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Abstract 

An increasing number of men are developing a lethal, non-androgen 

receptor (AR) driven form of prostate cancer (PCa) known as aggressive variant 

prostate cancer (AVPC). Therapeutic options for AVPC are limited, and the 

development of novel therapeutics is significantly hindered by the inability to 

accurately monitor the disease through imaging. This underscores the critical need 

to develop improved imaging agents for AVPC. Targeted imaging agents, such as 

those developed for prostate-specific membrane antigen (PSMA) have made 

significant progress in imaging metastatic prostate adenocarcinoma; however, 

numerous studies have shown that non-AR driven prostate cancer does not 

express PSMA. Thus, there is an urgent unmet need to identify novel antigens and 

targeted imaging agents for the detection and monitoring of this lethal form of PCa.  

In these studies, we have identified the pentaspan transmembrane 

glycoprotein, CD133, as a targetable antigen that is overexpressed on the surface 

of non-AR driven, neuroendocrine-differentiated prostate cancer. Additionally, we 

have developed a novel antibody, termed HA10 IgG, which was found to bind to a 

glycosylation-independent epitope on CD133. HA10 IgG was validated in 

numerous cell lines and demonstrated similar or more accurate binding to CD133 

when compared to a frequently used commercial antibody in vitro. To assess the 

imaging potential of HA10 IgG, the antibody was labeled for near-infrared and 

positron emission tomography imaging. Our CD133 probe was validated in 

imaging studies and shown to be highly selective for CD133-expressing PCa cells, 
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suggesting its potential as a non-invasive imaging agent for lethal, non-AR-driven 

AVPC.   
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Impact of Prostate Cancer 

Prevalence and Mortality  

Prostate cancer (PCa) is the most common non-cutaneous cancer in 

American men. Approximately 11.6% of men will be diagnosed with PCa within 

their lifetime and the American Cancer Society currently estimates that there will 

be approximately 174,650 new cases of PCa in 2019 alone (1). National 

expenditures for PCa care reached approximately $15.3 billion in 2018, signifying 

the tremendous personal and economic impact PCa has on society.  Despite its 

high prevalence, PCa is a relatively treatable disease with roughly 98% of patients 

achieving a 5-year survival (1). Unfortunately, if the cancer has progressed to 

metastatic disease, the 5-year survival rate drops significantly to a striking 30% (1, 

2), indicating the importance of developing better theranostic agents to detect and 

treat metastatic PCa.  

Progression of Prostate Cancer with Response to Therapy  

 There are three primary stages of PCa progression: 1) localized, 2) regional, 

and 3) distant disease. Localized PCa is defined as PCa which has not left the 

confines of the prostate gland. Regional PCa is when the cancer has only spread 

to neighboring organs such as the seminal vesicles or nearby lymph nodes and 

distant PCa is described as PCa which has spread to distant sites such as the 

bones, viscera, and/or distant lymph nodes. Approximately 90% of PCa cases are 

identified in the localized and regional stages and the average age of diagnosis is 

approximately 66 years old (2). Since PCa is often a slow growing disease, many 
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men who are older or present with additional health problems will never receive 

treatment for their cancer. This is because the treatment for slow growing, local 

PCa can often times pose more risk to the patient’s overall health than the cancer 

itself (3). The current standard of care in these cases is active surveillance in which 

the cancer is monitored for signs of rapid progression and metastasis. Monitoring 

for signs of PCa progression may include prostate-specific antigen (PSA) blood 

tests, digital rectal exams (DREs), biopsies, and potentially imaging (4-6). 

 If the initial screening or continuous active surveillance suggests that the 

PCa is suspected to pose a greater threat than treatment, such as in the cases of 

a more aggressive pathology or presentation in a younger man, then the first line 

of treatment is usually surgery, radiation therapy, or a combination of the two. 

Surgery, often referred to as a prostatectomy, includes direct removal of the 

prostate gland and sometimes other surrounding tissues that the cancer may have 

spread to. Alternatively, radiation therapy uses high-energy radiation to kill the 

remaining cancer cells. There are two main types of radiation therapy, external-

beam radiation therapy (EBRT) and internal radiation therapy (IRT). The major 

difference between these two types of therapy is the location of the radiation 

source. EBRT uses an externally-located X-ray producing machine to focus 

radiation onto a specific cancerous region of the body, while IRT requires the 

implantation of radioactive sources directly into the cancerous regions of the body 

(3). While surgery and radiation therapy are often curative for most men, 

approximately 20-30% of patients develop PCa recurrence.      
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 Androgen deprivation therapy (ADT) is the current standard of care for men 

that present with recurrent and/or metastatic disease and as a neoadjuvant to 

EBRT for men with localized and/or regional disease (3, 7). Re-activation of the 

androgen receptor (AR) signaling axis aft ADT is a well-known key player in PCa 

progression. Androgens, such as testosterone and dihydrotestosterone, bind to 

AR which promotes dimerization, nuclear translocation, and subsequent gene 

activation and cancer cell growth (Figure 1) (8). ADT aims to prevent AR signaling 

by actively reducing the number of circulating androgens that are available to bind 

to and activate AR (9-11). Most men display a transient reduction of PCa 

symptoms, including lowered PSA and tumor regression, however, most of these 

patients eventually progress to castration-resistant PCa (CRPC) which is a 

hormone-insensitive form of the disease (Figure 2) (12, 13).  

 CRPC is a biochemical (rising PSA) or clinical (new or larger lesions) 

progression of the disease despite castrate levels of androgens in the blood. 

Strategies to combat CRPC often involve cutting off alternate mechanisms of AR 

signaling using second generation anti-androgens. Two of the most notable 

second-generation anti-androgens are enzalutamide which directly blocks AR and 

abiraterone which prevents adrenal gland hormone synthesis. While second 

generation anti-androgens were initially approved for CRPC, recent Phase II and 

III trials have documented the success of these agents in nonmetastatic PCa 

indicating a shift in the treatment landscape (14, 15). Unfortunately, many patients 

display inherent resistance to these therapies, and others acquire resistance after  
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Figure 1. Schematic of the AR signaling axis and PCa progression. Free 

testosterone or dihydrotestosterone enters the prostate cells and binds to AR.  

AR dissociates from heat shock proteins (HSPs) and dimerizes to facilitate 

nuclear translocation. Dimerized AR binds to androgen-response elements in 

the promoter regions of target genes which leads to biological responses 

including increased growth, survival, and the production of PSA. This image was 

reproduced from previous publications (8, 16). 
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months of use. Additionally, in 2010, the U.S. Food and Drug Administration (FDA) 

approved the immunotherapy agent, Sipuleucel-T, for treatment of advanced PCa 

(17). Although Sipuleucel-T did display a mild survival benefit in CRPC patients, 

there seemed to be very little effect on slowing disease progression (18-20). 

Similarly, chemotherapy has also been shown to prolong overall survival but is 

often paired with unpleasant side effects and reduced quality of life. This lethal 

stage of the disease continuum is known as aggressive variant PCa (AVPC) and 

can occur with or without AR re-activation (Figure 2).   

More specifically, AVPC is a broad-spectrum form of PCa defined as CRPC 

with at least one of the following features: 1) histologic evidence of small-cell 

neuroendocrine differentiated PCa (pure or mixed), 2) the presence of exclusively 

visceral metastases, 3) radiographically predominant lytic bone metastases by 

plain x-ray or CT scan, 4) bulky (≥ 5 cm) lymphadenopathy or bulky (≥5 cm) high-

grade (Gleason ≥ 8) tumor mass in prostate/pelvis, 5) low PSA (≤ 10 ng/mL) at 

initial presentation (prior to ADT or at symptomatic progression in the castrate 

setting) plus high volume (≥ 20) bone metastases, 6) presence of neuroendocrine 

markers on histology (positive staining of chromogranin A (CHGA) or 

synaptophysin) or in serum (abnormal high serum levels for CHGA or gastrin-

releasing peptide) at initial diagnosis or at progression, plus any of the following in 

the absence of other causes: (a) elevated serum LDH (≥ 2 × ULN), (b) malignant 

hypercalcemia, (c) elevated serum CEA (≥ 2 × ULN), 7) short interval (≤ 6 months) 

to androgen-independent progression following the initiation of hormonal therapy 
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with or without the presence of neuroendocrine markers (21-23). Due to 

deficiencies in previously used advanced PCa definitions, such as anaplastic, AR-

independent, treatment-induced, or neuroendocrine PCa, AVPC has been 

adopted as a term which includes all of the aforementioned pathologies (22). 

Despite the fatal prognosis of AVPC, the currently available imaging strategies are 

often insufficient to accurately detect AVPC lesions and evaluate overall disease 

progression. The lack of proper diagnostic agents is a major clinical barrier to 

developing effective therapeutics for this disease. Due to the heterogeneity of 

AVPC, it has been exceedingly challenging to identify targetable biomarkers that 

are reliably expressed on the lesions of AVPC patients. Further efforts are urgently 

needed to identify biomarkers of AVPC and define their relevance in specific AVPC 

patient populations for improved therapeutic and diagnostic (theranostic) 

development.    
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Figure 2. Chart displaying PCa progression with response to therapy. High-

risk local or metastatic disease are treated with ADT. While initially responsive, 

patients eventually develop CRPC. Second generation anti-androgens are given 

to further prolong lifespan, however, patients eventually acquire resistance to 

these therapies as well and progress to lethal AVPC. Lethal AVPC can develop 

with or without AR-reactivation. The only treatment options available for AVPC 

are chemotherapy and palliative care, neither of which can cure the disease. 

This image was reproduced from previous literature (24).    
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Current Detection and Disease Monitoring Approaches  

 Screening and Staging of Prostate Cancer  

 Early signs of PCa are often identified by preliminary screening 

assessments such as the PSA blood test and the DRE. The U.S. Preventative 

Services Task Force recommends screening for PCa in men between the ages of 

50-54 unless there are predefined risk factors that require earlier screening (Table 

1). Similarly, regular screening may continue up to the age of 69 on a case by case 

basis (25, 26). While the use of PSA blood tests and DREs has been highly 

effective at identifying PCa during the first round of screening, these two tests are 

also prone to false positives (27-30). PSA is an androgen-regulated protease that 

is released by the secretory epithelial cells of the prostate gland. In healthy men, 

the primary function of PSA is to liquify semen during ejaculation and facilitate 

better sperm transport for reproduction, thus blood PSA levels remain relatively 

low. However, the basement membrane is often disrupted in PCa which results in 

significantly more PSA leaking into the blood (31). While high PSA levels are often 

observed in PCa patients, elevated blood PSA levels may also indicate various 

non-cancerous conditions as well, such as prostatitis, benign prostatic hyperplasia, 

urinary tract infections, and even prostate stimulation (32). Correspondingly, DREs 

are a blind exam in which a physician can manually palpate the prostate through 

the rectum and thus will not provide enough evidence to confirm a PCa diagnosis. 

An abnormal DRE exam may include observed nodule formation, asymmetric 

growth of the prostate, age inappropriate enlargement, or increased signs of 
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Table 1. Recommended PCa screening ages.  This image was reproduced 

from previous literature (25, 26). 

Begin Screening 

at Age: 
Reason: 

40 You have a family history of PCa 

45 You are of African American decent 

50 You have no family history and are not African American  

55-69 Discuss with doctor on an individual basis 

70+ Screening is not recommended 
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inflammation (33). When abnormalities are detected through one or both of these 

preliminary exams, a transrectal ultrasound (TRUS) and biopsy are provided to 

confirm the PCa diagnosis (26, 34).  

The TRUS procedure requires the insertion of a small probe into the rectum 

which is used to visualize the prostate gland. TRUS is most often used for image 

guided prostate biopsies, however, it may also be used to measure the size of the 

prostate and make treatment decisions accordingly (34, 35). For the biopsy, most 

physicians will take 12 samples from various regions of the prostate to gain an 

accurate assessment of the overall pathology of the prostate. Pathologists analyze 

the biopsy samples and determine prostate tissue abnormality using the Gleason 

scoring system which signifies normal prostate tissue as grade 1 and very 

abnormal/cancerous tissue as grade 5. To account for heterogeneity within the 

prostate tissue, a grade is obtained from 2 separate regions of the tissue; the sum 

of the two grades yields the Gleason score (grade of region 1 + grade of region 2 

= final Gleason score). Additionally, the grade of region 1 is the most frequently 

identified grade throughout the tissue sampled, thus Gleason scores of 3+4=7 are 

often less aggressive than 4+3=7 (36). Gleason scores can range anywhere from 

2 to 10, however, scores below 6 are rarely indicative of PCa (34).  

Imaging of Prostate Cancer 

Once a PCa diagnosis has been confirmed, imaging tests are often used to 

assess the extent of cancer spread. CT and magnetic resonance imaging (MRI) 

may be used to visualize the soft tissues surrounding the prostate if the PCa is 
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suspected to be regionally located (34), however, both of these conventional 

imaging modalities are highly limited by their insensitivity for small nodal lesions 

and inability to detect bone lesions (37). The skeletal system is the second most 

common site for metastasis of PCa, surpassed only by the lymph nodes. In fact, 

approximately 80-90% of CRPC patients will develop bone metastases over the 

course of the disease (38-40). Bone scintigraphy (BS) using technetium-99m 

methyl diphosphonate (99mTc-MDP) is the current standard of care for detecting 

bone metastases in these patients due to its low energy, short half-life, and 

widespread availability (41, 42). Despite much of the initial success with 99mTc-

MDP, most of the current guidelines using this imaging agent are based on 30-

year old studies (37, 43, 44). Additionally, imaging with CT, MRI, and/or 99mTc-

MDP are not sufficient to adequately identify visceral metastases that may be 

present in AVPC patients and thus are not accurate diagnostic and disease 

monitoring modalities for PCa patients in this stage of the disease.  

Recent studies using positron emission tomography (PET)/CT have 

indicated that PET imaging may be superior over the current standard of care. The 

two most common PET radiotracers are [18F]-fluorodeoxyglucose (FDG) and [18F]-

sodium fluoride (NaF). While FDG has been highly effective in the diagnosis and 

monitoring of other cancers (45, 46), it has been deemed unreliable and lacking 

specificity in PCa and therefore is not frequently used (Table 2) (37). Alternatively, 

recent meta-analyses have shown that NaF is more specific for bone lesions 

compared to 99mTc-MDP and can also detect some nodal lesions in late-stage  
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Table 2. Current clinical indication of PET radiotracers and their regulatory 

status.  

Tracer Target Indication Regulatory 

Status 

FDG Glucose 

metabolism 

minimal use in PCa, only 

used when other tracers 
are not available  

FDA approved, 

August 5, 2004 

NaF Osteoblastic 
activity 

Known or suspected 
osseous lesions 

FDA Approved, 
January 26, 
2011 

11C-choline 

 

Cell membrane 

metabolism 

High-risk staging, 

biochemical relapse at high 
PSA levels 

FDA approved, 

September 12, 
2012 

11C-acetate Fatty acid 
synthesis 

Useful for monitoring 
recurrence after focal 
therapy, unreliable in 
biochemical recurrence, 
not as effective as other 
agents on the market 

Under 
investigation  

Fluciclovine Amino acid 
transport 

High-risk staging, 
biochemical relapse at high 
PSA levels 

FDA approved, 
May 27, 2016 

FDHT AR Early stage disease 

detection and prognosis 

Under 

investigation 

anti-PSMA 

ligands 
PSMA Multiple stages including 

biochemical relapse at low 
PSA 

Under 

investigation 

Abbreviations: FDG, [18F]-fluorodeoxyglucose; NaF, [18F]-sodium fluoride; FDHT: [18F]-
DHT; PSMA, prostate-specific membrane antigen; AR, androgen receptor; PSA, 
prostate-specific antigen   
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CRPC patients, displaying superiority over that current standard of care (42, 47-

49). Unfortunately, the widespread use of NaF is substantially restricted due to its 

lack of availability and reimbursement challenges (50).  

Other PET imaging agents have recently been approved or are currently 

under investigation for PCa detection and monitoring, including 18F/11C-choline, 

11C-acetate, [18F]-fluciclovine, [18F]-DHT (FDHT), and prostate-specific membrane 

antigen (PSMA)-targeted agents (Table 2) (51-55). Three different choline 

radiotracers are currently available for clinical use (18F-fluoroethylcholine, 18F-

fluoromethylcholine, and 11C-choline) although the 18F-choline tracers are still 

under investigation for FDA approval. PCa cells use choline to synthesize a major 

constituent of the cell membrane, phosphatidylcholine, making it a promising target 

for diagnostic imaging (37). Most studies have indicated that choline is highly 

sensitive and specific for detecting lymph node and skeletal metastases in 

biochemically recurrent PCa patients, however, it also has a relatively high false 

positive rate of approximately 20% in nodal disease which is of major clinical 

concern (37, 56, 57). 11C-acetate works similarly to 11C-choline by exploiting the 

idea that PCa cells abundantly convert acetate into fatty acids which are then used 

to produce phosphatidylcholine (37, 58). Despite its similar mechanism of action, 

a meta-analysis of 11C-acetate in PCa revealed that it was not as sensitive or 

specific as 11C-choline and will likely not be used over the newer, more effective 

tracers (59). Fluciclovine, also referred to as FACBC, was recently approved for 

use in men with suspected PCa recurrence. Fluciclovine is an 18F-labeled leucine 
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analog that is taken up by PCa cells through amino acid transporters (37, 51). Like 

the choline and acetate compounds, fluciclovine lacks specificity in early-stage 

PCa and displays more accurate detection during biochemical recurrence (60, 61). 

Some studies suggested that fluciclovine is more specific than choline tracers (62, 

63), however, the disadvantages of this tracer limit its utility including a high false 

positive rate and its inability to fully replace BS to detect bone lesions in patients 

(64). FDHT is a fluorinated DHT molecule that binds directly to AR. Since PCa is 

primarily driven by AR in its early stages, it makes sense that an AR-targeted 

imaging agent would allow for better detection of PCa cells (37). Unfortunately, 

once a patient is treated with an AR antagonist, such as enzalutamide, the imaging 

agent will be displaced and rendered ineffective (65, 66). Similarly, this agent will 

not be if AR is not present such as in the case of AR-indifferent AVPC. Additionally, 

many of the previously mentioned imaging agents have not been tested in AVPC 

patients and have been shown to display prominent physiological uptake in the 

visceral organs of many patients (37, 52, 54, 55). Since AVPC patients are prone 

to metastatic lesions in the viscera, it is critical to develop a targeted diagnostic 

agent to accurately detect these lesions.  

 PSMA is a type II integral membrane glycoprotein that has received a lot of 

interest as a targetable biomarker for individualized PCa imaging and therapy. In 

general, PSMA has been correlated with metastasis, disease recurrence, and 

increased overall aggressiveness of the cancer (67, 68). Consequently, numerous 

efforts have been undertaken to develop PSMA-targeted theranostics for PCa. In 
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1996, the first anti-PSMA antibody, capromab pendetide or ProstaScint, was 

approved by the FDA as a diagnostic imaging agent for patients with biopsy-proven 

PCa who are at high-risk for pelvic lymph node metastasis and post-prostatectomy 

patients with a rising PSA a high clinical suspicion of metastatic disease (69). 

Unfortunately, ProstaScint was only able to bind to the intracellular epitope of 

PSMA which led to only modest clinical improvements over conventional imaging 

modalities (70, 71). Tremendous efforts have since been made to develop PSMA-

targeted ligands that bind to the extracellular domain of the protein. These efforts 

include the development of the humanized anti-PSMA antibody, J591, which has 

been successful in multiple diagnostic PET imaging and radioimmunotherapy 

clinical trials (72-75). To date, zirconium-89 (89Zr) has been the primary radiotracer 

for assessing the clinical PET imaging capabilities of J591. In fact, a recent study 

demonstrated that 89Zr-J591 was able to accurately detect more bone and soft 

tissue lesions than BS, CT, and FDG-PET imaging, demonstrating its superiority 

over the currently available imaging modalities and radiotracers (76).  

The development of PSMA-targeted ligands has laid the foundation for 

precision medicine in PCa and is working to tailor disease monitoring and 

treatment strategies to particular characteristics of each individual patient’s cancer 

(77). While PSMA is typically correlated with more aggressive disease, it has been 

documented that neuroendocrine differentiation in PCa and prolonged ADT usage 

leads to PSMA suppression (78, 79), both of which are frequent occurrences in 
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AVPC. Therefore, the identification of new biomarkers of AVPC is necessary to 

ensure better diagnosis and disease monitoring in these patients.     
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Current Understanding of CD133 in the Prostate  

CD133 Structure and Function  

Cluster of differentiation 133 (CD133) is a 97-kDa pentaspan 

transmembrane glycoprotein that contains an extracellular N-terminal domain 

(EC1), five transmembrane segments which separate two small intracellular loops 

(IC1 and IC2), two large extracellular loops (EC2 and EC3), and an intracellular C-

terminal domain (IC3) (Figure 3) (80). The two extracellular loops contain nine 

putative N-glycosylation sites; five on EC2 domain and four on EC3 domain (81). 

Glycosylation of CD133 yields a 120 kDa protein and alters the overall tertiary 

structure and stability of CD133 (82-84). Additionally, a few commercially available 

antibodies have been developed for CD133, however, most of them display poor 

efficacy in various assays. The two most commonly used antibodies, CD133/1 and 

CD133/2, only work in certain assays and bind to glycosylated epitopes which will 

be further addressed in Chapter II. Therefore, even these antibodies have limited 

utility in research and are not recommended for preclinical or clinical use.    

The CD133 gene, Prominin 1 (PROM1), is located on chromosome 4 in 

humans and chromosome 5 in mice and is only approximately 60% homologous 

from primates to rodents (84, 85). Transcription of human CD133 is driven by five 

alternative promoters, three of which are located on CpG islands and are partially 

regulated by methylation. These promoter regions often result in alternative 

splicing of CD133 mRNA, resulting in CD133 isoforms with potentially unique roles 

(83, 86-88). 



19 
 

 

  

 

Figure 3. Schematic of the CD133 topology and putative epitopes of 

commercially available CD133 antibodies. The five transmembrane 

glycoprotein contains two large extracellular loops (EC2 and EC3), which 

comprise a total of nine N-linked glycan residues. The commonly used CD133/1 

and CD133/2 epitopes are located on the EC3 region of CD133 and have the 

potential for epitope masking or antibody inaccessibility due to changes in 

glycosylation patterns. 
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The physiologic function of CD133 in normal biology and the progression of 

cancer remains elusive. CD133 is known to be preferentially localized in plasma 

membrane protrusions and microvilli, suggesting its involvement in membrane 

organization (89, 90). The subcellular localization of CD133 allows it to bind directly 

to cholesterol-containing lipid rafts where it can be involved in various signaling 

cascades (91, 92). Observations from CD133 knockout mice support the 

presumed role of CD133 as a scaffolding protein by showing that a lack of CD133 

caused a defect in outer segment morphogenesis of the photoreceptor cells. While 

these mice remained viable and fertile, they experienced significant retinal 

degeneration and blindness (93). Other studies have additionally suggested a 

potential role of CD133 in determining cellular fate or maintaining stem cell-like 

properties (94-97), however, the precise molecular mechanisms for this are still 

unclear.  

CD133 has primarily been described in the literature as stem cell marker of 

both normal and cancer stem cells (CSCs) in various cancers, including PCa (98-

100). Many different molecular mechanisms have been investigated to better 

understand the modulation of CD133 in both normal and CSCs, but the data is 

highly contradictory. Studies from both normal and CSC lines have indicated that 

CD133 antibody reactivity is reduced when cells are in the G1/G0 portion of the cell 

cycle as opposed to the G2/M phase of the cell cycle, suggesting some level of cell 

cycle dependence related to CD133 expression (101). Hypoxia in the stem cell 

and tumor microenvironment has also been shown to promote CD133 expression 
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via hypoxia inducible factor-1α (HIF-1α) upregulation (102-105). Similarly, a study 

using human glioma cells demonstrated that pharmacologically induced 

mitochondrial dysfunction produced an increase in CD133 protein expression, 

suggesting that hypoxia may also be perturbing the mitochondrial membrane 

potential to regulate CD133 post-transcriptionally (106). It has also been 

suggested that CD133 may play an important role in cellular glucose metabolism 

through modulation of the cytoskeleton (107). In parallel to these roles, a recent 

study also discovered a mechanism by which CD133 inhibited transferrin uptake 

(108). Since transferrin is involved in supplying iron to the cell and iron is required 

for efficient oxygen transport, the CD133-transferrin-iron network may provide a 

potential mechanism for a better understanding of CD133 modulation under 

hypoxic conditions.  

Several reports have also begun to highlight potential signaling pathways 

involved in CD133 expression. The role of CD133 as inductor of Wnt/β-catenin 

signaling has been previously reported in CSCs (109-111). In particular, 

suppression of CD133 was associated with a loss of β-catenin nuclear localization 

and a reduction in canonical Wnt signaling (109, 110). Similar results were also 

reported in normal CD133pos renal cells, suggesting that CD133 may be a 

functional protein and/or a marker of differentiation status (112). Additionally, the 

deacetylase, HDAC6, has been shown to physically interact with CD133 in 

mammalian cells (111). This association stabilized β-catenin, whereas inhibition of 

either CD133 or HDAC6 resulted in increased β-catenin acetylation and 
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degradation and correlated with decreased proliferation and tumorigenesis, 

suggesting another potential role for targeting CD133 for cancer therapy. CD133 

has also been implicated as an important regulator of PI3K/Akt signaling in CSCs 

(113-115), however, due to the complexity of the biological role of CD133, most 

studies focus on its use as a cell surface marker for the detection of somatic stem 

cells and CSCs. The functional role of CD133 is even less clear in the context of 

cancer, as it is ubiquitously expressed in numerous malignant and non-malignant 

tissues (116).  

CD133 in the Healthy Prostate 

In the healthy human prostate, CD133 was first identified as a stem cell 

marker in a rare population (~1%) of basal cells that expressed α2β1 integrin 

(Figure 4). This CD133pos/α2β1
high cell population was able to reconstitute prostatic- 

like acini with secretory activity when transplanted into male nude mice, validating 

their stemness and suggesting a hierarchical structure (117). Similarly, CD133 was 

used in combination with other cell surface markers to identify prostate stem cells 

in the proximal region of mouse prostate lobes which also preferentially expressed 

the basal marker CK14, but not the luminal marker CK18 (118). To validate the 

stemness of these cells, single CD133pos/Linneg/Sca-1pos/CD44pos/CD117pos stem 

cell grafts were transplanted into the renal capsule of nude mice and 14 out of 97 

(~14.4%) of the engraftments were capable of prostate development. The above 

studies support the idea that CD133 expression marks a particular basal stem cell 

population by reflecting a hierarchically organized phenotype.  
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Figure 4. Schematic of the different cell types in the prostate and their 

identifying markers. The epithelial compartment is composed of three basic 

cell types: basal, luminal, and neuroendocrine cells; and two intermediate 

phenotypes. Basal cells are non-secretory cells located along the basement 

membrane of the epithelium and are characterized by the following markers: 

ΔNp63 (119), CK5 and CK14 (120, 121), CD44 (122), integrin α2β1 (117), 

integrin α6β1 (123, 124), CD133 (117), CD117 (118), Sca-1 (118, 125), CD49f, 

and Trop2 (126). Basal cells give rise to secretory luminal cells by transitioning 

through intermediate states. Two intermediate phenotypes have been described: 

(1) transit-amplifying cells which are non-secretory and exhibit a more basal-like 

phenotype and (2) intermediate cells which are secretory and exhibit a more 

luminal-like phenotype. Both, transit-amplifying and intermediate cell types may 

express CK5 and CK8, however, only transit-amplifying cells have been shown 

to express CD24 to distinguish them from low-differentiated basal cells (127) and 

only intermediate cells have been shown to express CK19 to distinguish them 

from luminal cells (128). Luminal cells are secretory columnar cells that express 

high AR, CK8 and CK18, and PAP (129). Neuroendocrine cells are very rare 

cells located in the luminal layer and represent less than 1% of the prostatic 

epithelium. They are non-secretory, differentiated cells that express CHGA, 

CD56, synaptophysin, calcitonin, and NSE (130, 131). This figure has been 

adapted from diagrams in related literature (132-134).  
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This hypothesis was supported and accepted for many years, however, 

more recent findings have indicated the presence of CD133 in luminal epithelial 

cells in both human and rodent models (135-137). A study documented that 

CD133pos and CD133neg cells contributed equally to prostate epithelial 

homeostasis, bringing into question the accuracy of CD133 as a true stem cell 

marker (138). Based on the evidence in the prostate alone, it appears to be clear  

that not all CD133pos cells are stem cells and that some CD133neg cells may also 

possess stem-like properties. Several additional studies support this hypothesis by 

demonstrating that CD133 was expressed in differentiated epithelial cells in a 

variety of other organs including the pancreas (139, 140), liver (141, 142), colon 

(116, 143), sweat glands (144), salivary and lacrimal glands (144, 145), uterus 

(144), and kidneys (146). Altogether, these studies indicate that the overall 

expression of human CD133 expands beyond stem cell populations and although 

it appears to negatively correlate with cell differentiation, it is likely not a regulator 

of stemness in most tissues (143). Rather, it is more likely that CD133 is a general 

marker of the apical or apico-lateral membrane of the glandular epithelium (144, 

147). Furthermore, it is important to note that no stem cell population from any 

tissue type has been isolated to clonal purity on the basis of CD133 alone.  

CD133 in Prostate Cancer  

CD133 was first investigated as a PCa stem cell marker using the same cell 

surface markers for identifying normal stem cells in the prostate. One study 

identified PCa stem cells by isolating a population of cells from 40 patient biopsies 
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which was CD44pos/α2β1
high/CD133pos (148). This particular cell population was 

postulated to be a CSC population based on its ability to self-renew, proliferate 

extensively, and invade in vitro. The CD44pos/α2β1
high/CD133pos exhibited a self-

renewal capacity that was 3.7-fold greater than the CD133neg population. 

Additionally, CD133pos cells from primary and metastatic prostate tumors showed 

increased proliferative potential and invasiveness compared to CD133pos cells 

derived from benign prostate tissues. CD133 has also been used to identify CSCs 

in PCa cell lines though the isolated CD133pos cells regenerate phenotypically 

heterogeneous populations. For example, a CWR22Rv1 culture propagated from 

freshly sorted CD133pos cells (>98%) revealed that only 6.15% of cells remained 

CD133pos after two weeks in culture (149).  

Based on the evidence of rare CD133 expression in somatic stem cells of 

the prostate, it was hypothesized that these CD133pos CSCs populations resulted 

from mutated normal stem cells and thus were derived from basal cells. Several 

early studies supported this theory by showing that the CD133pos cell populations 

exhibited known basal cell identifiers summarized in Figure 4, although the most 

frequently recognized of these basal cell markers is often negative androgen 

receptor expression (ARneg). In these studies, the CD133pos cells had the ability to 

proliferate and differentiate into ARpos cell populations, reflecting the relevance of 

CD133 to a hierarchically organized phenotype.  However, another study 

demonstrated that isolated CD133pos PCa cells were ARpos and exhibited 

significant growth inhibition when exposed to high-dose androgens, suggesting 
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that these CD133pos CSCs may be derived from a malignantly transformed 

intermediate cell rather than normal basal stem cells (149).    

Conversely, some studies have indicated that CD133pos and CD133neg cell 

populations from immortalized primary human PCa tissues demonstrated similar 

tumorigenicity when inoculated into NOD/SCID mice and that the CD133neg cells 

generated significantly more prostaspheres in vitro (150). Thus far, CD133pos CSC 

populations have only been shown to represent roughly 1-5% of the total cell 

population in PCa cell lines (149). However, it has been suggested that CD133pos 

populations could be enriched in vitro through chemotherapy or radiotherapy, 

postulating that these cells exhibit at least some level of chemo/radioresistance 

(151). A study evaluating the circulating tumor cells from 12 metastatic CRPC 

patients established that the CD133pos cells exhibited higher proliferative potential 

than their CD133neg counterparts in 10/12 patients (152), suggesting that CD133pos 

cells do have enhanced potential for cell division despite chemo/radiotherapy. Due 

to the inconsistent evidence supporting CD133 as a PCa stem cell marker, it is still 

unclear whether CD133 plays a direct role in PCa stem cell maintenance or if it is 

simply correlated to more aggressive disease. 
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Goals of Research  

 Tumor heterogeneity is a hallmark of AVPC lesions and a well-documented 

clinical challenge in developing new and improved theranostic agents. Recent 

studies have focused on incorporating a precision medicine-based approach to 

detecting and treating PCa by using specific imaging and therapeutic agents that 

are targeted to the patient based on their tumor pathology. PSMA-targeted 

theranostics have laid the foundation for the development of targeted agents for 

the detection and treatment of specific phenotypes of PCa, but they are limited in 

their ability to target PSMAneg lesions, which are frequently found in the lethal 

AVPC stage of PCa progression. As such, new targetable biomarkers are urgently 

needed to continue improving the diagnosis, disease monitoring, and therapeutic 

options for lethal AVPC.  

 Recent studies on CD133 have indicated that it may play a role in the 

progression of PCa as it is often identified in more aggressive stages of the disease 

which also happen to display higher levels of chemo/radioresistance. To date, the 

investigation of CD133 as a stem cell and CSC marker has dominated the CD133 

literature, but the verdict is still out as to whether CD133 plays a true role in the 

stemness of the cell population. The focus of this dissertation is to investigate 

CD133 as a biomarker of aggressive PCa and develop a novel antibody to 

detect CD133 in preclinical PCa models.   

 Due to the limitations of previously commercialized antibodies binding to 

inaccessible or glycosylated epitopes of CD133, Chapter II focuses on the 
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identification of a novel single chain variable fragment (scFv), termed HA10, which 

detects a glycosylation independent epitope of CD133. In addition to the validation 

of HA10, this chapter also includes a case study describing CD133 expression 

during PCa progression and suggests the significance of targeting CD133 in lethal 

AVPC patients. In Chapter III, CD133 expression in a particular AVPC phenotype 

is defined using a high-throughput analysis. Furthermore, HA10 is converted into 

a full-length IgG, termed HA10 IgG, and used to image preclinical models of PCa. 

Chapter IV concludes my research by elucidating the impact of targeting CD133 

as a biomarker in AVPC and discussing the future directions of this research.    
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CHAPTER II: Development and 

Characterization of a Novel anti-CD133 

Single Chain Variable Fragment (scFv) 
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Introduction 

PCa is a prevalent disease that afflicts men in the western world greater 

than any other malignancy. The inability of therapies to eliminate PCa in a subset 

of patients and the recurrence of disease many years post-radical prostatectomy 

is indicative of the existence of cancer stem/initiating cells. In the healthy prostate, 

a subset of slow-growing ARneg basal cells possess an unlimited ability to self-

renew and differentiate into neuroendocrine cells and transit-amplifying cells that 

ultimately yield the AR-expressing secretory cells that populate the majority of the 

glandular epithelium (153). One model suggests that cancer stem/initiating cells 

arise from these normal stem cells within the basal layer of the prostate epithelium 

after they have accrued mutations that promote carcinogenesis 

(154). Complicating the study of stem cells is their low abundance in the 

heterogeneous prostate epithelium. The pentaspan transmembrane protein, 

CD133, has been used extensively as a marker to identify and isolate prostate 

stem cells and cancer/stem initiating cells (99, 100, 155). Possessing an 

extracellular N-terminal domain (EC1), two large heavily glycosylated extracellular 

loops (EC2 and EC3), and often existing as different splice variants, the biological 

function of CD133 is unknown (84, 156). Identified originally as an antigen present 

on the surface of hematopoietic stem cells in 1997 (157, 158), the expression of 

CD133 has been documented in normal and CSCs from a number of diverse tissue 

and cancer types (100, 117). Underscoring its association with stem cells in the 

prostate, basal cells isolated from benign prostate tissue that expressed α2β1 



31 
 

integrin and CD133 were able to regenerate a fully differentiated prostate 

epithelium in vivo (117). Additionally, purported PCa stem cells expressing a 

CD133pos/α2β1
high/CD44pos phenotype were isolated from human tumor biopsies 

and demonstrated tumorigenic properties (159).  

Investigating the functional role CD133 plays in the development of the adult 

prostate and in the initiation and progression of cancer is hindered by several 

factors. Very few cell lines uniformly express endogenous CD133. PCa cell lines 

and non-immortalized prostate epithelial cells do possess a minor population of 

CD133-expressing cells (~1–5%) (149). When the CD133pos cells are isolated and 

expanded in culture, CD133 expression is lost returning to the original minor 

population (155). Reliable antibodies for the detection and isolation of CD133 also 

do not exist—this has been a significant limitation in investigating the biology of 

CD133 (85, 160). The two most commonly used antibodies for the isolation and 

analysis of CD133, AC133 (epitope CD133/1) and AC141 (epitope CD133/2), both 

recognize glycosylated epitopes (155). During the lifetime of a protein, 

glycosylation motifs can be pared or lost altogether making them inconsistent 

epitopes for analysis (85, 161). Several investigators have documented that the 

AC133 epitope disappears upon CSC differentiation even though CD133 protein 

and mRNA are still present (83, 162, 163). Further illustrating the paucity of high-

quality antibodies for CD133, studies have found discordant CD133 expression by 

IHC using different CD133 antibodies tested in sections of the same tissues (85, 

160, 164). The dynamic nature of the glycosylation motifs on the extracellular 
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domains of CD133 coupled with the lack of a sensitive antibody suggest that 

CD133-expressing cell populations may be more abundant than previously 

imagined in tissues, but those cell populations are not detectable by the current 

CD133 antibodies. 

In this study, we detailed the characterization of a novel antibody for CD133 

that was identified from a human antibody phage display library. Our antibody, 

termed HA10, was found to bind to a glycosylation-independent epitope on the 

protein backbone of CD133. Using our antibody, we were able to detect CD133 

expression in cell lines by flow cytometry and in formalin fixed paraffin embedded 

tissue sections. In several instances, HA10 was able to detect CD133 expression 

that was not identified by the commercially available AC133 antibody. In 

concordance with previous studies, little CD133 expression in healthy prostate and 

prostate adenocarcinoma sections was observed. We did, however, make a novel 

finding documenting extensive CD133 expression in ARneg LuCaP patient-derived 

xenograft (PDX) models and in a liver biopsy from a patient with ARneg that also 

expressed the neuroendocrine marker, CHGA. 
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Materials & Methods 

Cell Culture  

All cancer cells lines used in this study were purchased from American Type 

Culture Collection (ATCC) except for the CWR-R1CD133 cells which were a 

generous gift from Dr. Donald Vander Griend, University of Chicago (165). Cells 

were maintained in their respective recommended media, supplemented with 10% 

FBS (Gibco), 1% antibiotic-antimycotic (Gibco), and 1% glutaMAX (Gibco) at 37°C 

and 5% CO2. Additionally, enzalutamide resistant (EnzR) cell lines were 

supplemented with 10 μM enzalutamide (APExBIO) at all times. The cell lines were 

authenticated using short-tandem repeat profiling provided by the vendor and 

routinely monitored for mycoplasma contamination. The PC3CD133 knock-in cell line 

was generated using PROM1 Lentifect Purified Lentiviral Particles (LPP-M0038-

Lv105–200-S, GeneCopoeia). PC3 cells were seeded at 5 × 104 cells/well in a 24-

well plate using heat-inactivated FBS. Once cells became 70–80% confluent, 

transduction was performed according to the manufacturers protocol using 7 

μg/mL Polybrene (H9268–5G, Sigma-Aldrich) and 10 μL of lentivirus for 24 h. 

Following overnight incubation, transduced cells were reseeded into three wells of 

a six-well plate and incubated for 48 h. Transduced clones were stably selected 

with 3 μg/mL puromycin for the duration of culture. 

Phage Display Biopanning  

A fully human naïve scFv phage display library was used to identify clones 

against native human CD133. Recombinant human CD133 (NBP2-59787PEP, 

https://www.novusbio.com/products/cd133-recombinant-protein-antigen_nbp2-59787pep
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R&D Systems) was biotinylated using EZ-link™ NHS-PEG4-Biotin (Thermo Fisher) 

at a 20-fold mM excess of biotin to protein. The biotinylated CD133 was captured 

using Dynabeads™ M-270 Streptavidin (Invitrogen) in 100 ng/μL of 1% BSA in 

PBS (137 mM NaCl, 2.7 mM KCl, Na2HPO4, 10 mM, KH2PO4 2 mM pH 7.4) with 

constant inversion for 30 min. The scFv phage display biopanning protocol was 

carried out as previously described in Kim et al. (166). The biopanning protocol 

was repeated three times to enrich for positive binders to glycosylated recombinant 

CD133 and one additional round with deglycosylated CD133. 

Quantitative RT-PCR 

RNA was prepared from each cell line (~2 × 106 cells) using an RNeasy kit 

(Qiagen). RNA was synthesized to cDNA using the High Capacity RNA-to-cDNA 

kit (Applied Biosystems). For each gene, Taqman qRT-PCR was performed using 

the Taqman Universal PCR Master Mix (Applied Biosystems) and the following 

Taqman Gene Expression Assay probes: CD133-Hs01009257_m1 PROM1 for 

experimental samples and 18s ribosomal 1 (reference gene) Hs03928985_g1 

RN18S1 for a normalization control. All qPCR was performed on a StepOnePlus 

Real-Time PCR system instrument (Applied Biosystems). Each reaction was 

performed in triplicate and the data were analyzed using the comparative Ct 

method (fold change = 2−ΔΔCt) as previously described by Schmittgen et al. (167). 

All data are presented as mean ± SEM. 



35 
 

ELISA 

ScFvs were produced from 288 individual clones using 5 mM IPTG 

induction in a microtiter plate format. The scFvs that leaked into the cell culture 

media were screened for binding to native and deglycosylated CD133 by ELISA. 

Deglycosylation of CD133 was accomplished using PNGase F (Promega) 

according to the manufacturer’s protocol. MaxiSorp® plates (Nunc) were coated 

with 50 μL of 5 μg/mL of captured CD133 (some experiments used deglycosylated 

or truncated forms of CD133) in 1% BSA in PBS overnight at 4°C. The unbound 

CD133 was removed and wells were washed three times with PBS and blocked 

with 2% BSA in PBS for 1 h at room temperature. The wells were washed three 

times with PBS and the supernatants of scFv induced cultures were added to each 

well and incubated at room temperature for 1 h. The wells were washed three times 

with PBS and the scFv was detected with anti-HA antibody conjugated to 

peroxidase (Roche) in 1% BSA in PBS and Turbo TMB reagent (Pierce). Reactions 

were stopped with 15 μL of 2.5 M H2SO4 and the absorbance was measured at 

450 nm using a microplate reader. Confirmed positive clones for CD133, 

irrespective of glycosylation status, were sequenced to identify unique clones. 

ScFv Expression and Purification  

Unique clones were inserted into pET-22b(+) vectors (Novagen) according 

to the manufacturer’s protocol. Expression of each clone was carried out in 

SHuffle® T7 Competent Escherichia coli K12 cells (NEB). A single colony from 

each clone was selected and cultured overnight at 37°C in 5 mL of 2xYT broth 
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containing 100 μg/mL ampicillin. The 5 mL overnight cultures were used to 

inoculate 1 L cultures of 2xYT broth containing 100 μg/mL ampicillin. Cells were 

cultured at 30°C until the OD600 reached 0.5–0.7. Protein expression was induced 

by the addition of 1 mM IPTG and 0.4 M sucrose and cultured for an additional 16–

18 h at 25°C. Cells were harvested by centrifugation at 6000g for 10 min and the 

periplasmic E. coli fraction was extracted via osmotic shock. Harvested cell pellets 

from each liter of culture were resuspended in 20 mL of 1× TES (0.2 M Tris, pH 8, 

0.5 mM EDTA, 0.5 M sucrose) and 20 mL of 1× EDTA-free protease inhibitor 

(Pierce) solution. Each cell suspension was incubated for 30 min on ice with 

agitation every 10 min. Cells were centrifuged and the supernatant was collected 

as periplasmic fraction 1. This protocol was repeated to the cell pellet to obtain 

periplasmic fraction 2. The two periplasmic fractions were combined and 1 M 

MgCl2 (200 μL) and 5 M imidazole (600 μL) were added prior to purification. The 

periplasmic fractions were filtered through a 0.45 μm filter and purified by 

Ni2+ affinity chromatography as follows. A 5-mL HisTrap HP column (GE 

Healthcare) was equilibrated with 20 mM NaPO4, 0.5 M NaCl, 40 mM imidazole, 

pH 7.4. The clarified periplasmic fraction was loaded onto the column and washed 

with equilibration buffer for 10 column volumes and bound protein was eluted with 

20 mM NaPO4, 0.5 M NaCl, 500 mM imidazole, pH 7.4 Eluted scFvs were 

collected, concentrated using a 10 kDa centrifugal filter, and buffer exchanged into 

D-PBS using a Sephadex G-25 PD-10 desalting column (GE Healthcare). Each 

scFv was subject to analysis by reducing and non-reducing SDS-PAGE and 
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protein concentrations were measured based on absorbance at 280 nm using a 

NanoDrop™ One UV-Vis Spectrophotometer (Thermo Fisher). 

IgG Production  

The heavy chain and light chain variable domains of the HA10 sequence 

were cloned separately into pFUSE2ss derived rabbit IgG expression vectors 

(invivogen) and co-transfected into HEK293T (Life Technologies) cells for 72 h. 

Following incubation, the serum was collected, filtered through a 0.45 μm filter, 

and purified using a 1 mL HiTrap Protein A HP column (GE Healthcare). The 

column was equilibrated with 20 mM sodium phosphate, pH 7.4. The serum was 

loaded onto the column and washed with equilibration buffer for 10 column 

volumes and bound protein was eluted with 0.1 M citric acid, pH 3. Eluted IgGs 

were collected, concentrated using a 50 kDa centrifugal filter, and buffer 

exchanged into D-PBS, and analyzed as described above. 

Surface Plasmon Resonance 

SPR measurements were obtained using a BIAcore T100 instrument. The 

native recombinant CD133 protein was captured on a CM5 sensor chip by amine 

coupling at pH 4.5 to a final immobilization density of ~680 resonance units (RU). 

Un-reacted sites were blocked with 1M ethanolamine. A control flow cell without 

immobilized CD133 protein was prepared for reference subtraction. Dilutions of 

HA10 in running buffer (10 mM HEPES, 150 mM NaCl, 0.005% Tween 20, pH 7.4 

[HBS-T] or 50 mM phosphate, 100 mM NaCl, 0.01% Tween 20, pH 6) were injected 

over the chip for 200 s followed by a 600 s dissociation in running buffer. The chip 
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was regenerated with a 30 s injection of 10 mM glycine, pH 2.5, and two 45 s 

injections of HBS-T. The flow rate used for all methods was 30 L/min. Binding 

affinities were derived by analysis of the generated sensograms using the Biacore 

T100 evaluation software. The equilibrium RU observed for each injection was 

plotted against protein concentration and fit to a steady-state affinity model 

included in the evaluation software for determination of the equilibrium binding 

affinity (KD). 

ScFv-Fluorphore Conjugation 

A total of 0.5 mg of HA10 was labeled with a 3-fold molar excess of Alexa 

Fluor® 488-NHS ester (Life Technologies) dissolved in DMSO under alkaline 

conditions (pH 9.0) using 1 M sodium bicarbonate. The conjugation reaction was 

performed for 90 min at room temperature with gentle agitation. Unbound Alexa 

Fluor® 488 was removed by performing a buffer exchange into D-PBS using a 

Sephadex G-25 PD-10 desalting column (GE Healthcare). Labeled HA10 was 

concentrated using a 10 kDa centrifugal filter and the protein concentration and 

degree of labeling were determined as follows: 

Protein concentration (M) = [(A280 – (A494 x 0.11)) x dilution factor] / [Molar 

extinction coefficient (M)] 

Moles dye per mole protein = [A494 x dilution factor] / [71,000 x protein 

concentration (M)] 



39 
 

Flow Cytometry 

Cells were harvested by incubation with TrypLE for 3 min at 37°C. 1 × 106 

cells were labeled with either 1 μM HA10, 0.1 mg/mL of commercialized CD133/1 

(AC133, #130–105-226) purchased from Miltenyi Biotec, or 0.1 mg/mL of an IgG 

control (#130–092-213, Miltenyi Biotec) for 30 min at 4°C. Cells were washed two 

times and resuspended in flow cytometry staining buffer (eBioscience). Cell 

samples were analyzed on a FACSCalibur flow cytometer (Becton-Dickinson) and 

at least 10,000 viable cells were gated and analyzed with FlowJo software. 

Immunoprecipitation 

Cell lysates were prepared using non-denaturing 1% triton X-100 lysis 

buffer with protease and phosphatase inhibitors. The concentrations of cell lysates 

were determined using an RCDC assay. Purified HA10 (2 μg) was incubated with 

0.5 mg of cell lysate overnight at 4°C to facilitate antibody conjugation. Protein A/G 

Plus-Agarose beads (#sc-2003, Santa Cruz Biotechnology) were added to the 

lysate-antibody mixture and incubated for 3 h at 4°C. The immunoprecipitant was 

washed three times with D-PBS and captured proteins were eluted using 40 μL of 

1× laemmli buffer. The sample was boiled at 95°C for 5 min and centrifuged at 

100×g for 5 min to remove majority of the agarose beads from the precipitant. The 

eluate was analyzed by SDS-PAGE followed by subsequent western blotting using 

the commercialized AC133 antibody (Miltenyi Biotec) as well as mass 

spectrometry using a Linear Ion Trap mass spectrometer (Thermo Scientific) and 

PEAKS proteomics software package. 
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Immunohistochemistry 

The LuCaP tissue microarray (TMA) was acquired from the Prostate Cancer 

Biorepository Network (PCBN). The LuCaP TMA was constructed with each PDX 

model in triplicate. Patient biopsies for analysis were acquired using a University 

of Minnesota Human Subjects Division approved Institutional Review Board (IRB) 

protocol for tissue acquisition (IRB#1604M86269) and with patient consent. The 

healthy prostate tissue and adenocarcinoma TMAs were obtained from the 

BioNET Tissue Procurement Facility at the University of Minnesota. The samples 

for these TMAs were all arranged in duplicate. The patient samples for the TMA 

were originally acquired using an approved IRB protocol for tissue procurement. 

Unstained sections (4 μm) were de-paraffinized and rehydrated using standard 

methods. For antigen retrieval, slides were incubated in 6.0 pH buffer (Reveal 

Decloaking reagent, Biocare Medical) in a steamer for 30 min at 95–98°C, followed 

by a 20 min cool down period. Endogenous peroxidase activity was quenched by 

slide immersion in 3% hydrogen peroxide solution (Peroxidazed, Biocare Medical) 

for 10 min followed by TBST rinse. A serum-free blocking solution (Sniper, Biocare 

Medical) was placed on sections for 30 min. Blocking solution was removed and 

slides were incubated in primary antibody diluted in 10% blocking solution/90% 

TBST. The following primary antibodies and concentrations used were: CD133 

HA10 antibody, rabbit monoclonal (1:100); androgen receptor SP107 (Sigma), 

rabbit monoclonal (1:200); chromogranin A PB9097 (Boster Biological 

Technology) rabbit polyclonal (1:1000); CD133/1 (AC133) (Miltenyi) mouse 
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monoclonal (1:25). Slides were rinsed in TBST buffer followed by detection with 

Novalink polymer (Leica Biosystems) according to manufacturer’s directions. All 

slides then proceeded with TBST rinse and detection with diaminobenzidine (DAB) 

(Covance). Slides were incubated for 5 min followed by TBS rinse then 

counterstained with Harris Hematoxylin for 1 min. Slides were then dehydrated and 

cover slipped. An independent pathologist reviewed the stained slides and 

assigned a qualitative staining intensity score of negative, weak, moderate, and 

strong. The staining patterns were described as rare (0–25% cells positive), 

variable (25–75% positive), and uniform (>75% positive). 

Statistical Analysis 

A one-way ANOVA using GraphPad Prism 7 was used to calculate statistics 

for PROM1 mRNA expression from qRT-PCR experiments. Each cell line was 

compared to the calibrator (PPT2) to determine statistically significant levels of 

CD133 mRNA expression. All other assays were carried out 2–3 times and data 

replication were observed in repeated experiments. 
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Results 

Antibody Identification  

A human scFv antibody phage display library with a diversity of 8 × 109 was 

initially screened for three rounds against glycosylated recombinant CD133. 

Biopanning was performed using biotinylated CD133 attached to magnetic 

streptavidin coated beads to ensure that the protein retained some three-

dimensional structure. An additional round of biopanning was performed with 

CD133 that had been deglycosylated by PNGase F treatment to enrich for clones 

against a glycosylation-independent epitope. After the fourth round, 288 

independent clones were screened by ELISA using fully glycosylated CD133. Of 

those clones, 122 showed high ELISA signals and 14 clones cross-reacted with 

deglycosylated CD133. Sequence analysis of the 14 clones discovered 8 unique 

antibodies. One scFv, designated HA10, expressed well in E. coli (~2 mg/L) and 

was selected for further characterization studies. After purification, the majority of 

the purified product was composed of scFv, however, some dimerized and 

oligomerized products were also present (Figure 5A), which is in accordance with 

previously documented scFv preparations (168, 169).  Subsequent SPR analysis 

determined that the monovalent HA10 scFv possessed a KD of 3 nM for fully 

glycosylated CD133 (Figure 5B). Additionally, the epitope of HA10 was found to 

reside on the extracellular domain 2 (EC2) of CD133 by ELISA using recombinant 

biotinylated fragments of each extracellular domain (Figure 5C). In contrast, both 

of the commercially available antibodies, AC133 and AC141, are known to bind to 
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Figure 5. Validation of HA10 binding to CD133. A) SDS-PAGE gel of purified 

HA10 scFv displays some dimer and oligomer formation. B) SPR measurements 

of immobilized CD133 interacting with 3, 6, 25, 50, 200, and 400 nM of purified 

HA10 are shown, demonstrating potent binding to native recombinant CD133 

with a KD = 3 nM C) ELISA assay of HA10 with purified recombinant CD133 

extracellular loops (EC2 and EC3) shows that HA10 binds to an epitope located 

on the EC2 domain of CD133. Detection of HA10 binding was performed using a 

peroxidase conjugated HA-tag antibody and Turbo TMB reagent. 

OD450 measurements were obtained on a microplate reader and a control blank 

well containing no immobilized protein was used to assess background 

absorbance D) To further confirm the binding of HA10 to CD133, CD133 was 

immunoprecipitated from two CD133pos cell lines, CWR-R1CD133 and CaCo2 

(colon cancer) using HA10. Western blot analysis with the Miltenyi Biotec 

CD133/1 (AC133) antibody and mass spectrometry of the immunoprecipitant 

were used to confirm the identity of CD133. IP, immunoprecipitant; SN, 

supernatant; W, pooled washes. 
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glycosylated epitopes on the extracellular domain 3 (EC3). Immunoprecipitation 

with HA10 revealed binding to CD133 in the colon cancer cell line, CaCo2; and the 

PCa cell line, CWR-R1CD133 which was engineered to express CD133 (Figure 5D). 

Lentiviral transduced and naturally expressing CD133pos cell lines were next 

analyzed by flow cytometry and western blot to compare the binding of HA10 scFv 

to the AC133 antibody which targets the CD133/1 epitope on EC3. First, CD133 

gene expression analysis was used to evaluate mRNA levels of PROM1, which 

encodes for CD133.  The artificially expressing cell lines, PC3CD133 and CWR-

R1CD133, displayed significantly higher levels of PROM1 compared to the remaining 

cell lines. Additionally, the naturally expressing cell lines: E006AA-hT, E006AA-

hT-EnzR, PPT2, and CaCo2 showed 100-1000-fold more PROM1 compared to 

the CD133neg cell lines (Figure 6A). Despite the high mRNA levels in the artificially 

expressing cell lines, flow cytometry and western blotting revealed that CD133 

protein expression was similar to the colon cancer cell line, CaCo2, which serves 

as a positive control (Figures 6B and 6C). As seen by the negligible shift in the 

histograms, insignificant staining was only observed in the CD133neg parental PC3 

and CWR-R1 cells, confirming the lack of cross-reactivity of HA10 with other 

human proteins. Conversely, PC3CD133 and CWR-R1CD133 cell lines were 

specifically labeled by both HA10 and AC133 at almost equivalent levels. Both 

antibodies were next tested with the naturally expressing CaCo2 cell line and the 

recently identified CD133pos PCa cell line, PPT2 (170). HA10 showed comparable 

staining in CaCo2 cells and stained 21.5% more of the PPT2 cell population than 
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Figure 6. Analysis of CD133 expression in various cell lines. A) High levels of 

PROM1 mRNA expression were observed in the artificially (p<0.0001) expressing PCa 

cell lines. Despite being insignificant, total PROM1 mRNA expression in the naturally-

expressing cell lines were comparable to the positive control, CaCo2, whereas CD133 

mRNA expression levels in the CD133neg prostate cancer cell lines were roughly 0.001–

0.1% of the remaining cell lines when analyzed by qRT-PCR. B) Flow cytometry was 

used to compare the specificity and staining intensity of HA10 (purple line) and the 

Miltenyi antibody CD133/1 (AC133) (black line) on these various CD133-expressing live 

cells. Both antibodies were compared to an unstained control (red line) to identify any 

non-specific binding. Staining profiles on the negative and transduced cell lines suggest 

comparable performance, however, higher staining profiles were observed in naturally 

expressing cell lines with HA10 compared to the AC133 antibody. C) Comparable 

detection was observed in all cell lines by western blot.  
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AC133. Additionally, since African Americans are known to exhibit more 

aggressive PCa, the African American PCa cell lines, E006AA-hT and E006AA-

hT-EnzR, were assessed for CD133 expression. Similar to the PPT2 cells, staining 

was only observed with HA10 in a small population of cells, while AC133 was 

unable to detect CD133 expression on the cell surface (Figure 6B). When the same 

cell lines were analyzed by western blot, the antibodies were comparable in signal 

across all cell lines (Figure 6C). Interestingly, there is a small population of 

E006AA-hT-EnzR cells identified using HA10 in the flow cytometry analysis that is 

not detected via western blot, which may be due to changes in structure or epitope 

alterations from the lysis procedure. However, these results ultimately suggest that 

HA10 may be more effective at detecting CD133 in naturally expressing CD133pos 

cell populations, potentially due to the effects of CD133 glycosylation, epitope 

masking, or protein truncation. 

Antibody Staining in Fixed Tissues 

The variable heavy and light chains of HA10 scFv were cloned into rabbit 

IgG scaffold vectors for expression in a mammalian system. After purification, the 

rabbit IgG version of HA10 was used by IHC to detect CD133 in formalin-fixed 

paraffin embedded sections from subcutaneous CWR-R1CD133 and PC3CD133 

xenografts. HA10 detected strong uniform of CD133 with >75% of the cancer cells 

stained in the transduced models with no appreciable staining observed in the 

parental sections as anticipated (Figures 7A-7D). Mock tissue sections of PC3CD133 

cells embedded in paraffin also demonstrated specific staining for CD133  
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Figure 7. IHC validation of HA10. Staining with HA10 is depicted in FFPE 

xenograft sections derived from parental cell lines and cell lines 

engineered to express CD133. No immunoreactivity was present in a parental 

R1 section (A) but was in the engineered R1CD133 section (B). Staining was not 

observed in a parental PC3 section (C) while strong uniform staining was in the 

PC3CD133 section (D). Mock tissue sections of the PC3 cells were made consisting 

of fixed cells embedded in paraffin and then sectioned (E and F). CD133 was 

absent in PC3 parental cell mock tissue section (E). The mock tissue section of 

the PC3CD133 cells did show positive staining (F). Scale bar, 60 μm. 
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compared to the non-transduced control cells (Figures 7E and 7F). After the IHC 

protocol was optimized, a panel of healthy human tissues were stained with HA10 

to assess CD133 distribution (Figure 8). Staining was largely absent in healthy 

human tissues, except for weak and variable staining in colon. The presence of 

CD133 in the colon and in colon cancer has been documented before (171). 

Tissue microarrays of healthy prostate tissue and adenocarcinoma 

(Gleason 6–9) were next analyzed for CD133 expression using HA10. 

Immunoreactivity was found in very few of the healthy and diseased sections. Out 

of the 150 healthy prostate sections, the presence of CD133 was observed in only 

12 sections (8%). All of the CD133 was located in the prostate epithelium with no 

detectable staining in the stroma (Figure 9). Positivity was greatest on the apical 

side of luminal cells. Staining was not uniform across luminal cells, however, with 

cells adjacent to CD133pos cells often showing no immunoreactivity (Figure 9A). 

Basal cell staining was only observed in one healthy prostate section (Figure 9B) 

while another section displayed complex epithelial staining that may have included 

basal cells (Figure 9C). CD133 immunoreactivity was almost equally as sparse in 

the prostate adenocarcinoma sections with only 10 out of 110 (9%) sections 

demonstrating immunoreactivity (Figure 9D). The staining was confined to the 

apical side of luminal cells with no basal staining observed in the sections that were 

surveyed. The presence of CD133 in the adenocarcinoma sections did not 

correlate with Gleason Grade, PSA level, or progression free survival.  
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Figure 8. HA10 staining in healthy tissue. A) kidney, B) liver, C) spleen, D) 

lung, E) illium, F) small intestine, G) placenta, H) ovaries and I) skin. Scale bar, 

200µm. 
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Figure 9. CD133 staining in the healthy prostate and prostate 

adenocarcinoma using HA10. The presence of CD133pos cells was rare in 

healthy tissue with 12/150 (8%) of the sections displaying immunoreactivity (A-

C). A) Non-uniform staining of luminal cells was present in the glandular 

epithelium of a healthy prostate. B) A collection of basal cells in the glandular 

epithelium demonstrating the presence of CD133. C) An example of complex 

epithelial staining in a healthy prostate section. D) CD133 staining of luminal 

cells in an adenocarcinoma section Gleason 4 + 3. Only 10/110 (9%) of the 

adenocarcinoma sections had detectable CD133 present. Scale bars, 200 μm 

for the wide view and 60 μm for the magnification. 
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In order to more fully interrogate the potential expression of CD133 in 

heterogeneous primary and metastatic PCa, we stained a TMA constructed of the 

LuCaP PDX models (Figure 10). Out of the 42 LuCaP PDX models, only three 

(LuCaP 49, 145.1, and 145.2) were immunoreactive resulting in a uniform staining 

pattern akin to the engineered PC3CD133 and CWR-R1CD133 xenografts. No staining 

was detected in any of the LuCaP sections using an optimized protocol for the 

commercially available AC133 antibody. The CD133pos LuCaP models were all 

ARneg and express at least one marker of neuroendocrine differentiation (CHGA or 

synaptophysin), as did their originating tumors. We did not observe any CD133 

positivity in sections of the other ARneg LuCaP model with neuroendocrine 

differentiation features, LuCaP 93. 

Clinical Case Study of CD133 Expression  

A liver biopsy was obtained from a PCa patient who underwent treatment 

at the University of Minnesota Masonic Cancer Center. The patient was originally 

diagnosed with aggressive PCa (Gleason 4 + 5, T3bN1M0, PSA of 45 ng/mL) and 

underwent a transurethral resection of the prostate (TURP). Shortly afterwards, a 

CT scan of the abdomen and pelvis showed bilateral pelvic lymphadenopathy and 

ADT consisting of lueprolide and bicalutamide was initiated. After 1 year of ADT, 

the patient’s PSA had dropped to 2.8 ng/mL. Progression on ADT was observed 

after 25 months of treatment by an increase in PSA to 87 ng/mL and the 

development of extensive skeletal metastases. The patient then started on 

treatment with abiraterone and prednisone. After a year on this regimen, his PSA  
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Figure 10. CD133 expression in LuCaP PDX models using HA10 and the 

Miltenyi antibody CD133/1 (AC133). None of the LuCaP PDX models were 

found to be positive for CD133 using the AC133 antibody. The neuroendocrine 

prostate cancer-derived models LuCaP 49 and LuCaP 145.1 did show staining 

for CD133 using HA10. Staining with HA10 was not observed in any of the other 

LuCaP PDX models, including AR positive LuCaP 73 shown at the lower right. 

Each image is representative of three replicates for each model. No variability 

was observed between the replicates. Scale bar, 100 μm. 



53 
 

had decreased from 87 to 17 ng/mL, however, a CT scan found extensive liver 

metastasis (Figure 11A). Biopsies of the liver lesions were found to be positive for 

CD133 based on staining with HA10 (Figure 11B). Strong CD133 staining was 

largely uniform across the tumor foci standing in stark contrast to the apical 

staining pattern observed in the healthy prostate and adenocarcinoma sections. 

Subsequent IHC analysis found that the liver metastases were also negative for 

AR expression (Figure 11C) and positive for the neuroendocrine marker, CHGA 

(Figure 11D). A TURP section from this patient stained with HA10 found no CD133 

expression in the original primary disease (Figure 11E). The patient initially 

responded well to chemotherapy with carboplatin and taxotere, but progressed 

rapidly after 8 months developing extensive visceral metastases in the presence 

of declining PSA. A liver biopsy acquired after resistance to carboplatin and 

taxotere occurred was subsequently found to be positive for CD133 demonstrating 

moderate staining intensity with >50% of the tumor cells positive (Figure 11F). No 

sections from this patient were stained with AC133 due to scarcity of the samples.   
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Figure 11. Case study of a patient with aggressive prostate cancer. A) CT 

scan of diffuse liver metastases that appeared in the presence of declining PSA 

after the patient failed treatment with Zytiga (abiraterone). B) Strong staining for 

CD133 was detected in the liver metastases using HA10. C) No staining for the 

AR was observed in the liver metastases using an antibody specific to the N-

terminal domain of the AR. This antibody would detect both full-length AR and 

AR splice variants. D) Staining was observed for the neuroendocrine 

differentiation marker, CHGA, in the liver metastases. E) An original TURP 

specimen from the patient depicting poorly differentiated Gleason 4 + 5 cancer 

stained for CD133. Note the complete absence of CD133. F) Liver biopsy from 

the patient after failing treatment with carboplatin and taxotere documenting 

moderate staining for CD133. Scale bars, (B-D) 200 μm and (E-F) 60 μm. 
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Discussion  

For many years, hybridoma technology has been the preferred method for 

identifying monoclonal antibodies against target antigens (172). This technology 

has allowed for the discovery of thousands of monoclonal antibodies that are used 

as laboratory reagents, nuclear imaging probes, and antibody-based therapeutics 

in the clinic. Though it has been successful, there are several limitations of 

hybridoma technology. Recent studies have suggested that less than a quarter of 

all commercially available antibodies actually bind to their target antigen or work 

for their intended application (173, 174). Hybridoma-derived antibodies often 

cannot distinguish between highly homologous members of the same protein 

family or proteins with significant posttranslational modifications such as 

glycosylation (175). Antibody phage display is a powerful technique that can 

rapidly identify recombinant monoclonal antibodies for challenging targets where 

traditional hybridoma technology has failed. Since it is an in vitro technology, the 

selection process in antibody phage display can be modified to enrich for highly 

unique clones that bind to specific epitopes. Here, we used antibody phage display 

to select for an antibody fragment that bound to a glycosylation-independent 

epitope on the protein backbone of CD133. The unique antibody discovered 

through this selection process, HA10, was able to detect CD133 in cell lines and 

fixed tissues.  

Since its discovery in the late 1990s, CD133 has been viewed as a marker 

for stem cells of the healthy prostate as well as cancer (117, 155). The isolation 
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and analysis of CD133 expressing cells has primarily been conducted using the 

AC133 antibody. It is has been established that the AC133 epitope, but not CD133 

protein, is lost when stem cells differentiate (83). Splice variants of CD133 are also 

known to exist that could potentially affect the epitopes used for detection (176). 

Based on this evidence, it is plausible that the AC133 epitope represents a 

population of CD133 that is only found in undifferentiated stem cells. As the basal 

stem cells in the prostate differentiate into transit-amplifying cells and ultimately 

luminal cells, the AC133 epitope is lost, but CD133 variants with de novo epitopes 

are present in the progeny. These new CD133 populations cannot be detected by 

AC133 or AC141, but can by antibodies, such as HA10, that recognize non-

glycosylated epitopes that are consistently exposed on non-truncated protein 

domains. This hypothesis could potentially explain our flow cytometry data and the 

staining patterns that were observed by IHC.  

By flow cytometry, both HA10 and AC133 bound to immortalized cancer cell 

lines that were engineered to artificially express full-length CD133. In the 

endogenously expressing CaCo-2 and PPT2 cells, HA10 recognized a greater 

population of positive cells than AC133. CaCo-2 cells differentiate and lose the 

AC133 epitope upon continuous coculturing suggesting that the cells used for flow 

cytometry had several CD133 epitope populations that could only be detected by 

HA10. The same can be argued for PPT2, which is a recently discovered PCa 

stem cell line that can form three-dimensional spheroids over prolonged passages. 

Most interestingly, only HA10 was able to detect CD133 on the surface of E006AA-
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hT cells. E006AA-hT is a subline of E006AA, a cell line that was originally isolated 

from a primary Gleason 3 + 3 tumor of an African-American patient (177, 178). 

These cells possess hallmarks of terminally differentiated luminal cells that have 

undergone oncogenic transformation such as AR expression. Based on these 

findings, it is possible to say that E006AA-hT cells harbor several CD133 epitope 

populations, none of which display the AC133 epitope. 

Previous IHC studies using the AC133 antibody discovered that CD133 was 

a marker for a truly rare basal cell type with less than 1% of all basal cells staining 

positive for CD133 (117). No report has ever documented the staining of luminal 

epithelial cells with AC133 in the prostate. Another antibody for CD133, 80B258, 

which recognized an epitope on the polypeptide backbone, was immunoreactive 

with basal cells and the apical side of luminal cells (137). Our findings with HA10 

align with the 80B258 data and not AC133. Basal cell staining was observed with 

HA10 and was indeed found to be quite rare since only one section out of 150 was 

unequivocally positive. HA10 also reacted with luminal epithelial cells, staining the 

apical side of those cells. In contrast to other antibodies, however, HA10 also 

stained epithelial cells distant from the lumen and closer to the basement 

membrane. This pattern of staining was not observed with 80B258 and has never 

been documented before for CD133 in the prostate. The same group that analyzed 

80B258 staining in healthy prostate tissues found no immunoreactivity in 

adenocarcinoma sections. With HA10, we did observe weak staining in 

adenocarcinoma sections, but it too was extremely rare. 
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CD133 expression in the LuCaP TMA further highlighted the differences 

between AC133 and HA10. Immunoreactivity was not observed with AC133 in any 

of the models, but CD133 expression was detected by HA10 in three models. The 

three positive LuCaP models were all originally derived from metastatic ARneg 

neuroendocrine PCa with LuCaP 145.1 and LuCaP 145.2 originating from the 

same patient. A fourth neuroendocrine model that was derived from a TURP 

specimen, LuCaP 93, was not positive for CD133. Using HA10, we were also able 

to detect CD133 in liver biopsies of a patient who failed second-generation anti-

androgen therapy with abiraterone. As with the CD133pos LuCaP models, the 

metastatic lesions from this patient displayed neuroendocrine differentiation based 

on the expression of CHGA. It is not possible to arrive at any formal conclusions 

about the biology of CD133 based on our findings with the LuCaP TMA and patient 

biopsy, except that its biology appears to be complex. The AC133 epitope was not 

present in the LuCaP models and staining with HA10 in the liver biopsies was 

strong and uniform in contrast to healthy prostate and adenocarcinoma sections. 

It appears that lack of an AR by itself does not necessarily correlate with CD133 

expression and other factors are involved with the induction of CD133. To illustrate 

this point, both DU145 and PC3 are ARneg yet only possess a minor population of 

CD133pos cells similar to that of LNCaP. E006AA-hT cells express both CD133 and 

AR, though the AR of this cell line has an S599G mutation that renders it inactive 

and the cells indifferent to castrate levels of androgen (179). The absence of 

CD133 in the original TURP specimen of the patient suggests that the CD133 in 
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the liver biopsies may originate from divergent clonal evolution, but it is difficult to 

say since biopsies at multiple stages of the disease were not taken (180). In order 

to come to any conclusion about the expression of CD133 in ARneg cancer with 

neuroendocrine differentiation, more samples from a number of metastatic sites 

need to be analyzed. 
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Introduction  

The management of patients with metastatic PCa initially relies on inhibiting 

the AR signaling axis by ADT through surgical castration or gonadotropin-releasing 

hormone agonists. The therapeutic benefit of ADT is transient and patients 

inevitably develop disease recurrence, also known as CRPC, which can occur as 

early as 18 months after the initiation of ADT (181-183). Driven by aberrant AR 

signaling, second-generation anti-androgens have had a profound effect in 

extending the lifespan of patients with CRPC (183). Unfortunately, many patients 

present with de novo resistance to these therapies and those that receive an initial 

benefit often develop acquired resistance quite rapidly through mechanisms such 

as AR amplification, mutation, and splice variant expression. Similarly, many men 

with de novo or acquired resistance to AR-signaling inhibitors may display a non-

AR driven form of disease referred to as AVPC (182, 184, 185). AVPC broadly 

encompasses CRPC that is non-AR driven and may express neuroendocrine 

markers or possess small cell morphology (22, 186-188). This lethal subset of PCa 

is characterized by high metastatic burden in both the bone and viscera, minimal 

response to therapy, and poor overall prognosis (21, 23). 

Effective treatment options for AVPC currently do not exist and novel 

therapies are urgently needed. Critical to the development of novel therapies for 

AVPC is the ability to accurately image this disease in patients. For decades now, 

bone scintigraphy using 99mTc methylene diphosphonate (99mTc-MDP) has been 

considered the most cost-effective and accurate imaging modality for metastatic 



62 
 

PCa patients despite its limited sensitivity and specificity for cancerous lesions (42, 

47). Furthermore, recent studies using the PET tracer, NaF, have demonstrated 

superior sensitivity for detecting bone lesions in PCa patients (37, 42). While this 

is successful for the majority of AVPC patients who present with bone metastases, 

a striking 20% also present with visceral disease, rendering bone scintigraphy and 

NaF-PET imaging inadequate (189, 190). Other PET imaging agents, such as 11C-

acetate, 11C/18F-choline, and 18F-fluciclovine, have been employed to image PCa 

biochemical recurrence (37, 58, 60, 191), however, these agents have yet to be 

investigated for AVPC. Recently, there has been much success imaging PSMA in 

bone and visceral metastases of patients with prostate adenocarcinoma using 

small molecule PET radioligand probes (76). Several PSMA imaging studies have 

documented a lack of probe uptake in ARneg metastatic lesions suggesting that 

AVPC does not express PSMA (180, 192, 193). As such, there is currently no 

accurate imaging modality available for AVPC patients.    

The lack of targetable antigens specific to AVPC has complicated the 

development of an imaging agent for this disease subtype. The heavily 

glycosylated pentaspan transmembrane protein, CD133, has often been described 

as an antigen on the surface of both stem cells and CSCs (98). In a previous study, 

we used human antibody phage display to identify a novel antibody for CD133, 

termed HA10 (194). Herein, we show that CD133 is highly overexpressed at the 

mRNA and protein level in a multitude of patients possessing AVPC with an ARneg, 

neuroendocrine marker-positive (AR-/NE+) phenotype. By microarray analysis, we 
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confirmed that CD133 and PSMA expression were inversely related and that 

AVPC is PSMAneg. Moreover, we used a full-length human IgG version of HA10 to 

selectivity identify CD133pos cancer cells by near-infrared (NIR) optical and 89Zr-

PET imaging in subcutaneous tumor and metastatic mouse models of AVPC. Our 

findings identified CD133 as a novel, previously unknown marker of AR-/NE+ 

AVPC that can be exploited as an imaging target to assess and monitor disease 

progression. Additionally, CD133-targeted imaging agents could aid in the 

development of novel therapeutics for a subtype of PCa that is currently incurable 

by monitoring patient response to therapy.     
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Materials & Methods 

Cell Culture 

HEK293T cells were purchased from the ATCC and were maintained 

according to ATCC guidelines. CWR-R1 cells and luciferase-expressing CWR-R1-

EnzR cells were obtained from Dr. Scott Dehm (Masonic Cancer Center, University 

of Minnesota) and Dr. Donald Vander Griend (Department of Pathology/Surgery, 

University of Illinois at Chicago), respectively. All parental cell lines were 

authenticated by short tandem repeat profiling prior to manipulation. Parental 

CWR-R1 and CWR-R1-EnzR cells were lentivirally transduced to express CD133 

as previously described (194). Expression of CD133 in transduced cell lines 

(CWR-R1CD133 and CWR-R1-EnzRCD133) was confirmed via qPCR and western 

blot and compared to CD133neg parental cell lines. All cells were grown in DMEM 

supplemented with 10% fetal bovine serum, 1% antibiotic-antimycotic, and 1% 

glutamax and incubated at 37°C and 5% CO2. Additionally, CD133 expressing 

cells were continuously supplemented with 3 µg/mL puromycin to ensure stable 

levels of CD133 expression.    

Antibody Production 

The protocols for biopanning, ELISA screening, scFv expression and 

purification, as well as affinity/specificity characterization of the isolated scFv 

clone, HA10, were followed as previously described (194). The heavy chain (354 

bp) and light chain (318 bp) variable domains of the HA10 sequence were cloned 

separately into pFUSE2ss derived human IgG expression vectors (InvivoGen) and 
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co‐transfected into HEK293T cells according to manufacturer’s guidelines. 

Following incubation, the serum was collected, filtered through a 0.45-µm filter, 

and purified using a 1 mL HiTrap Protein A HP column (GE Healthcare). The 

column was equilibrated with 20 mM sodium phosphate, pH 7.4 prior to loading the 

serum sample. The column was washed with equilibration buffer for 20 column 

volumes and bound protein was eluted with 0.1 M citric acid, pH 3. The eluate was 

collected and concentrated using a 50-kDa centrifugal filter. A final buffer 

exchange was performed into 1x PBS using a Sephadex G‐25 PD‐10 desalting 

column (GE Healthcare). The purity of the final HA10 human IgG was analyzed by 

reduced and non‐reduced SDS‐PAGE and the concentration was measured based 

on absorbance at 280 nm using a NanoDrop™ One UV‐Vis Spectrophotometer 

(Thermo Fisher). 

DNA Microarray 

PCa patient tissue samples were obtained from patients who died of 

metastatic CRPC and who signed written informed consent for a rapid autopsy 

performed within 6 hours of death as part of the Prostate Cancer Donor Program 

at the University of Washington. A total of 171 tumors from 63 patients were 

collected for profiling by expression microarray using the protocol previously 

described in Kumar et al. (195). LuCaP xenografts were also profiled using the 

same protocol. 
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Immunohistochemistry 

Curated samples for analysis were obtained from the PCBN and the 

University of Minnesota Masonic Cancer Center using a University of Minnesota 

Human Subjects Division approved IRB protocol for tissue acquisition 

(IRB#1604M86269) and with patient consent. The tissue sections were stained for 

CD133 using a previously described procedure (194). A pathologist reviewed the 

slides and assigned IHC scores as previously reported (196). The AR-/CHGA+ 

(n=25) soft-tissue metastases were liver (n=14), lymph node (n=3), lung (n=2), 

retroperitoneal (n=4) and pleural (n=2) while the AR+/CHGA adenocarcinoma 

sections (n=10) were liver (n=6), lymph node (n=2) and lung (n=2).  

Fluorescent Microscopy  

CWR-R1-EnzR and CWR-R1-EnzRCD133 were seeded on borosilicate 

coverglass slides (Nunc) and grown to 50% confluence. An internalization staining 

protocol was used to determine whether the HA10 IgG exhibited cellular uptake. 

The living cells were first treated with 1 µM of HA10 IgG in 1% bovine serum 

albumin (BSA) in 1x PBS for 15 m at 37°C. Following primary antibody removal, 

the cells were washed twice with 1xPBS, fixed with 4% paraformaldehyde for 10 

m at room temperature, washed twice with 0.2 M glycine (pH 2.4), permeabilized 

with 0.25% Triton X-100 for 15 m at 37°C, and washed twice with 1x PBS prior to 

secondary antibody application. The fixed cells were treated with 10 µg/mL of 

Alexa Fluor 488-labeled goat anti-human IgG (Invitrogen) in 1% BSA in 1x PBS for 

30 m at 37°C. After removal of the secondary antibody, the cells were washed 
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twice, counterstained with 0.3 µM DAPI, and washed two more times prior to 

analysis via confocal microscopy (Olympus).  

Animal Models 

All animal studies were performed in athymic nu/nu mice (Envigo) following 

Institutional Animal Care and Use Committee (IACUC) approval at the University 

of Minnesota. For subcutaneous tumor implantation, animals (n=3-4/group) 

received unilateral injections on the right shoulder of 1x106 CWR-R1 or CWR-

R1CD133 cells (in 100 µL) in a 1:1 dilution of Matrigel (Corning) to 1x PBS. Tumors 

were measured twice weekly with calipers and volumes were calculated as length 

x width x height. For the intracardiac dissemination model, animals (n=4/group) 

received injections of 2x105 CWR-R1-EnzR or CWR-R1-EnzRCD133 cells (in 100 

µL) in 1x PBS directly into the left ventricle of the heart, with a 75% accuracy rate. 

Following the intracardiac injections, mice were weighed twice/week to assess 

overall health and bioluminescent imaging was performed once/week to evaluate 

tumor formation and growth. 

In Vivo Fluorescent Imaging  

HA10 IgG was labeled with IRDye 800CW NHS Ester (LI-COR Biosciences) 

according to the manufacturer’s instructions to develop a near-infrared (NIR) 

imaging agent (NIR-HA10 IgG). Mice bearing subcutaneous tumors were imaged 

when all tumors in each group reached a threshold of 100 mm3. Each mouse was 

administered 1 nmol (155 µg) of NIR-HA10 IgG via tail vein and imaged at 1, 5, 

24, 48, 72, 96, 120, and 144 h post-injection. Following intracardiac dissemination, 
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mice exhibiting sizeable metastatic lesions as indicated by bioluminescent imaging 

(BLI) were administered 1 nmol (155 µg) of NIR-HA10 IgG via tail vein and imaged 

at 24, 48, 72, and 144 h. In both studies, animals were imaged using an IVIS 

Spectrum scanner (Perkin Elmer) and euthanized at a fixed endpoint 6 days after 

the NIR-HA10 IgG injection or monitored for overall health and terminated when 

tumor volumes reached 1,000 mm3 or weight decreased more than 15%. To 

determine fluorescent intensity of subcutaneous xenografts, manually drawn 

regions-of-interest (ROIs) were normalized to a background level of fluorescence 

on each mouse. To account for variability in size and luciferase expression of 

intracardiac tumors, a relative radiance unit was determined by dividing the total 

radiant efficiency of the NIR imaging by the total counts of the BLI signal and used 

to quantify differences in signal between CD133pos and CD133neg mice. 

Bioconjugation and Radiochemistry  

For nuclear imaging studies, HA10 IgG was conjugated to p-SCN-Bn-

Deferoxamine (DFO, Macrocyclic) as previously described (197). Zirconium-89 

(89Zr) was produced and purchased from the University of Wisconsin Medical 

Physics Department. Once received, 89Zr-oxalate (7.5 mCi) in 1.0 M oxalic acid 

(600 μL) was adjusted to pH 6.8–7.5 with 1.0 M Na2CO3. To radiolabel the IgG, 

the DFO-HA10 IgG conjugate (400 µL, 3.49 mg/ml, 1.4 mg of mAb) in 0.5 M 

HEPES (pH 7.5) was added to the neutralized 89Zr-oxalate solution and incubated 

at room temperature with gentle agitation for 1 h. The labeled product was purified 

using a PD-10 column pre-equilibrated with PBS buffer. Crude and purified 
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samples were analyzed by radio-TLC using 50 mM EDTA (pH 5.0) as the eluent. 

The specific activity of 89Zr-HA10 IgG was calculated to be 2.3 mCi/mg and the 

radiochemical purity was >98%. 

Immunoreactivity  

The immunoreactivity of 89Zr-HA10 IgG was assessed by using antigen-

specific cellular binding assays using the CD133-transduced cell line (CWR-R1-

EnzRCD133) and the non-CD133 expressing parental cell line (CWR-R1-EnzR). 

CWR-R1-EnzR and CWR-R1-EnzRCD133 cells were suspended in micro-

centrifuge tubes at concentrations of 0.5, 1, 2, 3, 4, and 5 x 106 cells/mL in 500 µL 

of 1x PBS. Aliquots of 89Zr-HA10 IgG (50 µL, 25 µCi) in 1% bovine serum albumin 

were added to each cell suspension (final volume 550 µL) and incubated at room 

temperature with gentle agitation for 1 h. Cells were resuspended and washed 

twice with ice-cold 1x PBS. The supernatant was removed and the 89Zr 

radioactivity of the cell pellets were counted using a HIDEX automatic gamma 

counter (HIDEX, Finland). The count data was background corrected and the 

immunoreactive fraction of 89Zr-HA10 IgG was assessed by comparing the total 

number of counts in the cell suspensions by control samples.  

Stability Studies 

The stability of 89Zr-HA10 IgG with respect to change in radiochemical purity 

was evaluated at 0, 48, 96, and 144 h following purification. For the stability 

studies, 35 µCi of 89Zr-HA10 IgG was added to 500 µL of 1% BSA in 1x PBS and 
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incubated at room temperature. The radiochemical purity of 5 µL of 89Zr-HA10 IgG 

was assessed at each time point by radio-TLC. 

In Vivo PET/CT Imaging  

PET imaging experiments were conducted on an Inveon µPET/CT scanner 

(Siemens Medical Solutions). Mice were administered 89Zr-HA10 IgG formulations 

(150-200 μCi, 25-30 μg of mAb, in 200 μL of 1x PBS) via tail vein injection.  

Approximately 5 minutes prior to recording PET/CT images, mice were 

anesthetized by inhalation of 2% isoflurane and placed in the scanner bed in the 

prone position. PET images were recorded at various time-points between 24–144 

h post-injection. PET list-mode data were acquired for 30 min using a γ-ray energy 

window of 350–650 keV and a coincidence timing window of 3.438 ns. CT 

acquisition was performed for 5 mins at 80 kVp, 500 µA, 384 ms per step, and 340 

steps covering 220 degrees. CT images were reconstructed using a Hu scaled 

Feldkamp algorithm resulting in 192 × 192 matrix and PET utilized Ordered Subset 

Expectation Maximization (OSEM-3D) with 18 subsets and 2 iterations resulting in 

a 128 × 128 matrix. 2D images were prepared in Inveon Research Workplace and 

quantified using AMIDE. An empirically determined system calibration factor was 

used to convert voxel count rates to activity concentrations and the resulting image 

data were normalized to the administered activity to parameterize images in terms 

of %ID/g. Manually drawn ellipsoid ROIs were used to determine the mean %ID/g 

in various tumors. 
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Statistical Analysis 

All statistical analyses were performed using Graphpad 7.04. Quantitative 

RT-PCR and luciferase assay experiments prior to xenograft implantation were 

repeated three times with three technical replicates each time; all results were 

represented as mean ± SEM. IHC scores were compared using a Mann-Whitney 

t-test to account for differences in sample size. Patient microarray data was 

analyzed using a one-way ANOVA which was corrected for multiple comparisons 

using Sidak hypothesis testing and LuCaP microarray data was analyzed using a 

Welch t-test. Pearson's correlation coefficient was used to study the relationships 

between the genes shown in scatterplots. Animal studies were performed with 

n=3-4 and signals intensities were quantified as mean ± SEM in bar charts or mean 

± min/max in box plots. Statistical significance was determined using a two-way 

ANOVA and corrected for multiple comparisons using Sidak hypothesis testing. 
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Results 

CD133 is overexpressed in AR-/NE+ PCa 

Our initial studies on CD133 suggested an inverse relationship between AR 

and CD133 expression in a limited number of samples by immunohistochemistry 

(194). To assess whether CD133 mRNA overexpression was associated with a 

particular PCa phenotype, 171 tumor samples resected from 63 rapid autopsy 

subjects were analyzed for CD133 expression as well as gene signatures which 

demonstrate the AR status and NE differentiation of each tumor sample (Figure 

12A) (180, 186, 195). The gene that encodes CD133, PROM1, displayed the 

highest level of expression in AR-/NE+ tissues (p<0.0001, Figure 12B). CD133 and 

AR expression exhibited a moderate inverse correlation (Pearson correlation = -

0.5989, Figure 12C). Similarly, expression of the prototypical AR related genes, 

FOLH1 and KLK3, which encode for PSMA and PSA respectively, were also 

inversely correlated to CD133 expression (Pearson correlation=-0.5042, Figure 

12D; Pearson correlation=-0.4789, Figure 12E).  

Since early passages of PDX models display similar morphology to the 

original tumors from which they are derived (198), 24 early-passage LuCaP 

xenografts were investigated for expression of CD133. Only four PDX models 

displayed an AR-/NE+ gene signature and three (75%) of these models showed 

overexpression of PROM1 (Figure 13A), which was statistically significant when 

compared to the AR+/NE- PDX models (p<0.0001, Figure 13B). Complimentary to 

the gene expression in patient samples, CD133 exhibited a very strong inverse  
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Figure 12.  Gene signatures demonstrate that CD133 is overexpressed in 

an AR-/NE+ PCa phenotype in patient tissue samples. A) CD133 (PROM1) 

expression was evaluated across PCa tumors that displayed gene signatures 

signifying AR and NE status. B) CD133 expression in PCa patient samples was 

significantly increased in AR-/NE+ AVPC patients compared to other subtypes. 

C) Graph documenting a negative overall correlation between CD133 and AR 

expression in patient tumors. D) A negative overall correlation was also observed 

between CD133 and PSMA expression in patient tumors, and E) there was a 

negative overall correlation between CD133 and PSA expression (Pearson 

correlation, r=-0.4789) in patient tumors.  
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Figure 13.  Gene signatures demonstrate that CD133 is overexpressed in 

an AR-/NE+ PCa phenotype in PDX models. A) CD133 expression was 

evaluated across 24 LuCaP PDX models. B) Quantification of CD133 expression 

in LuCaP PDX models was significantly increased in AR-/NE+ samples 

compared to AR+/NE- xenografts. C) A negative overall correlation was 

identified between CD133 and AR expression in the LuCaP PDX models. D) 

There was a negative overall correlation between CD133 and PSA expression 

(Pearson correlation, r=-0.8565) in LuCaP PDX models.  

PROM1 
CHGA 
SYP 
ASCL1 
AR 
KLK3 
NXK3-1 
TMPRSS2 



75 
 

correlation to both AR and KLK3 in the PDX models (Pearson correlation=-0.886, 

Figure 13C; Pearson correlation=-0.8565, Figure 13D).       

Having elucidated the relationship between AR status, NE differentiation 

and CD133 at the mRNA level, we next used immunohistochemistry to investigate 

CD133 protein expression in soft-tissue metastases. Patient tissues (n=35) were 

classified as either adenocarcinoma (n=10) when sections were AR+/CHGA- or 

neuroendocrine AVPC (n=25) when sections were AR-/CHGA+. All of the 

adenocarcinoma tissue sections were negative when stained for CD133 (Figure 

14A). Contrarily, 92% (23/25) of the neuroendocrine AVPC tissue sections 

displayed intense staining and the remaining 8% (2/25) displayed moderate 

staining for CD133 (Figure 14B). Scoring of the staining intensity in all samples 

revealed that CD133 expression was significantly different between 

adenocarcinoma and neuroendocrine AVPC patients (p<0.0001, Figure 14C). 

Detecting CD133 in vivo by near-infrared optical imaging  

In the study described in Chapter II, we identified a human scFv, termed 

HA10, that specifically bound to CD133 expressed on the cell surface by flow 

cytometry (194). HA10 was expressed as a full-length bivalent human IgG (IgG1 

scaffold) and labeled with the NIR fluorophore IRDye 800CW (NIR-HA10 IgG) for 

NIR optical imaging. NIR optical imaging was initially used as a proof-of-concept 

to document the specific localization of the antibody and acquire pharmacokinetic 

properties allowing for the informed selection of the appropriate radioisotope for 

PET imaging. Since no immortalized PCa cells lines uniformly express CD133,  
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Figure 14. Immunohistochemistry shows CD133 overexpression in 

neuroendocrine-differentiated AVPC tissue sections. A) Representative 

images of CD133 expression in adenocarcinoma tissue sections at 200 µm and 

60 µm. B) Representative images of CD133 expression in neuroendocrine-

differentiated tissue sections at 200 µm and 60 µm. C) Quantitative analysis 

showed a significant increase in CD133 staining intensity from adenocarcinoma 

to neuroendocrine-differentiated tissue sections.  

 

  

60 µm 
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model systems were developed as previously described (194). The human PCa 

cells lines CWR-R1 and luciferase-expressing CWR-R1-EnzR were transduced to 

express CD133. CD133 expression in each cell line was quantified by qPCR 

(Figure 15).  

Additionally, cellular uptake assays were performed to assess whether 

HA10 would serve as an ideal imaging probe prior to in vivo studies. For these  

assays, CWR-R1-EnzR and CWR-R1-EnzRCD133 cells were fixed to coverglass 

slides prior to or after HA10 IgG incubation to allow for surface or internalized 

staining, respectively. Cellular uptake was monitored using fluorescent microscopy 

(Figure 16). Both staining protocols revealed high fluorescent signals in the 

CD133pos cells upon imaging. In contrast, no signal was observed in the CD133neg 

cells in either protocol. Moreover, the different staining protocols demonstrated that 

HA10 IgG binds to the cell membrane and is internalized in the CD133pos cells.  

Mice bearing either subcutaneous CWR-R1 (n=4) or CWR-R1CD133 (n=4) 

tumors were administered 1 nmol of NIR-HA10 IgG via tail vein and imaged at 1, 

5, 24, 48, 72, 96, 120, and 144 h. As early as 24 h post-injection of NIR-HA10 IgG, 

increased uptake in the CD133pos CWR-R1CD133 tumors was observed compared 

to the CD133neg tumors (Figure17A). Localization of the antibody to CD133pos 

tumor remained present up to 144h. A small amount of non-specific localization 

due to the enhanced permeability retention effect was observed in the CWR-R1 

tumors, however, the antibody cleared by 72 h post-injection. Similar EPR effects 

have been observed with the PSMA-targeted antibody and it is still considered   
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Figure 15. Confirmation of CD133 in cells prior to xenograft implantation. 

A) CD133 is artificially overexpressed in transduced CWR-R1 cells, and B) 

CD133 is artificially overexpressed in transduced luciferase-expressing CWR-

R1-EnzR cells.  
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Figure 16. CD133 is internalized into CD133-expressing cells. An 

internalization staining protocol revealed cellular uptake of HA10 into CD133pos 

CWR-R1-EnzR PCa cells. For the internalized staining protocol, both cell lines 

were treated with 1 µM of HA10 IgG for 15 minutes prior to fixation. For the 

surface staining protocol, both cell lines were treated with 1 µM of HA10 IgG for 

15 minutes after fixation. Fixed cells were incubated with an Alexa Fluor 488-

labeled anti-human IgG (green) and counterstained with DAPI.            
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Figure 17. NIR-HA10 IgG is selective for CD133-positive subcutaneous 

tumors. A) NIR imaging of mice bearing either CD133-positive (CWR-R1CD133) 

or CD133-negative (CWR-R1) subcutaneous tumors. Mice received 1 nmol of 

NIR-HA10 IgG via tail vein and then were imaged serially at the designated 

times. B) Quantitative analysis of the subcutaneous tumors from the NIR optical 

imaging experiment displayed significantly higher signals between 24-72 h post-

injection. Values represent mean ± SEM of 4 animals/group. C) Ex vivo IHC 

(40X) and NIR image of representative mouse tumors at 144 h post-injection of 

NIR-HA10 IgG. Values represent mean ± SEM of 3-4 animals/group. 
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specific enough for clinical translation as a theranostic agent (199). Average 

fluorescent intensity in CD133pos tumors remained significantly higher than 

CD133neg tumors from 24 to 72h (Figure 17B). After the final 144 h time point, the 

tumors were excised from the mice, imaged by NIR and stained for CD133 

expression (Figure 17C). The CWR-R1CD133 tumors displayed high levels of 

CD133 expression across the entire tumor by IHC, indicating stable CD133 

expression following xenograft implantation, while immunoreactivity was absent in 

the CWR-R1 tumor sections. Similarly, NIR imaging demonstrated a strong signal 

in the CWR-R1CD133 tumors which was not present in the CWR-R1 tumors, 

verifying that the NIR-HA10 IgG was retained by the tumor and able to selectively 

detect CD133 up to 144h post-injection.   

The ability of NIR-HA10 IgG to detect small, dispersed CD133-postive 

lesions in complex microenvironments was next tested in a metastasis model. To  

create an appropriate spontaneous metastasis model, mice received intracardiac 

injections of either luciferase-expressing CWR-R1-EnzR (n=4) or luciferase-

expressing CWR-R1-EnzRCD133 (n=3) cells. The luciferase activity of the cells was 

assessed 1-3 days prior to injection in all mouse models (Figure 18A). 

Bioluminescent imaging was performed on the mice once per week to assess 

lesion formation and size. Once mice in each group had at least one sizeable tumor 

 (>3x105 total counts), they received 1 nmol of NIR-HA10 IgG via tail vein.  NIR 

optical imaging was then conducted at 24, 48, 72, and 144 h post-injection (Figure 

18B). Comparable to the subcutaneous model, the signal was highly visible and  
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Figure 18. NIR-HA10 IgG is selective for CD133-positive metastatic tumors. 

A) Verification of luciferase expression in CWR-R1-EnzR derived cell lines. B) 

NIR imaging of representative mice possessing either CD133-positive (CWR-

R1-EnzRCD133) or CD133-negative (CWR-R1-EnzR) metastatic tumors. Mice 

received 1 nmol of NIR-HA10 IgG via tail vein and then were images at the 

designated times. C) Quantitative analysis of metastatic tumors from mice used 

in D displayed a significantly higher signal at 48 h post-injection. Values 

represent mean ± SEM of 3-4 animals/group. 
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specific for CD133pos tumors at 24 h, remained high for up to 72 h, and was still 

detectable at 144 h. The quantitative analysis supported this observation 

demonstrating a significant difference in relative radiance at 48 h (p=0.0383) and 

a noticeable decline in signal between 72 and 144 h in CD133pos tumors (Figure 

18C). Furthermore, the relative radiance signal remained low in the all of the 

CD133neg tumors with minimal tumor or mouse variability, suggesting that the NIR-

HA10 IgG is highly selective for CD133 pos tumors. 

PET/CT imaging of CD133 

The results of the NIR optical imaging studies suggested that longitudinal 

PET imaging studies could be possible using radiolabeled HA10 IgG. Therefore, 

we decided to use the long-lived positron emitting radioisotope 89Zr (t1/2 - 3.3 d) for 

PET imaging. Additionally, PET imaging with 89Zr-DFO conjugated antibodies, 

including studies with the PSMA-targeted antibody J591, are commonplace in the 

clinic (199-202). HA10 IgG was first conjugated to DFO and radiolabeled with 89Zr-

oxalate at room temperature under slightly alkaline conditions using modified 

methods from Zeglis et al. (197). Purity was assessed by radio-TLC and peaks 

were compared to a pure 89Zr4+ standard (Figure 19A). Only 89Zr-HA10 IgG sample 

preparations which resulted in a purity of >98% and a specific activity of >2mCi/mg 

were used for future analyses. 

The stability of 89Zr-HA10 IgG was determined by radio-TLC after incubation 

in 1% BSA in PBS for up to 144 h at room temperature (Figure 19B). The 

radiochemical purity remained above 96% at all the time points, indicating a <2%  
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Figure 19. Characterization of 89Zr-HA10 IgG. A) A representative radio-TLC 

chromatogram of a sample preparation including un-conjugated 89Zr4+ standard, 

crude 89Zr-HA10 IgG, and pure 89Zr-HA10 IgG. B) Overlayed radio-TLC 

chromatograms of 89Zr-HA10 IgG in 1% BSA in PBS at 0, 48, 96, and 144 h post-

preparation (purity >96% in all samples). C) The immunoreactivity of 89Zr-HA10 

IgG was assessed by using antigen-specific cellular binding assays using 

CD133-positive cells (CWR-R1-EnzRCD133) and CD133-negative cells (CWR-

R1-EnzR). The CD133-positive cell line demonstrated a concentration-

dependent increase in immunoreactive fraction compared to the CD133-

negative cell line, indicating high specificity of 89Zr-HA10 IgG for the CD133 

antigen (p=0.0006). 
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decrease at any given time. Thus, 89Zr-HA10 IgG was expected to remain intact in 

vivo on the time-scale described in our PET imaging studies. Similarly, 

immunoreactivity was measured by an antigen-specific in vitro cellular association 

assay using CWR-R1-EnzR and CWR-R1-EnzRCD133 cells (Figure 19C). The 

immunoreactive fraction of 89Zr-HA10 IgG was directly proportional to the number 

of CD133pos cells in the sample and displayed a strong linear relationship in the 

CD133pos cell line (R2=0.9588). CD133neg control cells showed no binding to 89Zr- 

HA10 IgG (R2=0.0003), further demonstrating the specificity of 89Zr-HA10 IgG for 

CD133-expressing cells. 

The ability of 89Zr-HA10 IgG to detect CD133-postive cancer cells in vivo 

was first tested in mice bearing subcutaneous CWR-R1CD133 (n=3) or parental 

CWR-R1 (n=3) tumors. Mice were injected with 150 µCi (67 µg, 2.22 mCi/mg) via 

tail vein and imaged by µPET/CT at 24, 48, 72, and 144 h (Figure 20A). Transverse 

2D images of the CWR-R1CD133 xenografts showed the highest signals in the tumor 

compared to the CWR-R1 xenografts which showed high liver uptake. Additionally, 

3D reconstructions were generated to assess 89Zr-HA10 IgG uptake across 

multiple planes. Tumor margins were well defined in CWR-R1CD133 images 

between 24 and 72 h, which was not observed in the CD133neg xenografts. Both 

groups of mice displayed nearly complete clearance at 144 h. Time activity curves  

were generated from the PET images to display the mean %ID/g of 89Zr uptake in 

the CD133pos versus CD133neg groups of tumor-bearing mice (Figure 20B). A 

significant difference was observed at the 24 and 48 h time points with mean %ID/g  
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Figure 20. 89Zr-HA10 IgG displays significantly higher tumoral uptake in 

CD133-positive tumors. A)  Reconstructed 3D and 2D PET/CT images of mice 

bearing either CD133-positive (CWR-R1CD133) or CD133-negative (CWR-R1) 

subcutaneous tumors. Mice received 150 µCi of 89Zr-HA10 IgG via tail vein and 

then were imaged at the designated times. B) Quantitative analysis of 

subcutaneous tumors from mice used in A displayed significantly higher signals 

at 24 and 48 h post-injection. Values represent mean ± SEM of 3 animals/group. 

C) Ex vivo biodistribution of 89Zr-HA10 IgG in all tissues of mice bearing 

subcutaneous CWR-R1-EnzRCD133 or CWR-R1-EnzR tumors. Mice were 

injected with 10-15 µCi of 89Zr-HA10 IgG via tail vein prior to sacrifice at the 

designated time points. Values represent mean ± SEM of 3-4 animals. 
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values averaging 28.96 ± 0.92 (CWR-R1CD133) and 18.97 ± 1.56 (CWR-R1) at 24 

h (p=0.0003) and 23.60 ± 2.04 (CWR-R1CD133) and 15.94 ± 1.89 (CWR-R1) at 48 

h (p=0.0041). 

Ex vivo biodistribution was performed to evaluate overall distribution and 

potential off-target effects of 89Zr-HA10 IgG (Figure 21 and Table 3). The data 

reveal that distribution of 89Zr-HA10 IgG was comparable in all organs between the 

two groups, with the exception of the tumors. At 24 h, 89Zr uptake was higher in 

CD133pos tumors at a level which was considered insignificant, but at 72 h the 

average %ID/g of 89Zr uptake was approximately 3-fold higher in CD133pos tumors 

at a level which was considered insignificant, but at 72 h the average %ID/g of 89Zr 

uptake was approximately 3-fold higher in CD133pos tumors (p<0.0001). Similarly, 

minimal 89Zr uptake was observed in various other organs. This data correlates 

well with the PET imaging data and suggests that CD133 is a promising antigen 

that can be selectively targeted for the imaging of CD133-expressing tumors.   

The diagnostic potential of 89Zr-HA10 IgG was further investigated by 

µPET/CT imaging in mice bearing spontaneous metastatic lesions. Following 

intracardiac injection with luciferase expressing CWR-R1-EnzRCD133 or CWR-R1-

EnzR cells, mice underwent bioluminescent imaging once per week to monitor 

spontaneous lesion development and growth. At approximately 3.5 weeks post- 

injection, the remaining healthy CD133pos (n=2) and CD133neg (n=2) mice had 

developed multiple metastatic lesions in or around the bone (Figure 22A). Mice 

were injected with 200 µCi (22 µg, 9.5 mCi/mg) of 89Zr-HA10 IgG via tail vein and 
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Figure 21. Ex vivo biodistribution of 89Zr-HA10 IgG in all tissues of mice 

bearing subcutaneous CWR-R1-EnzRCD133 or CWR-R1-EnzR tumors. Mice 

were injected with 10-15 µCi of 89Zr-HA10 IgG via tail vein prior to sacrifice at 

the designated time points. Values represent mean ± min/max of 3-4 animals. 
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Table 3. Ex vivo biodistribution data. Complete biodistribution of 89Zr-HA10 
IgG administered via tail vein into mice bearing subcutaneous CWR-R1-
EnzRCD133 or CWR-R1-EnzR xenografts. 

 
CWR-R1-EnzRCD133 CWR-R1-EnzR 

Organ  24 h (n=4) 72 h (n=3) 24 h (n=4) 72 h (n=4) 

Blood 8.64 ± 2.39 2.87 ± 1.49 7.64 ± 1.01 2.30 ± 1.47 

Heart 2.87 ± 0.33 1.99 ± 0.12 2.65 ± 0.73 1.87 ± 0.17 

Lung 2.36 ± 0.56 1.26 ± 0.12 2.32 ± 0.92 1.36 ± 0.13 

Liver 5.31 ± 1.39 5.38 ± 0.73 5.63 ± 1.02 6.56 ± 2.27 

Spleen 5.21 ± 2.32 3.97 ± 2.20 7.18 ± 1.57 5.40 ± 2.25 

Intestines 1.91 ± 0.45 1.23 ± 0.40 3.04 ± 0.48 1.45 ± 0.41 

Kidney 2.68 ± 0.55 2.34 ± 0.08 2.74 ± 0.46 2.15 ± 0.30 

Muscle 1.14 ± 0.54 0.96 ± 0.58 1.27 ± 0.20 0.63 ± 0.25 

Bone 2.46 ± 0.14 1.88 ± 0.24 2.44 ± 0.68 2.10 ± 0.32 

Tumor 6.06 ± 2.00 12.74 ± 6.19 4.58 ± 1.25 4.30 ± 0.50 

Tumor/Blood 0.70 ± 0.12 5.56 ± 4.24 0.60 ± 0.13 2.40 ± 1.16 

Tumor/Muscle 5.52 ± 0.64 18.51 ± 16.50 3.60 ± 0.82 7.52 ± 2.96 

*The data are expressed as the mean %ID/g ± SD. The errors for tumor/blood 
and tumor/muscle ratios are calculated as the geometric mean of the standard 
deviations.  
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Figure 22. 89Zr-HA10 IgG can selectively detect CD133-positive metastatic 

PCa tumors by PET/CT imaging. A) PET/CT imaging of representative mice 

bearing either CD133-positive (CWR-R1-EnzRCD133) or CD133-negative (CWR-

R1-EnzR) metastatic tumors. Mice received 200 µCi of 89Zr-HA10 IgG via tail 

vein and then were images at the designated times. B) Quantitative analysis of 

metastatic tumors from mice used in A displayed significantly higher signals at 

72 h post-injection. Values represent mean ± min/max of 4 tumors/group from 2 

animals/group. 
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imaged by µPET/CT at 24 and 72 h. 2D and 3D images revealed a high level of 

89Zr distribution at 24 h in both groups of mice, while 89Zr uptake at 72 h was 

exclusively observed in the tumors of CD133pos mice. Quantification of the mean 

%ID/g of 89Zr uptake in the tumors confirmed these results by showing that there 

was no significant difference at 24 h despite higher signals in the CD133pos tumors, 

27.41 ± 2.50 versus 19.35 ± 2.63 (Figure 22B). At 72 h, the mean %ID/g in the 

tumors was significantly different among the two groups, 24.30 ± 3.19 and 11.82 ± 

0.57, respectively (p=0.0069).  
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Discussion  

The emergence of non-AR driven disease in patients with CRPC has 

steadily increased after the introduction of AR-signaling inhibitors such as 

abiraterone and enzalutamide (181, 186, 203). At this stage of disease, survival is 

poor and therapies that dramatically prolong life do not exist. While new therapies 

are in demand, new imaging agents to monitor disease progression and response 

to therapy are also needed. PSMA-targeted radiotracers that have shown promise 

at detecting bone and visceral metastases in patients with adenocarcinoma are 

ineffective due to the lack of PSMA expression in non-AR driven PCa. As such, 

novel antigens and targeted imaging agents are needed to aid in the detection and 

monitoring of this subtype of disease. In this study, we have identified CD133 as a 

new targetable antigen that is overexpressed in one of these non-PSMA 

expressing patient populations and developed a novel antibody-based imaging 

agent that can accurately detect CD133 in preclinical models of PCa. To our 

knowledge, this is the first study demonstrating that CD133 is a promising marker 

for AR-/NE+ AVPC. Furthermore, despite the use of preclinical CD133-targeted 

PET imaging in other cancers (204), this is the first time that CD133 has been 

targeted for imaging of PCa.  

Our targeted agent, HA10 IgG, showed significant selectivity and sensitivity 

for CD133-expressing tumors using multiple imaging modalities and cancer 

models, verifying the specificity of the antibody-antigen interaction. Interestingly, 

subcutaneous xenograft models in both the NIR and PET imaging studies 
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displayed better tumoral uptake at earlier time points (between 24-48 h, Figure 

17A and 20A), whereas, metastatic xenografts displayed better uptake at slightly 

later time points (between 48-72 h, Figure 18B and 22A). It has been shown that 

different PCa xenografts exhibit varying degrees of vasculature as determined by 

tumor-stromal interaction, size, and site of the tumor (205). Differences in these 

factors are likely to account for the slightly different uptake kinetics exhibited by 

the HA10 IgG. Additionally, PET imaging revealed that 89Zr-HA10 IgG tumoral 

uptake varied within the CD133pos metastatic tumors. While all CD133pos tumors 

were visible at 72 h in the 2D images, only some tumors were visible in the 3D 

reconstruction after background normalization, suggesting there was less 89Zr-

HA10 IgG uptake in some of the metastatic lesions. Due to the high signals in the 

small spinal tumor and large mandibular tumor, we postulated that size and 

anatomical location were not the primary causes of this occurrence. We also 

determined that CD133 expression is stable following implantation of the 

xenografts, however, we did not rule out that the metastatic process and tumor 

microenvironment of the secondary site may have altered the tumor phenotype 

and resulted in less 89Zr-HA10 IgG uptake. Multiple studies have suggested that 

preclinical metastatic models may lack the ability to faithfully mimic the tumor 

microenvironment during metastasis (206-208), which may explain the reduced 

PET signal in some of the CD133pos metastatic lesions.     

In conclusion, this study illustrates the importance of identifying new 

antigens for targeted imaging and treatment monitoring of AVPC patients. Our data 
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show that AVPC patients with an AR-/NE+ phenotype possess high levels of the 

surface protein, CD133. Our previous studies show that the epitope our antibody 

recognizes on CD133 is not highly expressed in early stages of PCa or healthy 

tissues (194), demonstrating its promise as targetable biomarker for late-stage 

AVPC patients. Furthermore, our data show that CD133 can be exploited for 

improved imaging using a novel antibody developed by our lab. HA10 IgG was 

specific for CD133pos tumors by various imaging modalities, including clinically 

relevant modality PET/CT imaging. These encouraging results indicate that 89Zr-

HA10 IgG displays high potential as a radiotracer for non-invasive immunoPET 

imaging of AR-/NE+ AVPC patients.   
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CHAPTER IV: Conclusions and Future 

Directions  

  



96 
 

Conclusions 

CD133 is an unreliable CSC marker in PCa but is likely an effective biomarker for 

a subset of AVPC 

 CD133 has been postulated to identify CSCs in numerous solid cancers 

including brain cancer (209), PCa (148), and colon cancer (210). In many of these 

studies, CD133-expressing CSCs exhibited self-renewal potential and the ability 

to regenerate a histologically similar tumor mass following transplantation into 

immunodeficient mice. However, using CD133 to identify and isolate CSCs has 

recently become controversial for the following reasons: 1) it is frequently identified 

in the glandular epithelium in some tissues which could make it difficult to 

differentiate between CSCs and non-stem like cancer cells, 2) a few studies have 

documented the inability of CD133pos cell populations to recapitulate the original 

tumor morphology when xenotransplanted suggesting that CD133 may also be 

expressed on differentiated cells, and 3) some studies have shown CD133neg 

populations are able to recapitulate the original tumor morphology suggesting that 

CD133 may not uniquely mark CSCs (98). Despite the unreliable nature of CD133 

as a CSC marker, studies in brain, colon, and renal cancer have indicated that 

CD133 overexpression is correlated to shorter patient survival and more 

aggressive disease (211-213), suggesting its role as a biomarker of cancer 

progression rather than stemness directly. This research encompasses the first 

studies to establish and define CD133 as a biomarker of aggressive disease in 

PCa.       
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CD133 is overexpressed in AR-/NE+ AVPC patients 

 The first evidence of CD133 overexpression in PCa patients was identified 

in a case study described in Chapter II. This patient presented with high-risk 

regional PCa and underwent a TURP and ADT therapy which initially caused a 

reduction in PSA, however, the cancer had progressed after 1 year of treatment. 

The patient immediately began second-generation anti-androgen therapy and 

displayed some level of biochemical regression, but also developed clinical 

progression in the form of extensive liver metastases, indicating a shift from AR-

driven CRPC to non-AR driven AVPC. Interestingly, the liver metastases showed 

strong staining for CD133, while the original TURP biopsy exhibited no CD133 

expression. Our studies also revealed that the non-AR expressing liver metastasis 

biopsy displayed high staining for the neuroendocrine marker, CHGA, indicating 

that CD133 may be specific to a particular phenotype of AVPC which is AR-/NE+.  

In Chapter III, we tested this hypothesis using DNA microarrays from 171 

CRPC patient tumor samples. Each sample was evaluated for markers of AR gene 

regulation, neuroendocrine differentiation, and CD133 expression. The gene 

signatures for AR and NE status were chosen according to previously published 

literature. These results revealed that only the AR-/NE+ phenotype of AVPC 

patients exhibited significantly elevated levels of CD133 expression. Similarly, 

these results indicated that there was an inverse relationship between CD133 

expression and PSMA expression in this patient population, suggesting that this is 

a valuable biomarker for patients that do not express PSMA. These data were 
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confirmed by immunohistochemistry of 35 PCa patient tissue samples (25 AR-

/NE+ samples and 10 AR+/NE- samples). All 25 AR-/NE+ patients displayed 

moderate to high staining for CD133, while the 10 AR+/NE- patients showed no 

staining for CD133, concluding that CD133 is a selective biomarker for AR-/NE+ 

AVPC.    

Development of the novel antibody, HA10 IgG, facilitated better CD133 detection 

than commercially available antibodies 

 The most frequently used commercially available antibodies for CD133 bind 

to glycosylated epitopes of the EC3 domain. Since CD133 is known to be 

structurally complex, we hypothesized that detecting deglycosylated CD133 may 

provide a more accurate and effective approach to targeting CD133 for imaging 

and therapy of lethal AVPC. To develop an improved antibody, we used antibody 

phage display to identify a human scFv, termed HA10. HA10 is selective for a 

glycosylation-independent epitope on the EC2 domain of CD133, providing the 

ability to detect both glycosylated and deglycosylated CD133. When compared to 

the commercial antibody, AC133, HA10 detected CD133 at similar or better levels 

in all assays tested to date. Notably, HA10 identified more CD133 in assays which 

relied heavily on maintaining the natural antigen structure, such as flow cytometry, 

suggesting that there is a small population of cells that are masked by glycosylation 

and are undetectable using commercial antibodies. After characterization, HA10 

was further developed into a full-length human IgG, termed HA10 IgG, and used 

for imaging preclinical models of PCa.      
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HA10 IgG displayed diagnostic potential in CD133-expressing preclinical models 

of PCa 

 HA10 IgG was labeled with a NIR probe or 89Zr and used for fluorescent 

imaging or PET imaging, respectively. Fluorescent imaging and PET imaging were 

performed in subcutaneous and metastatic tumor models. In the subcutaneous 

model, both probes displayed high selectivity and specificity for CD133pos tumors 

between 2 to 3 days post-injection. Tumor localization was observed at 24 hours 

post-injection, however, there was still a significant amount of probe in circulation 

at that time which leads to decreased contrast in the image. Alternatively, majority 

of the background signal was distributed or cleared between 48-72 hours, 

indicating that there is an optimal time frame for imaging after probe administration. 

Ex vivo biodistribution with the PET imaging probe confirmed these results by 

demonstrating a high concentration of 89Zr remaining in the blood at 24 hours post-

injection.  

Similar selectivity for CD133 was observed in the metastatic models, 

however, there were some metastatic lesions during the PET imaging studies that 

exhibited much lower tumoral uptake signals compared to other lesions within the 

same mouse. In general, spinal and mandibular lesions displayed better uptake 

than limb lesions. Since CD133 expression was confirmed by IHC after imaging 

and tumor size between mandibular tumors and spinal tumors was highly variable, 

we believe that vascularization and/or the tumor microenvironment may play a 

critical role in determining how well the probe is distributed to the lesion and will 
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likely affect the efficacy of the probe. Additionally, since 89Zr is known to be bone 

seeking, it is possible that the tumor signal is masked by non-specific accumulation 

of the radioisotope to the bone. Other radioisotopes will need to be investigated to 

assess whether the bone-seeking nature of 89Zr is interfering with the diagnostic 

potential of HA10 IgG.          
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Future Directions 

What is the therapeutic potential of HA10 IgG? 

 Numerous clinical trials using alpha- and beta- particle radiolabeled J591 to 

treat CRPC are currently underway (75, 214-218), however, our studies show that 

PSMA is not expressed in a subset of advanced CRPC patients. Thus, we 

hypothesize that a proportion of the patients in these trials which display an AR-

/NE+ phenotype will not respond to a PSMA-targeted therapy. Alternatively, our 

preliminary analyses of HA10 IgG suggest that its ability to fill the void of targeted 

agents for AR-/NE+ AVPC patients. The selectivity and specificity of HA10 IgG 

provides a rationale for studying it as a radioimmunotherapy agent for targeted 

treatment of AR-/NE+ AVPC. At this time, there is no evidence that HA10 IgG 

induces any antibody-dependent cellular cytotoxicity, although this phenomenon 

was never thoroughly investigated in these studies. Short term exposure to the 

labeled HA10 IgG for imaging studies revealed no decline in overall mouse health 

in vivo or cell toxicity in vitro. Additionally, previous research in CD133 knockout 

mice showed that the antigen CD133 was not critical to the overall viability of the 

mouse (93, 219), however, these same studies also indicated that CD133 is 

expressed in hematopoietic stem cells and may be critical for retinal function. 

Future therapeutic studies are needed to assess the therapeutic potential of HA10 

IgG and should adequately monitor adverse effects related to myelosuppression 

and vision loss.  
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Similarly, despite the fact that CD133 represents a promising target for 

imaging and therapeutic intervention of AR-/NE+ AVPC, it is still subject to various 

resistance mechanisms like any other protein. For example, since CD133 is not 

essential for cell viability (93) and CD133pos cells are documented to give rise to 

CD133neg cell populations (149), it is reasonable to assume that a tumor which 

originally expressed CD133 would adapt to preferentially produce HA10 IgG-

resistant CD133neg tumors. Furthermore, CD133 currently has 7 different defined 

isoforms and 6 more potential isoforms that are produced by alternative splicing 

(220). Mechanisms of antibody resistance may also emerge through alterations on 

the epitope in which the antibody binds. Future studies are required to directly 

identify where HA10 IgG is binding on the EC2 domain of CD133 and determine 

whether any of the previously described isoforms are already lacking this 

associated epitope.                     

How is CD133 regulated and does it directly drive more aggressive disease? 

 The physiologic function of CD133 in normal biology and the progression of 

cancer remains elusive. Understanding the molecular underpinnings of how 

CD133 is regulated and drives aggressive disease would provide more insight into 

the diagnostic and therapeutic potential of CD133-targeted agents such as HA10 

IgG. While this research did not focus on understanding CD133 regulation and 

signaling, some preliminary research was performed to investigate which 

pathways may affect CD133 expression. The first and most frequently referenced 

pathway was the Wnt signaling pathway. To interrogate this pathway, PC3 and 
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CWR-R1-EnzR cells were treated for 72 hours with 20 ng/ml of Wnt3a. RNA was 

extracted from these cell lines and qPCR was performed to evaluate CD133 

expression. Interestingly, CD133 expression was significantly increased in CWR-

R1-EnzR cells (Figure 23A), but not PC3 cells (Figure 23B), indicating that 

differences in these cell lines results in different CD133 regulation. Similar results 

were observed when cells were transduced with the BAMBI gene which encodes 

for a transmembrane glycoprotein related to the type I receptors of the 

transforming growth factor-beta (TGFβ) family (Figure 24A and 24B). Despite the 

fact that TGFβ has been documented to induce CD133 expression in colon cancer 

and PCa (221, 222), this is the first evidence to suggest that BAMBI specifically 

may play a role in CD133 regulation. More research is needed to investigate these 

pathways and identify if they are directly regulating CD133 expression and how 

this all correlates to more aggressive disease.         
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Figure 23. Addition of Wnt3a to PCa cell lines produces variable CD133 

expression in different PCa cell lines. A) CWR-R1-EnzR cells and B) PC3 

cells were stimulated with 20 ng/mL Wnt3a for 72 hours. qPCR was used to 

determine relative mRNA levels of CD133. 
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Figure 24. Transduction of BAMBI into PCa cell lines produces variable 

CD133 expression in different PCa cell lines. A) CWR-R1-EnzR cells and B) 

PC3 cells were stably transduced with lentivirus to produce BAMBI. qPCR was 

used to determine relative mRNA levels of CD133 and verify BAMBI expression. 

 

  



106 
 

References 

1. Facts & Figures 2019 Atlanta, GA: American Cancer Society 2019 
[Available from: https://www.cancer.org/cancer/prostate-cancer/about/key-
statistics.html#references. 
2. Howlader N, Noone AM, Krapcho M, Miller D, Brest A, Yu M, et al. SEER 
Cancer Statistics Review, 1975-2016 Bethesda, MD: National Cancer Institute; 
2019 [Available from: https://seer.cancer.gov/csr/1975_2016/. 
3. Chang S, Schapira L, Williams M, Meyerhardt J, Loprinzi C, Mulrooney 
DA, et al. Prostate Cancer: Types of Treatment Cancer.Net; 2018 [Available 
from: https://www.cancer.net/about-us/cancernet-editorial-board. 
4. Watchful Waiting or Active Surveillance for Prostate Cancer: American 
Cancer Society 2016 [Available from: https://www.cancer.org/cancer/prostate-
cancer/treating/watchful-waiting.html#references. 
5. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast 
T, et al. EAU guidelines on prostate cancer. part 1: screening, diagnosis, and 
local treatment with curative intent-update 2013. Eur Urol. 2014;65(1):124-37. 
6. Kinsella N, Helleman J, Bruinsma S, Carlsson S, Cahill D, Brown C, et al. 
Active surveillance for prostate cancer: a systematic review of contemporary 
worldwide practices. Transl Androl Urol. 2018;7(1):83-97. 
7. Bekelman JE, Rumble RB, Chen RC, Pisansky TM, Finelli A, Feifer A, et 
al. Clinically Localized Prostate Cancer: ASCO Clinical Practice Guideline 
Endorsement of an American Urological Association/American Society for 
Radiation Oncology/Society of Urologic Oncology Guideline. J Clin Oncol. 
2018:JCO1800606. 
8. Harris WP, Mostaghel EA, Nelson PS, Montgomery B. Androgen 
deprivation therapy: progress in understanding mechanisms of resistance and 
optimizing androgen depletion. Nat Clin Pract Urol. 2009;6(2):76-85. 
9. Hormone Therapy for Prostate Cancer: American Cancer Society 2018 
[Available from: https://www.cancer.org/cancer/prostate-
cancer/treating/hormone-therapy.html#written_by. 
10. Balk SP. Androgen receptor functions in prostate cancer development and 
progression. Asian J Androl. 2014;16(4):561-4. 
11. Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of 
castration, of estrogen and androgen injection on serum phosphatases in 
metastatic carcinoma of the prostate. CA Cancer J Clin. 1972;22(4):232-40. 
12. Cookson MS, Roth BJ, Dahm P, Engstrom C, Freedland SJ, Hussain M, 
et al. Castration-resistant prostate cancer: AUA Guideline. J Urol. 
2013;190(2):429-38. 
13. Saad F, Hotte SJ. Guidelines for the management of castrate-resistant 
prostate cancer. Can Urol Assoc J. 2010;4(6):380-4. 
14. El-Amm J, Aragon-Ching JB. The Current Landscape of Treatment in 
Non-Metastatic Castration-Resistant Prostate Cancer. Clin Med Insights Oncol. 
2019;13:1179554919833927. 

https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html#references
https://www.cancer.org/cancer/prostate-cancer/about/key-statistics.html#references
https://seer.cancer.gov/csr/1975_2016/
https://www.cancer.net/about-us/cancernet-editorial-board
https://www.cancer.org/cancer/prostate-cancer/treating/watchful-waiting.html#references
https://www.cancer.org/cancer/prostate-cancer/treating/watchful-waiting.html#references
https://www.cancer.org/cancer/prostate-cancer/treating/hormone-therapy.html#written_by
https://www.cancer.org/cancer/prostate-cancer/treating/hormone-therapy.html#written_by


107 
 

15. James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley 
DP, et al. Abiraterone for Prostate Cancer Not Previously Treated with Hormone 
Therapy. N Engl J Med. 2017;377(4):338-51. 
16. Feldman BJ, Feldman D. The development of androgen-independent 
prostate cancer. Nat Rev Cancer. 2001;1(1):34-45. 
17. Burgess S. FDA Approves Provenge: U.S. Food and Drug Administration; 
2010 [Available from: https://www.drugs.com/newdrugs/fda-approves-provenge-
cellular-immunotherapy-men-advanced-prostate-cancer-2130.html. 
18. Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: 
the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res. 
2011;17(11):3520-6. 
19. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et 
al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J 
Med. 2010;363(5):411-22. 
20. Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, 
Valone FH, et al. Placebo-controlled phase III trial of immunologic therapy with 
sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone 
refractory prostate cancer. J Clin Oncol. 2006;24(19):3089-94. 
21. Aparicio AM, Harzstark AL, Corn PG, Wen S, Araujo JC, Tu SM, et al. 
Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin 
Cancer Res. 2013;19(13):3621-30. 
22. Beltran H, Tomlins S, Aparicio A, Arora V, Rickman D, Ayala G, et al. 
Aggressive variants of castration-resistant prostate cancer. Clin Cancer Res. 
2014;20(11):2846-50. 
23. Vlachostergios PJ, Puca L, Beltran H. Emerging Variants of Castration-
Resistant Prostate Cancer. Curr Oncol Rep. 2017;19(5):32. 
24. Davies AH, Beltran H, Zoubeidi A. Cellular plasticity and the 
neuroendocrine phenotype in prostate cancer. Nat Rev Urol. 2018;15(5):271-86. 
25. Should I Be Screened? : Prostate Cancer Foundation 2019 [Available 
from: https://www.pcf.org/about-prostate-cancer/what-is-prostate-cancer/the-psa-
test/should-i-be-screened/. 
26. Force USPST, Grossman DC, Curry SJ, Owens DK, Bibbins-Domingo K, 
Caughey AB, et al. Screening for Prostate Cancer: US Preventive Services Task 
Force Recommendation Statement. JAMA. 2018;319(18):1901-13. 
27. Gulati R, Gore JL, Etzioni R. Comparative effectiveness of alternative 
prostate-specific antigen--based prostate cancer screening strategies: model 
estimates of potential benefits and harms. Ann Intern Med. 2013;158(3):145-53. 
28. Ahmed HU, Arya M, Freeman A, Emberton M. Do low-grade and low-
volume prostate cancers bear the hallmarks of malignancy? Lancet Oncol. 
2012;13(11):e509-17. 
29. Eggener SE, Badani K, Barocas DA, Barrisford GW, Cheng JS, Chin AI, et 
al. Gleason 6 Prostate Cancer: Translating Biology into Population Health. J Urol. 
2015;194(3):626-34. 

https://www.drugs.com/newdrugs/fda-approves-provenge-cellular-immunotherapy-men-advanced-prostate-cancer-2130.html
https://www.drugs.com/newdrugs/fda-approves-provenge-cellular-immunotherapy-men-advanced-prostate-cancer-2130.html
https://www.pcf.org/about-prostate-cancer/what-is-prostate-cancer/the-psa-test/should-i-be-screened/
https://www.pcf.org/about-prostate-cancer/what-is-prostate-cancer/the-psa-test/should-i-be-screened/


108 
 

30. Loeb S, Bjurlin MA, Nicholson J, Tammela TL, Penson DF, Carter HB, et 
al. Overdiagnosis and overtreatment of prostate cancer. Eur Urol. 
2014;65(6):1046-55. 
31. Balk SP, Ko YJ, Bubley GJ. Biology of prostate-specific antigen. J Clin 
Oncol. 2003;21(2):383-91. 
32. What are Some Other Causes of a High PSA? : Prostate Cancer 
Foundation; 2019 [Available from: https://www.pcf.org/what-are-some-other-
causes-of-a-high-
psa/?gclid=Cj0KCQjw6IfoBRCiARIsAF6q06tP8gggsOk08tWvAQusDNjn5_STHJx
nGoKfkCGKf0prJ6D_GF24o38aAlynEALw_wcB. 
33. Palmerola R, Smith P, Elliot V, Reese CT, Mahon FB, Harpster LE, et al. 
The digital rectal examination (DRE) remains important - outcomes from a 
contemporary cohort of men undergoing an initial 12-18 core prostate needle 
biopsy. Can J Urol. 2012;19(6):6542-7. 
34. Tests for Prostate Cancer: American Cancer Society 2017 [Available from: 
https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/how-
diagnosed.html#written_by. 
35. Prostate Cancer Prevention and Early Detection: American Cancer 
Society 2019 [Available from: https://www.cancer.org/cancer/prostate-
cancer/early-detection.html. 
36. Epstein JI, Zelefsky MJ, Sjoberg DD, Nelson JB, Egevad L, Magi-Galluzzi 
C, et al. A Contemporary Prostate Cancer Grading System: A Validated 
Alternative to the Gleason Score. Eur Urol. 2016;69(3):428-35. 
37. Lindenberg L, Choyke P, Dahut W. Prostate Cancer Imaging with Novel 
PET Tracers. Curr Urol Rep. 2016;17(3):18. 
38. Den RB, George D, Pieczonka C, McNamara M. Ra-223 Treatment for 
Bone Metastases in Castrate-Resistant Prostate Cancer: Practical Management 
Issues for Patient Selection. Am J Clin Oncol. 2019;42(4):399-406. 
39. Gandaglia G, Abdollah F, Schiffmann J, Trudeau V, Shariat SF, Kim SP, 
et al. Distribution of metastatic sites in patients with prostate cancer: A 
population-based analysis. Prostate. 2014;74(2):210-6. 
40. Inoue T, Segawa T, Kamba T, Yoshimura K, Nakamura E, Nishiyama H, 
et al. Prevalence of skeletal complications and their impact on survival of 
hormone refractory prostate cancer patients in Japan. Urology. 2009;73(5):1104-
9. 
41. Subramanian G, McAfee JG, Blair RJ, Kallfelz FA, Thomas FD. 
Technetium-99m-methylene diphosphonate--a superior agent for skeletal 
imaging: comparison with other technetium complexes. J Nucl Med. 
1975;16(8):744-55. 
42. Wondergem M, van der Zant FM, Knol RJJ, Burgers AMG, Bos SD, de 
Jong IJ, et al. (99m)Tc-HDP bone scintigraphy and (18)F-sodiumfluoride PET/CT 
in primary staging of patients with prostate cancer. World J Urol. 2018;36(1):27-
34. 

https://www.pcf.org/what-are-some-other-causes-of-a-high-psa/?gclid=Cj0KCQjw6IfoBRCiARIsAF6q06tP8gggsOk08tWvAQusDNjn5_STHJxnGoKfkCGKf0prJ6D_GF24o38aAlynEALw_wcB
https://www.pcf.org/what-are-some-other-causes-of-a-high-psa/?gclid=Cj0KCQjw6IfoBRCiARIsAF6q06tP8gggsOk08tWvAQusDNjn5_STHJxnGoKfkCGKf0prJ6D_GF24o38aAlynEALw_wcB
https://www.pcf.org/what-are-some-other-causes-of-a-high-psa/?gclid=Cj0KCQjw6IfoBRCiARIsAF6q06tP8gggsOk08tWvAQusDNjn5_STHJxnGoKfkCGKf0prJ6D_GF24o38aAlynEALw_wcB
https://www.pcf.org/what-are-some-other-causes-of-a-high-psa/?gclid=Cj0KCQjw6IfoBRCiARIsAF6q06tP8gggsOk08tWvAQusDNjn5_STHJxnGoKfkCGKf0prJ6D_GF24o38aAlynEALw_wcB
https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/how-diagnosed.html#written_by
https://www.cancer.org/cancer/prostate-cancer/detection-diagnosis-staging/how-diagnosed.html#written_by
https://www.cancer.org/cancer/prostate-cancer/early-detection.html
https://www.cancer.org/cancer/prostate-cancer/early-detection.html


109 
 

43. McGregor B, Tulloch AG, Quinlan MF, Lovegrove F. The role of bone 
scanning in the assessment of prostatic carcinoma. Br J Urol. 1978;50(3):178-81. 
44. O'Donoghue EP, Constable AR, Sherwood T, Stevenson JJ, Chisholm 
GD. Bone scanning and plasma phosphatases in carcinoma of the prostate. Br J 
Urol. 1978;50(3):172-7. 
45. Juweid ME, Cheson BD. Positron-emission tomography and assessment 
of cancer therapy. N Engl J Med. 2006;354(5):496-507. 
46. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in 
oncology. Radiology. 2004;231(2):305-32. 
47. Sheikhbahaei S, Jones KM, Werner RA, Salas-Fragomeni RA, Marcus 
CV, Higuchi T, et al. (18)F-NaF-PET/CT for the detection of bone metastasis in 
prostate cancer: a meta-analysis of diagnostic accuracy studies. Ann Nucl Med. 
2019;33(5):351-61. 
48. Hillner BE, Siegel BA, Hanna L, Duan F, Shields AF, Coleman RE. Impact 
of 18F-fluoride PET in patients with known prostate cancer: initial results from the 
National Oncologic PET Registry. J Nucl Med. 2014;55(4):574-81. 
49. Hillner BE, Siegel BA, Hanna L, Duan F, Shields AF, Quinn B, et al. 
Impact of (18)F-Fluoride PET on Intended Management of Patients with Cancers 
Other Than Prostate Cancer: Results from the National Oncologic PET Registry. 
J Nucl Med. 2014;55(7):1054-61. 
50. Dyrberg E, Hendel HW, Huynh THV, Klausen TW, Logager VB, Madsen 
C, et al. (68)Ga-PSMA-PET/CT in comparison with (18)F-fluoride-PET/CT and 
whole-body MRI for the detection of bone metastases in patients with prostate 
cancer: a prospective diagnostic accuracy study. Eur Radiol. 2019;29(3):1221-
30. 
51. Evans JD, Jethwa KR, Ost P, Williams S, Kwon ED, Lowe VJ, et al. 
Prostate cancer-specific PET radiotracers: A review on the clinical utility in 
recurrent disease. Pract Radiat Oncol. 2018;8(1):28-39. 
52. Fraum TJ, Ludwig DR, Kim EH, Schroeder P, Hope TA, Ippolito JE. 
Prostate cancer PET tracers: essentials for the urologist. Can J Urol. 
2018;25(4):9371-83. 
53. Spratt DE, McHugh DJ, Morris MJ, Morgans AK. Management of 
Biochemically Recurrent Prostate Cancer: Ensuring the Right Treatment of the 
Right Patient at the Right Time. Am Soc Clin Oncol Educ Book. 2018;38:355-62. 
54. Wallitt KL, Khan SR, Dubash S, Tam HH, Khan S, Barwick TD. Clinical 
PET Imaging in Prostate Cancer. Radiographics. 2017;37(5):1512-36. 
55. Schuster DM, Nanni C, Fanti S. PET Tracers Beyond FDG in Prostate 
Cancer. Semin Nucl Med. 2016;46(6):507-21. 
56. Giovacchini G, Picchio M, Garcia-Parra R, Briganti A, Abdollah F, Gianolli 
L, et al. 11C-choline PET/CT predicts prostate cancer-specific survival in patients 
with biochemical failure during androgen-deprivation therapy. J Nucl Med. 
2014;55(2):233-41. 
57. Piccardo A, Paparo F, Piccazzo R, Naseri M, Ricci P, Marziano A, et al. 
Value of fused 18F-Choline-PET/MRI to evaluate prostate cancer relapse in 



110 
 

patients showing biochemical recurrence after EBRT: preliminary results. Biomed 
Res Int. 2014;2014:103718. 
58. Dusing RW, Peng W, Lai SM, Grado GL, Holzbeierlein JM, Thrasher JB, 
et al. Prostate-specific antigen and prostate-specific antigen velocity as threshold 
indicators in 11C-acetate PET/CTAC scanning for prostate cancer recurrence. 
Clin Nucl Med. 2014;39(9):777-83. 
59. Mohsen B, Giorgio T, Rasoul ZS, Werner L, Ali GR, Reza DK, et al. 
Application of C-11-acetate positron-emission tomography (PET) imaging in 
prostate cancer: systematic review and meta-analysis of the literature. BJU Int. 
2013;112(8):1062-72. 
60. Turkbey B, Mena E, Shih J, Pinto PA, Merino MJ, Lindenberg ML, et al. 
Localized prostate cancer detection with 18F FACBC PET/CT: comparison with 
MR imaging and histopathologic analysis. Radiology. 2014;270(3):849-56. 
61. Odewole OA, Tade FI, Nieh PT, Savir-Baruch B, Jani AB, Master VA, et 
al. Recurrent prostate cancer detection with anti-3-[(18)F]FACBC PET/CT: 
comparison with CT. Eur J Nucl Med Mol Imaging. 2016;43(10):1773-83. 
62. Nanni C, Schiavina R, Boschi S, Ambrosini V, Pettinato C, Brunocilla E, et 
al. Comparison of 18F-FACBC and 11C-choline PET/CT in patients with radically 
treated prostate cancer and biochemical relapse: preliminary results. Eur J Nucl 
Med Mol Imaging. 2013;40 Suppl 1:S11-7. 
63. Nanni C, Schiavina R, Brunocilla E, Boschi S, Borghesi M, Zanoni L, et al. 
18F-Fluciclovine PET/CT for the Detection of Prostate Cancer Relapse: A 
Comparison to 11C-Choline PET/CT. Clin Nucl Med. 2015;40(8):e386-91. 
64. Parent EE, Schuster DM. Update on (18)F-Fluciclovine PET for Prostate 
Cancer Imaging. J Nucl Med. 2018;59(5):733-9. 
65. Beattie BJ, Smith-Jones PM, Jhanwar YS, Schoder H, Schmidtlein CR, 
Morris MJ, et al. Pharmacokinetic assessment of the uptake of 16beta-18F-
fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by 
PET. J Nucl Med. 2010;51(2):183-92. 
66. Rathkopf DE, Morris MJ, Fox JJ, Danila DC, Slovin SF, Hager JH, et al. 
Phase I study of ARN-509, a novel antiandrogen, in the treatment of castration-
resistant prostate cancer. J Clin Oncol. 2013;31(28):3525-30. 
67. Bouchelouche K, Choyke PL, Capala J. Prostate specific membrane 
antigen- a target for imaging and therapy with radionuclides. Discov Med. 
2010;9(44):55-61. 
68. Wright GL, Jr., Haley C, Beckett ML, Schellhammer PF. Expression of 
prostate-specific membrane antigen in normal, benign, and malignant prostate 
tissues. Urol Oncol. 1995;1(1):18-28. 
69. ProstaScint Product Approval Information - Licensing Action Rockville, 
MD: U.S. Food and Drug Administration 1996 [Available from: 
https://www.accessdata.fda.gov/drugsatfda_docs/appletter/1996/capcyt102896L.
htm. 

https://www.accessdata.fda.gov/drugsatfda_docs/appletter/1996/capcyt102896L.htm
https://www.accessdata.fda.gov/drugsatfda_docs/appletter/1996/capcyt102896L.htm


111 
 

70. Wilkinson S, Chodak G. The role of 111indium-capromab pendetide 
imaging for assessing biochemical failure after radical prostatectomy. J Urol. 
2004;172(1):133-6. 
71. Lamb HM, Faulds D. Capromab pendetide. A review of its use as an 
imaging agent in prostate cancer. Drugs Aging. 1998;12(4):293-304. 
72. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, 
Goldsmith SJ. Phase I trial of 177lutetium-labeled J591, a monoclonal antibody 
to prostate-specific membrane antigen, in patients with androgen-independent 
prostate cancer. J Clin Oncol. 2005;23(21):4591-601. 
73. Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ, 
Bander NH. Phase I trial of yttrium-90-labeled anti-prostate-specific membrane 
antigen monoclonal antibody J591 for androgen-independent prostate cancer. J 
Clin Oncol. 2004;22(13):2522-31. 
74. Osborne JR, Green DA, Spratt DE, Lyashchenko S, Fareedy SB, 
Robinson BD, et al. A prospective pilot study of (89)Zr-J591/prostate specific 
membrane antigen positron emission tomography in men with localized prostate 
cancer undergoing radical prostatectomy. J Urol. 2014;191(5):1439-45. 
75. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar 
NH, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific 
membrane antigen monoclonal antibody J591 for metastatic castration-resistant 
prostate cancer. Clin Cancer Res. 2013;19(18):5182-91. 
76. Pandit-Taskar N, O'Donoghue JA, Durack JC, Lyashchenko SK, Cheal 
SM, Beylergil V, et al. A Phase I/II Study for Analytic Validation of 89Zr-J591 
ImmunoPET as a Molecular Imaging Agent for Metastatic Prostate Cancer. Clin 
Cancer Res. 2015;21(23):5277-85. 
77. Bouchelouche K, Choyke PL. Prostate-specific membrane antigen 
positron emission tomography in prostate cancer: a step toward personalized 
medicine. Curr Opin Oncol. 2016;28(3):216-21. 
78. Bakht MK, Derecichei I, Li Y, Ferraiuolo RM, Dunning M, Oh SW, et al. 
Neuroendocrine differentiation of prostate cancer leads to PSMA suppression. 
Endocr Relat Cancer. 2018;26(2):131-46. 
79. Liu T, Wu LY, Fulton MD, Johnson JM, Berkman CE. Prolonged androgen 
deprivation leads to downregulation of androgen receptor and prostate-specific 
membrane antigen in prostate cancer cells. Int J Oncol. 2012;41(6):2087-92. 
80. Corbeil D, Karbanova J, Fargeas CA, Jaszai J. Prominin-1 (CD133): 
Molecular and Cellular Features Across Species. Adv Exp Med Biol. 2013;777:3-
24. 
81. Liu Y, Ren S, Xie L, Cui C, Xing Y, Liu C, et al. Mutation of N-linked 
glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell 
growth. Oncotarget. 2015;6(24):20650-60. 
82. Elsaba TM, Martinez-Pomares L, Robins AR, Crook S, Seth R, Jackson D, 
et al. The stem cell marker CD133 associates with enhanced colony formation 
and cell motility in colorectal cancer. PLoS One. 2010;5(5):e10714. 



112 
 

83. Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, et 
al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell 
differentiation. Cancer Res. 2010;70(2):719-29. 
84. Thamm K, Graupner S, Werner C, Huttner WB, Corbeil D. Monoclonal 
Antibodies 13A4 and AC133 Do Not Recognize the Canine Ortholog of Mouse 
and Human Stem Cell Antigen Prominin-1 (CD133). PLoS One. 
2016;11(10):e0164079. 
85. Bidlingmaier S, Zhu X, Liu B. The utility and limitations of glycosylated 
human CD133 epitopes in defining cancer stem cells. J Mol Med (Berl). 
2008;86(9):1025-32. 
86. Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK, 
et al. Alternative promoters regulate transcription of the gene that encodes stem 
cell surface protein AC133. Blood. 2004;103(6):2055-61. 
87. Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, 
et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: 
limitations, problems and challenges. J Pathol. 2013;229(3):355-78. 
88. Fargeas CA, Joester A, Missol-Kolka E, Hellwig A, Huttner WB, Corbeil D. 
Identification of novel Prominin-1/CD133 splice variants with alternative C-termini 
and their expression in epididymis and testis. J Cell Sci. 2004;117(Pt 18):4301-
11. 
89. Corbeil D, Roper K, Fargeas CA, Joester A, Huttner WB. Prominin: a story 
of cholesterol, plasma membrane protrusions and human pathology. Traffic. 
2001;2(2):82-91. 
90. Su YJ, Lin WH, Chang YW, Wei KC, Liang CL, Chen SC, et al. Polarized 
cell migration induces cancer type-specific 
CD133/integrin/Src/Akt/GSK3beta/beta-catenin signaling required for 
maintenance of cancer stem cell properties. Oncotarget. 2015;6(35):38029-45. 
91. Roper K, Corbeil D, Huttner WB. Retention of prominin in microvilli reveals 
distinct cholesterol-based lipid micro-domains in the apical plasma membrane. 
Nat Cell Biol. 2000;2(9):582-92. 
92. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell 
Biol. 2000;1(1):31-9. 
93. Zacchigna S, Oh H, Wilsch-Brauninger M, Missol-Kolka E, Jaszai J, 
Jansen S, et al. Loss of the cholesterol-binding protein prominin-1/CD133 causes 
disk dysmorphogenesis and photoreceptor degeneration. J Neurosci. 
2009;29(7):2297-308. 
94. Kosodo Y, Roper K, Haubensak W, Marzesco AM, Corbeil D, Huttner WB. 
Asymmetric distribution of the apical plasma membrane during neurogenic 
divisions of mammalian neuroepithelial cells. EMBO J. 2004;23(11):2314-24. 
95. Bauer N, Wilsch-Brauninger M, Karbanova J, Fonseca AV, Strauss D, 
Freund D, et al. Haematopoietic stem cell differentiation promotes the release of 
prominin-1/CD133-containing membrane vesicles--a role of the endocytic-
exocytic pathway. EMBO Mol Med. 2011;3(7):398-409. 



113 
 

96. Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, 
Corbeil D, et al. Release of extracellular membrane particles carrying the stem 
cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. 
J Cell Sci. 2005;118(Pt 13):2849-58. 
97. Bauer N, Fonseca AV, Florek M, Freund D, Jaszai J, Bornhauser M, et al. 
New insights into the cell biology of hematopoietic progenitors by studying 
prominin-1 (CD133). Cells Tissues Organs. 2008;188(1-2):127-38. 
98. Glumac PM, LeBeau AM. The role of CD133 in cancer: a concise review. 
Clin Transl Med. 2018;7(1):18. 
99. Li Z. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol. 
2013;2(1):17. 
100. Wu Y, Wu PY. CD133 as a marker for cancer stem cells: progresses and 
concerns. Stem Cells Dev. 2009;18(8):1127-34. 
101. Jaksch M, Munera J, Bajpai R, Terskikh A, Oshima RG. Cell cycle-
dependent variation of a CD133 epitope in human embryonic stem cell, colon 
cancer, and melanoma cell lines. Cancer Res. 2008;68(19):7882-6. 
102. Bussolati B, Moggio A, Collino F, Aghemo G, D'Armento G, Grange C, et 
al. Hypoxia modulates the undifferentiated phenotype of human renal inner 
medullary CD133+ progenitors through Oct4/miR-145 balance. Am J Physiol 
Renal Physiol. 2012;302(1):F116-28. 
103. Maeda K, Ding Q, Yoshimitsu M, Kuwahata T, Miyazaki Y, Tsukasa K, et 
al. CD133 Modulate HIF-1alpha Expression under Hypoxia in EMT Phenotype 
Pancreatic Cancer Stem-Like Cells. Int J Mol Sci. 2016;17(7). 
104. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, 
et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells 
through activation of HIF-1alpha. Oncogene. 2009;28(45):3949-59. 
105. Iida H, Suzuki M, Goitsuka R, Ueno H. Hypoxia induces CD133 
expression in human lung cancer cells by up-regulation of OCT3/4 and SOX2. Int 
J Oncol. 2012;40(1):71-9. 
106. Griguer CE, Oliva CR, Gobin E, Marcorelles P, Benos DJ, Lancaster JR, 
Jr., et al. CD133 is a marker of bioenergetic stress in human glioma. PLoS One. 
2008;3(11):e3655. 
107. Yang C, Yang Y, Gupta N, Liu X, He A, Liu L, et al. Pentaspan membrane 
glycoprotein, prominin-1, is involved in glucose metabolism and cytoskeleton 
alteration. Biochemistry (Mosc). 2007;72(8):854-62. 
108. Bourseau-Guilmain E, Griveau A, Benoit JP, Garcion E. The importance of 
the stem cell marker prominin-1/CD133 in the uptake of transferrin and in iron 
metabolism in human colon cancer Caco-2 cells. PLoS One. 2011;6(9):e25515. 
109. Bisson I, Prowse DM. WNT signaling regulates self-renewal and 
differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 
2009;19(6):683-97. 
110. Rappa G, Mercapide J, Anzanello F, Le TT, Johlfs MG, Fiscus RR, et al. 
Wnt interaction and extracellular release of prominin-1/CD133 in human 
malignant melanoma cells. Exp Cell Res. 2013;319(6):810-9. 



114 
 

111. Mak AB, Nixon AM, Kittanakom S, Stewart JM, Chen GI, Curak J, et al. 
Regulation of CD133 by HDAC6 promotes beta-catenin signaling to suppress 
cancer cell differentiation. Cell Rep. 2012;2(4):951-63. 
112. Brossa A, Papadimitriou E, Collino F, Incarnato D, Oliviero S, Camussi G, 
et al. Role of CD133 Molecule in Wnt Response and Renal Repair. Stem Cells 
Transl Med. 2018;7(3):283-94. 
113. Dubrovska A, Kim S, Salamone RJ, Walker JR, Maira SM, Garcia-
Echeverria C, et al. The role of PTEN/Akt/PI3K signaling in the maintenance and 
viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A. 
2009;106(1):268-73. 
114. Sahlberg SH, Spiegelberg D, Glimelius B, Stenerlow B, Nestor M. 
Evaluation of cancer stem cell markers CD133, CD44, CD24: association with 
AKT isoforms and radiation resistance in colon cancer cells. PLoS One. 
2014;9(4):e94621. 
115. Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt 
pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem 
cells. Proc Natl Acad Sci U S A. 2013;110(17):6829-34. 
116. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, et 
al. CD133 expression is not restricted to stem cells, and both CD133+ and 
CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 
2008;118(6):2111-20. 
117. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. 
CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 
2004;117(Pt 16):3539-45. 
118. Leong KG, Wang BE, Johnson L, Gao WQ. Generation of a prostate from 
a single adult stem cell. Nature. 2008;456(7223):804-8. 
119. Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, et al. p63 is 
a prostate basal cell marker and is required for prostate development. Am J 
Pathol. 2000;157(6):1769-75. 
120. Brawer MK, Peehl DM, Stamey TA, Bostwick DG. Keratin 
immunoreactivity in the benign and neoplastic human prostate. Cancer Res. 
1985;45(8):3663-7. 
121. De Marzo AM, Meeker AK, Epstein JI, Coffey DS. Prostate stem cell 
compartments: expression of the cell cycle inhibitor p27Kip1 in normal, 
hyperplastic, and neoplastic cells. Am J Pathol. 1998;153(3):911-9. 
122. Alam TN, O'Hare MJ, Laczko I, Freeman A, Al-Beidh F, Masters JR, et al. 
Differential expression of CD44 during human prostate epithelial cell 
differentiation. J Histochem Cytochem. 2004;52(8):1083-90. 
123. Bello-DeOcampo D, Kleinman HK, Deocampo ND, Webber MM. Laminin-
1 and alpha6beta1 integrin regulate acinar morphogenesis of normal and 
malignant human prostate epithelial cells. Prostate. 2001;46(2):142-53. 
124. Knox JD, Cress AE, Clark V, Manriquez L, Affinito KS, Dalkin BL, et al. 
Differential expression of extracellular matrix molecules and the alpha 6-integrins 
in the normal and neoplastic prostate. Am J Pathol. 1994;145(1):167-74. 



115 
 

125. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON. Isolation and 
functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S 
A. 2007;104(1):181-6. 
126. Goldstein AS, Lawson DA, Cheng D, Sun W, Garraway IP, Witte ON. 
Trop2 identifies a subpopulation of murine and human prostate basal cells with 
stem cell characteristics. Proc Natl Acad Sci U S A. 2008;105(52):20882-7. 
127. Petkova N, Hennenlotter J, Sobiesiak M, Todenhofer T, Scharpf M, Stenzl 
A, et al. Surface CD24 distinguishes between low differentiated and transit-
amplifying cells in the basal layer of human prostate. Prostate. 
2013;73(14):1576-90. 
128. Wang Y, Hayward S, Cao M, Thayer K, Cunha G. Cell differentiation 
lineage in the prostate. Differentiation. 2001;68(4-5):270-9. 
129. Wang X, Kruithof-de Julio M, Economides KD, Walker D, Yu H, Halili MV, 
et al. A luminal epithelial stem cell that is a cell of origin for prostate cancer. 
Nature. 2009;461(7263):495-500. 
130. Wang W, Epstein JI. Small cell carcinoma of the prostate. A morphologic 
and immunohistochemical study of 95 cases. Am J Surg Pathol. 2008;32(1):65-
71. 
131. Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, et 
al. Molecular characterization of neuroendocrine prostate cancer and 
identification of new drug targets. Cancer Discov. 2011;1(6):487-95. 
132. Jaworska D, Krol W, Szliszka E. Prostate Cancer Stem Cells: Research 
Advances. Int J Mol Sci. 2015;16(11):27433-49. 
133. Taylor RA, Toivanen R, Risbridger GP. Stem cells in prostate cancer: 
treating the root of the problem. Endocr Relat Cancer. 2010;17(4):R273-85. 
134. Toivanen R, Shen MM. Prostate organogenesis: tissue induction, 
hormonal regulation and cell type specification. Development. 2017;144(8):1382-
98. 
135. Collins AT, Habib FK, Maitland NJ, Neal DE. Identification and isolation of 
human prostate epithelial stem cells based on alpha(2)beta(1)-integrin 
expression. J Cell Sci. 2001;114(Pt 21):3865-72. 
136. Schmelz M, Moll R, Hesse U, Prasad AR, Gandolfi JA, Hasan SR, et al. 
Identification of a stem cell candidate in the normal human prostate gland. Eur J 
Cell Biol. 2005;84(2-3):341-54. 
137. Missol-Kolka E, Karbanova J, Janich P, Haase M, Fargeas CA, Huttner 
WB, et al. Prominin-1 (CD133) is not restricted to stem cells located in the basal 
compartment of murine and human prostate. Prostate. 2011;71(3):254-67. 
138. Wei X, Orjalo AV, Xin L. CD133 does not enrich for the stem cell activity in 
vivo in adult mouse prostates. Stem Cell Res. 2016;16(3):597-606. 
139. Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A. 
Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal 
adenocarcinomas. BMC Cancer. 2008;8:48. 



116 
 

140. Lardon J, Corbeil D, Huttner WB, Ling Z, Bouwens L. Stem cell marker 
prominin-1/AC133 is expressed in duct cells of the adult human pancreas. 
Pancreas. 2008;36(1):e1-6. 
141. Rountree CB, Ding W, Dang H, Vankirk C, Crooks GM. Isolation of 
CD133+ liver stem cells for clonal expansion. J Vis Exp. 2011(56). 
142. Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, et al. 
Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 
2007;204(8):1973-87. 
143. Feng HL, Liu YQ, Yang LJ, Bian XC, Yang ZL, Gu B, et al. Expression of 
CD133 correlates with differentiation of human colon cancer cells. Cancer Biol 
Ther. 2010;9(3):216-23. 
144. Karbanova J, Missol-Kolka E, Fonseca AV, Lorra C, Janich P, Hollerova 
H, et al. The stem cell marker CD133 (Prominin-1) is expressed in various 
human glandular epithelia. J Histochem Cytochem. 2008;56(11):977-93. 
145. Jaszai J, Janich P, Farkas LM, Fargeas CA, Huttner WB, Corbeil D. 
Differential expression of Prominin-1 (CD133) and Prominin-2 in major cephalic 
exocrine glands of adult mice. Histochem Cell Biol. 2007;128(5):409-19. 
146. Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, et al. 
Isolation and characterization of multipotent progenitor cells from the Bowman's 
capsule of adult human kidneys. J Am Soc Nephrol. 2006;17(9):2443-56. 
147. Fukamachi H, Shimada S, Ito K, Ito Y, Yuasa Y. CD133 is a marker of 
gland-forming cells in gastric tumors and Sox17 is involved in its regulation. 
Cancer Sci. 2011;102(7):1313-21. 
148. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective 
identification of tumorigenic prostate cancer stem cells. Cancer Res. 
2005;65(23):10946-51. 
149. Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, 
Isaacs JT. The role of CD133 in normal human prostate stem cells and malignant 
cancer-initiating cells. Cancer Res. 2008;68(23):9703-11. 
150. Zhou J, Wang H, Cannon V, Wolcott KM, Song H, Yates C. Side 
population rather than CD133(+) cells distinguishes enriched tumorigenicity in 
hTERT-immortalized primary prostate cancer cells. Mol Cancer. 2011;10:112. 
151. Wang L, Huang X, Zheng X, Wang X, Li S, Zhang L, et al. Enrichment of 
prostate cancer stem-like cells from human prostate cancer cell lines by culture 
in serum-free medium and chemoradiotherapy. Int J Biol Sci. 2013;9(5):472-9. 
152. Reyes EE, Gillard M, Duggan R, Wroblewski K, Kregel S, Isikbay M, et al. 
Molecular analysis of CD133-positive circulating tumor cells from patients with 
metastatic castration-resistant prostate cancer. J Transl Sci. 2015;1(1). 
153. Isaacs JT. Prostate stem cells and benign prostatic hyperplasia. Prostate. 
2008;68(9):1025-34. 
154. Chen X, Rycaj K, Liu X, Tang DG. New insights into prostate cancer stem 
cells. Cell Cycle. 2013;12(4):579-86. 
155. Corbeil D. Prominin-1 (CD133): New Insights on Stem & Cancer Stem Cell 
Biology.  Advances in Experimental Medicine and Biology: Springer; 2013. 



117 
 

156. Jang JW, Song Y, Kim SH, Kim J, Seo HR. Potential mechanisms of 
CD133 in cancer stem cells. Life Sci. 2017;184:25-9. 
157. Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, et al. A 
novel five-transmembrane hematopoietic stem cell antigen: isolation, 
characterization, and molecular cloning. Blood. 1997;90(12):5013-21. 
158. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, 
et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. 
Blood. 1997;90(12):5002-12. 
159. Maitland NJ, Collins AT. Prostate cancer stem cells: a new target for 
therapy. J Clin Oncol. 2008;26(17):2862-70. 
160. Green CL, Loken M, Buck D, Deeg HJ. Discordant expression of AC133 
and AC141 in patients with myelodysplastic syndrome (MDS) and acute 
myelogeneous leukemia (AML). Leukemia. 2000;14(4):770-2. 
161. Mallard BW, Tiralongo J. Cancer stem cell marker glycosylation: Nature, 
function and significance. Glycoconj J. 2017;34(4):441-52. 
162. Barrantes-Freer A, Renovanz M, Eich M, Braukmann A, Sprang B, Spirin 
P, et al. CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 
and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells. PLoS One. 
2015;10(6):e0130519. 
163. Osmond TL, Broadley KW, McConnell MJ. Glioblastoma cells negative for 
the anti-CD133 antibody AC133 express a truncated variant of the CD133 
protein. Int J Mol Med. 2010;25(6):883-8. 
164. Hermansen SK, Christensen KG, Jensen SS, Kristensen BW. Inconsistent 
immunohistochemical expression patterns of four different CD133 antibody 
clones in glioblastoma. J Histochem Cytochem. 2011;59(4):391-407. 
165. Reyes EE, Kunovac SK, Duggan R, Kregel S, Vander Griend DJ. Growth 
kinetics of CD133-positive prostate cancer cells. Prostate. 2013;73(7):724-33. 
166. Kim J, Stroud RM, Craik CS. Rapid identification of recombinant Fabs that 
bind to membrane proteins. Methods. 2011;55(4):303-9. 
167. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the 
comparative C(T) method. Nat Protoc. 2008;3(6):1101-8. 
168. Wang S, Zheng C, Liu Y, Zheng H, Wang Z. Construction of multiform 
scFv antibodies using linker peptide. J Genet Genomics. 2008;35(5):313-6. 
169. Arndt KM, Muller KM, Pluckthun A. Factors influencing the dimer to 
monomer transition of an antibody single-chain Fv fragment. Biochemistry. 
1998;37(37):12918-26. 
170. Botchkina GI, Zuniga ES, Rowehl RH, Park R, Bhalla R, Bialkowska AB, 
et al. Prostate cancer stem cell-targeted efficacy of a new-generation taxoid, 
SBT-1214 and novel polyenolic zinc-binding curcuminoid, CMC2.24. PLoS One. 
2013;8(9):e69884. 
171. Ren F, Sheng WQ, Du X. CD133: a cancer stem cells marker, is used in 
colorectal cancers. World J Gastroenterol. 2013;19(17):2603-11. 
172. Smith SA, Crowe JE, Jr. Use of Human Hybridoma Technology To Isolate 
Human Monoclonal Antibodies. Microbiol Spectr. 2015;3(1):AID-0027-2014. 



118 
 

173. Baker M. Reproducibility crisis: Blame it on the antibodies. Nature. 
2015;521(7552):274-6. 
174. Marx V. Finding the right antibody for the job. Nat Methods. 
2013;10(8):703-7. 
175. Laffly E, Sodoyer R. Monoclonal and recombinant antibodies, 30 years 
after. Hum Antibodies. 2005;14(1-2):33-55. 
176. Fargeas CA, Huttner WB, Corbeil D. Nomenclature of prominin-1 (CD133) 
splice variants - an update. Tissue Antigens. 2007;69(6):602-6. 
177. Koochekpour S, Maresh GA, Katner A, Parker-Johnson K, Lee TJ, Hebert 
FE, et al. Establishment and characterization of a primary androgen-responsive 
African-American prostate cancer cell line, E006AA. Prostate. 2004;60(2):141-
52. 
178. Koochekpour S, Willard SS, Shourideh M, Ali S, Liu C, Azabdaftari G, et 
al. Establishment and characterization of a highly tumorigenic African American 
prostate cancer cell line, E006AA-hT. Int J Biol Sci. 2014;10(8):834-45. 
179. D'Antonio JM, Vander Griend DJ, Antony L, Ndikuyeze G, Dalrymple SL, 
Koochekpour S, et al. Loss of androgen receptor-dependent growth suppression 
by prostate cancer cells can occur independently from acquiring oncogenic 
addiction to androgen receptor signaling. PLoS One. 2010;5(7):e11475. 
180. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. 
Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. 
Nat Med. 2016;22(3):298-305. 
181. Nevedomskaya E, Baumgart SJ, Haendler B. Recent Advances in 
Prostate Cancer Treatment and Drug Discovery. Int J Mol Sci. 2018;19(5). 
182. Rickman DS, Beltran H, Demichelis F, Rubin MA. Biology and evolution of 
poorly differentiated neuroendocrine tumors. Nat Med. 2017;23(6):1-10. 
183. Wadosky KM, Koochekpour S. Molecular mechanisms underlying 
resistance to androgen deprivation therapy in prostate cancer. Oncotarget. 
2016;7(39):64447-70. 
184. Yap TA, Smith AD, Ferraldeschi R, Al-Lazikani B, Workman P, de Bono 
JS. Drug discovery in advanced prostate cancer: translating biology into therapy. 
Nat Rev Drug Discov. 2016;15(10):699-718. 
185. Nouri M, Caradec J, Lubik AA, Li N, Hollier BG, Takhar M, et al. Therapy-
induced developmental reprogramming of prostate cancer cells and acquired 
therapy resistance. Oncotarget. 2017;8(12):18949-67. 
186. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, 
Tharakan R, et al. Androgen Receptor Pathway-Independent Prostate Cancer Is 
Sustained through FGF Signaling. Cancer Cell. 2017;32(4):474-89 e6. 
187. Ather MH, Abbas F, Faruqui N, Israr M, Pervez S. Correlation of three 
immunohistochemically detected markers of neuroendocrine differentiation with 
clinical predictors of disease progression in prostate cancer. BMC Urol. 
2008;8:21. 
188. Gupta K, Gupta S. Neuroendocrine differentiation in prostate cancer: key 
epigenetic players. Transl Cancer Res. 2017;6(Suppl 1):S104-S8. 



119 
 

189. Lindenberg ML, Turkbey B, Mena E, Choyke PL. Imaging Locally 
Advanced, Recurrent, and Metastatic Prostate Cancer: A Review. JAMA Oncol. 
2017;3(10):1415-22. 
190. Halabi S, Kelly WK, Ma H, Zhou H, Solomon NC, Fizazi K, et al. Meta-
Analysis Evaluating the Impact of Site of Metastasis on Overall Survival in Men 
With Castration-Resistant Prostate Cancer. J Clin Oncol. 2016;34(14):1652-9. 
191. Umbehr MH, Muntener M, Hany T, Sulser T, Bachmann LM. The role of 
11C-choline and 18F-fluorocholine positron emission tomography (PET) and 
PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol. 
2013;64(1):106-17. 
192. Tosoian JJ, Gorin MA, Rowe SP, Andreas D, Szabo Z, Pienta KJ, et al. 
Correlation of PSMA-Targeted (18)F-DCFPyL PET/CT Findings With 
Immunohistochemical and Genomic Data in a Patient With Metastatic 
Neuroendocrine Prostate Cancer. Clin Genitourin Cancer. 2017;15(1):e65-e8. 
193. Parimi V, Goyal R, Poropatich K, Yang XJ. Neuroendocrine differentiation 
of prostate cancer: a review. Am J Clin Exp Urol. 2014;2(4):273-85. 
194. Glumac PM, Forster CL, Zhou H, Murugan P, Gupta S, LeBeau AM. The 
identification of a novel antibody for CD133 using human antibody phage display. 
Prostate. 2018;78(13):981-91. 
195. Kumar A, Coleman I, Morrissey C, Zhang X, True LD, Gulati R, et al. 
Substantial interindividual and limited intraindividual genomic diversity among 
tumors from men with metastatic prostate cancer. Nat Med. 2016;22(4):369-78. 
196. Roudier MP, Winters BR, Coleman I, Lam HM, Zhang X, Coleman R, et al. 
Characterizing the molecular features of ERG-positive tumors in primary and 
castration resistant prostate cancer. Prostate. 2016;76(9):810-22. 
197. Zeglis BM, Lewis JS. The bioconjugation and radiosynthesis of 89Zr-DFO-
labeled antibodies. J Vis Exp. 2015(96). 
198. Nguyen HM, Vessella RL, Morrissey C, Brown LG, Coleman IM, Higano 
CS, et al. LuCaP Prostate Cancer Patient-Derived Xenografts Reflect the 
Molecular Heterogeneity of Advanced Disease an--d Serve as Models for 
Evaluating Cancer Therapeutics. Prostate. 2017;77(6):654-71. 
199. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 
89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen 
expression in vivo. J Nucl Med. 2010;51(8):1293-300. 
200. Borjesson PK, Jauw YW, Boellaard R, de Bree R, Comans EF, Roos JC, 
et al. Performance of immuno-positron emission tomography with zirconium-89-
labeled chimeric monoclonal antibody U36 in the detection of lymph node 
metastases in head and neck cancer patients. Clin Cancer Res. 2006;12(7 Pt 
1):2133-40. 
201. Perk LR, Stigter-van Walsum M, Visser GW, Kloet RW, Vosjan MJ, 
Leemans CR, et al. Quantitative PET imaging of Met-expressing human cancer 
xenografts with 89Zr-labelled monoclonal antibody DN30. Eur J Nucl Med Mol 
Imaging. 2008;35(10):1857-67. 



120 
 

202. Dijkers EC, Oude Munnink TH, Kosterink JG, Brouwers AH, Jager PL, de 
Jong JR, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-
positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther. 
2010;87(5):586-92. 
203. Kita Y, Goto T, Akamatsu S, Yamasaki T, Inoue T, Ogawa O, et al. 
Castration-Resistant Prostate Cancer Refractory to Second-Generation 
Androgen Receptor Axis-Targeted Agents: Opportunities and Challenges. 
Cancers (Basel). 2018;10(10). 
204. Gaedicke S, Braun F, Prasad S, Machein M, Firat E, Hettich M, et al. 
Noninvasive positron emission tomography and fluorescence imaging of CD133+ 
tumor stem cells. Proc Natl Acad Sci U S A. 2014;111(6):E692-701. 
205. Burrell JS, Walker-Samuel S, Boult JK, Baker LC, Jamin Y, Halliday J, et 
al. Investigating the Vascular Phenotype of Subcutaneously and Orthotopically 
Propagated PC3 Prostate Cancer Xenografts Using Combined Carbogen 
Ultrasmall Superparamagnetic Iron Oxide MRI. Top Magn Reson Imaging. 
2016;25(5):237-43. 
206. Song H, Shahverdi K, Huso DL, Wang Y, Fox JJ, Hobbs RF, et al. An 
immunotolerant HER-2/neu transgenic mouse model of metastatic breast cancer. 
Clin Cancer Res. 2008;14(19):6116-24. 
207. Werbeck JL, Thudi NK, Martin CK, Premanandan C, Yu L, Ostrowksi MC, 
et al. Tumor microenvironment regulates metastasis and metastasis genes of 
mouse MMTV-PymT mammary cancer cells in vivo. Vet Pathol. 2014;51(4):868-
81. 
208. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor 
microenvironment in tumorigenesis. J Cancer. 2017;8(5):761-73. 
209. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. 
Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396-
401. 
210. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell 
capable of initiating tumour growth in immunodeficient mice. Nature. 
2007;445(7123):106-10. 
211. Saeednejad Zanjani L, Madjd Z, Abolhasani M, Andersson Y, Rasti A, 
Shariftabrizi A, et al. Cytoplasmic expression of CD133 stemness marker is 
associated with tumor aggressiveness in clear cell renal cell carcinoma. Exp Mol 
Pathol. 2017;103(2):218-28. 
212. Yan X, Ma L, Yi D, Yoon JG, Diercks A, Foltz G, et al. A CD133-related 
gene expression signature identifies an aggressive glioblastoma subtype with 
excessive mutations. Proc Natl Acad Sci U S A. 2011;108(4):1591-6. 
213. Chen S, Song X, Chen Z, Li X, Li M, Liu H, et al. CD133 expression and 
the prognosis of colorectal cancer: a systematic review and meta-analysis. PLoS 
One. 2013;8(2):e56380. 
214. Tagawa ST. Neoadjuvant J591 Treatment for Prostate Cancer New York, 
NY: Weill Cornell Medical College; 2019 [Available from: 
https://ClinicalTrials.gov/show/NCT02693860. 

https://clinicaltrials.gov/show/NCT02693860


121 
 

215. Tagawa ST. Radioimmunotherapy in Prostate Cancer Using 177Lu-J591 
Antibody New York, NY: Weill Cornell Medical College-New York Presbyterian 
Hospital; 2019 [Available from: https://ClinicalTrials.gov/show/NCT00538668. 
216. Tagawa ST. Docetaxel/Prednisone Plus Fractionated 177Lu- J591 
Antibody for Metastatic, Castrate-resistant Prostate Cancer New York, NY: Weill 
Cornell Medical College; 2018 [Available from: 
https://ClinicalTrials.gov/show/NCT00916123. 
217. Tagawa ST. 177Lu Radiolabeled Monoclonal Antibody HuJ591 (177Lu-
J591) and Ketoconazole in Patients With Prostate Cancer New York, NY: Weill 
Medical College of Cornell University; 2019 [Available from: 
https://ClinicalTrials.gov/show/NCT00859781. 
218. Tagawa ST. Phase I Trial of 225Ac−J591 in Patients With mCRPC New 
York, NY: Weill Cornell Medical College; 2018 [Available from: 
https://ClinicalTrials.gov/show/NCT03276572. 
219. Arndt K, Grinenko T, Mende N, Reichert D, Portz M, Ripich T, et al. 
CD133 is a modifier of hematopoietic progenitor frequencies but is dispensable 
for the maintenance of mouse hematopoietic stem cells. Proc Natl Acad Sci U S 
A. 2013;110(14):5582-7. 
220. O43490 (PROM1_HUMAN) [Internet]. Available from: 
https://www.uniprot.org/uniprot/O43490#cross_references. 
221. You H, Ding W, Rountree CB. Epigenetic regulation of cancer stem cell 
marker CD133 by transforming growth factor-beta. Hepatology. 2010;51(5):1635-
44. 
222. Sheng X, Li Z, Wang DL, Li WB, Luo Z, Chen KH, et al. Isolation and 
enrichment of PC-3 prostate cancer stem-like cells using MACS and serum-free 
medium. Oncol Lett. 2013;5(3):787-92. 

 

https://clinicaltrials.gov/show/NCT00538668
https://clinicaltrials.gov/show/NCT00916123
https://clinicaltrials.gov/show/NCT00859781
https://clinicaltrials.gov/show/NCT03276572
https://www.uniprot.org/uniprot/O43490#cross_references

