale patterns that hold true across systems.  

1.8 Conclusions 

(1) The articles highlighted here address a wide variety of hosts and parasites (Table 1.1), 

but replication of results in the same system is infrequent. We identified 11 overarching 

theoretical, applied, and methodological questions that these studies collectively address; 

despite an increase in contact network wildlife studies in recent years, there are still only 

a few studies that address each transmission-related question, which leaves a lot of 

investigative space for future studies to explore. Most studies targeted directly 

transmitted parasites; a majority of that subset dealt with bTB in different wildlife 

systems. Comparatively few papers targeted indirectly transmitted, vector-borne, or 

trophically transmitted parasites. The majority of studies relied on behavioural 

observations or capture–mark–recapture methods to establish contact network patterns, 

but new methods like proximity loggers and strain sharing of commensal bacteria are 

becoming more popular.  

(2) Several areas stand out as priorities for future contact network research: (a) 

distinguish the effects of shared space use and contact frequency, especially for indirectly 

transmitted parasites; (b) explore the reciprocal relationship of how pathogens spread on 

a network, and conversely, how a social network changes in response to disease; (c) 
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investigate the relative roles of contact heterogeneity and individual host variability in 

susceptibility or immune response on parasite transmission; and (d) prioritize the 

identification of ‘trait-based’ features that will make network results more applicable to 

other systems and allow for targeted interventions and treatment, even in populations 

where contact patterns are unknown. 

(3) Researchers should be vigilant in defining contacts, choosing a data-collection 

method, and collecting data at suitable frequencies in order to best match host life history 

and parasite life cycle. Definitions of a contact are highly variable in the articles reviewed 

here (Table 1.1: Column M1). Researchers should critically examine several factors when 

defining a contact: the type and length of contact needed for a transmission event, the 

data-collection method available for a given species, and the epidemiological 

characteristics of the parasite of interest. More empirical and modelling work are needed 

to clarify how perceived contact networks differ as a result of different data-collection 

methods. Based on the predominance of seasonal contact patterns in many wildlife 

species, researchers should allow for dynamic rewiring in their network models or 

present strong evidence for exemption.  

(4) All scientists must contend with the tension between realism and generality when 

modelling. Contact networks give detailed, precise information for a small sample of a 

particular host and pathogen during a short time period, often making generalizations and 

comparisons across systems challenging. Additionally, collecting empirical data for 

contact network studies in wildlife is time and resource intensive, so researchers must 

evaluate the tractability of their system to data collection. New technological advances in 
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the form of biomonitoring and more portable tracking devices will make contact data 

collection more accessible to new investigators and for new systems, while new statistical 

approaches including ERGMs and Bayesian inference will make it easier to extrapolate 

and generalize from future and existing studies. Ideally, such advances will aid in the 

identification of broad-scale patterns that exist across host–pathogen systems.  
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1.10 Figures and tables 

 

Figure 1.1. A depiction of networks with different probabilities of edge formation for 25 nodes. (A) This 

network is equivalent to a compartmental model where every individual has an equal probability of 

encountering any other individual or every node is connected to every other node. The mean degree is 24. 

(B) An Erdős–Rényi random graph where probability of edge formation is equal to 0.25. Colour of the 

nodes corresponds to normalized betweenness centrality. Red nodes are the most central, purple nodes have 

mid-range centrality and blue nodes are the least central. The mean degree is 6.64. (C) An Erdős–Rényi 

random graph where probability of edge formation is equal to 0.05. Here the network consists of multiple 

components and the mean degree is 1.12.  
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Figure 1.2. A graphical depiction of modularity for 100 individuals in a community. Colours correspond to 

the ten different groups within the community. Modularity (Q) is the proportion of connections within 

groups relative to the connections between groups within a community. Modularity is highest for 

completely segregated groups (A), decreases as the number of inter-group connections grow (B, C), and 

approaches zero for a more well-mixed community (D). 
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Table 1.1. Empirical studies or studies that used empirical data to study the spread of parasites on wildlife host networks. For inclusion, the host species had to 

be wildlife, although studies targeting captive wildlife populations were also included. The numbered topics (Columns Q1–Q7) correspond to the theoretical and 

applied questions highlighted in order of appearance in Section IV. The grey shading indicates studies of particular relevance to each section.  In some columns, 

there are studies that are highlighted as pertinent, but that are not discussed explicitly in the main text under that particular heading. The letters (a) and (b) listed 

under Column Q4 correspond to the sub-sections for the corresponding question in the text. The numbered topics (Columns M1–M4) indicate which empirical 

studies pertain to the unresolved methodological questions in Section V with column M1 explicitly listing the definition of a contact for each study. Disease or 

parasite abbreviations: bTB, bovine tuberculosis; CDV, Canine Distemper Virus; CWD, Chronic Wasting Disease; DFTD, Devil Facial Tumour Disease; SNV, 

Sin Nombre Virus. Studies that did not develop a network for a specific parasite are labelled ‘generic’. Transmission type abbreviations: D, direct, I; indirect; T, 

trophic; V, vector-borne. Data-collection method abbreviations: Behavioural obs., behavioural observations; CMR, capture–mark–recapture. GPS, global 

positioning system; PIT, passive integrated transponder; VHF, very high frequency.  
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Corner et al. (2003) 

 

Brushtail possum bTB D Behavioural obs.       (a)       Den sharing       

Cross et al. (2004) 

 

African buffalo bTB D Radio-tracking               Same herd       

Ji et al. (2005) 

 

Brushtail possum bTB D Proximity data loggers               < 40 cm       

Guimarães et al. 

(2007) 

Killer whales Not specified D Behavioural obs.               Same pod       
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Otterstatter & 

Thomson (2007) 

Bumble bees Gut protozoan D Video & behavioural obs.               Physical contact ≤ 1 cm       

Böhm et al. (2008) 

 

Badger bTB D Radio-tracking               < 50 or < 250 m       

Naug (2008) Honeybee Generic gut pathogen D Video & behavioural obs.               Food transfer       

Perkins et al. (2008) 

 

Yellow-necked mouse Helminth D CMR               Same or adjacent trap within 14 days       

Porphyre et al. (2008) 

 

Brushtail possum bTB D CMR               Kernel density estimates       

Böhm et al. (2009) 

 

Badger & cattle bTB D Proximity data loggers               < 4 m       

Clay et al. (2009) Deer mice SNV D Powder marking & PIT 

tags 

              Powder transfer; same location 

within 15 s 

      

Craft et al. (2009) 

 

African lion CDV D Behavioural obs.               Proximity       

Perkins et al. (2009) Yellow-necked mouse Generic faecal-oral 

parasite 

I Radio telemetry & CMR               ≤ 15 m; same/adjacent trap within 5 

days 

      

Godfrey et al. (2009) 

 

Gidgee skinks Protozoans and ticks V or I CMR       (a)       Asynchronous crevasse use (≤ 41 

days) 

      

Grear et al. (2009) White-footed mice Generic micro- or 

macroparasite 

D or I CMR               Same or adjacent trap within 2 weeks       

Hamede et al. (2009) 

 

Tasmanian devil DFTD D Proximity data loggers               < 30 cm       

Drewe (2010) 

 

Meerkats bTB D Behavioural obs.       (a)       Grooming or aggressive interactions       

Godfrey et al. (2010) Tuatara  Ticks, mites & 

protozoan 

V or I Behavioural obs.        (a)       Asynchronous territory use overlap       

Leu et al. (2010) Australian sleepy 

lizard 

Ticks V or I Behavioural obs.       (a)       Asynchronous refuge use       

Craft et al. (2011) African lion CDV D Observation, GPS & VHF 

collars 

              Different prides ≤ 1 m & feeding 

events 

      

Croft et al. (2011) 

 

Trinidadian guppy Trematode D Behavioural obs.       (b)       ≤ 4 body lengths       

Drewe et al. (2011) 

 

Meerkats bTB D Behavioural obs.       (a)       Grooming, aggression, or foraging       

Fenner et al. (2011) Pygmy bluetongue 

lizards 

Tick and nematode I Behavioural obs.       (a)       Burrows < 31 m apart       

Griffin & Nunn (2011) 

 

Primates Generic D or I Meta-analysis               Meta-analysis: primarily grooming       

Bull et al. (2012) Australian sleepy 

lizard 

S. enterica 

(commensal) 

I GPS & genetic strain       (a)       < 2 m       

Hamede et al. (2012) 

 

Tasmanian devil DFTD D Proximity data loggers               < 30 cm       

MacIntosh et al. 

(2012) 

Japanese macaques  Nematodes and 

Strongyloides 

I Behavioural obs.               Grooming       

Zohdy et al. (2012) Mouse lemurs Obligate lice D CMR               Overlapping trap locale & louse 

exchange 
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Carne et al. (2013) Great apes & organ-

utans 

Generic (ex. Ebola) D Behavioural obs.               Party level (≤ 50 m)       

Grear et al. (2013) Eastern chipmunks Helminths I and T CMR               Same/adjacent traps; same, 1, or 2 

week intervals 

      

Hirsch et al. (2013) Raccoons Generic (ex. Rabies, 

CDV) 

D Proximity data loggers               1 ̶ 1.5 m proximity; 1, 5, 15 or 30 

min/month 

      

Rushmore et al. (2013) 

 

Wild chimpanzees Generic (ex. Ebola) D Behavioural obs.               Party level and ≤ 5 m associations       

VanderWaal et al. 

(2013) 

Belding's ground 

squirrels 

Cryptosporidium I CMR               Same trap on the same day       

Blyton et al. (2014) Brushtail possum E. coli (commensal) I Proximity logger & 

genetic strain 

              Proximity < 5 m & strain sharing       

Wilson et al. (2014) Trinidadian guppy Generic (ex. 

ectoparasites) 

D Behavioural obs.                ≤ 4 body lengths       

Lavelle et al. (2014) White-tailed deer Generic (Ex. CWD) D Camera, GPS & proximity 

logger 

              Photo and proximity (< 1 m);  GPS < 

20.4 m 

      

Rushmore et al. (2014) Wild chimpanzees Generic (Ex. Ebola) D or I Behavioural obs.                Proximity (< 5 m) & party level (< 

50 m) 

      

VanderWaal et al. 

(2014a) 

Giraffe E. coli (commensal) I Behavioural obs. & 

genetic strain 

              Same group or shared E. coli sub-

type 

      

VanderWaal et al. 

(2014b) 

Kenyan ungulates E. coli (commensal) I Behavioural obs. & 

genetic strain 

              < 50 m and shared E. coli sub-type       
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Chapter 2. Covariation between the physiological and 

behavioral components of pathogen transmission: Host 

heterogeneity determines epidemic outcomes 

White, L.A., Forester, J. D. and Craft, M. E. (In press). The role of host heterogeneity in 

determining epidemic outcomes: Covariation between the physiological and behavioral 

components of transmission. Oikos. doi: 10.1111/oik.04527 

 

2.1 Abstract 

 Although heterogeneity in contact rate, physiology, and behavioral response to 

infection have all been empirically demonstrated in host-pathogen systems, little is 

known about how interactions between individual variation in behavior and physiology 

scale-up to affect pathogen transmission at a population level. The objective of this study 

is to evaluate how covariation between the behavioral and physiological components of 

transmission might affect epidemic outcomes in host populations. We tested the 

consequences of contact rate covarying with susceptibility, infectiousness, and infection 

status using an individual-based, dynamic network model where individuals initiate and 

terminate contacts with conspecifics based on their behavioral predispositions and their 

infection status. Our results suggest that both heterogeneity in physiology and subsequent 

covariation of physiology with contact rate could powerfully influence epidemic 

dynamics. Overall, we found that (1) individual variability in susceptibility and 

infectiousness can reduce the expected maximum prevalence and increase epidemic 
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variability; (2) when contact rate and susceptibility or infectiousness negatively covary, it 

takes substantially longer for epidemics to spread throughout the population, and rates of 

epidemic spread remained suppressed even for highly transmissible pathogens; and (3) 

reductions in contact rate resulting from infection-induced behavioral changes can 

prevent the pathogen from reaching most of the population. These effects were strongest 

for theoretical pathogens with lower transmissibility and for populations where the 

observed variation in contact rate was higher, suggesting that such heterogeneity may be 

most important for less infectious, more chronic diseases in wildlife. Understanding when 

and how variability in pathogen transmission should be modelled is a crucial next step for 

disease ecology. 

2.2 Introduction 

 Direct transmission of a pathogen from one host to the next is a complex process 

that depends on host behavior, host physiology, and the transmission efficiency of the 

pathogen itself (Begon et al. 2002). In natural systems, it has been demonstrated that 

these interrelated facets of transmission can vary widely between individuals. In fact, 

empirical studies suggest that unequal contact rates are the rule rather than the exception 

(Craft & Caillaud 2011b), that contact rates can vary with infection-induced behavioral 

changes (Croft et al. 2011), and that these changes are likely non-uniform across 

individuals (Lopes et al. 2016). Innate and plastic heterogeneity in susceptibility to 

infection has been documented for several species (Dwyer, Elkinton & Buonaccorsi 

1997; Beldomenico & Begon 2010; Gibson, Jokela & Lively 2016), and variability in 

infectiousness has also been observed, particularly when concomitant infections are 
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present (Cattadori, Albert & Boag 2007). Finally, there is evidence that the first 

individual infected in a population (i.e., the index case) and the relative composition of 

behavioral phenotypes (e.g., bold vs. shy continuum) can substantially alter how 

effectively a pathogen spreads within a population (Adelman et al. 2015; Keiser et al. 

2016).  

 Nevertheless, it is not uncommon for disease models to overlook individual 

variation in behavior and physiology. This is often done for practical or necessary 

reasons, but has resulted in a lack of understanding of how these heterogeneities scale up 

to affect disease dynamics in natural populations (Beldomenico & Begon 2010; Barron et 

al. 2015). The rate at which a pathogen will spread in a host population is a function of 

the number of infected individuals (I), the number of susceptible individuals (S), and the 

rate (β) at which infectious individuals successfully transmit the pathogen. The 

transmission rate (β) encapsulates two separate processes that are required for a 

successful transmission event: (1) an appropriate contact between a susceptible and 

infectious individual, and (2) the actual transmission between an infected and susceptible 

host given contact, which depends upon the physiology of both the host and the pathogen 

(McCallum et al. 2017). See Appendix B for a schematic representing transmission and 

definitions of key terms.  Thus, β can further be broken down into the behavioral (βc) and 

physiological (βp) components of transmission, respectively (Hawley et al., 2011). The 

apparent simplicity of β as a single parameter may belie non-linearities that can arise at 

any stage of transmission and affect a pathogen’s spread through a population (McCallum 

et al. 2017). 
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 Interactions between the behavioral and physiological components of 

transmission may arise under a variety of contexts for wildlife (Appendix B), and the 

effects of these interactions can be exacerbated by host behavior-parasite feedback loops 

(Ezenwa et al. 2016). Covariation between susceptibility and exposure to pathogens in 

wildlife may be mediated through both the neuroendocrine system and behavioral 

syndromes (Hawley et al. 2011). For instance, in some species, testosterone in males not 

only increases exposure through agonistic contacts, but can also raise males’ 

susceptibility to parasites (Grear et al. 2009). There is also evidence that suites of 

behaviors (e.g., coping style) can mediate individual exposure risk, and that those same 

behavioral syndromes are often associated with distinct physiological traits as well (e.g., 

hypothalamic–pituitary–adrenal (HPA) axis reactivity and stress levels) (Natoli et al. 

2005; Koolhaas 2008). Finally, covariation between infectiousness and contact rate can 

arise when pathogens alter host behavior to make it easier for the pathogen to spread 

between hosts (particularly in trophically transmitted parasites, e.g., Berdoy et al. 2000) 

or indirectly through sickness behaviors that reduce host activity levels such as fever, 

lethargy, and limited foraging (Adelman, Moyers & Hawley 2014; Welicky & Sikkel 

2015).  Alternatively, uninfected individuals may avoid infected conspecifics, or infected 

individuals may associate less with their counterparts (Croft et al. 2011). Modeling 

studies in humans have begun to incorporate the effects of behavioral changes in 

response to infectious disease, including adherence to vaccination programs, fear-induced 

contact reduction, hygiene improvement, or changes in mobility or traveling (Coelho & 

Codeço 2009; Funk, Salathé & Jansen 2010; Meloni et al. 2011), but few investigations 
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have been made into the effects of behavioral changes on the spread of disease in natural 

populations. Notably, since physiology can covary with behavior, disease models should 

ideally incorporate possible interactions between these two components, not just 

including one component or the other (Hawley et al. 2011).  

 For example, “superspreaders” are individuals that contribute a disproportionately 

high number of secondary cases either through an unusually high number of contacts or 

by being especially infectious (Lloyd-Smith et al. 2005b). In disease ecology, however, 

the focus has largely been on variability in contact rate (βc) (VanderWaal & Ezenwa 

2016; White, Forester & Craft 2017c), while individual heterogeneity in physiology, 

plasticity in behavior in response to infection, and possible covariation between 

behavioral and immune competence have been somewhat neglected (Barron et al. 2015). 

The role that physiological immunity might play in superspreading has not been fully 

elucidated (Hawley & Altizer 2011; VanderWaal & Ezenwa 2016), but there is evidence 

that some individuals are particularly vulnerable to infection (super-receivers) or 

particularly adept at transmitting the pathogen to others due to high infection load or 

shedding rates (super-shedders) (Cattadori et al. 2007; Zohdy et al. 2012). 

Without modification, an underlying assumption of traditional, mean-field disease 

models is that every individual in a population has an equal probability of contacting and 

infecting any other individual (Anderson & May 1991). These compartmental models can 

be constructed to reflect different categories of relative risk according to factors like sex 

or age, which has been done for HIV (Anderson et al. 1986; May, Anderson & Irwin 

1988). For instance, for the gypsy moth and its nuclear polyhedrosis virus, Dwyer et al. 
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(1997) incorporated a continuous distribution of susceptible classes and demonstrated a 

resulting non-linear relationship between virus density and transmission. In some cases, 

however, it is also important to account for variable contact rates in order to explain 

superspreading patterns (Lloyd-Smith et al. 2005b; Meyers 2007). Network models are a 

tool that can capture individual variability in the number and rate of contacts (βc). With a 

network modeling approach, a contact (i.e., an edge) is any interaction that could allow 

for transmission of an infectious agent between a pair of individuals (i.e., nodes).  In 

general, network models that account for contact heterogeneity predict less frequent, but 

more explosive outbreaks than their compartmental model counterparts (Lloyd-Smith et 

al. 2005b).  

 Many wildlife studies still employ static networks, which do not reflect real-time 

behavioral shifts or potentially capture changes in the network in response to disease 

(Masuda & Holme 2013; White et al. 2017c). In contrast, dynamic network models 

describe association patterns in real-time and allow for rewiring events in which 

individuals can change who they are interacting with at any given time step (Blonder et 

al. 2012). Dynamic networks can be thought of as a continuum between mass-action 

models, which have high mixing rates, and static network models, which have fixed and 

prolonged contacts (Volz & Meyers 2007; Bansal et al. 2010). However, the implications 

of using static vs. dynamic contact networks for disease model predictions are still not 

fully understood, and the tools for dynamic network analysis lag behind their static 

counterparts (Blonder et al. 2012; Masuda & Holme 2013). In a theoretical framework, 

utilizing a static network for a dynamic system was found to overestimate epidemic 
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predictions (Fefferman & Ng 2007; Masuda & Holme 2013). Similarly, incorporating 

dynamic, empirically-based interactions in livestock networks markedly changed 

predicted epidemic outcomes; Chen et al. (2014) incorporated temporal variability with 

and without changes in individuals’ degree order  and observed greater discrepancies in 

predictions for pathogens with lower values of R0. Springer et al. (2017) found that 

incorporating dynamic interactions increased the theoretical transmission of 

cryptosporidium through wild lemur networks. However, Stehlé et al. (2011) suggested 

that daily aggregated networks were acceptable proxies for real-time dynamic networks 

for an SEIR model of conference attendees. As of now, the implications of including 

dynamic interactions appears to be highly system specific, and there is no clear consensus 

on when dynamic interactions should be incorporated into disease models (White et al. 

2017c). 

 In this manuscript, we employ an individual-based, dynamic network modeling 

approach because dynamic networks allow us to explicitly incorporate contact 

heterogeneity, variability in physiology, and behavioral changes resulting from infection. 

Specifically, we ask: how might possible covariation in the behavioral (βc) and the 

physiological (βp) components of transmission affect epidemic dynamics? We tested 

scenarios where contact rate covaried with susceptibility, infectiousness, or infection 

status. This last scenario allowed us to investigate how infection-induced behavioral 

changes could potentially affect disease dynamics. For a theoretical, directly-transmitted 

pathogen, we evaluated how these different covariation scenarios might affect epidemic 

variability in the forms of: maximum prevalence reached, the time it took to reach 
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maximum prevalence, the realized transmission rate, and the likelihood of epidemic fade-

out. By fade-out, we are referring to simulations where the pathogen never spreads 

beyond the initially infected individual. We conducted a random forest analysis to 

identify key factors that were most likely to explain these metrics. While previous contact 

network studies have identified the importance of contact heterogeneity within a 

population (Lloyd-Smith et al. 2005b), our results suggest that both heterogeneity in 

physiology and subsequent covariation of physiology with contact rate could  powerfully 

influence epidemic dynamics. 

2.3 Methods 

 We developed an individual-based, dynamic network model that explores how 

heterogeneity in individual contact behavior, susceptibility, and infectiousness can 

interact to affect pathogen transmission. We employed a Susceptible-Infected (SI) model 

to describe the spread of a pathogen through a closed population, assuming no births, 

deaths, or disease-related mortality (Anderson & May 1991). We used a factorial design 

to explore the effects of epidemiological parameters on epidemic outcomes and measured 

the maximum prevalence reached during 750 time steps, the number of time steps it took 

to reach that maximum prevalence, and the rate of epidemic spread. Simulations were 

conducted for a population size of 525 individuals with 100 repetitions per parameter set 

(Table 2.1).   
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Dynamic network framework 

 At each time step during the simulation, individuals (nodes) could form or remove 

contacts (edges) with conspecifics based on their intrinsic individual behavioral 

phenotype (i.e., contact rate, βc). This dynamic network behavior relies on a discrete time, 

separable temporal exponential-family random graph model (STERGM) framework, 

which allows for biologically realistic variation in mean degree, duration of contacts, and 

disease-induced behavioral changes (Krivitsky & Handcock 2014). These models are 

built on an exponential random graph (ERGM) framework; ERGMs are a family of 

statistical models that describe random graphs (i.e., random networks) based on their 

underlying node attributes such as degree, betweenness, transitivity, etc. (Robins et al. 

2007).  A random graph Y consists of nodes, n, and edges, m, with state space: {𝑌𝑖𝑗: 𝑖 =

1 … , 𝑛; 𝑗 = 1, … , 𝑛}.  𝑌𝑖𝑗 = 1 if an edge exists between nodes i and j, and 𝑌𝑖𝑗 = 0 

otherwise. The basic form of an ERGM is:  𝑃(𝑌 = 𝑦) =
exp(𝜃′𝑔(𝑦))

𝑘(𝑦)
, which describes the 

probability of observing a given network, y, given the space of all possible networks, Y, 

that could exist for a given set of nodes. The numerator contains both a set of model 

statistics 𝑔(𝑦) and coefficients corresponding to those statistics, 𝜃.  The denominator, 

𝑘(𝑦), represents the sum of the numerator across all possible networks (Krivitsky & 

Handcock 2014). STERGMs extend into discrete time by utilizing two independent 

ERGMs: a formation and dissolution model. STERGMs employ the Markov assumption 

that the state of a network at the current time step is memoryless—so the formation and 

dissolution of edges is only dependent upon the current state of the network (Hanneke, Fu 
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& Xing 2010). We assume the simplest case for the dissolution model—that all edges 

have the same probability of dissolving (i.e., a Bernoulli process). For all simulations, we 

assumed a constant edge dissolution probability of 25 time steps (Table 2.1). 

Models were constructed in R (version 3.3.2) using self-written modules in the 

EpiModel package (version 3.4.0) (Jenness et al. 2016a). The EpiModel package 

(http://www.epimodel.org/) provides a suite of pre-written and modifiable functions for 

simulating infectious disease dynamics, including stochastic network models that rely on 

temporal ERGMs from the statnat package. The EpiModel package has been used to 

investigate complex disease dynamics and interventions for diseases like HIV (Jenness et 

al. 2016b). Fully annotated sample code is provided in Appendix C, and all code and 

simulation data for the manuscript are available from the Dryad Digital Repository: 

http://dx.doi.org/...  (White et al. n.d.). 

Covariation: Incorporating βc and βp 

We considered three mechanisms by which the physiological components of 

transmission (βp) and contact rate (βc) may covary: (1) susceptibility vs. contact rate; (2) 

infectiousness vs. contact rate; and (3) infection status vs. contact rate (Appendix B 

Figure B.2). For each scenario, we tested a control scenario where individuals exhibited 

no variation in physiology (βp) but heterogeneity in contact rate (βc), a null scenario 

where individuals exhibited heterogeneity in physiology (βp) but no heterogeneity in 

contact rate (βc), a positive covariation scenario where physiology (βp) positively covaries 

with contact rate (βc) (Appendix B Figure B.2A, blue line), and a negative covariation 
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scenario where physiology (βp) negatively covaries with contact rate (βc) (Appendix B 

Figure B.2A, red line).  

 At the start of each simulation, every individual was assigned an intrinsic contact 

rate (βc) and physiological state (βp)—either susceptibility (s) or infectiousness (𝜅) 

depending on the experiment. The behavioral component of transmission (βc) was thus 

incorporated implicitly into the transmission process by determining which hosts are 

contacting one another at any given time step based on the dynamic network simulation. 

For a given set of conditions, the population was divided equally into thirds (175 

individuals per sub-group) with each group assigned a higher-than-average (“high”), an 

average (“medium”), or a lower-than-average (“low”) number of contacts (Appendix B 

Figure B.2B; Table 2.2). These behavioral phenotypes can be thought of as corresponding 

roughly to spectrums of individual personality (e.g., shy vs. bold) that might dictate 

social behavior.  Empirical studies in wildlife have cited mean degrees ranging from less 

than one to approximately eight (Godfrey et al. 2009; Perkins et al. 2009; Hirsch et al. 

2013). We simulated a mean degree of 4, which appears to be a reasonable approximation 

for social animals like macaques and prairie dogs (MacIntosh et al. 2012; Verdolin, 

Traud & Dunn 2014).  For susceptibility vs. contact rate and infectiousness vs. contact 

rate, individuals with higher-than-average or lower-than-average contact rates had an 

absolute difference in mean degree of either 2 or 4. So, for example, simulations with a 

“low” separation of mean degree would have three separate groups with mean degrees of 

2, 4, and 6 (e.g., Appendix B Figure B.2B), and those with a “high” separation would 

have three separate groups with mean degrees of 0, 4, and 8 (Table 2.1). In terms of 
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simulating the STERGM, the only network statistic, 𝑔(𝑦), included is mean degree and 

the coefficients are 𝜃 = [2 4 6] or 𝜃 = [0 4 8] for low and high variation in contact rate, 

respectively (Table 2.2). 

We incorporate the physiological component of transmission, βp, explicitly into 

the final probability of transmission given contact (i.e., the existence of an edge in the 

dynamic network). Depending on the experiment, βp is represented either through 

susceptibility of the susceptible host, s, or infectiousness of the infected host, 𝜅. To 

induce covariation, individuals were assigned physiological states (βp) corresponding to 

their contact rates. For these physiological states, individuals were assigned a “low,” 

“medium,” or “high” value (0, 1, or 2, respectively) for their susceptibility (s) or 

infectiousness (κ)—such that the average susceptibility or infectiousness in the 

population would always be approximately equal to 1 (Table 2.2).  

 

The mechanism of transmission 

The possibility of transmission was evaluated at each time step if (1) two nodes 

shared an edge, and (2) one node was infected and one node was susceptible. The final 

transmission probability, ℙ(𝑇), that we used for this model is based on the intuition 

involved in the Reed-Frost or chain binomial models which estimate the likelihood that 

an individual “escapes” infection during a discrete time step (Kyvsgaard, Johansen & 

Carabin 2007). Instead of calculating the likelihood of an individual escaping infection 

from multiple infectious hosts in the population, we allow for the possibility that during a 

time step, multiple opportunities for transmission could occur when a susceptible and 
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infectious host share an edge in the dynamic network. This might correspond to discrete 

events like bites, coughing, sneezing, vector transfer, etc. The resulting final transmission 

probability is: ℙ(𝑇) =  1 − (1 − 𝜏)𝛼 where τ represents the transmission efficiency per 

individual interaction, and the action rate, α, represents the potential number of infectious 

interactions that could occur via an edge per time step. While the transmission efficiency 

likely represents a complex relationship between pathogen physiology and host 

immunocompetence, we use it here to represent the idea that, all else being equal, certain 

pathogens are more infectious than others on average (Appendix B). We vary 

transmission efficiency, τ, in our factorial design (Table 2.1) and discuss the 

modifications for the final transmission probability for each specific experimental 

scenario below. 

 

Susceptibility vs. contact rate 

For this mechanism, individuals varied in βp via their susceptibility (s, likelihood 

of being infected given contact with an infected conspecific). A successful transmission 

event was dependent upon the innate susceptibility (s) of the susceptible contact in the 

susceptible-infected dyad such that the final transmission probability, ℙ(𝑇), took the 

form:  ℙ(𝑇) =  1 − (1 − min {1, 𝜏 ∙ 𝑠})𝛼   

Here, action rate (𝛼) is defined as the number of possible transmission events per 

time step. In this scenario, we assume the action rate to be equal to one per time step for 

each susceptible-infectious interaction, so the final transmission probability simplifies to 

ℙ(𝑇) =  min {1, 𝜏 ∙ 𝑠}. At time step t=1, one individual was randomly selected to be the 
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first infected individual (i.e., the index case). If the first randomly selected individual had 

a susceptibility of zero (s=0), the pathogen could not propagate further.  

Infectiousness vs. contact rate 

 For this mechanism, individuals varied in βp via their infectiousness (κ, likelihood 

of successfully transmitting the pathogen given contact with an uninfected conspecific). 

In this model, the probability of successful transmission, ℙ(𝑇), to a susceptible individual 

given contact with an infectious individual was proportional to the infectiousness of the 

infected contact:  

ℙ(𝑇) =  1 − (1 − 𝜏)𝛼∗𝜅  

 In this case, infectiousness (𝜅) was modelled as affecting the action rate (𝛼), 

which could be interpreted as the pathogen load or the amount of shedding by an 

infectious host per time step.  At time step t=1, one individual was randomly selected to 

be the first infected individual (i.e., the index case). If the first randomly selected 

individual had an infectiousness of zero (κ = 0), the pathogen could not propagate further.  

Infection status vs. contact rate: Disease-induced behavioral changes  

The objective of this scenario was to test the possible effects of sickness-induced 

behavioral changes. For example, a very sick individual that is highly infectious might 

increase their contact rate (e.g., furious rabies) or decrease their contact rate because of 

fever, lethargy, or anorexia (Adelman et al. 2014; Welicky & Sikkel 2015). To consider 

the possibility that the magnitude of behavioral change is correlated with infectiousness 

(e.g., individuals with a higher pathogen load might display more extreme sickness 
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behaviors), we allow individuals to become either “highly infectious” or “less infectious” 

post-exposure with a corresponding change in contact rate (βc) depending on the type of 

covariation (Table 2.3). It is worth noting that in the above scenarios (Sections 0 and 0), 

it is possible for a secondary correlation to result between contact rate and infection 

status. For example, in the positive covariation scenario for susceptibility vs. contact rate, 

we would expect highly susceptible individuals (who also have higher contact rates) to 

become infected first. This experiment differs from the previous two in that contact rate 

is allowed to change explicitly as a result of infection status.  

 To begin, we modelled a control case where no changes in contact rate (βc) 

occurred post-infection and individual infectiousness was homogenous throughout the 

population (𝜅 = 1 for all individuals). For the null case, there was no change in contact 

rate (βc) upon infection, but individuals had heterogeneity in infectiousness (individuals 

were randomly assigned an infectiousness of κ =1 or 2 upon infection). For positive and 

negative covariation, an individual’s contact rate increased or decreased upon infection 

respectively, and after a successful exposure, individuals had an equal likelihood of 

becoming highly infectious (𝜅 = 2) or less infectious (𝜅 = 1) (). Unlike the first two 

scenarios tested (0 & 0), each simulation began at t=1 with two infected individuals. For 

the null, positive, and negative covariation cases, these consisted of one highly infectious 

individual (𝜅 = 2) and one less infectious individual (𝜅 = 1); it was necessary to include 

both classes of infected individuals at the start of the simulation for the purposes of 

calibrating the dynamic network.  All remaining susceptible individuals started with a 

mean degree of four. For positive covariation, less infectious individuals increased their 
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expected mean degree to 6, and highly infectious individuals increased their expected 

mean degree to 8. Likewise, for negative covariation, less infectious individuals 

decreased their expected mean degree to 2, and highly infectious individuals decreased 

their expected mean degree to 0 (Table 2.3).  In the EpiModel package, this was achieved 

by using infection status itself as a network statistic via the “nodefactor” term for 

simulating the dynamic network (Jenness, Goodreau & Morris 2016a). This term of the 

model allows different sub-groups of the population to have heterogeneity in their 

attributes—in this case, mean degree (Jenness et al. 2016a).  However, infected 

individuals were not any more likely to form edges with susceptible conspecifics than 

infected conspecifics, so there was no preferential mixing as a result of infection status. A 

necessary consequence of including infection status as a factor governing edge formation 

was that network density either increased (positive covariation) or decreased (negative 

covariation) over time. 

 We tested two forms of infectiousness: (1) the form described in Section 0 where 

infectiousness influences the action rate in the exponent of the final transmission 

probability ℙ(𝑇) =  1 − (1 − 𝜏)𝛼∙𝜅; and (2) a form where infectiousness (𝜅) directly 

modifies the probability of infection (as in Section 0), so that the final transmission 

probability was equal to: ℙ(𝑇) =  1 − (1 − min {1, 𝜏 ∙ 𝜅})𝛼, which simplifies to ℙ(𝑇) =

min{1, 𝜏 ∙ 𝜅} when the action rate, 𝛼 = 1.  

Metrics and nonlinear least square regression 

We included four metrics to investigate differences in epidemic outcomes across 

experiments and covariation types. First, we measured the maximum prevalence reached 
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in 750 time steps. Because this is an SI model, the mean maximum prevalence reflects 

both the maximum prevalence reached by successful simulation runs and the percentage 

of epidemics fading-out. We also explicitly measured the time it took to reach maximum 

prevalence and the percentage of simulation runs fading-out for each treatment.  

Finally, since the contact structure of different experimental set-ups (particularly those 

with higher variation in contact rate) could limit the proportion of the population eligible 

to be infected, we measured a “realized” transmission rate (𝛽) to estimate the rates of 

epidemic spread in each population. To do this we used nonlinear least square regression 

implemented through the nlsLM function in the minpack.lm package (version 1.2-1) in R 

(Elzhov 2016). We fit each individual epidemic simulation to the logistic growth 

equation: 𝐼(𝑡) =
𝐾

1+𝑏∙𝑒−𝛽𝐾𝑡 where 𝐼(𝑡) is the number of infected individuals at time t; K is 

the carrying capacity; 𝛽 is the realized transmission rate, and b is a scaled parameter 

equal to 
𝐾−𝐼0

𝐼0
 where I0 is the initial population size at time zero (Derivation in Appendix 

D). We assigned values of 𝐼0 appropriate to each simulation (𝐼0 = 1 for susceptibility or 

infectiousness vs. contact rate and 𝐼0 = 2 for infection status vs. contact rate), and we 

allowed both K and 𝛽 to vary to determine the best fit, although K was not allowed to 

exceed the total number of individuals in the simulation.  

Random forest analysis 

In simulation studies, significance testing can be less useful because an essentially 

unlimited sample size can result in labeling even small differences in the magnitude of 

outcomes as statistically significant (White et al. 2014). To further a descriptive approach 
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to the analysis of our simulation results, we have used random forest analysis—a machine 

learning method that can handle complex, non-linear relationships between model inputs 

and outputs, as well as potential collinearity between covariates (Cutler et al. 2007). 

Random forest analysis is a recursive partitioning method that combines the predictions 

from numerous fittings of classification trees to the same set of data (Breiman 2001; 

Cutler et al. 2007). Variable importance measures resulting from these analyses can be 

used to estimate the relative importance of a covariate in determining model outcomes, 

and unlike most univariate methods, can account for possible correlations between inputs. 

 To calculate variable importance, we employed a measure of permutation 

importance which has been demonstrated to be more robust than node impurity (Strobl et 

al. 2007; Strobl, Hothorn & Zeileis 2009). Using the cforest function in the party package 

in R (version 3.3.2), we simulated 10,000 trees per analysis to ensure that the order of 

variable importance was robust to changes in the random seed, and we calculated mean 

decrease in accuracy variable importance scores using the varimp function in the party 

package (Hothorn et al. 2006; Strobl et al. 2007, 2009).  The mean decrease in accuracy 

describes the loss of predictive value that results from a particular variable being 

randomly permutated. Stated another way, higher mean decrease in accuracy scores 

indicate a greater importance in model prediction.  For susceptibility vs. contact rate and 

infectiousness vs. contact rate, we included the following as covariates: transmission 

efficiency, separation between mean degree, type of covariation, and physiological 

phenotype of the index case. For infection status vs. contact rate, we included 

transmission efficiency, type of covariation, and form of infectiousness (i.e., in the 
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exponent or the product of the final transmission probability). The response variables for 

all three mechanisms were: maximum prevalence, time until maximum prevalence, and 

the realized β. 

Data deposition 

Data available from the Dryad Digital repository: https://doi.org/10.5061/dryad.8t201  

(White, Forester & Craft 2017b). 

2.4 Results 

Susceptibility vs. contact rate  

Allowing for variability in susceptibility of the host population (null case) reduced the 

maximum prevalence reached during the 750-step simulation (compared to the control 

case) and increased the variability of observed epidemic outcomes with at least one-

quarter of epidemics fading out (Figure 2.1 & Figure 2.2). This finding was consistent 

across differences in mean degree and for different transmission efficiencies (Appendix E 

Figure E.1 and E.2). In general, for simulations with higher variation in contact rate (i.e., 

difference in mean degree of 4), the maximum prevalence was lower relative to 

corresponding simulations with smaller variations in contact rate (i.e., difference in mean 

degree of 2). This finding reflects the fact that one-third of the population is expected to 

be isolated (βc=0) for networks constructed with higher variation in contact rate (i.e., 

mean degree difference = 4). Notably, positive covariation counteracted this observed 

difference in maximum prevalence between the control case and other covariation types, 

and this effect was consistent across infection probabilities (Figure 2.2A).  In the case of 

https://doi.org/10.5061/dryad.8t201
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negative covariation, there was an observable increase in the time it took to reach 

maximum prevalence relative to the control, null, and positive covariation scenarios; this 

increase was the greatest for lower transmission efficiencies and higher variation in 

contact rate (Figure 2.2B). In general, the epidemics spread more quickly with higher 

transmission efficiency, regardless of variation in contact rate. The differences in the 

realized β between positive and negative covariation were largest for higher values of 

transmission efficiency and high contact rate variability (Figure 2.2C). Negative 

covariation continued to substantially suppress the realized β even at higher values of 

transmission efficiency. 

 

Infectiousness vs. contact rate 

 Variability in infectiousness (null case) increased variability in epidemic 

outcomes (Figure 2.3); simulations experienced fade-out because of those individuals in 

the population with an infectiousness of zero (κ=0). These observations were consistent 

across simulated differences in mean degree and infection probabilities (Appendix E 

Figure E.3 & Figure E.4).  As with susceptibility vs. contact rate, a larger simulated 

variation in contact rate within the population also decreased the maximum prevalence, 

even in the control case (Figure 2.4A); this was the result of a contact structure where 

one-third of the population was socially isolated (βc=0). For negative covariation, there 

was a substantial increase in the time it took to reach maximum prevalence relative to the 

control, null, and positive covariation scenarios; this effect was most pronounced for 

lower transmission efficiencies and higher variation in contact rate (Figure 2.4B). Similar 
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to the results for susceptibility vs. contact rate, a faster rate of epidemic spread occurred 

for simulations with higher transmission efficiency regardless of variation in contact rate, 

and the difference in magnitude of the realized β between positive and negative 

covariation was largest for higher values of transmission efficiency and contact rate 

variability (Figure 2.4C). 

Infection status vs. contact rate 

 For infection status vs. contact rate, we tested two ways that infectiousness might 

play into the final transmission probability (see Section 0), but results were consistent 

across these two different formulations. As with susceptibility vs. contact rate and 

infectiousness vs. contact rate, simply including heterogeneity in physiology increased 

variability in epidemic outcome (Figure 2.5; compare control vs. null cases). Reduction 

in contact rate upon infection (negative covariation) drastically reduced the maximum 

prevalence reached within 750 time steps (Figure 2.5 & Figure 2.6A), while increasing 

contact rate upon infection (positive covariation) had a comparatively minimal effect on 

increasing the maximum prevalence relative to the null and control cases (Figure 2.5 & 

Figure 2.6A). In general, the differences in the time it took to reach maximum prevalence 

for positive, negative, and null covariation were largest for lower transmission 

efficiencies (Figure 2.6B). This is likely because the control, null and positive covariation 

cases all saturated very quickly at higher transmission efficiencies (Appendix E Figure 

E.5 and E.6). Consistent with susceptibility vs. contact rate and infectiousness vs. contact 

rate, the realized transmission rate (β) was highest for higher values of transmission 
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efficiency, and high contact variability revealed the sharpest differences between all four 

types of covariation (Figure 2.6C). 

Random forest results 

 Variable importance scores for maximum prevalence indicate that the 

physiological phenotype of the index case had the highest importance for susceptibility 

vs. contact rate and infectiousness vs. contact rate; this was followed in importance by 

separation in mean degree, and then type of covariation (Table 2.4). Transmission 

efficiency had a negligible mean decrease in accuracy for both mechanisms in predicting 

maximum prevalence. For infection status vs. contact rate, the type of covariation had the 

highest variable importance score, followed by transmission efficiency. 

 For time until maximum prevalence, index case also had the highest importance 

for susceptibility vs. contact rate and infectiousness vs. contact rate. In order of 

decreasing score, this was followed by transmission efficiency, type of covariation, and 

degree of separation.  Type of covariation was most important for predicting time until 

maximum prevalence for infection status vs. contact rate (Table 2.4).  

 For the realized transmission rate (β), pathogen transmission efficiency was an 

informative predictor for all three experiments (Table 2.4). For both susceptibility vs. 

contact rate and infectiousness vs. contact rate, physiology of the index case had the 

highest variable importance score, but this score was of similar order of magnitude to 

pathogen transmission efficiency; variation in contact rate had a negligible variable 

importance score (two orders of magnitude lower) for both mechanisms. For infection 

status vs. contact rate, the transmission efficiency had the highest ranking variable 
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importance score, which was of similar order of magnitude to covariation type. The form 

of infectiousness (either in the exponent or the product of the final transmission 

probability) had a negligible effect in predicting all three response variables for infection 

status vs. contact rate. 

2.5 Discussion  

 Accounting for contact heterogeneity has been shown to dramatically alter disease 

predictions (Keeling & Eames 2005); however, our results support the idea that both 

heterogeneity in physiology and subsequent covariation of physiology with contact rate 

could also powerfully influence epidemic dynamics. Overall, we found that (1) individual 

variability in susceptibility or infectiousness, which is typically unaccounted for in 

wildlife disease models, can both increase epidemic variability and the likelihood of 

disease fade-out;  (2) when contact rate and susceptibility or infectiousness negatively 

covary, it takes longer for epidemics to spread throughout the population, and the rate of 

epidemic spread is reduced even for highly transmissible pathogens; and (3) reductions in 

contact rate resulting from infection-induced behavioral changes can prevent the 

pathogen from reaching most of the population and can dramatically limit the rate of 

epidemic spread, even for pathogens with high transmissibility.  

Our results demonstrated that simply allowing for heterogeneity in susceptibility 

or infectiousness without any kind of covariation could increase variability of epidemic 

outcomes. An increase in the variability of epidemic outcomes (i.e., successful invasion 

of the population vs. fade-out) will have important implications for disease predictions, 

control, and interventions.  
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The random forest analysis highlighted the potential importance of physiological 

phenotype of the index case in explaining much of the observed variation in epidemic 

outcome for susceptibility vs. contact rate and infectiousness vs. contact rate. Much of 

this predictive power is likely a function of how the model structured, where roughly 

one-third of the population is not susceptible (s = 0) or not infectious (κ = 0). While such 

extreme physiological phenotypes might be less common in natural populations, this 

theoretical finding does support the results of recent empirical work where the index case 

and group composition of phenotype played important roles in epidemic outcomes 

(Adelman et al. 2015; Keiser et al. 2016). Across the three different mechanisms, 

negative covariation decreased maximum prevalence, increased time to reach maximum 

prevalence, and dampened the rate at which the disease spread through the population 

relative to all other types of covariation. Universally, differences between types of 

covariation were strongest for theoretical pathogens with lower transmission efficiency, 

which suggests that such heterogeneity may be most important for less infectious, more 

chronic diseases in wildlife such as bovine tuberculosis (Cosgrove et al. 2012). This 

finding is consistent with studies using empirically informed networks that have found 

dynamic interactions to be more important at lower transmissibility (Chen et al. 2014; 

Springer et al. 2017). Additionally, differences in the time it took to reach maximum 

prevalence for different types of covariation were most pronounced for simulations with 

higher variation in contact rate. In general, simulations with higher contact variation had 

higher rates of epidemic spread—with the key exception of negative covariation where 
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the realized transmission rate stayed roughly constant even at high values of pathogen 

transmission efficiency (Figure 2.2C, Figure 2.4C &Figure 2.6C).  

 Trends for time until maximum prevalence and the intrinsic rate of increase were 

consistent for susceptibility vs. contact rate and infectiousness vs. contact rate. Across 

parameter sets, infectiousness vs. contact rate simulations reached a higher maximum 

prevalence—a result of infectiousness affecting the action rate rather than transmission 

efficiency in the final transmission probability. The transmission efficiency positively 

correlated with the realized transmission rate (β) for all three experiments (Figure 2.2C, 

Figure 2.4C & Figure 2.6C), but overall, played a negligible role in explaining maximum 

prevalence, especially for susceptibility vs. contact rate and infectiousness vs. contact 

rate.  For infection status vs. contact rate, negative covariation (i.e., decreased contact 

rate upon infection) dramatically reduced the maximum prevalence reached within 750 

time steps relative to the other two experiments, especially for lower values of 

transmission efficiency. Negative covariation also increased the time it took to reach 

maximum prevalence for all values of transmission efficiency and decreased the rate of 

epidemic spread. These findings were consistent across the two different formulations of 

final transmission probability that were simulated. While intuitive, these results are 

important because reduction of activity and contact rate because of infection are well-

documented (Croft et al. 2011; Welicky & Sikkel 2015; Lopes et al. 2016), but less 

commonly incorporated into disease models.  

 For simplicity of analyzing a complex model, we assumed a constant population 

size—no births or natural or disease-induced mortality. To limit the number of 
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epidemiological parameters, we also made the simplifying assumption of an SI model 

rather than a more complicated SIR or SEIR disease model. Another key assumption of 

our models was the discrete physiological (βp) vs. social (βc) states that were assigned to 

each individual.  Because the formation model of STERGMs consists of a discrete set of 

covariates, we had to individually assign nodes to distinct behavioral phenotypes (e.g., 

low, medium, and high contact rates). This feature of STERGMs prevented us from 

testing a continuous covariation that might be more reasonable in empirical populations. 

Future studies could test different continuous distributions of susceptibility and 

infectiousness or add more discrete levels of contact rate within the population.  While 

populations in natural settings are unlikely to replicate the exact contact structure that we 

employed here, it is not uncommon to for a small proportion of the population be 

responsible for the majority of contacts. For instance, superspreaders generally represent 

a much smaller proportion of the population and the resulting contact distribution is 

usually skewed (Clay et al. 2009). This is sometimes referred to as the ‘20/80’ rule, 

where 20% of the individuals are responsible for 80% of the contacts (Woolhouse et al. 

1997).  

 More work needs to be done to characterize the effects of static network 

approximations on disease modelling predictions, since our work suggests that disease-

induced behavioral changes (which are not likely to be adequately captured through static 

network approximations) could have a substantial effect on the likelihood of successful 

pathogen invasion. While STERGMs are well suited to calibration with empirical data 

(Jenness et al. 2016b), wildlife host-pathogen systems with existing dynamic contact 
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network and individual physiological data are rare (Craft & Caillaud 2011b; White et al. 

2017c). Another consideration for future studies is the clumping of contacts in time 

(known as bursts) in empirical systems. STERGM models do not necessarily capture 

temporal clumping because they assume an exponential probability for dissolution rate of 

edges (Masuda & Holme 2013). In addition, more work needs to be done to characterize 

differences in physiology in wild populations that result from innate genetic differences 

and plastic responses to infection, particularly since wild populations are often more 

heterogeneous and likely to experience more heterogeneous environments than those 

studied in labs (Dwyer et al. 1997). For instance, Beldomenico and Begon (2010) 

highlighted how natural populations may also experience additional interactions between 

resource availability, host density, and body condition, which can mediate host 

susceptibility.  

  Collaboration between the fields of disease ecology and ecoimmunology will 

likely yield more empirical study systems in which these ideas can be tested (Adelman et 

al. 2014). In particular, improvements in radiotelemetry, radio-frequency identification 

(RFID), and temperature sensing passive integrated transponder (PIT) tags may allow for 

concrete steps forward in the simultaneous collection of contact and sickness behavior 

(Adelman et al. 2014). The type of dynamic network modelling presented here could be 

used to explicitly investigate ratios and index cases of behavioral and physiological 

phenotypes in closed populations (Keiser et al. 2016).  

Host heterogeneity in contact rate and physiology and potential covariations 

between these two components exist in a myriad of real life systems (Hawley et al. 2011; 
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VanderWaal & Ezenwa 2016). However, there is no consistent framework that outlines 

when individual heterogeneity in pathogen transmission is important and when it is 

necessary to account for those differences in sampling or interventions, even though 

allowing for such differences can markedly change predictions of an epidemic’s duration 

and behavior (Keeling & Eames 2005; Meyers 2007). By including the heterogeneity of 

hosts, populations, or resources in modeling approaches, disease ecologists may develop 

targeted control measures that could increase the benefit-cost ratio of management 

strategies (Eisinger & Thulke 2008). This may occur through targeted monitoring or 

interventions (including vaccination, culling, treatment, etc.) on high-risk individuals, 

sub-populations, or spatial hot-spots that act as “hubs” for the population (Haydon et al. 

2006). The caveat for such strategies is that the cost of identifying “super” individuals 

must be less than the uniform administration of an intervention (Paull et al. 2012). Given 

the time and resource-intensive nature of gathering pathogen data in wildlife populations, 

improved models will provide insight to the amount of research effort necessary to better 

capture the transmission process (Krause et al., 2013; Tompkins et al., 2011). 

Understanding how and when variability in pathogen transmission should be 

modelled is a crucial next step for the field of disease ecology and is a critical refinement 

for future modeling strategies. Through an iterative approach to empirical experiments 

and modeling (Restif et al. 2012), and additional collaboration between the fields of 

animal behavior, ecoimmunology, and disease ecology, we can improve disease 

modeling predictions to account for heterogeneity in contact rate and host physiology, as 

well as the potential feedbacks between these critical facets of pathogen transmission.  
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2.6 Conclusions 

These results highlight the importance of heterogeneity in physiology and the 

potential role that covariation between the behavioral and physiological components of 

pathogen transmission could play in epidemic outcomes. Simply allowing for variability 

in host physiology without instituting any type of covariation fostered increased epidemic 

variability. Random forest analysis supported the idea that much of this variation could 

be attributed to the physiological phenotype of the index case for susceptibility vs. 

contact rate and infectiousness vs. contact rate, which was not surprising, given the 

extreme physiological phenotypes (s = κ = 0) present in the population that contributed to 

fade-out events. The observed differences between different types of covariation were 

strongest for low transmission efficiencies and for larger variation in contact rate, with 

negative covariation increasing the time until maximum prevalence across mechanisms 

tested. This suggests that accounting for such heterogeneity may be most important for 

less infectious, chronic wildlife diseases and for populations that exhibit more 

heterogeneous contact structure. For infection status vs. contact rate, negative covariation 

dramatically decreased the maximum prevalence reached during the duration of the 

simulation, and this finding was robust to the formulation of final transmission 

probability. Accounting for covariation in behavior and physiology may be important for 

future wildlife disease models and disease modelling more broadly. More empirical and 

modelling work should be performed to determine the circumstances and methods for 

best capturing heterogeneity in pathogen transmission. 
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2.8 Tables  

Table 2.1. Variables and parameters used in models. 

Parameter Levels Values 

Transmission efficiency (τ) Low, medium, high 0.025, 0.25, 0.5 

Total separation between mean degree (βc)  Low, high  2, 4, 6 (± 2); 0, 4, 8 

(± 4) 

Dissolution rate of edges Constant 25 time steps 

Population size Constant 525 individuals 

Total density of network/edges  Constant Expected mean 

degree = 4 

Duration of simulation Constant 750 time steps 

Number of simulations per parameter set Constant 100 
 

 

Table 2.2. Experimental design for Sections 2.3: Susceptibility vs. contact rate and infectiousness vs. 

contact rate. 

Type of 

covariation 

Number of 

individuals 

in sub-

group 

Mean degree 

for “low” 

contact 

variability 

treatment (βc) 

Mean degree for 

“high” contact 

variability 

treatment (βc) 

βp (susceptibility, 

s, or 

infectiousness, κ) 

Control 

 

175 2 0 1 

175 4 4 1 

175 6 8 1 

Null 

 

175 4 4 𝑢𝑛𝑖𝑓{0,2} 

175 4 4 𝑢𝑛𝑖𝑓{0,2} 

175 4 4 𝑢𝑛𝑖𝑓{0,2} 

Positive 

 

175 2 0 0 

175 4 4 1 

175 6 8 2 

Negative 

 

175 2 0 2 

175 4 4 1 

175 6 8 0 
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Table 2.3. Experimental design for Section 2.3: Infection status vs. contact rate. 

Type of 

covariation 

Mean degree 

pre-exposure 

(βc) 

Mean degree 

post-infection 

(βc) 

βp (infectiousness, 

κ)- post-infection 

Percent of 

individuals 

(post-

exposure) (%) 

Control 4 4 1 (low infectious) 100 

Null 

 

4 4 1 (low infectious) 50 

4 4 2 (high infectious) 50 

Positive 

 

4 6 1 (low infectious) 50 

4 8 2 (high infectious) 50 

Negative 

 

4 2 1 (low infectious) 50 

4 0 2 (high infectious) 50 

 

Table 2.4. Variable importance results from random forest analysis. Reported as mean decrease in accuracy 

scores from random forest analysis rounded to four significant figures. Higher values indicate a higher 

variable importance and corresponding predictive power. 

Model 

outcome 

Variable Susceptibility 

vs. contact 

rate 

Infectiousness 

vs. contact 

rate 

Infection 

status vs. 

contact rate 

Maximum 

prevalence 

Variation in contact 

rate (βc, separation in 

mean degree) 

0.07515    

 

0.1252   
-- 

Covariation 
0.04213   

 

0.02488    
0.1060   

Transmission 

efficiency (τ) 
-0.0001008    

0.0004898   0.06941   

Physiology of the 

index case (βp: s or κ) 

0.1390 0.2591 -- 
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Form of 

infectiousness 

(exponent or product) 

-- -- -0.0002619 

Time until 

maximum 

prevalence 

Variation in contact 

rate (βc, separation in 

mean degree) 

5615        
7261        

 

-- 

Covariation 8652       8439   
79,560    

Transmission 

efficiency (τ) 

10,180  10,380  
15,940       

 

Physiology of index 

case (βp: s or κ) 

12,740 14,900 -- 

Form of 

infectiousness 

(exponent or product) 

-- -- 
-7.755 

 

 

 

 

Realized 

beta (β) 

Variation in contact 

rate (βc, separation in 

mean degree) 

9.339e-08    
1.570e-07    -- 

 

Covariation 7.404e-07    5.623e-07    5.0133e-07    

Transmission 

efficiency (τ) 

1.104e-06    6.402e-07    6.043e-07    

Physiology of index 

case (βp: s or κ) 

1.139e-06 6.497e-07      -- 

Form of 

infectiousness 

(exponent or product) 

-- --  

5.436e-09     
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2.9 Figures 

 

Figure 2.1. Time course of simulated epidemics for susceptibility vs. contact rate for the lowest 

transmission efficiency tested of τ=0.025. Columns correspond to the difference in mean degree tested, and 

rows correspond to the mechanism of covariation: control (no variability in susceptibility, no covariation), 

null (variability in susceptibility, no covariation), positive covariation, and negative covariation. Individual 

trials are shown as semi-transparent, and the numbers in the lower righthand corner of each panel describe 

the percentage of simulations fading-out for each treatment. The dashed lines in each panel correspond to 

the expected maximum prevalence based on contact structure. For higher variations in contact rate, one-

third of the population as a βc=0, limiting maximum prevalence to 0.66. Time courses for the corresponding 

medium (τ = 0.25) and high (τ = 0.5) transmission efficiencies are available in Appendix E Figures E.1 & 

E.2 
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Figure 2.2. For susceptibility vs. contact rate, violin plots depicting for all covariation types: (A) the 

maximum prevalence reached in 750 time steps; (B) the time it takes to reach that maximum prevalence; 

and (C) the realized transmission rate (β), which describes the rate of epidemic spread. The columns 

correspond to the transmission efficiency (i.e., 0.025, 0.25, and 0.5), and the rows correspond to the 

difference in mean degree (i.e., 2 or 4). 
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Figure 2.3. Time course of simulated epidemics for infectiousness vs. contact rate for the lowest 

transmission efficiency tested of τ=0.025. Columns correspond to the difference in mean degree tested, and 

rows correspond to the mechanism of covariation: control (no variability in infectiousness, no covariation), 

null (variability in infectiousness, no covariation), positive covariation, and negative covariation. Individual 

trials are shown as semi-transparent, and the numbers in the lower right-hand corner of each panel describe 

the percentage of simulations fading-out for each treatment.  The dashed lines in each panel correspond to 

the expected maximum prevalence based on contact structure. For higher variations in contact rate, one-

third of the population has a βc=0, limiting maximum prevalence to 0.66. Time courses for the  

corresponding medium (τ=0.25) and high (τ=0.5) transmission efficiencies are available in Appendix E 

Figures E.3 & E.4.  
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Figure 2.4. For infectiousness vs. contact rate, violin plots depicting for all covariation types: (A) the 

maximum prevalence reached in 750 time steps; (B) the time it takes to reach that maximum prevalence; 

and (C) the realized transmission rate (β), which describes the rate of epidemic spread. The columns 

correspond to the transmission efficiency (i.e., 0.025, 0.25, and 0.5), and the rows correspond to the 

difference in mean degree (i.e., 2 or 4). 
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Figure 2.5. Time course of simulated epidemics for infection status vs. contact rate for the lowest 

transmission efficiency tested of τ = 0.025. Columns correspond to how infectiousness was modelled 

(either in the exponent or the product of the final transmission probability), and rows correspond to the 

mechanism of covariation: control (all infection statuses have equal mean degree and no variability in 

infectiousness), null (variability in infectiousness, but no covariation with contact rate), positive 

covariation, and negative covariation. Individual trials are shown as semi-transparent, and the numbers in 

the lower righthand corner of each panel describe the percentage of simulations fading-out for each 

treatment. The dashed lines in each panel correspond to the expected maximum prevalence based on 

contact structure. Time courses for the corresponding medium (τ = 0.25) and high (τ = 0.5) transmission 

efficiencies are available in Appendix E Figures E.5 & E.6. 
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Figure 2.6. For infection status vs. contact rate, box and whisker plots depicting for all covariation types: 

(A) the maximum prevalence reached in 750 time steps; (B) the time it takes to reach that maximum 

prevalence; and (C) the realized transmission rate (β), which describes the rate of epidemic spread.  The 

columns correspond to the transmission efficiency (i.e., 0.025, 0.25, and 0.5) and the rows correspond to 

way that individual infectiousness affected the final transmission probability (i.e., in the exponent or the 

product). Note: in this case, we elected to display results with a box and whisker plot rather than a violin 

plot because the violin plots poorly portrayed some of the distinct point values and dichotomous epidemic 

outcomes.  
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Chapter 3. Influenza A virus in swine breeding herds: 

Combination of vaccination and biosecurity practices can 

reduce likelihood of endemic piglet reservoir 

White. L.A., Torremorell, M. and Craft, M.E. (2017). Influenza A virus in swine 

breeding herds: Combination of vaccination and biosecurity practices can reduce 

likelihood of endemic piglet reservoir. Prev. Vet. Med., 138, 55-69. doi: 

10.1016/j.prevetmed.2016.12.013 

3.1 Abstract 

 Recent modelling and empirical work on influenza A virus (IAV) suggests that 

piglets play an important role as an endemic reservoir. The objective of this study is to 

test intervention strategies aimed at reducing the incidence of IAV in piglets and ideally, 

preventing piglets from becoming exposed in the first place. These interventions include 

biosecurity measures, vaccination, and management options that swine producers may 

employ individually or jointly to control IAV in their herds. We have developed a 

stochastic Susceptible-Exposed-Infectious-Recovered-Vaccinated (SEIRV) model that 

reflects the spatial organization of a standard breeding herd and accounts for the different 

production classes of pigs therein. Notably, this model allows for loss of immunity for 

vaccinated and recovered animals, and for vaccinated animals to have different latency 

and infectious periods from unvaccinated animals as suggested by the literature. The 

interventions tested include: (1) varied timing of gilt introductions to the breeding herd, 

(2) gilt separation (no indirect transmission to or from the gilt development unit), (3) gilt 
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vaccination upon arrival to the farm, (4) early weaning, and (5) vaccination strategies of 

sows with different timing (mass and pre-farrow) and efficacy (homologous vs. 

heterologous). We conducted a Latin Hypercube Sampling and Partial Rank Correlation 

Coefficient (LHS-PRCC) analysis combined with a random forest analysis to assess the 

relative importance of each epidemiological parameter in determining epidemic 

outcomes. In concert, mass vaccination, early weaning of piglets (removal 0-7 days after 

birth), gilt separation, gilt vaccination, and longer periods between introductions of gilts 

(6 months) were the most effective at reducing prevalence. Endemic prevalence overall 

was reduced by 51% relative to the null case; endemic prevalence in piglets was reduced 

by 74%; and IAV was eliminated completely from the herd in 23% of all simulations. 

Importantly, elimination of IAV was most likely to occur within the first few days of an 

epidemic. The latency period, infectious period, duration of immunity, and transmission 

rate for piglets with maternal immunity had the highest correlation with three separate 

measures of IAV prevalence; therefore, these are parameters that warrant increased 

attention for obtaining empirical estimates. Our findings support other studies suggesting 

that piglets play a key role in maintaining IAV in breeding herds. We recommend 

biosecurity measures in combination with targeted homologous vaccination or vaccines 

that provide wider cross-protective immunity to prevent incursions of virus to the farm 

and subsequent establishment of an infected piglet reservoir.   

3.2 Introduction  

 Influenza A virus (IAV) is a globally endemic infection that causes significant 

morbidity in swine, poses a substantial public health risk to humans, and inflicts a 
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considerable financial burden on the swine industry (Torremorell et al. 2012; Vincent et 

al. 2014). Swine are an important host for IAV because they are susceptible to strains 

from multiple species, and thus can foster the reassortment of avian, swine and human 

strains (Torremorell et al. 2012). Interspecies transmission events of IAV are well 

documented, including transmission events from swine to people and people to swine 

(Myers et al. 2006; Myers, Olsen & Gray 2007; Nelson et al. 2014; Nelson & Vincent 

2015; Choi et al. 2015). The rapid rate of change in IAV strains due to both genetic drift 

and genetic shift ensure that novel strains are likely to arise (Torremorell et al. 2012). 

The 2009 H1N1 pandemic illustrates the potential zoonotic risk that is present for 

humans from such reassortment (Girard et al. 2010). While reduced growth rates and 

morbidity of infected animals are the primary financial concern for the swine industry, 

public concern during outbreaks can also have substantial consequences (Sandbulte et al. 

2015). For instance, swine industry revenue losses in excess of $1 billion dollars have 

been estimated in the aftermath of the 2009 H1N1 pandemic (Pappaioanou & Gramer 

2010). 

 In swine, direct contact with infected pigs is thought to be the primary 

transmission route for IAV, but transmission may also occur through aerosols and 

fomites (Torremorell et al. 2012; Allerson, Cardona & Torremorell 2013a). IAV 

infections are common at the herd level and are difficult to eliminate on a farm 

(Torremorell et al. 2012). Prolonged infection at the population level has public health 

implications because of an increased risk of exposure for swine workers (Myers et al. 

2006, 2007; Allerson et al. 2013b). Persistent infection is likely dependent on many farm-
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specific factors including housing structure, the frequency of intra- and inter-farm 

movement rates of specific subpopulations, and animal density (Allerson et al. 2013b). 

One hypothesis for the prolonged persistence of IAV in swine herds is the recurring 

availability of susceptible individuals (Brown 2000; Allerson et al. 2013b; Pitzer et al. 

2016). This hypothesis is supported by several documented cases of IAV positive 

neonatal piglets in the absence of IAV positive sows (Larsen et al. 2010; Allerson et al. 

2013b). Notably, it has been demonstrated that piglets can still become infected during 

the lactation phase (Corzo et al. 2012). Gilt introductions into breeding herds may also 

play an important role in IAV persistence on farms (Diaz et al. 2015).  

 Producers commonly employ vaccination and biosecurity measures to reduce IAV 

incidence in their herds (Torremorell et al. 2012). A 2006 survey conducted by the 

National Animal Health Monitoring System (NAHMS) found that 29% of the farms with 

100 or more animals were vaccinated for either H1N1 or H3N2 strains (NAHMS, 2008). 

Currently, all commercial IAV vaccines in the U.S. are inactivated (Sandbulte et al. 

2015). Such vaccines are only effective for identical or antigenically similar strains of 

IAV (Sandbulte et al. 2015). Custom-manufactured autogenous vaccines, which are 

derived from a strain circulating within a specific herd, are also in widespread use 

(Sandbulte et al. 2015). Thus, vaccines may also be classified as homologous or 

heterologous, depending on whether they activate an effective immune response for a 

specific strain of IAV. Homologous vaccines should match the circulating strain exactly 

and induce complete immunity, while heterologous vaccines do not and may induce only 

partial immunity. Farmers may routinely vaccinate pregnant sows (pre-farrow 



 

102 

vaccination) in order to impart maternal immunity to piglets or may vaccinate the entire 

herd at regular intervals (mass vaccination). A case study demonstrated that strain-

specific, mass vaccination can decrease IAV shedding at the herd level (Corzo et al. 

2012). Herd closure and partial depopulation have also been successfully used to 

eliminate IAV from a swine farm (Torremorell et al. 2009). 

 While vaccination has been shown to reduce transmission rates in experimental 

settings, it is unlikely to prevent transmission completely, and the implications for herd 

level transmission are less clear (Romagosa et al. 2011; Torremorell et al. 2012; Allerson 

et al. 2013c). Results of vaccination efforts in large production systems have been mixed 

(Beaudoin et al. 2012; Sandbulte et al. 2015). This is likely because of high mutation 

rates, high strain diversity, and potential interference from maternally derived immunity 

(Kitikoon et al. 2006; Thacker & Janke 2008). 

 Currently, the dynamics of IAV circulating in swine herds remains poorly 

understood (Dorjee et al. 2013; Vincent et al. 2014). Mathematical models are important 

tools for understanding disease transmission and dynamics because they allow us to make 

predictions about the spread of pathogens and to explore “what if” scenarios, including 

the effects of potential interventions (Lloyd-Smith et al. 2009). To date, very little 

mathematical modelling has been done on IAV in swine (Coburn, Wagner & Blower 

2009; Dorjee et al. 2013); to our knowledge, only two models have been conducted 

(Reynolds, Torremorell & Craft 2014; Pitzer et al. 2016). Both of these studies support 

the idea that piglets play a pivotal role in maintaining IAV endemicity. Reynolds et al. 

(2014) employed a deterministic model to assess homologous and heterologous vaccine 
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strategies in both a breeding and a wean to finish farm. Their results suggest that 

vaccination alone does not effectively remove influenza from breeding herds; 

homologous vaccination eliminated transmission in sows and gilts, but not in piglets. 

Pitzer et al. (2016) combined mathematical models and phylogenetic analysis to posit that 

a critical herd size of at least 3,000 individuals can maintain IAV and to suggest that high 

piglet turnover play a key role in maintaining IAV endemically.   

 The goal of this study is to test a variety of intervention strategies that swine 

producers may feasibly employ to reduce the incidence of IAV in piglets and prevent 

piglets from becoming exposed in the first place. Here we develop a stochastic, 

metapopulation model to emulate the intra-herd dynamics of a typical Midwestern swine 

breeding farm. The motivation for developing a stochastic model was to examine the 

cases in which epidemiological parameter variability and experimental interventions 

might lead to IAV elimination from a breeding herd. This model and subsequent analyses 

differ from previous modelling efforts in several key ways: (1) a stochastic approach 

allows for the analysis of both parameters and interventions leading to extinction events, 

(2) vaccinated and recovered animals can lose their immunity, (3) vaccinated animals 

have separate latency and recovery rates as suggested by the literature, and (4) an 

extensive global sensitivity analysis was conducted to assess the importance of 

parameters in contributing to disease outcomes.   

 We began by developing a null model where no interventions were implemented. 

In the absence of interventions, we tested how farm size and the frequency and source of 

IAV introduction might affect IAV dynamics (Figure 3.1). Using expected mean or mode 
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values from the literature and the resulting null model, we first explored transmission 

dynamics in a breeding herd without any interventions, then tested fourteen different 

types of management interventions independently, and finally tested a combination of 

interventions to see if any could successfully reduce IAV incidence. In total, we tested 

fifteen experimental scenarios. In addition, we tested the robustness of these results to 

variation in epidemiological parameters and the relative importance of each parameter by 

conducting a global sensitivity analysis and a random forest analysis. 

3.3 Materials and methods  

Model development and parameterization 

 We have developed a stochastic, Susceptible-Exposed-Infectious-Recovered-

Vaccinated (SEIRV) simulation of IAV dynamics in a swine breeding herd. Animals are 

categorized in classes according to both their IAV immune status and their production 

stage (Table 3.1). This metapopulation model is density-dependent, reflects the spatial 

organization of a standard swine breeding herd, and thus, accounts for the various 

production stages including gilts, sows, and piglets (Figure 3.2). The spatial 

subpopulations of the model correspond to a gilt development unit (GDU), a 

breeding/gestation unit, and a farrowing unit as found on a typical farrow-to-wean 

facility.  Gilts are introduced into the GDU where they mature for 10 weeks before 

moving to the breeding/gestation unit. In the breeding/gestation unit, sows are bred and 

gestate for 16 weeks. Then, sows move to the farrowing unit where they give birth during 

the first week and remain until their piglets are weaned after an additional three weeks. 
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Sows have an equal probability of giving birth on any day during the first week of 

introduction to the farrowing unit, which means that piglets may be a minimum of 21 

days and a maximum of 28 days old upon weaning. Weaned sows return to the 

breeding/gestation area where they are either culled (50%) or rebred. Movement of 

animals between stages and sub-populations occurs on a weekly basis.  

 Although there is a trade-off with increased model complexity, we have separated 

out the different production classes because this allows for the administration of 

interventions to specific groups and for different production classes to have separate 

epidemiological parameters (Table 3.1). In particular, we separate piglets based on their 

age (one to four weeks old) because piglets have been found to be IAV positive even in 

the absence of infection of sows or gilts (Larsen et al. 2010; Allerson et al. 2013b). Also, 

including weekly classes for piglets allows for the testing of different early weaning 

times. Animals are assumed to mix homogenously within their respective production 

units. 

 This continuous Markov chain model allows for stochastic births, non-disease 

related deaths, direct and indirect infection, and loss of both vaccine-induced and 

naturally-acquired immunity via Gillespie’s Direct Method (Gillespie 1977; Keeling & 

Rohani 2008b). The rates for each event, j, are calculated based only on the current 

properties of the system at each time step. At each time step, we evaluated the transition 

rates (𝜆𝑗) for 161 separate events (Equations in Appendix F Table F.1). The time 

between events is represented by an exponential distribution with an expected (mean) 

value equal to the inverse of the sum of the transition rates: 
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𝐸(𝑥) = 1/ ∑ 𝜆𝑗𝑑𝑡161
𝑗=1 , and the probability that the next event will be of type j is equal to 

𝜆𝑗𝑑𝑡/ ∑ 𝜆𝑗𝑑𝑡161
𝑗=1  (Legrand et al. 2004).  The epidemiological and demographic 

parameters that determine these rates are shown in Table 3.3.  

Parameterization 

  Epidemiological parameters are derived from recent experimental work that 

characterizes the rate of IAV transmission (𝛽) between pigs for piglets, adults, and 

vaccinated animals (Romagosa et al. 2011; Allerson et al. 2013a; c). Transmission values 

are converted from frequency-dependent (𝛽’) to density-dependent (𝛽) values by dividing 

𝛽’ by the number of individuals in each respective experimental treatment group for 

Allerson et al. 2013a, 2013c, and Romagosa et al. 2011 (Begon et al. 2002; Reynolds et 

al. 2014). We assume density-dependent transmission because population size fluctuates 

in the model due to births and culling and because IAV is a directly transmitted virus 

(Keeling and Rohani, 2008). Since pigs in a breeding herd are in a constrained area, 

contacts are likely to increase overall with density, and thus the force of infection is likely 

to increase correspondingly.  

 Expected values (Table 3.3) were the mean values for normally-distributed 

parameters, but could also be mode values for asymmetrical triangle distributions or 

simply an informed point estimate within a uniform distribution. For instance, the 

expected values for indirect transmission were extrapolated from experimental data, 

assuming that 𝛽𝑖𝑛𝑑 ≈ 𝛽𝑑/178 (Allerson et al., 2013a; Reynolds et al., 2014); during 

Latin Hypercube Sampling (LHS), the range for indirect transmission was assumed to be 
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from 0 to the lower limit for the corresponding direct contact rate. In this way, indirect 

transmission is always less than direct transmission for each simulation, but there is no 

forced correlation between the two parameters.  The ranges of transmission parameters 

explored during LHS for the homologous vaccine treatments still allowed for minimal 

potential direct and indirect transmission events and did not offer “perfect” immunity 

(Romagosa et al. 2011; Allerson et al. 2013c).  Empirical work suggests that there may 

be differences in the latency (the period of time between first exposure and 

infectiousness: 1/σ) and infectious periods (duration of infectiousness: 1/γ) between 

vaccinated and unvaccinated groups (Romagosa et al. 2011). To test the importance of 

these potential differences, we included a separate exposed and infectious (VE and VI) 

classes for vaccinated animals. 

Strain type 

 While several studies in IAV vaccine efficacy have been performed, few have 

characterized inter-animal transmission rates between pigs (Van Reeth et al. 2001; Lange 

et al. 2009). Based on the available empirical work, here we model a single, generic 

H1N1 strain. The empirical studies that inform the parameters for this model utilized 

specific challenge strains (e.g., delta cluster H1N1 [A/Sw/ MN/07002083/07] and 𝛽 

cluster H1N1 [A/Sw/IA/00239/04]) and vaccine formulations (Romagosa et al. 2011; 

Allerson et al. 2013a; c). Given the substantial strain diversity of IAV, it would be 

reasonable to expect some variation in these parameters for different challenge strain-

vaccine pairings. By testing the range defined by the reported 95% CIs in the literature 
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for the LHS-PRCC sensitivity analysis, we have attempted to account for some of this 

conceivable variation. 

Testing assumptions and initial conditions 

 To compare the effects of different initial conditions and the effectiveness of each 

intervention, we computed four metrics for each scenario: the maximum prevalence of 

infected individuals observed at the infection peak, the mean endemic prevalence (the 

average prevalence for all animals following the initial infection peak from t= 6-12 

months), the mean endemic prevalence in piglets (the average prevalence for piglets from 

t= 6-12 months), and the probability of stochastic IAV extinction (the percentage of trials 

where no IAV was present on the farm by the end of the simulation’s duration). 

Farm size 

 Over the past two decades, the U.S. swine industry has consolidated dramatically, 

skewing heavily to fewer production sites with larger holdings. By 2009, 86% of the U.S. 

swine inventory existed in farms with 2,000 or more total animals (McBride & Key 

2013). However, smaller sites with less than 2,000 animals are more likely to have a 

breeding herd. 57.6 percent of breeding herds have fewer than 250 sows and gilts, 6.8 

percent have 250-499, and 35.6 percent have more than 500 sows and gilts (USDA 

2015). Using a null model without any additional interventions, we tested a range of farm 

sizes varying from approximately 500 to 5000 total animals (Figure 3.1). We observed 

the effect of farm size on maximum prevalence, endemic prevalence, endemic prevalence 

in piglets, and the likelihood of stochastic extinction (Appendix F Table F.2).  
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Source and frequency of IAV introduction  

 We evaluated the effects of both source and frequency of IAV introduction on 

disease dynamics within the breeding herd. For source of infection, we tested 

introductions of a single infected gilt to the GDU and a single sow to the 

breeding/gestation unit or the farrowing unit respectively. For frequency of IAV 

introduction, we compared scenarios where a single infected gilt was introduced to the 

GDU at t=0 and where a single infected gilt was introduced weekly into the GDU (Figure 

3.1).   For each case, we computed peak prevalence, endemic prevalence, endemic 

prevalence in piglets, and the likelihood of stochastic extinction (Appendix F Table F.3).  

Null model 

 We introduced one new IAV strain into an immunologically naïve farm (unless 

animals were vaccinated as specified by an intervention) via a single infected gilt. Each 

simulation began with a total of 3500 pigs on the farm: 2000 piglets, 330 gilts and 1170 

sows, and continued for a period of 365 days (1 year). The population size for the null 

model fluctuated between approximately roughly 3,000 and 4,000 individual pigs. Our 

null model assumes that no vaccinations are given to any class, that 30 gilts are 

introduced to the GDU on a weekly basis, that indirect transmission can occur between 

each sub-population of the farm, and that piglets spend 21-28 days with their mothers in 

the farrowing unit after birth (Table 3.2, Experiment #0). We have modeled indirect 

transmission as only occurring between different sub-populations (e.g., a gilt in the GDU 

could only experience indirect infection from animals in either the farrowing or 
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breeding/gestation unit). There is evidence that such indirect transmission may occur 

even if a farm is observing high standard biosecurity practices (Allerson et al. 2013a). 

Once recovered, piglets did not lose immunity. We did not explicitly model strain 

mutation, but because simulations last for up to a year, we assumed that recovered sows 

and gilts had an exponentially waning natural immunity that lasts an average of 8-16 

weeks (Table 3.3). 

Interventions 

 Beginning with this null model, we tested five intervention types that include: (1) 

varied timing of gilt introductions to the breeding herd, (2) gilt separation (no indirect 

transmission to or from the GDU), (3) gilt vaccination upon arrival to the farm, (4) early 

weaning, and (5) vaccination strategies with different timing (mass and pre-farrow) and 

efficacy (homologous vs. heterologous). The types of interventions used in each 

experiment are described in Table 3.2. 

Timing of gilt introductions:   

 From a 2012 USDA survey, about one-third of large farms introduce gilts at least 

every two weeks (USDA 2015). We tested intervals of one week, one month, three 

months, and 6 months between introductions (Table 3.2, Experiment #1, 2 & 3 

respectively). In interventions where the timing of gilt introductions was altered, the 

number of gilts introduced at each interval was equal to 30 multiplied by the number of 

weeks that had elapsed since the prior introduction; this kept the number of introduced 

gilts consistent across experiments.  
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Gilt separation 

 When gilt separation (Table 3.2, #4) was implemented, no indirect transmission 

between the GDU and other sub-populations of the farm was possible. However, 

movement of infectious individuals was still possible via the weekly movement of gilts 

from the GDU to the breeding/gestation area. 

Gilt vaccination 

 For the gilt vaccination intervention, all gilts, with the exception of the single 

infected “seeder” gilt, were of vaccinated status upon arrival to the farm. We modeled 

two types of vaccine efficacy: homologous and heterologous (Table 3.2, #5, 6).  

Early weaning 

 In the null case, piglets remain with their mothers for 3-4 weeks (21-28 days). We 

tested early weaning of 0-7 days, 7-14, and 14-21 days after birth (Table 3.2, #7, 8 & 9 

respectively). It is important to note here that early weaning causes a commensurate 

reduction in the overall population size of the farm from the removal of piglets. For 

instance, the total population oscillates between 1,500-2,500 animals, 2,000-3,000 

animals, and 2,500-3,500 animals for early weaning after 0-7 days, 7-14 days, and 14-21 

days respectively. 

Vaccine efficacy and strategy 

 As with gilt vaccination, we tested both homologous and heterologous vaccines in 

combination with two types of vaccination strategy: mass vaccination and pre-farrow 

vaccination. For mass vaccination interventions (Table 3.2, #10, 11 & 12), we assumed 
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that piglets began with vaccine-induced maternal immunity and that all mature animals 

(sows and gilts) had vaccine-induced immunity at t=0. This would be the most likely 

profile for an IAV naïve farm with an ongoing mass vaccination program. We tested two 

time frames for revaccination of sows and gilts: every two months (#10 & 12) and every 

six months (#11). Mass vaccination every two months represents an ideal scenario, since 

the immunity for commonly used vaccines on the market wanes after 8-10 weeks (Pfizer 

Animal Health 2011; Merck Animal Health 2013). However, vaccinating the herd every 

4-6 months is a more realistic timeframe for most producers given time and resource 

constraints. For pre-farrow interventions (Table 3.2, #12 & 13), sows were vaccinated 

when they reached the pre-farrow sow compartment (S3) three weeks prior to farrowing, 

and give birth to piglets with vaccine induced maternal immunity (S15). The strength of 

this immunity for the piglet depends on whether the sow received a heterologous or 

homologous vaccine. 

Combination strategy 

 After performing simulations where only one intervention type was altered at a 

time (Experiments #0-14), we selected the final “optimal” combination of interventions 

(Experiment #15) based on the interventions that decreased at least one of these four 

metrics relative to the null case (Experiment #0).  

Uncertainty and sensitivity analyses 

 Two sources of uncertainty may contribute to variation in a stochastic model. The 

first, aleatory uncertainty, results from the inherent stochasticity in the model (e.g., births, 
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deaths, and transmission events). The second type of uncertainty, epistemic uncertainty, 

results from variation in the model parameters themselves. In a stochastic model, it is 

necessary to analyze the sources of uncertainty in series because they cannot necessarily 

be teased apart simultaneously (Marino et al. 2008). Therefore first we assessed the 

aleatory uncertainty inherent to the model by running each experiment 100 times using 

the expected parameter values Table 3.3 and calculating the coefficient of variation 

(Table 3.4) (Marino et al. 2008).   

 To understand the extent of epistemic uncertainty in the model, we conducted a 

multivariate sensitivity analysis using Latin Hypercube Sampling (LHS) and partial rank 

correlation coefficient (PRCC) analysis. LHS-PRCC is a sampling based global 

sensitivity analysis that has been used for disease models (Seaholm, Ackerman & Wu 

1988; Blower & Dowlatabadi 1994; Legrand et al. 2008; Wu et al. 2013). For LHS, the 

minimum required sample size (N) is N ≥ K+1 or N ≥ 4/3*K where K is the number of 

parameters included in the LHS (Blower & Dowlatabadi 1994). However, replicating the 

same LHS parameter sets rather than just increasing the number of independent samples 

can improve the accuracy of PRCC because it decreases aleatory uncertainty and reduces 

computational intensity (Marino et al. 2008). Marino et al. (2008) conducted a sensitivity 

analysis for a 12 parameter stochastic model and found 3 replicates of 100-division LHS 

to be equivalent to 1,000 random samples in the ability of PRCC to discern the effects of 

significant parameters. Here we performed LHS for 15 parameters with 100 divisions per 

parameter and then replicated that same parameter set three times for each intervention 
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for a total of 300 simulations per intervention and 4,800 simulations in total (100 x 3 x 

15).  

 Distributions for all 15 parameters for LHS sampling were normal, triangular, or 

uniform as informed by the literature (Table 3.3). Uniform distributions were utilized 

when less information was available, particularly for indirect transmission rates and for 

loss of immunity (Rushton et al. 2000). We conducted PRCC on the averaged values of 

the three replicated sets for each intervention and for three evaluation criteria (maximum 

prevalence, endemic prevalence, and endemic prevalence in piglets) (Tenhumberg et al. 

2004). Specifically, we used Pearsons’s partial correlation coefficients to detect 

monotonic relationships between parameters and outputs after accounting for the effects 

of all other parameters (Marino et al. 2008). All LHS simulations and PRCC analyses 

were conducted in MATLAB (R2015b). 

 For the analysis of both aleatory and epistemic uncertainty, we have chosen to 

focus on describing and discussing differences in the magnitude in the outcomes and 

PRCC results. Arguably, significance testing can lose its utility for simulation studies 

because an essentially unlimited sample size can contribute to even small differences in 

the magnitude of outcomes being designated as statistically significant (White et al. 

2014).  

 To aid in this descriptive approach, we have included a random forest analysis to 

examine the relative importance of both interventions and parameters leading to IAV 

extirpation.  Random forest analysis is a flexible classification tool that can handle non-

linear relationships between a large number of predictor variables. As a random-based 
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ensemble method, it is considered an improvement on traditional classification or 

regression trees because it compensates for overfitting by sampling a large number of 

trees instead of just one (Breiman 2001; Liaw & Wiener 2002a; Cutler et al. 2007). This 

method has been used to analyze and predict complex epidemiological data for other 

disease models (Herrick, Huettmann & Lindgren 2013; Kane et al. 2014). We used 

variable importance plots to evaluate the effect of both interventions and parameters on 

IAV endemic prevalence, maximum prevalence, and likelihood of extinction. The mean 

decrease in accuracy describes the loss of predictive value that results from a particular 

variable being randomly permutated. We used a measure of permutation importance 

rather than node impurity to explore variable importance because these measures have 

been shown to be more robust to the numbers and types of input variables (Strobl et al. 

2007, 2009). These analyses were conducted in R (version 3.2.2) using the cforest 

function in the party package. For each random forest analysis, we simulated 10,000 

trees, which was of sufficient ensemble size such that the order of variable importance 

did not vary with the random seed (Strobl et al. 2009).  

3.4 Results  

Farm size 

 Persistence of IAV in the breeding herd was robust to farm size. All farm sizes 

exhibited a similar maximum and endemic prevalence (Appendix F Table F.2). After 

farm size increases beyond 200 sows and gilts or a total inventory of 500 animals, we 

observed no difference in the percentage of stochastic extinctions. 
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Frequency and source of IAV introduction 

 The dynamics of IAV infection for the null model were robust to changes in 

source of infection or frequency of IAV introduction (Appendix F Table F.3). There were 

no observable differences in maximum prevalence, endemic prevalence, or likelihood of 

stochastic extinction across the tested scenarios. 

Aleatory uncertainty 

Null scenario (Experiment #0) 

 For the null case, there is a single epidemic peak followed by the maintenance of 

a steady level of endemicity. However, the observed pattern of infection differs for each 

of the production classes (Figure 3.3).  The initial spike in infection is due to IAV 

spreading from the GDU to other sub-populations of the farm (particularly sows) and 

occurs within the first week following IAV introduction to the farm (mean time of peak 

prevalence= 4.39 ± 0.36 days). After this initial peak, the endemic level of infection, 

ranging from ~400-600 animals, results from the continual infection of newly born 

piglets. Sows and gilts are less likely to be infected during the endemic phase.  

Gilt introduction (Experiments #1-3) 

 Changing the timing of gilt introductions only marginally reduced the three 

prevalence measures (Table 3.4) and did not affect the probability of IAV extinction. The 

most noticeable effects were for increasing the period between gilt introductions from 

one week to six months (Experiment #3) which decreased maximum prevalence by 0.9 
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percent, endemic prevalence by 1.9 percent and endemic prevalence in piglets by 3.6 

percent. It is worth noting however that a slightly lower mean endemic prevalence came 

at the cost of large spikes in gilt prevalence when gilt introductions occurred (Figure 3.3). 

Gilt separation (Experiment #4) 

 Gilt separation reduced the maximum prevalence by 4.6 percent, but had 

negligible effects on endemic prevalence, endemic prevalence in piglets, and the 

likelihood of IAV extinction. 

Gilt vaccination (Experiments #5 & 6) 

 Homologous gilt vaccination (Experiment #5) reduced maximum prevalence by 

9.8 percent and endemic prevalence by 23.8 percent, but had comparatively little effect 

on endemic prevalence in piglets with a reduction of only 2.0 percent observed. The 

effects of heterologous gilt vaccination (Experiment 6) were less dramatic, similarly 

reducing maximum prevalence by 9.2, but only reducing endemic prevalence and 

endemic prevalence in piglets by 4.6 and 1.0 percent respectively. 

Early weaning (Experiments #7-9) 

 Early weaning of piglets had little effect on maximum prevalence. Early weaning 

of piglets after 0-7 days (Experiment #7) reduced endemic prevalence and endemic 

prevalence in piglets by 26 and 61 percent respectively. Counterintuitively, early weaning 

at later stages (7-14 days and 14-21 days) increased prevalence relative to the null. This is 

because while the number of infected individuals in each class did not increase, the 
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relative numbers of animals on the farm decreased from the loss of piglets. After the 

initial infection peak, the total number of infected individuals per time step was 

approximately 250 individuals for 0-7day treatment, 500 individuals for 7-14 day 

treatment, and 600 individuals for 14-21 day treatment. In contrast, in the null model, 

total population size oscillates between 3,000-4,000 individuals with approximately 500 

infected individuals per time step after the initial infection peak.  

Vaccine strategy and efficacy (Experiments #10-14) 

 Homologous mass vaccination every two months (Experiment #10) reduced the 

maximum prevalence by 51.3 percent, the endemic prevalence by 24.3 and the endemic 

prevalence in piglets by 24.0 percent. Most importantly, this treatment also increased the 

likelihood of IAV extinction to 24 percent, although this extinction was most likely to 

occur within the first few days of IAV introduction.  Some of this effect was still 

observed even when homologous mass vaccination was executed every six months 

(Experiment #11) with reductions of 47.2, 18.2 and 18.1 percent to maximum, endemic 

and endemic prevalence in piglets respectively. The effects on endemic prevalence were 

less noticeable for heterologous mass vaccination (Experiment #12), although the peak 

prevalence was still reduced by 37.7 percent. Both homologous and pre-farrow 

vaccination (Experiments #12 &13) had a negligible effect on endemic prevalence 

overall and endemic prevalence in piglets, but reduced peak prevalence by 13.4 and 12.5 

percent respectively. 
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Combination strategy (Experiment #15) 

 The combination strategy (#15) included homologous mass vaccination every two 

months, early weaning of piglets (removal 0-7 days after birth), gilt separation, 

homologous gilt vaccination, and a longer period between introductions of gilts (6 

months). Relative to the null, this combination of interventions was the most effective at 

reducing prevalence (Table 3.4, Figure 3.5, Figure 3.6). This strategy reduced the 

maximum prevalence by 65.4 percent, the endemic prevalence by 51.1 percent, and the 

endemic prevalence in piglets by 74.0 percent.  Additionally, in 23 percent of simulated 

cases, IAV was eliminated from the breeding herd, but as with homologous mass 

vaccination (#10 & 11) this extinction occurred within the first few days after IAV 

introduction. 

Epistemic Uncertainty (Global Sensitivity Analysis) 

 The amount of variation observed when using expected values across treatments 

is small relative to the epistemic uncertainty (Figure 3.4). Despite using informed (i.e. 

normal and triangle) parameter distributions for most parameters, the amount of 

epistemic uncertainty contributed substantially to the observed variation (Figure 3.5);  

PRCC analysis 

 Based on the PRCC results (Figure 3.5), the recovery rate (γ) was negatively 

correlated with endemic prevalence across all experiments. This suggests that as the 

infectious period decreases endemic prevalence will decrease. For experiments 

employing early weaning, the reciprocal of latency period (σ), the loss of immunity rate 
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for recovered sows and gilts (ωr) and the direct transmission rate for piglets with maternal 

immunity (𝛽𝑑
𝑝𝑚

) were positively correlated with endemic prevalence of IAV in the herd. 

Specifically, with shorter latency periods (σ-1) for exposed animals and duration of 

immunity (ωr
-1) for recovered animals, the endemic prevalence during the simulations 

increased.  

 For the endemic prevalence in piglets (Appendix F Table F.4), similar trends were 

observed for the recovery rate (γ), the reciprocal of the latency period (σ), and the direct 

transmission rate for piglets with maternal immunity (𝛽𝑑
𝑝𝑚

). However, duration of 

immunity (ωr
-1) for recovered animals was not detected as having a substantial effect on 

endemic prevalence in piglets. 

 Finally, for the maximum prevalence (Appendix F Table F.5), the recovery rate 

(γ) had a strong negative correlation, and the reciprocal of the latency period (σ) had a 

strong positive correlation with maximum prevalence across all experiments. Again, this 

suggests that as the infectious periods decrease and latency periods increase, the 

maximum observed prevalence will decrease. Across metrics and experiments, both 

recovery rate and latency period were most likely to influence epidemic outcomes. 

Random forest analysis 

 For the endemic prevalence of infected pigs, the top four variables with the 

highest importance scores were recovery rate (𝛾), early weaning interventions, the loss of 

immunity rate for recovered sows and gilts (𝜔𝑟), and the inverse of the latency period (𝜎) 

(Figure 3.6A). These results were consistent with the correlation results of the PRCC 
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analysis (Table 3.5). For the maximum prevalence of infected pigs, the inverse of the 

latency period (σ), vaccination strategy (mass vs. pre-farrow), the recovery rate (𝛾), and 

vaccine efficacy (heterologous vs. homologous) were the four top ranking factors in 

variable importance (Figure 3.6B).  Again, the inverse of the latency period (𝜎) and the 

recovery rate were identified as having strong effects on maximum prevalence in the 

PRCC analysis (Appendix F Figure F.5).  For the probability of stochastic extinction 

(Figure 3.6C), the direct transmission rate for piglets with maternal immunity (𝛽𝑑
𝑝𝑚

), the 

indirect transmission rate for piglets (𝛽𝑖𝑛𝑑
𝑝

), the indirect transmission rate for vaccinated 

animals (𝛽𝑖𝑛𝑑 𝑣𝑎𝑥), and the inverse of the latency period (𝜎) were variables with the 

highest prediction power.  

3.5 Discussion  

 Our findings support other modelling and empirical studies that suggest that 

younger animals play a pivotal role in maintaining IAV in swine herds (Beaudoin et al. 

2012; Allerson et al. 2013b; Reynolds et al. 2014; Diaz et al. 2015; Pitzer et al. 2016). 

The two other modelling studies conducted on IAV have found similar patterns of 

persistence in piglets (Reynolds et al. 2014; Pitzer et al. 2016).  However, our model 

predicts IAV persistence even in very small herd sizes as low as 500 total animals in 

contrast to the critical herd size estimate of 3,000 animals predicted by Pitzer et al. 

(2016). 

 In many ways, the model provides a "worst case scenario" because it allows for 

reinfection and imperfect immunity both from vaccination and maternal immunity. Under 
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these circumstances, many common management and biosecurity strategies that were 

tested did not produce a significant decrease in IAV prevalence. Based on the behavior of 

the model, once IAV had spread from the GDU to establish residency in other parts of the 

farm, stochastic extinctions became very unlikely; stochastic extinctions were most likely 

to occur within the first few days after IAV introduction. For instance, the effects of 

increased spacing between gilt introduction and gilt separation were minimal. It seems 

that the continual animal movement between production units makes preventing indirect 

transmission less effective. The indirect transmission rate for sows and gilts (𝛽𝑖𝑛𝑑) did 

not correlate strongly with prevalence values, which is logical since stochastic extinctions 

are unlikely in unvaccinated populations. However, the indirect transmission rate for 

vaccinated animals (𝛽𝑖𝑛𝑑 𝑣𝑎𝑥) and the indirect transmission rate for piglets (𝛽𝑖𝑛𝑑
𝑝

) appear 

to contribute to the likelihood of stochastic extinction according to the random forest 

variable importance metric (Figure 3.6C). This suggests that the likelihood of spreading 

IAV to other areas of the farm within the first few days of introduction and particularly 

likelihood of introduction to the vulnerable piglet population could be especially 

important for facilitating extinction events. PRCC and random forest analysis results 

suggest that this relationship between indirect transmission and stochastic extinction 

would not be as important once IAV has become endemic.  

 Homologous vaccination was the best overall intervention in our model as it 

decreased all three prevalence metrics and increased the likelihood of stochastic 

extinction to nearly a fourth.  Encouragingly, these effects were observed for both the 

two- and six-month administration frequencies. However, while homologous vaccination 
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caused substantial reductions in IAV prevalence it did not completely eliminate sow and 

gilt transmission as predicted in a previous deterministic model (Reynolds et al. 2014).  

These results were somewhat surprising since the vaccination interventions (#10-14) 

differed from other interventions in that a large portion of adult animals had vaccine 

derived immunity at t=0. Given these conditions, extinction would not be unexpected, but 

was in fact relatively rare. This finding highlights the potential importance of preventive 

measures and the difficulty of eliminating IAV once it becomes endemic. While early 

weaning was a particularly effective strategy for reducing IAV prevalence in piglets, it 

was only effective in the more drastic case of removing piglets within a week after birth. 

The benefits of this intervention must be offset by the potential production costs to the 

farmer, and is unlikely to be sustainable for longer durations as simulated here.  It may be 

that a “dry spell”, i.e., a removal of piglets and cessation of births would be necessary to 

provide the best chances for complete IAV elimination which may be accomplished in 

batch farrowing production systems.  

 Although American swine producers commonly rely on some form of pre-farrow 

vaccination (National Animal Health Monitoring System 2008), we found that both the 

homologous and heterologous pre-farrow vaccination only had a slight effect on 

maximum endemic prevalence and a negligible effect on the other three metrics. 

Similarly, heterologous mass vaccination had a slight effect in reducing maximum 

prevalence, but a negligible effect in the realm of endemicity or extinction. Although 

heterologous vaccination did not have a substantial effect on the evaluation criteria 

measured here, vaccines are still valuable from a clinical perspective. Under experimental 
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conditions, vaccines can decrease lung lesions and improve clinical signs (Van Reeth et 

al. 2001; Lange et al. 2009). So from a production standpoint, heterologous vaccines may 

still play a valuable role in herd health, but not necessarily by mitigating transmission at 

the herd level. One question that warrants further investigation is whether decreasing 

endemic prevalence in the breeding herd is expected to modify the incidence in 

subsequent production phases; in part that will depend on IAV prevalence levels in 

piglets at weaning. However, it is unclear whether transmission can be prevented  in low 

prevalence situations given that the waning of maternal antibodies will result in an 

increase of susceptibility in piglets or whether transmission can be prevented only 

through complete extinction of IAV prior to weaning.  

 The relative inefficacy of heterologous vaccine interventions in reducing IAV 

prevalence highlight both the importance of matching the vaccine to any circulating 

strains and the potential value of biosecurity and herd management interventions beyond 

vaccination. Matching circulating strains will likely require autogenous vaccines in many 

cases and only commercial multivalent vaccines when appropriate. Vaccine-associated 

enhanced respiratory disease (VAERD) is also a potential concern. VAERD can result 

when maternal or vaccine-induced antibodies poorly match a strain that later infects a 

pig, and causes heightened clinical signs or complications (Sandbulte et al. 2015). In 

clinical studies, pigs challenged with a monovalent heterologous vaccine prior to 

infection had worse clinical signs and higher levels of pro-inflammatory cytokines, 

although VAERD has not been observed definitively under field conditions (Gauger et al. 

2011; Sandbulte et al. 2015). Genetically engineered modified live vaccines (MLV) and 



 

125 

vectored vaccines could provide better options for targeted protection and improved 

cross-immunity in the future (Vincent et al. 2008, 2012; Gauger et al. 2011; Sandbulte et 

al. 2015). 

 Some limitations of our study and avenues for future directions are as follows. 

First, while we explored the effects of farm size on the null model, we did not test the 

effects of farm size for each of the interventions. It is important to note that stochastic 

effects and possible pathogen extinction events would be more likely for smaller herds – 

arguably this stochasticity in smaller populations could make interventions more 

effective. We did not account for any potential seasonality in transmission or 

introductions, but based on recent empirical work this may be worth future consideration 

(Beaudoin et al. 2012; Diaz et al. 2015). Empirical work suggests that there may be 

differences in the latency (1/σ) and infectious periods (1/γ) between piglets with and 

without maternal immunity (Allerson et al. 2013c). We did not incorporate these 

differences in an effort to constrain the numbers of parameters included in the model, but 

this could be important to include for future models, especially since the latency and 

infectious periods have been highlighted as key parameters by the sensitivity analysis.  

Finally, apart from allowing for loss of susceptibility, we did not explicitly account for 

mutation in the circulating IAV strain, introductions of different strains, or partial 

immunity existing from exposure to prior strains.  Our parameters were based on a 

limited number of transmission studies for specific H1N1 challenge strains and vaccine 

formulations (Romagosa et al. 2011; Allerson et al. 2013a; c).  
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 Working together, scientists, veterinarians, and producers can engage in an 

iterative process with modelers to conduct model-guided fieldwork that can both inform 

and test new hypotheses (Restif et al. 2012). The comparatively large amount of 

epistemic uncertainty generated in the model supports the idea that slight differences in 

epidemiological parameters in this system can have dramatic consequences. More 

experimental work is needed to characterize transmission rates for different IAV subtypes 

and to better understand the effects of cross-reactivity and cross-immunity between 

strains. The existing literature supports the idea of significant variation between 

production classes and vaccinated and non-vaccinated animals (Romagosa et al. 2011), 

and both the LHS-PRCC and random forest analyses consistently suggested that the 

latency and infectious periods play a key role in determining epidemic outcomes. To our 

knowledge, our study is the only one to have tested a range of latency and infectious 

periods and to allow for distinct latency and infectious periods for vaccinated individuals. 

These potential differences will be important to include in future modelling work and to 

consider in future empirical tests of different vaccine/strain pairings. 

3.6 Conclusions  

 Several of the vaccination and management strategies that were tested here did 

not significantly reduce IAV prevalence in the simulated herd. Homologous mass 

vaccination and early weaning were the most efficacious interventions. The combination 

of frequent homologous mass vaccination, early weaning, gilt separation, gilt vaccination 

and longer periods between gilt introductions reduced endemic prevalence overall by 

51% relative to the null scenario, endemic prevalence in piglets by 74%, and eliminated 
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IAV completely in 23% of all simulations. Our findings support recent empirical and 

modelling work which suggests that piglets play a pivotal role in IAV persistence. Based 

on these results, biosecurity measures designed to prevent IAV from reaching piglets 

combined with strain-targeted (homologous) vaccines or vaccines inducing a broader 

protective immune response are likely the best option for producers to control IAV in 

their herds.  
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3.8 Figures 

 

Figure 3.1. A visual depiction of the work flow and analyses included in the paper. We began by 

evaluating assumptions used for the null model including farm size and frequency and source of IAV 

introduction. When the null model proved robust to these assumptions, we explored aleatory and epistemic 

uncertainty in the model output. Corresponding table and figure numbers for each analysis are included.  
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Figure 3.2. Model structure accounts for the different classes of pigs (gilts, sows, and piglets) in various 

production and immune stages: S-Susceptible, E-Exposed, I-Infectious, R-Recovered, V-Vaccinated, VE- 

Vaccinated and Exposed, VI- Vaccinated and Infected. Subscripts correspond to the classes listed in Table 

3.1. Arrows leading from compartment to compartment represent the weekly probability that animals will 

move from one stage to the next—thus, these fractions also represent the reciprocal of the average number 

of weeks spent in that stage. For example, gilts spend 10 weeks in the GDU, so every week 1/10th of the 

gilt population moves to the breeding/gestation unit. The long-dashed, dotted, and dashed lines leading 

from the “Birthing Sows” to the “Piglets (1 wk. old)” compartment represent the different types of maternal 

immunity that sows impart to their piglets, respectively: Susceptible (S5) and exposed sows (E5) give birth 

to piglets with no maternal immunity for IAV (S7); Infected (I5), vaccinated-infected (VI5), and recovered 

(R5) sows give birth to piglets with maternal immunity (S11); and vaccinated (V5) and vaccinated-exposed 

(VE5) sows give birth to piglets with vaccine-induced maternal immunity (S15). 
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Figure 3.3. Predicted prevalence of IAV in a breeding herd for Experiments #0-15 using expected 

parameter values.  Experiment numbers correspond to experiments described in Table 3.2. Mean 

prevalence of infected piglets, sows, and gilts relative to the total prevalence of infected pigs in the herd are 

shown—piglets experience the brunt of infection after the initial outbreak.  The order of the 

epidemiological curves reflects the order of the legend labels in decreasing prevalence. 

  



 

131 

 

Figure 3.4. Results of the uncertainty analysis using expected values from Table 3.3 

 for three evaluation criteria: (A) Maximum prevalence of infected pigs per treatment; (B) Endemic 

prevalence of infected pigs per treatment; (C) Endemic prevalence of piglets per treatment.  Box and 

whisker plots display for each experiment: the median, the first (25%) and third quartiles (75%), and the 

minimum and maximum values observed. The whiskers extend to the most extreme data point which is less 

than or equal to 1.5 times the interquartile (Q1-Q3) range from the box. Open circles are data points that 

exceed that interval. The mean for each experiment is shown by a solid diamond. 
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Figure 3.5. Results of the sensitivity analysis from LHS sampling of parameter distributions from Table 

3.3 for three evaluation criteria: (A) Maximum prevalence of infected pigs per treatment; (B) Endemic 

prevalence of infected pigs per treatment; (C) Endemic prevalence of piglets per treatment.  Box and 

whisker plots display for each experiment: the median, the first (25%) and third quartiles (75%), and the 

minimum and maximum values observed. The whiskers extend to the most extreme data point which is less 

than or equal to 1.5 times the interquartile (Q1-Q3) range from the box. Open circles are data points that 

exceed that interval. The mean for each experiment is shown by a solid diamond. 
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Figure 3.6. Variable importance plots from random forest analysis for three outputs: (A) Endemic 

prevalence of infected pigs; (B) Maximum prevalence of infected pigs; (C) Likelihood of stochastic 

extinction. Both (A) and (B) are regression analyses while (C) is a classification analysis. All three report 

variable importance results in terms of mean decrease in accuracy (values ranging from 0-1). A higher 
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value indicates greater variable importance.  Each analysis was conducted with an ensemble of 10,000 

trees. Y-axis abbreviations: Strategy = strategy of vaccination (possible values are: null, mass vaccination, 

or pre-farrow vaccination). Vaccine= vaccine efficacy (possible values: n/a, homologous, heterologous). 

Parameter symbols are defined in Table 3.3. 

. 
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3.9 Tables 

Table 3.1.  Classes of animals categorized by their influenza immune status (columns: Susceptible, Exposed, Infectious, Recovered, or Vaccinated) and 

production stage (rows: i =1, 2, 3…). These classes correspond to the labels in Figure 3.2 and the equations in Appendix F Table F.1.  

Susceptible (Si) Exposed (Ei) Infectious (Ii) Recovered (Ri) Vaccinated (Vi) Vaccinated-Exposed 

(VE) 

Vaccinated-

Infected (VI) 

S1 Gilts E1 Gilts I1 Gilts R1 Gilts V1 Gilts VE1 Gilts VI1 Gilts 

S2 Pregnant sows E2 Pregnant 

sows 

I2 Pregnant 

sows 

R2 Pregnant 

sows 

V2 Pregnant 

sows 

VE2 Pregnant 

sows 

VI2 Pregnant 

sows 

S3 Pre-farrow 

sows 

E3 Pre-farrow 

sows 

I3 Pre-farrow 

sows 

R3 Pre-farrow 

sows 

V3 Pre-farrow 

sows 

VE3 Pre-farrow 

sows 

VI3 Pre-

farrow 

sows 

S4 Resting sows E4 Resting 

sows 

I4 Resting 

sows 

R4 Resting 

sows 

V4 Resting 

sows 

VE4 Resting 

sows 

VI4 Resting 

sows 

S5 Birthing sows E5 Birthing 

sows 

I5 Birthing 

sows 

R5 Birthing 

sows 

V5 Birthing 

sows 

VE5 Birthing 

sows 

VI5 Birthing 

sows 

S6 Lactating sows E6 Lactating 

sows 

I6 Lactating 

sows 

R6 Lactating 

sows 

V6 Lactating 

sows 

VE6 Lactating 

sows 

VI6 Lactating 

sows 

S7- S10 Piglets (no 

immunity)- 

wks. 1-4 

E7- E10 Piglets- 

wks. 1-4 

I7-I10 Piglets- wks. 

1-4 

R7-R10 Piglets- 

wks. 1-4 

      

S11-S14 Piglets 

(maternal 

immunity)- 

wks. 1-4 

            

S15- S18 Piglets (Vx-

induced 

maternal 

immunity)- 

wks. 1-4 
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Table 3.2. A description of which interventions are used for each experiment.  Specifically, each column represents an experiment number, and each row 

represents an intervention type.  Note that for each intervention type (e.g., early weaning), there are several alternatives (0-7 days, 7-14 days, etc.). Each 

experiment employs only one alternative from each type of intervention. A shaded “X” indicates that the particular experiment utilizes the designated 

intervention.  

Intervention Experiment # 

Type Description 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Timing of Gilt 

Introduction 

 

 1 week (Null) X    X X X X X X X X X X X  

1 month  X               

3 months   X              

6 months    X            X 

Gilt Isolation No (Null) X X X X  X X X X X X X X X X  

Yes     X           X 

Gilt Vaccination 

 

No (Null) X X X X X   X X X X X X X X X 

Homologous       X          

Heterologous      X           

Early weaning 

 

 

0-7 days        X        X 

7-14 days         X        

14-21 days          X       

21-28 days (Null) X X X X X X X    X X X X X  
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Vaccination 

 

 

 

No vaccination X X X X X X X X X X       

Mass Homologous- 

every 2 mo. 

          X     X 

Mass Homologous- 

every 6 mo. 

           X     

Mass Heterologous- 

every 2 mo. 

            X    

Pre-Farrow 

Homologous 

             X   

Pre-Farrow 

Heterologous 

              X  
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Table 3.3. Input parameters for the model. These epidemiological and demographical parameters govern the transition rates of stochastic events in the model 

(described in Appendix F Table F.1). Expected values were mean values in the traditional sense for normally-distributed parameters, but could also be mode 

values for asymmetrical triangle distributions or simply a point estimate uniform distributions. Parameters with ranges in parentheses were varied for the LHS-

PRCC sensitivity analysis. 

Parameter Description  Expected value 

(Range) 

Distribution  Source 

βd Direct transmission rate for unvaccinated 

sows & gilts 

0.285 (0.091-0.9) 

animal-1day-1  
Triangle (Romagosa et al. 2011) 

βind Indirect transmission rate for sows and 

gilts 

0.016 (0-0.091) 

animal-1day-1  

Uniform (Allerson et al., 2013a; Reynolds et al., 2014) 

βd HE Direct transmission rate for sows & gilts 

vaccinated with heterologous vaccine 

0.0275 (0.001-

0.115) animal-1day-1   
Triangle (Romagosa et al. 2011) 

βind HE Indirect transmission rate for sows & gilts 

vaccinated with heterologous vaccine 

0.00017 (0-0.001) 

animal-1day-1  

Uniform (Allerson et al., 2013a; Reynolds et al., 2014) 

βd HO Direct transmission rate for sows and gilts 

vaccinated with homologous vaccine 

0 (0-0.052) animal-

1day-1   
Triangle (Romagosa et al. 2011) 

βind HO Indirect transmission rate for sows and 

gilts vaccinated with homologous vaccine 

0 (0- 0.00029) 

animal-1day-1  

Uniform (Allerson et al., 2013a; Reynolds et al., 2014) 

𝛽𝑑
𝑝
 Direct transmission rate for piglets 0.218 (0.147-0.310) 

animal-1day-1   

Normal Transmission rate for non-vaccinated treatment (Allerson 

et al. 2013c) 

𝛽𝑑
𝑝𝑚

  Direct transmission rate for piglets with 

maternal immunity 

0.014 (0.001-0.061) 

animal-1day-1  

Triangle (Allerson et al. 2013c) 

𝛽𝑖𝑛𝑑
𝑝

  Indirect transmission rate for piglets 0.001 (0-0.147) 

animal-1day-1  

Uniform (Allerson et al., 2013a; Reynolds et al., 2014) 

𝛽𝑖𝑛𝑑
𝑝𝑚

  Indirect transmission rate for piglets with 

maternal immunity 

0.00008 (0- 0.001) 

animal-1day-1  

Uniform (Allerson et al., 2013a; Reynolds et al., 2014) 

𝛽𝑑 𝐻𝐸
𝑝

  Direct transmission rate for piglets whose 

mothers received a heterologous vaccine 

0.174 (0.118-0.246) 

animal-1day-1   

Normal (Allerson et al. 2013c) 
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𝛽𝑖𝑛𝑑 𝐻𝐸
𝑝

  Indirect transmission rate for piglets whose 

mothers received a heterologous vaccine 

9.78·10-4 (0-0.118) 

animal-1 day-1  

Uniform (Allerson et al., 2013a; Reynolds et al., 2014) 

𝛽𝑑 𝐻𝑂
𝑝

  Direct transmission rate for piglets whose 

mothers received a homologous vaccine 

0.014 (0.001-0.061) 

animal-1day-1  

Triangle (Allerson et al. 2013c) 

𝛽𝑖𝑛𝑑 𝐻𝑂
𝑝

  Indirect transmission rate for piglets whose 

mothers received a homologous vaccine2 

7.86 x 10-5 (0-0.001) 

animal-1day-1  

Uniform (Allerson et al., 2013a; Reynolds et al., 2014) 

1/σ Latency period 2.83 (1.69-3.97) 

days 

Normal  Days between exposure and excretion for contact pigs in 

non-vaccinated group (Romagosa et al. 2011) 

1/σHE Latency period (reciprocal of exposure 

rate) 

6.87 (2.7-11.04) 

days 

Normal Days between exposure and excretion for contact pigs in 

HE-vaccinated group (Romagosa et al. 2011) 

σHO Latency period (reciprocal of exposure 

rate) 

6.87 (2.7-11.04) 

days 

Uniform Days between exposure and excretion for contact pigs in 

HO-vaccinated group (Romagosa et al. 2011); Note: no 

infectious HO pigs were observed in this experiment, so 

we tested a uniform distribution based on the HE-

vaccinated group. 

1/γ Infectious period (Reciprocal of recovery 

rate) 

4.5 (3.43-5.57) days Normal Infectious period from contact pigs in non-vaccinated 

group (Romagosa et al. 2011) 

1/γHE Infectious period (Reciprocal of recovery 

rate) 

3.50 (1.66-5.34) 

days 

Normal Infectious period from contact pigs in HE-vaccinated 

group (Romagosa et al. 2011) 

1/γHO Infectious period (Reciprocal of recovery 

rate) 

0 (1.66-5.34) days 

 

Uniform Infectious period from contact pigs in HO-vaccinated 

group (Romagosa et al. 2011); Note: no infectious HO 

pigs were observed in this experiment, so we tested a 

uniform distribution based on the HE-vaccinated group. 

b Probability of giving birth on a given day 

for birthing sows 

1/7 day-1 Fixed Birthing sows have a period of one week to give birth, 

but they may give birth on any day of that week. 

p Number of piglets born alive per litter 12.29 ± 0.71 piglets Normal- not 

varied in 

sensitivity 

analysis 

(PigCHAMP 2014) 

μ Natural death rate for sows and gilts- not 

due to culling 

0.0004 day-1 Fixed (Reynolds et al. 2014) 

μP Natural death rate for piglets 0.005 day-1 Fixed (Reynolds et al. 2014) 
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1/ωr Duration of immunity rate for recovered 

sows & gilts (Inverse of loss of immunity 

rate) 

56 (56-112) days Uniform Expert opinion M. Torremorell- immunity can be 

expected to last for 8-16 weeks for the same strain 

1/ωv Duration of immunity for vaccinated sows 

& gilts (Inverse of loss of immunity rate) 

56 days Fixed Immunity can be expected to last at least 8-10 weeks for 

common vaccines (Pfizer Animal Health 2011; Merck 

Animal Health 2013) 
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Table 3.4. Comparison of model output for expected values of the model. For each experiment (#0-15), one hundred simulations were conducted using the 

expected values in Table 3.3. Since only the stochastic elements of the model are varying rather than the parameters, this characterizes the amount of aleatory 

uncertainty inherent to the model. Peak prevalence, endemic prevalence, endemic prevalence in piglets, probability of IAV extinction, and time until stochastic 

extinction are reported. 

Experiment  Maximum Prevalence Endemic Prevalence (Total 

Inventory) 

Endemic Prevalence (Piglets) IAV Elimination 

Median Mean (±SD) CV Median Mean (±SD) CV Median Mean (±SD) CV Percent 

Extinction 

Time to 

Extinction 

0 0.4497     0.4490 ± 0.0078     1.7419     0.143 0.144 ±0.001 0.806 0.112 0.112 ± 0.001 1.321 0% n/a 

1 0.4464     0.4435 ± 0.0454  10.2292    0.143 0.142 ± 0.014 10.142 0.111 0.110 ± 0.011 10.191 1% 1 day 

2 0.4494     0.4502 ± 0.0083     1.8380     0.143 0.143 ± 0.001 0.931 0.111 0.111 ± 0.001 1.264 0% n/a 

3 0.4491     0.4447 ±0.0454      10.1997     0.142 0.141 ± 0.014 10.148 0.108 0.107 ± 0.011 10.218 1% 1 day 

4 0.4282    0.4282± 0.0082     1.9215      0.144 0.144 ± 0.001 0.862 0.112 0.112 ± 0.001 1.244 0% n/a 

5 0.4123     0.4051± 0.0583     14.4012       0.112 0.109 ± 0.016 14.421 0.112 0.109 ± 0.016 14.421 2% 1 day 

6 0.4119     0.4076 ± 0.0417     10.2192    0.138 0.137 ± 0.014 10.142 0.111 0.110 ± 0.011 10.167 1% 1 day 

7 0.4508 0.4495 ± 0.0086  1.8328 0.109 0.109 ± 0.002 1.557 0.043 0.043 ± 0.001 3.328 0% n/a 

8 0.4495     0.4489 ± 0.0082 1.8918     0.179 0.178 ± 0.018 10.151 0.131 0.130 ± 0.013 10.216 1% 1 day 

9 0.4505  0.4511 ± 0.0075 1.6558 0.166 0.166 ± 0.002 0.936 0.128 0.128 ± 0.002 1.374 0% n/a 

10 0.2834     0.2185 ± 0.1230     56.2934    0.143 0.109 ± 0.061 56.485 0.111 0.085 ± 0.048 56.495 24% 1.25 days 

11 0.2854     0.2370 ± 0.1113     46.9461    0.143 0.117 ± 0.055 47.098 0.111 0.091 ± 0.043 47.109 18% 1.17 days 

12 0.2847     0.2797 ± 0.0406     14.5189    0.143 0.140 ± 0.020 14.384 0.112 0.109 ± 0.016 14.413 2% 1 day 

13 0.3881     0.3887 ± 0.0069     1.7771     0.144 0.144 ± 0.001 0.859 0.111 0.112 ± 0.001 1.197 0% n/a 

14 0.3967     0.3926 ± 0.0401     10.2158    0.143 0.142 ± 0.014 10.137 0.112 0.110 ± 0.011 10.205 1% 1 day 

15 0.1982 0.1554 ± 0.0850  54.7137 0.090 0.070 ± 0.039 55.282 0.037 0.029 ± 0.016 55.173 23% 1.26 days 
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Table 3.5. Partial rank correlation coefficient (PRCC) between all 15 parameters (rows) and the endemic prevalence of IAV for each experiment (columns). 

PRCC for the other two prevalence criteria are included in Appendix F (Table F.2 & Table F.3). Values closest to 1 or -1 indicate the strongest correlations, 

while values close to zero indicate little to no correlation.  Bolded values have a magnitude ≥ 0.30. Shaded areas represent parameters that were not used/relevant 

for a particular experiment (e.g., the direct transmission rate for vaccinated animals was not employed in the null case [Experiment 0]). 

Parameter #0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 

β 0.14 0.14 0.14 0.13 0.14 0.13 0.15 0.19 0.18 0.15 0.16 0.15 0.17 0.12 0.14 0.14 

βind 0.04 0.04 0.03 0.02 0.01 0.01 0.00 0.08 0.07 0.05 0.06 0.18 0.04 0.04 0.03 0.08 

𝜷𝒅
𝒑

  -0.10 -0.11 -0.11 -0.11 -0.10 -0.04 -0.10 -0.18 -0.13 -0.11 -0.21 -0.15 -0.10 -0.09 -0.11 0.02 

𝜷𝒊𝒏𝒅
𝒑

  -0.08 -0.08 -0.07 -0.08 -0.06 -0.07 -0.07 -0.11 -0.12 -0.09 0.02 -0.07 -0.10 -0.06 -0.08 0.04 

𝜷𝒅
𝒑𝒎

  -0.14 -0.13 -0.14 -0.14 -0.14 -0.14 -0.14 0.31 -0.07 -0.13 -0.06 -0.06 -0.11 -0.15 -0.14 0.38 

𝜷𝒊𝒏𝒅
𝒑𝒎

  -0.05 -0.06 -0.05 -0.05 -0.04 -0.08 -0.07 -0.03 -0.01 -0.04 -0.10 -0.05 -0.01 -0.08 -0.05 -0.10 

σ 0.13 0.13 0.13 0.14 0.14 0.13 0.14 0.65 0.40 0.20 0.17 0.15 0.15 0.13 0.13 0.42 

γ -0.80 -0.80 -0.80 -0.80 -0.79 -0.79 -0.80 -0.71 -0.78 -0.80 -0.71 -0.76 -0.80 -0.80 -0.80 -0.58 

𝜷𝒗𝒂𝒙      -0.15 -0.16    0.02 -0.08 -0.18 -0.13 -0.16 0.10 

𝜷𝒗𝒂𝒙
𝒑

       -0.19 -0.20    -0.22 -0.16 -0.23 -0.19 -0.23 -0.08 

𝜷𝒊𝒏𝒅 𝒗𝒂𝒙       0.07 0.09    0.09 0.11 0.11 0.07 0.08 0.11 

𝜷𝒊𝒏𝒅 𝒗𝒂𝒙
𝒑

       0.12 -0.16    0.12 0.18 -0.12 0.10 -0.16 0.13 

ωr 0.13 0.13 0.13 0.13 0.10 0.12 0.09 0.48 0.23 0.17 0.25 0.17 0.11 0.14 0.13 0.36 

𝝈𝒗𝒂𝒙      -0.15 -0.07    -0.18 -0.17 -0.09 -0.14 -0.08 -0.17 

𝜸𝒗𝒂𝒙      0.15 0.08    0.18 0.18 0.08 0.14 0.06 0.16 
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Chapter 4. Disease outbreak thresholds emerge from 

interactions between movement behavior, landscape structure, 

and epidemiology 

Lauren A. White, James D. Forester & Meggan E. Craft 

 

Keywords: spatial heterogeneity, landscape fragmentation, disease model, individual-

based model, resource selection function, perceptual range 

4.1 Abstract 

Disease models have provided conflicting evidence as to whether spatial heterogeneity 

promotes or impedes pathogen persistence. Moreover, there has been limited theoretical 

investigation into how animal movement behavior interacts with the spatial organization 

of resources (e.g., clustered, random, uniform) across a landscape to affect infectious 

disease dynamics. Importantly, spatial heterogeneity of resources can sometimes lead to 

non-linear or counterintuitive outcomes depending on the host and pathogen system. 

There is a clear need to develop a general theoretical framework that could be used to 

create testable predictions for specific host-pathogen systems. Here, we develop an 

individual-based model integrated with movement ecology approaches to investigate how 

host movement behaviors interact with landscape heterogeneity (in the form of various 

levels of resource abundance and clustering) to affect pathogen dynamics. For most of the 

parameter space, our results support the counterintuitive idea that fragmentation promotes 

pathogen persistence, but this finding was largely dependent upon perceptual range of the 
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host, conspecific density, and recovery rate. For simulations with high conspecific 

density, slower recovery rates, and larger perceptual ranges, more complex disease 

dynamics emerged, and the most fragmented landscapes were not necessarily the most 

conducive to outbreaks or pathogen persistence. These results point to the importance of 

interactions between landscape structure, individual movement behavior, and pathogen 

transmission for predicting and understanding disease dynamics. 

  



 

145 

4.2 Significance Statement 

Understanding how emerging infectious and zoonotic diseases spread through space and 

time is critical for predicting outbreaks and designing interventions; disease models are 

important tools for realizing these goals. Currently, humans are altering the environment 

in unprecedented ways through urbanization, habitat fragmentation, and climate change. 

However, the consequences of increasingly heterogeneous landscapes on pathogen 

transmission and persistence remain unclear. By synthesizing mathematical modeling and 

movement ecology approaches, we examined how wildlife movement patterns interact 

with broad-scale, landscape structure to affect population-level disease dynamics. We 

found that habitat fragmentation could counterintuitively promote disease outbreaks, but 

that for higher wildlife densities and longer infectious periods, small differences in how 

hosts navigated their environments could dramatically alter observed disease dynamics. 
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4.3 Introduction 

 Spatial heterogeneity—differences occurring across a geographic landscape—

may arise from intrinsic differences between locations (e.g., resource abundance, quality, 

connectivity) or can emerge from stochastic or dynamic processes within populations 

(e.g., demographics, conspecific density) (Keeling & Rohani 2008a). The majority of 

disease models that incorporate spatial heterogeneity have focused primarily on a few 

well-studied wildlife systems (e.g., rabies and bovine tuberculosis [bTB]) or have been 

conducted in a purely theoretical context (White, Forester & Craft 2018b). Theoretical 

and simulation studies have provided evidence both for and against spatial heterogeneity 

promoting pathogen persistence (Hagenaars, Donnelly & Ferguson 2004; Rees et al. 

2013; Tracey et al. 2014), and the relative importance of local and long-distance 

processes is often unknown, except for in some well-studied diseases like rabies (White, 

Forester & Craft 2018b). Importantly, spatial heterogeneity may lead to non-linear or 

counterintuitive outcomes depending on the host and pathogen system (Rees et al. 2013; 

Tracey et al. 2014). 

 Foraging, migration, and dispersal play an important role in creating spatial 

heterogeneity (Lloyd-Smith 2010). Host movement and dispersal patterns can vary 

considerably (Brown & Crone 2016), and infection with parasites can further alter those 

patterns (Welicky & Sikkel 2015).  Both perceptual range (how far an individual can 

perceive habitat, in order to be able to make movement choices) and movement capacity 

(the ability and efficiency with which an individual can move) can affect the realized 

connectivity of habitat patches in heterogeneous landscapes (Lima & Zollner 1996). 
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While some models have explored the sensitivity of disease dynamics to dispersal and 

migration rates (White et al. 2018b), few studies compare the effects of different 

movement rules over a spatially-explicit landscape on pathogen transmission [but see: 

(Lane-deGraaf et al. 2013; Tracey et al. 2014)]. Moreover, disease models with 

mechanistic representations of animal movement remain rare (Fofana & Hurford 2017).  

In the realm of movement ecology, resource selection functions (RSFs) models have 

fostered a better understanding of how organisms navigate their surroundings (Dougherty 

et al. 2018; White et al. 2018b). While several studies have utilized RSFs to estimate 

inter-species contact risk, RSFs are not commonly used to infer transmission events 

(White et al. 2018b). Moreover, cues such as conspecific density can also be important 

drivers of individual movement decisions, but are rarely utilized when modeling habitat 

selection (Campomizzi et al. 2008). In addition, it is difficult to validate movement 

model predictions in the context of pathogen transmission because overlapping 

movement and pathogen transmission datasets are still uncommon (Dougherty et al. 

2018). Many existing spatial disease models that explicitly incorporate individual 

movement rely on random or correlated random walks (Tracey et al. 2014; Fofana & 

Hurford 2017). While adequate for some species at specific temporal scales, these 

approaches do not necessarily capture an individual’s response to its immediate 

surroundings or its memory that might favor revisitation or avoidance of previous sites 

(Smouse et al. 2010; Oliveira-Santos et al. 2016).  

 Overall, we lack a mechanistic understanding of how host movement and habitat 

preferences across heterogeneous landscapes affect pathogen dynamics. Here we asked: 



 

148 

how does individual movement behavior, governed by perceptual range and individual 

selection for resource availability and conspecific density, interact with spatial 

heterogeneity (via resource availability and clustering) to affect infectious disease 

dynamics? Specifically, we examined outbreak behavior through two questions: (i) which 

epidemiological, movement, or landscape factors led to a successful outbreak (defined as 

spreading beyond the initially infected individual)?; and, (ii) given at least one secondary 

case, which factors best predicted maximum prevalence and duration? We developed an 

individual-based, susceptible-infected-recovered (SIR) model for a theoretical, host-

pathogen system where a resource selection function governed host movement choices 

and pathogens were directly transmitted, assuming a density-dependent transmission 

function. We varied both landscape structure and movement parameters, and we 

quantified disease dynamics by the maximum prevalence and the duration of the 

outbreak. In addition, we compared our spatially-explicit model output to a comparable 

SIR model that assumes homogeneous mixing. We propose a general, theoretical 

framework to generate testable predictions for specific host-pathogen systems existing on 

complex landscapes. 

 

4.4 Results 

 Which factors determine whether an outbreak is successful? The outbreak 

data are heavily skewed—most initial pathogen introductions never transmitted 

successfully to a second individual. Based on random forest analysis, recovery rate (𝛾) 

had the largest effect on whether there were any secondary cases beyond the initially 
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infected individual (Figure 4.1A). While conspecific density (d) was the next most 

influential parameter, it had less than one-fourth of the mean decrease in accuracy of 

recovery rate, suggesting that pathogen infectious period (1/𝛾) played an outsized role in 

determining whether an outbreak resulted in secondary cases (Figure 4.1A, Appendix G 

Figure G.1A). 

 Given secondary cases, which parameters most influence maximum 

prevalence and duration? If an outbreak spread successfully beyond the initially 

infected individual, the interaction of recovery rate, perceptual range, and conspecific 

density had strong effects on both maximum prevalence and duration for the simulations 

(Figure 4.2). This finding was supported by the random forest analysis which identified 

recovery rate, perceptual range, and conspecific density as the top three parameters in 

predictive value for both maximum prevalence and duration (Figure 4.1B and C, 

Appendix G Figure G.1B and C). Overall, simulations with faster recovery rates (𝛾 =

 0.4), lower conspecific densities (d=0.25), and smaller perceptual ranges (r=1, 2) had 

fewer successful outbreaks, and outbreaks that were successful reached fewer individuals 

and were shorter in duration (Figure 4.2 and Appendix G Figure G.2).   

 Beyond these top three influential parameters, the order of variable importance as 

identified by random forest analysis differed for maximum prevalence and duration. For 

maximum prevalence, selection for resources (𝛽1) and proportion of available habitat (p) 

outweighed strength of selection for conspecifics (𝛽2 & 𝛽3) and degree of patchiness (H) 

(Figure 1B and Appendix G Figure G.1B). In contrast, for mean duration, the strength of 
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selection for conspecifics (𝛽2 & 𝛽3) outweighed strength of selection for resources (𝛽1) 

and landscape structure (𝑝 & 𝐻) (Figure 4.1C and Appendix G Figure G.1C). 

 

 Effects of landscape structure and individual movement behavior. When 

holding the influential parameters of recovery rate, perceptual range, and conspecific 

density constant, interactions between landscape structure and individual movement 

behavior emerged. For simulations with lower conspecific density (d = 0.25) and faster 

recovery rates (𝛾 = 0.4), epidemics were rarely successful (Appendix G Figure G.3 E & 

F). For simulations with lower conspecific density (d = 0.25) and slower recovery rates 

(𝛾 = 0.1 & 0.2), more fragmented landscapes (𝐻 ≤  0.5) with lower resource 

availability (𝑝 ≤  0.5) exhibited larger outbreak size and lasted longer for more RSF 

combinations (Appendix G Figure G.3 A-D); this same pattern was observed for systems 

with both higher conspecific density (d = 0.50) and faster recovery rates (𝛾 = 0.2, 0.4) 

(Appendix G Figure G.4 C-F). In general, positive selection for resources (𝛽1 = 3 , 6) led 

to higher outbreak peaks and longer lasting outbreaks compared to random selection for 

habitat (𝛽1 = 0) (Figure 4.3, Appendix G Figure G.5). However, for simulations with 

higher conspecific densities (d = 0.5), slower recovery rates (𝛾 =  0.1) and higher 

perceptual ranges (r = 3), we observed more complex dynamics (Figure 4.3, and 

Appendix G Figure G.4 A and B, Figure G.6) where RSFs interacted with landscape 

structure to determine epidemic dynamics (Figure 4.4).   

For the parameter space exhibiting a higher proportion of successful outbreaks across 

RSFs (r=3, 𝛾= 0.1, d=0.5), maximum prevalence was higher across more RSFs for more 
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clustered habitat (H=0.1) with lower resource availability (p=0.25) (Figure 4.3A).  

However, this did not necessarily correlate with duration. While outbreaks lasted longer 

on average for more RSFs in fragmented landscapes (H=0.1 and p=0.25), outbreaks 

lasted longer at intermediate clustering (H=0.5) for certain RSFs (Figure 4.3B, Figure 

4.4B). Overall, when hosts exhibited strong positive selection for both conspecifics 

(𝛽1 = 3, 6 & 𝛽2 = 1,2) and resources, disease outbreaks had the largest variation in 

duration for patchy landscapes (H=0.1) with an intermediate proportion of available 

habitat (p=0.5) (Figure 4.3B). However, regardless of landscape structure, stronger 

selection for the presence of other conspecifics (e.g., 𝛽2 =  2) reliably increased the 

observed duration of outbreaks (Figure 4.3B). This threshold behavior for selection for 

conspecifics—where selection for conspecifics supersedes landscape structure—was not 

observed for landscapes with lower conspecific densities and faster recovery rates 

(Appendix G Figure G.3 and Figure G.5). 

 How do these results compare to models that assume homogenous mixing? 

Compared to the spatially-explicit movement model described here, the equivalent 

homogenous mixing model with density-dependent transmission consistently 

overestimated the maximum prevalence reached for both conspecific densities and all 

three simulated recovery rates (Appendix G Figure G.7A). In particular, for the higher 

perceptual range (r=3), slowest recovery rate (𝛾 = 0.1), and higher conspecific density 

treatment (d= 0.5), the homogeneous mixing model did not capture the skewed nature of 

observed epidemics’ duration (Appendix G Figure G.7B).  



 

152 

4.5 Discussion 

 We were expecting landscape structure to have a substantial impact on simulated 

disease dynamics. While this was true to some extent, two of the top three covariates in 

variable importance as determined by random forest analysis (i.e., recovery rate and 

conspecific density) had nothing to do with landscape structure per se. However, 

perceptual range played a key role in determining maximum prevalence and duration of 

outbreaks (Figure 4.1B and C), and perceptual range functionally defines the landscape 

that an individual host perceives. Other modeling studies have verified the potential 

importance of perceptual range in determining landscape connectivity (Pe’er & Kramer-

Schadt 2008), and our results emphasize the concomitant implications for pathogen 

spread and persistence. This suggests that the incorporation of plastic perceptual ranges 

may also be important for future disease models (Olden et al. 2004). 

 When holding these top three influential parameters (recovery rate, conspecific 

density, and perceptual range) constant, fragmentation promoted pathogen outbreaks and 

persistence for most of the explored parameter space, particularly for simulations with 

combinations of (i) lower conspecific densities and slower recovery rates (Appendix G 

Figure G.3A-D) or (ii) higher conspecific densities and faster recovery rates (Appendix G 

Figure G.4C-F). However, this pattern was highly dependent upon hosts being able to 

perceive more of their habitat to be able to make movement decisions (e.g., a larger 

perceptual range) (Appendix G Figure G.3 and Figure G.4). Positive selection for 

resources was also necessary to elicit differences in pathogen spread in response to 

landscape structure, particularly at faster recover rates (Figure 3 and Appendix G Figure 
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G.5). In an applied setting, these results highlight the potential role of resource hotspots 

and resource provisioning in altering not only animal movement patterns, but subsequent 

pathogen transmission (Becker & Hall 2016). Resource hotspots can occur naturally, e.g., 

carcasses acting as landscape hotspots for transmission of rabies in jackals (Borchering et 

al. 2017), or artificially, through human supplementation, e.g., Mycoplasma gallisepticum 

transmission at bird feeders (Dhondt et al. 2007) or brucellosis transmission from 

supplemental feeding of elk in Yellowstone National Park (Cross et al. 2007a). While 

such selection could apply to foraging choices, it could also apply to selection for 

burrows or dens. For example, in desert tortoises (Gopherus agassizii), contacts primarily 

occurring in underground burrows are thought to drive transmission of Mycoplasma 

agassizii (Aiello et al. 2016). 

 At higher perceptual range (r=3), slower recovery rates (𝛾 = 0.1), and higher 

conspecific densities (d=0.5), we captured more nuanced and complex behavior that 

resulted from interactions between landscape structure, movement behavior, and recovery 

rate (Figure 4.3 and Figure 4.4).  Notably, a comparable homogenous-mixing, density-

dependent SIR model did not capture the skewed distribution of epidemic duration found 

for simulations in this parameter space (Appendix G Figure G.7B).  Outbreaks reaching 

the most individuals generally occurred in more fragmented landscapes (𝐻 = 0.1, 𝑝 =

0.1) (Figure 4.3A), but outbreaks in patchy/medium proportion habitat landscapes (𝐻 =

0.1, 𝑝 = 0.5) lasted longer for some RSFs and exhibited more variation in observed 

duration (Figure 4.3B, Figure 4.4B, Appendix G Figure G.6F). Also, threshold behavior 

was exhibited for selection for conspecifics in this parameter space; very strong selection 
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for conspecifics (𝛽2 = 2) promoted longer lasting outbreaks with higher maximum 

prevalence regardless of landscape structure (Figure 4.3). This was interesting because 

relatively small differences in RSF values resulted in substantially different disease 

dynamics (Appendix G Figure G.8). For such regimes, we suggest that it may be 

important to model individual responses to landscape structure in order to better capture 

the dynamics of a given disease. 

 The model presented here best describes direct transmission of a single infectious 

agent (or limited indirect transmission, as defined by aerosolized transmission or limited 

fomite persistence relative to movement timesteps) within a single host species 

experiencing density-dependent transmission. Thus, these results are applicable to host-

pathogen systems that have previously been favored in a spatial modelling context 

including rabies and bTB (Dougherty et al. 2018; White et al. 2018b). For example, a 

recent model of raccoon rabies found that inadequate levels of vaccination in continuous, 

poor-quality habitat could prove counterproductive, leading to outbreaks (Rees et al. 

2013). Our findings are also relevant to emerging pathogens ranging from Ebola or 

respiratory viruses among primate species to bat-to-bat transmission of Hendra virus 

(Plowright et al. 2011; Rushmore et al. 2013). For example, a recent spatially-structured 

model for Hendra virus in fruit bats found that habitat loss led to congregation in urban 

roosting sites and reduced migration, which could aid in disease persistence and in 

spillover to humans (Plowright et al. 2011). Since conspecific density played a key role 

in determining the relationship between outbreak success and fragmentation, this work 

might be particularly relevant to wildlife populations where host densities vary widely 
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through time [e.g., Moepia virus or Hantavirus in rodents where direct transmission via 

agonistic interactions are known to be important (Clay et al. 2009; Goyens et al. 2013)].  

 We recognize that many host-pathogen systems experience more complex 

transmission cycles than represented by this model; we would expect dynamics to differ 

with the incorporation of demographic processes (births and deaths), disease related 

mortality from a more lethal pathogen (e.g., rabies), a substantial incubation period, or 

chronic infection (e.g., bTB). While this work does not explicitly address the potential 

effects of pathogen co-infection (Knowles et al. 2013), multi-host pathogens [e.g., canine 

distemper virus (Craft et al. 2008)], indirect transmission or environmental persistence 

[e.g., chronic wasting disease (Almberg et al. 2011)], or vector foraging behavior [e.g., 

Lyme disease (Li et al. 2016)], the results of this research could easily be extended to 

more biologically complex systems.  

 Future studies could build in additional landscape complexity or focus on more 

realistic mechanisms governing movement choices. For instance, we modeled pathogen 

transmission across theoretical, binary landscapes. Realistically, movement choices are 

influenced by a variety of landscape covariates, not just presence or absence of resources 

(Forester, Im & Rathouz 2009). Similarly, we considered each cell in the landscape to be 

equally permeable—other than relative distance from the host, there was no cost to 

traversing bad relative to good quality habitat. In addition, we did not model depletion of 

resources explicitly, but rather through reaction of individuals to other conspecifics 

(𝛽2 & 𝛽3). This helped us limit the number of assumptions built into the model, but 

certainly simplifies the proximate mechanisms of foraging behavior (Rands et al. 2004). 
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Finally, for a given simulation, all individuals responded the same way to the presence of 

resources and conspecifics. We note that for many systems there will be individual 

variability in foraging and social behavior, and these differences may merit further 

consideration for some host-pathogen systems (Klein et al. 2017). For instance, a recent 

study of raccoons and contact risk for rabies determined that a subset of individuals were 

responsible for the majority of risky contacts despite all individuals following the same 

movement rules (Tardy et al. 2018). Finally, we ignored the fact that animal movement 

behavior can change with infection (Welicky & Sikkel 2015). 

 A recent systematic review investigating the relationship between pathogen 

transmission and anthropogenic land-use change found that a majority of studies linked 

anthropogenic change with higher transmission risk (Gottdenker et al. 2014). Overall, our 

work has important implications for how pathogens spread across fragmented and 

human-influenced landscapes and supports other modelling studies that have suggested 

that fragmentation can have non-linear effects on pathogen persistence in specific host-

pathogens systems (Bonnell et al. 2010; Rees et al. 2013; Tracey et al. 2014) and that 

spatial hotspots of transmission can emerge from limited high quality resource sites 

(Bonnell et al. 2010; Benavides et al. 2012; Nunn, Thrall & Kappeler 2014). This work 

provides a theoretical, mechanistic framework that can be expanded to specific host-

pathogen systems to provide testable hypotheses about the influence of landscape 

structure and movement behavior on disease dynamics, thus providing a critical bridge 

between the disciplines of movement and disease ecology (Fofana & Hurford 2017; 

Dougherty et al. 2018; White et al. 2018b). We hope this model inspires additional 



 

157 

consideration of how landscape structure may influence disease dynamics and foster 

investigation of these questions in specific host-pathogen systems and applied 

management settings. 

 

4.6 Methods 

 We developed a stochastic, individual-based, Susceptible Infectious Recovered 

(SIR) model for a non-lethal pathogen in a closed population (i.e., no births, deaths, 

immigration, or emigration). Individuals could move across a spatially explicit, discrete 

lattice landscape where resource presence or absence was variable in space (Appendix G 

Figure G.9). Using the mid-point displacement algorithm, we generated theoretical, 

binary, neutral landscapes that varied in the proportion of available habitat (p) and the 

degree of habitat clumping (Hurst exponent, H) (Turner, Gardner & O’Neill 2001). We 

assumed a torus shape (i.e., wrapped boundaries) for these landscapes to avoid edge 

effects (With 1997). 

 A resource selection function (RSF) and a two-dimensional movement kernel 

modulated individual movement choices across these theoretical landscapes. For a habitat 

of 𝒌 = 𝟏, … , 𝒎 discrete grid cells, the probability of an individual moving from current 

location, 𝒂, to new location, 𝒃, over a fixed temporal time step is: ℙ(𝒂 𝒕𝒐 𝒃) =

𝝓(𝒂, 𝒃)𝒘𝒃 ∑ [𝝓(𝒂, 𝒄𝒌)𝒘𝒌] 𝒎
𝒌=𝟏⁄  where 𝝓(∙) is a two-dimensional movement kernel in the 

absence of habitat selection, 𝒄𝒌 represents the center point of each grid cell, and 𝒘𝒃 and 

𝒘𝒌 are RSFs governing an individual’s movement preferences for cells 𝒃 and 𝒌. 
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Generally, an RSF for any given cell 𝒋, takes the form: 𝒘𝒋 = 𝒆𝒙𝒑(𝜷𝟏 ∙ 𝑹𝒋 +  𝜷𝟐 ∙ 𝑵𝒋 +

𝜷𝟑 ∙ 𝑵𝒋
𝟐). The parameters, 𝑹𝒋 and 𝑵𝒋, correspond to the resource quality and number of 

conspecifics respectively in cell 𝒋.  The coefficients 𝜷𝟏, 𝜷𝟐, and 𝜷𝟑 govern the strength of 

selection that resource quality and the number of conspecifics play in habitat choice 

(Forester et al. 2009). In particular, because conspecific density changes through time 

across a static resource landscape, the inclusion of the quadratic term 𝜷𝟑 allows us to test 

three biologically feasible scenarios in response to the presence of conspecifics: (i) 

individuals avoid conspecifics; (ii) individuals are attracted to conspecifics (signaling 

good quality habitat) until there are trade-offs with resource depletion; (iii) individuals 

make movement choices irrespective of conspecifics (for more on how we calibrated 

values for the RSF, please see Appendix G). We began by assuming a Moore 

neighborhood (8 neighboring cells), but subsequently tested the effects of larger, 

continuous perception and relocation kernels (Table 4.1). We assumed the simplest case 

where the movement kernel is inversely proportional to radial distance from the center 

point of the current grid cell and acts in the absence of resource availability: 𝝓(𝒓) =

𝟏

𝟐𝝅𝒓𝟐
, where 𝑟 = √(𝑥𝑎 − 𝑥𝑐𝑘

)
2

+ (𝑦𝑎 − 𝑦𝑐𝑘
)

2
 

The equation gives an inverse distance weight (i.e., 
1

𝑟
 ) that is multiplied by the 

circumference at that distance to account for a uniform circular distribution (i.e., 
1

2𝜋𝑟
 ). 

We conducted 100 replications per parameter set, and we used a factorial design to 

explore the relative effects of recovery rate, conspecific density, landscape structure, 

resource selection functions, and perceptual range on disease dynamics (Table 4.1 and 
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Appendix G Figure G.9). We calibrated the transmission probability (𝛽)  in order to be 

able to test reasonable values of the basic reproductive rate, 𝑅0 (for an SIR model, 

𝑅0~ 𝛽/𝛾). Under that framework, we tested vales of 𝑅0 ~ 0.5, 1, and 2 in our simulations 

(Table 4.1, Appendix G Text).  

Each simulation began with a single infectious individual and continued until there were 

no remaining infectious individuals on the landscape. At each time step, every individual 

in the simulation had the opportunity to evaluate their surrounding environment and 

move to a cell within their perceptual range. Once all individuals had been given the 

opportunity to relocate, the possibility of transmission was evaluated; we assumed that 

transmission could occur only between individuals of the same cell during the same time 

step. The probability of a susceptible individual becoming infected was represented by: 

ℙ(𝑇) = 1 − (1 − 𝛽)𝐼 where 𝛽 is the transmission rate and 𝐼 is the number of infectious 

individuals in the same cell. Following potential transmission events, infected individuals 

could also recover with a probability, γ, at each time step. This corresponded to an 

average infectious period of the pathogen of 1/ γ (Table 4.1).  

 We compared the spatially-explicit model results with a simpler stochastic SIR 

model that assumes density-dependent transmission and homogeneous mixing. This was 

simulated with a Reed Frost model where cumulative probability of transmission during 

at time step, 𝜏, is equal to ℙ𝜏 = 1 − (1 − 𝛽)𝐼𝜏 where 𝛽 equals the per contact 

transmission risk and 𝐼𝜏 equals the number of infectious individuals at time step, 𝜏.  The 

number of infected individuals at the next time step is then given by: 𝐼𝜏 =

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑆𝜏, ℙ𝜏). Unlike for the spatially-explicit simulations, this probability was 
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evaluated for the entire population, not just a single cell in the landscape. The results 

from this simple stochastic simulation were verified with the output from comparable 

deterministic ordinary differential equations (Appendix G Text). 

 Finally, we used random forest analysis—a machine learning method—to tease 

apart the relative contributions of parameters to outbreak outcomes. As a recursive 

partitioning method, random forest analysis fits a single predictive model by synthesizing 

the predictions from numerous classification or regression trees (Breiman 2001; Cutler et 

al. 2007). The random forest approach has several advantages for ecological data; most 

notably, this approach can handle complicated, non-linear, and potentially collinear 

relationships between predictor variables (Breiman 2001; Cutler et al. 2007). This 

approach also avoids some of the pitfalls of using a frequentist approach to analyze 

simulation results, since sample size in simulation studies is arbitrary and can result in 

significant p-values regardless of effect size (White et al. 2014). Other disease model 

studies have used this approach to better understand complex data with multiple 

predictors (Herrick et al. 2013; Kane et al. 2014).  

 Variable importance measures from random forest analysis describe the relative 

role that a covariate plays in deciding model outcomes (Cutler et al. 2007). We used the 

randomForest package in R (Liaw & Wiener 2002b) to calculate variable importance 

scores so we could understand what factors affected three separate response variables: (i) 

outbreak success (did the pathogen spread beyond the initially infected individual?), and 

given successful transmission (ii) maximum prevalence, and (iii) duration of the 

outbreak. For covariates, we included conspecific density, transmission rate, recovery 
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rate, landscape structure (p & H), individual movement preferences (as governed by the 

RSF: 𝛽1, 𝛽2, 𝛽3), and perceptual range (Table 4.1). We report variable importance 

scores in terms of mean decrease in accuracy, which is equivalent to percent increase in 

mean square error (MSE) for regression random forest analyses (Liaw & Wiener 2002b). 

Mean decrease in accuracy corresponds to the loss of predictive value for the model when 

a parameter is permutated randomly, rather than using its given value (Cutler et al. 2007). 

We report raw variable importance measures that have not been scaled by the standard 

error, as these values may be less biased for correlated predictors (Strobl et al. 2009). We 

also corroborated variable importance results by conducting a secondary analysis using 

the cforest function from the party package in R (Strobl et al. 2009). This approach has 

been shown to have a more robust estimate of variable importance (Strobl et al. 2009); 

however, this comes with a computational cost. After reducing our analysis to 1000 trees 

(so that computational time was tractable in cforest), we found that our main conclusions 

were still supported with the only changes being the order of lower-ranked variables with 

very similar importance values (Appendix G Figure G.1). All simulations and analyses 

were conducted in R (version 3.3.2). Code and simulation results are available at: 

https://github.com/whit1951/landscape-sim. 
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4.7 Figure Legends 

 

Figure 4.1. Random forest regression analysis results describing variable importance for (A) outbreak 

success (did the pathogen spread beyond the initially infected individual?), (B) maximum prevalence given 

outbreak success, and (C) outbreak duration given outbreak success. Parameter descriptions are provided in 

Table 4.1. Bar charts display an un-scaled mean decrease in accuracy for parameters; higher values for 

mean decrease in accuracy correspond to parameters with higher predictive ability. Error bars reflect 

standard deviation of mean decrease in accuracy. The randomForest package in R (with 10,000 trees) was 

used for this analysis. While included in the random forest analysis, transmission rate (β) received a 

variable importance score of zero for all three metrics (as would be expected since it did not vary in the 

factorial design) and is not depicted in Figure 4.1.  
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Figure 4.2. Effects of recovery rate (x-axis) on (A) maximum prevalence and (B) duration for successful 

outbreaks (number of secondary cases ≥ 1) across different conspecific densities (columns) and perceptual 

ranges (rows). These plots are combined for all resource selection functions (RSFs) and for all landscape 

structures. To observe these outcomes for individual resource selection functions, see Appendix G Figure 

G.1. 
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Figure 4.3. Box plots of (A) maximum prevalence and (B) duration for a subset of the simulations where γ 

= 0.1, d = 0.5, r = 3. Columns correspond to Hurst exponent (H; lower values correspond to higher 
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clustering) and rows correspond to proportion available habitat (p). Dashed lines represent separate regimes 

of random, medium or strong selection for resources (β1).  

 

Figure 4.4. Box plots of (A) maximum prevalence and (B) duration for three RSFs when recovery rate (γ)= 

0.1, conspecific density (d)=0.5, and perceptual range (r)=3. The RSFs (rows: [β1 β2 β3]) correspond to 

three biological scenarios: (i) positive selection for resources (β1=3, β2=0, β3=0), (ii) positive selection for 

resources with conspecific avoidance (β1=3, β2=0, β3=-1) and (iii) positive selection for resources with 

conspecific attraction (β1=3, β2=2, β3=-0.5) (Appendix G Figure G.7). Landscape structure abbreviations 

take the form of proportion available habitat(p)/patchiness (Hurst exponent, H): “L” = low, “M” =medium, 
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“H” = high proportion available habitat. “LP” =low patchiness, “MP” =medium patchiness, and “HP” 

=high patchiness.  

4.8 Tables 

Table 4.1. Factorial design of 2,916 parameter combinations encompassing epidemiology, movement 

behavior, and landscape structure (Appendix G, Figure G.8). We conducted 100 simulations per parameter 

set. For more information on how the RSF parameters (𝛽1, 𝛽2,  𝛽3) were calibrated and how these values 

correspond to movement choices, see the SI Appendix.  

Parameter Levels Values 

Conspecific density (d) 

(individuals/unit area of 

simulated landscape) 

Low, medium 0.25, 0.5 

Transmission rate (𝛽) Constant 0.2 

Recovery rate (γ); 

conversely, infectious 

period (1/ γ) 

Slow, medium, fast;  

long, medium, short 

infectious periods 

0.1, 0.2, 0.4 time-1;  

10, 5, 2.5 time steps 

Proportion of available 

habitat (𝑝) 

Low, medium, high 0.25, 0.50, 0.75 

Clustering of habitat (𝐻) Low, medium, high 0.1, 0.5, 0.9 

Strength of selection for 

resources (𝛽1) 

None (random), low, high 0, 3, 6 

Strength of selection for 

conspecifics (𝛽2, 𝛽3) 

None (random), avoidance, 

attraction  

(0, 0), (0, -1), (1, -1), (1, -

0.5), (2, -1), (2, -0.5) 

Perceptual range (r) Low, medium, high 1, 2, 3 
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Conclusion 

The four chapters of this dissertation sought to understand the consequences of 

heterogeneity in individual infectiousness on disease dynamics at different scales ranging 

from the individual host to the landscape. Collectively, these results demonstrate that 

heterogeneity can have important ramifications for population-level disease outcomes 

regardless of the scale at which it occurs.  

At the level of the individual (Chapter 2), simply allowing for individual 

variability in susceptibility or infectiousness altered epidemic outcomes; however, 

negative covariation between physiology and contact rate had the strongest effect for all 

mechanisms we tested, and was most profound for infection-induced behavioral changes. 

This finding suggests that sickness-induced behavioral changes may be an overlooked 

mechanism in disease modeling of wildlife populations.  

At the population level (Chapter 3), explicitly modelling the different swine 

production classes and the physiological variability across sub-populations provided 

important clues to how influenza A virus (IAV) can become endemic in a swine breeding 

herd. Notably, piglets played an outsized role in maintaining infection after introduction 

of IAV, and early weaning of piglets was one of the most effective control strategies, 

although eradication remained difficult once IAV had been established on the farm. 

 At a landscape level (Chapter 4), more fragmented landscapes generally 

promoted longer lasting outbreaks with higher epidemic peaks. However, we observed 

threshold behavior where more complex disease dynamics emerged for landscapes with 
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higher conspecific densities, pathogens with longer infectious periods, and host that could 

perceive and move through greater proportions of the landscape. Under these conditions, 

small differences in how hosts navigated their environment (through strength of selection 

for resources and conspecifics) dramatically altered the landscape structure that was most 

conducive to pathogen persistence and outbreak size.  

The mathematical models in this dissertation (except for Chapter 3) represent 

direct transmission of a single pathogen species within a single host species. Thus, while 

this work does not explicitly address the potential effects of pathogen co-infection 

(Cattadori, Boag & Hudson 2008; Cattadori et al. 2014; Knowles et al. 2013), multi-host 

pathogens (Craft et al. 2008; Lloyd-Smith et al. 2009; Almberg, Cross & Smith 2010; 

VanderWaal et al. 2014a), indirect transmission (Leu, Kappeler & Bull 2010; Almberg et 

al. 2011), or vector foraging behavior (Webb et al. 2006; Leu et al. 2010), the results of 

this research could easily be extended to more biologically complex systems. For 

instance, changes in host behavior or susceptibility as a result of co-infection (Cattadori 

et al. 2008, 2014; Knowles et al. 2013) could be modeled as differences in host βp and βc. 

Likewise, the relative intra-species vs. inter-species contact rates of a multi-host pathogen 

(Böhm et al. 2008, 2009) could be represented via a multi-host network.  

Finally, while this dissertation addresses many possible causes of variation in 

individual infectiousness that operate at different scales, it does not integrate across these 

scales; however, ultimately such integration will be necessary to truly understand how 

pathogens invade and persist in different populations (Lloyd-Smith et al. 2009; Tompkins 

et al. 2011). This research will aid in the design of future empirical studies of pathogen 
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transmission in wildlife and livestock by helping investigators answer three questions: (i) 

Which scale captures the transmission mechanism of the system? (ii) Is it necessary to 

account for heterogeneity? And (iii) which sampling strategy adequately addresses both 

factors? Understanding how (and when) variability in individual infectiousness should be 

modelled is a crucial next step for the field of disease ecology; moreover, such insight is 

a critical refinement for modeling strategies that address the growing global threats of 

zoonoses and emerging infectious diseases. 
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Appendix A. Glossary of network terms for Chapter 1 

• Centrality – various metrics that indicate how important or influential an 

individual is to a network. Depending on the particular measurement, it may 

emphasize a high number of contacts (degree), being connected to others of high 

degree, or functioning as a control point or bridge between different parts of the 

network (betweenness).  

• Betweenness – a node with high betweenness connects other nodes via the 

shortest possible path length serving as a key ‘intermediary’. 

o Flow-betweenness – evaluates not just how often an individual is on the 

shortest geodesic path length between two other individuals, but also 

incorporates other indirect routes of ‘flow’ between two individuals that 

could circumvent the target individual (Corner et al., 2003). 

o Closeness – the inverse of the sum of path lengths to all other nodes in the 

network; a node with high closeness has comparatively short path lengths 

to all other nodes. 

• Component – a group of nodes in a network that are connected and thus offer a 

continuous transmission pathway; if all nodes are connected in a network, then 

the entire network is a single component. 
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• Connectance – the ratio of realized edges in a network relative to the total 

possible number of edges that could exist between nodes (May, 1974; Perkins et 

al., 2009; Poisot & Gravel,  2014). 

• Cut-point potential – difference between expected betweenness based on degree 

and actual betweenness; individuals with high cut-point potential connect 

disparate parts of the network (VanderWaal et al., 2014b). 

• Degree – the number of contacts of a given node, or similarly, the number of 

edges of a given node. 

• Degree distribution – The distribution of contact numbers in the population; 

non-random associations will be reflected by a skewed degree distribution. 

• Edge – a connection between two individuals or nodes in a contact network; if the 

association matrix, Aij=1, than individuals i and j have an edge between them. 

• In-degree or in-strength – the number of edges coming into a node in a directed 

network. In-degree corresponds to an unweighted network and in-strength to a 

weighted network. 

• Modularity (Q) – a measure of the amount of community structure; the ratio of 

intra-group connections to inter-group connections. There are many methods of 

calculating modularity, but it typically ranges in value from 0 to 1 with higher 

values corresponding to greater community structure (Salathé & Jones, 2010). 
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• Node – a potential contact in the network; a node can take on many different 

hierarchical levels in disease modelling: an individual, a group, a population in a 

meta-population, etc.; most of the studies in this review treat individuals as nodes. 

• Robustness – the resilience of a network to the random removal of individuals 

(nodes) or connections between them (edges). 

• Small world network – a network with mostly local, but a few long-range 

contacts that often make the network more susceptible to epidemics. 

• Superspreaders – individuals with an unexpectedly high number of contacts that 

contribute disproportionately to the spread of pathogens (Lloyd-Smith et al., 

2005b). 

• Transitivity (global clustering coefficient) – the proportion of triangles in a 

network to linear triplets in a network; asks how often contacts of a given node 

are also contacts of each other (VanderWaal et al., 2013). 

• Weighted network – a network that incorporates interaction strengths between 

individuals. This can be ideal for exploring the effects of interaction frequency 

and duration in transmission (MacIntosh et al., 2012). 

  



 

210 

Appendix B. Explanation of model terms and conceptual 

experimental design for Chapter 2 

Transmission is the complex process of the successful establishment of a pathogen in 

a new host, which depends on the pathogen, host, and environment (Antonovics 2017). 

For a directly transmitted pathogen, this requires (1) contact between an infected host and 

a susceptible host, and then (2) depends upon the infectiousness and susceptibility of the 

infected and susceptible host, respectively, as well as the transmissibility of the pathogen 

itself (Fig B1). The transmission rate (β) is a term used in mathematical models that 

describes how quickly (per unit time) susceptible individuals in a population become 

infected (Begon et al. 2002). It encompasses both behavioral (βc) and physiological (βp) 

aspects of transmission (Hawley et al. 2011), each of which may have non-linear 

components (McCallum et al. 2017). 

Contact rate (βc) is the frequency with which hosts interact with each other. In the 

specific context of pathogen transmission, a contact represents a possible transmission 

event between an infected and a susceptible host pair. Hosts within a population may be 

considered superspreaders if they have higher than average contact rates (Lloyd-Smith et 

al. 2005b). The contact rate depends upon both local processes like group size, mate 

choice, or sickness behaviors as well as broad-scale processes like resource availability, 

host density, and migration (Lloyd-Smith et al. 2005a). Contact rate may also be altered 

by pathogen-induced changes in behavior or sickness behaviors (Ezenwa et al. 2016); we 

consider this scenario in our third experiment: infection status vs. contact rate. In all 



 

211 

models in this manuscript, contact rate is governed by the underlying dynamic network 

model (Fig B.2; Section 2.1). 

The physiological component of transmission (βp), which we incorporate into the 

model as probability of transmission given an eligible contact between hosts, can be 

affected by a variety of factors including a host’s innate physiological characteristics such 

as immunocompetence, shedding rate, latency period, and co-infection (Lehmer et al. 

2010; Telfer et al. 2010; Hawley & Altizer 2011; Lass et al. 2013). We incorporate these 

possible factors into the model via host susceptibility, host infectiousness, and pathogen 

transmission efficiency (Fig B.2). Susceptibility (s) describes a host’s innate immune 

and physiological response to pathogen exposure that helps determines whether a 

transmission event is successful. Host susceptibility may be affected by body condition 

(Beldomenico et al. 2009) and coinfection (Cattadori et al. 2008). Some studies suggest 

that a hosts’ immunocompetence and sociality are linked, e.g., more extraverted 

individuals may be at higher risk of exposure, but may also have more active immune 

systems (Natoli et al. 2005; Vedhara et al. 2015). For the purposes of this paper, 

susceptibility only modifies the final probability of transmission, not the contact rate 

(Section 2.4). Thus, we consider susceptibility to be a host-driven trait. Infectiousness 

(κ) describes how effectively an infected host transmits pathogens to susceptible hosts. 

Depending on the system, this might be behavioral via sneezing, coughing, or biting, but 

it could also correspond to the pathogen load or shedding rate. For the purposes of the 

model, we consider infectiousness to be an intrinsic, host-determined trait (Section 2.5). 

Apart from the final experimental scenario of infection status vs. contact rate (Section 
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2.6), we do not consider any feedbacks of infectiousness on host behavior. Finally, we 

use transmission efficiency (τ) to describe transmissibility of the pathogen itself. This 

reflects the idea that, all else being equal and host physiology non-withstanding, some 

pathogens are more infectious than others.  

 

Figure B.1. A successful transmission event first requires contact between a susceptible and infected host 

(blue rectangle). Given contact, a variety of factors affecting host physiology and pathogen transmission 
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efficiency may affect the likelihood of transmission (green rectangle). Infection can result in infection-

induced behavioral changes that induce a positive or negative feedback on contact rate (black arrow).   

 

Figure B.2. A conceptual representation of the experimental design for this study. (A) Possible forms of 

covariation between the behavioral and physiological components of transmission, which are represented as 

contact rate (βc) and susceptibility, infectiousness, and infection status (βp). Positive covariation is shown in 

blue; negative covariation is shown in red. (B) The behavioral component of transmission (βc) is 

incorporated in the dynamic network model via contact rate. This panel shows how contact rate is reflected 

as mean degree (average number of contacts per time step) in the dynamic network. From top to bottom, 

the focal node (black) has either higher than average, average, or a lower than average number of contacts 

(blue)—corresponding to the y-axis of panel A. 
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Appendix C. Methods supplement for Chapter 2 

Experiment 1: Susceptibility vs. contact rate 

Begin by loading the libraries and setting the random seed 

require(EpiModel) 

require(parallel) 

set.seed(4321) 

Parameter specifications 

type.description<-"SvsCR" #Susceptibility vs. contact rate 

degree.diff<-2 #degree difference: 2="low"; 4="high" 

infection.p<-0.025 #infection probability: high=0.5, med=0.25, low=0.025  

file_name<-"SvsCR2low" 

Initialize the networks 

We create an undirected network with 525 individuals or nodes. We also set up other 

specifications for the simulation: how long each simulation should run, the number of 

repetitions per parameter set, and whether we'd like to run the simulations in parallel. 

num<-525; # number of individuals in simulation (ideally divisible by 3) 

nw <- network.initialize(n = num, directed = FALSE) #initialize network 

duration<-100 #duration of simulations 

nsim<-10 #number of disease simulations to run per set of conditions 

ncores<- detectCores() #number of cores (either on PC or to optimize on supercomputer) 
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Set up the vertex attributes for the network 

Here we establish a gregarious attribute for our nodes which corresponds to 𝛽𝑐. The 

population is divided evenly into "low", "medium", and "high" contact rate groups of 

175 individuals each. 

greg<-c("low","med","high") #add "gregariousness" attribute to nodes in network 

#greg<-sample(greg, num, replace=TRUE) 

greg<-rep(greg, times=num/length(greg)) 

nw <- set.vertex.attribute(nw, "gregarious", greg) 

#check distribution of gregarious phenotype in population 

sum(get.vertex.attribute(nw, "gregarious")=="low") 

## [1] 175 

sum(get.vertex.attribute(nw, "gregarious")=="med") 

## [1] 175 

sum(get.vertex.attribute(nw, "gregarious")=="high") 

## [1] 175 

Model fit 

We set up our formation and dissolution equations for the STERGM in this section. The 

target stats are done in terms of edge numbers, so if you want to think in terms of mean 

degree you must convert your target stats accordingly, as we do below. Our dissolution 

formula is very simple and only has a mean edge duration rate. You can read more 

about ERGM terms here. 

http://www.jstatsoft.org/v24/i04/paper
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formation <- ~edges + nodefactor("gregarious") 

mean.degree<-4 

target.stats <- c((num/2)*mean.degree, (num/3)*(mean.degree-degree.diff), (num/3)*mean.

degree) #mean number of edges (number of nodes/2*degree), number of edges for gregariou

s=low individuals (number of nodes/3*target degree), number of edges for gregarious= me

d 

coef.diss <- dissolution_coefs(dissolution = ~offset(edges), duration = 25) 

Model diagnostics 

Before we simulate disease on the networks, we use the netest function to fit a 

temporal ERGM using our specified formation and dissolution parameters. The netdx 

function runs diagnostics on the fitted networks to see how well the simulated networks 

match the target specifications. We can view diagnostic results in table format and 

graphically. 

est1 <- netest(nw, formation, target.stats, coef.diss, edapprox = TRUE) 

dx <- netdx(est1, nsims = 5, nsteps = 500, 

            nwstats.formula = ~edges + meandeg+ nodefactor("gregarious", base = 0)) 

##  

## Network Diagnostics 

## ----------------------- 

## - Simulating 5 networks 

##   |*****| 

## - Calculating formation statistics 

## - Calculating duration statistics 

##   |*****| 

## - Calculating dissolution statistics 
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##   |*****| 

##  

dx 

## EpiModel Network Diagnostics 

## ======================= 

## Diagnostic Method: Dynamic 

## Simulations: 5 

## Time Steps per Sim: 500 

##  

## Formation Diagnostics 

## -----------------------  

##                            Target Sim Mean Pct Diff Sim SD 

## edges                        1050 1096.762    0.045 34.802 

## meandeg                        NA    4.178       NA  0.133 

## nodefactor.gregarious.high     NA 1090.554       NA 39.269 

## nodefactor.gregarious.low     350  366.605    0.047 22.649 

## nodefactor.gregarious.med     700  736.365    0.052 31.200 

##  

## Dissolution Diagnostics 

## -----------------------  

##                Target Sim Mean Pct Diff Sim SD 

## Edge Duration   25.00   23.736   -0.051 23.129 

## Pct Edges Diss   0.04    0.040    0.001  0.006 

plot(dx, plots.joined=FALSE) #Remember for node factor plots, we are looking at number 

of edges in the network 
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par(mfrow = c(1, 2)) 

plot(dx, type = "duration") 

plot(dx, type = "dissolution") 
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Induce covariation 

In order to induce covariation with the "gregarious" node factor, we write some custom 

modules that feed into EpiModel's netsim function. These functions modify the dat 

object (which contains all the network information) at time step at. 

#Positive correlation between susceptibility and contact rate 

suscept_positive <- function(dat, at) { 

  ## Attributes 

  if (at == 2) { 

     n <- sum(dat$attr$active == 1) 

 

    for (j in 1:n){ 

      if(dat$attr$gregarious[j]=="med"){ 

http://statnet.github.io/tut/NewNet.html
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        dat$attr$susceptibility[j]<-1 

      } 

      if(dat$attr$gregarious[j]=="low"){ 

        dat$attr$susceptibility[j]<-0 

      } 

      if(dat$attr$gregarious[j]=="high"){ 

        dat$attr$susceptibility[j]<-2 

      } 

    } 

    dat$nw <- set.vertex.attribute(dat$nw, "susceptibility", dat$attr$susceptibility) 

    index.case<-which(dat$attr$status=="i")   

  } 

 

  ## Summary statistics 

  if (at == 2) { 

    dat$epi$susceptibility <- mean(dat$attr$susceptibility, na.rm = TRUE) 

    dat$epi$index.case<-index.case 

    dat$epi$suscept.index.case<-dat$attr$susceptibility[index.case] 

  } 

  return(dat) 

} 

 

#Negative covariation between susceptibility and contact rate 

suscept_negative <- function(dat, at) { 

  ## Attributes 

  if (at == 2) { 

     n <- sum(dat$attr$active == 1) 
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    for (j in 1:n){ 

      if(dat$attr$gregarious[j]=="med"){ 

        dat$attr$susceptibility[j]<-1 

      } 

      if(dat$attr$gregarious[j]=="low"){ 

        dat$attr$susceptibility[j]<-2 

      } 

      if(dat$attr$gregarious[j]=="high"){ 

        dat$attr$susceptibility[j]<-0 

      } 

    } 

     dat$nw <- set.vertex.attribute(dat$nw, "susceptibility", dat$attr$susceptibility) 

     index.case<-which(dat$attr$status=="i")     

  } 

 

  ## Summary statistics 

  if (at == 2) { 

    dat$epi$susceptibility <- mean(dat$attr$susceptibility, na.rm = TRUE) 

    dat$epi$index.case<-index.case 

    dat$epi$suscept.index.case<-dat$attr$susceptibility[index.case] 

  } 

  return(dat) 

} 

 

#Null covariation between susceptibility and contact rate 

suscept_null <- function(dat, at) { 

  ## Attributes 

  if (at == 2) { 
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     n <- sum(dat$attr$active == 1) 

 

     suscept<-c(0, 1, 2) 

     dat$attr$susceptibility<-sample(suscept, n, replace=TRUE) #Susceptibility randomly 

assigned 

     

     dat$nw <- set.vertex.attribute(dat$nw, "susceptibility", dat$attr$susceptibility) 

     index.case<-which(dat$attr$status=="i")   

  } 

 

  ## Summary statistics 

  if (at == 2) { 

    dat$epi$susceptibility <- mean(dat$attr$susceptibility, na.rm = TRUE) 

    dat$epi$index.case<-index.case 

    dat$epi$suscept.index.case<-dat$attr$susceptibility[index.case] 

  } 

 

  return(dat) 

} 

Refine transmission function 

We also update the standard transmission function from the EpiModel package so that it 

incorporates individual 𝛽𝑝 via susceptibility. In particular, we update the final 

transmisison probability, 𝑃(𝑡). 

infection_susceptible<-function (dat, at)  

{ 

  active <- dat$attr$active 
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  status <- dat$attr$status 

  susceptibility<-dat$attr$susceptibility 

  modes <- dat$param$modes 

  mode <- idmode(dat$nw) #id numbers for a bipartite network 

  inf.prob <- dat$param$inf.prob 

  inf.prob.m2 <- dat$param$inf.prob.m2 

  act.rate <- dat$param$act.rate 

  nw <- dat$nw 

  tea.status <- dat$control$tea.status 

  idsSus <- which(active == 1 & status == "s") 

  idsInf <- which(active == 1 & status == "i" & susceptibility>0) ##changed here: if in

itially initially exposed individual has a susceptibility of "0"-- will not propagate i

nfection 

  nActive <- sum(active == 1) 

  nElig <- length(idsInf) 

  nInf <- nInfM2 <- totInf <- 0 

  if (nElig > 0 && nElig < nActive) { 

    del <- discord_edgelist(dat, idsInf, idsSus, at) #returns data frame with set of ed

ges  

    #in which the status of two partners is one is susceptible and one is infected 

    if (!(is.null(del))) { #if one or more such edges exist... 

      inds <- which(get.vertex.pid(nw) %in% del$sus) 

      # browser() 

      # del$suscept<- susceptibility[inds] 

      del$suscept<-susceptibility[del$sus] 

#       any(get.vertex.pid(nw) == del$sus) 

#       del$suscept <- dat$attr$susceptibility[get.vertex.pid(nw, del$sus)] 

      del$infDur <- at - dat$attr$infTime[del$inf] #how long has each node been infecte
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d? 

      del$infDur[del$infDur == 0] <- 1 

      linf.prob <- length(inf.prob) 

      if (is.null(inf.prob.m2)) { #is the network bipartite? 

        del$transProb <- ifelse(del$infDur <= linf.prob, #if the length of the infectio

us probability vector is less than or equal to infection 

                                inf.prob[del$infDur], inf.prob[linf.prob]) #then...if n

ot, else.... 

      } 

      else { 

        del$transProb <- ifelse(del$sus <= nw %n% "bipartite",  

                                ifelse(del$infDur <= linf.prob, inf.prob[del$infDur],  

                                       inf.prob[linf.prob]), ifelse(del$infDur <=  

                                                                      linf.prob, inf.pr

ob.m2[del$infDur], inf.prob.m2[linf.prob])) 

      } 

      #inter.eff- efficacy of an intervention 

      #inter.start- time at which intervention starts 

      #if there is an intervention and the current is after the intervention start time

, then... 

      if (!is.null(dat$param$inter.eff) && at >= dat$param$inter.start) { 

        del$transProb <- del$transProb * (1 - dat$param$inter.eff) 

      } 

      lact.rate <- length(act.rate) #act.rate-average number of transmissilbe acts per 

partnership per unit time 

      del$actRate <- ifelse(del$infDur <= lact.rate, act.rate[del$infDur],  

                            act.rate[lact.rate]) 

      #del$transProb<- apply(del[,c('transProb', 'susceptibility')], 1, function(x) { (
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x[1]) *(x[2])} ) 

      del$finalProb <- 1 - (1 - del$transProb*del$suscept)^del$actRate 

      del$finalProb[which(del$finalProb>1)]<-1 

#       browser() 

      transmit <- rbinom(nrow(del), 1, del$finalProb) 

      del <- del[which(transmit == 1), ] 

      idsNewInf <- unique(del$sus) 

      nInf <- sum(mode[idsNewInf] == 1) 

      nInfM2 <- sum(mode[idsNewInf] == 2) 

      totInf <- nInf + nInfM2 

      if (totInf > 0) { 

        if (tea.status == TRUE) { 

          nw <- activate.vertex.attribute(nw, prefix = "testatus",  

                                          value = "i", onset = at, terminus = Inf,  

                                          v = idsNewInf) 

        } 

        dat$attr$status[idsNewInf] <- "i" 

        dat$attr$infTime[idsNewInf] <- at 

        form <- get_nwparam(dat)$formation 

        fterms <- get_formula_terms(form) 

        if ("status" %in% fterms) { 

          nw <- set.vertex.attribute(nw, "status", dat$attr$status) 

        } 

      } 

      if (any(names(nw$gal) %in% "vertex.pid")) { 

        del$sus <- get.vertex.pid(nw, del$sus) 

        del$inf <- get.vertex.pid(nw, del$inf) 

      } 
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    } 

  } 

  if (totInf > 0) { 

    del <- del[!duplicated(del$sus), ] 

    if (at == 2) { 

      dat$stats$transmat <- del 

    } 

    else { 

      dat$stats$transmat <- rbind(dat$stats$transmat, del) 

    } 

  } 

  if (at == 2) { 

    dat$epi$si.flow <- c(0, nInf) 

    if (modes == 2) { 

      dat$epi$si.flow.m2 <- c(0, nInfM2) 

    } 

  } 

  else { 

    dat$epi$si.flow[at] <- nInf 

    if (modes == 2) { 

      dat$epi$si.flow.m2[at] <- nInfM2 

    } 

  } 

  dat$nw <- nw 

  return(dat) 

} 
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Set up for running epidemic simulations 

These components of the simulations are universal, so we set them up first here. 

param <- param.net(inf.prob = infection.p, act.rate = 1) #Set infection probability and 

action rate 

init<-init.net(i.num=1) #Start with one infected individual 

Positive covariation 

The control.net function is where the custom modules can be implemented. We have 

added a susceptibility.FUN which induces that type of covariation that we want. We 

also indicate that we want to use the customized transmission function from above 

rather than the default and that we would like to look at at summary statistics for each 

'gregarious' class. If desired, the output can be saved as a .Rdata file. 

control1 <- control.net(type = "SI", nsteps = duration, nsims= nsim, ncores=ncores, epi

.by = "gregarious", infection.FUN=infection_susceptible, susceptibility.FUN=suscept_pos

itive) 

sim1 <- netsim(est1, param, init, control1) 

#save(sim1, file=paste(file_name,"positive.RData", sep="_")) 

Negative covariation 

control2 <- control.net(type = "SI", nsteps = duration, nsims = nsim, ncores=ncores, ep

i.by = "gregarious", infection.FUN=infection_susceptible, susceptibility.FUN=suscept_ne

gative) 

sim2 <- netsim(est1, param, init, control2) 

#save(sim2, file=paste(file_name,"negative.RData", sep="_")) 
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Null 

Same contact structure, variability in susceptibility, and no covariation. 

control3 <- control.net(type = "SI", nsteps = duration, nsims = nsim, ncores=ncores, ep

i.by = "gregarious", infection.FUN=infection_susceptible, susceptibility.FUN=suscept_nu

ll) 

sim3 <- netsim(est1, param, init, control3) 

#save(sim3, file=paste(file_name,"null.RData", sep="_")) 

Control 

Same contact structure, but no difference in susceptibility [i.e., susceptibility, s, always 

equals 1] and no covariation. 

control4 <- control.net(type = "SI", nsteps = duration, nsims = nsim, ncores=ncores, ep

i.by = "gregarious") 

sim4 <- netsim(est1, param, init, control4) 

#save(sim4, file=paste(file_name,"control.RData", sep="_")) 

Pull summary data from simulations 

Here are a few functions to pull summary data from the simulated netsim ojects. 

colMax<-function(data) sapply(data, max, na.rm=TRUE) #What is the maximum value reached

? 

timeMax<-function(data) sapply(data, which.max) #When is max value reached? 

CI95<-function(data) apply(data,1, quantile, probs=c(2.5, 97.5)/100) #What is 95% quant

ile CI? 

suscept2<-function(simu, nsim){ 

  suscept_2nd<-matrix(NA, nrow = nsim, ncol = 1) 
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  for (i in 1:nsim){ 

    #store<-simu$network[[i]] #access stored dynamicNetwork object 

    trans<-get_transmat(simu, sim=i) #access transmission matrix 

    head(trans) 

    if(length(trans)==0){ 

      suscept_2nd[i,1]<-NA 

    } 

    #susceptibility of first cases (after index case) 

    else{ 

      trans[1,1] #time of first transmission event 

      rowz<-which(trans[,1]==trans[1,1]) 

      suscept_2nd[i,1]<-mean(trans[rowz,4]) #mean of susceptibility of secondary cases 

    } 

  } 

  suscept_2nd<-as.matrix(suscept_2nd) 

  return(suscept_2nd) 

} 

We use those functions to pull summary statistics from each of our four scenarios. 

positive<-sim1$epi$i.num 

index.case.positive<-sim1$epi$suscept.index.case 

suscept_2nd.positive<-suscept2(sim1, nsim) 

write.csv(positive,file=paste(file_name,"positive.csv", sep="_")) 

mean_positive<-rowMeans(positive) 

maximum_positive<-colMax(positive) 

peak_time_positive<-timeMax(positive) 

quants_positive<-t(as.matrix(CI95(positive))) 
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negative<-sim2$epi$i.num 

index.case.negative<-sim2$epi$suscept.index.case 

suscept_2nd.negative<-suscept2(sim2, nsim) 

write.csv(negative,file=paste(file_name,"negative.csv", sep="_")) 

mean_negative<-rowMeans(negative) 

maximum_negative<-colMax(negative) 

peak_time_negative<-timeMax(negative) 

quants_negative<-t(as.matrix(CI95(negative))) 

 

null<-sim3$epi$i.num 

index.case.null<-sim3$epi$suscept.index.case 

suscept_2nd.null<-suscept2(sim3, nsim) 

write.csv(null,file=paste(file_name,"null.csv", sep="_")) 

mean_null<-rowMeans(null) 

maximum_null<-colMax(null) 

peak_time_null<-timeMax(null) 

quants_null<-t(as.matrix(CI95(null))) 

 

control<-sim4$epi$i.num 

index.case.control<-rep(1,nsim) 

suscept_2nd.control<-rep(1,nsim) 

write.csv(control,file=paste(file_name,"control.csv", sep="_")) 

mean_control<-rowMeans(control) 

maximum_control<-colMax(control) 

peak_time_control<-timeMax(control) 

quants_control<-t(as.matrix(CI95(control))) 
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Create summary data frames 

Since the simulation objects themselves can be quite large, especially for longer runs or 

more repeats, these summary dataframes can be saved as .csv files for easy access later. 

timecourse.df<-data.frame(mean_positive=mean_positive, postive_CI=quants_positive, mean

_negative=mean_negative, negative_CI=quants_negative, mean_null=mean_null, null_CI=quan

ts_null, mean_control=mean_control, control_CI=quants_control) 

summary.df<-data.frame(maximum_positive, peak_time_positive, maximum_negative, peak_tim

e_negative, maximum_null, peak_time_null, maximum_control, peak_time_control) 

write.csv(timecourse.df, file=paste(file_name,"timecourse.csv", sep="_")) 

write.csv(summary.df, file=paste(file_name,"summary.csv", sep="_")) 

We also set up data frames in a long data format for random forest analysis and figure 

generation. 

covariation<-c("positive", "negative", "null", "control") 

covariation<-rep(covariation, each=nsim) 

type<-rep(type.description, times=4*nsim) 

infection.prob<-rep(infection.p, times=4*nsim) 

maximum<-c(maximum_positive, maximum_negative, maximum_null, maximum_control) 

peak_time<-c(peak_time_positive, peak_time_negative, peak_time_null, peak_time_control) 

index.case<-as.numeric(c(index.case.positive, index.case.negative, index.case.null, ind

ex.case.control)) 

suscept_2nd<-as.numeric(c(suscept_2nd.positive, suscept_2nd.negative, suscept_2nd.null, 

suscept_2nd.control)) 

long.df<-data.frame(type, infection.prob, covariation, maximum, peak_time, index.case, 

suscept_2nd) 

write.csv(long.df, file=paste(file_name,"long.csv", sep="_")) 
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Plot data 

Last, but not least, we can do a quick visual check and plot our simulation data. 

par(mfrow = c(1,1)) 

plot(sim1, ylim=c(0,num+100), y = "i.num", sim.lines = FALSE, qnts = 1) 

plot(sim2, y = "i.num", sim.lines = FALSE, qnts = 1, 

     mean.col = "firebrick", qnts.col = "firebrick", add = TRUE) 

plot(sim3, y = "i.num", sim.lines = FALSE, qnts = 1, 

     mean.col = "black", qnts.col = "black", add = TRUE) 

plot(sim4, y = "i.num", sim.lines = FALSE, qnts = 1, 

     mean.col = "purple", qnts.col = "purple", add = TRUE) 

legend("topright", c("Positive Correlation", "Negative Correlation", "Null", "Control")

, lty = 1, lwd = 3, 

       col = c("steelblue", "firebrick", "black", "purple"), cex = 0.9, bty = "n") 
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par(mfrow = c(1,1), mar = c(3.5,4,1,1),mgp = c(2.25,1,0), cex.axis=1.5,cex.lab=1.5) 

par(lwd=2) 

plot(sim1, ylim=c(0,num+100), y = "i.num", sim.lines = FALSE, qnts=FALSE) #, ylim=c(0,0

.6)) 

plot(sim2, y = "i.num", sim.lines = FALSE, qnts=FALSE, mean.col = "firebrick", add = TR

UE) 

plot(sim3, y = "i.num", sim.lines = FALSE, qnts=FALSE, mean.col = "black", add = TRUE) 

plot(sim4, y = "i.num", sim.lines = FALSE, qnts=FALSE,mean.col = "purple", add = TRUE) 

legend("topright", c("Positive Correlation", "Negative Correlation", "Null", "Control")

, lty = 1, lwd = 3, col = c("steelblue", "firebrick", "black", "purple"), cex = 1.25, b

ty = "n") 
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Session Information 

## Record version information used in this analysis 

print(sessionInfo(), locale = TRUE) 

## R version 3.3.2 (2016-10-31) 

## Platform: x86_64-w64-mingw32/x64 (64-bit) 

## Running under: Windows 10 x64 (build 14393) 

##  

## locale: 

## [1] LC_COLLATE=English_United States.1252  

## [2] LC_CTYPE=English_United States.1252    

## [3] LC_MONETARY=English_United States.1252 

## [4] LC_NUMERIC=C                           
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## [5] LC_TIME=English_United States.1252     

##  

## attached base packages: 

## [1] parallel  stats     graphics  grDevices utils     datasets  methods   

## [8] base      

##  

## other attached packages: 

## [1] EpiModel_1.2.7       tergm_3.4.0          ergm_3.6.0           

## [4] statnet.common_3.3.0 networkDynamic_0.9.0 network_1.13.0       

## [7] deSolve_1.13         

##  

## loaded via a namespace (and not attached): 

##  [1] Rcpp_0.12.6        knitr_1.14         magrittr_1.5       

##  [4] MASS_7.3-45        doParallel_1.0.10  ape_3.5            

##  [7] lattice_0.20-34    foreach_1.4.3      stringr_1.1.0      

## [10] tools_3.3.2        grid_3.3.2         lpSolve_5.6.13     

## [13] nlme_3.1-128       coda_0.18-1        iterators_1.0.8    

## [16] htmltools_0.3.5    lazyeval_0.2.0     yaml_2.1.13        

## [19] digest_0.6.10      Matrix_1.2-7.1     RColorBrewer_1.1-2 

## [22] formatR_1.4        codetools_0.2-15   trust_0.1-7        

## [25] robustbase_0.92-6  evaluate_0.9       rmarkdown_1.0      

## [28] stringi_1.1.1      compiler_3.3.2     DEoptimR_1.0-6 
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Appendix D. Derivation of logistic growth equation for 

Chapter 2 

 We sought to measure the rate at which the pathogen was spreading through the 

theoretical population, or functionally, a realized transmission rate or “realized β”. We 

start with an underlying SI model, but with the addition of some fraction of the 

susceptible pool, r, that cannot be infected due to social isolation or lack of susceptibility 

(as a result of experimental design with variable βc and/or βp): 

𝑑𝑆

𝑑𝑡
=  −𝛽(1 − 𝑟)𝑆𝐼 

𝑑𝐼

𝑑𝑡
= 𝛽(1 − 𝑟)𝑆𝐼 

We further assume that the carrying capacity, K (in this context, the maximum number of 

individuals that can be infected), can vary and reflects the sum of the number of eligible 

susceptible infected individuals and infected individuals:  

𝐾 = (1 − 𝑟)𝑆 + 𝐼 →  𝑆 =
𝐾 − 𝐼

1 − 𝑟
 

 

We than solve for 
𝑑𝐼

𝑑𝑡
 in terms of I: 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼(1 − 𝑟)

𝐾 − 𝐼

1 − 𝑟
=  𝛽𝐼(𝐾 − 𝐼) 

 

We can put this in the recognizable, logistic growth form by multiplying the right side by 

K/K: 
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𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝐾

(𝐾 − 𝐼)

𝐾
= 𝛽𝐾𝐼 (1 −

𝐼

𝐾
) 

 

After integrating with partial fractions and using 𝐼(𝑡 = 0) = 𝐼0 as the initial condition, 

we get: 

𝐼(𝑡) =
𝐾

1 +
(𝐾 − 𝐼𝑜)

𝐼0
𝑒−𝛽𝐾𝑡
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Appendix E. Additional time course simulations for Chapter 2 

 

Figure E.1. Time course of simulated epidemics for susceptibility vs. contact rate for an infection 

probability of τ = 0.25. Columns correspond to the difference in mean degree tested, and rows correspond 

to the mechanism of covariation: control (no variability in susceptibility, no covariation), null (variability in 

susceptibility, no covariation), positive covariation, and negative covariation. Individual trials are shown as 

semi-transparent lines and the colors—black, purple, blue, and red—correspond to control, null, positive, 

and negative covariation cases respectively. Percentages in the lower righthand corner of each panel 

describe the percentage of epidemics fading out. The dashed lines in each panel correspond to the expected 

maximum prevalence based on contact structure. For higher variations in contact rate, one-third of the 

population has a βc=0 limiting maximum prevalence to 0.66.  
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Figure E.2. Time course of simulated epidemics for susceptibility vs. contact rate for an infection 

probability of τ= 0.5. Columns correspond to the difference in mean degree tested, and rows correspond to 

the mechanism of covariation: control (no variability in susceptibility, no covariation), null (variability in 

susceptibility, no covariation), positive covariation, and negative covariation. Individual trials are shown as 

semi-transparent lines and the colors—black, purple, blue, and red—correspond to control, null, positive, 

and negative covariation cases respectively. Percentages in the lower righthand corner of each panel 

describe the percentage of epidemics fading out. The dashed lines in each panel correspond to the expected 

maximum prevalence based on contact structure. For higher variations in contact rate, one-third of the 

population has a βc=0 limiting maximum prevalence to 0.66.  
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Figure E.3. Time course of simulated epidemics for infectiousness vs. contact rate for the medium 

infection probability tested of τ = 0.25. Columns correspond to the difference in mean degree tested, and 

rows correspond to the mechanism of covariation: control (no variability in infectiousness, no covariation), 

null (variability in infectiousness, no covariation), positive covariation, and negative covariation. Individual 

trials are shown as semi-transparent lines and the colors—black, purple, blue, and red—correspond to 

control, null, positive, and negative covariation cases respectively. Percentages in the lower righthand 

corner of each panel describe the percentage of epidemics fading out. The dashed lines in each panel 

correspond to the expected maximum prevalence based on contact structure. For higher variations in 

contact rate, one-third of the population has a βc=0 limiting maximum prevalence to 0.66.  
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Figure E.4. Time course of simulated epidemics for infectiousness vs. contact rate for the high infection 

probability tested of τ= 0.5. Columns correspond to the difference in mean degree tested, and rows 

correspond to the mechanism of covariation: control (no variability in infectiousness, no covariation), null 

(variability in infectiousness, no covariation), positive covariation, and negative covariation. Individual 

trials are shown as semi-transparent lines and the colors—black, purple, blue, and red—correspond to 

control, null, positive, and negative covariation cases respectively. Percentages in the lower righthand 

corner of each panel describe the percentage of epidemics fading out. The dashed lines in each panel 

correspond to the expected maximum prevalence based on contact structure. For higher variations in 

contact rate, one-third of the population has a βc=0 limiting maximum prevalence to 0.66. 
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Figure E.5. Time course of simulated epidemics for infection status vs. contact rate for the medium 

infection probability tested of τ=0.25. Columns correspond to how infectiousness was modelled (either in 

the exponent or the product of the final transmission probability), and rows correspond to the mechanism of 

covariation: control (all infection statuses have equal mean degree), null (variability in susceptibility, no 

covariation), positive covariation, and negative covariation. Individual trials are shown as semi-transparent 

lines and the colors—black, purple, blue, and red—correspond to control, null, positive, and negative 

covariation cases respectively. Percentages in the lower righthand corner of each panel describe the 

percentage of epidemics fading out. The dashed lines in each panel correspond to the expected maximum 

prevalence based on contact structure.  
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Figure E.6. Time course of simulated epidemics for infection status vs. contact rate for the high infection 

probability tested of τ = 0.5. Columns correspond to how infectiousness was modelled (either in the 

exponent or the product of the final transmission probability), and rows correspond to the mechanism of 

covariation: control (all infection statuses have equal mean degree), null (variability in susceptibility, no 

covariation), positive covariation, and negative covariation. Individual trials are shown as semi-transparent 

lines and the colors—black, purple, blue, and red—correspond to control, null, positive, and negative 

covariation cases respectively. Percentages in the lower right hand corner of each panel describe the 

percentage of epidemics fading out. The dashed lines in each panel correspond to the expected maximum 

prevalence based on contact structure. 
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Appendix F. Supplementary tables for Chapter 3 

Table F.1. The events (j) and the transition rates (λj) that govern their implementation in the model utilizing Gillespie’s Direct algorithm. Classes of animals are 

listed in Table 3.2, and their spatial relationships are displayed in Figure 3.1. Epidemiological and demographic parameters are described in Table 3.2. 

Description j Rate (𝝀𝒋) Event/Transition 

Direct transmission: Sows and 

gilts 

1 𝛽𝑑 ∙ S1 ∙ (𝐼1 + 𝑉𝐼1)                     S1S1-1; E1E1+1 

2 𝛽𝑑 ∙ S2(𝐼2 + 𝐼3 + 𝐼4 + 𝑉𝐼2 + 𝑉𝐼3 + 𝑉𝐼4)  S2S2-1; E2E2+1 

3 𝛽𝑑 ∙ S3(𝐼2 + 𝐼3 + 𝐼4 + 𝑉𝐼2 + 𝑉𝐼3 + 𝑉𝐼4)  S3S3-1; E3E3+1 

4 𝛽𝑑 ∙ S4(𝐼2 + 𝐼3 + 𝐼4 + 𝑉𝐼2 + 𝑉𝐼3 + 𝑉𝐼4) S4S4-1; E4E4+1 

5 𝛽𝑑 ∙ S5(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)   S5S5-1; E5E5+1 

6 𝛽𝑑 ∙ S6(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S6S6-1; E6E6+1 

Direct transmission: Piglets (no 

maternal immunity) 

 

7 𝛽𝑑
𝑝 ∙ S7(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S7S7-1; E7E7+1 

8 𝛽𝑑
𝑝 ∙ S8(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S8S8-1; E8E8+1 

9 𝛽𝑑
𝑝 ∙ S9(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S9S9-1; E9E9+1 

10 𝛽𝑑
𝑝 ∙ S10(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S10S10-1; E10E10+1 

Direct transmission: Piglets 

(with maternal immunity) 

 

11 𝛽𝑑
𝑝𝑚 ∙ S11(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S11S11-1; E7E7+1 

12 𝛽𝑑
𝑝𝑚

∙ S12(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S12S12-1; E8E8+1 

13 𝛽𝑑
𝑝𝑚 ∙ S13(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S13S13-1; E9E9+1 

14 𝛽𝑑
𝑝𝑚 ∙ S14(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S14S14-1; E10E10+1 

Direct transmission: Piglets 

(vaccine-induced immunity) 

 

15 𝛽𝑣𝑎𝑥
𝑝 ∙ S15(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S15S15-1; E7E7+1 

16 𝛽𝑣𝑎𝑥
𝑝 ∙ S16(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S16S16-1; E8E8+17 

17 𝛽𝑣𝑎𝑥
𝑝 ∙ S17(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S17S17-1; E9E9+1 

18 𝛽𝑣𝑎𝑥
𝑝 ∙ S18(∑ 𝐼𝑖

10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S18S18-1; E10E10+1 



 

245 

Indirect transmission 

 

 

 

19 𝛽𝑖𝑛𝑑 ∙ S1(∑ 𝐼𝑖
10
𝑖=2 + ∑ 𝑉𝐼𝑖

6
𝑖=2 )  S1S1-1; E1E1+1 

20 𝛽𝑖𝑛𝑑 ∙ S2(𝐼1 + ∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼1 + 𝑉𝐼5 + 𝑉𝐼6)  S2S2-1; E2E2+1 

21 𝛽𝑖𝑛𝑑 ∙ S3(𝐼1 + ∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼1 + 𝑉𝐼5 + 𝑉𝐼6)  S3S3-1; E3E3+1 

22 𝛽𝑖𝑛𝑑 ∙ S4(𝐼1 + ∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼1 + 𝑉𝐼5 + 𝑉𝐼6)  S4S4-1; E4E4+1 

23 𝛽𝑖𝑛𝑑 ∙ S5(∑ 𝐼𝑖
4
𝑖=1 + ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S5S5-1; E5E5+1 

24 𝛽𝑖𝑛𝑑 ∙ S6(∑ 𝐼𝑖
4
𝑖=1 + ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S6S6-1; E6E6+1 

25 𝛽𝑖𝑛𝑑
𝑝 ∙ S7(∑ 𝐼𝑖

4
𝑖=1 + ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S7S7-1; E7E7+1 

26 𝛽𝑖𝑛𝑑
𝑝 ∙ S8(∑ 𝐼𝑖

4
𝑖=1 + ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S8S8-1; E8E8+1 

27 𝛽𝑖𝑛𝑑
𝑝 ∙ S9(∑ 𝐼𝑖

4
𝑖=1 + ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S9S9-1; E9E9+1 

28 𝛽𝑖𝑛𝑑
𝑝 ∙ S10(∑ 𝐼𝑖

4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S10S10-1; E10E10+1 

29 𝛽𝑖𝑛𝑑
𝑝𝑚 ∙ S11(∑ 𝐼𝑖

4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S11S11-1; E7E7+1 

30 𝛽𝑖𝑛𝑑
𝑝𝑚

∙ S12(∑ 𝐼𝑖
4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S12S12-1; E8E8+1 

31 𝛽𝑖𝑛𝑑
𝑝𝑚 ∙ S13(∑ 𝐼𝑖

4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S13S13-1; E9E9+1 

32 𝛽𝑖𝑛𝑑
𝑝𝑚 ∙ S14(∑ 𝐼𝑖

4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S14S14-1; E10E10+1 

33 𝛽𝑖𝑛𝑑 𝑣𝑎𝑥
𝑝 ∙ S15(∑ 𝐼𝑖

4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S15S15-1; E7E7+1 

34 𝛽𝑖𝑛𝑑 𝑣𝑎𝑥
𝑝

∙ S16(∑ 𝐼𝑖
4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S16S16-1; E8E8+17 

35 𝛽𝑖𝑛𝑑 𝑣𝑎𝑥
𝑝 ∙ S17(∑ 𝐼𝑖

4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S17S17-1; E9E9+1 

36 𝛽𝑖𝑛𝑑 𝑣𝑎𝑥
𝑝 ∙ S18(∑ 𝐼𝑖

4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )          S18S18-1; E10E10+1 

Indirect transmission with gilt 

isolation (Utilized for 

Experiments #4 & 15) 

 

 

19b 0 S1S1-1; E1E1+1 

20b 𝛽𝑖𝑛𝑑 ∙ S2(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S2S2-1; E2E2+1 

21b 𝛽𝑖𝑛𝑑 ∙ S3(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S3S3-1; E3E3+1 

22b 𝛽𝑖𝑛𝑑 ∙ S4(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  S4S4-1; E4E4+1 

23b 𝛽𝑖𝑛𝑑 ∙ S5(∑ 𝐼𝑖
4
𝑖=2 + ∑ 𝑉𝐼𝑖

4
𝑖=2 )          S5S5-1; E5E5+1 

24b 𝛽𝑖𝑛𝑑 ∙ S6(∑ 𝐼𝑖
4
𝑖=2 + ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S6S6-1; E6E6+1 

25b 𝛽𝑖𝑛𝑑
𝑝 ∙ S7(∑ 𝐼𝑖

4
𝑖=2 + ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S7S7-1; E7E7+1 

26b 𝛽𝑖𝑛𝑑
𝑝 ∙ S8(∑ 𝐼𝑖

4
𝑖=2 + ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S8S8-1; E8E8+1 
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27b 𝛽𝑖𝑛𝑑
𝑝 ∙ S9(∑ 𝐼𝑖

4
𝑖=2 + ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S9S9-1; E9E9+1 

28b 𝛽𝑖𝑛𝑑
𝑝 ∙ S10(∑ 𝐼𝑖

4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S10S10-1; E10E10+1 

29b 𝛽𝑖𝑛𝑑
𝑝𝑚 ∙ S11(∑ 𝐼𝑖

4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S11S11-1; E7E7+1 

30b 𝛽𝑖𝑛𝑑
𝑝𝑚 ∙ S12(∑ 𝐼𝑖

4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S12S12-1; E8E8+1 

31b 𝛽𝑖𝑛𝑑
𝑝𝑚 ∙ S13(∑ 𝐼𝑖

4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S13S13-1; E9E9+1 

32b 𝛽𝑖𝑛𝑑
𝑝𝑚 ∙ S14(∑ 𝐼𝑖

4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S14S14-1; E10E10+1 

33b 𝛽𝑖𝑛𝑑 𝑣𝑎𝑥
𝑝 ∙ S15(∑ 𝐼𝑖

4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S15S15-1; E7E7+1 

34b 𝛽𝑖𝑛𝑑 𝑣𝑎𝑥
𝑝 ∙ S16(∑ 𝐼𝑖

4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S16S16-1; E8E8+17 

35b 𝛽𝑖𝑛𝑑 𝑣𝑎𝑥
𝑝 ∙ S17(∑ 𝐼𝑖

4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S17S17-1; E9E9+1 

36b 𝛽𝑖𝑛𝑑 𝑣𝑎𝑥
𝑝 ∙ S18(∑ 𝐼𝑖

4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  S18S18-1; E10E10+1 

Exposed to Infected 37 𝜎 ∙ 𝐸1 E1E1-1; I1I1+1 

38 𝜎 ∙ 𝐸2 E2E2-1; I2I2+1 

39 𝜎 ∙ 𝐸3 E3E3-1; I3I3+1 

40 𝜎 ∙ 𝐸4 E4E4-1; I4I4+1 

41 𝜎 ∙ 𝐸5 E5E5-1; I5I5+1 

42 𝜎 ∙ 𝐸6 E6E6-1; I6I6+1 

43 𝜎 ∙ 𝐸7 E7E7-1; I7I7+1 

44 𝜎 ∙ 𝐸8 E8E8-1; I8I8+1 

45 𝜎 ∙ 𝐸9 E9E9-1; I9I9+1 

46 𝜎 ∙ 𝐸10 E10E10-1; I10I10+1 

Infected to Recovered 

 

 

47 𝛾 ∙ 𝐼1 I1I1-1; R1R1+1 

48 𝛾 ∙ 𝐼2 I2I2-1; R2R2+1 

49 𝛾 ∙ 𝐼3 I3I3-1; R3R3+1 

50 𝛾 ∙ 𝐼4 I4I4-1; R4R4+1 

51 𝛾 ∙ 𝐼5 I5I5-1; R5R5+1 

52 𝛾 ∙ 𝐼6 I6I6-1; R6R6+1 

53 𝛾 ∙ 𝐼7 I7I7-1; R7R7+1 
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54 𝛾 ∙ 𝐼8 I8I8-1; R8R8+1 

55 𝛾 ∙ 𝐼9 I9I9-1; R9R9+1 

56 𝛾 ∙ 𝐼10 I10I10-1;  R10R10+1 

Non-disease related mortality: 

Susceptible sows and gilts 

 

 

57 𝜇 ∙ 𝑆1 S1S1-1 

58 𝜇 ∙ 𝑆2 S2S2-1 

59 𝜇 ∙ 𝑆3 S3S3-1 

60 𝜇 ∙ 𝑆4 S4S4-1 

61 𝜇 ∙ 𝑆5 S5S5-1 

62 𝜇 ∙ 𝑆6 S6S6-1 

Non-disease related mortality: 

Susceptible piglets 

63 𝜇𝑝 ∙ 𝑆7 S7S7-1  

64 𝜇𝑝 ∙ 𝑆8 S8S8-1 

65 𝜇𝑝 ∙ 𝑆9 S9S9-1 

66 𝜇𝑝 ∙ 𝑆10 S10S10-1 

67 𝜇𝑝 ∙ 𝑆11 S11S11-1 

68 𝜇𝑝 ∙ 𝑆12 S12S12-1 

69 𝜇𝑝 ∙ 𝑆13 S13S13-1 

70 𝜇𝑝 ∙ 𝑆14 S14S14-1 

71 𝜇𝑝 ∙ 𝑆15 S15S15-1 

72 𝜇𝑝 ∙ 𝑆16 S16S16-1 

73 𝜇𝑝 ∙ 𝑆17 S17S17-1 

74 𝜇𝑝 ∙ 𝑆18 S18S18-1 

Non-disease related mortality: 

Exposed animals 

 

 

75 𝜇 ∙ 𝐸1 E1E1-1 

76 𝜇 ∙ 𝐸2 E2E2-1 

77 𝜇 ∙ 𝐸3 E3E3-1 

78 𝜇 ∙ 𝐸4 E4E4-1 

79 𝜇 ∙ 𝐸5 E5E5-1 

80 𝜇 ∙ 𝐸6 E6E6-1 

81 𝜇𝑝 ∙ 𝐸7 E7E7-1 
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82 𝜇𝑝 ∙ 𝐸8 E8E8-1 

83 𝜇𝑝 ∙ 𝐸9 E9E9-1 

84 𝜇𝑝 ∙ 𝐸10 E10E10-1 

Non-disease related mortality: 

Infected animals 

 

85 𝜇 ∙ 𝐼1 I1I1-1 

86 𝜇 ∙ 𝐼2 I2I2-1 

87 𝜇 ∙ 𝐼3 I3I3-1 

88 𝜇 ∙ 𝐼4 I4I4-1 

89 𝜇 ∙ 𝐼5 I5I5-1 

90 𝜇 ∙ 𝐼6 I6I6-1 

91 𝜇𝑝 ∙ 𝐼7 I7I7-1 

92 𝜇𝑝 ∙ 𝐼8 I8I8-1 

93 𝜇𝑝 ∙ 𝐼9 I9I9-1 

94 𝜇𝑝 ∙ 𝐼10 I10I10-1 

Non-disease related mortality: 

Recovered animals 

 

95 𝜇 ∙ 𝑅1 R1R1-1 

96 𝜇 ∙ 𝑅2 R2R2-1 

97 𝜇 ∙ 𝑅3 R3R3-1 

98 𝜇 ∙ 𝑅4 R4R4-1 

99 𝜇 ∙ 𝑅5 R5R5-1 

100 𝜇 ∙ 𝑅6 R6R6-1 

101 𝜇𝑝 ∙ 𝑅7 R7R7-1 

102 𝜇𝑝 ∙ 𝑅8 R8R8-1 

103 𝜇𝑝 ∙ 𝑅9 R9R9-1 

104 𝜇𝑝 ∙ 𝑅10 R10R10-1 

Non-disease related mortality: 

Vaccinated animals 

 

105 𝜇 ∙ 𝑉1 V1V1-1 

106 𝜇 ∙ 𝑉2 V2V2-1 

107 𝜇 ∙ 𝑉3 V3V3-1 

108 𝜇 ∙ 𝑉4 V4V4-1 

109 𝜇 ∙ 𝑉5 V5V5-1 
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 110 𝜇 ∙ 𝑉6 V6V6-1 

Vaccinated animals revert to 

being susceptible 

 

111 𝜔𝑣 ∙ 𝑉1 V1V1-1; S1 S1+1 

112 𝜔𝑣 ∙ 𝑉2 V2V2-1; S2 S2+1 

113 𝜔𝑣 ∙ 𝑉3 V3V3-1; S3 S3+1 

114 𝜔𝑣 ∙ 𝑉4 V4V4-1; S4 S4+1 

115 𝜔𝑣 ∙ 𝑉5 V5V5-1; S5 S5+1 

116 𝜔𝑣 ∙ 𝑉6 V6V6-1; S6 S6+1 

Vaccinated animals become 

infected directly 

 

 

117 𝛽𝑣𝑎𝑥 ∙ 𝑉1 ∙ (𝐼1 + 𝑉𝐼1)                     V1V1-1; VE1 VE1+1 

118 𝛽𝑣𝑎𝑥 ∙ 𝑉2(∑ 𝐼𝑖
4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  V2V2-1; VE2 VE2+1 

119 𝛽𝑣𝑎𝑥 ∙ V3(∑ 𝐼𝑖
4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  V3V3-1; VE3 VE3+1 

120 𝛽𝑣𝑎𝑥 ∙ V4(∑ 𝐼𝑖
4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  V4V4-1; VE 4 VE4+1 

121 𝛽𝑣𝑎𝑥 ∙ 𝑉5(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  V5V5-1; VE 5 VE5+1 

122 𝛽𝑣𝑎𝑥 ∙ V6(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  V6V6-1; VE 6 VE6+1 

Vaccinated animals become 

exposed indirectly 

123 𝛽𝑣𝑎𝑥 ∙ 𝑉1(∑ 𝐼𝑖
10
𝑖=2 + ∑ 𝑉𝐼𝑖

6
𝑖=2 )                     V1V1-1; VE 1 VE1+1 

124 𝛽𝑣𝑎𝑥 ∙ 𝑉2(𝐼1 +  ∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼1 + 𝑉𝐼5 + 𝑉𝐼6)  V2V2-1; VE 2 VE2+1 

125 𝛽𝑣𝑎𝑥 ∙ V3(𝐼1 +  ∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼1 + 𝑉𝐼5 + 𝑉𝐼6)  V3V3-1; VE 3 VE3+1 

126 𝛽𝑣𝑎𝑥 ∙ V4(𝐼1 +  ∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼1 + 𝑉𝐼5 + 𝑉𝐼6)  V4V4-1; VE 4 VE4+1 

127 𝛽𝑣𝑎𝑥 ∙ 𝑉5(∑ 𝐼𝑖
4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )  V5V5-1; VE 5 VE5+1 

128 𝛽𝑣𝑎𝑥 ∙ V6(∑ 𝐼𝑖
4
𝑖=1 +  ∑ 𝑉𝐼𝑖

4
𝑖=1 )  V6V6-1; VE 6 VE6+1 

Vaccinated animals become 

exposed indirectly with gilt 

isolation (Experiments #4 & 15) 

 

123b 0 V1V1-1; VE 1 VE1+1 

124b 𝛽𝑣𝑎𝑥 ∙ 𝑉2(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  V2V2-1; VE 2 VE2+1 

125b 𝛽𝑣𝑎𝑥 ∙ V3(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  V3V3-1; VE3 VE3+1 

126b 𝛽𝑣𝑎𝑥 ∙ V4(∑ 𝐼𝑖
10
𝑖=5 + 𝑉𝐼5 + 𝑉𝐼6)  V4V4-1; VE4 VE4+1 

127b 𝛽𝑣𝑎𝑥 ∙ 𝑉5(∑ 𝐼𝑖
4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  V5V5-1; VE5 VE5+1 

128b 𝛽𝑣𝑎𝑥 ∙ V6(∑ 𝐼𝑖
4
𝑖=2 +  ∑ 𝑉𝐼𝑖

4
𝑖=2 )  V6V6-1; VE6 VE6+1 

Sows give birth 129 𝑏(𝑆5 + 𝐸5) S7S7+ 𝑁(𝜇 =
12.29, 𝜎2 = 0.50) 
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130 𝑏(𝐼5 + 𝑉𝐼5 + 𝑅5)  S11S11+ 𝑁(𝜇 =
12.29, 𝜎2 = 0.50) 

131 𝑏(𝑉5 + 𝑉𝐸5) S15S15+ 𝑁(𝜇 =
12.29, 𝜎2 = 0.50) 

Recovered animals lose 

immunity 

 

132 𝜔𝑟 ∙ 𝑅1 R1R1-1; S1 S1+1 

133 𝜔𝑟 ∙ 𝑅2 R2R2-1; S2 S2+1 

134 𝜔𝑟 ∙ 𝑅3 R3R3-1; S3 S3+1 

135 𝜔𝑟 ∙ 𝑅4 R4R4-1; S4 S4+1 

136 𝜔𝑟 ∙ 𝑅5 R5R5-1; S5 S5+1 

137 𝜔𝑟 ∙ 𝑅6 R6R6-1; S6 S6+1 

Exposed vaccinated (VE) 

animals become infected 

 

 

138 𝜎𝑣𝑎𝑥 ∙ 𝑉𝐸1  VE1VE1-1; VI1VI1+1 

139 𝜎𝑣𝑎𝑥 ∙ 𝑉𝐸2  VE2VE2-1; VI2VI2+1 

140 𝜎𝑣𝑎𝑥 ∙ 𝑉𝐸3  VE3VE3-1; VI3VI3+1 

141 𝜎𝑣𝑎𝑥 ∙ 𝑉𝐸4  VE4VE4-1; VI4VI4+1 

142 𝜎𝑣𝑎𝑥 ∙ 𝑉𝐸5  VE5VE5-1; VI5VI5+1 

143 𝜎𝑣𝑎𝑥 ∙ 𝑉𝐸6  VE6VE6-1; VI6VI6+1 

Infected vaccinated (VI) animals 

recover 

 

 

144 𝛾𝑣𝑎𝑥 ∙ 𝑉𝐼1  VI1VI1-1; R1R1+1 

145 𝛾𝑣𝑎𝑥 ∙ 𝑉𝐼2  VI2VI2-1; R2R2+1 

146 𝛾𝑣𝑎𝑥 ∙ 𝑉𝐼3  VI3VI3-1; R3R3+1 

147 𝛾𝑣𝑎𝑥 ∙ 𝑉𝐼4  VI4VI4-1; R4R4+1 

148 𝛾𝑣𝑎𝑥 ∙ 𝑉𝐼5  VI5VI5-1; R5R5+1 

149 𝛾𝑣𝑎𝑥 ∙ 𝑉𝐼6  VI6VI6-1; R6R6+1 

Non-disease related mortality for 

exposed vaccinated (VE) gilts 

and sows 

 

150 𝜇 ∙ 𝑉𝐸1  VE1VE1-1 

151 𝜇 ∙ 𝑉𝐸2  VE2VE2-1 

152 𝜇 ∙ 𝑉𝐸3  VE3VE3-1 

153 𝜇 ∙ 𝑉𝐸4  VE4VE4-1 

154 𝜇 ∙ 𝑉𝐸5  VE5VE5-1 

155 𝜇 ∙ 𝑉𝐸6  VE6VE6-1 
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Non-disease related mortality for 

infected vaccinated (VI) gilts 

and sows 

 

156 𝜇 ∙ 𝑉𝐼1  VI1VI1-1 

157 𝜇 ∙ 𝑉𝐼2  VI2VI2-1 

158 𝜇 ∙ 𝑉𝐼3  VI3VI3-1 

159 𝜇 ∙ 𝑉𝐼4  VI4VI4-1 

160 𝜇 ∙ 𝑉𝐼5  VI5VI5-1 

161 𝜇 ∙ 𝑉𝐼6  VI6VI6-1 
 

Table F.2. The effects of farm size on peak prevalence, endemic prevalence, endemic prevalence in piglets, and probability of IAV extinction. Time to extinction 

describes the average number of days that infection persisted on the farm before stochastic extinction occurred. One hundred trials were conducted for each total 

inventory size. For each farm size, the proportions of animals in each production class were calibrated to maintain the population size at equilibrium.  

Number 

of sows 

and gilts 

Total inventory Maximum prevalence Endemic Prevalence (Total 

Inventory) 

Endemic Prevalence (Piglets) Extinction 

Median Mean 

(±SD) 

CV Median Mean 

(±SD) 

CV Median Mean 

(±SD) 

CV Percent 

Extinction 

Time to 

Extinction 

200 500 (~350-650) 0.451 0.440 ± 

0.080 

18.109 0.142 0.138 ± 

0.025 

17.818 0.109 0.105 ± 

0.019 

18.020 3% 1.33 days 

400 1000 (~800-

1200) 

0.451 0.452 ± 

0.016 

3.449 0.143 0.143 ± 

0.002 

1.613 0.111 0.110 ± 

0.003 

2.274 0% n/a 

1000 2500 (~2000-

3000) 

0.450 0.450 ± 

0.008 

1.877 0.144 0.143 ± 

0.001 

1.003 0.111 0.111 ± 

0.001 

1.329 0% n/a 

1500 3500 (~3000-

4000) 

0.4497     0.4490 ± 

0.0078     

1.7419     0.143 0.144 

±0.001 

0.806 0.112 0.112± 

0.001 

1.321 0% n/a 

2000 5000 (~4500-

5500) 

0.446 0.442 ± 

0.045 

10.167 0.143 0.142 ± 

0.014 

10.123 0.111 0.110 ± 

0.011 

10.159 1% 1 day 
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Table F.3. The effects of source and frequency of IAV introduction on peak prevalence, endemic prevalence, endemic prevalence in piglets, and probability of 

IAV extinction. Time to extinction describes the average number of days that infection persisted on the farm before stochastic extinction occurred. One hundred 

trials were conducted for each case. These trials were conducted for a farm size of 1500 sows and gilts—consistent with the null model used for subsequent 

analyses.  

 

  

Location and frequency of 

IAV introduction 

Maximum Endemic Endemic Piglets Extinction 

Median Mean (±SD) CV Median Mean 

(±SD) 

CV Median Mean (±SD) CV Percent 

Extinction 

Time to 

Extinction 

GDU- Single introduction 0.4497     0.4490 ± 

0.0078     

1.7419     0.143 0.144 

±0.001 

0.806 0.112 0.112± 0.001 1.321 0% n/a 

GDU-Weekly gilt 

introduction 

0.447 0.447 ± 0.009 1.893 0.144 0.144 ± 

0.001 

0.901 0.112 0.112± 0.002 1.398 0% n/a 

Breeding area (single 

introduction) 

0.447 0.446 ± 0.008 1.704 0.144 0.144 ± 

0.001 

0.877 0.112 0.112 ± 

0.002 

1.496 0% n/a 

Farrowing area (single 

introduction) 

0.446 0.447 ± 0.008 1.744 0.144 0.144 ± 

0.001 

0.780 0.112 0.111 ± 

0.001 

1.215 0% n/a 
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Table F.4. Partial rank correlation coefficients (PRCC) between all 15 parameters (rows) and the endemic prevalence of infected piglets for each experiment 

(columns). Values closest to 1 or -1 indicate the strongest correlations, while values close to zero indicate little correlation. Bolded values have a magnitude ≥ 

0.30. Shaded areas represent parameters that were not used/relevant for a particular experiment (e.g., the direct transmission rate for vaccinated animals was not 

employed in the null case [Experiment 0]). 

Parameter #0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 

β 0.13 0.14 0.14 0.13 0.13 0.12 0.13 0.18 0.17 0.15 0.16 0.14 0.15 0.12 0.13 0.14 

βind 0.04 0.03 0.03 0.03 0.01 0.01 0.03 0.06 0.08 0.05 0.06 0.18 0.05 0.04 0.04 0.08 

𝜷𝒅
𝒑

  -0.10 -0.10 -0.10 -0.11 -0.10 -0.04 -0.10 -0.15 -0.12 -0.10 -0.21 -0.15 -0.10 -0.09 -0.11 0.02 

𝜷𝒊𝒏𝒅
𝒑

  -0.08 -0.08 -0.08 -0.08 -0.07 -0.07 -0.08 -0.13 -0.14 -0.10 0.03 -0.07 -0.11 -0.06 -0.08 0.00 

𝜷𝒅
𝒑𝒎

  -0.14 -0.12 -0.13 -0.14 -0.14 -0.14 -0.13 0.52 -0.04 -0.13 -0.06 -0.06 -0.11 -0.15 -0.14 0.54 

𝜷𝒊𝒏𝒅
𝒑𝒎

  -0.05 -0.06 -0.05 -0.06 -0.05 -0.08 -0.06 0.00 0.00 -0.04 -0.10 -0.05 -0.01 -0.08 -0.05 -0.05 

σ 0.13 0.13 0.13 0.14 0.14 0.13 0.13 0.75 0.45 0.21 0.16 0.15 0.15 0.13 0.13 0.60 

γ -0.80 -0.80 -0.80 -0.80 -0.79 -0.79 -0.81 -0.50 -0.77 -0.80 -0.71 -0.76 -0.81 -0.80 -0.80 -0.42 

𝜷𝒗𝒂𝒙       -0.13 -0.15    0.02 -0.08 -0.17 -0.13 -0.16 0.10 

𝜷𝒗𝒂𝒙
𝒑

       -0.18 -0.21    -0.21 -0.16 -0.24 -0.19 -0.22 -0.12 

𝜷𝒊𝒏𝒅 𝒗𝒂𝒙       0.06 0.08    0.08 0.11 0.10 0.07 0.08 0.10 

𝜷𝒊𝒏𝒅 𝒗𝒂𝒙
𝒑

       0.11 -0.14    0.12 0.18 -0.10 0.11 -0.16 0.05 

ωr -0.05 -0.05 -0.06 -0.06 -0.07 -0.06 -0.05 0.18 0.01 -0.02 0.11 0.03 -0.04 -0.03 -0.04 0.11 

𝝈𝒗𝒂𝒙      -0.15 -0.09    -0.19 -0.17 -0.10 -0.14 -0.08 -0.06 

𝜸𝒗𝒂𝒙      0.14 0.07    0.18 0.18 0.08 0.14 0.06 0.06 
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Table F.5. Partial rank correlation coefficients (PRCC) between all 15 parameters (rows) and the maximum prevalence of infected animals for each experiment 

(columns). Values closest to 1 or -1 indicate the strongest correlations, while values close to zero indicate little correlation.  Bolded values have a magnitude ≥ 

0.30. Shaded areas represent parameters that were not used/relevant for a particular experiment (e.g., the direct transmission rate for vaccinated animals was not 

employed in the null case [Experiment #0]). 

Parameter #0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 

β 0.18 0.19 0.19 0.17 0.18 0.18 0.16 0.18 0.18 0.17 0.16 0.19 0.17 0.16 0.17 0.12 

βind 0.06 0.07 0.07 0.07 0.05 0.05 0.05 0.10 0.06 0.06 0.11 0.19 0.09 0.08 0.06 0.10 

𝜷𝒅
𝒑

  -0.09 -0.09 -0.07 -0.08 -0.09 -0.01 -0.10 -0.15 -0.09 -0.09 -0.16 -0.12 -0.10 -0.07 -0.08 0.05 

𝜷𝒊𝒏𝒅
𝒑

  -0.17 -0.19 -0.19 -0.19 -0.16 -0.21 -0.20 -0.17 -0.18 -0.19 -0.07 -0.16 -0.20 -0.18 -0.19 0.02 

𝜷𝒅
𝒑𝒎

  -0.03 -0.04 -0.03 -0.03 -0.03 -0.04 -0.04 -0.09 -0.02 -0.04 0.06 0.02 -0.03 -0.05 -0.02 0.18 

𝜷𝒊𝒏𝒅
𝒑𝒎

  0.01 0.02 0.00 0.01 0.04 0.00 0.03 -0.01 0.01 0.02 -0.01 0.04 0.07 0.01 -0.01 -0.11 

σ 0.80 0.80 0.80 0.80 0.78 0.79 0.81 0.80 0.80 0.81 0.72 0.71 0.79 0.80 0.80 0.39 

γ -0.64 -0.65 -0.65 -0.65 -0.66 -0.63 -0.69 -0.66 -0.65 -0.65 -0.51 -0.63 -0.69 -0.67 -0.66 -0.53 

𝜷𝒗𝒂𝒙       -0.12 -0.08    0.03 -0.10 -0.11 -0.10 -0.09 0.12 

𝜷𝒗𝒂𝒙
𝒑

       -0.22 -0.22    -0.23 -0.14 -0.26 -0.18 -0.23 -0.08 

𝜷𝒊𝒏𝒅 𝒗𝒂𝒙       0.09 0.12    0.10 0.13 0.11 0.11 0.10 0.13 

𝜷𝒊𝒏𝒅 𝒗𝒂𝒙
𝒑

       -0.07 -0.21    -0.08 0.00 -0.18 -0.09 -0.20 0.12 

ωr 0.01 0.02 0.02 0.00 0.00 -0.02 0.02 0.00 0.03 0.02 0.17 0.08 0.03 0.02 0.01 0.13 

𝝈𝒗𝒂𝒙      0.06 -0.13    0.02 0.03 -0.14 0.07 -0.12 -0.15 

𝜸𝒗𝒂𝒙      -0.06 -0.08    -0.03 -0.02 -0.04 -0.07 -0.06 0.15 
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Appendix G. Supplementary tables for Chapter 4 

Additional figures 

 

 

Figure G.1. Random forest regression analysis results describing variable importance for (A) outbreak 

success (did the pathogen spread beyond the initially infected individual?), (B) maximum prevalence given 

outbreak success, and (C) outbreak duration given outbreak success. Parameter descriptions are provided in 

Table 4.1. Bar charts display mean decrease in accuracy for parameters. Higher values for mean decrease in 

accuracy correspond to parameters with higher predictive ability. The cforest function from the party 

package in R (with 1,000 trees) was used for this analysis, and generally upheld findings from the 

randomForest package (Figure 4.1). The order of variable importance for outbreak success is the same 

(compare to Figure 4.1A). For both maximum prevalence and outbreak duration, both analyses identified 

recovery rate, perceptual distance, and conspecific density as the top three parameters.  
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Figure G.2. Box plots of (A) maximum prevalence and (B) duration across perceptual ranges (columns), 

recovery rates (rows), and resource selection functions (x-axis) for low (d=0.25) and high (d=0.50) 

conspecific density treatments. 
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Figure G.3. Heatmaps for a subset of simulations where conspecific density, d= 0.25: (A) mean maximum 

prevalence and (B) mean duration when recovery rate, γ=0.1; (C) mean maximum prevalence and (D) mean 

duration when recovery rate, γ=0.2; and (E) mean maximum prevalence and (F) mean duration when 

recovery rate, γ=0.4. The x-axis corresponds to the proportion of available habitat (p) tested in each 

landscape and the y-axis corresponds to the Hurst exponent (H) or patchiness of the simulated landscapes. 

Columns correspond to RSF combinations and rows correspond to perceptual range. Note that color scales 

are different between maps. 
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Figure G.4. Heatmaps for a subset of simulations where conspecific density, d= 0.5: (A) mean maximum 

prevalence and (B) mean duration when recovery rate, γ = 0.1; (C) mean maximum prevalence and (D) 

mean duration when recovery rate, γ = 0.2; and (E) mean maximum prevalence and (F) mean duration 

when recovery rate, γ = 0.4. The x-axis corresponds to the proportion of available habitat (p) tested in each 

landscape and the y-axis corresponds to the Hurst exponent (H) or patchiness of the simulated landscapes. 

Columns correspond to RSF combinations and rows correspond to perceptual range. Note that color scales 

are different between maps. 
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Figure G.5. Box plots of (A) maximum prevalence and (B) duration for a subset of the simulations where 

recovery rate (γ) =0.2, conspecific density (d) = 0.5, and perceptual range (r) = 3. Columns correspond to 

Hurst exponent (H; lower values correspond to higher clustering) and rows correspond to proportion 
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available habitat (p). Dashed lines represent separate regimes (from left to right) of random, medium or 

strong selection for resources (𝛽1).  
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Figure G.6. For the RSF of 𝜷𝟏 = 𝟔, 𝜷𝟐 = 𝟐, 𝜷𝟑 = −𝟎. 𝟓, box plots of (A, C, E) mean maximum 

prevalence and (B, D, F) duration for the recovery rate (γ) of 0.4 (A, B), 0.2 (C, D), and 0.1 (E, F). Columns 

correspond to low and high densities and rows correspond to the perceptual range. Landscape structure 
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abbreviations take the form of proportion available habitat(p)/patchiness (Hurst exponent, H): “L” = low, 

“M” =medium, “H” = high proportion available habitat. “LP” =low patchiness, “MP” =medium patchiness, 

and “HP” =high patchiness.  
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Figure G.7. Simulation results for stochastic SIR model that assumed density-dependent transmission 

function and homogenous mixing of conspecifics. (A) Maximum prevalence reached for each recovery rate 

tested (x-axis) for both conspecific densities (columns). (B) Epidemic duration for each recovery rate tested 

(x-axis) for both conspecific densities (columns). For the legend, “H” refers to the homogeneous mixing 

model. 
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Expanded Methods 

Selection of transmission probability (𝛽) 

 To help limit the number of parameter combinations tested, we represented the 

epidemiological parameter space as three combinations of recovery rate and a single transmission 

probability—equivalent to R0 values of roughly 0.5, 1, and 1.5 (Table 4.1). These combinations of 

transmission probability and recovery rate provided a parameter space with at least some 

successful outbreaks, outbreaks that did not always saturate (reach all individuals in the 

population) regardless of the landscape structure, and outbreaks that were computationally 

feasible (i.e., finishing in less than 1000 timesteps). For much lower transmission probabilities 

(e.g., 𝛽 = 0.02 or 0.002) with the same recovery rates, we did not observe enough successful 

transmission events (especially in our lower conspecific density treatment, d=0.25) to be able to 

differentiate the effects of landscape or movement. This trend is observable for our lowest 

conspecific density treatment and fastest recovery rate in Appendix G Figure G.3 E and F. While 

our results are likely robust for transmission probabilities of similar orders of magnitude, we 

would expect diminishing effects of movement behavior and landscape structure for less 

successful (𝛽 < 0.02) and highly successful pathogens (𝛽 > 0.5) with the same combinations of 

recovery rate. 

 

 

Calibrating resource selection functions (RSFs) 

We governed individual movement choices using the resource selection function, 𝒘𝒋, for a given 

cell, 𝒋, with the form: 𝑤𝑗 = exp(𝛽1 ∙ 𝑅𝑗 + 𝛽2 ∙ 𝑁𝑗 + 𝛽3 ∙ 𝑁𝑗
2)  

where 𝑅𝑗 is the resource value, and 𝑁𝑗 is the number of conspecifics in cell, j. 
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Then, the probability that an individual would choose cell, j, over other cells in the neighborhood 

(including the current cell) is given by:  

𝑃𝑗 =
exp(𝛽1 ∙ 𝑅𝑗 + 𝛽2 ∙ 𝑁𝑗 + 𝛽3 ∙ 𝑁𝑗

2)

∑ exp(𝛽1 ∙ 𝑅𝑖 + 𝛽2 ∙ 𝑁𝑖 + 𝛽3 ∙ 𝑁𝑖
2)𝑛

𝑖=1  
 

 

Where the numerator represents the RSF of cell, j, and the denominator represents the sum of the 

RSFs of all n cells in the individual’s neighborhood. 

 

Calibrating strength of selection for resources 

When holding the number of conspecifics (N) constant, what is the probability that an individual 

selects a cell that has a resource value of R + ΔR relative to a landscape with baseline resource 

values of R?  

 

 

 

 

 

Probability of selecting a cell with R+ΔR resource value in neighborhood of nine cells (eight 

neighboring cells and the current cell): 

𝑃(𝑅 + ∆𝑅) =
exp(𝛽1 ∙ (𝑅 + ∆𝑅) + 𝛽2 ∙ 𝑁 + 𝛽3 ∙ 𝑁2)

8 exp(𝛽1 ∙ 𝑅 + 𝛽2 ∙ 𝑁 + 𝛽3 ∙ 𝑁2) + exp(𝛽1 ∙ (𝑅 + ∆𝑅) + 𝛽2 ∙ 𝑁 + 𝛽3 ∙ 𝑁2) 
 

 

If N is constant across each cell in the neighborhood then this expression simplifies to: 

R R + ΔR R 

R R R 

R R R 
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𝑃(𝑅 + ∆𝑅) =
exp(𝛽1 ∙ (𝑅 + ∆𝑅))

8 exp(𝛽1 ∙ 𝑅) + exp(𝛽1 ∙ (𝑅 + ∆𝑅)) 
 

 

 

Table G.1. Calibration of 𝛽1 values. 𝛽1 values are calibrated so that holding conspecific density constant, 

the probability of selecting a cell with a resource value of 1 in a neighborhood of 𝑅 = 0 should be: zero 

(𝛽1 = 0, i.e., random), biased (𝛽1 = 3, 𝑃(𝑅 + ∆𝑅) = 0.72) or almost completely deterministic (𝛽1 = 6; 

𝑃(𝑅 + ∆𝑅) ≈ 1). 

𝛽1 
Description Probability of selecting 

cell with resource value 

of 𝑅 + ∆𝑅 when 𝑅 = 0 

and ∆𝑅 = 1 

Probability of selecting cell 

with resource value of 

𝑅 when 𝑅 = 0 and ∆𝑅 = 1 

0 Random  1/9 ≈ 0.11  1/9 ≈ 0.11 

3 Biased 0.715 0.036 

6 Approaching 

deterministic 

0.981 0.002 

 

Calibrating strength of selection for conspecifics 

For a landscape with uniform resource values (R), number of conspecifics per cell (N), and 

resource selection function parameters (𝛽1, 𝛽2, 𝛽3), what is the probability of selecting a cell 

within the neighborhood that has N + ΔN conspecifics? 

 

 

 

 

 

 

N N + ΔN N 

N N N 

N N N 
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The probability of selecting one of the eight cells with N conspecifics in the neighborhood of nine 

cells (including the current cell) is equal to:  

𝑃(𝑁) =
exp(𝛽1 ∙ 𝑅 + 𝛽2 ∙ 𝑁 + 𝛽3 ∙ 𝑁2)

8 exp(𝛽1 ∙ 𝑅 + 𝛽2 ∙ 𝑁 + 𝛽3 ∙ 𝑁2) + exp(𝛽1 ∙ 𝑅 + 𝛽2 ∙ (𝑁 + ∆𝑁) + 𝛽3 ∙ (𝑁 + ∆𝑁)2) 
 

 

And the probability of selecting the cell with N + ΔN conspecifics:  

𝑃(𝑁 +  ∆𝑁)

=
exp(𝛽1 ∙ 𝑅 + 𝛽2 ∙ (𝑁 + ∆𝑁) + 𝛽3 ∙ (𝑁 + ∆𝑁)2)

8 exp(𝛽1 ∙ 𝑅 + 𝛽2 ∙ 𝑁 + 𝛽3 ∙ 𝑁2) + exp(𝛽1 ∙ 𝑅 + 𝛽2 ∙ (𝑁 + ∆𝑁) + 𝛽3 ∙ (𝑁 + ∆𝑁)2) 
 

 

𝛽2 and 𝛽3 values were calibrated to exhibit three biologically feasible responses to changes in 

conspecific numbers across a landscape: (i) conspecific avoidance (Appendix G Figure G.8B); (ii) 

random (Appendix G Figure G.8A); (iii) attraction to conspecifics (Appendix G Figure G.8 C-F). 

This last scenario could reflect the idea that after a certain point depletion of resources would 

outweigh the benefit of conspecifics signaling a high-quality resource patch. 
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Figure G.8. Depiction of effects of conspecific presence on probability of an animal selecting a given cell 

within its neighborhood. Calculated for a neighborhood of nine cells. ∆𝑁 refers to the difference in the 
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number of conspecifics between other cells in the neighborhood and the cell of interest. Red line 

corresponds to expected probability based on random choice (1/9 ≈ 0.111). 

 

Figure G.9. Binary, neutral theoretical landscapes generated with the mid-point displacement algorithm. 

Landscapes varied in the proportion of available habitat (p; y-axis) and clustering of habitat (H; x-axis) 

(Table 4.1). Good quality habitat is shown in green (resource quality = 1), and poor-quality habitat is 

shown in grey (resource quality= 0). As the Hurst exponent (H) decreases, habitat patchiness increases. The 

size of the landscape was held constant at 257 x 257 units (e.g., grid cells). Spatial units are arbitrary. 
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Evaluating equivalent homogeneous mixing model 

Comparable deterministic ordinary differential equations used to evaluate equivalent, 

homogeneous mixing, SIR model: 

 

𝑑𝑆

𝑑𝑡
= −𝛽 ∙ 𝑆 ∙ 𝐼  

𝑑𝐼

𝑑𝑡
=  𝛽 ∙ 𝑆 ∙ 𝐼 − 𝛾𝐼  

𝑑𝑅

𝑑𝑡
= 𝛾𝐼  
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