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Abstract 

Recently, there has been a push towards clinical translation of 

biomechanical models of tissues by developing patient-specific models to predict 

disease outcomes. To accomplish this, it is necessary to understand the 

functional and mechanical properties of all the tissue components, including 

individual cells. In vasculature, tissues and cells have different structures based 

on their functional role. The principle goal of this work is to determine how 

cellular architecture influences function and mechanical properties. To test our 

hypotheses, we have developed in vitro models to study the relationship between 

structure and function at the tissue and cellular scale.  

We have developed microfluidic capture array device (MCAD) technology 

to study cell structure and function in 2D engineered vascular smooth muscle 

tissue and have developed cellular micro-biaxial stretching (CμBS) microscopy to 

determine single cell mechanical properties. First, using MCAD technology we 

were able to vary initial cell-cell contact during seeding to bias the cellular 

architecture in confluent vascular smooth muscle tissues. We found that tissues 

seeded using initially higher cell–cell contact conditions yielded tissues with more 

elongated cellular architecture which lead to greater contractile function in 

engineered tissues.   

We then used CμBS microscopy to determine the elastic anisotropic 

mechanical properties of individual cells, given by the strain energy density 

(SED) function. We found that smooth muscle cells (VSMCs) with native-like 

architectures are highly anisotropic and can be described by a SED based on the 

actin cytoskeletal organization. Then, we utilized CμBS microscopy to 

characterize loading and unloading mechanics of VSMCs. We found that VSMCs 

exhibit architecture-dependent anisotropic hysteresis where highly structured 

VSMCs exhibit typical hysteresis associated with viscous loss when stretched in 

the direction of actin fiber alignment but exhibit reverse hysteresis when 

stretched in the direction orthogonal to actin fiber alignment. We then modeled 
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the observed hysteresis using two models: a quasi-linear (QLV) model and a Hill-

type active fiber model and found that the QLV model was insufficient to 

characterize the anisotropic hysteresis but the Hill-type active fiber model was 

able to predict the anisotropic hysteresis in highly-organized VSMCs. 
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Chapter 1. Introduction 

 Advances in 3D imaging techniques (1, 2) and the rise of computing 

power have allowed researchers to develop patient-specific models of 

cardiovascular mechanics (3, 4). Currently, disease progression in aortic and 

cerebral aneurysms are tracked simply by measuring a parameter such as 

aneurysm diameter (5). However, advances in non-invasive 3D imaging have 

improved disease progression tracking by incorporating the 3D geometry of the 

aneurysm and finite element method (FEM) to create models of the aneurysm. 

Some current models use a rule-of-mixtures model that incorporates the 

components of tissues, including stress generating cells and remodeling 

extracellular matrix (ECM) components, to predict growth and remodeling of 

vascular tissue (6, 7). Thus, it is important to know the functional and mechanical 

properties of each component of tissues. Mechanical properties of the ECM 

component of vascular tissues such as elastin or collagen have been well studied 

(8, 9) but the current understanding of the cellular component is limited to linear 

estimations. Since tissues and cells undergo large strains in vasculature, we 

must be able to determine the large strain mechanical properties of vascular 

smooth muscle cells to accurately model vascular growth and remodeling. Our 

work will advance the current understanding of the role of cell architecture on the 

functional and mechanical properties of vascular smooth muscle and improve 

models of vascular growth and remodeling.  

1.1 Tissue and cellular architecture affects function 

In vivo tissues have finely controlled hierarchical structure that is often 

difficult to mimic in vitro. Microfabrication techniques, such as microcontact 

printing (10), can be used to reproduce tissue structure in vitro by controlling cell 

shape and orientation. Several recent results suggest that cellular organization 

and structure can influence tissue function in engineered tissues (11-13). For 

example, using microcontact printing and muscular thin film technology, Alford et 

al. has shown that engineered vascular tissues whose smooth muscle cells 
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possessed more elongated spindle-like geometries, similar to in vivo structure 

(14), exhibited more physiological contraction function. Aside from cell shape, 

cell-cell coupling also plays a significant role in functional contractility. In 

engineered cardiac microtissues, cooperative coupling of focal adhesions and 

cell-cell junctions at the cell-cell interface is necessary to regulate efficient force 

generation (13). These studies suggest that not only cellular geometry, but cell-

cell organization, within a tissue is important to reproduce in engineered tissues 

to mimic in vivo function.  In recent years, many researchers have studied how 

cells receive mechanical cues from the environment and convert them into 

chemical stimuli and thus change their behavior, a process known as 

mechanotransduction (15). Many components of the cell and ECM across 

multiple scales have been shown to mediate this process. Researchers have 

shown using micropatterning that by simply changing the shape of the cell on a 

2D substrate where the cell-ECM adhesion process is confined, the fate of the 

cell can be changed (16-18). Thus, it is important to understand the role of 

cellular architecture in tissue function. Towards studying this, we have developed 

a microfluidic capture array device (MCAD) to bias initial cell-cell contact in 2D 

engineered vascular tissues.  Using MCAD seeded tissues, we generated tissues 

of varying cellular architecture. Muscular thin film (MTF) assay and protein 

expression were used to investigate the tissues’ functional properties. These 

results are summarized in Chapter 2.  

1.2 Current methods of measuring cell mechanical properties and 

evaluation of cell generated traction force 

 Cells consist of a cellular membrane, cytoskeleton, nucleus, and 

numerous organelles (19). Thus, they are highly anisotropic and inhomogeneous. 

Researchers have studied the mechanical properties of single cells by using 

methods such as micropipette aspiration (20), magnetic twisting cytometry (21, 

22), atomic force microscopy (AFM) (23, 24), and more to determine Young’s 

modulus of a cell. However, these methods are limited in that they estimate linear 

mechanical properties at small strains and do not capture the anisotropy of a cell. 
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For example, micropipette aspiration (25) uses a micropipette that is placed near 

the cell membrane to apply a small vacuum and measure the deformation of the 

cell membrane. This technique is limited to the cell membrane-air interface and 

does not capture the mechanical properties of the entire cell. Magnetic twisting 

cytometry utilizes a ligand-coated magnetic bead that is allowed to attach to cell 

membrane receptors. A magnetic field is then applied to twist the bead to obtain 

the storage and loss modulus. This method is limited to the cell membrane-bead 

interface (26). Researchers have also used AFM to indent individual cells (23) 

and cell nuclei (27) to probe cell mechanics. By measuring the vertical deflection 

of the cantilever, Young’s modulus can be calculated. However, because cells 

are highly inhomogeneous, the site of indentation can affect results (28) where 

the cytoskeleton and cell nuclei are much stiffer than the bulk cytosol and cell 

membrane. We propose to characterize the mechanical properties of a cell using 

continuum methods that can capture the anisotropy of a cell. One way 

researchers have characterized the mechanical properties of tissue is by using 

biaxial testing. Biaxial testing is the gold standard for nonlinear anisotropic 

mechanical property measurement (29). In general, soft tissues are mounted to a 

biaxial device in a trampoline like fashion using sutures or by using a system of 

clamps. (30) The samples are then strained uniaxially and biaxially. By 

performing a set of biaxial tests on a tissue sample, one can determine the 

response of the tissue to mechanical load and develop constitutive models that 

can predict the mechanical behavior of a tissue under loading. Unfortunately, it is 

much more technically challenging to perform biaxial testing on a very small 

sample such as a single cell. A modified technique where biaxial stretching is 

applied to a cell could yield more useful properties than the methods currently 

used by researchers (26). 

  When cells are placed on a 2D substrate such as cell culture polystyrene 

plastic or glass dishes, they exert a traction force on the surface through integrin-

mediated adhesions (31). This mechanical interaction is involved in regulating 

cell shape and cell migration.  Harris et al. studied the traction forces exerted by 
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chick heart fibroblasts by culturing them on a thin elastic silicon substrate (32). 

They saw wrinkling of the substrate at the cell-substrate interface. Wang et al. 

(33) and others have extended the concept of using soft substrates (E = 6.2 kPa) 

to observe cellular traction by culturing cells on thin polyacrylamide gels doped 

with fluorescent microbeads.  The authors calculated the traction forces exerted 

by the cell using mechanical properties of the substrate and observing the 

deformation of the beads at the gel surface. Swiss 3T3 fibroblasts were shown to 

exert an average traction of 2 kPa over the projected area of the cell and 

upwards to 10 kPa at the leading edges of the cell. The advantage of this traction 

force microscopy technique is that it provides spatial and temporal tracking of cell 

traction and can be applied to calculate traction forces in migrating cells (34, 35).  

 We combined traditional biaxial stretching and traction force microscopy 

approaches to develop a cellular micro-biaxial stretching (CμBS) method to 

determine the mechanical properties of individual VSMCs. First, in Chapter 3, we 

characterized the elastic mechanical properties of VSMCs and showed that in 

vivo-like VSMCs have anisotropic material properties. We then developed a 

constitutive relation based on the actin fiber distribution in the cell that was able 

to predict the effect of cell architecture on the mechanical properties. Lastly, in 

Chapter 4, we investigated loading and unloading dynamics of individual VSMCs. 

We found that VSMCs exhibit hysteresis, dependent on stretch direction and 

cytoskeletal architecture. We modeled the observed hysteresis using a passive 

relaxation quasi-linear viscoelasticity model and an actively adapting Hill-type 

active fiber model. 
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Chapter 2. Smooth muscle architecture within cell-dense 

vascular tissues influences functional contractility 

This chapter contains material published in Integrative Biology and is reproduced 

with permission. Win Z, Vrla GD, Steucke KE, Sevcik EN, and Alford PW (2014) 

Smooth muscle architecture within cell-dense vascular tissues influences 

functional contractility.  

Reproduced from Ref. (36) with permission from the Royal Society of Chemistry.  

2.1 Summary 

The role of vascular smooth muscle architecture in the function of healthy 

and dysfunctional vessels is poorly understood. We aimed at determining the 

relationship between vascular smooth muscle architecture and contractile output 

using engineered vascular tissues. We utilized microcontact printing and a 

microfluidic cell seeding technique to provide three different initial seeding 

conditions, with the aim of influencing the cellular architecture within the tissue. Cells 

seeded in each condition formed confluent and aligned tissues but within the 

tissues, the cellular architecture varied. Tissues with a more elongated cellular 

architecture had significantly elevated basal stress and produced more contractile 

stress in response to endothelin-1 stimulation. We also found a correlation between 

the contractile phenotype marker expression and the cellular architecture, contrary 

to our previous findings in non-confluent tissues. Taken with previous results, these 

data suggest that within cell-dense vascular tissues, smooth muscle contractility is 

strongly influenced by cell and tissue architectures. 

2.2 Introduction 

Vascular smooth muscle cells (VSMCs) are the most numerous cells in arteries 

and primarily function to maintain vascular tone. VSMC architecture varies with the 

vessel according to the required function. In smaller muscular arteries, which 

dynamically contract and relax in response to endothelial (37) and mechanical 



  6 

stimulation (38), VSMCs have a distinct elongated spindle shape (14). In contrast, 

VSMCs in elastic arteries such as the aorta, whose primary function is maintenance 

of vessel pressure, do not have as pronounced a spindle shape. Additionally, 

vessels with complex geometries can contain VSMCs of varying architecture. For 

example, bifurcations of small muscular arteries like those in the Circle of Willis 

contain several non-spindle cells at the apex (39). These regions with mixed cell 

architecture are notable because cerebral saccular aneurysms predominantly occur 

in these locations(40-42). To date, it has been unclear exactly how VSMC function 

depends on the structure in healthy and dysfunctional vessels. 

VSMCs exhibit phenotypic plasticity, transitioning between two phenotypes: 

contractile and synthetic (43, 44). In healthy muscular arteries, contractile VSMCs 

display an elongated architecture as well as an increased contractile protein 

expression. In response to vascular injury or disease, VSMCs switch to a synthetic 

phenotype to better repair the injury by increasing extracellular matrix (ECM) 

production, proliferation and migration (45, 46). VSMC phenotype is normally 

measured by the expression of contractile protein markers, which are assumed to 

indicate contractile function (47). However, in our previous studies we found that 

VSMC function is not always correlated with phenotype expression (11). 

We and others have shown, using micropatterning approaches, that 

regulating the cell architecture can affect a number of cell functions and phenotype 

(16-18, 48). We have previously shown that engineered in vitro vascular tissues 

exhibited greater contraction force per unit cross-sectional area when VSMCs were 

forced into exaggerated spindle shapes compared to those with smaller aspect 

ratios. In that study (11), we controlled the VSMC architecture by using 

microcontact printing to construct muscle fibrils with varying widths. However, 

VSMCs in vivo exist as concentric confluent lamellar sheets, not fibrils (49, 

50). Moreover, it has been shown that the VSMC phenotype is affected by the 

number of cell–cell contacts (51, 52). Thus, we aimed at developing a method for 

controlling the microscale VSMC structure within a confluent tissue that mimics a 

concentric confluent lamellar sheet of an artery. 
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Many studies have shown that contact guidance imposed by physical constraints of 

a cell's environment can influence its architecture (53-55). Additionally, initial cell–

cell contacts can play an important role in eventual tissue self-organization and 

phenotype (56-58), suggesting that initial conditions during cell seeding can be 

used to influence the VSMC architecture within a tissue. There are a number of 

methods to precisely place the individual cells using microfluidic devices including 

microwells (59), flow-focusing (60), and hydrodynamic capture in traps (61, 

62). Researchers have used these microfluidic methods to capture single cells or 

clusters of cells for high-throughput single cell analysis (63) and to study 

biological processes such as cell fusion (64), cellular metabolism (65), and 

cellular toxicity (66, 67). To date, cell placement has not been used to control cell 

architecture within a tissue. 

We hypothesized that VSMC structure affects vascular tissue contractility in 

the absence of constraining boundary conditions. To study this hypothesis, we 

designed a microfluidic capture array device (MCAD) that allows us to control the 

initial placement of cells and provide guidance cues for cellular organization in 

engineered tissues. We used this new technology combined with micropatterning 

techniques to fabricate 2D engineered tissues that mimic the simplest subunit of 

vascular smooth muscle, a confluent lamella of aligned VSMCs, where the cellular 

architecture within the tissues was modulated using initial seeding conditions. Using 

muscular thin film (MTF) technology, we find that there is a correlation between 

contraction and cellular architecture in engineered tissues. 

2.3 Results 

2.3.1 Controlling the tissue architecture using initial conditions 

Previous studies have used boundary conditions to control the cell 

architecture by confining VSMCs in strips of various widths to change the tissue 

level structure (11) or by patterning single cells (68).  Here, we aimed at controlling 

the individual VSMC architecture within a confluent monolayer using initial 
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conditions. We developed a new method of fabricating engineered confluent 

vascular tissues using initial seeding conditions to control the tissue structure. We 

reasoned that by keeping the mesoscale density constant, but changing the 

microscale density of seeding, we could utilize cell–cell contact guidance, in 

combination with ECM patterning, to vary cellular organization within our tissues. 

To change the seeding conditions, we designed MCADs with vertical pillars 

protruding from the ceiling of the device, designed to trap cells in specific locations 

(Fig. 2.1A). The features have a height of 37 μm to trap a single layer of cells. When 

a cell suspension is flowed through the device, the cells follow the streamlines 

through and around the features until cells are trapped in the device features (Fig. 

2.1B). When the trap is full, additional cells cannot be trapped as the streamlines 

circumvent the filled traps. This allowed us to specify the precise location of each 

cell. We designed three MCADs with varied trap depth to bias the cell–cell contact: 

15, 100, and 200 μm (Fig. 2.1C). The trap depth dictated the initial cell–cell contact 

during seeding where the 15 μm traps were designed to trap a single cell with no 

initial lateral contacts with other cells while the 100 and 200 μm traps were designed 

to trap multiple cells with one or more initial lateral contacts with other cells. VSMCs 

were flowed through the device until the majority of the traps were filled. The devices 

were then incubated for 45 min to allow the cells to attach. The devices were peeled 

away and tissues self-organized along the direction of the micropattern for 12–24 h 

in growth medium yielding mesoscopically identical confluent monolayers (Fig. 

2.1C). 

Tissues were stained for F-actin and nuclei (Fig. 2.2A). F-actin coverage 

was used to determine the tissue confluence, which was found to be consistent 

in all tissues. F-actin coverage was approximately 70–80% (Fig. 2.2B), which is 

within the range of confluent tissues as reported in previous studies (11, 18, 69). 

The overall seeding density quantified by measuring nuclei per area indicated 

that tissues were of similar density (non-device: 26 560 ± 3623 nuclei per cm2; 15 

μm: 22 091 ± 702 nuclei per cm2; 100 μm: 27 074 ± 1673 nuclei per cm2; 200 

μm: 27 788 ± 5127 nuclei per cm2). Deconvolved stacks of F-actin were used to 
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construct 3D volumes of tissues. All tissues were found to be consistent in 

thickness (non-device: 3.84 ± 0.31 μm; 15 μm: 3.51 ± 0.30 μm; 100 μm: 3.41 ± 

0.22 μm; 200 μm: 3.69 ± 0.58 μm). Actin fiber and nuclear orientations were 

characterized by an orientational order parameter (OOP). Actin fiber OOP was 

over 0.9 for all tissues (Fig. 2.2C) and nuclear orientation was above 0.85 (Fig. 

2.2D), demonstrating that the tissues were aligned with consistent actin and 

nuclear orientations in all tissues. We and others have previously shown that 

nuclear eccentricity is indicative of cellular shape in VSMCs and other cells (11, 

69). Thus, we measured nuclear eccentricity in the tissues constructed using 

each MCAD and found that eccentricity was elevated in all devices compared to 

non-device samples, and in the 200 μm MCAD compared to the 15 & 100 μm 

devices (Fig. 2.2E). The data suggest that our MCAD method for cell 

organization during seeding allows control of cell architecture within a confluent 

tissue. 

2.3.2 Initial seeding conditions affect the sub-cellular vascular tissue 

architecture 

We asked whether the differences seen in the sub-cellular architecture were 

due to the cell–cell contact guidance caused by the initial spatial distribution. We 

reasoned that by changing the microscale density of cells during initial seeding, and 

thus the density of cell–cell contact, cells would elongate more along the direction of 

the micropattern due to lateral constraints provided by cells transverse to tissue 

alignment. We analyzed the distribution of lateral cell constraints in the tissue 

constructs and their respective cellular shape measured by the aspect ratio 

immediately after the devices were removed (45 min post-seeding). Cells of interest 

are outlined in yellow and cells that are in lateral contact are outlined in red (Fig. 

2.3A). We found that the cell aspect ratio correlated with the number of lateral cell 

constraints where cells with one or more lateral constraints had a higher aspect ratio 

compared to cells with zero lateral constraints (Fig. 2.3B), demonstrating that cells 

with more lateral constraints were more elongated. The percentage of cells with 

multiple lateral constraints increased with the depth of the traps. We found the most 
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one or two cell constraints in the 100 μm and 200 μm MCADs (Fig. 2.3C) and the 

least one or two cell constraints in the 15 μm MCADs (Fig. 2.3C) as expected from 

the mesoscale structure of the traps. Additionally, we found that the cellular aspect 

ratio was higher in the tissues seeded using the 100 μm and 200 μm devices 

compared to the non-device samples and the 15 μm device (Fig. 2.3D). We found a 

positive correlation between the cellular aspect ratio in the seeded substrates with 

nuclear eccentricity in the confluent tissues (Fig. 2.3E), which suggests that the 

initial seeding condition provided by contact guidance due to lateral cell constraints 

in the traps leads to differences in the cellular architecture in engineered tissues.  

2.3.3 Sub-cellular tissue architecture affects functional contractile 

output 

To determine whether the cellular architecture influences functional output in 

VSMCs, we utilized a MTF assay to measure contractile stress generation in the 

tissues constructed with each seeding method. The MTF consists of a two-layer thin 

beam composed of an active cell layer and a passive PDMS layer (Fig. 2.4A) 

spincoated on a layer of a thermosensitive polymer PIPAAm. When the construct is 

cooled briefly below 32 °C, PIPAAm dissolves, releasing the PDMS and cell layers. 

The stress generated by the cell layer causes bending of the two-layer beam which 

results in a measurable change in the curvature of the beam (Fig. 2.4B) which was 

used to calculate tissue stress. We stimulated the tissues with vasoconstrictor 

endothelin-1 (ET-1, 50 nM) to induce contraction, followed by rho-kinase inhibitor 

HA-1077 (100 μM) to inhibit contraction (Fig. 2.4C). This protocol yielded two 

important stresses: the basal tone, which is a measure of the baseline contractile 

stress of the tissue, and the induced contraction, which is a measure of the 

additional stress generated following ET-1 stimulation. All stress measurements 

were normalized to the average non-device tissue. We found that both induced 

contraction and basal tone were increased nearly two-fold in tissues constructed 

using the 100 and 200 μm MCADs compared to non-device tissues and 15 μm 

MCAD tissues (Fig. 2.4D,E). We next asked whether the cellular architecture in the 

tissues correlated with tissue function. We determined the correlation between 
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nuclear eccentricity and contractile stress and found a non-significant positive trend 

for induced contraction with nuclear eccentricity (Fig. 2.4F) and a similar non-

significant positive trend for basal tone with nuclear eccentricity (Fig. 2.4G).  

2.3.4 Tissue structure and phenotype expression 

We asked whether the differences in contraction were due to changes in the 

VSMC phenotype. We determined the protein expression of contractile phenotype 

markers smoothelin and smooth muscle-myosin heavy chain (SMMHC) (Fig. 2.5A). 

While an apparent trend appears, we found that there were no statistically significant 

differences in the expression of either marker for the MCAD seeding compared to 

non-device tissues (Fig. 2.5B). However, we correlated contractile protein 

expression with contractile strength. We found that there was a significant 

correlation between induced contraction and SMMHC (Fig. 2.5C) and between 

basal tone and smoothelin (Fig. 2.5D). This suggests that the VSMC phenotype may 

correlate with vascular tissue contractility.  

2.4 Discussion 

Recent results suggest cellular architecture affects contractile function in 

vascular smooth muscle (11, 51). Thus, we hypothesized that the cellular 

architecture would affect contractile function in confluent engineered vascular 

smooth muscle. Using a cell placement technique to provide initial conditions, we 

biased the cellular architecture within confluent vascular tissues and measured the 

tissues' contractile stress generation. Our results suggest that tissues where the 

cellular architecture was more elongated yielded higher contractile function (Fig. 

2.4D,E). Previous work has shown similar results where we patterned VSMCs into 

fibrils of varying widths (11). In that study, we found that thinner fibrils, where the 

cells are thinner and more elongated, exhibit greater contractile stress. In addition, 

single cell traction force microscopy studies in which VSMCs were patterned into 

various rectangular aspect ratios show that cells with greater aspect ratios exhibit a 

greater percent change in contractile stress upon chemical stimulation 
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n(68). However, in both of those studies artificial ECM boundaries were used to 

enforce the architecture leading to a lack of complete cell–cell contacts. In vivo, 

VSMCs exist as concentric confluent lamellae (70). The confluence of cell–cell 

contacts is an important property to mimic in vitro because VSMCs switch 

phenotype based on cell density and thus cell–cell contact (51, 52).  At sub-

confluence, cells express synthetic markers and proliferate, a behavior distinct to the 

synthetic phenotype (51, 71).  At confluence, VSMCs express markers indicative of 

natural contractile phenotype (51). Thus, using confluent tissues, as we did, allowed 

us to study a more physiological behavior of VSMCs. 

To construct tissues with differing cell shape within a confluent monolayer, 

we utilized initial seeding conditions to bias the cellular architecture. Previous work 

has used physical barriers such as microgrooves or ridges to guide cell and tissue 

architecture (55, 72-74).  Here, we use neighboring cells to guide tissue 

organization. We have developed a microfluidic capture array device (MCAD) that 

captures cells into traps of varying depth (Fig. 2.1A) and changes the local density of 

cell–cell contacts. After flowing the cells into the traps, the cells attach to the 

substrate and align along the micropattern (Fig. 2.1B). We can vary the depth of the 

traps within the device to control the microscale density of cell seeding on the 

substrate while keeping the mesoscale tissue density constant (Fig. 2.1C). 

Traditional methods of cell seeding in vitro are performed by placing a liquid 

suspension of cells onto a substrate. The fidelity of these techniques varies from 

user-to-user; but microfluidic seeding can provide a highly repeatable method of 

seeding. By using a microfluidic cell seeding method, and varying the size of the 

traps to control the distribution of cell–cell contacts locally, we are able to place cells 

onto a substrate either as single cells (15 μm traps) with low cell–cell contact, or as 

multicellular aggregates (100, 200 μm traps) with high cell–cell contact. The 

neighboring cells in the higher depth traps provide contact guidance which forces 

the cells to elongate due to lateral contact with neighboring cells. After removing the 

device, the tissues become confluent overnight regardless of the initial seeding 

conditions. When we serum starve the VSMCs after tissue confluence (Fig. 2.2A), 
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they transform into a contractile phenotype (75), halting migration, and maintain the 

structure imposed by the initial cell–cell boundaries (Fig. 2.2E). Though our data 

suggest that cell–cell contact guidance at seeding influences the cell shape, it is 

notable that previous work has shown that increased cell–cell contact can lead to 

higher proliferation in vascular smooth muscle cells (76). Thus, the tissues 

constructed using the 100 μm and 200 μm MCADs may have increased rates of 

proliferation, which may also contribute to increased cell elongation through cell 

crowding. 

Our results suggest that in the absence of other confounding differences, cell 

architecture alone can influence vascular tissue function. This finding is notable 

because VSMC structure varies from artery-to-artery and correlates with differences 

in residual stress and mechano-adaptation rates (77, 78). Notably, bifurcations of 

cerebral arteries have varying VSMC architecture (39), where they display 

rhomboid and irregular geometries associated with the synthetic phenotype. The 

majority of cerebral aneurysms occur in these bifurcations. Our results indicate that 

the less elongated VSMCs are less dynamically responsive, which could play a role 

in wall weakening in these regions during early aneurysm formation. In addition, 

synthetic VSMCs have been shown to produce greater matrix metalloproteinase-2 

(MMP-2), which is an enzyme that is responsible for remodelling of the ECM (79, 

80). Thus, it is important to study not only VSMC function but also phenotype in the 

context of vascular diseases. 

VSMCs undergo phenotype change during development where they 

differentiate into a mature contractile phenotype (44). However, upon vascular injury 

or disease and in culture, VSMCs switch to a synthetic phenotype where they are 

more proliferative, less contractile, and more migratory (44, 45). The current 

paradigm in tissue engineering is to use phenotypic markers to determine tissue 

function(81-83). In our previous work we showed that phenotype does not correlate 

with function (84). However, in this study, we find that there is a subtle trend in 

phenotype with tissue architecture (Fig. 2.5A,B) and that the phenotype correlates 

with contractile function (Fig. 2.5C,D). In our previous work (84), we utilized artificial 
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boundary conditions with low cell–cell contact, which have been shown to be 

associated with a synthetic phenotype. In that study, we found that thinner fibrils 

were more contractile but expressed lower levels of contractile protein markers 

compared to wider fibrils, which may be due to the low cell–cell contact in the thinner 

fibrils. In addition, the phenotype differences seen in tissues with differing 

architectures were almost five-fold in the previous study, while in the current study 

they were less pronounced. This suggests that cell–cell contact influences 

phenotype expression more than cell shape but cell shape influences contractile 

function more than phenotype expression. In this study, we have engineered 

confluent tissues that are better mimics of confluent lamellae of VSMCs seen in vivo. 

Our results suggest that both VSMC function and phenotype can be influenced by 

the cellular architecture. 

One primary goal in the field of tissue engineering is the development of an 

engineered small artery for implantation. A wide range of methods using either 

natural or synthetic scaffolds and even scaffold-free methods have been used to 

construct arteries (85-92).  It has been shown that mechanical stimulation and 

growth factor stimulation all play important roles in vessel maturation and formation 

(93, 94).  Our results suggest that controlling cellular architecture is another possible 

mechanism for engineering functional artery implants. 

2.5 Methods 

2.5.1 Cell culture 

Human umbilical artery vascular smooth muscle cells (VSMCs) were 

purchased from Lonza at passage 3 and cultured at 37 °C and 5% CO2 in a growth 

medium consisting of Medium 199 (GenDEPOT, Baker, TX) supplemented with 

10% fetal bovine serum (Gibco, Grand Island, NY), 10 mM HEPES (Gibco), 3.5 g 

L−1 glucose (Sigma-Aldrich, St. Louis, MO), 2 mg L−1 vitamin B12 (Sigma-Aldrich), 

50 U mL−1 penicillin–streptomycin (Gibco), 1× MEM non-essential amino acids 



  15 

(Gibco), and 2 mM L-glutamine (Gibco). All experiments were conducted at 

passages 5–7. 

2.5.2 Sample preparation 

2.5.2.1 Device design 

Microfluidic capture array devices (MCADs) (Fig. 2.1A) were designed using 

AutoCAD (Autodesk, San Rafael, CA) and photomasks were printed onto a Mylar 

film (Fineline Imaging, Colorado Springs, CO). Three device designs were 

fabricated. For each design, the depth of the cell capture trap (15 μm, 100 μm, 200 

μm) was varied to change the initial cell seeding conditions on the substrate. Small 4 

μm gaps were added to the bottom of each trap and along the length of the multi-cell 

traps to allow for streamlines to pass through and increase the efficiency of cell 

capture (Fig. 2.1B). The rows were staggered to distribute flow evenly through the 

device (64) and the appropriate column and row spacing were calculated to achieve 

an equivalent mesoscale cell seeding density for each design (Fig. 2.1C). In the 

case of the 15 μm MCADs, each trap had a width of 30 μm and a depth of 15 μm 

designed to trap a single VSMC (~20–40 μm diameter). The column and row 

spacing were 110 μm and 55 μm, respectively. In the case of the 100 μm MCADs, 

each trap had a depth of 100 μm and was designed to trap multiple cells along its 

length. The column and row spacing were increased to 210 and 130 μm, 

respectively. In the case of the 200 μm MCADs, each trap had a depth of 200 μm. 

The column and row spacing were 210 and 240 μm, respectively. For the 100 μm 

and 200 μm MCADs, the trap widths were increased to 45 μm. 

2.5.2.2 Device fabrication 

MCADs were fabricated using common soft photolithography methods 

(95) at the Minnesota Nano Center. First, a layer of SU-8 2002 (Microchem 

Corp., Newton, MA) was spun at 3000 rpm for 30 s onto a silicon wafer (Wafer 

World Inc., West Palm Beach, FL) to provide a 2 μm gap between the device 

features and the substrate. The first layer was exposed to UV light using a 
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photomask containing the channels of the device. After exposure, SU-8 3025 

(Microchem Corp.) was spun at 2000 rpm to yield a 37 μm thick second layer. A 

second photomask, which contains the channels and features of the device, was 

aligned to the wafer, exposed to UV, and developed in SU-8 developer. Sylgard 

184 polydimethylsiloxane (PDMS, Dow Corning) was used to mold devices from 

the master. The master was silanized overnight in a vacuum desiccator. PDMS 

at a 10 : 1 ratio of base : catalyst was poured onto the master and allowed to 

cure overnight at 90 °C. 

2.5.2.3 Microcontact printing 

Extracellular matrix (ECM) protein fibronectin (FN, BD Biosciences, San 

Jose, CA) was microcontact printed on a PDMS substrate using standard 

techniques(10).  Briefly, PDMS substrates were prepared by spincoating a thin 

layer of PDMS onto a 25 mm coverglass, which was cured overnight at 90 °C. The 

FN solution (50 μg mL−1) was incubated on a PDMS stamp with microscale-raised 

features (20 μm width lines and 5 μm pitch) for 1 h then blown dry. The PDMS 

substrate was exposed to UV ozone for 8 m and the stamps were placed in 

conformal contact with the substrate, transferring the protein. Slight pressure was 

applied to the stamp then the stamps were peeled away, leaving the micropatterned 

protein. 

2.5.2.4 Cell seeding 

MCADs were cleaned by sonication in 70% ethanol for 30 m. After drying, 

the MCADs were aligned with the FN patterned substrate so that the 

micropatterned lines were perpendicular to the inlet and the outlet of the device. 

Slight pressure was used to place the MCADs in conformal contact with the 

substrate. The MCADs were primed using 10% w/v bovine serum albumin 

(Hyclone, Logan, Utah) then flushed with phosphate buffered saline. VSMCs 

were trypsinized using 0.25% trypsin with EDTA (Invitrogen, Carlsbad, CA) and 

centrifuged at 200 relative centrifugal force for 5 m. After centrifuging the 

detached cells into a pellet, cells were resuspended to a concentration of 200



  17 

000 cells per mL in growth medium. The cell suspension was then flowed 

through the device at approximately 100 μL min−1 by applying house vacuum at 

the outlet. 600 μL of cell suspension was drawn through the MCAD and then 400 

μL of growth medium was flowed through the device to rinse away cells not 

trapped in the device features. After 45 min of incubation at 37 °C, the devices 

were peeled away from the substrate and the constructs were allowed to 

incubate overnight in growth medium. For non-device samples, cells were 

seeded onto a micropatterned PDMS substrate in a 6-well dish at a density of 

220 000 cells per well. For all imaging and MTF experiments, tissues were 

serum-starved for 24–48 h to induce a contractile phenotype (75). 

2.5.3 Histochemistry 

Tissues were fixed using 4% paraformaldehyde (Electron Microscopy 

Sciences, Hardfield, PA) for 5 m then stained for F-actin (Alexa Fluor 488 

Phalloidin, Life Technologies) and nuclei (DAPI, 4′,6-diamidino-2-phenylindole, 

Life Technologies). Stained tissues were imaged using an Olympus X-81 

fluorescent microscope at 20× magnification. F-actin and nuclei images were 

obtained by capturing ten random fields of view in a single tissue and three 

tissues per condition. Seeding density was calculated by quantifying the number 

of nuclei per area. Tissue alignment was analyzed using F-actin and nuclei 

images. Orientational order parameter for a single tissue was calculated for actin 

fiber and nuclei orientation (11, 96, 97) where an OOP of 1 indicates anisotropic 

alignment and an OOP of zero indicates isotropic alignment within the tissue. 

Nuclear shape was analyzed by fitting an ellipse to each nucleus. Nuclear 

eccentricity was defined as:  

Ɛ=√1 − (
𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠 𝑙𝑒𝑛𝑔𝑡ℎ

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 𝑙𝑒𝑛𝑔𝑡ℎ
)2. 

Tissue thicknesses were determined by obtaining confocal stacks (0.2 μm 

slices, 30 μm stacks) of actin at 40× magnification using an Olympus disk 

spinning unit. Confocal stacks were deconvolved using Autoquant software 
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(Media Cybernetics, Rockville, MD). A custom Matlab script was used to 

determine tissue thickness from the deconvolved stacks. 

2.5.4 Cell lateral constraints analysis 

Cells were imaged using a Nikon TS100 microscope. The lateral constraint 

was measured by determining the number of lateral cell constraints transverse to 

tissue alignment immediately after removal of the MCAD. A lateral constraint was 

defined as the number of cells in contact with the edge of the cell of interest, 

transverse to the direction of micropattern alignment. If two cells were both 

constraining the same transverse edge, we considered this a single lateral 

constraint. Thus, the number of lateral constraints could be zero, one, or two for a 

cell of interest. The number of transverse cell contacts (0, 1, 2) was assigned 

manually. A minimum of 45 cells were measured for each condition. Non-device 

samples were not analyzed due to the time dependence of cell attachment to the 

substrate. 

2.5.5 Cell shape measurement 

Cell shape was measured by determining the aspect ratio of cells 

immediately after MCAD removal. For non-device samples, cells that were at the 

surface of the substrate (0 m) were tracked and the aspect ratio was measured at 

45 min, corresponding with MCAD removal time. Phase contrast images of the 

seeded substrates were obtained using a Nikon TS100 microscope. The cell was 

manually outlined using ImageJ. The aspect ratio was determined by fitting a line 

through the horizontal axis of the cell parallel to tissue alignment and the vertical 

axis of the cell transverse to tissue alignment (Fig. 2.3A). The aspect ratio was 

calculated as the ratio of the horizontal length divided by the vertical length. A 

minimum of 80 cells were analyzed for each condition. 
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2.5.6 Muscular thin film assay 

Muscular thin films (MTF) were constructed as in previous publications (11, 

96-98). Briefly, a 7 mm strip of a thermosensitive polymer poly(N-

isopropylacrylamide) (PIPAAm, Polysciences) was spin coated onto the center of a 

25 mm coverglass. PDMS doped with 0.2 μm fluorospheres (Polysciences) was 

then spincoated onto the PIPAAm coated coverglass and allowed to cure overnight 

at 90 °C. The thickness of the PDMS thin film was measured using a Tencor P-10 

stylus profilometer at the University of Minnesota Characterization Facility. Tissues 

were seeded on the MTF constructs as described above. MTF assay was 

performed using a method described in Grosberg et al (97). Briefly, tissue 

constructs were removed from the incubator and placed in a petri dish containing 

Tyrode's buffer at 37 °C. Thin strips of tissue approximately 1 mm × 3 mm were cut 

from the substrate on three sides. The dish was allowed to cool briefly below 32 °C, 

dissolving the PIPAAm. The thin strips were then gently peeled from the glass to 

yield flexible thin beams consisting of a PDMS layer and a cell layer. The construct 

was then transferred to the experiment dish containing Tyrode's buffer at 37 °C and 

allowed to equilibrate for 20 m prior to chemical stimulation. The MTFs were 

stimulated with 50 nM endothelin-1 (ET-1) for 10 m followed by treatment with 100 

μM HA-1077 for 30 m. The projection length of the MTFs was measured from 

images taken using a Lumar V12 stereoscope (Carl Zeiss) under fluorescent 

illumination sampled at 30 s intervals. The radii of curvature were calculated from 

the measured projection length. The tissue stress was calculated from the radius of 

curvature using a custom Matlab program. Mathematical details can be found in 

Alford et al (98).  Tissue stress was normalized to the average of the non-device 

tissue stress for each day to account for day-to-day variability. 

2.5.7 Western blotting 

Tissues were lysed with RIPA buffer containing 100 mM Tris (pH 7.4), 4 M 

urea, 5 mM EDTA, 0.5% SDS, 0.5% Nonidet P-40, and protease inhibitor cocktail 

(cOmplete Mini, Roche). Samples were run in a 4–15% Tris-HCL gel (Bio-Rad, 
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Hercules, CA) for 2 h at 120 V and transferred to a 0.2 μm PVDF membrane. The 

following primary antibodies were used; SMMHC 11 (Abcam, Cambridge, MA), 

smoothelin (Abcam, Cambridge, MA), and β-actin (Santa Cruz Biotechnology, 

Dallas, TX). LICOR secondary antibodies were used to visualize the protein on the 

LICOR Odyssey (LICOR, Lincoln, NE). All samples were quantified using Image 

Studio Lite Version 3.1 and normalized to their respective β-actin loading control and 

then normalized to the non-device control sample average signal for each respective 

gel. 

2.5.8 Statistics 

Nuclear eccentricity data and cell contact analysis were performed using a 

Kruskal–Wallis One Way Analysis of Variance (ANOVA) on ranks and pairwise 

comparison significance was computed using Dunn's method. Tissue contractility 

data were analyzed using ANOVA and pairwise comparison with significance was 

computed using the Tukey test. All correlations between pairs of data were analyzed 

using Pearson Product Moment Correlation. 

 

 

 

 

 

 

 

 

 



  21 

 

Figure 2.1. Cell seeding using the microfluidic capture array device 

(A) Microfluidic capture array device (MCAD). Scale bar: 5 mm. Top inset: 100× SEM 

image. Branching channels at the inlet are designed to route cells into traps. Scale 

bar: 500 μm. Bottom inset: 500× SEM image. Each cell trap is designed to trap cells 

in between the protruding columns. Scale bar: 50 μm. (B) Micropatterning and cell 

seeding diagram. The substrate is patterned with the ECM prior to application of the 

device. A cell suspension is flowed through the device to trap cells hydrodynamically. 

A small gap between the trap columns and the substrate allows for cells to attach 

and spread on the substrate. (C) Phase contrast images of primed devices and 

VSMC seeding onto the micropatterned substrate. After traps are filled, the sample is 
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incubated for 45 min prior to device removal. An aligned and confluent tissue forms 

after overnight incubation. Scale bars: 50 μm. 
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Figure 2.2. Sub-cellular and tissue architectures 

(A) Fluorescent images of tissues after overnight incubation. Green: F-actin. Blue: 

nuclei. Scale bar: 50 μm. (B–E) Quantification of the cellular architecture for each 

seeding condition. (B) Tissue confluence measured by F-actin percent coverage. (C) 

Actin orientational order parameter. (D) Nuclear orientational order parameter. (B–D) 

Error bars = standard deviation. (E) Nuclear eccentricity. (Box = 25–75%, red line = 

mean, black line = median, error bars = 10–90%) (* = statistically different from non-

device and 200 μm tissues, ** = statistically different from all other conditions, p < 

0.05). 
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Figure 2.3. Initial seeding condition influences the cellular architecture in 
engineered tissues 

(A) Quantification of cell shape 45 min after seeding. Yellow dashed line = the cell of 

interest. Red dashed line: cells acting as lateral constraints to the cell of interest. 

Scale bars: 25 μm. (B) Cell aspect ratio as a function of lateral constraints. (Box = 

25–75%, red line = mean, black line = median, error bars = 10–90%) (* = statistically 

different from 0 cell contact condition, p < 0.05). (C) Histogram of lateral constraints 

from each device seeding. (D) Cell aspect ratio measured immediately after device 

removal (45 min). (Box = 25–75%, red line = mean, black line = median, error bars = 

10–90%). (E) Correlation between mean cell aspect ratio (45 min) and mean 

nuclear eccentricity in tissues (48 h). Error bars = 25–75%. 
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Figure 2.4. Muscular thin film (MTF) assay 

(A) Thin film construction. The layers consist of a PDMS layer and an engineered 

tissue layer of VSMCs. (B) PIPAAm release yields a curved beam due to stress 

generated by the tissue layer. The projection length is used to calculate the radius of 

curvature which is used to calculate the stress in the tissue layer. Inset: theoretical 

transmural circumferential stress distribution. (C) Temporal tissue stress for a single 

MTF exposed to endothelin-1 generates an induced contraction followed by rho-

kinase inhibitor HA-1077 to knock out all active contraction. The overhead view 

transmitted light images of a single MTF at specified time points show the projection 

length of MTF. The yellow arrows indicate the projection length of the thin film. Scale 

bar: 500 μm. (D) Normalized induced contraction stress after tissues are stimulated 

with 50 nM ET-1. (* = statistically different from non-device samples, p < 0.05). (E) 

Normalized basal tone after tissues were relaxed with HA-1077. (‡ = statistically 

different from non-device and 15 μm tissues, p < 0.05). Error bars = standard 

deviation. (F) Correlation between mean nuclear eccentricity and mean normalized 

induced contraction. (G) Correlation between mean nuclear eccentricity and mean 

normalized basal tone. 
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Figure 2.5. VSMC phenotype and function 

(A) Western blot quantification of the VSMC phenotype. (B) Fold change expression 

of contractile markers normalized to control condition. Error bars: standard error. (C) 

Correlation of normalized induced contraction to fold change protein expression. 

(Pearson correlation: r, p). SMMHC: (0.986, 0.014); Smoothelin: (0.931, 0.069). (D) 

Correlation of normalized basal tone to fold change protein expression. (Pearson 

correlation: r, p). SMMHC: (0.894, 0.106); Smoothelin: (0.994, 0.006). (C and D) 

Error bars: x-standard deviation, y-standard error. 
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Chapter 3. Ceullular micro-biaxial stretching to measure a 

single-cell strain energy density function 

This chapter contains material previously published in Journal of Biomechanical 

Engineering and is reproduced with permission. Win Z, Buksa JM, Luxton GWG, 

Barocas VM, and Alford PW (2017) Cellular micro-biaxial stretching to measure a 

single-cell strain energy density function.  

© ASME. Reproduced with permission. All rights preserved. 

3.1 Summary 

The stress in a cell due to extracellular mechanical stimulus is determined 

by its mechanical properties, and the structural organization of many adherent 

cells suggests that their properties are anisotropic. This anisotropy may 

significantly influence the cells’ mechanotransductive response to complex loads, 

and has important implications for development of accurate models of tissue 

biomechanics. Standard methods for measuring cellular mechanics report linear 

moduli that cannot capture large-deformation anisotropic properties, which in a 

continuum mechanics framework are best described by a strain energy density 

function (SED). In tissues, the SED is most robustly measured using biaxial 

testing. Here, we describe a cellular micro-biaxial stretching (CμBS) method that 

modifies this tissue-scale approach to measure the anisotropic elastic behavior of 

individual vascular smooth muscle cells (VSMCs) with native-like 

cytoarchitecture. Using CμBS, we reveal that VSMCs are highly anisotropic 

under large deformations. We then characterize a Holzapfel-Gasser-Ogden type 

SED for individual VSMCs and find that architecture-dependent properties of the 

cells can be robustly described using a formulation solely based on the 

organization of their actin cytoskeleton. These results suggest that cellular 

anisotropy should be considered when developing biomechanical models, and 

could play an important role in cellular mechano-adaptation.
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3.2 Introduction 

Active mechanical feedback between cells and their environment has 

important implications for tissue homeostasis and repair as it influences stem cell 

differentiation (99), tissue self-organization (100, 101),  and the ability of tissues 

to adaptively grow and remodel in response to mechanical forces (102, 103). 

Many tissues are composed of highly organized fibrous matrices with anisotropic 

mechanical properties (104, 105), to which cells are highly attuned (106), 

suggesting an important role for anisotropy in mechanobiology. Cells found in 

mechanically dynamic tissues, like muscle and arteries, have similarly organized 

structure (39, 107), likely resulting in tissue-like anisotropic mechanical 

properties, and potentially influencing mechanotransductive signaling (108-111). 

However, the general approach using current methods (e.g. bead cytometry 

(112), micropipette aspiration (113), atomic force microscopy (114) for measuring 

cellular elastic mechanical properties report linear moduli (115, 116) intended for 

assessment of small-strain isotropic materials. 

A description of the full large-strain anisotropic properties of cells is 

necessary for developing robust mathematical models of tissue biomechanics. 

Cells that exist in dynamic mechanical environments must constantly adapt to 

maintain tissue integrity (117). Growth and remodeling theory often posits that 

this adaptation is driven by changes in cell stress (118). Theoretical approaches 

that capture this mechano-adaptation could be used to develop model-aided 

individualized medicine to, for example, predict aneurysm growth and rupture 

(119, 120). Modern tissue modeling approaches, like constrained mixture (121-

125) and multiscale (126-128) models, require mechanical descriptions of each 

of the constituents in the tissue. So, for these models to be successful, it is vital 

that we understand how the complex forces and deformations impact cellular 

mechanics and mechanotransduction. But, the large-strain anisotropic properties 

needed for the models have not been empirically determined.  
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Here, we seek to measure large-strain anisotropic properties of cells which can 

be used to improve multiscale models of tissues. In continuum mechanics, the 

full elastic mechanical behavior of a material is described by the strain energy 

density function (SED) (129). The gold standard method for measuring the SED 

of tissue samples is biaxial testing (104, 105). While tissue-scale biaxial testing 

requires samples to be physically clamped or sutured to the testing apparatus, 

this is not feasible with individual cells.  Thus, we have developed cellular micro-

biaxial stretching (C𝜇BS) microscopy to measure the large-deformation SED of 

micropatterned adherent cells by modifying tissue-scale stretching methods and 

coupling them with traction force microscopy (130). Using this approach, we find 

that vascular smooth muscle cells (VSMCs) with native-like elongated 

geometries have highly anisotropic cell-shape dependent mechanical properties, 

and can be described by a simple SED determined by the organization of the 

VSMC actin cytoskeleton. 

3.3 Methods 

3.3.1 Substrate fabrication and cell micropatterning  

Micropatterned polyacrylamide-elastomer composites were fabricated by 

combining the methods of Simmons et al. (131) and Polio et al (132) (Fig. 3.1A). 

Elastomer membranes (0.01” thick, Specialty Manufacturing, Sagniaw, MI) were 

clamped into membrane grips and placed under slight tension using custom 

fabricated grip holders so that the membranes were taut. Glass slides were 

adhered to the bottom of the membranes to prevent oxygen diffusion into the 

membrane during subsequent steps. Polydimethylsiloxane (PDMS) rings (30 mm 

diameter x 3 mm wall thickness) were then bonded to the membrane to retain 

cell culture media. Ideally, biaxial stretching would be performed using a large 

number of stretching protocols on a single sample (104, 133). However, cells 

remodel in response to mechanical load (134), which limits the number of 

protocols to which a single cell can be exposed. To overcome this limitation, 

VSMCs were micropatterned with identical architectures, conferring a uniform 
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geometry for direct comparison between cells exposed to different stretching 

protocols. Standard photolithography techniques were used to design PDMS 

stamps with arrays of 4000 μm2 features, as previously published (135), of 

varying aspect ratios (AR). Aspect ratios (AR1: 63 μm x 63 μm; AR2: 91 μm x 44 

μm; AR4: 127 μm x 32 μm; AR8: 175 μm x 22 μm) were chosen to mimic the 

ranges of physiological shapes ranging from cobblestone shapes in blood vessel 

bifurcations and more elongated geometries seen in unbranched blood vessels 

(39). Stamps were inked with 100 μg/mL of human fibronectin (BD Biosciences) 

for 1 hr. The stamps were blown dry with air, then placed in conformal contact 

with an O2-plasma treated 15 mm glass coverslips for 30 min. Elastomer 

membranes were functionalized with photoinitiator benzophenone (10% w/v in 

35:65 water/acetone) by placing 1 mL of solution onto the center of the 

membrane within the boundary of the PDMS ring for 1 min. The membranes 

were then rinsed 3x with methanol and degassed for 30 min to remove oxygen. 

Pre-polymer gel solution was prepared with 10/0.13/0.005% w/v acrylamide/bis-

acrylamide/acrylic acid N-hydroxysuccinimide (Sigma), 0.014% 1 M HCl, 0.01% 

0.2 μm red fluorescent beads (Polysciences)  and degassed for 15 min, then, 

0.002/0.05% w/v of tetramethylethylenediamine/ammonium persulfate (Sigma) 

was added. Degassed and functionalized membranes were vented to N2 gas. 10 

μL of the prepolymer solution was deposited onto the functionalized elastomer 

and covered with the micropatterned coverslip (patterned side down). The gels 

were then exposed to UV illumination using a Jelight 342 UVO Cleaner for 30 

min approximately 1 in away from the UV lamp. After polymerization, gels were 

hydrated in 1x phosphate buffered saline for 15 min and the coverglasses were 

removed. Gels were then passivated with 4% bovine serum albumin for 1 hr and 

then incubated in cell growth media for 48 hr at 37 °C to remove residual 

benzophenone and unreacted pre-polymer constituents. Gel moduli were 

measured by fabricating dog-bone shaped (~5 mm width, ~5 mm thick, ~50 mm 

length) gels in a custom mold and performing uniaxial testing using an Instron 

biaxial stretcher (Tissue Mechanics Lab, University of Minnesota). 
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3.3.2 Stretcher design  

Cellular micro-biaxial stretching (C𝜇BS) was used for simultaneous 

stretching and imaging of cells. The C𝜇BS device consists of four independent 

linear actuators (M-111.1DG, M-110.1DG, Physik Instrumente) (Fig. 3.1B) with a 

total travel range of 20 or 30 mm (50% or 75% strain), controlled by a servo-

motor controller (C-863, PI), and mounted on to the microscope stage. Custom 

stainless steel arms and membrane grips (Fig. 3.1B) mounted to the actuators 

constrained a cruciform shaped elastomer membrane. CAD plans for all custom-

designed parts will be provided on request. Grip strain was calculated by 

measuring distance between the grips with respect to the initial distance between 

the grips. Substrate strain to grip strain calibration was performed by tracking 

bead displacement in the top layer of the gel during cell-free stretch (see Fig.  

3.2D) applied by the actuator membrane grips and calculating strain (Fig.  

3.1C,D). We define a ~50 μm x 50 μm region centered about the microscope 

field of view and measure the locations of the beads in the corner of the region. 

The substrate strains were then calculated by measuring relative displacement of 

beads with respect to the original locations for each step of grip strain. 

3.3.3 Cell culture 

Human umbilical artery vascular smooth muscle cells (VSMCs) were 

purchased from Lonza at passage 3 and cultured at 37 °C and 5% CO2 in a 

growth medium consisting of Medium 199 (GenDEPOT, Baker, TX) 

supplemented with 10% fetal bovine serum (Gibco, Grand Island, NY), 10 mM 

HEPES (Gibco), 3.5 g L−1 glucose (Sigma-Aldrich, St. Louis, MO), 2 mg 

L−1 vitamin B12 (Sigma-Aldrich), 50 U mL−1 penicillin–streptomycin (Gibco), 1× 

MEM non-essential amino acids (Gibco), and 2 mM L-glutamine (Gibco). All 

experiments were conducted at passages 5–7. Cells were seeded at a density of 

5,000-15,0000 cells per gel-membrane construct overnight in growth media to 

allow cells to adhere to micropatterns. After overnight seeding, cells were serum 
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starved for a minimum of 24 hrs prior to all experiments to induce a physiological 

phenotype (136).  All experiments were conducted at 37 ˚C in Tyrode’s solution. 

3.3.4 Cell structure determination 

Cells were fixed using 4% paraformaldehyde (Electron Microscope 

Sciences, Hardfield, PA) for 5 mins then stained for F-actin (Alexa Fluor 488 

Phalloidin, Life Technologies), nuclei (DAPI, 4’,6-diamiidino-2-phenylindole, Life 

Technologies) and microtubules (YL ½ hybridoma, Sigma-Aldrich). F-actin and 

microtubules were imaged using an Olympus X-81 fluorescent microscope at 40x 

magnification (UPLSAPO40X2, NA 0.95) using a Hamamatsu ORCA-R2 

(C10600) CCD camera, and fiber distributions were measured using a custom 

Matlab code (84, 96). F-actin stacks were obtained using an Olympus FluoView 

FV1000 BX2 laser-scanning confocal microscope (UPlanFLN, 40X, NA 1.30) at 

the University Imaging Centers (University of Minnesota). Cell thicknesses and 

volume were determined using a custom Matlab script (84). Cell cross-sectional 

area was determined by integrating the cell thickness over the cell width. The 

axial mid-plane area (𝐴𝑥) was taken as the mean area over the middle 50% of 

the cell. The transverse midplane area (𝐴𝑦) was calculated similarly. Cell 

architecture was determined using at least 10 cells per micropattern aspect ratio. 

3.3.5 Single cell biaxial testing 

For the standard experiment, substrates were stretched by applying 

increments of 5% grip strain up to 25% uniaxial (uniaxial-axial (uniaxial-A), in the 

direction of cell alignment, or uniaxial-transverse (uniaxial-T), transverse to cell 

alignment) and 20% equibiaxial strains at 0.1%/s (Fig 3.2A,B). Note: 5% grip 

strain equated to ~4% substrate strain at the cell/gel interface (see Fig 3.1C). At 

each increment, brightfield images of the cells and fluorescent images of the 

beads at the top layer of the gel were obtained at 40x magnification 

(UPLSAPO40X2, NA 0.95, Olympus X81). The cells were then lysed with 0.1% 

SDS and the stretching protocol was repeated (Fig. 3.2B). For the repeated 
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stretch experiments, the stretch was repeated four times prior to cell lysis. To 

determine the contribution of major cytoskeletal components to the cell 

properties, cells were treated with nocodazole (20 μM) to inhibit microtubule 

polymerization or cytochalasin D (0.5 μM) to inhibit f-actin polymerization prior to 

stretch for 1 hr (137-139). A maximum of five micropatterned cells per substrate 

were imaged and analyzed in any single stretching experiment, to maintain 

consistency between experiments. Only cells with single nuclei, confirmed by 

nuclear staining post-stretch, were analyzed. 

Pre and post lysis bead images were compared using particle image 

velocimetry (PIV) to determine the cell-induced substrate deformation (140). 

Displacement fields were calculated using 5x5 μm2 grids interrogated every 2.5 

μm. Average experimental displacement maps were generated assuming cell 

quarter symmetry. The displacement of the substrate about each cell quadrant 

was averaged for all cells of each aspect ratio.  

Individual cell traction stress vectors were determined from bead 

displacements using an unconstrained Fourier transform traction cytometry 

(FTTC) algorithm (140) with a regularization factor of 1E-9 and assumed 

Poisson’s ration of 0.5, yielding a grid of n substrate traction stresses vectors 

given by 𝐓𝐧 = Tx
n𝐞𝐱 + Ty

n𝐞𝐲 where 𝐞𝐢 is the unit vector in the i direction. The total 

traction force components fx and fy are given as 

 fi = ∑ (−Ti
nAn ri

n

|ri
n|

)n ,     [3.1] 

where i = x, y, An is the area (6.25 μm2) of discrete surface n, and 𝐫𝐧 = rx
n𝐞𝐱 +

ry
n𝐞𝐲 is the vector that described the location of surface n with respect to the 

center of the cell (135). The First Piola-Kirchhoff stresses (force with respect to 

undeformed cross-sectional area) Px and Py were taken as  

Px =
fx

2Ax
 and Py =

fy

2Ay
      [3.2] 
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3.3.6 Planar biaxial strain energy density determination 

The cell was treated as an anisotropic incompressible material exposed to 

planar biaxial deformation (no shear). The deformation tensor 𝐅 = diag[λx, λy, λz] 

was taken as the observed deformation of the cell, where λi are the stretch ratios 

in the i direction (x: parallel to the long axis of the cell, y: parallel to the short axis 

of the cell, and the z: perpendicular to the gel surface). The 1st Piola-Kirchhoff 

stress in the i direction is given by 

Pi =
∂W

∂λi
−

λz

λi

∂W

∂λz
      [3.3] 

where W is the SED of the cell, i = x, y, and λz = (λxλy)
−1

. 

The cell was assumed to be composed of pre-stressed actin fibers within 

an isotropic matrix. The shear modulus of the matrix is given by μm. The actin 

fiber stiffness is characterized by the parameter Cf, and the stress-free shortening 

that the fiber would undergo if it was unconstrained is given by λa. The fibers 

were assumed to be oriented as described by the measured whole-cell 

orientation probability density in the x-y plane and with an assumed Gaussian 

distribution out of the x-y plane. The fiber orientation was used to determine a 

structure tensor 𝐇 = αij𝐞𝐢𝐞𝐣, as defined by Gasser et al (141). (𝛼𝑖𝑗values for each 

AR can be found in Table 3.1.)  

Briefly, fiber orientation was described by the unit vector 𝐌(Θ, Φ) =

sinΘcosΦ𝐞𝐱 + sinΘsinΦ𝐞𝐲 + cosΘ𝐞𝐳 where Θ and Φ are Eulerian angles with 

respect to the z and x axes, respectively and 𝐞𝐢 is the unit vector in the i direction. 

The density function ρ(𝐌) was normalized so that 

1

4π
∫ ρ(𝐌(Θ, Φ))dω = 1

ω
    [3.4] 
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and the structure tensor was given by 

𝐇 = αij𝐞𝐢𝐞𝐣 =
1

4π
∫ ρ(𝐌(Θ, Φ))𝐌(Θ, Φ)𝐌(Θ, Φ)dω

ω
.  [3.5] 

When the fiber distribution is included, the SED of the cell was given as 

W =
μm

2
(λx

2 + λy
2 + λz

2 − 3) +
Cf

4
(αxx (

λx

λa
)

2

+ αyy (
λy

λa
)

2

+ αzz (
λz

λa
)

2

− 1)
2

. [3.6] 

Parameter optimization was performed by comparing predicted vs 

experimental stress Px and Py at the six uniaxial stretches and five equibiaxial 

stretches corresponding with the measured substrate deformations (Uniaxial: 

λ = 1.00, 1.04, 1.08, 1.12, 1.16, 1.20 in the directions of stretch and λ =

1.00, 0.99, 0.98, 0.97, 0.96, 0.95 transverse to the stretch. Equibiaxial: λ =

1.00, 1.04, 1.08, 1.12, 1.16 in both directions). The range of possible parameters 

was limited to μm: 0.5 − 10kPa, Cf: 1 − 100kPa, and λa: 0.8 − 1.0. This parameter 

range was determined using both the practical constraints of the model and 

physical assumptions of the cell.  A too large mismatch between μm and Cf 

caused the finite element model used to validate this model (next section) to be 

unable to converge, limiting the range of μm.   In previous models, λawas 

assumed to be 0.9 at homeostasis, with a minimum possible value (during 

maximum stimulation) of 0.6 (124). Since our cells were not being stimulated, we 

limited the range of λa. The parameter set that best fit the experimental data, as 

determined by least squares fitting, was determined to be optimal. 

3.3.7 Finite element model 

To validate the SED determined using planar biaxial assumptions, a 

quarter symmetry finite element model of the cell and underlying polyacrylamide 

and elastomer substrates was developed using COMSOL Multiphysics 4.2. The 

cell was modeled as hyperelastic and nearly incompressible with a SED of 

W =
μm

2
(I1 − 3) +

Cf

4
(𝐇: (𝐀−𝐓 ∙ 𝐂 ∙ 𝐀−𝟏) − 1)2 +

κ

2
(J − 1)2  [3.7] 
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where 𝐂 = 𝐅𝐓 ∙ 𝐅, I1 = tr(𝐂), 𝐀 = diag[λa, λa, λa], J = det (𝐅), and κ is the bulk 

modulus. The gel and elastomer membrane were modeled as neo-Hookean, with 

a strain energy density function of 

W =
μ

2
(I1 − 3) − μ ln(J) +

λ

2
(ln(J))2    [3.8] 

where μ is the shear modulus and λ is the first Lamè parameter. Gel parameters 

were taken from the experimentally determined Young’s modulus (E) and 

assumed Poisson’s ratio (ν) based on the relations μ =
E

3(1−2ν)
 and λ =

Eν

(1+ν)(1−2ν)
. 

Elastomer parameters were based on standard PDMS values (142, 143).  

The model geometry was meshed with tetrahedral elements using 

COMSOL’s physics-controlled meshing sequence. The AR1 model had 21204 

elements (cell: 821, gel: 10005, membrane: 10378). The AR2 model had 21265 

elements (cell: 850, gel: 9945, membrane: 10470). The AR4 model had 22435 

elements (cell: 929, gel: 11173, membrane: 10333). The AR7 model had 23870 

elements (cell: 1146, gel: 12205, membrane: 10429). Displacement consistent 

with experimental strains was applied to the membrane and gel on the non-

symmetry x-y planes. The top surface was free and the bottom surface was 

constrained from displacement in z. The governing equations were solved via 

quasi-static analysis. Prior to displacing the boundaries, the activation tensor, 

which is initially 𝐀 = 𝐈 was incremented linearly with time until 𝐀 = diag[λa, λa, λa]. 

The non-symmetry boundaries were then incremented linearly with time, while 𝐀 

was not varied. Cell-induced displacement (d) was determined as d =

((u − uo)2 + (v − vo)2)1/2 where u and v are the displacements of the top surface 

of the gel in x and y and uo and vo are the expected displacements due to the 

prescribed boundary displacement. Model-predicted cell-induced substrate 

displacements (d) were then compared to the average experimental substrate 

displacements. 
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3.3.8 Statistical analyses 

Differences in stress as a function of strain were compared by using a 

One Way Analysis of Variance (ANOVA) and pairwise comparison significance 

was performed using a Holm-Sidak test. Differences in Px and Py as a function of 

strain were compared by using a Two Way ANOVA and pairwise comparison 

significance was performed using a Holm-Sidak test. Similarly, nocodazole and 

cytochalasin D treatment were compared to control stress values for each aspect 

ratio cell and stretch using a Two Way ANOVA and pairwise comparison 

significance was performed using a Holm-Sidak test. Computational fits to 

experimental data were compared by computing 𝑟2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
. Sum of squares 

of residuals and the total sum of squares were computed as 𝑆𝑆𝑟𝑒𝑠 = ∑ (𝑦𝑖 − 𝑓𝑖 )2
𝑖  

and 𝑆𝑆𝑡𝑜𝑡 = ∑ (𝑦𝑖 − 𝑦̅)2
𝑖  over n values over i, where yi are data  values, fi are 

predicted values, and 𝑦̅ is the mean of data.  

3.4 Results 

3.4.1 Single-cell biaxial stretching with C𝝁BS microscopy  

To perform single-cell biaxial stretching, we developed the C𝜇BS 

microscopy method to measure the stress in cells adhered to a deformable 

elastomer substrate. The C𝜇BS device (Fig. 3.1B) can apply any combination of 

x-y strains up to 25% grip strain (Fig. 3.2A). Cells were micropatterned on a 

fluorescent bead-doped layer of polyacrylamide (Young’s modulus: 13.5 +/- 2.2 

kPa) adhered to an elastomer membrane  and stretched by increments of 5% 

grip strain up to 25%, while the deformation of the substrate beneath the cell was 

measured using the displacement of the embedded beads. Traction force 

microscopy methods (130) were used to determine the traction stresses applied 

to the substrate by the cell at each stretch increment, by comparing substrate 

deformation during identical stretching protocols with the cells intact and after cell 

lysis.  
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3.4.2 VSMCs with native-like architecture exhibit anisotropic material 

properties 

In vivo, VSMCs are normally organized into elongated spindles wrapped 

circumferentially around blood vessels (39). To mimic this architecture, the cells 

were micropatterned with an aspect ratio (AR) of 4:1 (AR4) (Fig. 3.3A). When the 

cells were stretched uniaxially parallel to their long axes (uniaxial axial, uniaxial-

A), the cell-induced substrate deformation and traction force increased with 

increasing applied strain and decreased with decreasing strain (Fig. 3.3A,B). 

VSMCs were consecutively stretched four times over 110 minutes (Fig. 3.3B), 

during which we observed hysteresis during unloading, consistent with previous 

viscoelastic (144-148) or soft glassy (149) descriptions of cells. However, the 

cellular traction forces during both loading and unloading were consistent over 

the four stretches (Fig. 3.3C,D). The cycle-independent nature of the force-strain 

behavior indicates that the VSMCs were not plastically deforming (150) or 

significantly remodeling (151) during the stretching protocol, allowing their elastic 

properties to be measured. For the remainder of this work, we focused only on 

the first extension (increasing strain) of each cell, and did not perform repeated 

stretch.  

Confocal microscopy was used to determine the 3-D geometry of the 

micropatterned cells. The mean axial and transverse cross-sectional areas were 

determined to be Ax = 78 μm2 and Ay = 278 μm2, respectively. The undeformed 

geometry was used to calculate the mid-plane first Piola-Kirchhoff stress (129) 

during stretching. For uniaxial-A stretching (Fig. 3.4A), the stresses in the 

direction of stretch (𝑃𝑥) increased with strain, while transverse stresses (𝑃𝑦) were 

lower and nearly constant (Fig. 3.4B). However, when the cells were stretched 

uniaxially parallel to their short axes (uniaxial transverse, uniaxial-T) (Fig. 3.4C) 

the stresses in both the stretched (𝑃𝑦) and unstretched (𝑃𝑥) directions were nearly 

unchanged over 0%-20% strain (Fig. 3.4D). When equibiaxially stretched (Fig 

3.4E), the cells’ stress-strain behavior in each direction mimicked that of the 

uniaxial stretch (Fig. 3.4F). This large-deformation mechanical anisotropy is 
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consistent with previous small-deformation studies in micropatterned cells (152). 

Taken together, these data demonstrate that there is significant material 

anisotropy in VSMCs with native-like elongated architecture (39). 

3.4.3 Cellular architecture dictates VSMC material properties 

The stereotypical elongated VSMC architecture is dramatically altered 

near small artery bifurcations (39). It is notable that cerebral aneurysms, which 

are thought to initiate due to a weakening of the artery wall, occur 

disproportionately around these bifurcations (153). To determine the effect of 

cellular architecture on mechanical properties, we performed C𝜇BS microscopy 

on VSMCs micropatterned with matching adhesive areas, but varying aspect 

ratios (1:1 (AR1), 2:1 (AR2), 4:1 (AR4), 8:1 (AR8)) (Fig 3.5A). VSMC volume was 

fairly consistent in the patterned cells (AR1: 7841 +/- 2512 μm3, AR2: 8954 +/- 

3323 μm3, AR4: 10164 +/- 3452 μm3 AR1: 8831 +/- 2984 μm3; only AR1 and AR4 

were statistically different). But, the cross-sectional areas were altered by the 

micropatterning such that larger aspect ratios have decreasing axial cross-

section (Ax) and increasing transverse cross section (Ay) (Fig. 3.5B). VSMCs with 

larger ARs had greater axial pre-stress and were stiffer when stretched parallel to 

their long axes, compared to VSMCs with smaller ARs (Fig. 3.5C). Conversely, 

cells with larger aspect ratios had lower transverse pre-stress and were less stiff 

when stretched transverse to their long axes (Fig. 3.5C). These trends were 

consistent for equibiaxial stretching (Fig. 3.5C). These results, taken as a whole, 

indicate that anisotropic pre-stress and resistance to strain depend on cellular 

architecture (39). 

3.4.4 Actin cytoskeleton mediates whole-cell mechanical anisotropy 

The actin and microtubule cytoskeletons are critical structural components 

of cells (116). We asked whether the observed cell shape-dependent mechanical 

properties were a result of changes in cytoskeletal architecture. To quantify their 

organization, we stained VSMCs for actin and microtubule filament systems (Fig.  
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3.6A) and found that both are highly anisotropic in high AR VSMCs (Fig. 3.6B,C), 

and increasing anisotropic alignment correlates with increasing mechanical 

anisotropy (Fig. 3.6B-E). To determine the contributions of these filament 

systems to the mechanical properties of VSMCs, axial and transverse uniaxial 

stretching  was performed in cells treated with nocodazole or cytochalasin D, 

which act to depolymerize microtubule or actin filaments, respectively (138). 

While nocodazole treatment hardly altered the mechanical behavior of VSMCs 

(Fig. 3.6F,G), cytochalasin D treatment significantly reduced VSMC rigidity in 

comparison to control cells (Fig. 3.6H,I). Thus, these data suggest that the 

mechanical properties of VSMCs are mediated by the intact actin cytoskeleton. 

3.4.5 Actin organization-based SED is sufficient to characterize VSMC 

mechanical properties 

To determine the SED of VSMCs at the single-cell level, we first analyzed 

the C𝜇BS method as planar biaxial stretching (i.e. no shear), as previously 

described for tissue-scale biaxial tests (104). We assumed that cellular 

deformation and material properties were uniform and described by a three-

parameter SED using the measured actin orientation to define a distribution of 

pre-stressed fibers within an isotropic matrix (141) (see Table 3.1). Parameters 

were optimized so that the model reproduced the experimentally measured AR4 

1st Piola-Kirchhoff stresses for all stretching protocols (Fig. 3.7A, Table 3.2). 

Next, we asked whether the AR4 SED could be generalized for any cellular 

architecture for which the actin orientation is known. To do this, we simulated 

planar biaxial tests of VSMCs with varying ARs. All parameters were identical to 

those determined for the AR4 cell, except the actin orientation, which was based 

on those measured for VSMCs of each aspect ratio (Table 3.1). For each of the 

experimental stretching protocols, this simple model was able to capture the 

stress-strain behavior of VSMCs of most ARs (Fig. 3.7B). 

Adhered VSMCs are likely not truly undergoing shear-free planar biaxial 

deformation. To determine whether our planar biaxial model recapitulates the 

true dynamics of the cell, we developed a 3-D quarter symmetry finite element 
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(FE) model of the AR4 cell and its underlying substrate (Fig. 3.8A). When this 

model was used to replicate the three experimental stretching protocols, the 

VSMC-induced substrate deformation in the model mirrored the experimentally 

measured mean displacement throughout each stretching protocol (Fig. 3.8B-D), 

suggesting that our planar biaxial assumptions do not create excessive error. 

There was good agreement between FE model-predicted and experimentally 

measured substrate deformations for most ARs (Fig. 3.9), with AR1 deformations 

varying the most from the experimental, likely due to greater spatial 

heterogeneity in actin orientation. Thus, these data demonstrate that a simple 

SED based solely on the organization of the actin cytoskeleton can be used to 

describe the elastic properties of VSMCs. 

3.5 Discussion 

To determine the cellular stress induced by extracellular mechanical 

stimuli, it is necessary to know the mechanical properties of the cells. Here, we 

describe the C𝜇BS method for performing biaxial tests on individual cells to 

determine the SED that fully describes their elastic mechanical properties. 

Standard methods for measuring cellular elastic properties, such as atomic force 

microscopy indentation (154), micropipette aspiration (155), magnetic tweezers 

(145), and magnetic twisting cytometry (156), report isotropic descriptions of the 

cell’s properties, like Young’s modulus. While this is sufficient for comparative 

studies (157), most adherent cells are not well-described by a single modulus 

due to their structural anisotropy. Our results show that VSMCs patterned with in 

vivo like architecture are highly anisotropic. Elongated cells were markedly stiffer 

when stretched parallel to their long axes, compared to their short axes. It is also 

notable that we found limited orthogonal coupling in VSMCs, which is unlike 

intact arteries, where axial stretch significantly alters pressure-radius behavior in 

vessel inflation tests (158). 

VSMCs in arteries can undergo physiological strains of up to 15-25%, per 

cardiac cycle (159, 160), and under extreme conditions such as aneurysm 
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growth, chronic strains may be markedly larger. In this study, we used strains up 

to 20%, to measure large-deformation anisotropic mechanical properties that are 

appropriate for these cells.  Many tissues, including arteries, have highly 

nonlinear material properties when exposed to large strains (158, 161). However, 

we did not find significant nonlinearity in VSMC stress-strain behavior, though it 

is notable that our strains were not as large as those in many tissue studies 

The primary aim of this study was to determine the SED of VSMCs. It is 

important to know the SED, rather than a simple modulus, when developing 

computational models of cells and tissues. Cutting edge models of tissue 

mechanics, like rule-of-mixtures (121-125) and multiscale (126-128) models, 

consider the contribution of each tissue constituent independently. As a result, 

the assumed properties of these constituents can significantly alter model 

predictions (162). Thus, for models that simulate complex loads, the full 

anisotropic description captured by the SED is necessary. Here, we 

characterized native-like AR4 VSMCs with a simple three parameter SED that 

incorporates actin cytoskeletal organization. With only actin alignment altered, 

this SED was also able to describe cells patterned into other ARs, demonstrating 

that an architecture-dependent SED can robustly describe VSMCs.  

In this study, we found that VSMCs with larger ARs have greater prestress 

and are stiffer in their long axes, which is consistent with evidence that cells with 

greater prestress exhibit increased stiffness (163). In a related study, it was 

found that in highly-aligned confluent engineered tissues, VSMC AR influences 

tissue prestress, even when actin organization is not significantly altered (36). In 

those tissues, agonist-induced contractility also increases with increased AR, 

possibly due to altered phenotype expression (36), suggesting that a model that 

considers both cytoskeletal organization and expression of a set of key 

phenotype markers could improve on the one presented here. 

The C𝜇BS method requires several assumptions that may affect 

experimental robustness. We assume that the cell is a continuum body with a 
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uniform SED throughout, ignoring the contribution of the nucleus (164, 165) and 

spatial variation of cytoskeletal organization. Thus, we report an average planar 

cell stress, with no assumptions of the stress distribution in the cell. We ignored 

viscous behavior and assumed that the cells were purely elastic when 

determining the SED. However, we observed hysteresis during cell unloading, 

demonstrating time-dependent mechanical properties that have been previously 

described with both viscoelastic (144-148) and soft glassy rheology (149) 

theories. Another shortcoming of this study is that we did not study the range of 

possible SEDs, only one formulation. In addition, due to constraints in the data 

range over which the model would converge, we did not sample the entire 

possible parameter space. This is most notable in our fitting of 𝜇, which is at the 

bottom of our tested data range and for which there is no physical reason that it 

could not be lower. Finally, C𝜇BS only truly measures two dimensional 

properties, and it has been shown that adherent cells exert forces normal to their 

substrates (166, 167). In the VSMCs studied, the primary orientation of the actin 

cytoskeleton is in 2-D plane measured, so though there is out-of-plane rigidity, it 

is likely that it is relatively low. Although beyond the scope of this study where we 

study mechanical properties of single cells, multi-cellular monolayers have been 

shown to exhibit complex material properties due to cell-cell contact. In the 

future, C𝜇BS microscopy can be extended to study mechanical properties of 

multi-cellular monolayers (168).  

Early elasticity-based measurements, like biaxial testing, formed the basis 

of the field of modern soft-tissue biomechanics (104). These studies not only 

demonstrated the complex structure-function relations of tissues (169-171), but 

laid the foundation for the tissue-scale growth and remodeling theory currently 

used to model how tissue function is affected by mechanical perturbations (172, 

173). Today, mechanobiology researchers are making great strides toward 

understanding how cells transduce mechanical forces (174-176). However, 

nearly all of these studies describe the properties of the cells and their 

environment in terms of a modulus or stiffness. Our demonstration that cells, like 
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tissues, have complex anisotropic properties suggests their mechanotransductive 

response to applied loads may be similarly anisotropic, which must be taken into 

consideration. 
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Figure 3.1. Fabrication of substrate and cellular micro-biaxial stretching 
device. 

 (A) Schematic representation of substrate fabrication process. (B) Schematic 

representation of the C𝜇BS device. Inset: cell substrate. (C) Grip strain vs 

measured substrate strain under applied uniaxial grip strain (n=10). (D) Grip 

strain vs. measured substrate strain under equibiaxial grip strain. Error bars: 

standard deviation (n=10). 
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Figure 3.2. Cell stretching and stress measurement. 

 (A) Uniaxial and biaxial stretching protocols. (B) Protocol to determine substrate 

displacements used to calculate cell-induced substrate traction force. (C) 

Schematic for calculating First Piola-Kirchhoff stress from measured substrate 

traction force. (D) Flowchart describing C𝜇BS microscopy technique and cell 

stress calculation. 
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Figure 3.3. Repeated cell stretching and hysteresis. 

 (A) Representative images of a single AR4 VSMC during one cycle of loading 

and unloading. Left columns: brightfield image of cell. Right columns: cell-

induced bead displacement field. (B) Total traction force (𝑓𝑥) generated by AR4 

cells undergoing loading and unloading cycles during repeated uniaxial-A stretch 

(n=9). (C) Total traction force (𝑓𝑥) exerted by AR4 cells during cyclic loading over 

four sequential stretches (n=5). (D) Normalized cycle-to-cycle in total traction 

force relative to the first stretching cycle for cells exposed to four sequential 

uniaxial-A stretches. All error bars: standard deviation. 
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Figure 3.4. Mechanical anisotropy in biaxially stretched micropatterned 
VSMCs. 

 (A,C,E) Representative cell-induced displacement fields for unstretched and 

16% strain AR4 VSMCs undergoing (A) uniaxial-A (n=10), (C) uniaxial-T (n=13), 

and (E) equibiaxial stretch (n=9). (B,D,F) First Piola-Kirchhoff stresses in AR4 

cells during (B) uniaxial-A (*,*=significant from 0%, p< 0.05), (D) uniaxial-T 

(*=significant from 0, 4, 8%, p< 0.05), and (F) equibiaxial stretching (*=significant 

from 0%, p< 0.05). All error bars: standard deviation.  
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Figure 3.5. Cell shape influences mechanical properties. 

 (A) Brightfield images of micropatterned cells with identical adhesive area, but 

varied aspect ratios (1:1 (AR1), 2:1 (AR2), 4:1 (AR4), 8:1 (AR8)). Scale bar: 20 

μm. (B) Measured cell cross-sectional areas from average cell thickness maps. 

(C) First Piola-Kirchhoff stresses for all active cells during uniaxial- A, uniaxial-T, 

and equibiaxial stretching. Error bars: standard deviation. Uniaxial-A: AR1 

(n=10), AR2 (n=10), AR4 (n=10), AR8 (n=9). Uniaxial-T: AR1 (n=10), AR2 

(n=11), AR4 (n=13), AR8 (n=9). Equibiaxial: AR1 (n=10), AR2 (n=10), AR4 (n=9), 

AR8 (n=10). (*=Px significant from Py at same strain, p< 0.05) 
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Figure 3.6. Cytoskeletal structure influences mechanical properties. 

 (A) Representative immunofluorescent images of F-actin and microtubules in 

representative micropatterned cells for each aspect ratio. Top: DMSO control. 

Middle: Nocodazole treated. Bottom: Cytochalasin D treated. (B) Microtubule 

filament orientation. Measured from n=10 cells. (C) Actin filament orientation. 

Measured from n=10 cells. (D,F,H) Axial First Piola-Kirchhoff stress (𝑃𝑥) in 
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VSMCs during uniaxial stretch in axial direction (D) Control cells (n=10). (F) 

Nocodazole treated (n=10). (H) Cytochalasin D treated (n=6). (E,G, I) Transverse 

First Piola-Kirchhoff stress (𝑃𝑦) in VSMCs during uniaxial stretch in the transverse 

direction (E) Control cells (n=13). (G) Nocodazole treated (n-4). (I) Cytochalasin 

D treated (n=6). All error bars: standard deviation. Note: Data staggered about 

strain values to prevent overlapping data. (D, F, H) Y-axis scaled to maximum of 

Px. (E, G, I) Y-axis scaled to maximum of Py. (*,*,*,*=significant from control at 

same strain with same AR p< 0.05 for respective aspect ratios) 
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Figure 3.7. Mechanical models using actin organization-based SED 
recapitulate experimental results. 

(A) AR4 experimental data used to determine SED parameters and planar biaxial 

model fit. (B) AR1, AR2, and AR8 experimental data and planar biaxial model 

prediction. Error bars: standard deviation. 
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Figure 3.8. Finite element model for validating cell stretching experiment. 

 (A) Quarter symmetry cell and substrate model generated in COMSOL of AR4 

cell undergoing prescribed uniaxial-axial, uniaxial-transverse, and equibiaxial 

stretch. (B-C) Comparison of model and experimental cell induced substrate 

displacements during (B) uniaxial-axial, (C) uniaxial-transverse, and (D) 

equibiaxial stretch. 
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Figure 3.9. Quarter-symmetry finite element model-predicted substrate 
displacement compared to the mean experimental substrate 
displacements. 

All stretched images represent 16% strain cases. 
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 αxx αyy αzz αxy αyz αzx 

AR1 0.486 0.486 0.028 0 0 0 

AR2 0.846 0.126 0.028 0.023 0 0 

AR4 0.928 0.044 0.028 0.010 0 0 

AR8 0.945 0.027 0.028 0.011 0 0 

 

Table 3.1. Actin fiber structure tensor values. 

 

 

Cell Properties 

   μ = 0.5 kPa,    Cf = 11.8 kPa,   λa = 0.8,   κ = 100 kPa 

Gel Properties 

   E = 13.5 kPa,     ν = 0.49 

Membrane Properties 

   E = 1.0 MPa,    ν = 0.49 

 

Table 3.2. Calculated cell properties and assumed gel and membrane properties 

in the model. 
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Chapter 4. Architecture-dependent anisotropic hysteresis in 

smooth muscle cells 

This chapter contains unpublished material in preparation for submission to a 

journal. 

4.1 Introduction 

Recent data suggest that a cell’s mechanical environment influences its 

function (177-179). Both static mechanical properties like substrate modulus, and 

dynamic mechanical load like cyclic stretching have been shown to alter gene 

expression and cell fate (180-183). Cells in many tissues are exposed to dynamic 

mechanical loading, with strain rates ranging from ~20-30%/s during cardiac 

contraction (184) to 10-15%/s during digestion (185) to ~1%/year during 

aneurysm growth (186). The precise mechanism that connects extracellular 

mechanical stimuli to functional changes in cell behavior is not known. One 

hypothesis is that forces on integrins mediate a functional response (187). It has 

also been hypothesized that mechanical signaling from the extracellular matrix 

propagates through the cell cytoskeleton from integrins to the nucleus to affect 

gene expression (188). Mechanosensitive ion channels have also been shown to 

affect cell signaling and behavior (189-191). In each case, actively adaptive 

cellular properties could alter mechanotransductive signaling. Previous studies 

have shown that cells are viscoelastic and actively contractile (192, 193). As a 

result, cells have time-dependent material properties. Thus, it is important to 

determine the dynamic material behavior of cells in mechanically responsive 

tissues.  

Cellular viscoelastic properties have been measured using force probes 

such as atomic force microscopy and magnetic bead twisting microscopy (192, 

194-196). The standard model for viscoelasticity assumes that cells are isotropic 

(195). However, recent data suggest that cells with native-like architecture, like 

many tissues, have anisotropic material properties (197). In addition, cells in 
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dynamic tissues often undergo large strains and may have nonlinear material 

properties (198). In tissues, large-strain viscoelastic properties are often 

characterized using more complex descriptions like quasi-linear viscoelasticity 

(QLV) (199). To date, large-strain anisotropic material properties of individual 

cells have not been measured. Temporal cellular contractility has been measured 

using many techniques including traction force microscopy (200), muscular thin 

films (179), and microfabricated post array devices (201), all of which measure 

nearly isometric tension. However, at the tissue scale, muscle contractile tone is 

related to the rate of change of muscle length (202). It stands to reason that a 

similar relationship holds at the cellular level.  

In the previous work, we measured the elastic loading mechanics of 

contractile cells, characterized the anisotropic materials properties, and 

developed a strain energy density function for single cells using cellular micro-

biaxial stretching (CμBS). Here, we utilized CμBS microscopy to determine 

loading and unloading mechanics of VSMCs over a physiological range for 

contractile and relaxed cells. We found that VSMCs display anisotropic 

hysteresis dependent on the actin fiber distribution. Finally, the experimental 

results were modeled with a QLV and a Hill-type active fiber model and we found 

that the mechanical hysteresis was better described by a Hill-type active fiber 

model. 

4.2 Methods 

4.2.1 Photolithography to fabricate PDMS stamps 

Polydimethylsiloxane (PDMS) stamps were fabricated using common soft 

photolithography methods (95). Photomasks were designed using AutoCAD 

software (Autodesk, San Rafael, CA) and printed onto a Mylar film (Fineline 

Imaging, Colorado Springs, CO). To generate isolated single cell islands for 

micropatterning, features of aspect ratios (AR) 4, 2, and 1 (AR4: 32 μm x 128 

μm, AR2: ,91 μm x  44 μm, AR1: 63 μm x 63 μm) were placed in arrays 200 μm 
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apart from other features to prevent crowding of individual features.  Silicon 

masters were fabricated at the Minnesota Nano Center. Briefly, a clean 3.5 in 

silicon wafer (Wafer World Inc., West Palm Beach, FL) was primed with HMDS 

vapor for 3 min. Then AZ-9260 photoresist (AZ Electronic Materials USA Corp., 

Somerville NJ) was coated onto the wafer at 2000 rpm for 60 s (5000 rpm/s 

acceleration). The wafer was heated to 110 ºC on a hot plate for 165 s. The 

photomask and photoresist coated wafer were exposed with UV illumination for 3 

cycles of 14 s each with a 10 s gap (42 s total duration) at 12 mW/cm2 using a 

Karl Suss MA6 contact aligner. After exposure, the wafer was developed in a 1:4 

mixture of H2O:AZ 400k developer solution with gentle agitation for 2.5 min 

followed by rinsing in distilled water. Sylgard 184 PDMS was used to mold PDMS 

stamps from the silicon wafer. PDMS stamps were sonicated in 70% ethanol for 

30 min then dried prior to use.  

4.2.2 CμBS substrate fabrication 

 Micropatterned CμBS substrates (Fig. 4.1A) were prepared as previously 

described (197).  

4.2.2.1 Membrane preparation 

Elastomer membranes (0.01 in thick, Specialty Manufacturing, Saginaw, 

MI) were cut into 30 mm x 30 mm cruciform shapes and placed into custom grips 

(40 mm grip to grip distance) under tension. Glass slides were adhered to the 

bottom of the membranes to provide structural support and to prevent oxygen 

diffusion into the membrane. PDMS rings (30 mm diameter x 3 mm wall 

thickness) were bonded to the top side of the membrane to serve as a reservoir 

for cell culture media. Membranes were them treated with 10% w/v 

benzophenone (Sigma-Aldrich, St. Louis, MO) dissolved in a 70:30 solution of 

acetone:water for 1 min. The membranes were then rinsed with methanol and 

degassed in a vacuum aspirator for 30 min prior to gel polymerization.    

4.2.2.2 Micropatterning 
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Clean PDMS stamps were incubated with 100 μg/mL of fibronectin (BD 

Biosciences, San Jose, CA) for 1 h then blown dry with air. O2 plasma treated 

glass coverslips were then stamped with fibronectin-coated stamps and held in 

conformal contact for 30 min at room temperature. 

4.2.2.3 Gel polymerization 

Pre-polymer solution consisting of 625 μL 40% acrylamide (Sigma-

Aldrich), 163 μL 2% bis-acrylamide (Sigma-Aldrich), 25 μL of 5 mg/mL acrylic 

acid N-hydrosuccimide ester, 35 μL 1 M HCl, and 25 μL fluorescent beads (0.2 

μm red beads, 2% solids, Polysciences, Warrington, PA) was prepared and 

degassed for 30 min. Initiators tetramethylethylenediamine (5 μL) and 12.5 μL 

10% w/v ammonium persulfate were added to the pre-polymer solution and 10 

μL of the solution was deposited onto a benzophenone-functionalized elastomer 

substrate. The micropatterned glass coverslip was placed on the pre-polymer 

solution and exposed to UV illuminator in a Jelight 342 UVO cleaner for 30 min 

approximately 2.5 cm distance from the lamp to initiate polymerization. After gel 

polymerization and micropattern transfer from the coverglass to the gel, the 

constructs were hydrated in water for 15 min. The coverglass was peeled from 

the top of the gel and the glass slide was removed from the membrane. The gels 

were incubated in 4% bovine serum albumin in PBS to inactivate unreacted 

acrylic acid N-hydrosuccinimide ester. After inactivation, CμBS substrates were 

incubated in PBS for 48-72 h to remove residual benzophenone and unreacted 

pre-polymer constituents prior to cell seeding. 

4.2.3 Cell culture 

Human umbilical artery smooth muscle cells (VSMCs) were obtained from Lonza 

(Walkersville, MD) at passage 3 and only passages 4-7 were used for 

experiments. VSMCs were cultured at 37 ºC and 5% CO2 in growth medium 

consisting of Medium 199 (GenDEPOT, Baker, TX) supplemented with 10% 

heat-inactivated fetal bovine serum (Gibco, Grand Island, NY), 10 mM HEPES 
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(Gibco), 3.5 g L-1 glucose (Sigma-Aldrich), 2 mg L-1 vitamin B12 (Sigma-Aldrich), 

50 U mL-1 penicillin-streptomycin (Gibco), 1x MEM non-essential amino acids 

(Gibco), and 2 mM L-glutamine (Gibco). Cells were seeded at 10,000-20,000 

cells per construct overnight in growth medium. After overnight adherence, cells 

were serum starved in serum free media for 24-48 h prior experiments to induce 

a physiological phenotype (203). 

4.2.4 Cell structure measurements 

Cells were fixed using 4% paraformaldehyde (Electron Microscopy 

Sciences, Hatfield, PA) for 5 min then stained for F-actin (Alexa Fluor 488 

Phalloidin, Life Technologies, Eugene, OR). F-actin stacks (0.45 μm/slice, 20 

slices) were obtained used an Olympus FluoView FV1000 BX2 laser scanning 

microscope (UPlanFLN, 40X, NA 1.30), at the University Imaging Centers, 

University of Minnesota. A custom Matlab script was used to determine average 

cell thicknesses to create cell thickness maps over the adhered area of the cell. 

Cell cross-section area was determined by integrating the cell thickness where 

axial cross-sectional area (Ax) was taken as the mean area over the middle 50% 

of the cell along the length (x-direction) and transverse cross-sectional area (Ay) 

was taken as the mean area over the middle 50% of the cell along the width (y-

direction). 

Fiber distributions measured from 2D projections of f-actin confocal stacks 

were fit to a von Mises distribution function of the form 

𝑓(𝜃; 𝜅, 𝜇) =
1

𝜋𝐼0(𝜅)

𝜅 cos[2(𝜃−𝜃𝑝)]
   [4.1] 

where 𝜅 is the fiber concentration factor, describing the spread of the fiber 

distribution around preferred orientation 𝜃𝑝 and 𝐼0(𝜅) is the modified Bessel 

function of the first kind of order 0 where, 

𝐼𝑛(𝜅) =
1

𝜋
∫ 𝑒𝜅 cos(𝜃) cos(𝑛𝜃)

𝜋

0
𝑑𝜃   [4.2] 
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4.2.5 Cell stretching 

Stretching experiments (Fig. 4.1B,C) were conducted inside a temperature 

controlled environmental chamber at 37 °C on an Olympus X-81 inverted 

microscope at 40x magnification (UPLSAPO40X2, NA 0.95). The constructs 

were removed from the incubator immediately prior to stretching experiments and 

serum free media was replaced with 2 mL of Tyrode’s buffer. Cell-seeded CμBS 

substrates were placed into the CμBS device (Fig. 4.1A) then exposed to either 

uniaxial or equibiaxial stretching protocols to 25% grip strain for uniaxial or 20% 

grip strain for equibiaxial stretches. First, a priming stretch identical to the 

experimental stretch (uniaxial or equibiaxial) was performed. 3-5 cells were 

identified to be measured. Then cell locations were saved to Metamorph Image 

Acquisition software. The substrate was stretched in increments up 5% grip 

strain up to the maximum prescribed strain. Displaced cell positions were tracked 

manually and saved to the software at each step. Active cell stretch was 

performed by increments of 5% loading strain (0.1%/s ramp rate) to the substrate 

with 2 min hold periods where a brightfield image of the cell and fluorescent 

image of the beads in the top layer of the gel nearest to the cell were taken at 

each step. After reaching the maximal prescribed loading strain (25% uniaxial, 

20% equibiaxial), cells were unloaded by performing -5% unloading strain to the 

substrate while acquiring images in the same manner as loading strain. After a 

full cycle of load-unload, cells were passivated with 100 μM of HA-1077 for 1 h. A 

full load-unload cycle was repeated on the passive cells and data required at 

each increment of 5% grip strain. NucBlue reagent (ThermoFisher, Waltham, 

MA) was used to verify micropatterned cells only had one nuclei. Finally, cells 

were lysed with 0.5% sodium dodecyl sulfate and the stretching protocol was 

repeated to acquire cell-free deformation of beads. Substrate deformations due 

to applied grip strains were calibrated by measuring displacement of beads 

during cell-free deformation of the substrate. Substrate stretch ratios, λx and λ𝑦, 

were taken as the measured cell-free substrate deformations. 
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4.2.6 Calculation of traction forces and cell stress 

A particle image velocimetry (PIV) algorithm was used to calculate bead 

displacements at the top surface of the gel by comparing relative bead 

displacements between cell and cell-free image pairs (Q Tseng et al). Final PIV 

windows were sampled every 2.5 μm using 5x5 μm2 grids. Traction stress 

vectors were determined from bead displacements using an unconstrained 

Fourier transform traction cytometry algorithm (regularization factor: 1E-9, 

Poisson’s ratio: 0.5), yielding a grid of 𝑛 substrate traction stress vectors given by 

𝑻𝒏 = 𝑇𝑥
𝑛𝒆𝒙 + 𝑇𝑦

𝑛𝒆𝒚 where 𝒆𝒊 is the unit vector in the 𝑖 direction. The total traction 

force components 𝑓𝑥  and 𝑓𝑦 are given as 𝑓𝑖 = ∑ −𝑛 𝑇𝑥
𝑛𝐴𝑛 𝑟𝑖

𝑛

|𝑟𝑖
𝑛|

 where 𝑖 = 𝑥, 𝑦, 𝐴𝑛 = 

6.25 μm2 is the area of discrete surface 𝑛, and 𝒓𝒏 = 𝑟𝑥
𝑛𝒆𝒙 + 𝑟𝑦

𝑛𝒆𝒚 is the vector 

that described the location of surface 𝑛 with respect to the cell center. The first 

Piola-Kirchhoff (PK1) stresses (Fig. 4.1D) 𝑃𝑥 and 𝑃𝑦 were calculated as 𝑃𝑥 =
𝑓𝑥

2𝐴𝑥
 

and 𝑃𝑦 =
𝑓𝑦

2𝐴𝑦
.  

4.2.7 Modeling cell hysteresis  

Two models were used to describe cell biaxial hysteresis: a quasi-linear 

viscoelastic model and a Hill-type active fiber model. 

4.2.7.1 Deformation and elastic constitutive description 

The cell was assumed to undergo isochoric planar biaxial deformation (i.e. 

no shear). The deformation tensor  𝐅 = diag[λx, λy, λz] was taken as the observed 

deformation of the cell, where λi are stretch ratios in the 𝑖 direction (Fig. 4.2A, x: 

parallel to the long of the cell, y: parallel to the short axis of the cell, z: 

perpendicular to the gel surface). Temporal stretch ratios mimicked those of the 

experiments. For equibiaxial stretching, both 𝜆𝑥 and 𝜆𝑦 were stretched by strain 

increments of 4% strain, at a strain rate of 0.5%/s, with a resting period of 2 min 

at each strain increment. The maximum strain was 16% strain. Uniaxial 
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stretching was performed by applying 4.5% strain increments in the direction of 

stretch and -1% off-axis strain, at a strain rate of 0.5%/s, with a resting period of 

2 min at each increment. The maximum strain was 22.5% strain. For all 

deformations, λz = (λxλy)
−1

 

In both models, the cell was treated as a distribution of pre-strained discrete 

acto-myosin fibers within an isotropic bulk matrix. The constitutive equation for 

the matrix was taken as neo-Hookean and given by  

𝑊𝑏 =
𝜇

2
(𝐼1 − 3)    [4.3] 

where 𝜇 is shear modulus and 𝐼1 = λx
2 + λy

2 + λz
2 is the first strain invariant. The 

constitutive equation a fiber was given by 

𝑊𝑓 =
𝐶𝑓

2
((

𝜆𝑓

𝜆𝑎
)

2

− 1)
2

   [4.4] 

where 𝐶𝑓 is a fiber stiffness parameter, 𝜆𝑓 is the fiber stretch ratio, and 𝜆𝑎 is an 

active stretch ratio that defines the stretch between the actively contracted zero-

stress fiber length and passive zero-stress fiber length (46). The deformation of a 

fiber oriented with an angle 𝜃 from the x-axis of the cell was given by 

𝜆𝑓
2 = 𝜆𝑥

2 cos2  𝜃 + 𝜆𝑦
2 sin2  𝜃 

The total strain energy density function of a cell with 𝑛 fibers was then given by 

   𝑊 = 𝑊𝑏 +
1

𝑛
∑ 𝑊𝑓𝑖

𝑛
𝑖=1     [4.5] 

The elastic 1st Piola-Kirchhoff stress in the i direction is given by 

 𝑃𝑖
𝑒 =

∂W

∂λi
−

λz

λi

∂W

∂λz
     [4.6] 

where i = x, y.  
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4.2.7.2 Quasi-linear viscoelastic model 

We modeled cell hysteresis as temporal viscoelastic relaxation using a 

Fung-type quasi-linear viscoelastic (QLV) model (199). The temporal stress was 

given as 

𝑃𝑖(𝑡) = 𝑃𝑖
𝑒(0)𝐺(𝑡) + ∫ 𝐺(𝑡 − 𝜏)

𝜕𝑃𝑒[𝑭(𝜏)] 

𝜕𝜏
𝑑𝜏

𝑡

0
   [4.7] 

where 𝐺(𝑡) is the reduced relaxation function. The general form for 𝐺(𝑡) is 

𝐺(𝑡) =
∑ 𝛼𝑖𝑒−𝛽𝑖𝑡

𝑖

∑ 𝛼𝑖𝑖
. For simplicity, we used a first order function given by 

𝐺(𝑡) = 𝛼 + (1 − 𝛼)𝑒−𝛽(𝑡)    [4.8] 

where 𝛼 and 𝛽 are constants.  

4.2.7.3 Hill-type active fiber model 

We modeled cell hysteresis as active contraction by modeling the acto-

myosin fibers with the Hill equation for muscular contraction (202). A standard 

form of the Hill equation is given by 

𝑉 =
𝑏(𝐹𝑜−𝐹)

𝐹+𝑎
     [4.9] 

where 𝑉 is velocity of shortening of the muscle fiber, 𝐹 is the force on the muscle, 

𝐹𝑜 is the maximum force at which a tetanized muscle neither shortens nor 

lengthens (𝑉 = 0), and 𝑏 and 𝑎 are constants. Here, we aimed to replace the 

shortening velocity with the rate of change of the fiber zero-stress configuration, 

characterized in our framework as 𝜆𝑎. The stretch ratio of the fiber  (𝜆𝑓) is 

decomposed into 𝜆𝑎 and the elastic deformation 𝜆∗, such that 

 𝜆𝑓 = 𝜆∗𝜆𝑎      [4.10] 

 Thus, the fiber shortening velocity is given by 
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 𝑉 = −
𝑑𝜆𝑓

𝑑𝑡
= −

𝑑𝜆𝑎

𝑑𝑡

𝜆𝑓

𝜆𝑎
= −

𝜆𝑎̇

𝜆𝑎
𝜆𝑓    [4.11] 

The fiber force is given by 

𝐹 = 𝑃𝑓𝐴   [4.12] 

where 𝑃𝑓 is the First Piola-Kirchhoff stress in the direction of fiber orientation, and 

𝐴 is the undeformed  cross-sectional area of the fiber. The fiber stress at the 

beginning of the experiment, when the cell is maintaining homeostatic stretch, is 

given by 𝑃𝑜, which is defined by 

𝑃𝑜 = 𝑃(𝜆𝑎𝑜) =
𝐹𝑜

𝐴
    [4.13] 

where 𝜆𝑎𝑜 is the initial homeostatic stress-free shortening. 

Substituting equations [10-13] into [9] gives  

𝜆̇𝑎

𝜆𝑎
=

𝑏(𝑃𝑓−𝑃0)

𝜆𝑓(𝑃𝑓+𝑎0)
    [4.14] 

where 𝑎𝑜 and 𝑏 are constant parameters. 

4.2.7.3. Solution method 

In both models, a random family of 2000 fibers, matching the measured 

von Mises distribution measured of an average cell, was generated. Time was 

discretized into 0.01 min increments over 18 min for equibiaxial stretch and 22 

min for uniaxial stretch. Initially, 𝜆𝑥 = 𝜆𝑦 = 𝜆𝑧 = 𝜆𝑓 = 1. Parameters were fit to the 

equibiaxial data via least-squares fitting of the experimentally-measured stresses 

(both 𝑃𝑥 and 𝑃𝑦) and the mean model-predicted stresses during each stretch hold 

period at each of the measured substrate deformations 

 λ = [1.00, 1.04, 1.08, 1.12, 1.16]. The parameter range that was considered was: 

𝜇 = 0.5 − 4 𝑘𝑃𝑎, 𝐶𝑓 = 1 − 5 𝑘𝑃𝑎, 𝜆𝑎0 = 0.6 − 0.75, 𝛼 = 0.8 − 0.95, 𝛽 = 0.1 − 0.4, 
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𝑎0 = 1 − 10 𝑘𝑃𝑎, and 𝑏 = 0.005 − 0.05. After parameter optimization, uniaxial 

stresses for corresponding uniaxial-axial or uniaxial-transverse stretches were 

then computed using the fitted parameters by applying experimental measured 

substrate deformations λ = [1.00, 1.045, 1.09, 1.135, 1.18, 1.225] in the direction of 

stretch and λ = [1.00, 0.99, 0.98, 0.97, 0.96, 0.95]  in the off-axis direction. 

4.2.8. Statistics 

All results are expressed as means ± standard deviation. Differences in 

loading and unloading stresses for at each strain for all stretching experiments 

were compared using paired t-tests in SigmaPlot (Systat Software Inc, San Jose, 

CA). A value of p<0.05 was considered to indicate statistical significance.  

4.3 Results 

4.3.1. Micropatterned vascular smooth muscle cells display anisotropic 

hysteresis 

We utilized CμBS microscopy to apply physiological strains (~20-25% 

strain) to individual adherent VSMCs (Fig. 4.1) and measure the resulting 

stresses. VSMCs were micropatterned into a physiological aspect ratio of 4 to 

mimic an in vivo-like spindle geometry on an elastomer membrane. Next, we 

applied planar strains in increments of 5% grip strain up to 20% or 25% then 

incrementally returned to 0% strain.  When exposed to stretch, cell geometry in 

the x-y plane, increased with applied load then decreased with unloading as 

expected (Fig. 4.2A), consistent with membrane deformations. Traction stress 

was measured using the displacement of the substrate during stretching and 

traction force microscopy methods. Traction stress magnitudes increased 

accordingly with applied equibiaxial stretch and decreased with stretch (Fig. 

4.2A). Axial stress (Px) (parallel to the long axis of the cell) and transverse stress 

(Py) (parallel to the short axis of the cell) were calculated from traction forces 

exerted by the cell on the substrate (Fig. 4.1D) and the cellular architecture 
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determined from confocal microscopy (197). In a typical cell, axial stresses were 

an order of magnitude higher than transverse stresses (Fig. 4.2B, C), consistent 

with previous findings (197). In addition, stresses were dissimilar during loading 

and unloading, demonstrating stress is not only a function of strain.  

Under equibiaxial loading, Px and Py increased linearly when loaded and 

decreased when unloaded (Fig. 4.3C, D) with unloading stresses lower than 

loading stresses. These data are consistent with hysteresis loops traditionally 

associated with viscous loss. There is significant cell-to-cell variability in baseline 

stress, but if the data are normalized to the stress at maximum strain and 

examined individually, the consistency of the hysteresis is clearer (see 

supplemental Fig. 4.1). Next, the same cells were treated with HA-1077, a ROCK 

inhibitor that inhibits acto-myosin contractility. Following treatment, the stresses 

decreased by >10 fold (Fig. 4.3E, F) and the degree of hysteresis decreased 

(see supplemental Fig. 4.1).  

 Next, we applied uniaxial deformation, stretching either parallel to the 

cell’s long axis (uniaxial-axial) (Fig. 4.4A) or parallel to the cell’s short axis 

(uniaxial-transverse). Notably, the deformation is not purely uniaxial. When we 

applied uniaxial-axial deformation (λx), we observed some compression in the 

transverse direction (λy) (Fig. 4.4B). For uniaxial-axial stretching, Px (stress in the 

direction of stretch) and Py (stress in the off-axis direction) increased with strain 

(Fig. 4.4C, D) and unloading stresses were lower than loading stresses for each 

increment of strain, suggesting energy loss, similar to our equibiaxial stretch 

experiments. Inhibiting acto-myosin contractility decreased stresses by almost 

10-fold (Fig. 4.4E, F) and decreased the degree of hysteresis. When we 

performed uniaxial-transverse stretching (Fig. 4.5A), we observed a slight 

compression in the x direction (λx) with applied loading in the transverse direction 

(λy) (Fig. 4.5B). For uniaxial-transverse stretching, Py (stress in the direction 

stretch), increased during loading and decreased with unloading (Fig. 4.5D). This 

trend is quite clear in normalized individual cell data (see supplemental Fig. 4.1). 

Surprisingly, unloading stresses were greater than loading stresses, suggesting 
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energy gain. Stresses perpendicular to the direction of stretch, Px, were nearly 

unchanged during loading but increased during unloading (Fig. 4.5C). When 

contraction was inhibited, passive stresses were markedly lower than contractile 

stresses (Fig. 4.5E, F) but we observe significant differences in loading and 

unloading stresses for both Px and Py. Notably, the hysteresis in Px (Fig. 4.5E) is 

reversed in the passive state, compared to the active, with unloading stresses 

lower than loading stresses. 

4.3.2. Quasilinear viscoelastic and Hill-type active fiber modeling of 

equibiaxial and uniaxial stretch 

To better understand the dynamics of the observed anisotropic hysteresis, 

we developed two theoretical models: a QLV (Eqn. 4.7) and Hill-type active fiber 

model (Eqn. 4.14). The apparent hysteresis observed in the cells was first 

modeled with a quasilinear viscoelastic model. For the elastic properties, we 

used a strain energy density function we previously characterized. For the 

viscous behavior we used a reduced relaxation function with an exponential 

decay (Eqns. 4.8). The parameters were fit to the equibiaxial stretching data (see 

Fig. 4.3C, D) (see Table 4.1). After fitting, the model results (Fig. 4.6A) were 

consistent with the experimentally observed hysteresis for Px and Py in 

equibiaxial stretching. Next, the model was applied to the uniaxial-axial and 

uniaxial-transverse stretch cases. For uniaxial-axial stretching, the model (Fig. 

4.6B) captured the hysteresis behavior from the experiment, where unloading 

stresses are lower than loading stresses for each point of strain for Px and Py. In 

the case of the uniaxial-transverse stretch, however, the model failed to predict 

the observed reverse hysteresis (see Fig. 4.5C, D), instead predicting unloading 

stresses lower than loading stresses for Px and Py (Fig. 4.6C). 

Next, the cell was modeled with an active contraction model that assumes 

a Hill-type relationship between acto-myosin fiber stress and contraction velocity. 

Equibiaxial experimental data (see Fig. 4.3C, D) were used to optimize the 

parameters (see Table 4.2). The model stress-strain behavior (Fig. 4.6D) was 
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consistent with the experimentally observed hysteresis for Px and Py in 

equibiaxial stretching. The model was then applied to uniaxial-axial or uniaxial-

transverse stretch. For uniaxial-axial stretch, the model hysteresis (Fig. 4.6E) 

was consistent with the experimentally observed behavior (see Fig. 4.4C, D). 

Additionally, for uniaxial-transverse stretch, the model predicted reverse 

hysteresis, where unloading stresses are higher than loading stresses (Fig. 

4.6F), seen experimentally (see Fig. 4.5C, D). Given this result, our subsequent 

work focused on our Hill-type active fiber model. 

4.3.3. Fiber orientation influences hysteresis anisotropy 

VSMCs normally have a highly aligned acto-myosin cytoskeleton (39). 

However, in vessels with complex geometries, and in aneurysms, they can lose 

their characteristic spindle shape and, as a result, their cytoskeletal alignment 

(204). Using our Hill-type active fiber model, we tested how cytoskeletal 

alignment alters the dynamic mechanics of the cells. We assumed that acto-

myosin fiber alignment could be fit to a von Mises distribution and we performed 

a parameter study for fiber alignment characterized by the fiber concentration 

factor (𝜅) over a range of 𝜅 values from an isotropic (𝜅 =0) value to a highly 

anisotropic value (𝜅 =50). Uniaxial-axial and uniaxial-transverse stretch were 

simulated. For uniaxial-axial stretch, higher stresses in the direction of stretch, 

Px, were observed with increasing fiber alignment (increasing 𝜅) (Fig. 4.7A). 

Notably, the degree of hysteresis increased (i.e. larger loops) with increasing 

fiber alignment. Stresses transverse to cell alignment, Py, decreased with 

increasing anisotropy (Fig. 4.7A) due to lower fiber alignment in that direction. 

For uniaxial-transverse stretch, increasing anisotropy led to lower stresses in the 

stretch direction (Py) (Fig. 4.7B). Interestingly, below values of 𝜅 <  4, the 

hysteresis loop displayed a normal dissipative behavior, but for 𝜅 > 4, the reverse 

hysteresis we observed experimentally was predicted. In the direction of cell 

alignment, higher stresses and a higher degree of hysteresis were observed with 

increasing anisotropy (Fig. 4.7B). For a completely isotropic fiber distribution (𝜅 = 

0), stretch direction does not affect the hysteresis direction (Fig. 4.7A, B). 
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However, for values of 𝜅 >  0.05, the reverse hysteresis behavior was observed 

in the axial stresses during transverse stretch (Fig. 4.7B), suggesting cytoskeletal 

anisotropy plays an important role in the stress hysteresis of VSMCs.   

Finally, cells were micropatterned with smaller aspect ratios (AR2, AR1) 

but similar spread areas, which has been previously shown to result in more 

isotropic cytoskeletal alignment. F-actin fiber distributions were measured from 

confocal imaging (Fig. 4.8A) and fit with von Mises distributions. The fiber 

concentration factors were: 𝜅 = 7.65 and  𝜅 = 0.15 for AR2 and AR1, respectively 

(Fig. 4.8B). AR2 cells were stretched using the previously described uniaxial-

axial and uniaxial-transverse protocols and showed results consistent with the 

AR4 cells and the model predictions, where axial stretch parallel to fiber 

alignment displays normal hysteresis (Fig. 4.9A), while transverse stretch 

perpendicular to fiber alignment displays reverse hysteresis (Fig. 4.9B). Uniaxial 

stretching performed on the AR1 cell (Fig. 4.9C), mimicking an isotropic fiber 

distribution (𝜅 = 0.15), showed normal hysteresis independent of stretch direction 

consistent with model predictions. 

4.4 Discussion 

It is increasingly clear that mechanical stresses play an important role in 

regulation of cellular function. Thus, it is important to understand how cell 

stresses relate to cell deformations, particularly in mechanically dynamic tissues. 

Here, using the CμBS method, we investigated loading and unloading dynamics 

of individual VSMCs exposed to large-strain biaxial stretching. We found that 

AR4 VSMCs exhibit hysteresis behavior during loading and unloading when 

stretched in the direction of primary fiber alignment, suggestive of viscous energy 

loss. Interestingly, when stretched transverse to fiber alignment, AR4 VSMCs 

exhibited reverse hysteresis with unloading stresses greater than loading 

stresses, suggestive of energy gain. We also found that this phenomenon was 

particular to anisotropic cells. In cells with more isotropic cytoskeletal 

organization, reverse hysteresis was not observed. We found that a standard 
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QLV model was not able to describe the reverse hysteresis we observed in AR4 

cells undergoing transverse stretch, but our Hill-type active fiber model was able 

to characterize the anisotropic hysteresis behavior observed in the experiment. 

These results suggest that viscoelastic models are insufficient for modeling 

highly structured cells, like muscle cells, under multidirectional loading. 

In the Hill-type active fiber model, we assume that all fibers are at a 

homeostatic stress (𝑃0), or stall force, prior to stretch. When a fiber is stretched, 

its stress rises above 𝑃0 and, by Eqn. 4.14, the fiber relaxes by lengthening its 

zero-stress configuration (𝜆𝑎). Conversely, when a fiber is compressed, the fiber 

contracts, raising fiber tension. In highly anisotropic cells, the fibers that provide 

tension in the cells’ short axis are still primarily aligned with the cell’s long axis. 

Thus, when the cell is stretched transversely and shortens somewhat axially, the 

fibers contract. In smooth muscle, contraction and relaxation are slow, so when 

the cell is unloaded the fiber tension remains elevated. This phenomenon can be 

captured with the simple model presented here. However, to our knowledge, this 

reverse hysteresis has not been measured previously. 

There are several limitations in our measurement of viscoelastic properties 

in our experiment. Primarily, in vivo strain rates for arteries and aortas occur on 

the scale of 0.25-3%/s (205, 206) while in the experiment we perform a slower 

global stretch, taking into account stretching and imaging time, at <0.1%/s (or 

0.5%/s during actual stretch) due to temporal limitations during imaging which 

limits the temporal resolution of strain application and of cell stress 

measurement. In addition, cells are exposed to continuous cyclic stretch and in 

vitro studies have shown dynamic mechanical strain application of cells and 

tissues are prone to mechanical conditioning (207-209). We perform, effectively 

two conditioning stretches in the processes of a priming stretch and identification 

of cells for study, but did not investigate the ability of the cells to adapt to cyclic 

stretch or further conditioning stretches. In the model, we treat the cell as a bulk 

neo-Hookean matrix with discrete actin fibers oriented with a defined distribution. 

We neglect other cellular components such as the nucleus and mechanical 
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properties of other cytoskeletal filaments such as microtubules and intermediate 

filaments. However, our drug studies inhibiting acto-myosin contractility 

eliminates nearly all tension in the cell, so it is likely assuming actin fibers are the 

primary cytoskeletal filament is valid. Nevertheless, it has been shown that the 

nucleus displays viscoelastic properties (176, 210) as well as microtubules (211, 

212). Coupling of actin fibers to the nucleus and other cytoskeletal filaments 

could also play a role in the viscoelastic properties of the cell. We model the 

observed hysteresis in the cell using either a passive relaxation QLV model or a 

Hill-type active fiber model. Both models rely on empirical observations of 

mechanical behavior of tissues. QLV theory describes passive relaxation of 

tissues dependent on time. Hill observed the velocity of shortening of muscle 

varies with applied load on the muscle. Applied to our case, the rate of stress-

free shortening of the fibers vary with load. In reality, a model coupling passive 

relaxation and active contraction remodeling is necessary to truly mimic the 

dynamics of the cell.  

Modern biomechanical models such as constrained mixture models (7, 

213) require a firm understanding of the mechanical properties of each 

component of tissues. Vascular tissues, whole arteries and isolated 

decellularized ECM components (collagen, elastin, etc.) are well studied and 

their mechanics under large strain loading and unloading conditions are well-

characterized (214, 215). Mechanics of individual cells have been studied using a 

variety of tools including but not limited to micropipette aspiration, microrheology, 

magnetic bead twisting, atomic force microscopy, optical tweezers, and 

microfluidics (26). These measurements normally yield parameters for isotropic 

linear materials. Our results suggest linear isotropic properties and simple 

viscoelastic models are insufficient for describing cells under biaxial loads. This 

finding is particularly notable in the development of mixture models of vascular 

mechano-adaptations, which have potential clinical applications predicting, for 

example, aneurysm growth and rupture. Cells in bifurcations or in aneurysms are 

necessarily exposed to complex loads and models that cannot capture the 



  73 

anisotropic time-dependent and architecture-dependent material behavior of the 

cells will be less accurate.  

The field of mechanotransduction, how cells sense and integrate external 

mechanical stimuli to alter cell behavior, has appreciated in recent years. Current 

efforts are ongoing towards the exact mechanisms that underlie 

mechanotransduction processes. Many studies are performed in static culture or 

at small strains but cells are exposed to complex dynamic loading in vivo and can 

take on varieties of architectures the 3D environment. In efforts to dissect 

mechanotransductive mechanisms, micropatterning approaches have been used 

to yield consistent cell geometries for direct cell comparison and to enforce 

architecture control to study cell behavior response. To study the effects of 

adaptive responses of cells to complex loads, it is necessary to use appropriate 

measurement tools and to precisely control strain. By applying uniaxial strains up 

to 10% to single cells, reports show cells respond to mechanical loads and 

respond accordingly. In their response, the cell’s time-dependent mechanical 

properties are dependent on both strain magnitude (148) and strain rate (216). 

Not only that, Bonakdar et al (217) have shown that the cell cytoskeleton 

undergoes both elastic and plastic deformation in response to mechanical 

stretch. In addition, Weng et al (201) suggest focal adhesion dynamics drive 

cellular homeostasis after strain application.  While, these studies have been 

performed on isolated single cells, Canovic et al. (200) further suggest tensional 

homeostasis of static cells is a multi-cellular phenomenon where mechanical 

coupling of adjacent cells can affect cluster force measurements, suggesting 

cells’ interactions with neighbor cells can also affect their mechanical response. 

With varying reports of cellular response to loads, many of these studies are 

based on empirical observations of cells mechanical responses and outputs. 

While precise mechanisms of cellular adaptation to mechanical loads are not 

known and a more comprehensive view is still lacking, it is clear that contractile 

mechanisms play a critical role and models incorporating acto-myosin contraction 

will be vital in characterizing cell mechanics (218). In this paper, we utilized 
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CμBS microscopy, to apply precise multi-directional physiological large strains to 

in vivo-like cells to investigate their mechanical response to stretch. We show 

that cell shape and resulting fiber architecture plays a role in its mechanical 

response to stretching. We report, to our knowledge, the first case of hysteresis 

anisotropy of a single cell. Our results and models provide insight into a possible 

mechanism of active cellular adaptation of vascular smooth muscle cells in 

response to complex strains.  
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Figure 4.1. Cellular micro-biaxial stretching (CμBS) method to measure 
active and passive cell stress 

(A) Schematic of CμBS device and substrate. Top view: photograph of substrate 

mounted in device. Inset: Micropatterned cell polyacrylamide-elastomer 

substrate. Side view: Rendered image of device. (B) Stretch protocol to measure 

substrate bead displacements in active and passive cells. (C) Time course of 

stretch protocol to stretch active and passive cells. (D) Cell axial and transverse 

stress calculation from substrate traction forces. 
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Figure 4.2. Equibiaxial stretch of a micropatterned VSMC 

(A) Brightfield images and traction stress fields of a stretch cycle (0%  16%   

0%). Cell outlined in white.(B) Axial cell stress (Px) during equibiaxial stretch. (C) 

Transverse cell stress (Py) during equibiaxial stretch. 
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Figure 4.3. Active and passive loading and unloading stresses of a vascular 
smooth muscle cell undergoing equibiaxial stretch 

(A) Brightfield image of cell before and after 16% stretch (x,y-equibiaxial stretch, 

λx=λy). Cell outlined in white. Scale bars: 20 μm. (B) Cell stretch ratio (λx, λy) 

during equibiaxial stretch cycle. (C) Axial active cell stresses (Px) during 

equibiaxial stretch. (D) Transverse active cell stresses (Py) during equibiaxial 

stretch. (E) Axial passive cell stresses (Px) during equibiaxial stretch. (F) 

Transverse passive cell stresses (Py) during equibiaxial stretch. (C-F) (mean ± 

stdev) n=10. *=p<0.05.  Black: loading. Red: unloading. 
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Figure 4.4. Active and passive loading and unloading stresses of a vascular 
smooth muscle cell undergoing uniaxial-axial stretch 

(A) Brightfield image of cell before and after 16% stretch (x-direction of stretch, 

λx). Cell outlined in white. Scale bars: 20 μm. (B) Cell stretch ratio (λx, λy) during 

uniaxial-axial stretch cycle. (C) Axial active cell stresses (Px) during uniaxial-axial 

stretch. (D) Transverse active cell stresses (Py) during uniaxial-axial stretch. (E) 

Axial passive cell stresses (Px) during uniaxial-axial stretch. (F) Transverse 

passive cell stresses (Py) during uniaxial-axial stretch. (C-F) (mean ± stdev) 

n=10. *=p<0.05.  Black: loading. Red: unloading. 
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Figure 4.5. Active and passive loading and unloading stresses of a vascular 
smooth muscle cell undergoing uniaxial-transverse stretch 

(A) Brightfield image of cell before and after 16% stretch (y-direction of stretch, 

λy). Cell outlined in white. Scale bars: 20 μm. (B) Cell stretch ratio (λx, λy) during 

uniaxial-transverse stretch cycle. (C) Axial active cell stresses (Px) during 

uniaxial-transverse stretch. (D) Transverse active cell stresses (Py) during 

uniaxial-transverse stretch. (E) Axial passive cell stresses (Px) during uniaxial-

transverse stretch. (F) Transverse passive cell stresses (Py) during uniaxial-

transverse stretch. (C-F) (mean ± stdev) n=10. *=p<0.05.  Black: loading. Red: 

unloading. 
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Figure 4.6. Modeling hysteresis in vascular smooth muscle cells 

(A) QLV model fits to experimental data. Inset: zoomed image of plot showing 

average stresses and all model computed values. (B) QLV model predictions for 

uniaxial-axial stretch. (C) QLV model predictions for uniaxial-transverse stretch. 

(D) Hill-type active fiber model fits to experimental data. (E) Hill-type active fiber 

model predictions for uniaxial-axial stretch. (F) Hill-type active fiber model 

predictions for uniaxial-transverse stretch.  Black solid lines: average loading 

stresses over 100 runs. Red solid lines: unloading stresses over 100 runs. 

Shaded regions indicate all model computed values.  
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Figure 4.7. Hill-type active fiber model fiber concentration parameter study 
for uniaxial stretch 

(A) Uniaxial-axial stretch model predictions for fiber concentration factor values 

𝜅 =  0, 0.5, 2, 10, 30, 50. Left: axial stresses (Px) due to applied axial strain (λx). 

Right: Transverse stresses (Py) due to off-axis strain (λy). Solid lines: loading 

stresses. Dashed lines: unloading stresses. (B) Uniaxial-axial stretch model 

predictions for fiber concentration factor values 𝜅 =  0, 0.5, 2, 10, 30, 50. Left: 

transverse stresses (Py) due to applied axial strain (λy). Right: axial stresses (Px) 

due to off-axis strain (λx). Solid lines: loading stresses. Dashed lines: unloading 

stresses. 
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Figure 4.8. Cell micropatterning and measured von Mises fiber distributions 

(A) F-actin immunofluorescent images of cells micropatterned with aspect ratios 

of 4, 2, and 1. (B) Measured fiber distribution (translucent lines) and von Mises 

distribution fits (solid lines). 
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Figure 4.9. Cell shape mediates hysteresis anisotropy 

(A) Axial (Px) and transverse (Py) stresses for an aspect ratio 2 cell (𝜅 = 7.65) 

stretched uniaxial-axially. (B) Axial (Px) and transverse (Py) stresses for an 

aspect ratio 2 cell (𝜅 = 7.65) stretched uniaxial-transversely. (C) Axial (Px) and 

transverse (Py) stresses for an aspect ratio 1 cell (𝜅 = 0.15) stretch uniaxially. (A-

C) Scale bars: 20 μm. 
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Supplemental figure 4.1. Normalized individual cell stresses for AR4 cell 

(A) Axial and transverse active stresses during equibiaxial stretch.  (B) Axial and 

transverse passive stresses during equibiaxial stretch. (C) Axial and transverse 

active stresses during uniaxial-axial stretch. (D) Axial and transverse passive 

stresses during uniaxial-axial stretch. (E) Axial and transverse active stresses 

during uniaxial-transverse stretch. (F) Axial and transverse passive stresses 

during uniaxial-transverse stretch. All stresses normalized to the value at 

maximal loading strain. (A-F) Black: loading stresses. Red: unloading stresses. 
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Table 4.1. QLV model parameter values  

Parameter Value 

𝜇 1.5 kPa 

𝐶𝑓 2.25 kPa 

𝜆𝑎0 0.61 

 𝛼 0.875 

 𝛽 0.125 

 

 

Table 4.2. Hill-type active fiber model parameter values 
 

Parameter Value 

𝜇 1.25 kPa 

𝐶𝑓 4 kPa 

𝜆𝑎0 0.68 

𝑎0 4 kPa 

𝑏 0.001 
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