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ABSTRACT

Massive and complex data present new challenges that conventional sparse penalized

mean regressions, such as the penalized least squares, cannot fully solve. For example, in

high-dimensional data, non-constant variance, or heteroscedasticity, is commonly present

but often receives little attention in penalized mean regressions. Heavy-tailedness is also

frequently encountered in many high-dimensional scientific data. To resolve these issues,

unconventional sparse regressions such as penalized quantile regression and penalized

asymmetric least squares are the appropriate tools because they can infer the complete

picture of the entire probability distribution.

Asymmetric least squares regression has wide applications in statistics, econometrics and

finance. It is also an important tool in analyzing heteroscedasticity and is computationally

friendlier than quantile regression. The existing work on asymmetric least squares only

considers the traditional low dimension and large sample setting. We systematically study the

Sparse Asymmetric LEast Squares (SALES) under high dimensionality and fully explore its

theoretical and numerical properties. SALES may fail to tell which variables are important

for the mean function and which variables are important for the scale/variance function,

especially when there are variables that are important for both mean and scale. To that end,

we further propose a COupled Sparse Asymmetric LEast Squares (COSALES) regression

for calibrated heteroscedasticity analysis.

Penalized quantile regression has been shown to enjoy very good theoretical properties

in the literature. However, the computational issue of penalized quantile regression has not

yet been fully resolved in the literature. We introduce fast alternating direction method of

multipliers (ADMM) algorithms for computing penalized quantile regression with the lasso,

adaptive lasso, and folded concave penalties. The convergence properties of the proposed
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algorithms are established and numerical experiments demonstrate their computational

efficiency and accuracy.

To efficiently estimate coefficients in high-dimensional linear models without prior

knowledge of the error distributions, sparse penalized composite quantile regression (CQR)

provides protection against significant efficiency decay regardless of the error distribution.

We consider both lasso and folded concave penalized CQR and establish their theoretical

properties under ultrahigh dimensionality. A unified efficient numerical algorithm based

on ADMM is also proposed to solve the penalized CQR. Numerical studies demonstrate

the superior performance of penalized CQR over penalized least squares under many error

distributions.
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Chapter 1

Introduction

1.1 Background

Our decade has seen a surge of massive and complex data due to the advance of data

acquisition technologies. As an integral part of the “big data” revolution, high-dimensional

data are more and more frequently collected in a wide variety of fields, such as biomedical

sciences, finance, climate studies, astronomy and neuroscience. These high-dimensional

data pose many challenges both theoretically and numerically. This urges the development

of new methodologies and tools to analyze high-dimensional data.

It is well known that in the high-dimensional regime, traditional statistical analyses

break down when the number of unknown parameters exceeds the number of observations

(“large p small n”) due to the “curse of dimensionality” (Donoho et al., 2000). Therefore,

to solve high-dimensional problems, many methods have been proposed to reduce the

dimensionality, usually by imposing some type of low-dimensional constraints on the

model space. Exemplary approaches include the penalized regression with various sparsity

constraints on the coefficients, matrix estimation with low-rank assumptions, covariance or

precision matrix estimation with structure sparsity patterns, and so on. In all these examples,

the regularization idea proves to be very successful. To that end, for the sparse penalized

regression alone, various regularization techniques have been proposed to control the model

1



1.2. DISSERTATION OUTLINE 2

complexity and to achieve intended sparsity structures. Popular regularization methods

include the lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), elastic net (Zou and Hastie,

2005), adaptive lasso (Zou, 2006), Dantzig selector (Candes and Tao, 2007), MCP (Zhang,

2010), and so on. Under such regularization, the penalized least squares regression has

received tremendous attention in applications and has been widely adopted in practice to

analyze high-dimensional data with a huge number of variables due to its nice theoretical

guarantees and computational efficiency.

In the penalized least squares regression, the variance function is often assumed constant

for theoretical convenience. However, in high-dimensional data, non-constant variance,

or heteroscedasticity, is commonly present. Studies on expression quantitative trait locus

(eQTL) confirmed the existence of heteroscedasticity in lots of high-dimensional data (Wang

et al., 2012; Daye et al., 2012). Moreover, high-dimensional data subject to heavy-tailed

errors are also commonly encountered in various scientific fields. For such data, conventional

sparse penalized mean regressions, such as the penalized least squares, will encounter

problems. To resolve these issues, unconventional sparse penalized regressions, such as the

penalized quantile regression and penalized Huber regression, are the appropriate tools. In

this dissertation, we systematically study a new type of unconventional sparse penalized

regression, namely, the penalized asymmetric least squares regression, and its variant to

deal with heteroscedasticity in high-dimensional data. We also discuss the computational

issues of the penalized quantile regression. In terms of coefficient estimation in a linear

model, we study the penalized composite quantile regression as a safe procedure for efficient

coefficient estimation.

1.2 Dissertation Outline

The dissertation is mainly composed of three chapters (Chapters 2 – 4), which discuss three

different types of unconventional regressions in the high-dimensional setting. The main
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goal of this dissertation is to provide good methodologies and practical tools to deal with

high-dimensional data that exhibit heteroscedasticity and heavy-tailedness.

In Chapter 2, we introduce the sparse asymmetric least squares and demonstrate its

potential in dealing with heteroscedasticity in high-dimensional data. We establish the

theoretical properties of both lasso and folded concave penalized asymmetric least squares.

A unified numerical algorithm is proposed to solve penalized asymmetric least squares with

various penalties. For more calibrated analysis of heteroscedasticity, we propose a coupled

sparse asymmetric least squares regression and study both its theoretical and numerical

properties.

In Chapter 3, we propose efficient alternating direction method of multipliers (ADMM)

algorithms for numerically solving the penalized quantile regression with various penalties.

We show the convergence properties of our proposed algorithms. Computational efficiency

and accuracy of the proposed algorithms are demonstrated through extensive numerical

studies.

In the context of estimating coefficients in a linear model, we study the penalized

composite quantile regression in Chapter 4 under ultrahigh dimensionality. Composite

quantile regression is known to be a safe alternative to quantile regression in providing high

efficiency in coefficient estimation. We consider both lasso and folded concave penalized

composite quantile regression and study their theoretical properties. Since the objective

function is highly non-smooth, the penalized composite quantile regression poses great

challenges in optimization. We propose a sparse coordinate descent ADMM algorithm for

efficiently solving the penalized composite quantile regression. We demonstrate the superior

finite sample performance of the penalized composite quantile regression over the penalized

least squares regression under many error distributions in numerical studies.

Finally, we conclude the dissertation in Chapter 5, with a brief discussion of some

potential future work.



Chapter 2

High-Dimensional Generalizations of
Asymmetric Least Squares Regression
and Their Applications

Asymmetric least squares regression is an important method that has wide applications

in statistics, econometrics and finance. The existing work on asymmetric least squares

only considers the traditional low dimension and large sample setting. In this chapter, we

systematically study the Sparse Asymmetric LEast Squares (SALES) regression under high

dimensions where the penalty functions include the lasso and nonconvex penalties. We

develop a unified efficient algorithm for fitting SALES and establish its theoretical properties.

As an important application, SALES is used to detect heteroscedasticity in high-dimensional

data. Another method for detecting heteroscedasticity is the sparse quantile regression.

However, both SALES and the sparse quantile regression may fail to tell which variables

are important for the conditional mean and which variables are important for the conditional

scale/variance, especially when there are variables that are important for both the mean and

the scale. To that end, we further propose a COupled Sparse Asymmetric LEast Squares

(COSALES) regression which can be efficiently solved by an algorithm similar to that for

solving SALES. We establish theoretical properties of COSALES. In particular, COSALES

using the SCAD penalty or MCP is shown to consistently identify the two important subsets

for the mean and scale simultaneously, even when the two subsets overlap. We demonstrate

4
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the empirical performance of SALES and COSALES by simulated and real data.

2.1 Introduction

High-dimensional data have received tremendous attention in the last decade due to the

advance of data collection technology. Sparse estimation, which uses penalization or regular-

ization techniques to perform variable selection and estimation simultaneously, has become

a mainstream approach for analyzing high-dimensional data. Popular penalized estimators

include the L1-type selectors such as the lasso (Tibshirani, 1996) and Dantzig (Candes and

Tao, 2007) selectors and the nonconvex penalized estimators such as the SCAD (Fan and

Li, 2001) and MCP (Zhang, 2010) estimators. Some embrace the L1-regularization for its

computational efficiency, while others prefer to use the nonconvex penalization due to its

oracle (Fan and Li, 2001) property.

The current literature on sparse estimation often assumes homoscedasticity. For example,

the existing theory for the sparse linear regression model is based on the classical linear

model assumption in which the mean function is linear and the errors are i.i.d. with zero

mean and constant variance. The heteroscedasticity issue is often overlooked for theoretical

convenience. However, heteroscedasticity often exists due to heterogeneity in measurement

units or accumulation of outlying observations from numerous sources of inputs. This is

particularly relevant with high-dimensional data. For example, in genomics experiments,

tens of thousands of genes are often analyzed simultaneously by microarrays and occasional

outlying measurements appearing in numerous experimental and data-preprocessing steps

can accumulate to form heteroscedasticity in the data obtained therein. These data sets

are often of high dimension since only a small number of subjects are available for the

study. Several studies on expression quantitative trait loci (eQTLs) (Wang et al., 2012; Daye

et al., 2012) confirmed the presence of heteroscedasticity in these high-dimensional data

and it was shown that genetic variants have effects on both the mean and the scale (i.e.,
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standard deviation) of gene expression levels. In such scenarios, it is important to incorporate

heteroscedasticity to make inference from the limited amount of data. To our knowledge,

most existing work on high-dimensional data analysis fails to address the heteroscedasticity

issue.

The sparse quantile regression was proposed in Wang et al. (2012) to detect heteroscedas-

ticity in high-dimensional data. Quantile regression (Koenker and Bassett, 1978) is appro-

priate under heteroscedasticity, because it uses an asymmetric absolute value loss. The

key word is “asymmetric,” not the absolute value loss. The absolute value loss is computa-

tionally more challenging than the squared error loss. Computational efficiency is always

one of the primary considerations in high-dimensional data analysis. This motivates us to

study the asymmetric least squares (ALS) regression under high dimensionality. The ALS

regression has been studied in Efron (1991). It is also known as the expectile regression

in econometrics and finance. See Newey and Powell (1987); Taylor (2008); Kuan et al.

(2009); Xie et al. (2014). The key idea in ALS is to assign different squared error loss to the

positive and negative residuals, respectively. By doing so, one can infer a more complete

description of the conditional distribution than ordinary least squares (OLS). Thus, ALS

and quantile regression share a common virtue although they differ technically. The most

notable advantage of ALS over quantile regression is that the former employs a smooth

differentiable loss, which considerably alleviates the computational effort involved and also

makes the theoretical analysis more amenable. These two are desirable properties under

high dimensionality.

In this chapter, we develop the methodology and theory for the Sparse Asymmetric LEast

Squares (SALES) regression and show its applications in detecting heteroscedasticity in a

general class of sparse models in which the set of relevant covariates may vary from segment

to segment on the conditional distribution. For the nonconvex penalized SALES regression,

we prove its strong oracle property. We then discuss an important issue overlooked by

existing methods dealing with heteroscedasticity in high dimensional data, that is, how to
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exactly differentiate the sets of relevant covariates for the mean and scale when they have

overlaps. To resolve this issue, we propose a novel COupled Sparse Asymmetric LEast

Squares (COSALES) regression method to select important variables for the mean and scale

of the conditional distribution simultaneously. The strong oracle property is also shown for

the nonconvex penalized COSALES estimator. We develop novel efficient algorithms for

computing both SALES and COSALES.

The remainder of the chapter is organized as follows. We study SALES in Section 2.2

and demonstrate its application in detecting heteroscedasticity in Section 2.3. In Section 2.4,

we introduce and study COSALES. The performance of COSALES is illustrated by two

simulation examples. In Section 2.5, we apply SALES and COSALES to analyze a real

microarray dataset. The proofs of all main theoretical results are relegated to Section 2.6.

2.2 High-Dimensional SALES Regression

2.2.1 Background and setup

We start by defining the � -mean of a random variable Z 2 R;

E �.Z/ � arg min
a2R

Ef‰�.Z � a/g; � 2 .0; 1/; (2.1)

where ‰�.u/ D j� � I.u < 0/ju2 is the asymmetric squared error loss (see e.g. Newey and

Powell, 1987; Efron, 1991) and I.�/ represents the indicator function. Similar definition can

be found in Efron (1991). As a matter of fact, our �-mean corresponds to Efron’s w-mean,

where w D �=.1 � �/. Hereafter, we call E � the asymmetric expectation operator (with

asymmetry coefficient �). Note that E 0:5 coincides with the usual expectation operator E.

The � -mean is also called the � -expectile in the econometrics literature (Newey and Powell,

1987). By varying �; the � -mean quantifies different “locations” of a distribution, and thus it

can be viewed as a generalization of the mean and an alternative measure of “location” of a
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distribution.

The asymmetric squared error loss ‰�.�/ gives rise to the ALS regression, in which the

squared error loss is given different weights depending on whether the residual is positive

or negative. Let X D .X1; : : : ; Xp/ be the n � p design matrix with Xj D .x1j ; : : : ; xnj /T;

j D 1; : : : ; p; and y D .y1; : : : ; yn/
T be the n-dimensional response vector. The design

matrix may also be written as X D .x1; : : : ; xn/T; where xi D .xi1 : : : ; xip/T; i D 1; : : : ; n:

The ALS regression is done via

b̌ALS
� D arg min

ˇ2Rp

nX
iD1

‰�.yi � xT
iˇ/:

When � D 0:5; the ALS regression reduces to the OLS regression. When � ¤ 0:5, due to

the asymmetric nature and relative smoothness of ‰�.�/, the ALS regression provides a con-

venient and computationally efficient way of summarizing the conditional distribution of a

response variable given the covariates (Newey and Powell, 1987; Efron, 1991). Applications

of the ALS regression include estimation of the value at risk and expected shortfall (Taylor,

2008; Kuan et al., 2009), medical baseline correction (Eilers and Boelens, 2005), and small

area estimation (Chambers and Tzavidis, 2006; Salvati et al., 2012) among others.

In the literature, the underlying model considered for studying the theoretical property

of the ALS regression is

y D Xˇ� C "� ; (2.2)

where ˇ� is a p-dimensional vector of unknown parameters and "� is the vector of n

independent errors, which satisfy E �."�i jxi/ D 0; i D 1; : : : ; n for some � 2 .0; 1/: It

follows that E �.yi jxi/ D xT
iˇ
� ; which means that the conditional �-mean of yi is a linear

combination of xi ; i D 1; : : : ; n: A similar model to (2.2) was considered in Wang et al.

(2012) for quantile regression, where the conditional quantile of the response variable was
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modeled as a linear combination of the covariates. In model (2.2), it is important to realize

that the coefficient vector ˇ� is allowed to change with �;which makes modeling for different

“locations” of the conditional distribution possible, and as a result heteroscedasticity in the

data, when it exists, can be inspected by this model. For convenience, we will drop the

superscript for ˇ� and "� when no confusion arises.

To accommodate high-dimensional data in model (2.2), we allow the number of covari-

ates p to increase with the sample size n; and moreover, we are primarily interested in cases

where p exceeds n (p > n). We adopt the sparsity assumption that only a small number

of covariates contribute to the response. Suppose ˇ� D .ˇ�1 ; : : : ; ˇ
�
p/

T is the parameter

vector of the true underlying model that generates the data and assume ˇ� is s-sparse, where

s D jAj with A � supp.ˇ�/ D fj Wˇ�j ¤ 0g:

2.2.2 Methodology

To select important variables and estimate ˇ in model (2.2) when the dimension is high, let

us consider the following penalized SALES regression:

min
ˇ2Rp

n�1
nX
iD1

‰�.yi � xT
iˇ/C

pX
jD1

p�.ˇj /; (2.3)

where ‰�.�/ is the asymmetric squared error loss and p�.�/ is a nonnegative penalty function

with regularization parameter � 2 .0;1/. In the remainder of this chapter, we mainly focus

on the lasso and nonconvex penalties.

L1-penalized SALES regression

For ease of notation, let Ln.ˇ/ D n�1
Pn
iD1‰�.yi � xT

iˇ/: The L1-penalized SALES

estimator or SALES lasso estimator b̌lasso is defined as the solution to the minimization
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problem

min
ˇ2Rp

Ln.ˇ/C �lasso

pX
jD1

jˇj j; �lasso 2 .0;1/: (2.4)

This is to take p�.u/ D �juj in (2.3). The lasso is computationally attractive and can be

solved by efficient algorithms such as the LARS (Efron et al., 2004), the coordinate descent

method (Friedman et al., 2010) and the generalized coordinate descent algorithm (Yang and

Zou, 2013).

For efficient computation of b̌lasso in (2.4), we propose an algorithm called SALES

which combines the cyclic coordinate descent (Tseng, 2001) and proximal gradient algo-

rithms (Parikh and Boyd, 2013). Our algorithm solves the following more general “weighted”

L1-minimization problem:

min
ˇ2Rp

Ln.ˇ/C
pX
jD1

wj jˇj j (2.5)

with constantswj � 0 for all j:Our consideration of formulation (2.5) is twofold. First, it not

only can be directly applied to the SALES lasso problem (2.4) by settingwj D �lasso for all j ,

but also can be used to solve the convex approximations to the nonconvex penalized SALES

estimation (see step (a) of Algorithm 2). Second, leaving some coefficients unpenalized

is simply a matter of setting their corresponding weights to zero. Doing so gives us the

flexibility to decide which covariates should always be kept in the model. The algorithm is

described as follows.

For v D .v1; : : : ; vd /T 2 Rd ; denote v�k D .v1; : : : ; vk�1; vkC1; : : : ; vd /T the subvector

of v with its kth component removed. Recover v from v�k by writing v D Œvk; v�k�: Let

ˇr D .ˇr1; : : : ; ˇ
r
p/

T be the update of ˇ after the r th (r � 0) cycle of the coordinate descent
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algorithm. For ease of notation, denote

brC1
�k
D .ˇrC11 ; : : : ; ˇrC1

k�1
; ˇrkC1; : : : ; ˇ

r
p/

T; 1 � k � p; r � 0:

Applying the coordinate descent method, to update ˇk in the .r C 1/th cycle, we solve the

following minimization problem:

min
ˇk2R

`n.ˇkIbrC1�k /C wkjˇkj; (2.6)

where `n.ˇkIbrC1�k / D Ln.Œˇk;brC1�k �/ D n
�1
Pn
iD1‰�.yi � xT

i;�k
brC1
�k
� xikˇk/: One can

show that `0n.ˇkIb
rC1
�k

/ is Lipschitz continuous with constant Lk D 2 Ncn�1kXkk
2
2; where

k � k2 is the Euclidean norm. Thus, the proximal gradient method can be employed to solve

problem (2.6)

ˇ
r;0

k
WD ˇrk; ˇ

r;sC1

k
WD SL�1

k
wk
.ˇ
r;s

k
� L�1k `

0
n.ˇ

r;s

k
IbrC1
�k

//; s � 0; (2.7)

where Sv.u/ D sgn.u/.juj � v/C denotes the soft thresholding operator with uC D uI.u >

0/: We let (2.7) run for sr
k

iterations and set ˇrC1
k
WD ˇ

r;sr
k

k
: Our algorithm is summarized in

Algorithm 1. We prove in Appendix A that Algorithm 1 converges at least linearly.

Nonconvex penalized SALES regression

Nonconvex penalties have been used in a broad type of sparse regression models (Fan and

Lv, 2011; Wang et al., 2013; Fan et al., 2014b). The most popular nonconvex penalties

include the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) and

the minimax concave penalty (MCP, Zhang, 2010). For some constant  > 2; the SCAD
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Algorithm 1: SALES — Cyclic coordinate descent plus proximal gradient algorithm
for solving the weighted L1-minimization problem (2.5)

1. Initialize the algorithm with ˇ0 D .ˇ01 ; : : : ; ˇ
0
p/

T:

2. For r D 0; 1; 2; : : : ; m � 1;

(2.1) For k D 1; : : : ; p;

(2.1.1) Initialize ˇr;0
k
WD ˇr

k
:

(2.1.2) For s D 0; 1; 2; : : : ; sr
k
� 1;

(2.1.2.1) Calculate ˇr;sC1
k

WD SL�1
k
wk
.ˇk � L

�1
k
`0n.ˇ

r;s
k
IbrC1
�k

//.

(2.1.3) Set ˇrC1
k
WD ˇ

r;sr
k

k
:

(2.2) Set ˇrC1 WD .ˇrC11 ; : : : ; ˇrC1p /T:

3. Output b̌ WD ˇm:
penalty is given by

p�.u/ D �jujI.juj � �/C

�
�juj �

.� � juj/2

2. � 1/

�
I.� < juj � �/

C
. C 1/�2

2
I.juj > �/:

(2.8)

The use of  D 3:7 for the SCAD penalty is recommended in Fan and Li (2001) from a

Bayesian perspective. The MCP is characterized by

p�.u/ D �

�
juj �

u2

2�

�
I.juj � �/C

�2

2
I.juj > �/ (2.9)

for some  > 1: The use of  D 2 is suggested in Zhang (2010). In this chapter, we consider

both SCAD and MCP penalized SALES regression.

The main motivation for using the nonconvex penalties is to achieve the oracle property.

For the SALES regression, the oracle estimator is

b̌oracle
D arg min
ˇ2RpWˇAcD0

Ln.ˇ/: (2.10)
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In practice, the oracle estimator is infeasible, but it sets a benchmark for evaluation of other

estimators. Many papers have shown that the nonconvex penalized least squares can find the

oracle estimator with high probability (Wang et al., 2013; Fan et al., 2014b). In particular,

Fan et al. (2014b) showed that the local linear approximation (LLA) algorithm (Zou and Li,

2008) converges to the oracle estimator under regularity conditions. The LLA algorithm fits

a sequence of weighted L1-regularization problems. Since we already have Algorithm 1 for

computing any weighted L1-penalized SALES regression, we adopt the LLA algorithm for

solving the nonconvex penalized SALES estimation problem (2.3). The details of the LLA

algorithm are shown in Algorithm 2. Note that step (a) can be readily solved by Algorithm 1.

Algorithm 2: Local linear approximation (LLA) algorithm for solving the nonconvex
penalized SALES estimation problem (2.3)

1. Initialize b̌0 WD b̌initial: Compute weights Ow0j D p
0
�
.j Ǒ0j j/; j D 1; : : : ; p:

2. For m D 1; 2; : : : ; repeat the LLA iteration in (a) and (b) until convergence

(a) Solve the following convex optimization problem for b̌m
b̌m WD arg min

ˇ2Rp
Ln.ˇ/C

pX
jD1

Owm�1j jˇj j:

(b) Update the weights Owmj D p
0
�
.j Ǒmj j/; j D 1; : : : ; p:

In our numerical examples, we tried using both the SALES lasso estimator and zero

as the initial values of the LLA algorithm for computing the nonconvex penalized SALES

estimator. Our practice is based on theoretical results in Section 2.2.3.

2.2.3 Theory

In this section, we theoretically analyze the SALES regression. We consider the case where

the covariates are from a fixed design.

The following notation will be used. For any vector v D .v1; : : : ; vp/
T 2 Rp and an
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arbitrary index set I � f1; : : : ; pg; we write vI D .vj ; j 2 I /
T and denote by XI D

.xj ; j 2 I / the submatrix consisting of the columns of X with indices in I: The complement

of I is denoted by I c D f1; : : : ; pgnI: For q 2 Œ1;1�; theLq-norm of v is denoted by kvkq:

Sub-Gaussian norm (Rudelson and Vershynin, 2013) of a random variable Z is denoted by

kZkSG D supk�1 k
�1=2.EjZjk/1=k: Let a _ b D max.a; b/ and a ^ b D min.a; b/ for real

numbers a and b: For a differentiable function f W Rp ! R; we write rf .v/ D @f .v/=@v

and rIf .v/ D .@f .v/=@vj ; j 2 I /T: We use �min.�/ and �max.�/ to represent respectively

the smallest and largest eigenvalues of a symmetric matrix. We also let c D � ^ .1� �/ and

Nc D � _ .1 � �/:

L1-penalized SALES regression

The estimation accuracy of the lasso has been extensively studied in the literature; see, for

example, Negahban et al. (2012) and Ye and Zhang (2010). Let C D fı 2 RpW kıAck1 �

3kıAk1 ¤ 0g be a cone in Rp: Let �min D �min.n
�1XT

AXA/ and �max D �max.n
�1XT

AXA/:

We assume �min > 0 so that the important variables are not linearly dependent. To study the

estimation accuracy of the SALES lasso, we impose the following conditions on the design

matrix X and the random errors ":

(C1) The columns of X are normalizable, that is, M0 D max1�j�p
kXj k2
p
n
2 .0;1/:

(C2) The random errors "i are i.i.d. sub-Gaussian random variables satisfying E �."i/ D

0; i D 1; : : : ; n.

(C3) � D infı2C
kXık22
nkık22

2 .0;1/:

(C4) % D infı2C
kXık22

nkıAk1kık1
2 .0;1/:

Condition (C3) is called the restricted eigenvalue condition and has been frequently

assumed in the literature to study the lasso and Dantzig selectors. See Bickel et al.
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(2009), Meier et al. (2009), and Negahban et al. (2012). Condition (C4), the general-

ized invertability factor (GIF) condition, is closely related to condition (C3) and has also

been often adopted to study the lasso and Dantzig selectors. See discussion of these condi-

tions in Ye and Zhang (2010) and Huang and Zhang (2012). Both conditions (C3) and (C4)

are crucial assumptions to establish estimation consistency of the lasso for high-dimensional

data.

Theorem 2.1

Suppose in model (2.2) the true coefficients ˇ� are s-sparse and assume conditions (C1-C2)

hold. Let b̌lasso be any optimal solution to the SALES lasso problem (2.4). Then with

probability at least 1 � pALS
1 ; kb̌lasso � ˇ�k2 � 3s

1=2�lasso.4�c/
�1 if condition (C3) holds,

and kb̌lasso � ˇ�k1 � 3�lasso.4%c/
�1 if condition (C4) holds, where

pALS
1 D 2p exp

�
�
Cn�2lasso

4K2
0M

2
0

�
;

K0 D k‰
0
�."i/kSG with ‰0�.�/ being the derivative of ‰�.�/; and C > 0 is an absolute

constant. �

Remark 2.1 In some applications, it is natural to leave a given subset of the parameters

unpenalized in the penalized framework (2.3). Let R denote the index set of such parameters.

For example, when X1 is a vector consisting of all ones, R D f1g reflects the common

practice of leaving the intercept term not penalized. In this case, it is natural to modify the

penalized SALES estimation problem (2.3) to be

min
ˇ2Rp

Ln.ˇ/C
X
j2Rc

p�.ˇj /:

With lasso penalty, the SALES algorithm can be readily used to solve the above case.

Moreover, similar theoretical analysis can be carried out with slight modifications. For
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instance, in the SALES lasso problem (2.4) we can define A0 � supp.ˇ�Rc/ and C 0 D

fı 2 RpW kı.A0[R/ck1 � 3kıA0[Rk1 ¤ 0g: Conditions (C3) and (C4) can be then modified

respectively as

� 0 D inf
ı2C 0

kXık22
nkık22

2 .0;1/ and %0 D inf
ı2C 0

kXık22
nkıA0[Rk1kık1

2 .0;1/: �

To establish the selection consistency of the lasso, it is almost necessary to impose

the irrepresentable condition; see Zou (2006) and Zhao and Yu (2006). When the focus

is on identifying the underlying sparsity pattern, the nonconvex penalized regression is a

competitive alternative as it requires weaker conditions to achieve selection consistency.

Nonconvex penalized SALES regression

To offer a unified treatment of the SCAD and MCP penalized SALES regression, our

theoretical analysis handles the following class of nonconvex penalties:

(P1) p�.u/ D p�.�u/I

(P2) p�.u/ is nondecreasing and concave in u 2 Œ0;1/ and p�.0/ D 0I

(P3) p�.u/ is differentiable in u 2 .0;1/I

(P4) p0
�
.u/ � a1� for u 2 .0; a2�� and p0

�
.0/ WD p0

�
.0C/ � a1�I

(P5) p0
�
.u/ D 0 for u 2 Œa�;1/ with some prespecified constant a > a2;

where a1 and a2 are fixed constants characteristic of the penalty functions. It is easy to

verify that both the SCAD penalty and MCP are in the above class.

We show that the sparse solutions obtained by the LLA algorithm in Section 2.2.2

possess the oracle property. Assume sufficient signal strength in the nonzero components of

ˇ�
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(A1) minj2A jˇ�j j > .aC 1/�:

Theorem 2.2

Suppose in model (2.2) the true coefficients ˇ� are s-sparse and satisfy assumption (A1).

Assume conditions (C1-C2) hold and take b̌lasso as the initial value. Let a0 D 1 ^ a2: Take

� � 3s1=2�lasso.4a0�c/
�1 when (C3) holds, or take � � 3�lasso.4a0%c/

�1 when (C4) holds,

or take � � Œ3s1=2�lasso.4a0�c/
�1�^ Œ3�lasso.4a0%c/

�1� when both (C3) and (C4) hold. The

LLA algorithm (Algorithm 2) converges to b̌oracle after two iterations with probability at

least 1 � pALS
1 � pALS

2 � pALS
3 ; where pALS1 is given in Theorem 2.1,

pALS
2 D 2.p � s/ exp

�
�
Ca21n�

2

4K2
0M

2
0

�
C �.Q1�In; s;K0;M0; �max; �0/

and

pALS
3 D �.2c�minRIn; s;K0;M0; �max; �0/;

where Q1 D a1c�min
�
2 Nc�1=2maxM0

��1
; �0 D var.‰0�."i//; R D minj2A jˇ�j j � a�; K0 is

defined in Theorem 2.1 and �.�/ is a function defined by

�.xIn; s;K;M; �; �/ D 2s exp
�
�
Cnx2

K2M 2s

�
^ 2 exp

�
�
C�2Œ.n1=2x � ��1=2s1=2/C�2

K4�

�
;

and C > 0 is an absolute constant. �

It is interesting to note that with the SCAD penalty or MCP, a three-step LLA algorithm

starting from the zero vector may also work. Indeed, for these two penalties we have

p0
�
.0/ D �; so if we can take � D �lasso; this would give us the SALES lasso estimator in

the second step.
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Corollary 2.1

Assume the same framework of Theorem 2.2 and suppose the SCAD penalty (2.8) or

MCP (2.9) is used. If condition (C3) holds and 4a0�c � 3s1=2, or if condition (C4) holds

and 4a0%c � 3, or if both (C3) and (C4) hold and Œ3s1=2.�/�1�^ Œ3.%/�1� � 4a0c, the LLA

algorithm (Algorithm 2) initialized by zero converges to the oracle estimator after three

iterations with probability at least 1 � 2p expf�Cn�2.4K2
0M

2
0 /
�1g � pALS

2 � pALS
3 ; where

pALS
2 and pALS

2 are given in Theorem 2.2. �

2.3 Application of SALES: Detecting Heteroscedasticity

Due to asymmetry of the squared error loss, the SALES regression (2.3) can be employed to

detect heteroscedasticity in high-dimensional data. In the following, we use a simulation

example to illustrate this application. For the nonconvex penalty functions used in the

simulation, we fix  D 3:7 for the SCAD penalty (2.8) and  D 2 for the MCP (2.9).

EXAMPLE 1. We adopt a model from Wang et al. (2012). In the model, the covariates

are generated in two steps. First, we generate copies of .z1; : : : ; zp/T from the multivariate

normal distribution N.0;†/ with † D .0:5ji�j j/p�p: In the second step, for each copy

of .z1; : : : ; zp/T; we set x1 D ˆ.z1/ and xj D zj for j D 2; 3; : : : ; p; where ˆ.�/ is the

standard normal CDF. The response is then simulated from the following normal linear

heteroscedastic model:

y D x6 C x12 C x15 C x20 C .0:7x1/"; (2.11)

where " � N.0; 1/ is independent of the covariates. This model was considered in Wang

et al. (2012) for the sparse quantile regression, where a sample size n D 300 and covariate

dimensions p D 400 and 600 were considered. We apply the SALES regression (2.3)

instead to select active variables and estimate the coefficients for this model. For the purpose
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of demonstration, we choose n D 300 and p D 600: A validation set of size n D 300 is

generated independently to tune the regularization parameter by minimizing the validation

error
P
i2validation‰�.yi � xT

i
b̌/ for the computed estimate b̌; where � D 0:5 and 0:85 are

considered.

For comparison purpose, we included in this simulation the SALES lasso (2.4) and

two variations of the LLA algorithm for each nonconvex penalized SALES regression:

the two-step LLA algorithm initialized by the lasso estimator (SCAD�, MCP�), and the

three-step LLA algorithm initialized by zero (SCAD0, MCP0).

Let b̌ be the coefficient estimates from a given method. Based on 100 replicates, the

following measurements are calculated to evaluate the sparsity recovery and estimation

performance of that method:

j OAj W the average size of the active set OA D fj W Ǒj ¤ 0g of b̌:
pa W proportion of the event A � OA; where A is the active set of ˇ�. When � D 0:5;

A D f6; 12; 15; 20g and when � ¤ 0:5; A D f1; 6; 12; 15; 20g:

p1 W proportion of the event that f1g � OA:

R1 W the average L1 risk kb̌� ˇ�k1:
R2 W the average L2 risk kb̌� ˇ�k2:

The simulation results are shown in Table 2.1. The following conclusions can be made:

(1) The variable x1 in the scale function is often not recovered by penalized least-squares

(� D 0:5). However, when several � -means (e.g., � D 0:85) are inspected together, it

is possible to detect this variable with high probability. This shows that indeed the

SALES regression can be used to detect heteroscedasticity.

(2) Compared to the SALES lasso, the nonconvex penalized SALES regression selects

much fewer irrelevant covariates and has better estimation accuracy.
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(3) The three-step LLA algorithm starting from zero produces similar results to the

two-step LLA algorithm starting from the lasso solution.

Table 2.1: Numerical summary of simulation results from the lasso, SCAD and MCP
penalized SALES regression for model (2.11): y D x6C x12C x15C x20C .0:7x1/". The
sparsity recovery performance is measured by the selected active set size j OAj; the proportion
pa of covering the true active set and the proportion p1 of selecting the signature variable
X1: The estimation accuracy is measured by the L1 risk R1 and the L2 risk R2: The results
are shown as averages over 100 replicates with standard errors listed in the parentheses
when available

Method j OAj pa p1 R1 R2

� D 0:5

SALES-lasso 25.82 (1.15) 100% 0% 0.399 (0.015) 0.120 (0.003)
SALES-SCAD� 7.75 (0.68) 100% 0% 0.103 (0.006) 0.049 (0.002)
SALES-SCAD0 6.65 (0.68) 100% 0% 0.100 (0.006) 0.050 (0.002)
SALES-MCP� 6.39 (0.48) 100% 0% 0.099 (0.005) 0.049 (0.002)
SALES-MCP0 5.75 (0.29) 100% 0% 0.093 (0.004) 0.049 (0.002)

� D 0:85

SALES-lasso 34.17 (1.26) 100% 100% 0.714 (0.016) 0.249 (0.005)
SALES-SCAD� 7.52 (0.51) 100% 100% 0.160 (0.009) 0.083 (0.005)
SALES-SCAD0 8.19 (0.59) 100% 100% 0.166 (0.007) 0.084 (0.003)
SALES-MCP� 6.30 (0.25) 100% 100% 0.148 (0.005) 0.079 (0.003)
SALES-MCP0 6.35 (0.23) 100% 100% 0.147 (0.005) 0.078 (0.003)

2.4 High-Dimensional COSALES Regression

In Section 2.3, we showed that the SALES regression provides a means of detecting het-

eroscedasticity in high-dimensional data. Indeed, in the linear heteroscedastic model (2.11),

the signature variable x1; which appears in the scale function, was detected through com-

parison of different �-means. However, in high-dimensional heteroscedastic models, often

of more interest are the sparsity patterns in both the mean and the scale functions of the

conditional distribution. The SALES regression and methods proposed by other authors, for

example, Wang et al. (2012), are not sufficient to fulfill this task. To see it, consider a linear
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heteroscedastic model in which the active set for the mean is f1; 2g and the active set for the

scale is f1; 3g: Suppose the SALES regression can exactly recover the active variables. Then

the method picks x1 and x2 when � D 0:5 and hopefully x1; x2; and x3 when � ¤ 0:5: A

natural question is whether the scale function depends on x1: With the SALES regression,

we cannot answer this question. This motivates us to consider the COSALES regression

for a general class of models and gain some insight into analyzing heteroscedasticity in

high-dimensional data.

2.4.1 Formulation and computation

Consider the following model of systematic heteroscedasticity,

yi D xT
i C .x

T
i!/"i ; i D 1; : : : ; n; (2.12)

where "i are i.i.d. random errors that are independent of the covariates and that have

distribution F0 with E."i/ D
R
R xdF0.x/ D 0;  and ! are unknown p-dimensional

parameter vectors controlling the conditional mean and scale; and ! is assumed to satisfy

xT
i! > 0 for all i: The intercept can be included by letting xi1 D 1: The linear scale model

of heteroscedasticity (2.12) is an important model considered by many authors (Koenker

and Bassett, 1982; Efron, 1991; Koenker and Zhao, 1994) for analyzing heteroscedasticity.

Let A1 � supp.�/ D fj W �j ¤ 0g and A2 � supp.!�/ D fj W!�j ¤ 0g be the active

sets of � and of !�, respectively. Suppose jA1j D s1 and jA2j D s2: Let e� D E �."1/ be

the �-mean of the random error for � 2 .0; 1/: It follows that the �-mean of yi given xi is

E �.yi jxi/ D xT
i . C !e�/: To select significant variables in both the mean and the scale

functions, we now propose the COSALES regression. Write ' D !e� : Note that we omit

the dependency of ' on � to ease exposition. In the COSALES regression, we will deal with

' instead of !. However, when e� ¤ 0; it should be noted that since supp.'/ D supp.!/;

the selection result on ' applies to !: Moreover, ! can be estimated up to a scale from the
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estimate of ': Ideally, if the distribution F0 of "i is known, exact estimation of ! is possible.

For some � 2 .0; 1/ and � ¤ 0:5, let

Sn.;'/ D n
�1

nX
iD1

f‰0:5.yi � xT
i/C‰�.yi � xT

i � xT
i'/g:

The COSALES regression tries to minimize

Qn.;'/ D Sn.;'/C

pX
jD1

p�1.j /C

pX
jD1

p�2.'j /; (2.13)

over ;' 2 Rp; where p�1.�/ and p�2.�/ are penalty functions with regularization parame-

ters �1; �2 2 .0;1/, respectively. Let boracle and b'oracle be the oracle estimators of  and

' D !e� , respectively, in model (2.12),

.boracle;b'oracle/ D arg min
;'2RpWAc

1
D0;'Ac

2
D0
Sn.;'/: (2.14)

In what follows, let us focus on the lasso and nonconvex penalties.

L1-penalized COSALES regression

For �lasso
1 ; �lasso

2 2 .0;1/; the L1-penalized COSALES estimators or the COSALES lasso

estimators of  and ' can be achieved simultaneously by

.b lasso;b'lasso/ D arg min
;'2Rp

Sn.;'/C �
lasso
1 kk1 C �

lasso
2 k'k1: (2.15)

We note that problem (2.15) is a special case of the minimization problem in step (a) of

Algorithm 4 (Section 2.4.1) and efficient computation of the solutions can be carried out by

an algorithm similar to Algorithm 1. The algorithm applies the cyclic coordinate descent and

proximal gradient descent methods to  and ' alternately. We call this algorithm COSALES
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and display it in Algorithm 3. Note that COSALES solves the general coupled weighted

L1-minimization problem

min
;'2Rp

Sn.;'/C

pX
jD1

wj jj j C

pX
jD1

vj j'j j: (2.16)

To facilitate the presentation, in Algorithm 3, we let r and 'r be the updates of  and '

respectively after the r th cycle of the coordinate descent algorithm and denote

grC1
�k
D . rC11 ; : : : ;  rC1

k�1
;  rkC1; : : : ; 

r
p/; 1 � k � p; r � 0;

and

prC1
�k
D .'rC11 ; : : : ; 'rC1

k�1
; 'rkC1; : : : ; '

r
p/; 1 � k � p; r � 0:

Theoretical justification of the estimation accuracy of the COSALES lasso will be deferred

to the next section.

Nonconvex penalized COSALES regression

In (2.13), let p�1.�/ and p�2.�/ be nonconvex penalties having properties (P1-P5). This

nonconvex penalized COSALES estimation problem can be solved by the LLA algorithm

shown in Algorithm 4. Note that the minimization problem in step (a) was solved in

Algorithm 3. Oracle properties of the sparse solutions will be established in the following

section.

2.4.2 Theory

In this section, we show the selection and estimation accuracy of the COSALES regression

for both lasso and nonconvex penalties.
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Algorithm 3: COSALES — Coordinate descent plus proximal gradient algorithm for
solving the coupled weighted L1-minimization problem (2.16)

1. Initialize the algorithm with 0 D .01 ; : : : ; 
0
p/

T and '0 D .'01 ; : : : ; '
0
p/

T:

2. For r D 1; : : : ; m � 1;

(2.1) For k D 1; : : : ; p;

(2.1.1) Initialize  r;0
k
WD  r

k
:

(2.1.2) For s D 0; 1; : : : ; sr
1k
� 1;

(2.1.2.1) Compute  r;sC1
k

WD SL�1
1k
wk
.
r;s
k
� L�1

1k
h0n.

r;s
k
I grC1
�k

;'r //, where

L1k D .2 Nc C 1/n
�1kXkk

2
2; hn.k I grC1�k ;'

r / D Sn.Œk ; grC1�k �;'
r /:

(2.1.3) Set  rC1
k
WD 

r;sr
1k

k
:

(2.2) Set rC1 WD . rC11 ; : : : ;  rC1p /T:

(2.3) For k D 1; : : : ; p;

(2.3.1) Initialize 'r;0
k
WD 'r

k
:

(2.3.2) For s D 0; 1; : : : ; sr
2k
� 1;

(2.3.2.1) Compute 'r;sC1
k

WD SL�1
2k
vk
.'
r;s
k
� L�1

2k
¯0n.'

r;s
k
IrC1;prC1

�k
//, where

L2k D 2 Ncn
�1kXkk

2
2; ¯n.'k IrC1;prC1�k / D Sn.

rC1; Œ'k ;prC1�k �/:

(2.3.3) Set 'rC1
k
WD '

r;sr
2k

k
:

(2.4) Set 'rC1 WD .'rC11 ; : : : ; 'rC1p /T:

3. Outputb WD m andb' WD 'm:
Algorithm 4: Local linear approximation (LLA) algorithm for solving the nonconvex
penalized COSALES estimation problem (2.13)

1. Initializeb0 Db initial andb'0 Db'initial: Compute weights

Ow0j D p
0
�1
.j O0j j/; Nw

0
j D p

0
�2
.j O'0j j/; j D 1; : : : ; p:

2. For m D 1; 2; : : : ; repeat the LLA iteration in (a) and (b) until convergence.

(a) Solve the following convex optimization problem forbm andb'm
min

;'2Rp
Sn.;'/C

pX
jD1

Owm�1j jj j C

pX
jD1

Nwm�1j j'j j:

(b) Update the weights

Owmj D p
0
�1
.j Omj j/; Nw

m
j D p

0
�2
.j O'mj j/; j D 1; : : : ; p:
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L1-penalized COSALES regression

For the lasso problem (2.15), let LM D .�lasso
1 =�lasso

2 / _ .�lasso
2 =�lasso

1 /. Define set A0 D

.A1; A
0
2/; where A02 D fj C pW!

�
j ¤ 0g: Let CM D fı 2 R2pW kıAc

0
k1 � MkıA0k1 ¤ 0g

forM � 1: For k D 1; 2; let �k�min D �min.n
�1XT

Ak
XAk/ and �k�max D �max.n

�1XT
Ak

XAk/:

Denote �min D �1�min ^ �2�min and �max D �1�max _ �2�max: Assume �min > 0: Let I2 be a

2 � 2 identity matrix and let˝ denote the Kronecker product. To establish an error bound

on the COSALES lasso estimators, the following conditions on the design matrix X and the

random errors " are imposed:

(C10) The columns of X is normalizable, that is, M0 D max1�j�p
kXj k2
p
n
2 .0;1/:

(C20) M1 D kXT!�k1 2 .0;1/:

(C30) The random errors "i are i.i.d. mean zero sub-Gaussian random variables.

(C40) N� D �.3 LM/ 2 .0;1/; where �.M/ D infı2CM ı
TŒI2 ˝ .n�1XTX/�ı=kık22:

(C50) N% D %.3 LM/ 2 .0;1/; where %.M/ D infı2CM
ıTŒI2˝.n�1XTX/�ı
kıA0k1kık1

:

Theorem 2.3

In model (2.12), suppose the true parameter vectors � and !� are respectively s1-sparse

and s2-sparse and assume conditions (C10-C30) hold. Let b lasso and b'lasso be any optimal

solutions to the L1-penalized COSALES estimation problem (2.15). Then with probability

at least 1 � �ALS
1 ;

0@ b lasso

b'lasso

1A �0@ �

'�

1A
2

� 3.s1 C s2/
1=2.�lasso

1 _ �lasso
2 /.2 N�c0/

�1
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if condition (C40) holds and
0@ b lasso

b'lasso

1A �0@ �

'�

1A
1

� 3.�lasso
1 _ �lasso

2 /.2 N%c0/
�1

if condition (C50) holds, where

�ALS
1 D 2p exp

�
�

Cn.�lasso
1 /2

4M 2
0M

2
1 .K1 CK2/

2

�
C 2p exp

�
�
Cn.�lasso

2 /2

4M 2
0M

2
1K

2
2

�
;

c0 D 2
�1Œ.1C 4c/ � .1C 16c2/1=2�; K1 D k"ikSG; K2 D k‰

0
�."i � e�/kSG; and C > 0 is

an absolute constant. �

Nonconvex penalized COSALES regression

We show that the oracle estimators boracle and b'oracle can be achieved with overwhelming

probability by Algorithm 4 under rather general conditions. Indeed, suppose the minimal

signal strength of � and !� satisfies

(A00) minj2A1 j
�
j j > .aC 1/�1 and minj2A2 j!

�
j j > .aC 1/je� j

�1�2:

Theorem 2.4

Suppose in model (2.12) � and !� are respectively s1-sparse and s2-sparse and satisfy

assumption (A00). Takeb lasso andb'lasso as the initial values and assume conditions (C10-C30)

hold. Take � � 3s1=2.�lasso
1 _ �lasso

2 /.2a0c0 N�/
�1 when (C40) holds, or take � � 3.�lasso

1 _

�lasso
2 /.2a0c0 N%/

�1 when (C50) holds, or take � � 3.�lasso
1 _�lasso

2 /.2a0c0/
�1Œ.s1=2 N��1/^ N%�1�

when both (C40) and (C50) hold. The LLA algorithm (Algorithm 4) converges to the oracle

estimatorsboracle andb'oracle in two iterations with probability at least 1��ALS
1 ��ALS

2 ��ALS
3 ;
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where �ALS
1 is given in Theorem 2.3,

�ALS
2 D �.2�1Q2�In; s1; K1 CK2;M0M1;M

2
1 �1�max; �1/

C �.2�1Q2�In; s2; K2;M0M1;M
2
1 �2�max; �2/

C 2.p � s1/ exp
�
�

Ca21n�
2

4M 2
0M

2
1 .K1 CK2/

2

�
C 2.p � s2/ exp

�
�

Ca21n�
2

4M 2
0M

2
1K

2
2

�
;

and

�ALS
3 D �.2�1c0�min NRIn; s1; K1 CK2;M0M1;M

2
1 �1�max; �1/

C �.2�1c0�min NRIn; s2; K2;M0M1;M
2
1 �2�max; �2/;

where s D s1 C s2; � D �1 ^ �2; Q2 D a1c0�minŒ2.1 C 2 Nc/M0�
1=2
max �
�1; �1 D var."i C

‰0�."i � e�//; �2 D var.‰0�."i � e�//; NR D .minj2A1 j
�
j j � a�1/^ .minj2A2 j'

�
j j � a�2/;

C > 0 is an absolute constant, c0; K1; K2 are given in Theorem 2.3, and �.�/ is given in

Theorem 2.2. �

For SCAD and MCP penalized COSALES regressions, the LLA algorithm (Algorithm 4)

starting from the zero vector can also be used as long as we can take �k D �lasso
k
; k D 1; 2:

Corollary 2.2

Assume the same framework of Theorem 2.4 and suppose the SCAD penalty (2.8) or

MCP (2.9) is used. If condition (C40) holds and 2a0c0 N� � 3 LMs1=2, or if condition (C50)

holds and 2a0c0 N% � 3 LM , or if both (C40) and (C50) hold and 3 LMŒ.s1=2 N��1/^ N%�1� � 2a0c0,

then the LLA algorithm (Algorithm 4) initialized by zero converges to the oracle estimatorsboracle and b'oracle after three iterations with probability at least 1 � M�ALS
1 � �ALS

2 � �ALS
3 ;

where

M�ALS
1 D 2p exp

�
�

Cn�21
4M 2

0M
2
1 .K1 CK2/

2

�
C 2p exp

�
�

Cn�22
4M 2

0M
2
1K

2
2

�
;
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�ALS
2 and �ALS

3 are given in Theorem 2.4, and s D s1 C s2. �

Remark 2.2 We can easily modify (2.13) to allow certain subsets of coefficients not to

be penalized. Let R1 and R2 be the index sets of unpenalized components of  and ',

respectively. Then (2.13) can be modified as

min
;'2Rp

Sn.;'/C
X
j2Rc

1

p�1.j /C
X
j2Rc

2

p�2.'j /:

The COSALES algorithm can be readily used to solve the above problem. Moreover, similar

theoretical results can be established with slight modifications. �

2.4.3 Simulation examples

We demonstrate the selection and estimation accuracy of the COSALES regression through

two numerical simulations. For the nonconvex penalties used in both simulations, we fix

 D 3:7 for the SCAD penalty and  D 2 for the MCP.

EXAMPLE 2. We consider the same model (2.11) that was used in Example 1, but

different from the approach used there, we estimate the coefficients through the noncon-

vex penalized COSALES regression (2.13). Again we choose p D 600 and indepen-

dently simulate a training set of size n D 300 for fitting and a validation set of size

n D 300 for tuning. The tuning parameter is selected by minimizing the validation errorP
i2validation

˚
‰0:5.yi � xT

ib/C‰�.yi � xT
ib � xT

ib'/	 for the computed estimatesb andb':
We pick a fairly extreme �-value (� D 0:95) for easy separation of the conditional mean

and scale functions. Both the COSALES lasso and two variations of the LLA algorithm for

each of the SCAD and MCP penalized COSALES regressions are implemented.

Based on 100 independent runs, the following measurements are calculated to evaluate

the sparsity recovery and estimation performance of the COSALES estimators:
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j OA1j; j OA2j W the average size of the active sets forb andb', respectively, OA1 D fj W Oj ¤ 0g

and OA2 D fj W O'j ¤ 0g:

pa1; pa2 W proportions of the events A1 � OA1 and A2 � OA2, respectively, where A1 D

f6; 12; 15; 20g denotes the active set of � and A2 D f1g denotes the active set of '�:

R1 ; R
'

1 W the average L1 risks, R1 D kb � �k1 and R'1 D kb' � '�k1:
R2 ; R

'

2 W the average L2 risks, R2 D kb � �k2 and R'2 D kb' � '�k2:
The results are summarized in Table 2.2, from which we can draw the following conclu-

sions:

(1) The COSALES regression (with lasso or nonconvex penalties) can recover the sparse

patterns in both the mean and scale functions with overwhelming probabilities.

(2) The COSALES lasso tends to select a lot more irrelevant covariates and has much

larger estimation errors than the nonconvex penalized COSALES regression (with the

SCAD penalty or MCP).

(3) The three-step LLA algorithm starting from zero produces similar results to the

two-step LLA algorithm starting from the lasso solution.

EXAMPLE 3. In this example, we simulate data from the following normal linear

heteroscedastic model

y D x6 C x12 C x15 C x20 C .0:7x1 C 0:7x12/"; (2.17)

where the covariates are simulated by setting x1 D ˆ.z1/; x12 D ˆ.z12/; and xj D

zj ; j ¤ 1; 12; where .z1; : : : ; zp/T � N.0;†/ with † D .0:5ji�j j/p�p; and ˆ.�/ is the

CDF of the standard normal distribution. The random error " � N.0; 1/: Note that in

model (2.11), the active sets of the true parameter vectors do not overlap, so the SALES
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Table 2.2: Numerical summary of simulation results from the lasso, SCAD and MCP
penalized COSALES regression for model (2.11): y D x6 C x12 C x15 C x20 C .0:7x1/".
The selection accuracy is measured by the number of selected variables j OA1j and j OA2j, and
the proportions pa1 and pa2 of covering the true active sets. The estimation accuracy is
measured by the L1 risks R1 and R'1 ; and the L2 risks R2 and R'2 : The results are shown as
averages over 100 replicates with standard errors listed in the parentheses. A fairly extreme
� -value (� D 0:95) is used in the simulation for easy separation of the mean and scale

Method j OA1j j OA2j pa1 pa2 R

1 R

'
1 R


2 R

'
2

COSALES-lasso 26.88 13.36 100% 100% 0.407 0.378 0.124 0.294
(1.04) (0.45) (0) (0) (0.012) (0.008) (0.002) (0.006)

COSALES-SCAD� 7.24 1.01 100% 100% 0.095 0.072 0.048 0.072
(0.10) (0.01) (0) (0) (0.004) (0.005) (0.002) (0.005)

COSALES-SCAD0
8.85 1.01 100% 100% 0.107 0.065 0.049 0.065

(0.57) (0.01) (0) (0) (0.005) (0.005) (0.002) (0.005)

COSALES-MCP� 6.46 1.01 100% 100% 0.089 0.070 0.045 0.070
(0.38) (0.01) (0) (0) (0.004) (0.005) (0.002) (0.005)

COSALES-MCP0
7.08 1.01 100% 100% 0.102 0.067 0.052 0.067

(0.44) (0.01) (0) (0) (0.006) (0.005) (0.003) (0.005)

regression can detect active variables in the scale. However, in model (2.17) the active

set for the mean, A1 D f6; 12; 15; 20g; overlaps with the active set for the scale, A2 D

f1; 12g: Thus, the SALES regression cannot recover the variable x12 in the scale function.

We show by this Monte Carlo simulation that the COSALES regression can recover the

sparse patterns in both the mean and scale functions. We fix p D 600 and independently

simulate a training set of size n D 500 for fitting and a validation set of the same size

for tuning. We select the regularization parameter by minimizing the validation errorP
i2validation

˚
‰0:5.yi � xT

ib/C‰�.yi � xT
ib � xT

ib'/	 for the computed estimateb andb': In

order to separate the mean and scale easily, we again pick � D 0:95. We implement the

COSALES lasso and two variations of the LLA algorithm as were done in Examples 2 for

each of the SCAD and MCP penalized COSALES regressions.

Based on 100 independent runs, the same measurements of performance as in Example

2 are calculated to evaluate the sparsity recovery and estimation accuracy of the COSALES



2.5. REAL DATA EXAMPLE 31

estimation. The results are summarized in Table 2.3. Same conclusions in Example 2 can be

drawn here.

Table 2.3: Numerical summary of simulation results from the the lasso, SCAD and MCP
penalized COSALES regression for model (2.17): y D x6 C x12 C x15 C x20 C .0:7x1 C
0:7x12/". The selection accuracy is measured by the number of selected variables j OA1j
and j OA2j, and the proportions pa1 and pa2 of covering the true active sets. The estimation
accuracy is measured by the L1 risks R1 and R'1 ; and the L2 risks R2 and R'2 : The results
are shown as averages over 100 replicates with standard errors listed in the parentheses. A
fairly extreme � -value (� D 0:95) is used in the simulation for easy separation of the mean
and scale

Method j OA1j j OA2j pa1 pa2 R

1 R

'
1 R


2 R

'
2

COSALES-lasso 27.92 12.67 100% 100% 0.719 0.450 0.249 0.282
(0.98) (0.49) (0) (0) (0.018) (0.011) (0.006) (0.008)

COSALES-SCAD� 6.80 2.06 100% 100% 0.167 0.210 0.089 0.161
(0.52) (0.04) (0) (0) (0.008) (0.014) (0.004) (0.010)

COSALES-SCAD0
5.70 2.02 100% 100% 0.157 0.199 0.090 0.148

(0.25) (0.01) (0) (0) (0.006) (0.013) (0.003) (0.009)

COSALES-MCP� 5.95 2.06 100% 100% 0.153 0.221 0.086 0.165
(0.35) (0.03) (0) (0) (0.006) (0.015) (0.003) (0.010)

COSALES-MCP0
6.00 2.04 100% 100% 0.180 0.205 0.098 0.154

(0.36) (0.02) (0) (0) (0.009) (0.014) (0.004) (0.010)

2.5 Real Data Example

We apply the SALES and COSALES regressions to a real data set reported in Scheetz et al.

(2006). The data set consists of gene expression levels of more than 31,000 probes obtained

from 120 rats. The expressions are analyzed on a logarithmic scale (base 2). As was done

in Scheetz et al. (2006), we exclude the probes that were not expressed in the eye or that

lacked sufficient variation. Among those 18,976 probes left, we study how the expressions

of other genes are associated with the gene TRIM32 (probe 1389163 at). This gene was

found to be associated with Bardet–Biedl syndrome, which is a disorder that affects many

parts of the body including the retina. For all the other genes, we first standardize them
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and select the 3,000 probes with the largest variances. These 3,000 probes are then ranked

according to the magnitude of the correlations between their expressions and that of probe

1389163 at. We choose the top 300 probes with the largest correlations in magnitude for the

analysis.

The third column of Table 2.4 lists the number of active variables selected by the

SALES regressions with lasso, SCAD and MCP penalties, fitted on the whole data set of

120 subjects. For both SCAD and MCP penalized SALES regressions, the two variations

of the LLA algorithm were used. The tuning parameter for each method is selected by

five-fold cross-validation. The last two columns of Table 2.4 summarize the results from

50 random partitions. Each partition randomly splits the data into a training set with

80 observations and a validation set with 40 observations. We fit the model with the

training set using five-fold cross-validation for tuning and calculate the predicted loss

.1=40/
P
i2validation‰�.yi �

Ǒ
0 � xT

i
b̌/ based on the validation set. The average number

of active variables selected and the average predicted loss are calculated from the 50

partitions with their respective standard errors listed in the parentheses. Table 2.4 reveals

two interesting findings. First, the nonconvex penalized SALES regression selects less

variables than the SALES lasso, but there is no obvious improvement of the nonconvex

penalized SALES regression over the SALES lasso in terms of predicted loss. Second, for

all SALES regressions, the number of variables selected is different at different values of �

(0.3, 0.5 and 0.7). This is an indication of heteroscedasticity in the data.

To further explore the heterogeneous scale, we also apply the COSALES regression to

the data. The results are summarized in Table 2.5. Columns 2 and 3 display the number

of variables selected for the mean (j OA1j) and scale (j OA2j), and the number of variables that

overlap (j OA1 \ OA2j) for each method. For all penalties, � is set to be 0:7 in the COSALES

regression. Random partitions are done in the same way as the SALES regression and the

predicted loss is calculated via .1=40/
P
i2validation‰0:5.yi � O0 � xT

ib/ C ‰�.yi � O0 �
xT
ib � O'0 � xT

ib'/: The results for the random partitions are shown in columns 4 to 6. It can
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be seen that the COSALES regression reveals more information about the heterogeneous

scale which cannot be otherwise detected in the SALES regression or the sparse quantile

regression (Wang et al., 2012) due to overlaps.

Table 2.4: Analysis of microarray data reported in Scheetz et al. (2006) using SALES
regressions with lasso, SCAD and MCP penalties. Three different values of � (0.3, 0.5 and
0.7) are used for each method. The number of active variables selected using the whole
data set is given in column 3. The average number of active variables selected and average
predicted loss .1=40/

P
i2validation‰�.yi �

Ǒ
0�xT

i
Ǒ / listed in columns 4 and 5 are calculated

from 50 random partitions of the original data with standard errors listed in parentheses

All data Random partition

Method � j OAj j OAj Predicted loss

SALES-lasso
0.3 22 22.00 (1.51) 0.007 (0.00055)
0.5 25 25.38 (1.94) 0.005 (0.00036)
0.7 20 21.90 (1.66) 0.005 (0.00022)

SALES-SCAD�
0.3 19 16.02 (2.09) 0.006 (0.00048)
0.5 13 15.52 (1.80) 0.006 (0.00043)
0.7 11 13.54 (1.98) 0.005 (0.00037)

SALES-SCAD0
0.3 16 16.60 (2.03) 0.006 (0.00054)
0.5 17 17.22 (2.36) 0.007 (0.00048)
0.7 14 14.82 (2.18) 0.005 (0.00030)

SALES-MCP�
0.3 14 15.82 (2.56) 0.006 (0.00053)
0.5 12 12.66 (2.58) 0.008 (0.00054)
0.7 10 9.66 (1.78) 0.006 (0.00035)

SALES-MCP0
0.3 11 11.74 (1.47) 0.006 (0.00057)
0.5 13 13.24 (2.75) 0.007 (0.00058)
0.7 13 14.18 (3.36) 0.006 (0.00034)
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Table 2.5: Analysis of microarray data reported in Scheetz et al. (2006) using COSALES
regressions with lasso, SCAD and MCP penalties. In this analysis, � D 0:7 is used. The
number of active variables selected for the mean and scale using the whole data set is given in
columns 2 and 3. The average number of active variables selected for the mean and scale and
average predicted loss .1=40/

P
i2validation‰0:5.yi� O0�xT

i O/C‰�.yi� O0�xT
i O� O'0�xT

i O'/

listed in columns 4 to 6 are calculated from 50 random partitions of the original data with
standard errors listed in parentheses

All data Random partition

Method j OA1j j OA2j j OA1 \ OA2j j OA1j j OA2j j OA1 \ OA2j Predicted loss

COSALES-lasso 22 10 9 22.62 9.80 7.86 0.010
(1.21) (1.10) (0.93) (0.00056)

COSALES-SCAD� 19 7 6 18.92 5.58 3.90 0.011
(0.79) (0.50) (0.31) (0.00067)

COSALES-SCAD0 20 5 4 20.22 5.82 3.92 0.011
(0.98) (0.64) (0.44) (0.00072)

COSALES-MCP� 10 3 1 10.96 3.08 1.38 0.014
(2.32) (1.40) (0.74) (0.00096)

COSALES-MCP0 10 4 3 12.94 4.56 1.46 0.012
(1.83) (1.04) (0.42) (0.00083)

2.6 Proofs

In this section, we give the proofs of the main theoretical results stated in previous sections.

First of all, let us state two lemmas on the properties of the asymmetric squared error loss

‰�.�/ given in (2.1). These properties play an important role in the proofs of many results

to be presented below. Let w�.u/ D j� � I.u < 0/j and recall that c D � ^ .1 � �/ and

Nc D � _ .1 � �/:

Lemma 2.1

The asymmetric squared error loss ‰�.�/ is continuously differentiable, but is not twice

differentiable at zero when � ¤ 0:5: Moreover, for any u; u0 2 R and � 2 .0; 1/; we have

c.u � u0/
2
� ‰�.u/ �‰�.u0/ �‰

0
�.u0/.u � u0/ � Nc.u � u0/

2:

It follows that ‰�.�/ is strongly convex. �
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Lemma 2.2

For any u; u0 2 R and � 2 .0; 1/; we have

2cju � u0j � j‰
0
�.u/ �‰

0
�.u0/j � 2 Ncju � u0j:

It follows immediately that ‰0�.�/ is Lipschitz continuous. �

Proof 2.1 (Proof of Lemma 2.1)

It is easy to see that c � w�.u/ � Nc for any u 2 R: Note that ‰0�.u/ D 2w�.u/u; which is

continuous and which is not differentiable at u D 0 when � ¤ 0:5: To show the inequalities,

consider the following situations. If w�.u/ � w�.u0/; it follows that

‰�.u/ �‰�.u0/ �‰
0
�.u0/.u � u0/

D w�.u/u
2
� w�.u0/u

2
0 � 2w�.u0/u0.u � u0/

D w�.u0/.u � u0/
2
C fw�.u/ � w�.u0/gu

2

� w�.u0/.u � u0/
2
� c.u � u0/

2:

Otherwise, if w�.u/ < w�.u0/; then we know that c D w�.u/; Nc D w�.u0/ and u0u � 0: It

follows that

‰�.u/ �‰�.u0/ �‰
0
�.u0/.u � u0/

D cu2 � Ncu20 � 2 Ncu0.u � u0/

� cu2 � 2cu0uC cu
2
0 D c.u � u0/

2:

Therefore, the first inequality holds. Similarly, we can show the second inequality. �

Proof 2.2 (Proof of Lemma 2.2)

If u D 0 or u0 D 0; then the inequalities hold trivially. If uu0 > 0; we know that
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w�.u/ D w�.u0/: It follows that

2cju � u0j � j‰
0
�.u/ �‰

0
�.u0/j D 2w�.u/ju � u0j � 2 Ncju � u0j:

If instead, uu0 < 0; there are two cases: u > 0; u0 < 0 or u < 0; u0 > 0: For the first case,

we have

2cju � u0j � j‰
0
�.u/ �‰

0
�.u0/j D 2�u � 2.1 � �/u0 � 2 Ncju � u0j:

For the second case, we have

2cju � u0j � j‰
0
�.u/ �‰

0
�.u0/j D �2.1 � �/uC 2�u0 � 2 Ncju � u0j:

This completes the proof. �

The following lemma deals with sub-Gaussian random variables.

Lemma 2.3

Suppose that Z;Z1; : : : ; Zn 2 R are i.i.d. sub-Gaussian random variables. Let Z D

.Z1; : : : ; Zn/
T; K D kZkSG; Z

C D max.Z; 0/ and Z� D max.�Z; 0/:

(1) If E.Z/ D 0; then there exists an absolute constant C > 0 such that for any a D

.a1; : : : ; an/
T 2 Rn and any t � 0,

P.jaTZj � t / � 2 exp
�
�

Ct2

K2kak22

�
:

(2) Let A be a fixed m � n matrix. If E.Z/ D 0 and var.Z/ D 1; then there exists an

absolute constant C > 0 such that for any t � 0;

P.jkAZk2 � kAkF j � t / � 2 exp
�
�

Ct2

K4kAk22

�
;
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where kAkF and kAk2 represent the Frobenius and L2 norms of matrix A respectively.

(3) Let A be a fixed m� n matrix. Let ej 2 Rm be the unit vector with its jth component

one, j D 1; : : : ; m. Suppose M � max1�j�m n�1=2kATejk2 2 .0;1/ and � �

�max.n
�1AAT/ 2 .0;1/: If E.Z/ D 0 and � D var.Z/ 2 .0;1/; then there exists

an absolute constant C > 0 such that for any t � 0;

P.kn�1AZk2 � t / � �.t In;m;K;M; �; �/

D 2m exp
�
�

Cnt2

K2M 2m

�
^ 2 exp

�
�
C�2Œ.n1=2t � �m1=2�1=2/C�2

K4�

�
:

(4) The random variables ZC and Z� are also sub-Gaussian. Moreover, for any c1; c2 2

R; c1ZC C c2Z� is sub-Gaussian. �

Proof 2.3 (Proof of Lemma 2.3)

(1) This part follows directly from Proposition 5.10 of Vershynin (2010).

(2) This part follows from Theorem 2.1 of Rudelson and Vershynin (2013).

(3) On one hand, we have by part (1) that

P
�A
n

Z

2

� t

�
� P

� A
p
n

Z

1

�
t
p
n

p
m

�
� 2m exp

�
�

Cnt2

K2M 2m

�
:

One the other hand, note that kn�1=2AkF D
p

Tr.AAT=n/ �
p
m� and kn�1=2Ak22 D

�max.ATA=n/ D �max.AAT=n/ D �: We have by part (2)

P
�A
n

Z

2

� t

�
� P

� A
p
n

Z
�


2

�

 A
p
n


F

�
t
p
n

�
�
p
m�

�
� P

�ˇ̌̌̌ A
p
n

Z
�


2

�

 A
p
n


F

ˇ̌̌̌
�

�
t
p
n

�
�
p
m�

�C�
� 2 exp

�
�
C�2Œ.n1=2t � �m1=2�1=2/C�2

K4�

�
:
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(4) Note that by definition, we have K 2 .0;1/ and .EjZjp/1=p � Kpp; 8p � 1: It

follows immediately that .EjZCjp/1=p � .EjZjp/1=p � Kpp and .EjZ�jp/1=p �

.EjZjp/1=p � Kpp; 8p � 1: Now by Lemma 5.5 of Vershynin (2010), we conclude

that ZC and Z� are both sub-Gaussian. For any c1; c2 2 R; by Minkowski inequality,

.Ejc1ZC C c2Z�jp/1=p � jc1j.EjZCjp/1=p C jc2j.EjZ�jp/1=p

� .jc1j C jc2j/K
p
p; 8p � 1:

By Lemma 5.5 of Vershynin (2010) again, we can see that c1ZC C c2Z� is also

sub-Gaussian. This completes the proof. �

Now we are ready to prove Theorems 2.1 and 2.2. Lemmas 2.4 and 2.5 are presented to

facilitate the proofs.

Lemma 2.4

Let � D .�i ; 1 � i � n/T with �i D ‰0�."i/ D 2j� � I."i < 0/j"i :

(1) For any ˇ; ı 2 Rp; hrLn.ˇ C ı/ � rLn.ˇ/; ıi � 2ckXık22=n:

(2) For any d > 0; P.kb̌oracle � ˇ�k2 � d/ � P.kn�1XT
A�k2 � 2c�mind/: �

Proof 2.4 (Proof of Lemma 2.4)

The first part follows from the strong convexity of ‰�.�/: Specifically, by Lemma 2.1, we

have

Ln.ˇ C ı/ � Ln.ˇ/ � hrLn.ˇ/; ıi � ckXık22=n;

Ln.ˇ/ � Ln.ˇ C ı/ � hrLn.ˇ C ı/;�ıi � ckXık22=n:

Summing up the above two inequalities yields the desired result in part (1).
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For the second part, letbı D b̌oracle � ˇ�: By definition of b̌oracle; we havebıAc D 0 and

rALn.b̌oracle/ D 0: Now by part (1) we have

2c�minkbık22 D 2c�minkbıAk22 � 2cbıT
A.X

T
AXA=n/bıA D 2ckXbık22=n

� hrLn.b̌oracle/ � rLn.ˇ�/;bıi D h�rALn.ˇ�/;bıAi
� krALn.ˇ�/k2kbıAk2 D kn�1XT

A�k2k
bık2;

which implies that 2c�minkb̌oracle�ˇ�k2 � kn
�1XT

A�k2: The result of part (2) then follows.�

Proof 2.5 (Proof of Theorem 2.1)

Letbı D b̌lasso � ˇ� and z�1 D krLn.ˇ
�/k1: Note that b̌lasso satisfies the Karush–Kuhn–

Tucker (KKT) condition

rLn.b̌lasso/C g D 0;

where gj D �lassosgn. Ǒlasso
j / if Ǒlasso

j ¤ 0 and gj 2 Œ��lasso; �lasso� if Ǒlasso
j D 0: It follows

that Ǒlasso
j gj D �lassoj

Ǒlasso
j j;8j: Since ˇ�Ac D 0; we havebıAc D b̌lasso

Ac : By Lemma 2.4 and

Hölder’s inequality, we get

0 � 2ckXbık22=n � hrLn.b̌lasso/ � rLn.ˇ�/;bıi D h�g � rLn.ˇ�/;bıi
D hbıA;�gA � rALn.ˇ�/i C hb̌lasso

Ac ;�gAc � rAcLn.ˇ�/i

� .z�1 C �lasso/kbıAk1 C .z�1 � �lasso/kbıAck1:

(2.18)

Under the event E D fz�1 � 2�1�lassog; from (2.18) we get

kbıAck1 �
z�1 C �lasso

z�1 � �lasso
kbıAk1 � 3kbıAk1;
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which implies thatbı 2 C : Now under E ; by condition (C3), it follows from (2.18) that

2c�kbık22 � .3=2/�lassokbıAk1 � .3=2/�lassos
1=2
kbıAk2 � .3=2/�lassos

1=2
kbık2;

and similarly by condition (C4) and (2.18), we get

2c%kbık1 � 2ckXbık22=.nkbıAk1/ � .3=2/�lasso:

Thus, we have

P.kbık2 � 3s1=2�lasso.4�c/
�1
\ kbık1 � 3�lasso.4%c/

�1/

� P.z�1 � 2
�1�lasso/ � 1 � P.kn�1XT�k1 � 2

�1�lasso/:

Note that �i D ‰0�."i/ D 2�"
C

i � 2.1 � �/"
�
i : It follows from Lemma 2.3 and E �."i/ D 0

that �i are i.i.d. mean zero sub-Gaussian random variables. Now by the union bound

argument and Lemma 2.3 again

P.kn�1XT�k1 � 2
�1�lasso/ � 2p exp

�
�
Cn�2lasso

4K2
0M

2
0

�
D 1 � pALS

1 :

This completes the proof. �

Lemma 2.5

Under the assumptions of Theorem 2.2, the probability that the LLA algorithm (Algorithm 2)

initialized by b̌lasso converges to b̌oracle after two iterations is at least 1 � p1 � p2 � p3;

where

p1 D P.kb̌lasso
� ˇ�k1 > a0�/;

p2 D P.krAcLn.b̌oracle/k1 � a1�/;

p3 D P.minj2Aj Ǒoracle
j j < a�/:

�
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Proof 2.6 (Proof of Lemma 2.5)

The convexity of Ln.ˇ/ follows from Lemma 2.1. Let S D fˇ 2 RpWˇAc D 0g: Note

that b̌oracle 2 S: For any ˇ 2 S; let NLn.ˇA/ � n�1
Pn
iD1‰�.yi � xT

iAˇA/ D Ln.ˇ/: Then

r NLn.ˇA/ D �n�1
Pn
iD1 xiA‰0�.yi � xT

iAˇA/: Now for any ˇ and ˇ0 2 S; by Lemma 2.1

again, we get

NLn.ˇA/ � NLn.ˇ0A/C hr NLn.ˇ
0

A/;ˇA � ˇ
0

Ai C c.ˇA � ˇ
0

A/
T XT
AXA
n

.ˇA � ˇ
0

A/:

Since XA is of full column rank by assumption, we can see that NLn.ˇA/ is strongly convex

with respect to ˇA and, therefore, b̌oracle is the unique solution of problem (2.10) with

r NLn.b̌oracle
A / D 0. The lemma then follows from Theorems 1 and 2 in Fan et al. (2014b).�

Proof 2.7 (Proof of Theorem 2.2)

Letbı D b̌lasso � ˇ�: Assume both (C3) and (C4) hold. The other cases where either (C3) or

(C4) holds are similar. From Lemma 2.5 and Theorem 2.1, we immediately get

p1 � P
�
kbık1 > Œ3s1=2�lasso.4�c/

�1� ^ Œ3�lasso.4%c/
�1�
�

� P.kbık2 > 3s1=2�lasso.4�c/
�1/ _ P.kbık1 > 3�lasso.4%c/

�1/ � pALS
1 :

To derive the bound for p2; by the triangular inequality, it suffices to show bounds for

P.krAcLn.ˇ�/k1 � 2�1a1�/ and P.krAcLn.b̌oracle/ � rAcLn.ˇ�/k1 � 2�1a1�/: By the

union bound argument and Lemma 2.3,

P.krAcLn.ˇ�/k1 � 2�1a1�/ D P.k � n�1X T
Ac�k1 � 2

�1a1�/

� 2.p � s/ exp
�
�
Ca21n�

2

4M 2
0K

2
0

�
:

Let d D .di ; i D 1; : : : ; n/T with di D ‰0�.yi � xT
i
b̌oracle/ � ‰0�.yi � xT

iˇ
�/: By Cauchy–
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Schwarz inequality and Lemma 2.2, we get

krAcLn.b̌oracle/ � rAcLn.ˇ�/k1

D n�1maxj2Acj
Pn
iD1dixij j � n

�1maxj2Ac.kdk2kXjk2/

� .2 NcM0/
�
.b̌oracle
A � ˇ�A/

T.n�1XT
AXA/.b̌oracle

A � ˇ�A/
�1=2

� .2 Nc�1=2maxM0/
b̌oracle

� ˇ�

2
:

It follows from Lemma 2.4 and Lemma 2.3 that

P.krAcLn.b̌oracle/ � rAcLn.ˇ�/k1 � 2�1a1�/

� P
�
kb̌oracle

� ˇ�k2 �
a1�

4 Nc�
1=2
maxM0

�
� P.kn�1XT

A�k2 � Q1�/

� �.Q1�In; s;K0;M0; �max; �0/:

This establishes the desired upper bound for p2: To show the upper bound for p3; let

R D minj2A jˇ�j j � a� and observe that

p3 D P.minj2Aj Ǒoracle
j j < a�/ � P.kb̌oracle

� ˇ�k1 > R/

� P.kb̌oracle
� ˇ�k2 > R/ � P.kn�1XT

A�k2 � 2c�minR/:

Similarly, by Lemma 2.3 we obtain

P.kn�1XT
A�k2 � 2c�minR/ � �.2c�minRIn; s;K0;M0; �max; �0/;

which completes the proof. �

Let us now prove the results for the COSALES estimation. To simplify notation, let

$ D .T;'T/T: It follows that supp.$�/ D A0: Let �lasso D �lasso
1 ^ �lasso

2 and ƒlasso D

�lasso
1 _ �lasso

2 : We first present a lemma to facilitate the proofs.
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Lemma 2.6

Let " D ."i ; 1 � i � n/
T and � D .�i ; 1 � i � n/

T; where �i D ‰0�."i � e�/: Also, let

W D diagfxT
i!
�; 1 � i � ng:

(1) For$ ; ı 2 R2p; hrSn.$ C ı/ � rSn.$/; ıi � n�1c0k.I2 ˝ X/ık22; where I2 is a

2 � 2 identity matrix and c0 D 2�1Œ.1C 4c/ � .1C 16c2/1=2� > 0:

(2) For d > 0; P.kb$oracle �$�k2 > d/ � P.krA0Sn.$
�/k2 � c0�mind/; where

rA0Sn.$
�/ D �n�1

� XT
A1

W."C �/

XT
A2

W�

�
: �

Proof 2.8 (Proof of Lemma 2.6)

The first part follows directly from the strong convexity of the (asymmetric) squared

error loss. Specifically, note that since c0 is the smaller eigenvalue of the 2 � 2 matrix�
1C 2c 2c

2c 2c

�
; we have

Sn.$ C ı/ � Sn.$/ � hrSn.$/; ıi �
1

2n
ıT

��
1C 2c 2c

2c 2c

�
˝ .XTX/

�
ı

� .2n/�1c0k.I2 ˝ X/ık22:

Similarly, Sn.$/� Sn.$ C ı/� hrSn.$ C ı/;�ıi � .2n/�1c0k.I2˝X/ık22: Result (1)

then follows by summing up the above two inequalities.

Letbı D b$oracle �$�: Note thatbıAc
0
D 0 and rA0Sn.b$oracle/ D 0: From result (1) we
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have

c0�minkbık22 D c0�minkbıA0k22 � n�1c0k.I2 ˝ X/bık22
� hrSn.b$oracle/ � rSn.$

�/;bıi D h�rA0Sn.$�/;bıA0i
� krA0Sn.$

�/k22k
bık22:

Result (2) follows immediately. �

Proof 2.9 (Proof of Theorem 2.3)

Let bı1 D b lasso � �; bı2 D b'lasso � '�; bı D .bıT
1;
bıT
2/

T; z�11 D k@Sn.$
�/=@k1; and

z�21 D k@Sn.$
�/=@'k1:By Lemma 2.6 and similar arguments in the proof of Theorem 2.1,

it can shown that

0 � n�1c0k.I2 ˝ X/bık22 � hrSn.b$ lasso/ � rSn.$
�/;bıi

� .z�11 C �
lasso
1 /kbı1A1k1 C .z�11 � �lasso

1 /kbı1Ac
1
k1

C .z�21 C �
lasso
2 /kbı2A2k1 C .z�21 � �lasso

2 /kbı2Ac
2
k1:

(2.19)

Under events E1 D
˚
z�11 � 2

�1�lasso
1

	
and E2 D

˚
z�21 � 2

�1�lasso
2

	
; it follows from (2.19)

that

2�1�lassokbıAc
0
k1 � 2

�1�lasso
1 k

bı1Ac
1
k1 C 2

�1�lasso
2 k

bı2Ac
2
k1

� .3=2/�lasso
1 k

bı1A1k1 C .3=2/�lasso
2 k

bı2A2k1 � .3=2/ƒlassokbıA0k1;
which implies thatbı 2 C

3 LM
: Now under conditions (C40-C50), we have from (2.19) that

c0 N�kbık22 � n�1c0k.I2 ˝ X/bık22 � .3=2/ƒlassokbıA0k1
� .3=2/ƒlasso.s1 C s2/

1=2
kbık2
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and that

c0 N%kbık1kbıA0k1 � n�1c0k.I2 ˝ X/bık22 � .3=2/ƒlassokbıA0k1:
It follows that under events E1 and E2; we have kbık2 � 3.s1 C s2/1=2ƒlasso.2 N�c0/

�1 and

kbık1 � 3ƒlasso.2 N%c0/
�1: Recall that in Lemma 2.6 "i and �i D ‰0�."i � e�/ are both mean

zero sub-Gaussian random variables with K1 D k"ikSG and K2 D k�ikSG: It follows that

"iC�i is also sub-Gaussian, and moreover, k"iC�ikSG � K1CK2: SinceM1 D kX!�k1;

we have

P.kbık2 � 3.s1 C s2/1=2ƒlasso.2 N�c0/
�1
\ kbık1 � 3ƒlasso.2 N%c0/

�1/

� P.E1 \ E2/ � 1 � P.E c
1/ � P.E c

2/

D 1 � P.kn�1XTW."C �/k1 > 2
�1�lasso

1 / � P.kn�1XTW�k1 > 2�1�lasso
2 /

� 1 � 2p exp
�
�

Cn.�lasso
1 /2

4M 2
0M

2
1 .K1 CK2/

2

�
� 2p exp

�
�
Cn.�lasso

2 /2

4M 2
0M

2
1K

2
2

�
:

Theorem 2.3 then follows. �

The proof of Theorem 2.4 relies on the following lemma.

Lemma 2.7

Under assumptions of Theorem 2.4, the LLA algorithm (Algorithm 4) initialized byb lasso andb'lasso converges to the oracle estimatorsboracle andb'oracle in two iterations with probability

at least 1 � �1 � �2 � �3; where

�1 D P.kb lasso
� �k1 > a0�1; kb'lasso

� '�k1 > a0�2/;

�2 D P.k@Sn.b$oracle/=@Ac
1
k1 � a1�1; k@Sn.b$oracle/=@'Ac

2
k1 � a1�2/;

�3 D P.minj2A1j O
oracle
j j < a�1;minj2A2j O'

oracle
j j < a�2/:

�
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Proof 2.10 (Proof of Lemma 2.7)

The convexity of Sn.;'/ follows immediately from Lemma 2.1,

Sn.;'/ � Sn.
0;'0/C hrSn.

0;'0/; �  0i C hr'Sn.
0;'0/;' � '0i

C 2�1
�
 �  0

' � '0

�T�� 1C 2c 2c

2c 2c

�
˝ .n�1XTX/

��
 �  0

' � '0

�
:

Restrict Sn.;'/ to the set S D
˚
;' 2 RpWAc

1
D 0;'Ac

2
D 0

	
and define for any

.;'/ 2 S

MSn.A1;'A2/ D n
�1

nX
iD1

f‰0:5.yi � xT
iA1
A1/C‰�.yi � xT

iA1
A1 � xT

iA2
'A2/g:

It follows immediately that for any .;'/; . 0;'0/ 2 S;

MSn.A1;'A2/ �
MSn.

0
A1
;'0A2/C hrA1

MSn.
0
A1
;'0A2/;A1 � 

0
A1
i

C hr'A2
MSn.

0
A1
;'0A2/;'A2 � '

0
A2
i

C 2�1c0.A1 � 
0
A1
/T.n�1XT

A1
XA1/.A1 � 

0
A1
/

C 2�1c0.'A2 � '
0
A2
/T.n�1XT

A2
XA2/.'A2 � '

0
A2
/;

where c0 D 2�1Œ.1 C 4c/ � .1 C 16c2/1=2�: Since both XA1 and XA2 are of full column

ranks by assumption, we can see that MSn.A1;'A2/ is strongly convex and thus the oracle

estimatorsboracle andb'oracle are the unique solution of problem (2.14).

Let E1 be the event that kb lasso � �k1 � a0�1 and kb'lasso � '�k1 � a0�2: Under E1
and Assumption (A00), on one hand we have minj2A1 j O

lasso
j j � minj2A1 j

�
j j � kb lasso �

�k1 > a�1; implying that p0
�1
.j O lasso

j j/ D 0 for j 2 A1: On the other hand, we have

kb lasso
Ac k1 � kb lasso � �k1 � a2�1; indicating that p0

�1
.j O lasso

j j/ � a1�1 for j 2 Ac
1:

Similarly, we can show that p0
�2
.j O' lasso

j j/ D 0 for j 2 A2 and p0
�2
.j O' lasso

j j/ � a1�2 for

j 2 Ac
2:
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Letb1 andb'1 be the update after the first iteration of the LLA algorithm. Then under

E1,b1 andb'1 are minimizers of

Qn.;'/ D Sn.;'/C
X
j2Ac

1

p0�1.j O
lasso
j j/jj j C

X
j2Ac

2

p0�2.j O'
lasso
j j/j'j j:

By definition of the oracle estimators, @Sn.boracle;b'oracle/=@j D 0 for j 2 A1 and

@Sn.boracle;b'oracle/=@'j D 0 for j 2 Ac
2:Also,boracle

Ac
1

D 0 andb'oracle
Ac
2

D 0:Now let E2 be the

event maxj2Ac
1
j@L.boracle;b'oracle/=@j j < a1�1 and maxj2Ac

2
j@L.boracle;b'oracle/=@'j j <

a1�2: It follows from the convexity of Sn.;'/ that

Qn.;'/ �Qn.boracle;b'oracle/

�

X
j2Ac

1

@

@j
Sn.boracle;b'oracle/j C

X
j2Ac

2

@

@'j
Sn.boracle;b'oracle/'j

C

X
j2Ac

1

p0�1.j O
lasso
j j/jj j C

X
j2Ac

2

p0�2.j O'
lasso
j j/j'j j:

Under E2; this implies that Qn.;'/ � Qn.boracle;b'oracle/ for any  2 Rp and ' 2 Rp:

The strict inequality holds unless j D 0 for all j 2 Ac
1 and 'j D 0 for all j 2 Ac

2: By the

uniqueness of the oracle estimators, we must haveb1 D boracle andb'1 D b'oracle:

Let E3 be the event that minj2A1 j O
oracle
j j � a�1 and minj2A2 j O'

oracle
j j � a�2: Once

the oracle estimators are obtained after the first iteration, under E3; we can see that

p0
�1
.j Ooracle

j j/ D 0 for j 2 A1; p0�1.j O
oracle
j j/ � a1�1 for j 2 Ac

1 and p0
�2
.j O'oracle

j j/ D 0

for j 2 A2; p0�2.j O'
oracle
j j/ � a1�2 for j 2 Ac

2: By similar arguments, it can be shown that

the second iteration of the LLA algorithm will still yield the oracle estimators, which means

the algorithm converges to the oracle estimators hereafter. This completes the proof. �

Proof 2.11 (Proof of Theorem 2.4)

Letbı D b$ lasso �$�: Assume both (C40) and (C50) hold. The other cases where either (C40)
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or (C50) holds are similar. It follows from Theorem 2.3 that

�1 � P.kbık1 > a0�/ � P.kbık1 > 3ƒlasso.2c0/
�1Œ.s1=2 N��1/ ^ N%�1�/

� P.kbık2 > 3s1=2ƒlasso.2c0 N�/
�1/ _ P.kbık1 > 3ƒlasso.2c0 N%/

�1/ � �ALS
1 :

Next, note that �2 � P.krAc
0
Sn.b$oracle/k1 � a1�/: By the triangular inequality, it

suffices to show the upper bounds for respectively P.krAc
0
Sn.$

�/k1 � 2�1a1�/ and

P.krAc
0
Sn.b$oracle/ � rAc

0
Sn.$

�/k1 � 2
�1a1�/: First, by the union bound argument we

have

P.krAc
0
Sn.$

�/k1 � 2
�1a1�/

� P.kn�1XT

Ac
1

W."C �/k1 � 2
�1a1�/C P.kn�1XT

Ac
2

W�k1 � 2�1a1�/

� 2.p � s1/ exp
�
�

Ca21n�
2

4M 2
0M

2
1 .K1 CK2/

2

�
C 2.p � s2/ exp

�
�

Ca21n�
2

4M 2
0M

2
1K

2
2

�
:

Now let Ndi D ‰0�.yi�xT
iboracle�xT

ib'oracle/�‰0�.yi�xT
i
��xT

i'
�/ and Nd D . Ndi ; 1 � i � n/T:

It follows that

krAc
0
Sn.b$oracle/ � rAc

0
Sn.$

�/k1 �M0.kX.boracle
� �/k2 C k Ndk2/=

p
n

�M0Œ.1C 2 Nc/kXA1.boracle
A1
� �A1/k2 C .2 Nc/kXA2.b'oracle

A2
� '�A2/k2�=

p
n

� .1C 2 Nc/M0�
1=2
maxkb$oracle

�$�k2:
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By Lemma 2.6 and Lemma 2.3, we get

P.krAc
0
Sn.b$oracle/ � rAc

0
Sn.$

�/k1 � 2
�1a1�/

� P
�
kb$oracle

�$�k2 �
a1�

2.1C 2c/M0�
1=2
max

�
� P

�1n
� XT

A1
W."C �/

XT
A2

W�

�
2

� Q2�

�
� P.kn�1XT

A1
W."C �/k2 � 2

�1Q2�/C P.kn�1XT
A2

W�k2 � 2�1Q2�/

� �.2�1Q2�In; s1; K1 CK2;M0M1;M
2
1 �1�max; �1/

C �.2�1Q2�In; s2; K2;M0M1;M
2
1 �2�max; �2/:

This completes the upper bound for �2: To derive the upper bound for �3; note that by

Assumption (A00) we have minj2A1 j
�
j j � .a C 1/�1 and minj2A2 j'

�
j j � .a C 1/�2:

Observe that minj2A1 j O
oracle
j j � minj2A1 j

�
j j � kboracle � �k1 and minj2A2 j O'

oracle
j j �

minj2A1 j'
�
j j � kb'oracle � '�k1; and it follows that

�3 � P
�
kb$oracle

�$�k1 > NR

�
� P

�
kb$oracle

�$�k2 > NR

�
� P

�1n
� XT

A1
W."C �/

XT
A2

W�

�
2

� c0�min NR

�
� P.kn�1XT

A1
W."C �/k2 �

1

2
c0�min NR/C P.kn�1XT

A2
W�k2 �

1

2
c0�min NR/

� �.2�1c0�min NRIn; s1; K1 CK2;M0M1;M
2
1 �1�max; �1/

C �.2�1c0�min NRIn; s2; K2;M0M1;M
2
1 �2�max; �2/:

�



Chapter 3

ADMM for High-Dimensional Sparse
Penalized Quantile Regression

Sparse penalized quantile regression is a useful tool for variable selection, robust estimation

and heteroscedasticity detection in high-dimensional data analysis. The computational issue

of the sparse penalized quantile regression has not yet been fully resolved in the literature,

due to nonsmoothness of the quantile regression loss function. We introduce fast alternat-

ing direction method of multipliers algorithms for computing sparse penalized quantile

regression. The convergence properties of the proposed algorithms are established. Numer-

ical examples demonstrate the competitive performance of our algorithm: it significantly

outperforms several other fast solvers for high-dimensional penalized quantile regression.

3.1 Introduction

High-dimensional data are frequently collected in a wide variety of research areas such as

genomics, functional magnetic resonance imaging, tomography, economics, and finance.

Analysis of high-dimensional data poses many challenges and has attracted tremendous

recent interests in a number of fields such as econometrics, applied mathematics, electronic

engineering, and statistics. Sparse penalized least squares regression has become a widely

used method for analyzing high-dimensional data. The least squares regression can be

50
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regularized with various penalties, such as the bridge penalty (Frank and Friedman, 1993),

lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), elastic net (Zou and Hastie, 2005),

adaptive lasso (Zou, 2006), and so on. Many researchers have also considered regression

methods other than the least squares for high-dimensional data analysis. For example,

quantile regression introduced by Koenker and Bassett (1978) has gained a lot of attention in

the high-dimensional statistics literature, owing to its robustness property and its ability to

offer unique insights into the relation between the response variable and the covariates that

is not available in doing least squares regression which only estimates the conditional mean

function. The classical least absolute deviation (LAD) regression can be viewed as a special

case of the quantile regression. A comprehensive treatment of the quantile regression can be

found in Koenker (2005). Recently, many studies on quantile regression have been focusing

on high-dimensional scenarios where the number of parameters exceeds the number of

observations; see, for example, Wu and Liu (2009), Belloni and Chernozhukov (2011),

Wang et al. (2012), Wang (2013), Fan et al. (2014a), and Fan et al. (2014b). Belloni and

Chernozhukov (2011) studied the L1-penalized quantile regression in high-dimensional

sparse models where the dimensionality could be larger than the sample size. They showed

that the lasso penalized quantile regression estimator is consistent at near-oracle rate, and

gave conditions under which the selected model includes the true model. Wang (2013)

studied the L1-penalized LAD regression and showed that its estimator achieves near-oracle

risk performance with a universal penalty parameter. Fan et al. (2014a) studied the penalized

quantile regression with the weighted L1-penalty. Fan et al. (2014b) provided a general

framework for solving folded concave penalized regression, including the quantile regression

as a special case, via a two-step local linear approximation (LLA) approach. They showed

that with high probability, the oracle estimator can be directly obtained within two iterations

of the LLA algorithm. This property is often referred to as the strong oracle property (Fan

and Lv, 2011).

Compared to the least squares method, fitting quantile regression requires more so-
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phisticated computational algorithm. Numerical computation is particularly important in

high-dimensional scenarios. Several algorithms have been developed in the literature to deal

with regularized quantile regression. A standard method for solving the quantile lasso is to

transform the corresponding optimization problem into a linear program, which can then be

solved by many existing optimization software packages. Koenker and Ng (2005) proposed

an interior-point method for quantile regression and penalized quantile regression. Li and

Zhu (2008) proposed an algorithm for computing the solution path of the lasso penalized

quantile regression following the LARS/lasso (Efron et al., 2004) algorithm. Wu and Lange

(2008) proposed a greedy coordinate descent algorithm for lasso penalized LAD regression.

A similar coordinate descent algorithm for the penalized quantile regression was studied

in Peng and Wang (2015). Yi and Huang (2016) proposed a coordinate descent algorithm for

solving the elastic-net penalized Huber regression and used that to approximate the penalized

quantile regression. Hunter and Lange (2000) presented a majorization-minimization (MM)

algorithm which successively finds quadratic majorizing functions for a perturbed version of

the quantile loss function. For the kernel quantile regression under smoothness-sparsity con-

straint, Lv et al. (2016) developed their algorithm by combining the MM technique in Hunter

and Lange (2000) and the proximal gradient method (Parikh and Boyd, 2013). Yang et al.

(2013) considered a randomized algorithm for solving large scale quantile regression with

small to moderate dimensions.

The alternating direction method of multipliers (ADMM) algorithm has found many

successful applications in high-dimensional statistics and machine learning, such as compre-

hensive sensing (Yin et al., 2008; Goldstein and Osher, 2009), optimal control (O’Donoghue

et al., 2013), and statistics (Xue et al., 2012; Bien et al., 2013; Bogdan et al., 2013; Zhang

et al., 2014), to name a few. Boyd et al. (2011) argued that ADMM is well suited for

distributed convex optimization and for large-scale problems arising in statistics, machine

learning, and related areas. As an important variant of ADMM, the proximal ADMM has

also attracted many research efforts in the fields of optimization; see, for example, Eckstein
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(1994), He et al. (2002), and Fazel et al. (2013).

In this chapter, we propose a proximal ADMM (pADMM) algorithm and a sparse

coordinate descent ADMM (scdADMM) algorithm to solve the penalized quantile regression

with the lasso, adaptive lasso and folded concave penalties. Global convergence results are

established for the proposed methods. In numerical experiments, we demonstrate that our

algorithms can efficiently solve the sparse penalized quantile regression and the solutions

produced by the algorithms are of high statistical accuracy. The chapter is organized as

follows. In Section 3.2, we introduce the sparse penalized quantile regression and set up a

uniform framework to include various regularization types, such as the lasso, adaptive lasso

and folded concave penalties. We present the ADMM algorithms for solving the sparse

penalized quantile regression in Section 3.3. The numerical and statistical efficiency of

the proposed algorithms is demonstrated by simulation studies and real data analysis in

Section 3.4. Technical proofs can be found in the supplementary file.

3.2 Sparse Penalized Quantile Regression

Quantile regression is a popular method for studying the influence of a set of covariates

on the conditional distribution of a response variable. Besides the well-known property

of being robust to outliers, quantile regression has also been widely applied to handling

heteroscedasticity (Koenker and Bassett, 1982; Wang et al., 2012). Given univariate re-

sponse Y 2 R and a vector of covariates X 2 Rp; let FY .yjx/ D Pr.Y � yjX D x/

be the conditional cumulative distribution function and QY .� jx/ D inf fyWFY .yjx/ � �g

be the � th conditional quantile for � 2 .0; 1/. The linear quantile regression model as-

sumes QY .� jx/ D xTˇ.�/ for some unknown coefficient vector ˇ.�/: Given observations

.xi ; yi/niD1; the quantile regression estimator of ˇ.�/ is obtained through minimization of the

empirical loss function
Pn
iD1 ��.yi � xT

iˇ/ over ˇ 2 Rp; where ��.u/ D uf� � I.u < 0/g

is the check loss. Asymptotic properties for the regression quantiles under fixed dimension
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have been well studied (Koenker and Bassett, 1978; Chen et al., 1990; Pollard, 1991). When

the dimension is allowed to increase, but with p D o.n/, the asymptotic behaviors of the

regression quantiles can be investigated directly using results from Welsh (1989), Bai and

Wu (1994) and He and Shao (2000). With even higher dimensions, especially when p > n,

the sparse penalized quantile regression has been proposed to encourage sparsity in the

coefficient estimates where we consider minimizing

1

n

nX
iD1

��.yi � xT
iˇ/C

nX
jD1

p�.jˇj j/

over ˇ 2 Rp; where p�.�/; � > 0 is the penalty function introduced to control the

model complexity. A popular choice of p�.�/ is the lasso penalty. Under some spar-

sity assumption of ˇ.�/, the lasso penalized regression estimator is shown to be con-

sistent at near-oracle rate O.
p
s logp=n/ by Belloni and Chernozhukov (2011), where

s D kˇ.�/k0 D
Pp
jD1 I.ˇj .�/ ¤ 0/. To alleviate the bias phenomenon of the lasso,

adaptive lasso and folded concave penalties have been used in, for example, Wang et al.

(2012), Fan et al. (2014a) and Fan et al. (2014b).

Sparse penalized quantile regression is computationally challenging due to the nons-

mooth nature of the check loss. An added layer of complexity comes from the nonsmooth-

ness of the penalty functions, let alone the issues arising from nonconvex optimization when

folded concave penalties are used. In this chapter, we propose fast alternating direction

method of multipliers algorithms for computing penalized quantile regression with various

penalties. To facilitate the discussion, let us consider the following weighted L1-penalized

quantile regression

min
ˇ

1

n

nX
iD1

��.yi � xT
iˇ/C �kw ı ˇk1; (3.1)

where � > 0 is the regularization parameter, w D .w1; : : : ; wp/T is the vector of nonnegative
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weights, wj � 0; j D 1; : : : ; p; and kw ı ˇk1 D
Pp
jD1 jwjˇj j D

Pp
jD1wj jˇj j with

ı denoting the Hadamard product. We note that in formulation (3.1), if xi1 D 1 and ˇ1

represents the intercept term, one can set w1 D 0 to respect the practice of leaving the

intercept term unpenalized.

To see why formulation (3.1) is general, note that for the lasso penalized quantile

regression, one can choose w D 1p; a vector of all ones. While for the adaptive lasso

penalized quantile regression, the typical choice, wj D .j Ǒlasso
j j C 1=n/

�1; j D 1 : : : ; p; is

often employed, where b̌lasso D . Ǒlasso
j ; j D 1; : : : ; p/T denotes the quantile lasso estimator.

Once the problem in (3.1) is efficiently solved, the nonconvex penalized quantile re-

gression can then be solved by combining the local linear approximation (LLA, Zou and

Li, 2008) algorithm and the efficient algorithm for solving (3.1). Specifically, let p� be a

folded concave penalty (Fan and Lv, 2011; Fan et al., 2014b). The LLA algorithm solves

the folded concave penalized quantile regression,

min
ˇ

1

n

nX
iD1

��.yi � xT
iˇ/C

pX
jD1

p�.jˇj j/;

via the following iterations:

(a) Initialize ˇ with b̌0:
(b) For k D 1; 2; : : : ;M;

(b.1) Compute the weights wj D Owk�1j D ��1p0
�
.j Ǒk�1j j/; j D 1; : : : ; p:

(b.2) Solve problem (3.1) using the weights from step (b.1) to obtain the update b̌k:
It can be seen that the folded concave penalized quantile regression is solved by a sequence

of weighted L1-penalized quantile regression. In fact, Fan et al. (2014b) showed that

theoretically two or three iterations are good enough to yield a solution with high statistical
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accuracy. As an example, the SCAD penalty has derivative

p0�.u/ D �I.juj � �/C
max.a� � juj; 0/

a � 1
I.juj > �/

for some a > 2: A typical choice is a D 3:7 as suggested by Fan and Li (2001). It was

shown in Fan et al. (2014b) that one only needs to take b̌0 D b̌lasso and run the LLA

algorithm for two iterations to obtain the quantile SCAD estimator.

3.3 Alternating Direction Algorithm

3.3.1 Review of two existing algorithms

A typical approach to solving the weighted L1-penalized quantile regression is to cast

it as a linear program and then solve the linear program using the interior point method.

The popular R package quantreg (Koenker, 2016) is based on an interior-point method

specifically designed for solving the (penalized) quantile regression (Koenker and Ng, 2005).

Note that the weighted L1-penalized quantile regression (3.1) is equivalent to the linear

program

minimize �1T
nuC .1 � �/1T

nvC .n�/wTˇC C .n�/wTˇ�

subject to u � vC XˇC � Xˇ� D y

u; v 2 RnC; ˇ
C;ˇ� 2 RpC;

(3.2)
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where y D .y1; : : : ; yn/
T and X D .x1; : : : ; xn/T: Problem (3.2) is often solved with the

interior point method (Koenker and Ng, 2005) in its dual domain

minimize .�yT; 0T
p/d

subject to ŒXT .2n�/diag.w/�d D .1 � �/XT1n C .n�/w

0 � dk � 1; k D 1; : : : ; nC p;

(3.3)

where diag.w/ denotes the diagonal matrix with the components of w on its diagonals. Note

that the dual problem (3.3) involves p equality constraints. We notice that the interior point

algorithm is the state-of-the-art method for fitting quantile regression for low or moderate

dimension, but it fails to scale well with high dimensions. For numerical evidence, see

Section 3.4. This observation motivates us to consider an efficient alternative for fitting the

high-dimensional quantile regression.

During the revision, one reviewer pointed out the algorithm by Yi and Huang (2016).

Specifically, Yi and Huang (2016) proposed a coordinate descent algorithm to solve the

penalized Huber regression and used its solutions to approximate those of the penalized

quantile regression. Their algorithm is implemented in the R package hqreg (Yi, 2016).

We include this algorithm in our numerical comparisons. It is worth mentioning that both

interior-point algorithm and our algorithm solve the exact quantile regression problem in

theory, while hgreg offers an approximate solution.

3.3.2 Two ADMM algorithms

We now introduce two ADMM algorithms for solving the weighted L1-penalized quantile

regression. These new algorithms can be combined with the LLA algorithm to solve the

SCAD penalized quantile regression.

For ease of notation, we denote Q�.z/ D .1=n/
Pn
iD1 ��.zi/ for z D .z1; : : : ; zn/

T: In

order to handle the nonsmoothness of the check loss, we introduce new variables z D y�Xˇ:



3.3. ALTERNATING DIRECTION ALGORITHM 58

By convexity, problem (3.1) is equivalent to

minˇ;z Q�.z/C �kw ı ˇk1
subject to Xˇ C z D y:

(3.4)

Fix � > 0 and the augmented Lagrangian function of (3.4) is

L�.ˇ; z;�/ WD Q�.z/C �kw ı ˇk1 � h�;Xˇ C z � yi C
�

2
kXˇ C z � yk22;

where � 2 Rn is the Lagrangian multiplier, and h�; �i and k � k2 denote the inner product and

L2-norm in the Euclidean space, respectively. Following Boyd et al. (2011), the iterations

for the standard ADMM algorithm are given by

ˇkC1 WD arg min
ˇ

L�.ˇ; zk;�k/

zkC1 WD arg min
z

L�.ˇkC1; z;�k/

�kC1 WD �k � �.XˇkC1 C zkC1 � y/;

where .ˇk; zk;�k/ denotes the kth iteration of the algorithm for k � 0. More specifically,

the iterations are

ˇ step W ˇkC1 WD arg min
ˇ

�kw ı ˇk1 � h�k;Xˇi C
�

2
kXˇ C zk � yk22

z step W zkC1 WD arg min
z

Q�.z/ � h�k; zi C
�

2
kzC XˇkC1 � yk22

� step W �kC1 WD �k � �.XˇkC1 C zkC1 � y/:

(3.5)

Note that in the z step, the update of zkC1 has a closed form solution which is very easy

to compute. This property directly addresses the computational difficulty caused by the

nonsmoothness of the quantile regression check loss. In fact, the update of zkC1 can be
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carried out component-wisely. For i D 1; : : : ; n; we have

zkC1i WD arg min
zi

1

n
��.zi/ � �

k
i zi C

�

2
.zi C xT

iˇ
kC1
� yi/

2

D arg min
zi

��.zi/C
n�

2

�
zi �

�
yi � xT

iˇ C
1

�
�ki

��2
:

To solve the above univariate minimization problems, we consider a slightly more general

form

Prox�� Œ�; ˛� WD arg min
u2R

��.u/C
˛

2
.u � �/2; (3.6)

whose solution is given in the following lemma.

Lemma 3.1

Given � 2 .0; 1/ and ˛ > 0; the proximal mapping Prox�� Œ�; ˛� in (3.6) has explicit

expression: Prox�� Œ�; ˛� D � �max ..� � 1/=˛; min.�; �=˛// ; or equivalently,

Prox�� Œ�; ˛� D

8̂̂̂<̂
ˆ̂:
� � �

˛
; if � > �

˛

0; if ��1
˛
� � � �

˛

� � ��1
˛
; if � < ��1

˛
:

�

The operator Prox�� is called proximal mapping. We now apply the proximal mapping

formula to the z step and obtain

zkC1i D Prox��

�
yi � xT

iˇ C
1

�
�ki ; n�

�
; i D 1; : : : ; n: (3.7)

Unlike the z step, the ˇ step does not have a simple closed-form formula with a general

design matrix X. It would be nice to use a simple closed-form update formula for ˇ as

well, then the resulting algorithm is more transparent and easy to code. To this end, we
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adopt a widely used trick known as “linearization” from the operational research literature.

Specifically, we consider adding a proximal term to the objective function in the ˇ step and

replace the ˇ step in the standard ADMM (3.5) with the following augmented ˇ step:

Augmented ˇ step W ˇkC1 WD arg min
ˇ

�kw ı ˇk1 � h�k;Xˇi C
�

2
kXˇ C zk � yk22

C
1

2
kˇ � ˇkk2S;

where S is a positive semi-definite matrix. We let S D �.�Ip �XTX/ with � � ƒmax.XTX/;

where ƒmax.�/ denotes the largest eigenvalue of a real symmetric matrix. Here kvk2S WD

hv;Svi is the semi-norm induced by the semi-inner product defined via S. In the augmented

ˇ step, the update of ˇ can be also carried out component-wisely,

ˇkC1 D arg min
ˇ

�kw ı ˇk1 C
��

2

ˇ � ��ˇk C XT.�k C �y � �Xˇk � �zk/
��

2
2

D

�
Shrink

h
ˇkj C

1

��
X T
j .�

k
C �y � �Xˇk � �zk/;

�wj

��

i�
1�j�p

;

(3.8)

where ShrinkŒu; ˛� D sgn.u/max.juj � ˛; 0/ denotes the soft shrinkage operator and Xj

denotes the j th column of X; j D 1; : : : ; p.

Based on (3.7) and (3.8), we present the proximal ADMM (pADMM) algorithm for

solving the penalized quantile regression

Augmented ˇ step W ˇkC1 WD arg min
ˇ

�kw ı ˇk1 � h�k;Xˇi C
�

2
kXˇ C zk � yk22

C
1

2
kˇ � ˇkk2S

z step W zkC1 WD arg min
z

Q�.z/ � h�k; zi C
�

2
kzC XˇkC1 � yk22

� step W �kC1 WD �k � �.XˇkC1 C zkC1 � y/;

where  is a constant controlling the step length for the � step. We summarize the proximal
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ADMM algorithm in Algorithm 5.

Note that the ˇ step in the ADMM can be also solved with successive linearization

minimization, which is equivalent to a proximal gradient method, such as FISTA (Beck and

Teboulle, 2009; Parikh and Boyd, 2013). In that sense, our augmented ˇ step can be viewed

as a one-step iterate of FISTA with step length 1=.��/. Just like FISTA, on one hand, the

proximal ADMM algorithm can be really fast with a reasonable step size, while on the other

hand, it can become quite slow when the step size is small. Therefore, when � is large,

the step size for the update becomes really small which could result in too many iterations

of the algorithm. However, � is indeed large when the dimension p is high. To address

this concern, we investigate the ADMM algorithm and notice that the ˇ step in (3.5) can

be viewed as a lassoed least squares problem. Although the lassoed least squares problem

does not have a closed form solution in general, it can be directly solved very efficiently

by coordinate descent (Friedman et al., 2007). In other words, we can afford to call a

lassoed least squares solver based on coordinate descent to handle the ˇ step in the ADMM

algorithm. We use scdADMM to denote the combination of sparse coordinate descent and

ADMM. We summarize the scdADMM algorithm in Algorithm 6.

Algorithm 5: pADMM – Proximal ADMM algorithm for solving the weighted L1-
penalized quantile regression.

1. Initialize the algorithm with .ˇ0; z0;�0/:

2. For k D 0; 1; 2; : : : ; repeat steps (2.1) – (2.3) until the convergence criterion is met.

(2.1) Update ˇkC1  
�

Shrink
h
ˇkj C

1
��
XT
j .�

k
C �y � �Xˇk � �zk/; �wj

��

i�
1�j�p

:

(2.2) Update zkC1  
�

Prox��
�
yi � xT

iˇ
kC1
C ��1�ki ; n�

��
1�i�n

:

(2.3) Update �kC1  �k � �.XˇkC1 C zkC1 � y/:
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Algorithm 6: scdADMM – Sparse coordinate descent ADMM algorithm for solving
the weighted L1-penalized quantile regression with coordinate descent steps.

1. Initialize the algorithm with .ˇ0; z0;�0/:

2. For k D 0; 1; 2; : : : ; repeat steps (2.1) – (2.3) until the convergence criterion is met.

(2.1) Carry out the coordinate descent steps (2.1.1) – (2.1.3).

(2.1.1) Initialize ˇk;0 D ˇk :
(2.1.2) For m D 0; 1; 2; : : : ; repeat step (2.1.2.1) until convergence.

(2.1.2.1) For j D 1; : : : ; p; update

ˇ
k;mC1
j  

Shrink
hPn

iD1 xij

n
�ki C �

�
yi � z

k
i �

P
t¤j xitˇ

k;mCI.t<j /
t

�o
; �wj

i
�kXj k

2
2

:

(2.1.3) Set ˇkC1  ˇk;mC1:

(2.2) Update zkC1  
�

Prox��
�
yi � xT

iˇ
kC1
C ��1�ki ; n�

��
1�i�n

:

(2.3) Update �kC1  �k � �.XˇkC1 C zkC1 � y/:

3.3.3 Convergence theory

In this section, we establish the convergence properties of scdADMM and pADMM. Note

that the convergence of the scdADMM algorithm (Algorithm 6) can be directly obtained

from Boyd et al. (2011). Therefore, we only establish the convergence result for the pADMM

algorithm (Algorithm 5). We show that with proper choice of the step length ; the pADMM

algorithm yields a sequence f.ˇk; zk/; k D 1; 2; : : :g that converges to a global minimizer

of problem .3:4/.

Theorem 3.1

For given � > 0; � > 0; 0 < � < 1; 0 <  < .
p
5 C 1/=2 and a component-wisely

nonnegative weight vector w, let f.ˇk; zk;�k/g be generated by the pADMM algorithm

as described in Algorithm 5. Then, the sequence f.ˇk; zk/; k D 0; 1; 2; : : :g converges to

an optimal solution .ˇ�; z�/ to (3.4) and f�k; k D 0; 1; 2; : : :g converges to an optimal

solution �� to the dual problem of (3.4). Equivalently, fˇk; k D 0; 1; 2; : : :g converges
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to a global minimizer of problem (3.1). Moreover, when  D 1; the sequence of norms

fkˇk � ˇ�k2S C �kzk � z�k22 C ��1k�
k
� ��k22; k � 0g is non-increasing and satisfies

kˇk � ˇ�k2S C �kzk � z�k22 C ��1k�
k
� ��k22 D O.1=k/ as k !1: �

The proof of the theorem can be found in the supplementary file. Note that the con-

vergence of the algorithm is guaranteed regardless of the value � takes. According to the

theorem, when  D 1; the worst-case convergence rate of the algorithm is at least of order

1=k in terms of the iterate norms defined in the theorem, where k is the iteration number.

Moreover, by setting  D 1 and S D 0; the convergence results in Theorem 3.1 can be

naturally applied to scdADMM.

3.3.4 Implementation details

We implement Algorithms 5–6 in an R package FHDQR, where FHDQR stands for fast high-

dimensional quantile regression. In this section we describe some important implementation

details of the package.

When no � value is specified, the package will use a default � sequence that is calculated

based on the Karush–Kuhn–Tucker (KKT) condition. This � sequence is determined by its

largest element �max; a factor ı and the number of elements M in the sequence such that the

smallest element is given by �min D ı�max and the kth element of the sequence is calculated

by

�k D �
M�k
M�1
max �

k�1
M�1

min ; k D 1; : : : ;M:

This makes the � sequence a decreasing arithmetic progression on the logarithmic scale.

By default, M is 100 and ı is 0:001 when n � p and 0:05 when n < p: We select �max to

make sure that all coefficients ˇj ; 1 � j � p; are shrunk to zero. One such �max can be
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derived from the KKT condition. Specifically, b̌ is an optimal solution to problem (3.1) if

0 2 �
1

n

nX
iD1

@��.yi � xT
i
b̌/xij C �wj@j Ǒj j (3.9)

for all j D 1; : : : ; p; where @��.u/ D .� � 1=2/C .1=2/@juj and

@juj D

8<: sgn.u/; if u ¤ 0

Œ�1; 1�; if u D 0:

Here, @f .x/ denotes the sub-differential of a convex function f at x and sgn.�/ denotes the

sign function. For simplicity, assume that all wj ’s are positive. Then it follows directly

from (3.9) that the choice

�max D max
1�j�p

w�1j

�ˇ̌̌2� � 1
2n

nX
iD1

xij C
1

2n

X
i…Z

sgn.yi/xij
ˇ̌̌
C

1

2n

X
i2Z

jxij j

�
;

shrinks all coefficients toward exact zero, where Z D fi Wyi D 0; 1 � i � ng:

We also implement the warm-start technique (Friedman et al., 2010, 2007), which uses

the solution at the current � value as the initial value for the solution at the next � value.

The ADMM algorithm is iterated until some stopping criterion is met. We adopt the

stopping criterion from Boyd et al. (2011), Subsection 3.3.1. Specifically, the algorithm is

terminated either when the sequence f.ˇk; zk;�k/g meets the following criterion

kXˇk C zk � yk2 �
p
n�1 C �2 maxfkXˇkk2; kzkk2; kyk2g;

�kXT.zk � zk�1/k2 �
p
p�1 C �2kXT�kk2;

where typical choices are �1 D 10�3 and �2 D 10�3; or when the number of ADMM

iterations exceeds a certain number, say 105; at each � value along the sequence.
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3.4 Numerical Experiments

In this section, we first compare the running times of the ADMM algorithms with those

of the R packages quantreg and hqreg for fitting penalized quantile regression and

then investigate the finite-sample statistical performance of penalized quantile regression as

compared to the penalized least squares.

3.4.1 Timing comparisons

We conduct extensive timing comparisons for various scenarios of high-dimensional models.

Through these timing comparisons, we demonstrate that FHDQR compares favorably against

quantreg and hqreg. For the timing comparison, we only consider the lasso penalty

for demonstration purpose. All timings reported are performed on an Intel Core i5-3210M

processor (single-core, 2:5 GHz).

The first study. In the first setup, we consider a popular simulation model from Fried-

man et al. (2010) to generate data for timing comparison. We simulate data with n observa-

tions from the linear model

Y D

pX
jD1

Xjˇj C k � "; (3.10)

where .X1; : : : ; Xp/T � N.0;†/;† D .˛C.1�˛/I.i D j //p�p; ˇj D .�1/j exp.�.2j�

1/=20/; " � N.0; 1/; and k is chosen such that the signal-noise ratio of the data is 3:0: For

our timing comparison, we focus on the high-dimensional situation, where n D 100 and

p D 1000 or 5000; with various choices of the correlation ˛ 2 f0; 0:1; 0:2; 0:5; 0:9; 0:95g.

Under each scenario, the timings in seconds are recorded by accumulating the overall time

spent on fitting the lasso penalized quantile regression over the same sequence of one

hundred � values. For illustration purpose, three different � values, 0:25; 0:50 and 0:75, are

considered.
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The average timings over three runs are reported in Tables 3.1–3.2. We see that the

ADMM algorithms and hqreg are a lot faster than quantreg and scdADMM is the

fastest. When the correlation ˛ is small, pADMM is very fast. When the correlation grows,

pADMM becomes slower. This can be understood by observing that ƒmax.XTX/ becomes

larger as the correlation grows. It is nice to see that scdADMM and hqreg are insensitive

to the correlation.

Note that in order to do a meaningful timing comparison, we need to check that the

objective function values of problem (3.1) at the optimal solutions computed by the different

algorithms and make sure different algorithms all yield the same (numerically speaking)

objective function values. See Appendix B for a graphical illustration.

The second study. The second model setup is inspired by the simulation studies in Fan

et al. (2014a). Specifically, the model for the simulated data is

yi D xT
iˇ
�
C "i ; xi � N.0;†x/; i D 1; : : : ; n; (3.11)

where the true coefficient vector is fixed at

ˇ� D .2; 0; 1:5; 0; 0:8; 0; 0; 1; 0; 1:75; 0; 0; 0:75; 0; 0; 0:3; 0T
p�16/

T:

In our numerical experiments, a variety of error distributions are considered, including:

(1) the normal distribution N.0; 2/ with variance 2; (2) the mixture normal distribution

0:9N.0; 1/C 0:1N.0; 25/; denoted by MN1; (3) the mixture normal distribution N.0; �2/

with � � Unif.1; 5/; denoted by MN2; (4) the Laplace distribution with density d.u/ D

0:5 exp.�juj/; (5) the scaled Student’s t-distribution with 4 degrees of freedom,
p
2 � t4;

and (6) the Cauchy distribution with density d.u/ D ��1.1C u2/�1. For the covariance

matrix†x, several scenarios are also considered, from the independence structure†x D Ip;

to the autoregressive structures†x D .0:5
ji�j j/ and .0:8ji�j j/; denoted by AR0:5 and AR0:8

respectively, to the compound symmetric structures †x D .˛ C .1 � ˛/I.i D j // with
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˛ D 0:5 and 0:8; denoted by CS0:5 and CS0:8 respectively.

For all of the above settings, we fix n D 200 and p D 1000 in the timing comparison.

The timings, which are accumulated over one hundred pre-chosen � values, are reported

in Table 3.3. We report results at levels � D 0:50 and � D 0:75 for demonstration purpose.

Several observations can be readily made from this timing comparison. First of all, it is

clear from Table 3.3 that the ADMM algorithms are very fast. Secondly, pADMM works

fairly well for covariance structures I; AR0:5 and AR0:8 and becomes slower for CS0:5 and

CS0:8: Thirdly, the timings for scdADMM exhibit certain insensitivity to the covariance

structures and error distributions. This robustness in timing is also observed in quantreg.

Lastly, hqreg takes longer time to fit the data under the Cauchy distribution even when the

covariance structures have small correlations.

Table 3.1: Timings (in seconds) for running lasso penalized quantile regression (� D
0:25; 0:5 and 0:75) on model (3.10) with n D 100 and p D 1000 over one hundred �
values. Timings reported are averaged over three runs. quantreg: timing by the quantreg
package (300+: above 300 seconds); hqreg: timing by the hqreg package; scdADMM and
pADMM: timing by our package FHDQR.

Correlation (˛)

0.00 0.10 0.20 0.50 0.90 0.95

� D 0:25

quantreg 300+ 300+ 300+ 300+ 300+ 300+
hqreg 9.52 9.32 9.82 9.86 7.05 5.63
pADMM 0.57 4.38 5.85 12.14 18.43 11.62
scdADMM 1.41 1.37 1.36 1.23 1.00 0.94

� D 0:50

quantreg 300+ 300+ 300+ 300+ 300+ 300+
hqreg 6.88 6.64 6.89 7.92 8.65 5.29
pADMM 0.62 5.36 7.85 15.47 30.34 21.66
scdADMM 1.26 1.20 1.26 1.18 1.19 0.91

� D 0:75

quantreg 300+ 300+ 300+ 300+ 300+ 300+
hqreg 8.65 8.34 8.81 8.87 8.37 5.76
pADMM 0.55 4.45 6.26 12.12 21.49 16.40
scdADMM 1.42 1.39 1.48 1.34 1.15 1.20
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Table 3.2: Timings (in seconds) for running lasso penalized quantile regression (� D
0:25; 0:5 and 0:75) on model (3.10) with n D 100 and p D 5000 over one hundred �
values. Timings reported are averaged over three runs. quantreg: timing by the quantreg
package (20000+: above 20000 seconds); hqreg: timing by the hqreg package; scdADMM
and pADMM: timing by our package FHDQR.

Correlation (˛)

0.00 0.10 0.20 0.50 0.90 0.95

� D 0:25

quantreg 20000C 20000C 20000C 20000C 20000C 20000C

hqreg 14.99 14.89 14.60 15.08 13.63 17.58
pADMM 12.57 44.35 62.06 107.52 168.39 147.23
scdADMM 6.19 6.17 5.89 5.93 5.89 5.39

� D 0:50

quantreg 20000C 20000C 20000C 20000C 20000C 20000C

hqreg 9.82 9.76 10.26 11.13 14.34 17.55
pADMM 12.69 51.30 72.92 135.98 187.20 167.19
scdADMM 5.71 5.50 5.32 5.50 6.13 5.98

� D 0:75

quantreg 20000C 20000C 20000C 20000C 20000C 20000C

hqreg 14.47 15.19 14.82 15.96 14.33 13.61
pADMM 12.76 44.15 58.99 104.38 151.69 115.43
scdADMM 6.21 6.36 6.23 5.44 5.65 5.44
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Table 3.3: Timings (in seconds) for running lasso penalized quantile regression (� D 0:5
and 0:75) on model (3.11) with n D 200 and p D 1000 over one hundred � values. All
timings reported are averaged over three runs. quantreg: timing by the quantreg package
(400+: above 400 seconds); hqreg: timing by the hqreg package; scdADMM and pADMM:
timing by our package FHDQR. I: independent structure; AR0:5 (AR0:8): autoregressive
structure with correlation 0:5 (0.8); CS0:5 (CS0:8): compound symmetric structure with
correlation 0:5 (0:8).

Error

Covariance Method N.0; 2/ MN1 MN2 Laplace
p
2� t4 Cauchy

� D 0:50
I quantreg 400+ 400+ 400+ 400+ 400+ 400+

hqreg 10.45 14.35 21.10 10.45 13.95 32.96
scdADMM 3.03 3.06 4.31 2.88 3.39 5.88
pADMM 1.52 1.46 1.45 1.47 1.46 0.46

AR0:5 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 11.19 12.73 21.61 10.48 14.11 24.56
scdADMM 3.76 3.89 4.99 3.47 4.11 5.85
pADMM 1.83 1.80 1.76 1.76 1.77 0.55

AR0:8 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 9.28 8.61 20.03 8.17 11.31 16.06
scdADMM 5.63 5.46 6.91 5.16 5.62 6.80
pADMM 2.63 2.42 2.82 2.43 2.53 0.78

CS0:5 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 13.70 11.64 21.96 10.11 14.32 15.04
scdADMM 7.11 7.34 9.60 6.77 7.68 8.49
pADMM 19.91 18.58 21.49 17.96 20.12 5.65

CS0:8 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 16.88 12.86 19.17 11.01 13.27 10.04
scdADMM 9.11 9.14 10.67 9.18 9.61 9.92
pADMM 13.96 13.45 15.39 14.24 12.83 3.84

� D 0:75
I quantreg 400+ 400+ 400+ 400+ 400+ 400+

hqreg 14.34 15.11 29.34 10.68 14.07 37.02
scdADMM 3.53 3.58 5.07 3.28 3.62 6.48
pADMM 1.33 1.34 1.30 1.22 1.34 0.40

AR0:5 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 11.99 13.12 25.51 10.66 14.48 30.96
scdADMM 4.00 4.22 5.42 3.96 4.38 6.98
pADMM 1.43 1.50 1.55 1.37 1.55 0.45

AR0:8 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 9.95 10.92 19.24 8.30 9.98 13.51
scdADMM 6.54 6.09 7.38 6.03 6.30 7.67
pADMM 2.03 2.19 2.20 2.06 2.08 0.66

CS0:5 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 14.91 13.07 25.15 10.48 13.48 14.55
scdADMM 8.23 8.10 9.57 7.28 8.84 10.79
pADMM 17.66 16.33 18.70 15.76 18.6 4.92

CS0:8 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 15.23 12.13 19.75 9.64 13.54 8.32
scdADMM 9.74 9.87 11.18 9.49 11.59 6.12
pADMM 14.24 13.13 16.67 13.24 14.54 4.11
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3.4.2 Finite sample performance

We investigate the finite-sample performance of the penalized quantile regression. The

purpose is to compare penalized quantile regression with penalized least squares using the

same penalty function. Many researchers have done simulation studies to show that the

penalized quantile regression has some unique advantages over the penalized least squares.

Our simulation study is more extensive than the existing results.

We adopt the six error distributions and five covariance structures that we used in the

second timing study in section 4.1. Under each scenario, we investigate the estimation

and selection performance of the penalized least squares regression and the penalized

quantile regression. Since we observe similar statistical performance for the penalized

quantile regression with � D 0:25 and � D 0:75; we only present the results for � D 0:50

and � D 0:75: All three types of penalties, the lasso, adaptive lasso and folded concave

(specifically, SCAD), are considered in the simulation. The results are summarized in

Tables 3.4–3.8. It is clearly shown that the penalized quantile regression performs better

than the penalized least squares under heavy-tailed error distributions, such as t and Cauchy.

3.4.3 A real data example

The microarray data of Scheetz et al. (2006) comprise gene expression levels of 31,042

probes on 120 twelve-week-old laboratory rats. The data were used to understand the gene

regulation in mammalian eyes and to gain insight into genetic variation related to human

eyes. We apply the penalized quantile regression to analyze this set of microarray data.

Following Scheetz et al. (2006) and Huang et al. (2008), we select the 18,976 probes

that exhibited sufficient variation. Among those probes, there is one probe, 1389163 at,

corresponding to gene TRIM32, that was found to be associated with the Bardet–Biedl

syndrome (Chiang et al., 2006), a human genetic disorder that affects many parts of the

body and primarily the retina. We study how the expression of this gene depends on the
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Table 3.4: Estimation and selection performance of the penalized least squares and penalized
quantile regression (with � D 0:5 and 0:75) for model (3.11) with independent covariates
† D I. The estimation accuracy is measured by the L1 and L2 losses and the selection
accuracy is measured by the number of false positives (FP) and false negatives (FN).
Numbers reported are averaged over 100 independent runs with their respective standard
errors listed in the parentheses.

† D I

Lasso Alasso SCAD

L1, L2 losses
N.0; 2/ LS 3.492 (0.088), 0.783 (0.011) 2.142 (0.081), 0.583 (0.014) 0.806 (0.020), 0.383 (0.007)

QR.0:50/ 4.941 (0.180), 0.906 (0.014) 1.317 (0.038), 0.535 (0.013) 1.331 (0.059), 0.462 (0.010)
QR.0:75/ 4.581 (0.125), 0.995 (0.018) 1.344 (0.045), 0.570 (0.018) 1.390 (0.051), 0.493 (0.012)

MN1 LS 4.217 (0.097), 0.977 (0.018) 3.662 (0.180), 0.869 (0.027) 1.105 (0.043), 0.510 (0.017)
QR.0:50/ 4.133 (0.141), 0.750 (0.011) 0.877 (0.027), 0.385 (0.010) 0.939 (0.030), 0.349 (0.007)
QR.0:75/ 3.877 (0.106), 0.867 (0.016) 1.094 (0.034), 0.473 (0.013) 1.069 (0.038), 0.400 (0.008)

MN2 LS 6.770 (0.164), 1.596 (0.023) 8.990 (0.340), 1.948 (0.039) 2.724 (0.097), 1.173 (0.033)
QR.0:50/ 8.124 (0.320), 1.714 (0.027) 3.281 (0.080), 1.256 (0.026) 3.198 (0.135), 1.147 (0.031)
QR.0:75/ 7.737 (0.277), 1.918 (0.031) 4.185 (0.111), 1.596 (0.033) 4.190 (0.158), 1.520 (0.037)

Laplace LS 3.257 (0.079), 0.759 (0.012) 2.095 (0.080), 0.579 (0.014) 0.784 (0.028), 0.366 (0.010)
QR.0:50/ 3.732 (0.118), 0.723 (0.014) 0.807 (0.026), 0.367 (0.010) 0.864 (0.029), 0.315 (0.008)
QR.0:75/ 4.102 (0.144), 0.861 (0.016) 1.171 (0.041), 0.495 (0.015) 1.293 (0.057), 0.454 (0.012)

p
2� t4 LS 4.722 (0.120), 1.058 (0.020) 4.275 (0.200), 0.992 (0.029) 1.337 (0.057), 0.606 (0.024)

QR.0:50/ 5.489 (0.179), 1.043 (0.017) 1.493 (0.044), 0.593 (0.016) 1.491 (0.068), 0.518 (0.014)
QR.0:75/ 5.706 (0.172), 1.220 (0.022) 1.866 (0.076), 0.771 (0.029) 1.794 (0.066), 0.645 (0.021)

Cauchy LS 11.262 (0.951), 3.442 (0.071) 25.593 (4.345), 8.310 (3.370) 325.098 (78.041), 32.315 (7.091)
QR.0:50/ 5.326 (0.185), 1.098 (0.021) 1.611 (0.072), 0.662 (0.027) 1.543 (0.077), 0.521 (0.020)
QR.0:75/ 7.015 (0.213), 1.642 (0.038) 2.962 (0.124), 1.167 (0.042) 2.924 (0.154), 0.992 (0.037)

FP, FN
N.0; 2/ LS 42.74 (1.81), 0.38 (0.05) 12.60 (0.69), 0.43 (0.05) 0.22 (0.05), 0.84 (0.04)

QR.0:50/ 62.19 (3.28), 0.37 (0.05) 2.43 (0.27), 0.87 (0.04) 9.68 (1.11), 0.62 (0.05)
QR.0:75/ 46.48 (2.38), 0.51 (0.05) 1.68 (0.16), 0.93 (0.05) 8.83 (0.82), 0.67 (0.05)

MN1 LS 39.86 (1.49), 0.53 (0.05) 16.85 (0.98), 0.57 (0.05) 0.49 (0.11), 1.02 (0.04)
QR.0:50/ 63.10 (3.18), 0.23 (0.04) 1.18 (0.15), 0.56 (0.05) 8.27 (0.84), 0.44 (0.05)
QR.0:75/ 42.40 (1.83), 0.41 (0.05) 1.26 (0.15), 0.81 (0.04) 7.87 (0.80), 0.52 (0.05)

MN2 LS 36.98 (1.50), 1.14 (0.08) 21.76 (1.21), 1.55 (0.08) 1.32 (0.14), 2.15 (0.09)
QR.0:50/ 47.99 (3.05), 1.31 (0.09) 3.76 (0.30), 2.07 (0.10) 8.01 (0.88), 1.61 (0.09)
QR.0:75/ 32.99 (2.33), 2.04 (0.11) 3.17 (0.28), 2.83 (0.10) 7.30 (0.81), 2.59 (0.10)

Laplace LS 39.42 (1.77), 0.22 (0.04) 11.79 (0.66), 0.46 (0.05) 0.31 (0.08), 0.67 (0.05)
QR.0:50/ 55.55 (2.31), 0.20 (0.04) 1.11 (0.14), 0.62 (0.05) 9.19 (0.92), 0.31 (0.05)
QR.0:75/ 47.49 (2.64), 0.35 (0.05) 1.54 (0.17), 0.83 (0.05) 9.58 (0.90), 0.61 (0.05)

p
2� t4 LS 42.71 (1.77), 0.59 (0.05) 17.76 (1.01), 0.67 (0.05) 0.56 (0.10), 1.11 (0.06)

QR.0:50/ 58.34 (2.77), 0.42 (0.05) 2.88 (0.24), 0.90 (0.05) 9.86 (1.07), 0.75 (0.05)
QR.0:75/ 47.93 (2.50), 0.67 (0.06) 2.26 (0.18), 1.26 (0.07) 9.15 (0.67), 0.83 (0.06)

Cauchy LS 13.35 (3.15), 6.07 (0.15) 30.01 (5.62), 5.71 (0.18) 108.66 (5.89), 5.00 (0.13)
QR.0:50/ 51.16 (2.46), 0.57 (0.05) 2.32 (0.21), 1.11 (0.07) 11.17 (0.95), 0.66 (0.05)
QR.0:75/ 43.46 (2.22), 1.21 (0.07) 3.02 (0.23), 2.01 (0.11) 11.00 (1.04), 1.34 (0.09)
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Table 3.5: Estimation and selection performance of the penalized least squares and penalized
quantile regression (with � D 0:5 and 0:75) for model (3.11) with covariance matrix
† D .0:5ji�j j/. The estimation accuracy is measured by the L1 and L2 losses and the
selection accuracy is measured by the number of false positives (FP) and false negatives (FN).
Numbers reported are averaged over 100 independent runs with their respective standard
errors listed in the parentheses.

† D .0:5ji�j j/

Lasso Alasso SCAD

L1, L2 losses
N.0; 2/ LS 2.787 (0.081), 0.679 (0.011) 1.718 (0.070), 0.539 (0.014) 0.873 (0.024), 0.404 (0.009)

QR.0:50/ 3.896 (0.141), 0.803 (0.012) 1.199 (0.039), 0.499 (0.013) 1.250 (0.049), 0.455 (0.009)
QR.0:75/ 3.612 (0.111), 0.853 (0.014) 1.372 (0.044), 0.591 (0.017) 1.369 (0.054), 0.511 (0.015)

MN1 LS 3.395 (0.102), 0.821 (0.016) 2.850 (0.135), 0.790 (0.025) 1.149 (0.038), 0.519 (0.017)
QR.0:50/ 3.027 (0.107), 0.628 (0.011) 0.858 (0.026), 0.384 (0.009) 1.042 (0.046), 0.364 (0.009)
QR.0:75/ 3.369 (0.114), 0.781 (0.016) 1.002 (0.032), 0.449 (0.013) 1.081 (0.040), 0.395 (0.008)

MN2 LS 5.764 (0.163), 1.429 (0.024) 7.052 (0.285), 1.705 (0.038) 2.676 (0.100), 1.169 (0.032)
QR.0:50/ 6.559 (0.230), 1.464 (0.025) 2.961 (0.095), 1.136 (0.028) 3.140 (0.131), 1.148 (0.031)
QR.0:75/ 6.780 (0.204), 1.650 (0.030) 3.581 (0.114), 1.391 (0.032) 3.785 (0.132), 1.417 (0.034)

Laplace LS 2.720 (0.075), 0.667 (0.012) 1.799 (0.074), 0.549 (0.015) 0.814 (0.021), 0.380 (0.008)
QR.0:50/ 3.018 (0.108), 0.639 (0.013) 0.788 (0.022), 0.363 (0.009) 0.848 (0.032), 0.312 (0.009)
QR.0:75/ 3.345 (0.116), 0.762 (0.014) 1.081 (0.028), 0.472 (0.010) 1.093 (0.038), 0.418 (0.010)

p
2� t4 LS 3.794 (0.118), 0.934 (0.019) 3.700 (0.168), 0.961 (0.030) 1.312 (0.062), 0.595 (0.023)

QR.0:50/ 4.114 (0.153), 0.880 (0.017) 1.237 (0.038), 0.523 (0.014) 1.408 (0.059), 0.510 (0.016)
QR.0:75/ 4.467 (0.138), 1.044 (0.020) 1.760 (0.058), 0.721 (0.022) 1.731 (0.076), 0.635 (0.021)

Cauchy LS 15.047 (2.087), 3.779 (0.166) 21.601 (3.035), 5.217 (0.469) 299.790 (82.662), 29.588 (7.306)
QR.0:50/ 3.924 (0.127), 0.902 (0.019) 1.310 (0.051), 0.546 (0.018) 1.324 (0.063), 0.476 (0.016)
QR.0:75/ 5.677 (0.201), 1.334 (0.032) 2.369 (0.080), 0.959 (0.031) 2.825 (0.133), 1.009 (0.040)

FP, FN
N.0; 2/ LS 32.75 (1.51), 0.29 (0.05) 7.82 (0.53), 0.46 (0.05) 0.31 (0.07), 0.76 (0.04)

QR.0:50/ 45.12 (2.60), 0.40 (0.05) 1.88 (0.19), 0.72 (0.05) 8.02 (0.94), 0.69 (0.05)
QR.0:75/ 34.69 (1.98), 0.52 (0.05) 1.24 (0.14), 0.93 (0.05) 6.72 (0.74), 0.61 (0.05)

MN1 LS 33.39 (1.66), 0.46 (0.05) 11.19 (0.76), 0.61 (0.05) 0.46 (0.06), 0.96 (0.04)
QR.0:50/ 44.69 (2.27), 0.13 (0.03) 1.11 (0.13), 0.59 (0.05) 9.94 (1.16), 0.40 (0.05)
QR.0:75/ 36.53 (2.02), 0.35 (0.05) 0.75 (0.09), 0.79 (0.05) 7.67 (0.84), 0.48 (0.05)

MN2 LS 29.89 (1.43), 1.11 (0.07) 15.78 (0.97), 1.27 (0.07) 0.97 (0.16), 2.22 (0.08)
QR.0:50/ 38.64 (2.15), 1.20 (0.06) 3.44 (0.29), 1.81 (0.08) 7.56 (0.84), 1.69 (0.08)
QR.0:75/ 31.64 (1.72), 1.43 (0.08) 2.95 (0.27), 2.35 (0.09) 6.12 (0.65), 2.38 (0.10)

Laplace LS 31.80 (1.34), 0.32 (0.05) 8.86 (0.51), 0.50 (0.05) 0.43 (0.07), 0.70 (0.05)
QR.0:50/ 43.52 (2.21), 0.21 (0.04) 0.71 (0.11), 0.57 (0.05) 8.20 (0.88), 0.26 (0.04)
QR.0:75/ 38.20 (2.15), 0.32 (0.05) 1.12 (0.11), 0.77 (0.04) 6.32 (0.64), 0.61 (0.05)

p
2� t4 LS 31.88 (1.51), 0.62 (0.05) 13.59 (0.91), 0.69 (0.05) 0.52 (0.09), 1.14 (0.04)

QR.0:50/ 42.01 (2.28), 0.43 (0.05) 1.51 (0.15), 0.76 (0.05) 7.94 (0.78), 0.73 (0.05)
QR.0:75/ 35.98 (1.93), 0.68 (0.06) 1.84 (0.19), 1.11 (0.06) 7.12 (0.72), 0.89 (0.05)

Cauchy LS 19.81 (4.54), 5.79 (0.17) 25.02 (4.51), 5.35 (0.19) 102.83 (5.77), 4.42 (0.14)
QR.0:50/ 37.45 (1.66), 0.51 (0.05) 1.99 (0.19), 0.90 (0.04) 8.60 (0.77), 0.73 (0.04)
QR.0:75/ 38.92 (2.17), 1.04 (0.06) 2.50 (0.21), 1.54 (0.09) 8.71 (0.77), 1.48 (0.09)
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Table 3.6: Estimation and selection performance of the penalized least squares and penalized
quantile regression (with � D 0:5 and 0:75) for model (3.11) with covariance matrix
† D .0:8ji�j j/. The estimation accuracy is measured by the L1 and L2 losses and the
selection accuracy is measured by the number of false positives (FP) and false negatives (FN).
Numbers reported are averaged over 100 independent runs with their respective standard
errors listed in the parentheses.

† D .0:8ji�j j/

Lasso Alasso SCAD

L1, L2 losses
N.0; 2/ LS 2.497 (0.081), 0.718 (0.018) 1.603 (0.061), 0.583 (0.019) 1.272 (0.061), 0.554 (0.023)

QR.0:50/ 3.151 (0.125), 0.829 (0.023) 1.726 (0.077), 0.726 (0.028) 1.684 (0.067), 0.660 (0.025)
QR.0:75/ 3.477 (0.105), 0.927 (0.020) 1.798 (0.078), 0.765 (0.030) 1.960 (0.085), 0.741 (0.025)

MN1 LS 3.453 (0.107), 0.949 (0.024) 2.496 (0.116), 0.856 (0.032) 1.707 (0.091), 0.733 (0.036)
QR.0:50/ 2.731 (0.097), 0.697 (0.016) 1.244 (0.046), 0.541 (0.019) 1.229 (0.066), 0.460 (0.013)
QR.0:75/ 2.981 (0.111), 0.809 (0.023) 1.375 (0.056), 0.610 (0.023) 1.407 (0.054), 0.558 (0.020)

MN2 LS 5.380 (0.141), 1.552 (0.032) 6.176 (0.219), 1.781 (0.042) 3.859 (0.131), 1.592 (0.048)
QR.0:50/ 5.656 (0.200), 1.478 (0.036) 3.746 (0.146), 1.454 (0.048) 3.949 (0.154), 1.512 (0.048)
QR.0:75/ 6.397 (0.197), 1.760 (0.041) 4.564 (0.158), 1.801 (0.053) 4.531 (0.157), 1.733 (0.055)

Laplace LS 2.592 (0.082), 0.736 (0.019) 1.499 (0.057), 0.568 (0.019) 1.272 (0.059), 0.560 (0.023)
QR.0:50/ 2.417 (0.087), 0.652 (0.016) 1.058 (0.043), 0.474 (0.018) 1.139 (0.054), 0.437 (0.017)
QR.0:75/ 3.132 (0.108), 0.844 (0.023) 1.497 (0.068), 0.640 (0.026) 1.638 (0.078), 0.624 (0.023)

p
2� t4 LS 3.378 (0.098), 0.983 (0.025) 2.805 (0.127), 0.926 (0.035) 2.175 (0.113), 0.896 (0.041)

QR.0:50/ 3.795 (0.146), 0.961 (0.024) 1.778 (0.071), 0.770 (0.029) 1.836 (0.082), 0.716 (0.028)
QR.0:75/ 4.120 (0.138), 1.123 (0.028) 2.377 (0.092), 0.989 (0.033) 2.392 (0.108), 0.921 (0.035)

Cauchy LS 24.121 (6.956), 5.008 (0.750) 18.301 (1.326), 5.339 (0.241) 1105.656 (391.026), 96.732 (29.233)
QR.0:50/ 3.745 (0.117), 1.004 (0.026) 2.042 (0.098), 0.853 (0.039) 1.777 (0.088), 0.689 (0.031)
QR.0:75/ 5.360 (0.177), 1.408 (0.035) 3.380 (0.152), 1.324 (0.050) 3.531 (0.155), 1.308 (0.051)

FP, FN
N.0; 2/ LS 21.47 (1.16), 0.26 (0.04) 4.37 (0.34), 0.51 (0.05) 0.57 (0.10), 0.86 (0.04)

QR.0:50/ 26.49 (1.92), 0.42 (0.05) 1.05 (0.11), 1.04 (0.05) 5.83 (0.73), 0.99 (0.05)
QR.0:75/ 25.73 (1.56), 0.53 (0.05) 1.10 (0.11), 1.02 (0.06) 6.42 (0.82), 0.89 (0.05)

MN1 LS 24.03 (1.17), 0.48 (0.05) 5.17 (0.37), 0.70 (0.06) 0.69 (0.10), 1.04 (0.06)
QR.0:50/ 28.67 (1.79), 0.24 (0.04) 0.63 (0.08), 0.78 (0.05) 7.21 (1.24), 0.65 (0.05)
QR.0:75/ 24.29 (1.44), 0.38 (0.05) 0.69 (0.09), 0.81 (0.05) 5.07 (0.60), 0.86 (0.04)

MN2 LS 19.53 (1.08), 1.24 (0.07) 10.02 (0.69), 1.58 (0.08) 1.33 (0.14), 2.42 (0.08)
QR.0:50/ 27.12 (1.74), 1.10 (0.06) 2.73 (0.23), 1.90 (0.10) 4.54 (0.51), 2.12 (0.09)
QR.0:75/ 23.18 (1.43), 1.25 (0.07) 2.37 (0.21), 2.38 (0.09) 3.89 (0.42), 2.43 (0.09)

Laplace LS 21.84 (1.16), 0.29 (0.05) 3.46 (0.28), 0.44 (0.05) 0.53 (0.08), 0.89 (0.05)
QR.0:50/ 24.47 (1.51), 0.21 (0.04) 0.63 (0.08), 0.69 (0.05) 7.14 (0.89), 0.57 (0.05)
QR.0:75/ 24.56 (1.42), 0.44 (0.05) 0.79 (0.10), 0.91 (0.05) 5.69 (0.80), 0.86 (0.04)

p
2� t4 LS 19.68 (0.90), 0.51 (0.06) 6.70 (0.40), 0.83 (0.05) 1.26 (0.16), 1.24 (0.07)

QR.0:50/ 29.32 (1.89), 0.45 (0.05) 1.13 (0.13), 1.04 (0.06) 5.21 (0.60), 1.04 (0.04)
QR.0:75/ 24.13 (1.50), 0.70 (0.06) 1.55 (0.15), 1.30 (0.07) 4.97 (0.53), 1.23 (0.05)

Cauchy LS 17.76 (3.45), 5.33 (0.19) 12.48 (2.26), 5.38 (0.17) 116.48 (6.97), 4.88 (0.11)
QR.0:50/ 27.86 (1.63), 0.50 (0.06) 1.55 (0.14), 1.15 (0.06) 5.43 (0.68), 0.95 (0.06)
QR.0:75/ 30.64 (1.98), 0.83 (0.07) 2.11 (0.18), 1.78 (0.09) 5.78 (0.60), 1.73 (0.09)
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Table 3.7: Estimation and selection performance of the penalized least squares and penalized
quantile regression (with � D 0:5 and 0:75) for model (3.11) with covariance matrix
† D .0:5 C 0:5I.i D j //. The estimation accuracy is measured by the L1 and L2
losses and the selection accuracy is measured by the number of false positives (FP) and
false negatives (FN). Numbers reported are averaged over 100 independent runs with their
respective standard errors listed in the parentheses.

† D .0:5C 0:5I.i D j //

Lasso Alasso SCAD

L1, L2 losses
N.0; 2/ LS 4.229 (0.109), 0.959 (0.017) 1.717 (0.056), 0.610 (0.016) 1.286 (0.060), 0.570 (0.022)

QR.0:50/ 5.744 (0.216), 1.177 (0.018) 1.710 (0.060), 0.718 (0.023) 1.681 (0.078), 0.674 (0.024)
QR.0:75/ 5.630 (0.152), 1.236 (0.020) 2.016 (0.069), 0.835 (0.026) 2.170 (0.111), 0.824 (0.028)

MN1 LS 5.427 (0.114), 1.250 (0.023) 2.974 (0.107), 0.940 (0.027) 1.997 (0.092), 0.873 (0.036)
QR.0:50/ 4.425 (0.118), 0.937 (0.014) 1.212 (0.039), 0.526 (0.015) 1.120 (0.045), 0.454 (0.012)
QR.0:75/ 4.664 (0.133), 1.058 (0.021) 1.542 (0.055), 0.652 (0.021) 1.388 (0.062), 0.560 (0.018)

MN2 LS 8.820 (0.229), 2.028 (0.031) 7.923 (0.272), 2.039 (0.046) 4.931 (0.149), 1.821 (0.041)
QR.0:50/ 8.815 (0.244), 1.989 (0.032) 5.067 (0.177), 1.749 (0.046) 5.678 (0.306), 1.865 (0.049)
QR.0:75/ 9.878 (0.253), 2.292 (0.033) 6.584 (0.210), 2.193 (0.054) 6.539 (0.249), 2.179 (0.055)

Laplace LS 4.217 (0.100), 0.973 (0.018) 1.753 (0.059), 0.620 (0.017) 1.294 (0.051), 0.578 (0.021)
QR.0:50/ 4.120 (0.135), 0.887 (0.016) 1.110 (0.042), 0.494 (0.017) 0.991 (0.049), 0.408 (0.012)
QR.0:75/ 5.207 (0.168), 1.103 (0.022) 1.667 (0.067), 0.700 (0.025) 1.609 (0.081), 0.666 (0.024)

p
2� t4 LS 6.027 (0.158), 1.342 (0.025) 3.706 (0.147), 1.114 (0.032) 2.265 (0.107), 0.975 (0.038)

QR.0:50/ 5.941 (0.164), 1.276 (0.022) 2.045 (0.074), 0.842 (0.027) 1.900 (0.079), 0.780 (0.028)
QR.0:75/ 6.485 (0.165), 1.456 (0.025) 2.819 (0.108), 1.090 (0.034) 2.959 (0.125), 1.112 (0.035)

Cauchy LS 20.931 (2.691), 4.650 (0.241) 32.018 (3.774), 8.487 (0.627) 472.891 (139.968), 46.890 (12.323)
QR.0:50/ 5.905 (0.191), 1.324 (0.028) 2.497 (0.131), 0.978 (0.040) 2.257 (0.113), 0.868 (0.035)
QR.0:75/ 8.193 (0.223), 1.904 (0.038) 4.563 (0.211), 1.598 (0.057) 4.904 (0.198), 1.684 (0.051)

FP, FN
N.0; 2/ LS 38.01 (1.37), 0.53 (0.05) 4.77 (0.26), 0.75 (0.04) 0.56 (0.11), 1.02 (0.04)

QR.0:50/ 44.74 (2.64), 0.58 (0.05) 1.44 (0.13), 1.06 (0.05) 2.76 (0.43), 1.05 (0.05)
QR.0:75/ 38.27 (1.67), 0.67 (0.05) 1.89 (0.14), 1.29 (0.06) 3.90 (0.81), 1.24 (0.06)

MN1 LS 37.55 (1.10), 0.74 (0.06) 7.95 (0.35), 1.01 (0.06) 0.57 (0.08), 1.58 (0.07)
QR.0:50/ 41.34 (1.72), 0.44 (0.05) 0.82 (0.10), 0.90 (0.04) 2.68 (0.47), 0.72 (0.05)
QR.0:75/ 35.76 (1.55), 0.57 (0.05) 1.13 (0.12), 1.05 (0.05) 2.39 (0.44), 0.90 (0.04)

MN2 LS 36.00 (1.38), 1.86 (0.07) 15.80 (0.89), 2.16 (0.09) 4.80 (0.65), 2.87 (0.09)
QR.0:50/ 34.48 (1.46), 1.94 (0.07) 5.08 (0.31), 2.75 (0.10) 6.23 (0.99), 2.84 (0.08)
QR.0:75/ 32.74 (1.38), 2.46 (0.10) 5.61 (0.29), 3.48 (0.09) 5.29 (0.50), 3.34 (0.11)

Laplace LS 37.45 (1.05), 0.45 (0.05) 5.16 (0.25), 0.74 (0.05) 0.43 (0.07), 1.07 (0.04)
QR.0:50/ 38.10 (1.96), 0.42 (0.05) 0.65 (0.08), 0.86 (0.05) 2.94 (0.45), 0.71 (0.05)
QR.0:75/ 41.16 (1.93), 0.62 (0.05) 1.44 (0.13), 1.13 (0.05) 2.29 (0.46), 1.03 (0.06)

p
2� t4 LS 40.64 (1.53), 0.84 (0.06) 9.13 (0.42), 1.03 (0.06) 0.92 (0.20), 1.68 (0.08)

QR.0:50/ 41.34 (1.78), 0.83 (0.06) 2.23 (0.17), 1.24 (0.06) 2.03 (0.26), 1.19 (0.06)
QR.0:75/ 35.86 (1.43), 0.99 (0.05) 2.90 (0.21), 1.83 (0.08) 3.83 (0.48), 1.71 (0.07)

Cauchy LS 23.75 (3.68), 6.02 (0.12) 19.74 (3.82), 6.42 (0.10) 96.64 (6.00), 5.51 (0.13)
QR.0:50/ 40.24 (2.18), 0.80 (0.06) 2.64 (0.24), 1.47 (0.08) 3.49 (0.47), 1.36 (0.07)
QR.0:75/ 38.41 (1.69), 1.74 (0.09) 4.46 (0.27), 2.60 (0.12) 4.47 (0.35), 2.60 (0.10)
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Table 3.8: Estimation and selection performance of the penalized least squares and penalized
quantile regression (with � D 0:5 and 0:75) for model (3.11) with covariance matrix
† D .0:8 C 0:2I.i D j //. The estimation accuracy is measured by the L1 and L2
losses and the selection accuracy is measured by the number of false positives (FP) and
false negatives (FN). Numbers reported are averaged over 100 independent runs with their
respective standard errors listed in the parentheses.

† D .0:8C 0:2I.i D j //

Lasso Alasso SCAD

L1, L2 losses
N.0; 2/ LS 6.199 (0.119), 1.440 (0.022) 3.354 (0.131), 1.143 (0.030) 3.009 (0.108), 1.258 (0.037)

QR.0:50/ 7.938 (0.228), 1.716 (0.024) 3.656 (0.110), 1.419 (0.035) 4.195 (0.246), 1.425 (0.041)
QR.0:75/ 7.884 (0.176), 1.820 (0.030) 4.301 (0.146), 1.617 (0.044) 4.960 (0.207), 1.653 (0.033)

MN1 LS 7.969 (0.171), 1.853 (0.030) 5.295 (0.201), 1.609 (0.041) 4.083 (0.184), 1.606 (0.056)
QR.0:50/ 6.745 (0.199), 1.415 (0.025) 2.689 (0.089), 1.124 (0.033) 2.635 (0.124), 1.003 (0.032)
QR.0:75/ 6.973 (0.151), 1.603 (0.026) 3.421 (0.125), 1.345 (0.037) 3.768 (0.167), 1.311 (0.039)

MN2 LS 11.557 (0.209), 2.766 (0.039) 11.552 (0.358), 3.005 (0.065) 9.011 (0.245), 3.005 (0.061)
QR.0:50/ 11.892 (0.385), 2.688 (0.048) 9.125 (0.242), 2.996 (0.061) 9.467 (0.394), 2.839 (0.065)
QR.0:75/ 13.183 (0.294), 3.110 (0.040) 10.657 (0.234), 3.431 (0.061) 10.788 (0.262), 3.218 (0.055)

Laplace LS 6.021 (0.132), 1.416 (0.024) 3.593 (0.167), 1.196 (0.034) 2.993 (0.120), 1.260 (0.038)
QR.0:50/ 5.902 (0.138), 1.317 (0.024) 2.608 (0.086), 1.087 (0.033) 2.394 (0.154), 0.906 (0.040)
QR.0:75/ 7.431 (0.182), 1.703 (0.029) 3.557 (0.120), 1.398 (0.038) 3.645 (0.159), 1.309 (0.037)

p
2� t4 LS 7.969 (0.172), 1.878 (0.029) 5.866 (0.221), 1.715 (0.041) 5.089 (0.208), 1.942 (0.056)

QR.0:50/ 8.922 (0.259), 1.957 (0.033) 4.689 (0.141), 1.742 (0.043) 4.704 (0.186), 1.652 (0.038)
QR.0:75/ 9.250 (0.213), 2.121 (0.030) 5.468 (0.161), 1.971 (0.045) 6.322 (0.239), 2.024 (0.045)

Cauchy LS 23.053 (3.151), 5.664 (0.438) 33.802 (7.390), 8.318 (0.940) 473.486 (133.365), 53.634 (12.914)
QR.0:50/ 8.023 (0.243), 1.872 (0.039) 4.608 (0.187), 1.706 (0.054) 4.987 (0.235), 1.727 (0.056)
QR.0:75/ 11.009 (0.260), 2.635 (0.046) 8.118 (0.265), 2.714 (0.075) 8.619 (0.331), 2.589 (0.063)

FP, FN
N.0; 2/ LS 36.49 (0.96), 0.93 (0.05) 6.50 (0.58), 1.45 (0.07) 0.96 (0.12), 2.09 (0.08)

QR.0:50/ 38.46 (1.83), 1.33 (0.09) 2.11 (0.14), 2.26 (0.08) 4.95 (1.03), 2.01 (0.09)
QR.0:75/ 33.41 (1.16), 1.58 (0.09) 2.61 (0.15), 2.70 (0.09) 5.95 (0.95), 2.36 (0.10)

MN1 LS 35.91 (0.99), 1.44 (0.09) 9.39 (0.65), 2.05 (0.09) 1.69 (0.36), 2.55 (0.09)
QR.0:50/ 41.13 (1.81), 0.87 (0.06) 1.11 (0.11), 1.77 (0.08) 2.80 (0.49), 1.47 (0.07)
QR.0:75/ 34.83 (1.12), 1.05 (0.07) 2.22 (0.18), 2.09 (0.08) 4.27 (0.48), 1.89 (0.09)

MN2 LS 31.06 (0.81), 3.27 (0.10) 16.10 (0.71), 3.74 (0.10) 9.30 (0.99), 4.12 (0.10)
QR.0:50/ 32.37 (1.56), 3.09 (0.10) 5.61 (0.25), 4.36 (0.09) 7.15 (0.72), 4.08 (0.10)
QR.0:75/ 30.37 (1.14), 3.90 (0.10) 6.10 (0.22), 4.95 (0.09) 7.75 (0.40), 4.66 (0.11)

Laplace LS 34.77 (0.90), 0.89 (0.05) 6.60 (0.72), 1.55 (0.07) 0.85 (0.13), 2.12 (0.08)
QR.0:50/ 35.76 (1.28), 0.77 (0.06) 1.04 (0.10), 1.68 (0.07) 2.86 (0.53), 1.39 (0.07)
QR.0:75/ 33.92 (1.22), 1.19 (0.07) 1.97 (0.16), 2.32 (0.09) 3.80 (0.47), 1.88 (0.08)

p
2� t4 LS 34.02 (1.01), 1.64 (0.08) 10.81 (0.89), 2.17 (0.09) 1.78 (0.27), 3.10 (0.09)

QR.0:50/ 38.86 (1.61), 1.71 (0.10) 2.80 (0.18), 2.81 (0.08) 4.09 (0.55), 2.50 (0.08)
QR.0:75/ 34.06 (1.29), 2.09 (0.10) 3.59 (0.21), 3.10 (0.08) 5.95 (0.71), 2.90 (0.09)

Cauchy LS 17.01 (2.41), 6.61 (0.08) 16.47 (2.97), 6.62 (0.08) 55.88 (5.62), 6.22 (0.10)
QR.0:50/ 40.24 (2.29), 1.54 (0.09) 3.05 (0.30), 2.65 (0.09) 7.41 (3.33), 2.52 (0.10)
QR.0:75/ 41.00 (4.63), 2.97 (0.11) 5.09 (0.23), 4.05 (0.10) 10.78 (2.95), 3.74 (0.09)
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expressions of all other 18,975 genes. We first standardize the 18,975 gene expressions

and select the 3,000 probes with the largest variances. Those 3,000 expressions are then

analyzed on a logarithmic scale with base two.

In our analysis, we also conduct timing comparison on the processed data aforementioned

(n D 120; p D 3000) among quantreg, hqreg and FHDQR for the lasso penalized

quantile regression with � D 0:25; 0:50 and 0:75: The timings are reported in Table 3.9 and

they demonstrate the efficiency of scdADMM. One possible reason why pADMM takes

longer time than scdADMM and hqreg is because of the high correlation among gene

expressions.

We also fit the lasso penalized quantile regression on the data to select genes that are

most relevant to TRIM32. Specifically, we first analyze the data on all 120 rats using the lasso

penalized quantile regression with quantile indices � D 0:25; 0:50 and 0:75: The tuning

parameter is selected using five-fold cross-validation. The number of relevant genes that

are selected is reported in the second column of Table 3.10. The difference in the number

of selected genes by different quantile indices is a sign of heteroscedasticity in the data, as

explained in Wang et al. (2012). We then conduct 50 random partitions on the data. Each

partition has 80 rats in the training set and 40 rats in the validation set. We apply the lasso

penalized quantile regression to the training set using five-fold cross-validation and evaluate

its prediction error on the validation set by calculating .1=40/
P
i2validation ��.yi �

Ǒ
0�xT

i
b̌/:

The average number of selected genes and prediction errors over the 50 partitions are

reported in the third and fourth columns of Table 3.10. We observe that the genes selected

by � D 0:25 and 0:75 are fewer than those by � D 0:5. This agrees with the observation we

made from the fit on the full data.
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Table 3.9: Timings (in seconds) for running lasso penalized quantile regression (with
� D 0:25; 0:50 and 0:75) on the microarray data reported in Scheetz et al. (2006) over one
hundred � values by quantreg (5000+: above 5000 seconds), scdADMM, pADMM and
hqreg. All timings reported are averaged over three runs.

� 0.25 0.50 0.75

quantreg 5000+ 5000+ 5000+
hqreg 4.97 4.09 4.56
pADMM 351.93 401.76 347.89
scdADMM 1.68 1.15 1.09

Table 3.10: Analysis of the microarray data reported in Scheetz et al. (2006) by lasso
penalized quantile regression with the FHDQR package. The number of genes selected and
prediction errors are averaged over 50 runs for the random partition columns. Numbers in
the parentheses are standard errors of their corresponding averages.

All data Random partition

� #genes Ave. #genes Prediction error

0:25 14 15.00 (1.26) 0.0351 (0.0014)
0:50 23 24.16 (2.38) 0.0395 (0.0010)
0:75 14 11.22 (1.07) 0.0671 (0.0196)



Chapter 4

Ultrahigh-Dimensional Composite
Quantile Regression

Composite quantile regression (CQR) provides efficient estimation of the coefficients in

linear models, regardless of the error distributions. We consider penalized CQR for both

variable selection and efficient coefficient estimation in a linear model under ultrahigh

dimensionality and possibly heavy-tailed error distribution. Both lasso and folded concave

penalties are discussed. An L2-risk bound is derived for the lasso estimator to establish its

estimation consistency and strong oracle property of the folded concave penalized CQR

is shown for a feasible solution via the LLA algorithm. The nonsmooth nature of the

penalized CQR poses great numerical challenges for high-dimensional data. To that end, we

provide a unified and effective numerical optimization algorithm for computing penalized

CQR via ADMM. We demonstrate the superior efficiency of penalized CQR estimator, as

compared to the penalized least squares estimator, through simulated data under various

error distributions.

4.1 Introduction

Coefficient estimation in linear models is routinely done via the least squares (LS) regression.

Under normal error distributions, the LS estimator has the likelihood interpretation and is the

78
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most efficient estimator. It is still reasonably efficient under other light-tailed error distribu-

tions besides the normal distribution. However, it is usually less efficient than the maximum

likelihood estimator (MLE) that exploits the distributional information. Moreover, when the

error distribution exhibits heavy-tailedness, the LS estimator may not even be consistent.

Our numerical studies on the LS oracle estimator in Section 4.5 clearly demonstrate this

point. Ideally, the MLE is the most desired estimator since it is asymptotically efficient, but

one has to impose distributional assumptions in order to write down the likelihood. This

may not be feasible in practice. Therefore, we need to consider tractable solutions when

distributional assumptions are too restrictive.

As a practically feasible method and a robust alternative to the LS regression, the quantile

regression (Koenker and Bassett, 1978) was proposed to consistently estimate coefficients

even under heavy-tailed error distributions, such as the Cauchy distribution. Moreover, it

relies on very minimal distributional assumptions. The robustness of the quantile regression

estimator really comes from the fact that its asymptotic variance does not depend on the

moments of the error distribution, upon which the asymptotic variance of the LS estimator

relies, however. Therefore, the quantile regression estimator enjoys the asymptotic normality

even when the error distribution is heavy-tailed. In terms of efficiency, it is well known

that the asymptotic variance of a quantile regression estimator is inversely proportional

to the error density evaluated at the true quantile of the error distribution (Knight, 1998;

Koenker, 2005). Therefore, under some error distributions, the quantile regression estimator

can be more efficient than the LS estimator. For example, the least absolute deviation (LAD)

regression estimator is the most efficient under the double exponential error distribution.

However, since the quantile regression considers only one quantile at a time, it may not

fully grasp the information from a distribution to always produce efficient estimation. As

an extreme example, when the error density at a specified quantile approaches zero, the

asymptotic variance of the corresponding quantile regression estimator may explode to

infinity, which results in an estimator with arbitrarily small efficiency.
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To gain efficient coefficient estimation in linear models that is safe against efficiency

decay under such error distributions for quantile regression estimators, several methods

based on the idea of combining quantile regression across multiple quantiles have been

proposed in the literature. The idea is natural: as more quantiles are used, we have more

information about the distribution and can hence obtain more efficient estimation. One

notable approach by Zhao and Xiao (2014) seeks an optimal weighting scheme to convexly

combine a fixed number of quantile regression estimators at given levels to achieve as much

efficiency gain as possible. It was shown that as the number of quantiles increases, the

asymptotic variance of their proposed estimator can achieve the Cramér–Rao lower bound

under some regularity conditions. Another approach called composite quantile regression

(CQR) by Zou and Yuan (2008) is to combine the information over different quantiles via

the quantile loss function. The relative efficiency of the CQR estimator with respect to the

LS estimator is shown to be greater than 70% regardless of the error distribution. Under

the normal error distribution, the relative efficiency is as high as 99.5%. Moreover, the

CQR estimator can be much more (or arbitrarily more) efficient than the LS estimator under

heavy-tailed error distributions.

In high-dimensional linear models where the number of covariates may be huge, in

order to obtain meaningful coefficient estimation, many regularization techniques have

been proposed to augment regular regressions. Examples include the lasso (Tibshirani,

1996), SCAD (Fan and Li, 2001), elastic net (Zou and Hastie, 2005), adaptive lasso (Zou,

2006), and so on. Under certain sparsity assumptions, many penalized methods target the

so called oracle property where the penalized estimators are shown to be asymptotically

equivalent to the oracle estimators which are obtained as if we knew the underlying sparsity

structure of the linear models. For folded concave penalized LS regression, it can be shown

that the penalized LS estimator enjoys the oracle property (Fan and Li, 2001; Fan et al.,

2014b) under the light-tail assumption of the error distribution. When the error distribution

is heavy-tailed, the oracle property of the penalized LS no longer holds. To this end, in
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order to estimate the coefficients efficiently even under heavy-tailed error distributions for

high-dimensional linear models, we consider the penalized CQR. Our motivation is to target

the oracle CQR estimator, which was shown by Zou and Yuan (2008) to enjoy very nice

theoretical properties. We point out that the approach by Zhao and Xiao (2014) cannot

be easily regularized to obtain desired sparse solutions since their estimator is a convex

combination of multiple estimators.

The rest of this chapter is organized as follows. In Section 4.2, we introduce the

framework for penalized CQR, followed by a discussion of the theoretical properties of the

L1 and folded concave penalized CQR estimators in Section 4.3. We propose a unified and

efficient sparse coordinate descent ADMM algorithm for numerically solving the penalized

CQR in Section 4.4. Numerical studies are conducted in Section 4.5 to show the superior

finite sample performance of penalized CQR over penalized LS. All proofs are relegated to

Section 4.6.

4.2 Penalized Composite Quantile Regression

We consider the problem of variable selection and coefficient estimation in the following

linear model

y D ˇ0 C

pX
jD1

xjˇj C "; (4.1)

where " is independent of x D .x1; : : : ; xp/
T: Suppose ˇ�0 and ˇ� D .ˇ�1 ; : : : ; ˇ

�
p/

T

are the true coefficients in model (4.1) that generates the data .xi ; yi/niD1, where xi D

.xi1; : : : ; xip/
T: We will denote the response vector by y D .y1; : : : ; yn/

T and the design

matrix by X D .x1; : : : ; xn/T: The design matrix may also be denoted as X D .X1; : : : ; Xp/

in terms of the covariates. Let X D .1n;X/ be the augmented design matrix by adding the

column corresponding to an intercept term, where 1n is the n-dimensional vector of all ones.
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We will denote X0 D 1n so that X D .X0; X1; : : : ; Xp/:

In the high-dimensional regime, the number of parameters p can be much greater than

the number of observations n: However, we will assume that many components in ˇ� are

effectively zero, so that ˇ� is sparse. Specifically, let A D f1 � j � pWˇ�j ¤ 0g be the

active set of ˇ�: It is usually assumed that the effective dimension s D jA j is less than n:

We consider the penalized CQR as an effective way of estimating the coefficient vector ˇ

in model (4.1). Assume that the random error " has cumulative distribution F and probability

density function f: Given an ordered sequence of quantile levels 0 < �1 < �2 < � � � < �K <

1; let ˛�
k
D ˇ�0 C F

�1.�k/; where F �1.�k/ denotes the �kth quantile of "; 1 � k � K:

In this chapter, we assume K > 1 is a fixed integer. In practice, one often sets K D 9 or

K D 19: Without loss of generality, we assume ˇ�0 D 0. Without penalization, the regular

composite quantile regression estimates the coefficient vector ˇ by minimizing

nX
iD1

KX
kD1

��k.yi � ˛k � xT
iˇ/

jointly over ˛ D .˛1; : : : ; ˛K/ 2 RK and ˇ 2 Rp; where ��k.u/ D f�k � I.u < 0/gu

denotes the check loss for k D 1; : : : ; K: For more details about the regular CQR, the

readers are referred to the article by Zou and Yuan (2008). In the remainder of this chapter,

we will be focusing on the penalized CQR.

4.3 Theory

In this section, we show the theoretical properties of the sparse penalized CQR. Specifically,

we consider sparse penalized CQR with both lasso and folded concave penalties. For lasso

penalized CQR, we show the estimation consistency in terms of an L2 error bound on the

lasso estimator. We also prove the strong oracle property (Fan and Lv, 2011; Fan et al.,

2014b) for a feasible solution of the folded concave penalized CQR. For ease of exposition,
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we introduce the following notation.

Notation. For u 2 R, let uC D uI.u > 0/ and u� D �uI.u < 0/ be the positive and

negative parts of u; respectively. Moreover, let sgn.u/ D I.u > 0/ � I.u < 0/ be the sign

function. The largest and smallest eigenvalues of a square matrix A are denoted respectively

by ƒmax.A/ and ƒmin.A/: We also let @f be the subdifferential of a convex function f:

For two matrices A1;A2 2 Rm�n; we let hA1; A2i D tr.AT
1A2/ be the inner product and

kA1kF D hA1; A1i1=2 be the Frobenius norm. For any vector v D .v1; : : : ; vp/
T 2 Rp

and an arbitrary index set I � f1; : : : ; pg; we write vI D .vj ; j 2 I /
T and denote by

XI D .xj ; j 2 I / the submatrix consisting of the columns of X with indices in I: The

complement of I is denoted by I c D f1; : : : ; pgnI: For q 2 Œ1;1�; the Lq-norm of v is

denoted by kvkq:

4.3.1 L1-penalized composite quantile regression

For � > 0; define the L1-penalized CQR estimator

.b̨�; b̌�/ WD arg min
˛;ˇ

Qn.˛;ˇ/C �

pX
jD1

jˇj j; (4.2)

whereQn.˛;ˇ/ D .nK/
�1
PK
kD1

Pn
iD1 ��k.yi �˛k�xT

iˇ/: In the sequel, we call .b̨�; b̌�/
the CQR lasso estimator for short. Moreover, define the restricted set C D

˚
.ı;�/ 2

RK � Rp W k�A ck1 � 3k�A k1 C kık1
	
:

For� 2 Rp and integer m � 0; let A .�; m/ � A c be the support of the m largest in

absolute value components of�A c : When m D 0; we take A .�; m/ D ;: The following

assumption is imposed on the data and the error distribution:

C0. (Sampling and smoothness). The observations .xi ; yi/; i D 1; : : : ; n are i.i.d. with

min.n; p/ � 3: The density function satisfies that f .u/ � Nf < 1 for all u in the

support of " and that f is continuously differentiable and f 0.u/ � Nf 0 2 .0;1/ for all
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u in the support of ":Moreover, there exists a constant U0 > 0 such that f .˛�
k
Cu/ �

f > 0 for all 1 � k � K and juj � U0: Also, .xiA ; yi/; i D 1; : : : ; n are in general

positions (Koenker, 2005, Section 2.2) and there is at least one continuous covariate

in the true model.

Note that we do not impose any moment or light-tail assumptions on the error distribution

and the assumptions on the error density are mild and can be satisfied by many commonly

seen distributions, including heavy-tailed distributions like Cauchy. We will also assume that

Nf ; Nf 0 and f are all positive constants. The assumptions on .xiA ; yi/’s make sure the CQR

oracle estimator is unique. This is a fairly common assumption in quantile regression (see

Koenker, 2005). More discussions of the CQR oracle estimator can be found in Appendix C.

To establish the estimation consistency of the CQR lasso estimator, we additionally

assume two conditions. For the sake of brevity, we only consider fixed design.

C1. (Restricted identifiability). The design matrix X satisfies

�m D min
1�k�K

inf
.ı;�/2C ; .ı;�/¤0

Pn
iD1.ık C xT

i�/
2

n.k�A[A .�;m/k
2
2 C ı

2
k
/
> 0:

C2. (Restricted nonlinearity). The design matrix X satisfies

q D
3

8

f 3=2

Nf 0
inf

.ı;�/2C ; .ı;�/¤0

�
n�1

Pn
iD1

PK
kD1.ık C xT

i�/
2
�3=2

n�1
Pn
iD1

PK
kD1 jık C xT

i�j
3

> 0:

Condition (C1) is an extension of the restricted identifiability property (RIP), also known

as the restricted eigenvalue (RE) condition, to the case of the penalized composite quantile

regression. RIP is often assumed in the literature for sparse penalized regressions, such as

the penalized least squares, Dantzig selector (Candes and Tao, 2007; Bickel et al., 2009)

and the penalized quantile regression (Belloni and Chernozhukov, 2011). The restricted

nonlinearity assumption in Condition (C2) is similar to the one in Belloni and Chernozhukov
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(2011). The quantity q; referred to as the restricted nonlinear impact (RNI) coefficient

by Belloni and Chernozhukov (2011), describes how well the composite quantile regression

empirical loss function can be minorized by a quadratic function over the restricted set.

Theorem 4.1

Under conditions (C0), (C1) and (C2), with probability at least 1 � p1.�/; where

p1.�/ D 2K exp
�
�
1

2
nK2�2

�
C 2p exp

�
�
n�2

2M0

�
C exp

�
�16M0

s.1C logp/
�0

�
;

the lasso estimator .b̨�; b̌�/ of the composite quantile regression satisfies

kb̨� � ˛�k2 � 8

f

s
K

�m

"
8

s
2M0

�0

r
1C logp

n
.4
p
s CK C 1/C �

r
s

�0

#

and

kb̌� � ˇ�k2 � 8

f
p
�m

r
1C

18s

m
C
2K2

m

�

"
8

s
2M0

�0

r
1C logp

n
.4
p
s CK C 1/C �

r
s

�0

#
;

provided that the growth condition

16

s
2M0

�0

r
1C logp

n
.4
p
s CK C 1/C 2�

r
s

�0
� q

s
f

K
:

holds, where M0 D max0�j�p kXjk22=n: �

Remark 4.1 By Theorem 4.1, a typical choice of the tuning parameter is � D 2
p
M0 logp=n:
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With such choice of �; we can see that

kb̌� � ˇ�k2 D OP

�
1

p
�0�s

r
s logp
n

�
provided that s satisfies q�1

p
s logp=.n�0/ D o.1/ and �0 D o.s logp/: When �0 and �s

are bounded away from zero, then the CQR lasso estimator achieves the near-optimal ratep
s logp=n; which implies that p can be of exponential order of n; i.e., logp D O.n/ for

some 0 <  < 1: �

4.3.2 Folded concave penalized composite quantile regression

Folded concave penalized regression has been widely adopted in the statistical analysis of

high-dimensional data due to its strong oracle optimality (Fan and Lv, 2011; Fan et al.,

2014b). In order to establish the oracle property of folded concave penalized CQR estimators,

let us first define the oracle estimator of the composite quantile regression,

.b̨o; b̌o/ WD arg min
˛;ˇWˇA cD0

nX
iD1

KX
kD1

��k.yi � ˛k � xT
iˇ/: (4.3)

The oracle estimator .b̨o; b̌o/ is not feasible in practice since A is unknown, but it serves

as a benchmark estimator to which one can compare the penalized CQR estimator. In

the following, we only show the rate of convergence of the CQR oracle estimator. More

asymptotic properties of the CQR oracle can be found in Zou and Yuan (2008) and some

numerical properties of the CQR oracle are shown in Appendix C.

Let A0 D f0g [ A and XA0 D .1n;XA /: Denote � D ƒmin.n
�1XT

A0
XA0/ and � D

ƒmax.n
�1XT

A0
XA0/: Moreover, let MA D max1�i�n.s C 1/�1

�
1 C kxiA k22

�
and MA c D

max1�i�n; j2A c jxij j: In this chapter, we will assume MA and MA c are positive constants.
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Lemma 4.1

Under conditions (C0) – (C3) and the assumptions that .s C 1/=.�
p
n/ D O.1/ and that

�=.s C 1/ D o.1/; the CQR oracle estimator satisfies

kb̨o
� ˛�k2 D OP

�
��1

p
.s C 1/=n

�
;

kb̌o
� ˇ�k2 D OP

�
��1

p
.s C 1/=n

�
as n!1: �

The folded concave penalized CQR targets the oracle estimator even if A is unknown.

Specifically, the folded concave penalized CQR at penalty level � > 0 solves the following

minimization problem

min
˛;ˇ

Qn.˛;ˇ/C

pX
jD1

p�.jˇj j/; (4.4)

where p�.t/; t � 0 belongs to a class of folded concave penalties satisfying the following

properties:

(P1) p�.t/ is nondecreasing and concave in t � 0 and p�.0/ D 0I

(P2) p�.t/ is differentiable in t > 0I

(P3) p0
�
.t/ � a1�; 0 < t � a2� and p0

�
.0/ WD p0

�
.0C/ � a1�; where a1; a2 > 0 are fixed

constants;

(P4) p0
�
.t/ D 0; t � a� for a fixed constant a > a2:

It has been shown that both the SCAD penalty (Fan and Li, 2001) and MCP (Zhang,

2010) belong to this class; see, for instance, Lv and Fan (2009). To establish the strong

oracle optimality, Fan et al. (2014b) proposed to use the local linear approximation (LLA)

algorithm (Zou and Li, 2008) for solving the folded concave penalized CQR. The LLA

algorithm is shown in Algorithm 7.
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Algorithm 7: The local linear approximation (LLA) algorithm for solving the folded
concave penalized composite quantile regression

1. Initialize ˛ and ˇ with respectively b̨.0/ and b̌.0/: Compute weights

Ow.0/

j D p
0
�.j
Ǒ.0/
j j/; j D 1; : : : ; p:

2. For m D 1; 2; : : : ;M; repeat the LLA iteration in (2.a) and (2.b).

(2.a) Solve the following convex optimization problem for b̨.m/ and b̌.m/
.b̨.m/; b̌.m// WD arg min

˛;ˇ

Qn.˛;ˇ/C

pX
jD1

Ow.m�1/

j jˇj j:

(2.b) Calculate the weights

Ow.m/

j D p
0
�.j
Ǒ.m/
j j/; j D 1; : : : ; p:

An advantage of the LLA algorithm is that it can find the oracle estimator in a few

iterations with high probability under mild conditions. Specifically, assume that the true

coefficient vector ˇ� exhibits sufficient signal

(C3) minj2A jˇ�j j > .aC 1/�:

Theorem 4.2

Suppose the folded concave penalized CQR (4.4) is solved with LLA (Algorithm 7) that

is initialized with the CQR lasso estimator (4.2) at penalty level �0 > 0. Let r0 D

minj2A jˇ�j j � a� and r� D
p
.s C 1/MA logn=n: Assume the folded concave penalty

p�.�/ satisfies properties (P1) – (P4), where � is taken to satisfy

� �
8

a0f
p
�m

r
1C

18s

m
C
2K2

m

�

"
8

s
2M0

�0

r
1C logp

n
.4
p
s CK C 1/C �0

r
s

�0

#
:

(4.5)
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Under conditions (C0) – (C3) and the assumptions that r0
p
.s C 1/MA � U0 and � >

8Kf �1��1
p
.s C 1/MA =n, with probability at least 1�p1.�0/�p2.r0/�p2.r�/�2.p�

s/ exp.�2nB2=M0/ � p3; the LLA algorithm converges to the oracle estimator .b̨o; b̌o/ in

two iterations, where p1.�/ is given in Theorem 4.1, p2.�/ is defined as

p2.r/ D exp
�
�
n.t.r//2

32�r2

�
; where t .r/ D

f

4K
�r2 � 2r

r
.s C 1/MA

n
;

and

p3 D 2.p � s/n
2.KCs/ exp

�
�

3nB2

24 Nf M 2
A c�

1=2r� C 8MA cB

�
C 2.p � s/n2.KCs/ exp

�
�

3nB20

24 Nf M 2
A cM

1=2
A .s C 1/1=2n�2r� C 4MA cB0

�

with B D 1
2

�
a1� �

KCs
n
MA c � Nf MA c�1=2r�

�
and B0 D

�
B
2
�
8 Nf
p
sC1

n2
MA cM

1=2
A r�

�
C
:�

Remark 4.2 With the choice �0 D 2
p
M0 logp=n and � D C.f

p
�0�s/

�1
p
s logp=n

for some constant C > 0 such that (4.5) is satisfied, the probability lower bound will ap-

proach one as n!1 provided that .
p
�0�s/

�1
p
s2 logp=n D O.1/;p�0�s=.�

p
logp/ D

o.1/; .� logn/�1 D o.1/; �0 D o.s logp/;
p
�0�s

p
logp=.ns/ D o.1/;

p
�0�s

p
s=.n logp/ D

o.1/; and
p
��0�s

p
logn= logp D o.1/: It can be see that when �0; �s and � are bounded

away from zero, with proper choice of the orders of s and p; the folded concave penal-

ized CQR estimator enjoys the strong oracle property even under ultrahigh dimensionality,

logp D O.n/ for some 0 <  < 1: �

4.4 Numerical Optimization

In this section, we propose an efficient numerical algorithm for solving the penalized

composite quantile regression. The algorithm is based on the alternating direction method
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of multipliers (ADMM) and the coordinate descent algorithm. Before introducing the

algorithm, we note that both the L1-penalized and folded concave penalized composite

quantile regression can be solved with one or more applications of the following weighted

L1-penalized composite quantile regression:

min
˛;ˇ

1

nK

KX
kD1

nX
iD1

��k.yi � ˛k � xT
iˇ/C �1

pX
jD1

dj jˇj j; (4.6)

where �1 > 0 and dj � 0; j D 1; : : : ; p: Specifically, the CQR lasso estimator can be

achieved by letting dj D 1 for all j D 1; : : : ; p; while by Algorithm 7, the folded concave

penalized CQR estimator can be obtained by iteratively minimizing (4.6) with dj D Ow.m�1/

j

in the mth iteration. As a result, in the sequel, the ADMM algorithm will be discussed in

term of the minimization of (4.6).

Our proposal of using the ADMM algorithm is motivated from the fact that both the

check loss ��.u/ D Œ� � I.u < 0/�u; � 2 .0; 1/ and the L1-norm are non-smooth. This

makes it difficult to optimize over them jointly via gradient-based methods. The ADMM

algorithm, however, tackles the two non-smooth functions one at a time, through the

proximity operators, and splits the optimization problem into sub-problems that are easy

to solve. Thus, it can effectively optimize over the highly non-smooth objective function

in (4.6). To elaborate on the ADMM algorithm, let zik D yi � ˛k � xT
iˇ; i D 1; : : : ; n; k D

1; : : : ; K: Next, define matrix Z D .zik/n�K in terms of zik’s and denote the kth column

of Z by Zk; k D 1; : : : ; K: By convexity, it can be seen immediately that minimization

problem (4.6) can be recast as

min
˛;ˇ

1

nK

KX
kD1

nX
iD1

��k.zik/C �1

pX
jD1

dj jˇj j

subject to 1n ˝ ˛T
C 1T

K ˝ .Xˇ/C Z � 1T
K ˝ y D 0;

(4.7)

where˝ denotes the Kronecker product. For ease of notation, let Y D 1T
K˝ y; X D .1n;X/
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andˆ D

0@ ˛T

1T
K ˝ ˇ

1A : The constraint in (4.7) can be then rewritten as XˆCZ�Y D 0; and

therefore, (4.6) can be equivalently solved by the following constrained convex optimization

problem

min
˛;ˇ

1

nK

KX
kD1

nX
iD1

��k.zik/C �1

pX
jD1

dj jˇj j

subject to Xˆ C Z � Y D 0:

(4.8)

Now introduce the augmented Lagrangian of problem (4.8)

L�.˛;ˇ;Z;‚/ WD
1

nK

KX
kD1

nX
iD1

��k.zik/C �1

pX
jD1

dj jˇj j

� h‚;Xˆ C Z � Yi C
�

2
kXˆ C Z � Yk2F ;

where ‚ D .�ik/n�K is the Lagrangian multiplier and � > 0 is the parameter for the

augmented quadratic term. Similarly, we will denote the kth column of ‚ by ‚k; k D

1; : : : ; K: To apply the ADMM algorithm to problem (4.8), let ˛r ;ˇr ;Zr ; and ‚r be the

iterates after the r th iteration of the algorithm. The algorithm updates the parameters in the

.r C 1/th iteration as follows8̂̂̂̂
<̂̂
ˆ̂̂̂:

.˛rC1;ˇrC1/ WD arg min˛;ˇ L�.˛;ˇ;Zr ;‚
r/

ZrC1 WD arg minZL�.˛
rC1;ˇrC1;Z;‚r/;

‚rC1
WD ‚r

� �Œ1n ˝ .˛rC1/T C 1T
K ˝ .Xˇ

rC1/C ZrC1 � 1T
K ˝ y�;

(4.9)
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More specifically, the updates in (4.9) can be formulated as

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

.˛rC1;ˇrC1/ D arg min˛;ˇ �1
Pp
jD1 dj jˇj j �

PK
kD1 1T

n‚
r
k
˛k � ˇ

TXT
PK
kD1‚

r
k

C
�
2

PK
kD1 k˛k1n C Xˇ CZr

k
� yk22

ZrC1 D arg minZ
Pn
iD1

PK
kD1

�
1
nK
��k.zik/ � �

r
ik
zik C

�
2
.˛rC1
k
C xT

iˇ
rC1
C zik � yi/

2
�

‚rC1
D ‚r

� �Œ1n ˝ .˛rC1/T C 1T
K ˝ .Xˇ

rC1/C ZrC1 � 1T
K ˝ y�:

Note that the update of ZrC1 can be carried out component-wisely. To be specific, by

Lemma 3.1, we can obtain

zrC1
ik
D Prox��k

�
� r
ik

�
C yi � ˛

rC1
k
� xT

iˇ
rC1; nK�

�
; 1 � i � n; 1 � k � K:

To update ˛rC1 and ˇrC1; we propose to use the coordinate descent algorithm. We call

the resulting algorithm the sparse coordinate descent ADMM (scdADMM) algorithm.

The details of the scdADMM algorithm for solving the weighted L1-penalized quantile

regression is summarized in Algorithm 8.
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Algorithm 8: scdADMM – Sparse coordinate descent ADMM algorithm for solving
the weighted L1-penalized composite quantile regression.

1. Initialize the algorithm with .˛0;ˇ0;Z0;‚0/:

2. For r D 0; 1; 2; : : : ; repeat steps (2.1) – (2.3) until the convergence criterion is met.

(2.1) Carry out the coordinate descent steps (2.1.1) – (2.1.3).

(2.1.1) Initialize ˛r;0 D ˛r and ˇr;0 D ˇr :
(2.1.2) Form D 0; 1; 2; : : : ; repeat steps (2.1.2.1) – (2.1.2.2) until convergence.

(2.1.2.1) For k D 1; : : : ;K, update

˛
r;mC1
k

 .n�/�11TŒ‚rk C �.y� Xˇr;m �Zrk/�:

(2.1.2.2) For j D 1; : : : ; p; update

ˇ
r;mC1
j

 

Shrink
�
XT
j

PK
kD1

�
�

�
y� ˛r;mC1

k
1�

P
t¤j Xtˇ

r;mCI.t<j/
t �Zr

k

�
C‚r

k

�
; �1wj

�
K�kXj k

2
2

:

(2.1.3) Set ˛rC1 ˛r;mC1 and ˇrC1 ˇr;mC1:

(2.2) Update ZrC1 
�

Prox��k

�
yi � ˛

rC1
k
� xT

i
ˇrC1 C

�r
ik

�
; nK�

��
1�i�n;1�k�K

:

(2.3) Update‚rC1 
�
�r
ik
� �Œ˛

rC1
k
C xT

i
ˇrC1 � yi C z

rC1
ik

�
�
1�i�n;1�k�K

:
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4.5 Numerical Experiments

We conduct Monte Carlo studies to assess the finite sample performance of the proposed

method. We will compare the estimators from the penalized least squares, penalized

composite quantile regression and the ideal oracle least squares and oracle composite

quantile regression. Recall that the oracle estimators are obtained through applying the

canonical least squares and composite quantile regression to the true underlying model. We

focus on both the model selection and estimation accuracy of those estimators.

Our simulated data are from the linear model

y D ˇ�0 C xTˇ� C "; (4.10)

where ˇ�0 D 0 and ˇ� D .3; 1:5; 0; 0; 2; 0p�5/T: The covariates are drawn from the mul-

tivariate normal distribution, x � Np.0;†/; where two different covariance matrices

† D .0:5ji�j j/ and † D .0:8ji�j j/ are considered. For the error distribution, we refer

to Zou and Yuan (2008) and consider five different shapes:

(a) the normal distribution, " � N.0; 3/I

(b) the mixture normal distribution (MN), " �
p
6 � "�; where "� � 0:5N.0; 1/ C

0:5N.0; 0:56/I

(c) the mixture double gamma distribution (MDG), " � 1
9
"�; where "� � f ."/ D

e�14 � 1
2
e�j"j C .1 � e�14/ � 1

�.15/
j"j14e�j"jI

(d) the t -distribution with 3 degrees of freedom " � t3; and,

(e) the Cauchy distribution, " � Cauchy:

In the simulation study, our training data are composed of n observations .xi ; yi/niD1;

independently generated from model (4.10). An independent set of n observations is
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also simulated from the same model for parameter tuning of the training model. We

evaluate the variable selection performance of the estimated coefficients b̌ by the number

of false positives FP D j OAnA�j and the number of false negatives FN D jA�n OAj; where

A� D f1 � j � pWˇ�j ¤ 0g and OA D f1 � j � pW Ǒj ¤ 0g: The estimation accuracy

of b̌ is measured by the model error .b̌� ˇ�/T†.b̌� ˇ�/: Two sets of data dimensions

.n; p/ D .100; 600/ and .n; p/ D .200; 1200/ are used in our simulations. In all settings,

we use K D 19 quantile levels �k D 0:05k; k D 1; : : : ; 19: The simulation results are

summarized in Tables 4.1 – 4.4.

It can be seen from the tables that the CQR oracle estimator has very similar model

error to the LS estimator under normal error, while is more efficient under the other error

distributions. In particular, the model error of the LS estimator is not stable under the Cauchy

error. In theory, it can be arbitrarily large. SCAD penalized CQR estimators have very close

model errors to the CQR oracle estimator under most error distributions and outperform the

penalized LS estimators. In terms of model selection accuracy, the SCAD penalized CQR

estimator also outperform all the other penalized estimators.
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Table 4.1: Simulation results for model (4.10) with n D 100; p D 600 and † D .0:5ji�j j/:
Numbers listed are averages over 100 independent runs, with standard errors reported in the
parentheses

N.0; 3/ MN MDG t3 Cauchy

Model error

LS-oracle 0.093 0.093 0.084 0.098 9350.072
(0.008) (0.007) (0.007) (0.009) (6837.507)

CQR-oracle 0.105 0.004 0.025 0.047 0.094
(0.008) (0.002) (0.003) (0.004) (0.011)

LS-lasso 0.664 0.620 0.588 0.663 18.963
(0.035) (0.025) (0.031) (0.054) (1.513)

LS-SCAD 0.671 0.646 0.523 0.578 31.738
(0.038) (0.036) (0.033) (0.036) (7.959)

CQR-lasso 0.792 0.272 0.465 0.374 1.672
(0.041) (0.029) (0.034) (0.022) (0.144)

CQR-SCAD 0.122 0.006 0.032 0.064 0.438
(0.019) (0.002) (0.004) (0.006) (0.098)

FP, FN

LS-lasso 16.55, 0 16.91, 0 16.53, 0 15.83, 0 13.37, 1.79
(1.28), (0) (0.92), (0) (1.07), (0) (1.08), (0) (2.41), (0.12)

LS-SCAD 18.04, 0 18.00, 0 17.04, 0 16.81, 0 17.11, 1.78
(1.54), (0) (1.44), (0) (1.58), (0) (1.10), (0) (2.93), (0.13)

CQR-lasso 15.33, 0 15.29, 0 14.49, 0 12.89, 0 38.75, 0.01
(0.67), (0) (0.67), (0) (0.53), (0) (0.55), (0) (2.93), (0.01)

CQR-SCAD 1.68, 0.01 1.62, 0 2.27, 0 2.33, 0 2.18, 0.01
(0.25), (0.01) (0.29), (0) (0.32), (0) (0.34), (0) (0.38), (0.01)
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Table 4.2: Simulation results for model (4.10) with n D 100; p D 600 and † D .0:8ji�j j/:
Numbers listed are averages over 100 independent runs, with standard errors reported in the
parentheses

N.0; 3/ MN MDG t3 Cauchy

Model error

LS-oracle 0.097 0.092 0.079 0.088 184.788
(0.008) (0.008) (0.006) (0.008) (91.476)

CQR-oracle 0.097 0.005 0.023 0.046 0.134
(0.008) (0.002) (0.002) (0.004) (0.011)

LS-lasso 0.488 0.493 0.441 0.422 19.649
(0.025) (0.028) (0.021) (0.031) (1.623)

LS-SCAD 0.524 0.443 0.422 0.442 27.706
(0.026) (0.020) (0.019) (0.029) (5.775)

CQR-lasso 0.498 0.152 0.259 0.269 0.993
(0.029) (0.023) (0.029) (0.014) (0.087)

CQR-SCAD 0.123 0.005 0.032 0.060 0.355
(0.013) (0.001) (0.003) (0.005) (0.055)

FP, FN

LS-lasso 13.06, 0 12.34, 0 11.97, 0 13.59, 0 9.21, 1.60
(0.85), (0) (0.87), (0) (0.91), (0) (0.99), (0) (1.77), (0.11)

LS-SCAD 13.89, 0 11.97, 0 11.28, 0 14.04, 0 13.53, 1.62
(0.90), (0) (0.78), (0) (0.64), (0) (0.99), (0) (2.27), (0.11)

CQR-lasso 12.15, 0 13.28, 0 12.09, 0 13.06, 0 28.26, 0.03
(0.68), (0) (0.62), (0) (0.57), (0) (0.66), (0) (2.46), (0.02)

CQR-SCAD 2.09, 0.02 1.29, 0 1.83, 0 1.97, 0 2.38, 0.06
(0.40), (0.01) (0.24), (0) (0.32), (0) (0.30), (0) (0.32), (0.03)
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Table 4.3: Simulation results for model (4.10) with n D 200; p D 1200 and† D .0:5ji�j j/:
Numbers listed are averages over 100 independent runs, with standard errors reported in the
parentheses

N.0; 3/ MN MDG t3 Cauchy

Model error

LS-oracle 0.051 0.045 0.041 0.048 1136.066
(0.004) (0.004) (0.003) (0.004) (965.520)

CQR-oracle 0.047 0.001 0.011 0.023 0.060
(0.005) (0) (0.001) (0.002) (0.005)

LS-lasso 0.340 0.337 0.281 0.284 28.450
(0.015) (0.014) (0.011) (0.013) (7.987)

LS-SCAD 0.061 0.061 0.055 0.062 41.685
(0.006) (0.005) (0.005) (0.005) (24.654)

CQR-lasso 0.394 0.072 0.180 0.239 0.830
(0.018) (0.011) (0.014) (0.013) (0.073)

CQR-SCAD 0.046 0.001 0.011 0.023 0.137
(0.004) (0) (0.001) (0.002) (0.030)

FP, FN

LS-lasso 19.62, 0 20.09, 0 20.15, 0 19.59, 0 21.41, 1.66
(1.41), (0) (1.25), (0) (1.22), (0) (1.27), (0) (3.94), (0.13)

LS-SCAD 5.24, 0 5.76, 0 4.56, 0 6.53, 0 25.49, 1.54
(1.08), (0) (0.94), (0) (0.92), (0) (1.10), (0) (4.01), (0.12)

CQR-lasso 18.76, 0 19.05, 0 19.11, 0 18.59, 0 60.56, 0
(0.95), (0) (0.77), (0) (0.78), (0) (0.95), (0) (6.35), (0)

CQR-SCAD 2.21, 0 2.29, 0 2.99, 0 2.31, 0 1.50, 0
(0.30), (0) (0.48), (0) (0.44), (0) (0.36), (0) (0.30), (0)
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Table 4.4: Simulation results for model (4.10) with n D 200; p D 1200 and† D .0:8ji�j j/:
Numbers listed are averages over 100 independent runs, with standard errors reported in the
parentheses

N.0; 3/ MN MDG t3 Cauchy

Model error

LS-oracle 0.042 0.047 0.034 0.046 71435.826
(0.004) (0.005) (0.003) (0.004) (68875.639)

CQR-oracle 0.049 0.001 0.011 0.022 0.055
(0.004) (0) (0.001) (0.002) (0.005)

LS-lasso 0.252 0.235 0.219 0.208 22.598
(0.012) (0.011) (0.009) (0.013) (2.334)

LS-SCAD 0.071 0.073 0.050 0.065 23.726
(0.006) (0.007) (0.004) (0.009) (2.856)

CQR-lasso 0.255 0.030 0.099 0.153 0.730
(0.014) (0.004) (0.008) (0.009) (0.070)

CQR-SCAD 0.086 0.001 0.023 0.048 0.539
(0.008) (0) (0.003) (0.004) (0.099)

FP, FN

LS-lasso 14.83, 0 16.17, 0 15.24, 0 14.80, 0 20.44, 1.63
(1.03), (0) (1.1), (0) (1.09), (0) (1.23), (0) (3.83), (0.12)

LS-SCAD 6.36, 0 5.68, 0 5.64, 0 4.74, 0.01 15.22, 1.84
(0.99), (0) (0.72), (0) (0.83), (0) (0.76), (0.01) (2.92), (0.10)

CQR-lasso 16.86, 0 14.89, 0 15.83, 0 16.47, 0 42.75, 0
(1.02), (0) (0.7), (0) (0.78), (0) (0.98), (0) (4.13), (0)

CQR-SCAD 2.19, 0 1.93, 0 2.70, 0 2.59, 0 1.85, 0
(0.32), (0) (0.36), (0) (0.50), (0) (0.44), (0) (0.24), (0)
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4.6 Proofs

We provide proofs of all previously stated results in this section. For the sake of brevity,

some auxiliary results are relegated to the appendix.

Lemma 4.2

Under condition (C0), with probability at least

1 � 2K exp
�
�
1

2
nK2�2

�
� 2p exp

�
�
n�2

2M0

�
;

the lasso estimator .b̨�; b̌�/ of the composite quantile regression satisfies

.bı�; b��/ 2 C D f.ı;�/ 2 RK � RpW k�A ck1 � 3k�A k1 C kık1g;

wherebı� D b̨� � ˛� and b�� D b̌� � ˇ�: �

Proof 4.1 (Proof of Lemma 4.2)

Let � D .�1; : : : ; �K/T and � D .�1; : : : ; �p/T; where

�k D �
1

nK

nX
iD1

�
�k � I."i < ˛

�
k/
�
; 1 � k � K;

and

�j D �
1

nK

KX
kD1

nX
iD1

�
�k � I."i < ˛

�
k/
�
xij ; 1 � j � p:

Note that .�T; �T/T 2 @Qn.˛
�;ˇ�/; where the subdifferential is taken with respect to ˛ and
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ˇ: By convexity of Qn.˛;ˇ/ and optimality of .b̨�; b̌�/; we have

0 � Qn.b̨�; b̌�/ �Qn.˛
�;ˇ�/C �.kb̌�k1 � kˇ�k1/

� �T.b̨� � ˛�/C �T.b̌� � ˇ�/C �.kb̌�k1 � kˇ�k1/
� � k�k1 � kb̨� � ˛�k1 � k�k1 � kb̌� � ˇ�k1
C �

�
kb̌�;A c � ˇ�A ck1 � kb̌�;A � ˇ�A k1�;

which implies that

.� � k�k1/kb̌�;A c � ˇ�A ck1 � .�C k�k1/kb̌�;A � ˇ�A k1
C k�k1 � kb̨� � ˛�k1: (4.11)

Under event E D fk�k1 � �=2; k�k1 � �=2g; it follows from (4.11) that

kb��
A ck1 � 3kb��

A k1 C k
bı�k1:

The lemma then follows from Hoeffding’s inequality

Pr.E/ � 1 � Pr
�
k�k1 >

�

2

�
� Pr

�
k�k1 >

�

2

�
� 1 �

KX
kD1

Pr
�ˇ̌̌
�
1

nK

nX
iD1

Œ�k � I."i � ˛
�
k/�
ˇ̌̌
>
�

2

�
�

pX
jD1

Pr
�ˇ̌̌
�
1

nK

nX
iD1

xij

KX
kD1

Œ�k � I."i � ˛
�
k/�
ˇ̌̌
>
�

2

�
� 1 � 2K exp

�
�
1

2
nK2�2

�
� 2p exp

�
�
n�2

2M0

�
:

This proves the lemma. �

Now let �n.˛;ˇ/ D Qn.˛;ˇ/ �Qn.˛
�;ˇ�/ � E

�
Qn.˛;ˇ/ �Qn.˛

�;ˇ�/
�
: For r >

0; set Cr D f.ı;�/ 2 C W .nK/�1
PK
kD1

Pn
iD1.ık C xT

i�/
2 � r2g and define e.r/ D
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sup.ı;�/2Cr j�n.˛
� C ı;ˇ� C�/j:

Lemma 4.3

For r; t > 0; under conditions (C0) and (C1), with probability at least 1�exp
�
�nt2=.32r2/

�
;

we have

e.r/ � 4

s
2M0

�0

r
1C logp

n

�
4
p
s CK C 1

�
r C t:

It follows immediately that, if one takes

t D 4

s
2M0

�0

r
1C logp

n

�
4
p
s CK C 1

�
r;

then with probability at least 1 � exp
�
�16M0�

�1
0 s.1C logp/

�
; we have

e.r/ � 8

s
2M0

�0

r
1C logp

n

�
4
p
s CK C 1

�
r: �

Proof 4.2 (Proof of Lemma 4.3)

First, let us show that the check loss ��.�/ is Lipschitz continuous with Lipschitz constant

max.�; 1 � �/: To see it, note that for any u1; u2 2 R; we have

j��.u1/ � ��.u2/j D j.� � 0:5/.u1 � u2/C 0:5.ju1j � ju2j/j

� .j� � 0:5j C 0:5/ju1 � u2j D max.�; 1 � �/ju1 � u2j:
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Now let ı D ˛ � ˛�;� D ˇ � ˇ� and define

Ui.ı;�/ D
1

K

KX
kD1

��k.yi � ˛k � xT
iˇ/ �

1

K

KX
kD1

��k.yi � ˛
�
k � xT

iˇ
�/

D
1

K

KX
kD1

��k.r
�
ik � ık � xT

i�/ �
1

K

KX
kD1

��k.r
�
ik/;

where r�
ik
D yi �˛

�
k
�xT

iˇ
�
D "i �˛

�
k
; 1 � i � n; 1 � k � K: It follows immediately that

e.r/ D sup
.ı;�/2Cr

ˇ̌̌̌
1

n

nX
iD1

�
Ui.ı;�/ � EUi.ı;�/

�ˇ̌̌̌
:

By Lipschitz continuity of the check loss, it follows that

jUi.ı;�/j �
1

K

KX
kD1

j��k.r
�
ik � ık � xT

i�/ � ��k.r
�
ik/j

�
1

K

KX
kD1

max.�k; 1 � �k/jık C xT
i�j �

1

K

KX
kD1

jık C xT
i�j; 1 � i � n:

(4.12)

Now applying Massart’s concentration inequality (Theorem 14.2, Bühlmann and van de

Geer, 2011), we obtain

Pr.e.r/ � EŒe.r/�C t / � exp
�
�
n2t2

8b2n.r/

�
; (4.13)

where b2n.r/ D sup.ı;�/2Cr
Pn
iD1 var.Ui.ı;�//: Now let us derive the upper bound on

b2n.r/: Note that by (4.12) and Cauchy–Schwarz inequality

b2n.r/ D sup
.ı;�/2Cr

nX
iD1

E
�
Ui.ı;�/ � EUi.ı;�/

�2
� 4 sup

.ı;�/2Cr

nX
iD1

� KX
kD1

1

K
jık C xT

i�j

�2
� 4 sup

.ı;�/2Cr

nX
iD1

� KX
kD1

1

K

�� KX
kD1

1

K
.ık C xT

i�/
2

�
� 4nr2:
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We next show the upper bound on E
�
e.r/

�
: Applying the symmetrization procedure (van der

Vaart and Wellner, 1996) and the contraction principle (Ledoux and Talagrand, 1991), we

have

EŒe.r/� � 2E
�

sup
.ı;�/2Cr

1

n

ˇ̌̌̌ nX
iD1

�iUi.ı;�/

ˇ̌̌̌�
�

2

nK

KX
kD1

E
�

sup
.ı;�/2Cr

ˇ̌̌̌ nX
iD1

�if��k.r
�
ik � ık � xT

i�/ � ��k.r
�
ik/g

ˇ̌̌̌�
�

4

nK

KX
kD1

E
�

sup
.ı;�/2Cr

ˇ̌̌̌ nX
iD1

�i.ık C xT
i�/

ˇ̌̌̌�
;

(4.14)

where �1; : : : ; �n are i.i.d. Rademacher random variables that satisfy Pr.�i D �1/ D Pr.�i D

1/ D 1=2 and are independent of "1; : : : ; "n:

For .ı; �/ 2 Cr ; by condition (C1) and Cauchy–Schwarz inequality, we have

r2 �
�0

K

KX
kD1

.ı2k C k�A k
2
2/ �

�0

K2
kık21 C

�0

s
k�A k

2
1; (4.15)

which implies that kık1 � rK=
p
�0 and k�A k1 � r

p
s=�0: Now let � D .�1; : : : ; �n/

T:

Note that for any t 2 R; we have

E
�
exp.tX T

j�/
�
D

nY
iD1

�
1

2
.etxij C e�txij /

�
�

nY
iD1

exp
�1
2
t2x2ij

�
D exp

�
t2

2

nX
iD1

x2ij

�
; 0 � j � p:
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Letting t > 0; by Jensen’s inequality, we have

exp
�
tE
�
kXT�k1

��
D exp

�
tE max

0�j�p
jX T
j�j
�
� E exp

�
t max
0�j�p

jX T
j�j
�

D E
h

max
0�j�p

exp.t jX T
j�j/

i
� E max

0�j�p

�
etX

T
j
�
C e�tX

T
j
�
�

�

pX
jD0

E
�
etX

T
j
�
C e�tX

T
j
�
�
� 2

pX
jD0

exp
� t2
2
kXjk

2
2

�
� 2.1C p/ exp

� t2
2

max
0�j�p

kXjk
2
2

�
D 2.1C p/ exp

�1
2
nM0t

2
�
;

which implies that

E
�
kXT�k1

�
�
1

t

�
log 2C log.1C p/

�
C
nM0

2
t; t > 0:

Taking t D
p
2Œlog 2C log.1C p/�=.nM0/ and noting that p � 3 by condition (C0), we

obtain

E
�
kXT�k1

�
�
p
2nM0Œlog 2C log.1C p/� �

p
2M0 �

p
n.1C logp/: (4.16)

It then follows from (4.14), (4.16) and Hölder’s inequality that

EŒe.r/� �
4

nK
E
�
kXT�k1

�
� sup
.ı;�/2Cr

KX
kD1

�
jıkj C k�k1

�
�
4
p
2M0

n

p
n.1C logp/ sup

.ı;�/2Cr

�
K�1kık1 C k�k1

�
�
4
p
2M0

n

p
n.1C logp/ sup

.ı;�/2Cr

�
.1CK�1/kık1 C 4k�A k1

�
� 4

s
2M0

�0

r
1C logp

n

h
4
p
s C .1CK/

i
r:

The lemma then follows from (4.13). �
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Lemma 4.4

Under conditions (C0) and (C2), for any .ı;�/ 2 C ; we have

E
�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�
� min

˚
f r2=4; q

�
f =K

�1=2
r
	
;

where r2 D .nK/�1
Pn
iD1

PK
kD1.ık C xT

i�/
2: �

Proof 4.3 (Proof of Lemma 4.4)

By Knight’s identity (Knight, 1998), we have for any two scalars r and s;

jr � sj � jr j D �s
�
I.r > 0/ � I.r < 0/

�
C 2

Z s

0

�
I.r � t / � I.r � 0/

�
d t:

It follows that for any � 2 .0; 1/;

��.r � s/ � ��.r/ D .� � 0:5/
�
.r � s/ � r

�
C 0:5

�
jr � sj � jr j

�
D .0:5 � �/s � 0:5s

�
I.r > 0/ � I.r < 0/

�
C

Z s

0

�
I.r � t / � I.r � 0/

�
d t

D s
�
I.r < 0/ � �

�
C

Z s

0

�
I.r � t / � I.r � 0/

�
d t:

(4.17)

Let r�
ik
D yi � ˛

�
k
� xT

iˇ
�
D "i � ˛

�
k
; 1 � i � n; 1 � k � K: By condition (C0),

equation (4.17) and the mean value theorem, we have for some Nuik;t between 0 and t;

E
�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�

D
1

nK

nX
iD1

KX
kD1

Z ıkCxT
i
�

0

�
F.˛�k C t / � F.˛

�
k/
�
d t

D
1

nK

nX
iD1

KX
kD1

Z ıkCxT
i
�

0

h
tf .˛�k/C

t2

2
f 0.˛�k C Nuik;t/

i
d t

�
f

2nK

nX
iD1

KX
kD1

.ık C xT
i�/

2
�

Nf 0

6nK

nX
iD1

KX
kD1

jık C xT
i�j

3:

(4.18)
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For .ı;�/ 2 C ; note that if

�
1

nK

nX
iD1

KX
kD1

.ık C xT
i�/

2

�1=2
�

4q

K1=2f 1=2
; (4.19)

then by condition (C2), this implies that

Nf 0

6nK

nX
iD1

KX
kD1

jık C xT
i�j

3
�

f

4nK

nX
iD1

KX
kD1

.ık C xT
i�/

2;

which, together with (4.18), implies that for all .ı;�/ 2 C4q.Kf /�1=2;

E
�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�
�

f

4nK

nX
iD1

KX
kD1

.ık C xT
i�/

2:

To show that the lemma holds for all .ı;�/ 2 C , define

rC D sup
r>0

�
r WE

�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�

�
f

4nK

nX
iD1

KX
kD1

.ık C xT
i�/

2; 8.ı;�/ 2 Cr

�
:

By previous arguments, we must have rC � 4q.Kf /�1=2: Now for any .ı;�/ 2 C ; let

r2 D .nK/�1
Pn
iD1

PK
kD1 ��k.ıkC xT

i�/
2: If r < rC ; then by the definition of rC ; we have

E
�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�
�

f

4nK

nX
iD1

KX
kD1

.ık C xT
i�/

2: (4.20)

Otherwise, if r � rC ; let ı0 D rC ı=r and �0 D rC�=r: It can be seen immediately that
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.nK/�1
Pn
iD1

PK
kD1.ı

0
k
C xT

i�
0/2 D r2C : By convexity of Qn; we have

E
�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�

�
r

rC
E
�
Qn.˛

�
C ı0;ˇ� C�0/ �Qn.˛

�;ˇ�/
�

�
r

rC

f

4
r2C � q

�f
K

�1=2h 1
nK

nX
iD1

KX
kD1

.ık C xT
i�/

2
i1=2

:

(4.21)

The lemma then follows from (4.20) and (4.21). �

Proof 4.4 (Proof of Theorem 4.1)

Let

r� D 8f
�1

"
8

s
2M0

�0

r
1C logp

n
.4
p
s CK C 1/C �

r
s

�0

#

and set C � D f.ı;�/ 2 C W .nK/�1
Pn
iD1

PK
kD1.ık C xT

i�/
2 D r2�g: Moreover, definebı� D b̨��˛� and b�� D b̌��ˇ�: Under event E1 D f.bı�; b��/ 2 C g; if we can show that

inf
.ı;�/2C �

Qn.˛
�
C ı;ˇ�C�/�Qn.˛

�;ˇ�/C �.kˇ�C�k1 � kˇ
�
k1/ > 0; (4.22)

then by convexity of Qn; this implies that .bı�; b��/ 2 Cr� : To show (4.22), first note that

for all .ı;�/ 2 C �;

Qn.˛
�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/C �.kˇ� C�k1 � kˇ
�
k1/

� E
�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�
� e.r�/

C �
�
k�A ck1 � k�A k1

�
:

(4.23)

Now let E2 D
˚
e.r�/ � 8

p
2M0=�0

p
.1C logp/=n

�
4
p
s C K C 1

�
r�
	
: It follows from

Lemma 4.3 that Pr.E2/ � 1 � exp
�
�16M0�

�1
0 s.1 C logp/

�
: By Lemma 4.4, for any
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.ı;�/ 2 C �; we have

E
�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�
� min

˚
f r2�=4; q.f =K/

1=2r�
	
:

Also, by condition (C1) and (4.15), for .ı;�/ 2 C �; we have k�A k1 � r�
p
s=�0: Thus,

under event E1 \ E2; for any .ı;�/ 2 C �; it follows from (4.23) and the growth condition

that

Qn.˛
�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/C �.kˇ� C�k1 � kˇ
�
k1/

�
f

4
r2� �

"
8

s
2M0

�0

r
1C logp

n

�
4
p
s CK C 1

�
C �

r
s

�0

#
r� > 0

by our choice of r�: Therefore, by Lemma 4.2 and 4.3, with probability at least

Pr.E1 \ E2/ � 1 � Pr.E c
1/ � Pr.E c

2/ � 1 � p1.�/;

we have .bı�; b��/ 2 Cr� : This, by condition (C1), further implies that

r2� �
1

K

KX
kD1

�m

h
j Oı�k j

2
C kb��

A[A .b��;m/k22i
�
1

K
�mkbı�k22 C �mkb��

A[A .b��;m/k22:
As a result, we obtain that kbı�k2 � r�pK=�m and that

kb��

A[A .b��;m/k2 � r�=p�m: (4.24)

Note that the j th largest in absolute value component of b�A c is bounded by kb�A ck1=j:
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Therefore, it follows that

b�
.A[A .b��;m//c22 � pX

jDmC1

kb��
A ck

2
1

j 2
�
1

m
kb��

A ck
2
1

�
1

m

�
3kb��

A k1 C k
bı�k1�2 � 18s

m
kb��

A k
2
2 C

2K

m
kbı�k22

�
18s

m
kb��

A[A .b��;m/k22 C 2K

m
kbı�k22;

which, together with (4.24), implies that

kb��
k
2
2 �

�
1C

18s

m

�
kb��

A[A .b��;m/k22 C 2K

m
kbı�k22

�
r2�
�m

�
1C

18s

m
C
2K2

m

�
:

This completes the proof of Theorem 4.1. �

Lemma 4.5

Suppose the folded concave penalized quantile regression (4.4) is solved with the LLA

algorithm (Algorithm 7). Let a0 D min.a2; 1/ and define

E1 D fkb̌.0/ � ˇ�k1 � a0�g;
E2 D fkrA cQn.b̨o; b̌o/k1 < a1�g;

E3 D
n

min
j2A
j Ǒ

o
j j > a�

o
;

where rA cQn.b̨o; b̌o/ D
�
rjQn.b̨o; b̌o/; j 2 A c

�
with

rjQn.b̨o; b̌o/ D
1

2n

nX
iD1

xij

�
1 �

2

K

KX
kD1

�k

�
�

1

2nK

nX
iD1

KX
kD1

Sgn. Orik/xij ;



4.6. PROOFS 111

Orik D yi � Ǫ
o
k
� xT

i
b̌o; 1 � i � n; 1 � k � K; and

Sgn.u/ D

8̂̂̂<̂
ˆ̂:
1; if u > 0

Œ�1; 1�; if u D 0

�1; if u < 0:

Then under E1 \ E2 \ E3 and condition (C0), the LLA algorithm converges to the oracle

estimator. �

Proof 4.5 (Proof of Lemma 4.5)

Note that Qn is convex, but not differentiable. Denote the subdifferential of Qn.˛;ˇ/ at

.b̨o; b̌o/ by

@Qn.b̨o; b̌o/ D

�
.�; �/W �k D

1 � 2�k

2K
�

1

2nK

nX
iD1

Sgn. Orik/; 1 � k � K;

�j D
1

2n

nX
iD1

xij

�
1 �

2

K

KX
lD1

�l

�
�

1

2nK

nX
iD1

KX
lD1

Sgn. Oril/xij ; 1 � j � p
�
:

By convexity of Qn; for any .˛;ˇ/ and .�; �/ 2 @Qn.b̨o; b̌o/; we have

Qn.˛;ˇ/ �Qn.b̨o; b̌o/ � �T.˛ � b̨o/C �T.ˇ � b̌o/:

Now by optimality of .b̨o; b̌o/; we can take � D 0 and �A D 0: It follows that

Qn.˛;ˇ/ � Qn.b̨o; b̌o/C
X
j2A c

�j .ˇj � Ǒ
o
j /: (4.25)

Under event E1; we have maxj2A c j Ǒ
.0/

j j � a0� � a2�: Moreover, by condition (C3), we
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have

min
j2A
j Ǒ
.0/
j � min

j2A
jˇ�j j �max

j2A
j Ǒ
.0/

j � ˇ
�
j j � .aC 1 � a0/� � a�:

Thus, under event E1; it follows from properties (P3) and (P4) of p� that

p0�.j
Ǒ.0/
j j/ � a1�; 8j 2 A c and p0�.j

Ǒ.0/
j j/ D 0; 8j 2 A :

Similarly, under event E3 and by the fact that b̌o
A c D 0; it can be shown that

p0�.j
Ǒo
j j/ D 0; 8j 2 A and p0�.j

Ǒo
j j/ � a1�; 8j 2 A c:

To this end, it can be seen from step (2.a) of Algorithm 7 that

.b̨.1/; b̌.1// D arg min
˛;ˇ

Qn.˛;ˇ/C
X
j2A c

p0�.j
Ǒ.0/
j j/jˇj j:

Now under E2 D fk�A ck1 < a1�g; it follows from (4.25) that for any .˛;ˇ/;h
Qn.˛;ˇ/C

X
j2A c

p0�.j
Ǒ.0/
j j/jˇj j

i
�

h
Qn.b̨o; b̌o/C

X
j2A c

p0�.j
Ǒ.0/
j j/j
Ǒo
j j

i
�

X
j2A c

�j .ˇj � Ǒ
o
j /C

X
j2A c

p0�.j
Ǒ
j j
.0//jˇj j

�

X
j2A c

�
p0�.j
Ǒ.0/
j j/ � j�j j

�
jˇj j � 0:

(4.26)

The leftmost hand side of the above inequality is strictly positive unless ˇA c D 0: Note that

condition (C0) implies the uniqueness of the oracle estimator (See Appendix C). It can be

then seen that .b̨.1/; b̌.1// coincides with the oracle estimator. Now given that .b̨.1/; b̌.1// is

the oracle estimator, we show that .b̨.2/; b̌.2// yielded by the LLA algorithm will still be the
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oracle estimator. To see it, note that under event E2;

p0�.j
Ǒ.1/
j j/ D 0; 8j 2 A and p0�.j

Ǒ.1/
j j/ � a1�; 8j 2 A c:

By the LLA iteration, we have

.b̨.2/; b̌.2// D arg min
˛;ˇ

Qn.˛;ˇ/C
X
j2A c

p0�.j
Ǒ.1/
j j/jˇj j:

Thus, we can follow similar arguments from (4.26) to show that under event E3; .b̨.2/; b̌.2//
is still the oracle estimator. This proves the lemma. �

Note that the above proof is slightly different from the general result (Theorems 1 and 2)

in Fan et al. (2014b) since we need to deal with the intercept terms additionally.

For r > 0; define BA .r/ D f.ı;�/ 2 RK � RpW kık22 C k�A k
2
2 � r2; �A c D 0g

and SA .r/ D f.ı;�/ 2 RK � RpW kık22 C k�A k
2
2 D r2; �A c D 0g: Moreover, let

z.r/ D sup.ı;�/2BA .r/
j�n.˛

� C ı;ˇ� C�/j:

Lemma 4.6

Under condition (C0), for any t > 0 and r > 0 satisfying r
p
.s C 1/MA � U0; with

probability at least 1 � exp
�
�nt2=.32�r2/

�
; we have z.r/ � 4r

p
.s C 1/MA =nC t and

inf
.ı;�/2SA .r/

�
Qn.˛

�
Cı;ˇ�C�/�Qn.˛

�;ˇ�/
�
�

1

2K
f �r2�4r

r
.s C 1/MA

n
� t: �

Proof 4.6 (Proof of Lemma 4.6)

As with the proof of Lemma 4.3, define

Ui.ı;�/ D
1

K

KX
kD1

��k.r
�
ik � ık � xT

i�/ �
1

K

KX
kD1

��k.r
�
ik/;
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where r�
ik
D yi �˛

�
k
�xT

iˇ
�
D "i �˛

�; 1 � i � n; 1 � k � K: By Massart’s concentration

inequality again, we get

Pr.z.r/ � EŒz.r/�C t / � exp
�
�
n2t2

8b2n.r/

�
; (4.27)

where b2n.r/ D sup.ı;�/2BA .r/

Pn
iD1 var.Ui.ı;�//: For ease of notation, let us denote

�k
A D .ık;�

T
A /

T; 1 � k � K: It follows from the Lipschitz continuity of the check loss

that

b2n.r/ �
4

K
sup

.ı;�/2BA .r/

KX
kD1

nX
iD1

.ık C xT
i�/

2

D
4

K
sup

.ı;�/2BA .r/

KX
kD1

.�k
A /

TXT
A0
XA0�

k
A

�
4n

K
sup

.ı;�/2BA .r/

KX
kD1

�
�
ı2k C k�A k

2
2

�
� 4n�r2:

Moreover, by the symmetrization procedure and the contraction principle again, we obtain

EŒz.r/� �
4

nK

KX
kD1

E
�

sup
.ı;�/2BA .r/

ˇ̌̌̌ nX
iD1

�i.ık C xT
A�A /

ˇ̌̌̌�
�

4

nK
E
�
kXT

A0
�k2

�
� sup
.ı;�/2BA .r/

KX
kD1

k�k
A k2 �

4r

n
E
�
kXT

A0
�k2

�
;

(4.28)

where � D .�1; : : : ; �n/
T is a random vector of i.i.d. Rademacher variables that satisfy

Pr.�i D �1/ D Pr.�i D 1/ D 1=2 and that are independent of "1; : : : ; "n: By Jensen’s and
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Khintchine inequalities (Haagerup, 1981), we have

E
�
kXT

A0
�k2

�
�
�
E
�
�TXA0XA0�

��1=2
D

�X
j2A0

E
� nX
iD1

�ixij

�2�1=2
�

�X
j2A0

nX
iD1

x2ij

�1=2
D

� nX
iD1

X
j2A0

x2ij

�1=2
�
p
n.s C 1/MA :

It follows from (4.28) that EŒz.r/� � 4r
p
.s C 1/MA =n: The first part of the lemma then

follows from (4.27). Let F.ı;�/ D Qn.˛
� C ı;ˇ� C �/ � Qn.˛

�;ˇ�/: To prove the

second inequality of the lemma, it suffices to note that

inf
.ı;�/2SA .r/

F.ı;�/ � inf
.ı;�/2SA .r/

E
�
Qn.˛

�
C ı;ˇ�C�/�Qn.˛

�;ˇ�/
�
� z.r/;

and that by (4.17) and the mean value theorem, we have for some Nuik;t between 0 and t

such that

inf
.ı;�/2SA .r/

E
�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�

D inf
.ı;�/2SA .r/

1

nK

nX
iD1

KX
kD1

Z ıkCxT
i
�

0

�
F.˛�k C t / � F.˛

�
k/
�
dt

D inf
.ı;�/2SA .r/

1

nK

nX
iD1

KX
kD1

Z ıkCxT
i
�

0

�
tf .˛�k C Nuik;t/

�
dt:

(4.29)

Now for any 1 � i � n; 1 � k � K and .ı;�/ 2 SA .r/; we have

jık C xT
i�j �

q
1C kxiA k22 �

q
ı2
k
C k�A k

2
2 � r

p
.s C 1/MA � U0:
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It then follows from condition (C0) and (4.29) that

inf
.ı;�/2SA .r/

E
�
Qn.˛

�
C ı;ˇ� C�/ �Qn.˛

�;ˇ�/
�

� inf
.ı;�/2SA .r/

f

2nK

nX
iD1

KX
kD1

.ık C xT
i�/

2
�

f

2K
�r2:

This completes the proof. �

Proof 4.7 (Proof of Lemma 4.1)

For ease of notation, letbıo D b̨o � ˛� and b�o D b̌o � ˇ�: In Lemma 4.6, let r D r� D

32K.f �/�1
p
MA .s C 1/=n and take t D 4r�

p
MA .s C 1/=n: We can see that with the

choice of r�; there exists U0 such that r�
p
.s C 1/MA � U0: It follows immediately that

with probability at least 1 � exp
�
�.s C 1/MA =.2 N�/

�
; we have

inf
.ı;�/2SA .r�/

�
Qn.˛

�
Cı;ˇ�C�/�Qn.˛

�;ˇ�/
�
�

f

2K
�.r�/2�8r�

r
.s C 1/MA

n
> 0:

By convexity of Qn and optimality of .b̨o; b̌o/, this implies that

kbıo
k
2
2 C k

b�o
k
2
2 � .r

�/2:

This completes the lemma. �

For each j 2 A c; define Snj .˛;ˇ/ D
1
nK

Pn
iD1

PK
kD1

�
I.yi � ˛k � xT

iˇ � 0/� �k
�
xij ;

and for r > 0; let

j .r/ D sup
.ı;�/2BA .r/

ˇ̌
Snj .˛

�
C ı;ˇ� C�/ � Snj .˛

�;ˇ�/

� E
�
Snj .˛

�
C ı;ˇ� C�/ � Snj .˛

�;ˇ�/
�ˇ̌
:
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Lemma 4.7

For r; t > 0; 0 <  < r and j 2 A c; we have

Pr.j .r/ > t/ � 2N exp
�
�

nt2

8 Nf M 2
A c�

1=2r C 8
3
MA ct

�
C 2N exp

�
�

nt20

2 Nf M 2
A c
�
.s C 1/MA

�1=2
 C 4

3
MA ct0

�
;

where N is the  -covering number (see, e.g., Pollard, 1990) of BA .r/ and t0 D
�
t=2 �

2 Nf MA c
�
.s C 1/MA

�1=2
 
�
C
: �

Proof 4.8 (Proof of Lemma 4.7)

Consider a minimal  -cover of BA .r/: Let us denote this covering net by f.ı`;�`/;

` D 1; : : : ; N g � BA .r/: For j 2 A c; define

Uij .ı;�/ D
1

K

KX
kD1

�
I.r�ik � ık C xT

i�/ � �k
�
xij �

1

K

KX
kD1

�
I.r�ik � 0/ � �k

�
xij ;

where r�
ik
D yi � ˛

�
k
� xT

iˇ
�
D "i � ˛

�
k
; 1 � i � n; 1 � k � K: Then it can be seen that

j .r/ D sup
.ı;�/2BA .r/

ˇ̌̌̌
1

n

nX
iD1

�
Uij .ı;�/ � EUij .ı;�/

�ˇ̌̌̌
:

For any .ı;�/ 2 BA .r/ and j 2 A c; note that

jUij .ı;�/j �
1

K

KX
kD1

jI.r�ik � ık C xT
i�/ � I.r

�
ik � 0/j � jxij j �MA c :

Let pik D Pr
�
�.ık C xT

i�/� < r�
ik
� .ık C xT

i�/C
�
; 1 � i � n; 1 � k � K: It follows

from the mean value theorem and condition (C0) that

pik D F.˛
�
k C .ık C xT

i�/C/ � F.˛
�
k � .ık C xT

i�/�/ �
Nf jık C xT

i�j:
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By Cauchy–Schwarz inequality and the mean value theorem, we have

var
�
Uij .ı;�/

�
�
x2ij

K

KX
kD1

var
�
I
�
�.ık C xT

i�/� < r
�
ik � .ık C xT

i�/C
��

D
x2ij

K

KX
kD1

pik.1 � pik/ �
Nf x2ij

K

KX
kD1

jık C xT
i�j �

Nf M 2
A c

K

KX
kD1

jık C xT
iA�A j:

Let�k
A D .ık;�

T
A /

T; 1 � k � K: By Cauchy–Schwarz inequality again, we get

1

n

nX
iD1

var
�
Uij .ı;�/

�
�

1

nK
Nf M 2

A c

nX
iD1

KX
kD1

jık C xT
iA�A j

�

Nf M 2
A c

K

KX
kD1

h1
n

�
�k

A

�TXT
A0
XA0�

k
A

i1=2
� Nf M 2

A c�
1=2r:

Now applying Bernstein inequality, we have for any .ı;�/ 2 BA .r/ and t > 0;

Pr
�ˇ̌̌̌
1

n

nX
iD1

�
Uij .ı;�/�EUij .ı;�/

�ˇ̌̌̌
> t

�
� 2 exp

�
�

nt2

2 Nf M 2
A c�

1=2r C 4
3
MA ct

�
:

Now for 1 � ` � N ; let B`. / D f.ı;�/W kı � ı`k22Ck���
`
k22 �  

2; �A c D 0g be

the ball centered at .ı`;�`/ 2 BA .r/ with radius  : For any 1 � i � n; 1 � k � K and

.ı;�/ 2 B`. /; note that

j.ık C xT
i�/ � .ı

`
k C xT

i�
`/j �

�
1C kxiA k22

�1=2
 �

�
.s C 1/MA

�1=2
 :

For 1 � i � n and j 2 A c; let

Vij .ı
`;�`/ D

1

K
jxij j

KX
kD1

�
I
�
r�ik � ı

`
k C xT

i�
`
C ..s C 1/MA /

1=2 
�

� I.r�ik � ı
`
k C xT

i�
`/
�
:
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Since the indicator function I.u � t / is nondecreasing in t; we have

sup
.ı;�/2B`. /

ˇ̌̌̌
1

n

nX
iD1

�
Uij .ı;�/ � Uij .ı

`;�`/ � E
�
Uij .ı;�/ � Uij .ı

`;�`/
��ˇ̌̌̌

�
1

nK

nX
iD1

jxij j

KX
kD1

�
I
�
r�ik � ı

`
k C xT

i�
`
C ..s C 1/MA /

1=2 
�
� I.r�ik � ı

`
k C xT

i�
`/

� Pr
�
r�ik � ı

`
k C xT

i�
`
� ..s C 1/MA /

1=2 
�
C Pr.r�ik � ı

`
k C xT

i�
`/
�

WD I1 C
1

n

nX
iD1

�
Vij .ı

`;�`/ � EVij .ı`;�`/
�
;

where

I1 D
1

nK

nX
iD1

jxij j

KX
kD1

�
Pr
�
r�ik � ı

`
k C xT

i�
`
C ..s C 1/MA /

1=2 
�

� Pr
�
r�ik � ı

`
k C xT

i�
`
� ..s C 1/MA /

1=2 
��
:

By the mean value theorem, we have

I1 �
1

nK

nX
iD1

jxij j

KX
kD1

�2
�
.s C 1/MA

�1=2 Nf  � 2 Nf MA c
�
.s C 1/MA

�1=2
 :

Similarly, it can be shown that jVij .ı`;�`/j �MA c and

1

n

nX
iD1

var.Vij .ı`;�`// � Nf M 2
A c
�
.s C 1/MA

�1=2
 :

It then follows from Bernstein inequality that for 1 � ` � N ;

Pr
�

sup
.ı;�/2B`. /

ˇ̌̌̌
1

n

nX
iD1

�
Uij .ı;�/ � Uij .ı

`;�`/ � E
�
Uij .ı;�/ � Uij .ı

`;�`/
��ˇ̌̌̌
> t

�
� 2 exp

�
�

nt21

2 Nf M 2
A c
�
.s C 1/MA

�1=2
 C 4

3
MA ct1

�
;
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where t1 D
�
t � 2 Nf MA c

�
.s C 1/MA

�1=2
 
�
C
: The lemma then follows by noting that

Pr.j .r/ > t/ D Pr
�

sup
.ı;�/2BA .r/

ˇ̌̌̌
1

n

nX
iD1

�
Uij .ı;�/ � EUij .ı;�/

�
> t

ˇ̌̌̌�
�

N X
`D1

Pr
�

sup
.ı;�/2B`. /

ˇ̌̌̌
1

n

nX
iD1

�
Uij .ı;�/ � Uij .ı

`;�`/

� E
�
Uij .ı;�/ � Uij .ı

`;�`/
��ˇ̌̌̌
>
t

2

�
C

N X
`D1

Pr
�ˇ̌̌̌
1

n

nX
iD1

�
Uij .ı

`;�`/ � EUij .ı`;�`/
�ˇ̌̌̌
>
t

2

�
:

This completes the proof. �

Proof 4.9 (Proof of Theorem 4.2)

Letbıo D b̨o�˛� and b�o D b̌o�ˇ�: For 1 � i � n; 1 � k � K;write Orik D yi� Ǫ ok�xT
i
b̌o

and r�
ik
D yi � ˛

�
k
� xT

iˇ
�: For ease of notation, let F.ı;�/ D Qn.˛

� C ı;ˇ� C�/ �

Qn.˛
�;ˇ�/ for .ı;�/ 2 RK � Rp: According to Lemma 4.5, with probability at least

Pr.E1 \ E2 \ E3/ � 1 � Pr.E c
1/ � Pr.E c

2/ � Pr.E c
3/;

the LLA algorithm will converge to the oracle estimator in two iterations. In the sequel, we

will split the proof into three parts and provide the upper bound on each of Pr.E c
1/; Pr.E c

2/

and Pr.E c
3/; separately.

(i) First, we deal with Pr.E c
1/ D Pr.kb̌.0/ � ˇ�k1 > a0�/: Since in the LLA algorithm

(Algorithm 7), we take .b̨.0/; b̌.0// to be the lasso estimator .b̨�0; b̌�0/; by Theorem 4.1, we

have

Pr.E1/ D Pr
�
kb̌�0 � ˇ�k1 � a0�� � Pr

�
kb̌�0 � ˇ�k2 � a0�� � 1 � p1.�0/;
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which implies that Pr.E c
1/ � p1.�0/:

(ii) We next derive the upper bound on Pr.E c
3/ D Pr

�
minj2A j Ǒoj j � a�

�
: Let r0 D

minj2A jˇ�j j � a�: It can be seen that Pr.E c
3/ � Pr.kb�ok1 > r0/: Note that by convex-

ity of Qn; kb�ok2 � r0 is implied by the event that inf.ı;�/2SA .r0/ F.ı;�/ > 0: Since

r0
p
.s C 1/MA � U0; it follows from Lemma 4.6 that for any t > 0;

inf
.ı;�/2SA .r0/

F.ı;�/ �
f

2K
�r20 � 4r0

r
.s C 1/MA

n
� t

holds with probability at least 1�exp
�
�nt2=.32�r20 /

�
: By condition (C3), it can be seen that

r0 > � > 8K.f �/
�1
p
.s C 1/MA =n: Now take t D f �r20=.4K/ � 2r0

p
.s C 1/MA =n:

Then, we can see that t > 0: It follows immediately that inf.ı;�/2SA .r0/ F.ı;�/ > t > 0:

With this specific choice of t; we get

Pr
�
kb�o
k2 � r0

�
� 1 � exp

�
�nt2=.32�r20 /

�
;

which implies that

Pr.E c
3/ � Pr.kb�o

k1 > r0/ � Pr.kb�o
k2 > r0/ � exp

�
�nt2=.32�r20 /

�
:

(iii) Finally, we look at Pr.E c
2/ D Pr.krA cQn.b̨o; b̌o/k1 � a1�/: To this end, we set

r� D
p
.s C 1/MA logn=n and let R D f.i; k/W Orik D 0; 1 � i � n; 1 � k � Kg be the

index set for zero residuals. From Section B of the appendix, we have jRj � K.K C s/: It

can be seen that

rjQn.b̨o; b̌o/ D
1

2nK

nX
iD1

KX
kD1

�
.1 � 2�k/ � Sgn. Orik/

�
xij

D
1

nK

nX
iD1

KX
kD1

�
I. Orik � 0/ � �k

�
xij �

1

2nK

X
.i; k/2R

�
Sgn. Orik/C 1

�
xij ;
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where we have

max
j2A c

ˇ̌̌̌
1

2nK

X
.i; k/2R

�
Sgn. Orik/C 1

�
xij

ˇ̌̌̌
�
.K C s/MA c

n
WD B1:

Now let E0 D f.bıo; b�o/ 2 BA .r�/g: Under E0; note that by the triangular inequality, we

have

max
j2A c

ˇ̌̌̌
1

nK

nX
iD1

KX
kD1

�
I. Orik � 0/ � �k

�
xij

ˇ̌̌̌
� max
j2A c

j .r�/C max
j2A c
jSnj .˛

�;ˇ�/j

C max
j2A c

sup
.ı;�/2BA .r�/

ˇ̌̌
E
�
Snj .˛

�
C ı;ˇ� C�/ � Snj .˛

�;ˇ�/
�ˇ̌̌
:

By the mean value theorem, it can be seen that

max
j2A c

sup
.ı;�/2BA .r�/

ˇ̌̌
E
�
Snj .˛

�
C ı;ˇ� C�/ � Snj .˛

�;ˇ�/
ˇ̌̌

�
1

nK
Nf MA c sup

.ı;�/2BA .r�/

nX
iD1

KX
kD1

jık C xT
iA�A j �

Nf MA c�1=2r� WD B2:

Note that 2B D a1� � B1 � B2: It follows that

Pr.E c
2/ � Pr

�
.bıo; b�o/ … BA .r�/

�
C Pr

�
max
i2A c

j .r�/ � B
�

C Pr
�

max
j2A c
jSnj .˛

�;ˇ�/j � B
�
:

Note that r�
p
.s C 1/MA � U0: By similar arguments in (ii), it can be shown that

Pr
�
.bıo; b�o/ … BA .r�/

�
� exp

�
�

nt2�
32�r2�

�
;
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where t� D f �r2�=.4K/�2r�
p
.s C 1/MA =n: Applying Hoeffding’s inequality, we obtain

Pr
�

max
j2A c
jSnj .˛

�;ˇ�/j � B
�
� 2.p � s/ exp

�
�
2nB2

M0

�
:

Lastly, we apply Lemma 4.7 to obtain the bound on Pr
�

maxj2A c j .r�/ � B
�
: Let  D

4r�=n
2: It can be shown that the  -covering number of BA .r�/ satisfies

�r�
 

�KCs
� N �

�2r� C  
 

�KCs
� n2.KCs/; n � 2:

By Lemma 4.7, we have

Pr
�

max
j2A c

j .r�/ � B
�
� 2.p � s/N exp

�
�

nB2

8 Nf M 2
A c�

1=2r� C
8
3
MA cB

�
C 2.p � s/N exp

�
�

nB20

2 Nf M 2
A c
�
.s C 1/MA

�1=2
 C 4

3
MA cB0

�
;

where B0 D
�
B=2 � 2 Nf MA c

�
.s C 1/MA

�1=2
 
�
C
: This completes the proof. �



Chapter 5

Conclusion

5.1 Discussion

In this dissertation, we considered three types of unconventional sparse penalized regressions,

that is, the (coupled) sparse asymmetric least squares, the penalized quantile regression and

the penalized composite quantile regression, and studied both the theoretical and numerical

properties of those methods. The proposed methods can be readily applied to analyze

high-dimensional data that exhibit heteroscedasticity or heavy-tailedness.

In Chapter 2, we systematically extended the asymmetric least squares regression to high

dimensions. Through lasso and folded concave penalties, the penalized asymmetric least

squares was shown to enjoy the strong oracle property. We also proposed efficient coordinate

descent algorithm for solving penalized asymmetric least squares under a unified framework.

We then applied the methodology to analyze heteroscedasticity in high-dimensional data. A

more calibrated method called the coupled sparse asymmetric least least squares was also

studied to analyze heteroscedasticity. The advantage of our proposed methods is that they

are computationally very efficient, while are still capable of handling heteroscedasticity.

In Chapter 3, we proposed pADMM and scdADMM to solve the high-dimensional sparse

penalized quantile regression. The computational efficiency of our algorithms have been

tested with extensive numerical experiments. We note that both pADMM and scdADMM

124
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algorithms can be readily modified to solve the elastic net penalized quantile regression.

Our R package FHDQR includes functions for solving the weighted elastic net penalized

quantile regression. We present the algorithmic details of the weighted elastic net penalized

quantile regression in Appendix B.

Computational burden is a real issue that prevents the data analyst from using the high-

dimensional quantile regression as frequently as the sparse penalized least squares. Our

algorithms and R package drastically alleviate this burden and hence make sparse quantile

regression a part of the standard toolbox for data analysts.

In Chapter 4, we studied the sparse penalized CQR under various regularization. In

particular, we established the estimation consistency of the CQR lasso estimator. Through

the LLA algorithm, we showed that the CQR oracle estimator could be achieved via folded

concave penalized CQR. Our theoretical analysis remains valid even when the dimensionality

is ultrahigh, that is, p D O.n/ with 0 <  < 1:

We also developed a fast sparse coordinate descent ADMM (scdADMM) algorithm for

solving the weighted L1-penalized CQR. Numerical studies proved the efficiency of the

algorithm. We note that our algorithm can be readily modified to solve adaptive elastic net

penalized CQR. Specifically, a similar algorithm can be devised to solve the weighted elastic

net penalized CQR:

min
ˇ;˛1;:::;˛K

1

nK

KX
kD1

nX
iD1

��k.yi � ˛k � xT
iˇ/C �1

pX
jD1

dj jˇj j C
�2

2

pX
jD1

hjˇ
2
j ; (5.1)

where �1; �2 � 0; dj � 0 and hj � 0; j D 1; : : : ; p: For the sake of brevity, we relegate

the optimization algorithm for solving (5.1) to Appendix C. We also provide an R package

called FHDCQR (fast high-dimensional composite quantile regression) that implements the

above algorithm.
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5.2 Future Work

This dissertation provides an aspiring start for the methodological and numerical research

on unconventional sparse penalized regressions for high-dimensional data. On one hand,

the methods can be extended to work with censored and longitudinal data. Longitudinal

studies are often conducted in observational studies and clinical trials in a variety of fields

such as medicine, biology, epidemiology, sociology and economics, in which censored

observations can be very common. Examples include the HIV study (Hughes, 1999),

virologic study (Thompson et al., 2010), and many others. A typical approach to analyzing

such data is through mixed models. However, the maximum likelihood estimators may

fail to be consistent when the random-effects density is misspecified (Vock et al., 2012).

Unconventional regressions can provide new perspectives for handling such data (Wang and

Fygenson, 2009). When gene markers are used to augment the studies, the problem can

become really high-dimensional. Our methodologies have the potential to deal with such

censored longitudinal data with very minimal modifications.

On the other hand, from the optimization point of view, the ADMM algorithms have the

potential to deal with very large-scale data. When n is moderate and p is large, we have

shown that the ADMM algorithms can be really efficient using a single machine. However,

when n is very big, it may not even be possible to store the data on a single machine. To

that end, we point out that the ADMM algorithm can be carried out in a distributed manner,

where the data are split into smaller subsets and stored on multiple slave machines. For the

subset data chunks, we fit them with slave machines simultaneously using our proposed

algorithms for the penalized regression. The problem only has small to moderate n for each

slave machine because of the split and thus can be solved very efficiently.
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Appendix A

Iteration complexity analysis of the
SALES algorithm

Notation. For a vector v D .v1; : : : ; vd /
T 2 Rd and a univariate function u.�/; we write

u.v/ D .u.v1/; : : : ; u.vd //
T. Also, denote the subvector of v with its kth component

removed by v�k D .v1; : : : ; vk�1; vkC1; : : : ; vd /T and recover v from v�k by v D Œvk; v�k�.
The column vector of all ones will be denoted by 1n 2 Rn: The L2-norm of v is denoted
by kvk D

�Pd
kD1 v

2
k

�1=2
: We also let @h be the sub-differential of a nonsmooth convex

function h (see e.g., Bertsekas, 1999).

Iteration Complexity Analysis. For ease of exposition, let us rewrite (2.5) as the following
unconstrained optimization problem

min
ˇ2Rp

f .ˇ/ D g.ˇ/C

pX
kD1

hk.ˇk/ (A.1)

where g.ˇ/ D n�11T
n‰�.y � Xˇ/ is smooth convex in ˇ 2 Rp; while hk.ˇk/ D wkjˇkj

is nonsmooth convex in ˇk for each k D 1; : : : ; p: For ease of exposition, also let h.ˇ/ DPp

kD1
hk.ˇk/: Note that rg.ˇ/ D �n�1XT‰0�.y � Xˇ/ with

rkg.ˇ/ D �n
�1

nX
iD1

‰0�.yi � xT
iˇ/xik D �n

�1X T
k‰
0
�.y � Xˇ/; k D 1; : : : ; p:

136
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Let �max D �max.n
�1XTX/ D �max.n

�1XXT /: It follows that

krg.ˇ/ � rg.ˇ0/k D n�1kXT.‰0�.y � Xˇ/ �‰0�.y � Xˇ0//k

� .�max=n/
1=2
k‰0�.y � Xˇ/ �‰0�.y � Xˇ0/k

� 2 Nc.�max=n/
1=2
kX.ˇ � ˇ0/k

� 2 Nc�maxkˇ � ˇ
0
k;

which implies that the gradient of g.�/ is uniformly Lipschitz continuous with Lipschitz
constant L D 2 Nc�max: When restricted to each coordinate, we have

jrkg.Œˇk;ˇ�k�/ � rkg.Œˇ
0
k;ˇ�k�/j � 2n

�1
NckXkk

2
jˇk � ˇ

0
kj; k D 1; : : : ; p;

which implies that the gradient of g.�/ is coordinate-wise uniformly Lipschitz continuous
with Lipschitz constants Lk D 2n�1 NckXkk2; k D 1; : : : ; p:

In the cyclic coordinate descent algorithm, let ˇr be the update of ˇ after the r th cycle,
r � 0. When updating ˇk in the .r C 1/th cycle using the proximal gradient method, let
ˇ
r;s

k
be the update after the sth iteration, s � 0. Note that since the proximal gradient

algorithm for updating ˇk in the .r C 1/th cycle is initialized by ˇr
k
; we have ˇr;0

k
D ˇr

k
:

Suppose the proximal gradient algorithm converges (namely, the convergence criterion for
the proximal gradient algorithm is satisfied) after S r

k
iterations. For some large and fixed

integer B 2 ZC; if S r
k
� B; we let ˇrC1

k
WD ˇ

r;Sr
k

k
: Otherwise, let ˇrC1

k
WD ˇ

r;B

k
; which

means that the proximal gradient algorithm will be terminated after at most B iterations.
For ease of notation, denote

brC1
k
D .ˇrC11 ; : : : ; ˇrC1

k�1
; ˇrk; ˇ

r
kC1; : : : ; ˇ

r
p/

T; k D 1; : : : ; p;

brC1
�k
D .ˇrC11 ; : : : ; ˇrC1

k�1
; ˇrkC1; : : : ; ˇ

r
p/

T; k D 1; : : : ; p:

Clearly we have brC11 D ˇr and brC1pC1 D ˇ
rC1: Note that in the proximal gradient update,

ˇ
r;sC1

k
WD proxL�1

k
hk
.ˇ
r;s

k
� L�1k rkg.Œˇ

r;s

k
;brC1
�k

�//

is equivalent to

ˇ
r;sC1

k
WD arg min

ˇk

uk.ˇkI Œˇ
r;s

k
;brC1
�k

�/C hk.ˇk/;
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where the proximity operator prox does the soft-thresholding (Parikh and Boyd, 2013) and

uk.ˇkI Œˇ
r;s

k
;brC1
�k

�/ D g.Œˇ
r;s

k
;brC1
�k

�/Crkg.Œˇ
r;s

k
;brC1
�k

�/.ˇk � ˇ
r;s

k
/

C
Lk

2
.ˇk � ˇ

r;s

k
/2

is a quadratic majorization function of Og.ˇkIbrC1�k / WD g.Œˇk;brC1�k �/ at ˇr;s
k
: It is easy to

see that uk.ˇkI Œˇ
r;s

k
;brC1
�k

�/ is strongly convex in ˇk. By the optimality of ˇr;sC1
k

; there
exists �r;sC1

k
2 @hk.ˇ

r;sC1

k
/ such that

.ruk.ˇ
r;sC1

k
I Œˇ

r;s

k
;brC1
�k

�/C �
r;sC1

k
/.ˇk � ˇ

r;sC1

k
/ � 0; 8ˇk: (A.2)

Our analysis will be divided into three parts: the sufficient descent step, the cost-to-go
estimate step, and the local error bound step. Similar techniques can be found in Luo and
Tseng (1992), Luo and Tseng (1993), Zhang et al. (2013) and Hong et al. (2013).

Sufficient Descent. Consider the proximal gradient method applied to solving the following
problem

min
ˇk2R

f .Œˇk;brC1�k �/ D g.Œˇk;b
rC1
�k

�/C hk.ˇk/;
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we have by (A.2)

f .brC1
k

/ � f .brC1
kC1

/ D f .Œˇrk;b
rC1
�k

�/ � f .ŒˇrC1
k

;brC1
�k

�/

D

min.Sr
k
;B/�1X

sD0

�
f .Œˇ

r;s

k
;brC1
�k

�/ � f .Œˇ
r;sC1

k
;brC1
�k

�/
�

�

min.Sr
k
;B/�1X

sD0

�
uk.ˇ

r;s

k
I Œˇ

r;s

k
;brC1
�k

�/ � uk.ˇ
r;sC1

k
I Œˇ

r;s

k
;brC1
�k

�/

C hk.ˇ
r;s

k
/ � hk.ˇ

r;sC1

k
/
�

D

min.Sr
k
;B/�1X

sD0

h
rkuk.ˇ

r;sC1

k
I Œˇ

r;s

k
;brC1
�k

�/.ˇ
r;s

k
� ˇ

r;sC1

k
/

C hk.ˇ
r;s

k
/ � hk.ˇ

r;sC1

k
/C

Lk

2
.ˇ
r;s

k
� ˇ

r;sC1

k
/2
i

�

min.Sr
k
;B/�1X

sD0

h
.rkuk.ˇ

r;sC1

k
I Œˇ

r;s

k
;brC1
�k

�/C �
r;sC1

k
/.ˇ

r;s

k
� ˇ

r;sC1

k
/

C
Lk

2
.ˇ
r;s

k
� ˇ

r;sC1

k
/2
i

�

min.Sr
k
;B/�1X

sD0

Lk

2
.ˇ
r;s

k
� ˇ

r;sC1

k
/2 �

Lk

2B

�
ˇ
r;0

k
� ˇ

r;min.Sr
k
;B/

k

�2
D
Lk

2B
.ˇrk � ˇ

rC1
k

/2:

It follows that

f .ˇr/ � f .ˇrC1/ D

pX
kD1

�
f .brC1

k
/ � f .brC1

kC1
/
�
� L.2B/�1kˇr � ˇrC1k2; (A.3)

where L D min1�k�p Lk D 2n�1 Ncmin1�k�p kXkk2:

Cost-to-go Estimate. For notational convenience, denote C r
k
D min.S r

k
; B/: Let X � WD

fˇ�jf .ˇ�/ D minˇ f .ˇ/g be the optimal solution set of problem (A.1). Let Ň
r
2 X � be

the point in X � such that dX �.ˇ
r/ WD minˇ2X � kˇ�ˇrk D k Ň

r
�ˇrk: By the optimality
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of

ˇrC1
k
WD ˇ

r;C r
k

k
D arg min

ˇk2R
uk.ˇkI Œˇ

r;C r
k
�1

k
;brC1
�k

�/C hk.ˇk/;

one has

h.ˇrC1
k

/ � h. Ňrk/Crkg.Œˇ
r;C r

k
�1

k
;brC1
�k

�/.ˇrC1
k
� Ň

r
k/

�
Lk

2
. Ňrk � ˇ

r;C r
k
�1

k
/2 � Lk

�
. Ňrk � ˇ

r
k/
2
C .ˇrk � ˇ

r;C r
k
�1

k
/2
�
:

By the mean value theorem, there exists � 2 Œ0; 1� and �r D �ˇrC1 C .1 � �/ Ň
r

such that

g.ˇrC1/ � g. Ň
r
/ D hrg.�r/;ˇrC1 � Ň

r
i:

It follows that

f .ˇrC1/ � f . Ň
r
/ D g.ˇrC1/ � g. Ň

r
/C

pX
kD1

�
hk.ˇ

rC1
k

/ � hk. Ň
r
k/
�

D

pX
kD1

�
rkg.�

r/.ˇrC1
k
� Ň

r
k/C hk.ˇ

rC1
k

/ � hk. Ň
r
k/
�

D

pX
kD1

�
rkg.Œˇ

r;C r
k
�1

k
;brC1
�k

�/.ˇrC1
k
� Ň

r
k/C hk.ˇ

rC1
k

/ � hk. Ň
r
k/

C
�
rkg.�

r/ � rkg.Œˇ
r;C r

k
�1

k
;brC1
�k

�/
�
.ˇrC1
k
� Ň

r
k/
�

�

pX
kD1

�
Lk. Ň

r
k � ˇ

r
k/
2
C Lk.ˇ

r
k � ˇ

r;C r
k
�1

k
/2

C
�
rkg.�

r/ � rkg.Œˇ
r;C r

k
�1

k
;brC1
�k

�/
�
.ˇrC1
k
� Ň

r
k/
�
:

For each coordinate ˇk; by the sufficient descent property of the proximal gradient algorithm,
it can be shown that jˇr;sC1

k
� ˇ

r;s

k
j ! 0 as s !1: Therefore, for sufficiently large C r

k
;

we have

jˇ
r;C r

k

k
� ˇ

r;C r
k
�1

k
j � jˇ

r;C r
k

k
� ˇ

r;0

k
j D jˇrC1

k
� ˇrkj: (A.4)
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Together with the fact that rg.�/ is Lipschitz continuous, this implies� pX
kD1

�
rkg.�

r/ � rkg.Œˇ
r;C r

k
�1

k
;brC1
�k

�/
�
.ˇrC1
k
� Ň

r
k/

�2
�

� pX
kD1

krg.�r/ � rg.Œˇ
r;C r

k
�1

k
;brC1
�k

�/k2
�� pX

kD1

.ˇrC1
k
� Ň

r
k/
2

�
�

� pX
kD1

L2k�r � Œˇ
r;C r

k
�1

k
;brC1
�k

�k2
�
kˇrC1 � Ň

r
k
2

D

� pX
kD1

L2k�.ˇrC1 � ˇr/C .1 � �/. Ň
r
� ˇr/C ˇr � Œˇ

r;C r
k
�1

k
;brC1
�k

�k2
�

� 2.kˇrC1 � ˇrk2 C kˇr � Ň
r
k
2/

� 16.p C 1/L2
�
kˇrC1 � ˇrk2 C kˇr � Ň

r
k
2
�2

D 16.p C 1/L2
�
kˇrC1 � ˇrk2 C d2X �.ˇ

r/
�2
:

It follows that

f .ˇrC1/ � f . Ň
r
/ � .4L

p
p C 1C 2 NL/

�
kˇrC1 � ˇrk2 C d2X �.ˇ

r/
�
; (A.5)

where NL D max1�k�p Lk D 2n�1 Ncmax1�k�p kXkk2:

In practice, (A.4) can be easily satisfied if we monitor the proximal gradient step in a
way such that the algorithm is terminated after sr

k
iterations if we have jˇ

r;sr
k

k
� ˇ

r;sr
k
�1

k
j �

jˇ
r;sr
k

k
� ˇ

r;0

k
j: This is possible since we can always take sr

k
D 1; which corresponds to the

one-step update scheme in Yang and Zou (2013).

Local error bound. Let dX �.ˇ/ � minˇ�2X � kˇ
�
� ˇk: Note that the function p.z/ D

n�11T
n‰�.y � z/ is strongly convex in z 2 Rn. We can see that g.ˇ/ D p.Xˇ/: It follows

from Zhang et al. (2013) that for any � � minˇ f .ˇ/; there exist �; " > 0 such that

dX �.ˇ/ � �kˇ � proxh.ˇ � rg.ˇ//k; (A.6)

for all ˇ such that kˇ � proxh.ˇ � rg.ˇ//k � " and f .ˇ/ � �:

As a summary, we show in the following theorem that the SALES algorithm converges
at least linearly.
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Theorem A.1
The SALES algorithm (Algorithm 1) converges at least linearly to a solution in X �: �

Proof A.1
We first show that there exists some � > 0 such that

kˇr � proxh.ˇ
r
� rg.ˇr//k � �kˇrC1 � ˇrk; 8r � 1: (A.7)

For any r � 1 and any 1 � k � p; by the optimality of

ˇrC1
k
WD ˇ

r;C r
k

k
D arg min

ˇk

uk.ˇkI Œˇ
r;C r�1
k

;brC1
�k

�/C hk.ˇk/;

we have

ˇrC1
k
D proxL�1

k
hk
.ˇrC1
k
� L�1k ruk.ˇ

rC1
k
I Œˇ

r;C r�1
k

;brC1
�k

�//:

Let OLk D max.1; Lk/ and QLk D max.1; L�1
k
/: It follows from Lemma 4.3 of Kadkhodaie

et al. (2014) that

jˇrk � proxhk.ˇ
r
k � rkg.ˇ

r//j � OLkjˇ
r
k � proxL�1

k
hk
.ˇrk � L

�1
k rkg.ˇ

r//j

� OLk
�
jˇrC1
k
� proxL�1

k
hk
.ˇrk � L

�1
k rkg.ˇ

r//j C jˇrC1
k
� ˇrkj

�
� OLk

�
jproxL�1

k
hk
.ˇrC1
k
� L�1k ruk.ˇ

rC1
k
I Œˇ

r;C r�1
k

;brC1
�k

�//

� proxL�1
k
hk
.ˇrk � L

�1
k rkg.ˇ

r//j C jˇrC1
k
� ˇrkj

�
� 2 OLkjˇ

rC1
k
� ˇrkj C

OLkL
�1
k jruk.ˇ

rC1
k
I Œˇ

r;C r�1
k

;brC1
�k

�/ � rkg.ˇ
r/j

� 3 OLkjˇ
rC1
k
� ˇrkj C

QLkkrg.Œˇ
r;C r�1
k

;brC1
�k

�/ � rg.ˇr/k

� .3 OLk C L QLk/kˇ
rC1
k � ˇrkk:

It follows that

kˇr � proxh.ˇ
r
� rg.ˇr//k � .3 OLC L QL/

p
pkˇrC1k � ˇrkk;

where OL D max.1; NL/ and QL D max.1; L�1/: Therefore, when we take � D .3 OL C

L QL/
p
p; we get the desired result in (A.7). Note that the sufficient descent property (A.3)

implies that kˇrC1 � ˇrk ! 0 as r ! 1: It follows from (A.7) that kˇr � proxh.ˇ
r
�
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rg.ˇr//k ! 0 as r !1: Thus, by (A.6) we have dX �.ˇ
r/! 0 as r !1: Consequently,

from (A.5) it implies that f .ˇr/ ! f � WD minˇ f .ˇ/; which shows that the SALES
algorithm converges to the global minimum.

Now let c1 D L.2B/�1; c2 D 4L
p
p C 1C 2 NL; and �r D f .ˇr/ � f �: By the local

error bound (A.6) and the cost-to-go estimate (A.5), we obtain

�rC1 � c2
�
d2X �.ˇ

r/C kˇrC1 � ˇrk2
�

� c2�
2
kˇr � proxh.ˇ

r
� rg.ˇr//k2 C c2kˇ

rC1
� ˇrk2

� .c2�
2�2 C c2/kˇ

rC1
� ˇrk2

� .c2�
2�2 C c2/c

�1
1 Œf .ˇr/ � f .ˇrC1/�

D .c2�
2�2 C c2/c

�1
1 .�r ��rC1/;

which implies that

�rC1 �
c3

1C c3
�r ; (A.8)

where c3 D .c2�2�2 C c2/c�11 : We can see from (A.8) that f .ˇr/ approaches f � with at
least linear rate of convergence. From (A.3) again, this further implies that the sequence
fˇrg converges at least linearly. �



Appendix B

Computational Issues of Penalized
Quantile Regression

Proof of Lemma 3.1
Proof B.1 (PROOF OF LEMMA 3.1)
Note that ��.u/ D uf� � I.u < 0/g D .1=2/juj C .� � 1=2/u: It follows that

��.u/C
˛

2
.u � �/2 D

1

2
juj C

�
� �

1

2

�
uC

˛

2
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Therefore, by definition
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u2R

��.u/C
˛

2
.u � �/2

D arg min
u2R

1

2

h
u �

�
� C

1 � 2�

2˛

�i2
C

1

2˛
juj:

This implies that the proximal operator of �� is equivalent to a soft thresholding operator.
To be specific, we have
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Consider the three cases where � 2 .�1; .� � 1/=˛/; � 2 Œ.� � 1/=˛; �=˛�; and � 2
.�=˛;1/ separately, we get the desired proximal operator for �� as shown in Lemma 1. �

Proof of Theorem 3.1
Proof B.2 (PROOF OF THEOREM 3.1)
For ease of notation, let f .ˇ/ D �kw ı ˇk1 and g.z/ D Q�.z/: Also define rk D Xˇk C
zk � y for k � 0: Note that both f and g are convex. Therefore, by convexity of the
constrained form of the weighted L1-penalized quantile regression (3.4), the KKT condition
implies that .ˇ�; z�/ is an optimal solution if and only if there exists a Lagrangian multiplier
�� such that

XT�� 2 @f .ˇ�/; �� 2 @g.z�/; and Xˇ� C z� � y D 0; (B.1)

where @f and @g are the sub-differentials of f and g; respectively. In the proximal ADMM
iterations, the optimality conditions of ˇkC1 and zkC1 reveal that

0 2 @f .ˇkC1/ � XTŒ�k � �rkC1 C �.zkC1 � zk/�C S.ˇkC1 � ˇk/; and

0 2 @g.zkC1/ � .�k � �rkC1/:

Together with the fact that �k D �rkC1 C �kC1; we obtain

XTŒ�kC1 C �. � 1/rkC1 C �.zkC1 � zk/� � S.ˇkC1 � ˇk/ 2 @f .ˇkC1/; and

�kC1 C �. � 1/rkC1 2 @g.zkC1/:
(B.2)

Denote dkˇ D ˇk � ˇ�; dkz D zk � z�; and dk� D �k � ��; k � 1 for an optimal
solution .ˇ�; z�;��/: Now by the optimality conditions (B.1) of ˇ� and the optimality
conditions (B.2) of ˇkC1, we have

hXTŒ�kC1 C �. � 1/rkC1 C �.zkC1 � zk/� � S.ˇkC1 � ˇk/ � XT��;

ˇkC1 � ˇ�i � 0;

which simplifies to

hdkC1� C �. � 1/rkC1C �.zkC1� zk/;XdkC1ˇ i � hS.ˇkC1�ˇk/;dkC1ˇ i � 0: (B.3)
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Similarly, it can be shown from the optimality conditions (B.1) of z� and the optimality
conditions (B.2) of zkC1 that

hdkC1� C �. � 1/rkC1;dkC1z i � 0: (B.4)

Adding up (B.3) and (B.4) and applying the identity XdkC1ˇ CdkC1z D rkC1 D .�/�1.�k�
�kC1/, we obtain

.�/�1hdkC1� ;dk� � d
kC1
� i C �. � 1/krkC1k22 � �hd

kC1
z � dkz ;d

kC1
z i

� hS.dkC1ˇ � dkˇ/;d
kC1
ˇ i C �hzkC1 � zk; rkC1i � 0:

(B.5)

Note that �kC1C �. � 1/rkC1 2 @g.zkC1/ and �k C �. � 1/rk 2 @g.zk/: By optimality
of zkC1 and zk and the identity �kC1 D �k � �rkC1 again, we have

0 � h�kC1 � �k C �rkC1 � �rkC1 � �. � 1/rk; zkC1 � zki

D �.1 � /hzkC1 � zk; rki � �hzkC1 � zk; rkC1i;

which implies that �hzkC1� zk; rkC1i � �.1�/hzkC1� zk; rki: Note that for both M D I
and M D S; the identity 2hMu; vi D kuC vk2M � kuk2M � kvk2M holds. Now applying this
identity, we can infer from (B.5) and the fact dkC1� � dk� D �

kC1
� �k D ��rkC1 that

0 � .�/�1
�
kdk�k

2
2 � kd

kC1
� k

2
2

�
C �. � 2/krkC1k22

C �
�
kdkz k

2
2 � kd

kC1
z k

2
2 � kz

kC1
� zkk22

�
C
�
kdkˇk

2
S � kd

kC1
ˇ k

2
S � kˇ

kC1
� ˇkk2S

�
C 2�.1 � /hzkC1 � zk; rki:

(B.6)

In what follows, we consider two different scenarios: 0 <  � 1 and 1 <  < .
p
5C 1/=2:

We show that the algorithm converges under both scenarios, although the techniques will
differ.

(A). 0 <  � 1: Note that 1 �  � 0: By Cauchy–Schwarz inequality we have

2�.1 � /hzkC1 � zk; rki � �.1 � /
�
kzkC1 � zkk22 C kr

k
k
2
2

�
:
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It follows from (B.6) that�
.�/�1kdkC1� k

2
2 C kd

kC1
ˇ k

2
S C �kd

kC1
z k

2
2 C �.1 � /kr

kC1
k
2
2

�
�
�
.�/�1kdk�k

2
2 C kd

k
ˇk
2
S C �kd

k
z k
2
2 C �.1 � /kr

k
k
2
2

�
� ��kzkC1 � zkk22 � kˇ

kC1
� ˇkk2S � �kr

kC1
k
2
2:

It is convenient to denote uk D .�/�1kdk�k
2
2Ckd

k
ˇk
2
SC �kd

k
z k
2
2C �.1� /krkk22;

then we can see that

ukC1 � uk � ��kzkC1 � zkk22 � kˇ
kC1
� ˇkk2S � �kr

kC1
k
2
2: (B.7)

This implies that fuk; k � 1g is a nonincreasing sequence bounded by u0 <1. It
follows immediately that fk�kk2; k � 1g; fkzkk2; k � 1g; and fkˇkk2S; k � 1g are
all bounded sequences. Moreover, we have

0 � lim
t!1

ut D u0 C lim
t!1

t�1X
kD0

.ukC1 � uk/

� u0 C lim
t!1

t�1X
kD0

�
��kzkC1 � zkk22 � kˇ

kC1
� ˇkk2S � �kr

kC1
k
2
2

�
;

from which we obtain that

lim
k!1

kzkC1 � zkk22 D 0; lim
k!1

kˇkC1 �ˇkk2S D 0; and lim
k!1

krkk22 D 0: (B.8)

Now observe that kXˇkk2 D krk � zkC yk2 � krkk2Ckzkk2Ckyk2: One can then
see that fkXˇkk2; k � 1g is bounded. Consequently, we know that fkˇkk2; k �
1g is also bounded since kˇkk22 D .��/�1

�
�kXˇkk22 C kˇ

k
k2S

�
. Therefore, the

updates f.ˇk; zk;�k/; k � 1g are bounded and we can hence find a subsequence
f.ˇkm; zkm;�km/; m � 1g that converges to a cluster point which we denote by
.ˇ1; z1;�1/. Observe that by (B.8) and the identity rk D Xˇk C zk � y; we have

kX.ˇkC1 � ˇk/k2 D k.rkC1 � rk/ � .zkC1 � zk/k2
� krkC1k2 C krkk2 C kzkC1 � zkk2 ! 0 as n!1:
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This together with the fact kˇkC1 � ˇkkS ! 0 implies that

kˇkC1 � ˇkk22 D .��/
�1
�
kˇkC1 � ˇkk2S C �kX.ˇ

kC1
� ˇk/k22

�
! 0 as n!1:

Note that @f and @g are nonempty and closed by convexity of f and g: Now take the
limits on both sides of (B.2) along the sequence fkm; m � 1g to obtain

XT�1 2 @f .ˇ1/ and �1 2 @g.z1/;

which by (B.1) essentially means that .ˇ1; z1/ is an optimal solution with corre-
sponding Lagrangian multiplier �1 since by the fact that rk ! 0 we also have
Xˇ1 C z1 D y:

Now to show that .ˇ1; z1;�1/ is the unique limit of f.ˇk; zk;�k/; k � 1g, let us
take .ˇ�; z�;��/ D .ˇ1; z1;�1/ as in dkˇ; d

k
z ; and dk� : Then it follows from (B.8)

that limm!1 ukm D 0: Since fuk; k � 1g is a nonincreasing sequence bounded below
by zero, every subsequence of fuk; k � 1g should converge to zero. This implies
that limk!1 uk D 0: Therefore, we have limk!1 �

k
D �1; limk!1 zk D z1;

and limk!1 kd
k
ˇk
2
S D 0: Since we also have limk!1 kXdkˇk2 � limk!1.krkk2 C

kdkz k2/ D 0; it follows immediately that

kˇk � ˇ1k22 D .��/
�1
�
�kXdkˇk

2
2 C kd

k
ˇk
2
S
�
! 0 as n!1:

Therefore, we have shown that limk!1.ˇ
k; zk;�k/ D .ˇ1; z1;�1/:

(B). 1 <  < .
p
5C 1/=2: By the extended Cauchy-Schwarz inequality we have
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:

It follows again from (B.6) that�
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�1. C 1 � 2/krkC1k22:
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Denote vk D .�/�1kdk�k
2
2 C kd

k
ˇk
2
2 C �kd

k
z k
2
2 C �.1� 

�1/krkk22: It follows that

vkC1�vk � ��.C1�
2/kzkC1�zkk22�kˇ

kC1
�ˇkk2S��

�1.C1�2/krkC1k22:

Note that  C 1 � 2 > 0 when  2 .1; .
p
5C 1/=2/: Following the same line of

arguments as in the  2 .0; 1� case, we can also show that limk!1.ˇ
k; zk;�k/ D

.ˇ1; z1;�1/; which is the unique limit. This completes the first part of the proof.

Now let us assume  D 1: For ease of notation, define the vector v D .ˇT; zT;�T/T and
the matrix H D diag.S; �In; ��1In/: From (B.7), noting that since rkC1 D ��1.�k��kC1/;
we have

kvkC1 � v�k2H � kv
k
� v�k2H � kv

k
� vkC1k2H: (B.9)

By Theorem 5.1 of He and Yuan (2015), it can be shown that fkvk � vkC1k2H; k � 0g is a
non-increasing sequence, that is,

kvk � vkC1k2H � kv
k�1
� vkk2H; 8k � 1: (B.10)

It then follows from (B.9) and (B.10) that

.k C 1/kvk � vkC1k2H �
1X
tD1

kvt � vtC1k2H � kv
0
� v�k2H;

which implies that kvk � vkC1k2H D O.1=k/ as k !1: This completes the proof. �

ADMM algorithms for the weighted elastic net penalized
quantile regression

Let us consider the following weighted elastic net penalized quantile regression

min
ˇ

1

n

nX
iD1

��.yi � xT
iˇ/C �1

pX
jD1

wj jˇj j C
�2

2

nX
jD1

vjˇ
2
j ;
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where �1; �2 � 0 are the regularization parameters and wj ; vj � 0; j D 1; : : : ; p are
the weights. Again, let � � ƒmax.XTX/: The proximal ADMM (pADMM) algorithm for
solving this problem is shown in Algorithm 9 and the sparse coordinate descent ADMM
(scdADMM) algorithm is displayed in Algorithm 10.

Algorithm 9: pADMM – Proximal ADMM algorithm for solving the weighted elastic
net penalized quantile regression.

1. Initialize the algorithm with .ˇ0; z0;�0/:

2. For k D 0; 1; 2; : : : ; repeat steps (2.1) – (2.3) until the convergence criterion is met.

(2.1) Update

ˇkC1 
�
.��C �2vj /

�1Shrink
h
.��/ˇk

j
CXT

j
.�k C �y� �Xˇk � �zk/; �1wj

i�
1�j�p

:

(2.2) Update zkC1 
�

Prox��
�
yi � xT

i
ˇkC1 C ��1�k

i
; n�

��
1�i�n

:

(2.3) Update �kC1 �k � �.XˇkC1 C zkC1 � y/:

Algorithm 10: scdADMM - Sparse coordinate descent ADMM algorithm for solving
the weighted elastic net penalized quantile regression with coordinate descent steps.

1. Initialize the algorithm with .ˇ0; z0;�0/:

2. For k D 0; 1; 2; : : : ; repeat steps (2.1) – (2.3) until the convergence criterion is met.

(2.1) Carry out the coordinate descent steps (2.1.1) – (2.1.3).

(2.1.1) Initialize ˇk;0 D ˇk :
(2.1.2) Form D 0; 1; 2; : : : ; repeat step (2.1.2.1) until convergence.

(2.1.2.1) For j D 1; : : : ; p; update

ˇ
k;mC1
j

 

Shrink
hPn

iD1 xij

n
�k
i
C �

�
yi � z

k
i
�
P
t¤j xitˇ

k;mCI.t<j/
t

�o
; �1wj

i
�kXj k

2
2 C �2�j

:

(2.1.3) Set ˇkC1 ˇk;mC1:

(2.2) Update zkC1 
�

Prox��
�
yi � xT

i
ˇkC1 C ��1�k

i
; n�

��
1�i�n

:

(2.3) Update �kC1 �k � �.XˇkC1 C zkC1 � y/:
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Figure B.1: Objective function values of lasso penalized quantile regression (� D 0:75)
fitted on model (3.10) with ˛ D 0:5, n D 100; and p D 5000 at the optimal solutions
computed by quantreg, scdADMM, pADMM and hqreg along a sequence of one
hundred pre-chosen � values.

Obtained objective function values

In Section 3.4, in order to draw meaningful timing comparison conclusion, we strive to
match the objective function values of the lasso penalized quantile regression at the optimal
solutions computed by the different algorithms. As a demonstration, shown in Figure B.1
are the objective function values of the lasso penalized quantile regression with � D 0:75
fitted on model (3.10) having ˛ D 0:5 at the optimal solutions computed by respectively
quantreg, scdADMM, pADMM and hqreg for a sequence of one hundred pre-chosen
� values.

Alternative algorithms

The MM principle is widely adopted to solve many statistical problems, including the
quantile regression. According to Hunter and Lange (2000), the MM technique is applied to
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a perturbed (smoothed) version of the quantile check loss

���.r/ D ��.r/ �
�

2
log.� C jr j/ (B.11)

for some small �; such as � D 10�6: Therefore, in Hunter and Lange (2000), an approximate
solution to the quantile regression can be obtained by

min
ˇ2Rp

���.ri/; where ri D yi � xT
iˇ;

which can be solved iteratively by applying the MM technique:

1. Initialize ˇ with ˇ0 and calculate r0i D yi � xT
iˇ
0; i D 1; : : : ; n:

2. For k D 1; : : : ;M; minimize the majorization problem

ˇk D min
ˇ

nX
iD1

��� .ri jr
k�1
i /

and update rki D yi � xT
iˇ
k; i D 1; : : : ; n; where

��� .r jr
k/ D

1

4

�
r2

� C jrkj
C .4� � 2/r C c

�
and c is a constant chosen so that ��� .r

kjrk/ D ���.r
k/:

Following Hunter and Lange (2000), for the penalized quantile regression, we approximate
its solution by solving

min
ˇ2Rp

1

n
���.ri/C �

pX
jD1

wj jˇj j; where ri D yi � xT
iˇ; (B.12)

The same idea was used in Lv et al. (2016) for kernel quantile regression with smoothness-
sparsity constraint. Applying the MM technique, the above problem can be solved iteratively
by

1. Initialize ˇ with ˇ0 and calculate r0i D yi � xT
iˇ
0; i D 1; : : : ; n:
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2. For k D 1; : : : ;M , minimize the majorization problem

ˇk D min
ˇ2Rp

1

n

nX
iD1

1

4

"
r2i

� C jrk�1i j
C .4� � 2/ri C ci

#
C �

pX
jD1

wj jˇj j (B.13)

and update rki D yi � xT
iˇ
k; i D 1; : : : ; n:

Note that problem (B.13) can be cast as a penalized (weighted) least squares problem

ˇk D min
ˇ2Rp

1

n

nX
iD1

Qwi
�
Qyi � xT

iˇ
�2
C �

pX
jD1

wj jˇj j

with observational weights Qwi D 0:25.� C jrk�1i j/�1 and auxiliary responses Qyi D yi C

.2��1/.�Cjrk�1i j/; i D 1; : : : ; n: Therefore, one can use the glmnet or gcdnet package
to solve it very efficiently.

To compare with this MM algorithm, we did a numerical study using the simulation
model from our first study in Section 3.4. Specifically, we take n D 100; p D 200 and
˛ D 0:5: During our simulation, we found that when � D 10�5; the MM algorithm often
takes more than 10000 iterations to converge. Therefore, we used � D 10�4 instead in
the MM algorithm for faster computation. This usually takes the MM algorithm around
1000 iterations to converge. Note that the perturbed quantile function (B.11) has worse
approximation with larger �: We plot the objective function values evaluated at the optimal
solutions returned by the MM procedure in Figure B.2. Also included are those from our
ADMM algorithm and quantreg. It can be seen that the MM algorithm is quite unstable
and does not provide accurate solutions. The timings for running MM, quantreg and
ADMM are given in Table B.1. We see that MM takes a longer time than quantreg and
our algorithm. To achieve better accuracy with the MM algorithm (using � D 10�5 for
example), one needs to run a even longer time.

Our result is consistent with the findings from Chen (2007). Specifically, it was noted
in Chen (2007) that the MM algorithm implemented according to Hunter and Lange (2000)
is significantly inferior to the smoothing and interior point algorithms for linear quantile
regression.

Both Peng and Wang (2015) and Yi and Huang (2016) applied the idea of coordinate
descent for solving quantile lasso. Specifically, in Peng and Wang (2015), each coordi-
nate descent step involves solving a weighted median regression, which requires iterative
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Figure B.2: Objective function values of lasso penalized quantile regression (� D 0:25)
fitted on Friedman’s model (˛ D 0:5; n D 100 and p D 200) with MM, quantreg and
ADMM along a sequence of pre-chosen � values.

Table B.1: Timings (in seconds) for running lasso penalized quantile regression (� D 0:25)
on Friedman’s model (˛ D 0:5; n D 100 and p D 200) over a sequence of pre-chosen �
values by MM, quantreg and ADMM

MM quantreg ADMM
22.86 3.51 0.20
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sorting. While in Yi and Huang (2016), a Huber smoothing step is first applied, followed
by coordinate descent for the penalized Huber regression. Therefore, their algorithm only
approximately solves the penalized quantile regression.

We compare our algorithm with those by Peng and Wang (2015) and Yi and Huang
(2016) in terms of both timing and accuracy. The respective R packages implementing
their algorithms are QICD (Peng, 2016) and hqreg (Yi, 2016). For demonstration purpose,
we consider the simulation setup from our first study (3.10) and set ˛ D 0:5; n D 100

and p D 400. Based on our numerical study, we observe that, in terms of computational
accuracy measured through objective function values, the QICD algorithm presents high
instability and does not seem to always converge to the correct solutions. Specifically, the
objective function values for the optimal solutions at a sequence of � values returned by
ADMM, quantreg, QICD, and hqreg are presented in Figure B.3. We see that ADMM,
quantreg and hqreg are closely comparable, while QICD is far less accurate. The
timings by the four algorithms are reported in Table B.2. Due to the convergence issue
with QICD, we only report timing comparisons between our algorithms and hqreg in
Chapter 3.4.

0.2

0.4

0.6

0.8

1.0

−4−3−2

log(λ)

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
es

Method
ADMM
hqreg
QICD
quantreg

Figure B.3: Objective function values of lasso penalized quantile regression (� D 0:75)
fitted on Friedman’s model (˛ D 0:5; n D 100 and p D 400) with ADMM, quantreg,
QICD, and hqreg along a sequence of pre-chosen � values.
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Table B.2: Timings (in seconds) for running lasso penalized quantile regression (� D 0:75)
on Friedman’s model (˛ D 0:5; n D 100 and p D 400) over a sequence of pre-chosen �
values by ADMM, hqreg, QICD and quantreg. The question mark implies inaccurate
result

ADMM hqreg QICD quantreg
1.16 7.01 1.91 (?) 27.66



Appendix C

Computational Issues of Penalized
Composite Quantile Regression

In this appendix, we provide the sparse coordinate descent ADMM algorithm for solving
the weighted elastic net penalized composite quantile regression. We call this algorithm
CQR-scdADMM for short. We also investigate the uniqueness and numerical properties of
the oracle solution to the composite quantile regression.

ADMM algorithm for the weighted elastic net penalized
composite quantile regression

Recall that the problem to solve is

min
˛;ˇ

1

nK

nX
iD1

KX
kD1

��k.yi � ˛k � xT
iˇ/C �1

pX
jD1

dj jˇj j C
�2

2

pX
jD1

vjˇ
2
j ;

where �1; �2 � 0 and the weights dj ; vj � 0 for j D 1; : : : ; p: The CQR-scdADMM
algorithm is summarized in Algorithm 11.
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Algorithm 11: CQR-scdADMM – Sparse coordinate descent ADMM algorithm for
solving the weighted elastic net penalized composite quantile regression.

1. Initialize the algorithm with .˛0;ˇ0;Z0;‚0/:

2. For r D 0; 1; 2; : : : ; repeat steps (2.1) – (2.3) until the convergence criterion is met.

(2.1) Carry out the coordinate descent steps (2.1.1) – (2.1.3).

(2.1.1) Initialize ˛r;0 D ˛r and ˇr;0 D ˇr :
(2.1.2) Form D 0; 1; 2; : : : ; repeat steps (2.1.2.1) – (2.1.2.2) until convergence.

(2.1.2.1) For k D 1; : : : ;K, update

˛
r;mC1
k

 .n�/�11TŒ‚rk C �.y� Xˇr;m �Zrk/�:

(2.1.2.2) For j D 1; : : : ; p; update

ˇ
r;mC1
j

 

Shrink
�
XT
j

PK
kD1

�
�

�
y� ˛r;mC1

k
1�

P
t¤j Xtˇ

r;mCI.t<j/
t �Zr

k

�
C‚r

k

�
; �1wj

�
K�kXj k

2
2 C �2vj

:

(2.1.3) Set ˛rC1 ˛r;mC1 and ˇrC1 ˇr;mC1:

(2.2) Update ZrC1 
�

Prox��k

�
yi � ˛

rC1
k
� xT

i
ˇrC1 C

�r
ik

�
; nK�

��
1�i�n;1�k�K

:

(2.3) Update‚rC1 
�
�r
ik
� �Œ˛

rC1
k
C xT

i
ˇrC1 � yi C z

rC1
ik

�
�
1�i�n;1�k�K

:
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Numerical properties of the CQR oracle solution

The oracle knows the set of true variables, so the oracle estimator for the composite quantile
regression is obtained through regression on the true set of variables

.b̨o; b̌o/ WD arg min
.˛;ˇ/WˇA cD0

KX
kD1

wk

nX
iD1

��k.yi � ˛k � xT
iˇ/:

For ease of exposition, we will restrict the scope of variables under consideration to those in
A : Specifically, let a D ˛; b D ˇA 2 Rs and zi D xiA ; i D 1; : : : ; n: The oracle solution
can be equivalently obtained through the following minimization problem

.ba;bb/ WD arg min
a;b

KX
kD1

wk

nX
iD1

��k.yi � ak � zT
ib/:

Now let uk D
�
y � ak1n � Zb

�
C

and vk D
�
y � ak1n � Zb

�
�
; k D 1; : : : ; K; where the

positive and negative parts are taken componentwisely. Also, let u D .uT
1; : : : ;uT

K/
T and

v D .vT
1; : : : ; vT

K/
T: Then the above regression problem can be cast into the following linear

program of standard form

minimize cTx

subject to Ax D b

x � 0;

where b D 1K ˝ y; and

x D
�
aT
C; a

T
�;b

T
C;b

T
�;u

T; vT
�
;

c D
�
0T
K ; 0

T
K ; 0

T
p; 0

T
p; w1�11

T
n; : : : ; wK�K1T

n; w1.1 � �1/1
T
n; : : : ; wK.1 � �K/1

T
�T
;

A D

0B@ 1n � � � 0 �1n � � � 0 Z �Z In �In
:::

: : :
:::

:::
: : :

:::
:::

:::
:::

:::

0 � � � 1n 0 � � � �1n Z �Z In �In

1CA
.nK/�.2KC2sC2n/

:
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Without loss of generality, assume that 1n … Span.Z/; where Span.Z/ denotes the column
span of Z. Write

D D

0B@ 1n � � � 0 Z
:::

: : :
:::

:::

0 � � � 1n Z

1CA :
The rows of D will be denoted by d T

i ; i D 1; : : : ; n: Let H be the collection of .K C s/-
element subsets of f1; : : : ; ng: For h 2 H; let D.h/ denote the submatrix of D with rows
fd T
i ; i 2 hg and b.h/ be the .K C s/-vector with coordinates fbi ; i 2 hg: We also let
Nh D f1; : : : ; ngnh for h 2 H: Let H D fh 2 HW jD.h/j ¤ 0g: By similar arguments
as in Section 6.2 of Koenker (2005), one can verify that the vertices of the polyhedron
fxWAx D b; x � 0g are given by

.a.h/T;b.h/T/T
D
�
D.h/

��1
b.h/

u.h/ D v.h/ D 0

u. Nh/ D

"
b. Nh/ �D. Nh/

 
a.h/
b.h/

!#
C

v. Nh/ D

"
b. Nh/ �D. Nh/

 
a.h/
b.h/

!#
�

for all h 2 H: According to the simplex algorithm (see, for example, Bertsimas and
Tsitsiklis, 1997, Chapter 3), the optimal solution to this linear program is among the above
set of vertices. Assume that y has a density with respect to the Lebesgue measure. Then it
can be shown that with probability one, there are at most K.KC s/ zero residuals for which
yi � Oak � zT

i
bb D 0; 1 � i � n; 1 � k � K; given each optimal solution .ba;bb/: Otherwise,

suppose that there exist h 2 H and i 2 Nh such that u.i/ D v.i/ D 0: Then since D.h/ is
non-singular, it follows that

bi D d
T
i

 
a.h/
b.h/

!
D d T

i

�
D.h/

��1
b.h/;

which implies that bi is a linear combination of b.h/: By the assumption that y has a density
and the structure of b, this occurs with probability zero unless bi D bj for some j 2 h:
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However, there are at most .K � 1/ such i’s for each j 2 h: This means with probability
one, at each vertex, there are at most K.K C s/ indices i for which u.i/ D v.i/ D 0:

Timing of the ADMM algorithm for penalized CQR

The following table (Table C.1) lists the timings for running lasso penalized CQR over a
sequence of one hundred � values on simulated data from model (4.10) using the ADMM
algorithm .

Table C.1: Timings (in seconds) for running lasso penalized CQR over a sequence of one
hundred � values on simulated data from model (4.10) using the ADMM algorithm

† Method N.0; 3/ MN MDG t3 Cauchy

n D 100; p D 600

.0:5ji�j j/ LS-lasso 0.016 0.016 0.019 0.018 0.017
CQR-lasso 8.316 8.837 8.873 7.778 8.865

.0:8ji�j j/ LS-lasso 0.016 0.016 0.016 0.019 0.031
CQR-lasso 10.969 11.938 11.336 10.291 11.145

n D 200; p D 1200

.0:5ji�j j/ LS-lasso 0.044 0.045 0.047 0.043 0.081
CQR-lasso 33.629 32.836 34.477 32.461 15.377

.0:8ji�j j/ LS-lasso 0.044 0.060 0.042 0.063 0.108
CQR-lasso 43.928 42.434 45.550 43.918 24.193
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