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Abstract

This thesis is concerned with the problem of detecting and recovering a low-rank

tensor in noise. A spiked random tensor is composed of a symmetric Gaussian p-tensor

and a fixed number of spikes. Each spike is a rank one p-tensor formed by a vector

whose entries are drawn i.i.d. from a probability measure on the real line with bounded

support. Each spike is weighted by a signal-to-noise ratio (SNR). For a random tensor

with a single spike, it is possible to detect the presence of the spike when the SNR

exceeds a critical threshold, and impossible when the SNR is below this threshold. For

a random tensor with multiple spikes, detection of the low-rank structure is possible

when the SNR of at least one spike exceeds its critical threshold. Additionally, recovery

of the spikes by the minimum mean square error estimator has the same phase transition.

When at least one SNR is above its critical threshold, the minimum mean square error

estimator performs better than a random guess.

It is shown that the spike detection problem is equivalent to distinguishing between

the high- and low-temperature regimes of certain mean field spin glass models. The set

of SNRs for which detection is impossible is equal to the high-temperature regime of a

certain p-spin model. Thus the main tools to investigate the detection problem come

from the study of spin glasses.
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Chapter 1

Introduction and Main Results

1.1 Motivation and Outline

This thesis addresses the question of when it is possible to detect and recover underlying

low-rank structure from a random tensor formed as the sum of a fixed number of rank-

one tensors and a tensor of white Gaussian noise. This model is known as the spiked

tensor model. These results were first presented by Chen, Handschy, and Lerman in [1].

The detection of low-rank structure in tensors is motivated by the question of when

Principal Component Analysis (PCA) can uncover linear low-rank structure in noisy

data. PCA is equivalent to finding the eigen-decomposition of the sample covariance

matrix of observed data points. Suppose data points x1, . . . , xL ∈ RN are drawn inde-

pendently from the multi-variate Gaussian distribution N (0, I + βuuT ) with u ∈ RN

a unit vector, and β > 0 a constant known as the signal-to-noise ratio (SNR). Under

this model, each data point is composed of the sum of a signal component and a noise

component, and the question is whether PCA can detect the presence of the signal

component and recover the signal.

Suppose N/L → γ < 1 as L → ∞. When β = 0, the eigenvalues of the sample

covariance matrix follow the Marchenko-Pastur distribution [2]; however, when β is

large enough, as N → ∞, the largest eigenvalue of the sample covariance matrix falls

outside the support of the Marchenko-Pastur distribution. In particular, when β ≤
√
γ, the eigenvalues follow the Marchenko-Pastur distribution, but when β >

√
γ, the

largest eigenvalue ‘pops out’ of the support of the Marchenko-Pastur distribution, a

1
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phenomenon known as the BBP transition [3, 4].

In [5], the phase transition of spike detection is extended to spike recovery by PCA.

More precisely, when β >
√
γ, there is a non-trivial asymptotic correlation between

the signal u and the top eigenvector of the sample covariance matrix. Thus one can

approximately recover u using PCA. However, when β ≤ √γ, this asymptotic correlation

is zero. Extension of detection and recovery to the case where γ ≥ 1 is also established

in [5]

The spiked Wigner matrix is another common signal-plus-noise model that exhibits

a similar phase transition. An N ×N Gaussian Wigner matrix is a symmetric matrix

with independent entries Wij ∼ N (0, 1/2) for 1 ≤ i < j ≤ N and Wii ∼ N (0, 1) for

1 ≤ i ≤ N . The spiked Wigner matrix with SNR β > 0 is defined as T = W +
β√
N
uuT with spike u ∈ RN a vector with entries sampled i.i.d. from a probability

distribution on R with bounded support. When the SNR β is below a critical threshold,

the eigenvalue distribution of T follows Wigner’s semi-circle law and detection of the

low-rank structure is impossible. Once the value of β exceeds the critical threshold, the

largest eigenvalue jumps away from the support of the Wigner semi-circle law and the

top eigenvector nontrivially correlates with the signal [6, 7]. In this case, one can detect

and approximately recover the signal by PCA.

This thesis studies the extension of the detection and recovery problems for the

spiked Wigner model to higher-order tensors in the case of a single spike and in the

case of multiple spikes. In particular, we show that the detection and recovery problem

both exhibit sharp phase transitions. We define detection in terms of the total variation

distance between the spiked and unspiked tensors and recovery in terms of the minimum

mean square error estimator. One formula for the total variation distance between the

spiked and unspiked random tensors involves their likelihood ratio, which turns out to

be the free energy of certain p-spin spin glass models which are introduced in Chapter

2. The results on recovery by the minimum mean square error estimator follow from

the results on detection.

The remainder of the present chapter introduces the main results on detection and

recovery. Section 1.2 formally defines the spiked random tensor and the concept of

spike detection. Section 1.3 states the main results for detection in the case of a single

spike, Section 1.4 states the main results for detection in the case of multiple spikes, and
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Section 1.5 gives the result for recovery by the minimum mean square error estimator.

Chapter 2 defines the p-spin mean field models relevant to the spike detection prob-

lem and states critical results for these models. Chapter 3 gives the proofs of the main

theorems on detection and recovery assuming that the results stated in Chapter 2 hold.

Finally, Chapter 4 presents the proofs of the spin glass results of Chapter 2.

1.2 Symmetric Gaussian Tensors

We now define the symmetric Gaussian tensor and the total variation distance between

two random tensors. Additionally, we explain what it means for two sequences of random

tensors to be distinguishable, a concept that defines the problem of spike detection.

Fix p ∈ N. For any integer N ≥ 1, define ΩN to be the set of all real-valued p-tensors

Y = (yi1,...,ip)1≤i1,...,ip≤N . The inner product of two tensors is defined as

〈Y, Y ′〉 =
∑

1≤i1,...,ip≤N
yi1,...,ipy

′
i1,...,ip .

Given a vector u ∈ RN create a rank one p-tensor by taking the outer product

(u⊗p)i1,...,ip = ui1 · · ·uip .

For Y ∈ ΩN and a permutation π of the set {1, 2, . . . , p}, define the permuted tensor

Y π by

Y π
i1,...,ip = yπ(i1),...,π(ip).

A tensor is symmetric when Y = Y π for all permutations π of the set {1, 2, . . . , p}.
From now on, Y will denote a random p-tensor with i.i.d. standard Gaussian entries.

Given such a tensor Y , the symmetric Gaussian p-tensor is

W =
1

p!

∑
π

Y π. (1.1)

Given any two symmetric random p-tensors U, V ∈ ΩN , the total variation distance

between U, V is

dTV (U, V ) = sup
A
|P (U ∈ A)− P (V ∈ A)|,



4

where the supremum is taken over all sets A in the Borel σ-algebra generated by sym-

metric p-tensors.

Definition 1.2.1. Two sequences of symmetric random tensors UN , VN ∈ ΩN are in-

distinguishable if

lim
N→∞

dTV (UN , VN ) = 0,

and distinguishable if

lim
N→∞

dTV (UN , VN ) = 1.

From the definition of total variation distance, when UN and VN are distinguishable,

there exists a sequence of measurable sets AN such that limN→∞ P (UN ∈ AN ) = 1 and

limN→∞ P (VN ∈ AN ) = 0. For example, consider the N × N spiked Wigner matrix

TN = WN + β√
N
uuT . As mentioned in the previous section, if the SNR β is below a

critical threshold, in the limit, the eigenvalues of T follow the Wigner semi-circle law,

but if the SNR is above this threshold, the largest eigenvalue falls outside the support of

the Wigner semi-circle distribution. If β is greater than than the critical SNR, and AN

is the event that the eigenvalue distribution of the matrix follows the Wigner semi-circle

law, then limN→∞ P (WN ∈ AN ) = 1 and limN→∞ P (TN ∈ AN ) = 0, so the spiked and

unspiked Wigner matrices are distinguishable.

More generally, suppose UN , VN are sequences of random tensors. Let 1A denote the

indicator function of a set A. Given a statistical hypothesis test SN : ΩN → {0, 1} such

that SN (ω) = 1AN (ω), the sum of Type I errors, or false positives, and Type II errors,

or false negatives, satisfy the relationship

min
A
{Type I errors + Type II errors} = 1 - total variation distance.

Thus, if UN , VN are distinguishable, then there must exist statistical hypothesis tests

SN that distinguish the two tensors in the sense that

lim
N→∞

(P (SN (UN ) = 1) + P (SN (VN ) = 0)) = 0.

On the other hand, when UN , VN are indistinguishable, there is no statistical hypothesis

test that can distinguish between the two tensors.
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1.3 Results for Detection with a Single Spike

We now consider the case of a spiked random tensor with a single spike. As in the case of

the spiked Wigner matrix, we wish to know for which SNRs one can detect the presence

of the spike to distinguish between the spiked tensor and a tensor of pure noise. The

main result on spike detection for a single spike, Theorem 1, states that the detection

problem exhibits a sharp phase transition, and Theorem 2 gives a method to compute

the location of this phase transition.

Let Λ be a bounded subset of R and µ a probability measure on the Borel σ-field of

Λ satisfying
∫
aµ(da) = 0. Assume that u1, . . . , uN are i.i.d. samples from µ that are

also independent of the symmetric Gaussian tensor W . Set u = (u1, . . . , uN ). Given

β > 0, the spiked random tensor (with a single spike) with signal-to-noise ratio β is

T = W +
β

N (p−1)/2
u⊗p.

Definition 1.3.1. Detection of the spike u⊗p is possible if W,T are distinguishable

according to Definition 1.2.1. Detection is not possible if W,T are indistinguishable.

For each probability space (Λ, µ) there exists a critical SNR βc depending on p such

that detection is possible only when the SNR satisfies βc < β.

Theorem 1. Assume that µ is centered. Then for any p ≥ 3 there exists a constant

βc > 0 such that

(i) If 0 < β < βc then detection is impossible.

(ii) If β > βc then detection is possible.

In [8], Perry, et al. show that for the Rademacher prior, where entries of u take

values ±1 with probability 1/2, and the sparse Rademacher prior, where entries of u

take values ±1/
√
ρ with probability ρ/2 and 0 with probability 1− ρ, there exist upper

and lower bounds β− and β+ with β− ≤ β+, such that for β < β− detection is impossible

and for β > β+, detection is possible. Chen [9] shows that in fact β− = β+ in the case

of the Rademachor prior, and Theorem 1 closes the gap between β− and β+ for a more

general class of priors which includes the Rademacher and sparse Rademacher priors.
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The proof of Theorem 1 is given in Chapter 3. Lemma 2 in Section 2.4 relates the

total variation distance between T and W to the scalar-valued p-spin model defined in

Section 2.2. The bulk of the work to prove Theorem 1 lies in investigating the behavior

of the scalar-valued p-spin model at low vs. high values of β.

While Theorem 1 gives the existence of a phase transition in the detection problem,

Theorem 2 provides a way to determine the value of the critical SNR βc. Set

ξ(s) =
sp

2
, (1.2)

and

v∗ =

∫
a2µ(da). (1.3)

For b, s ≥ 0, define

γb(s) = E

[(∫
aZ(a, bξ′(s))µ(da)

)2∫
Z(a, bξ′(s))µ(da)

]
, (1.4)

where Z(a, t) is the geometric Brownian motion

Z(a, t) = exp

(
aBt −

a2t

2

)
with Bt a standard Brownian motion. Define an auxiliary function Γb(v) : [0,∞) → R
by

Γb(v) =

∫ v

0
ξ′′(s)(γb(s)− s)ds. (1.5)

Theorem 2. If p ≥ 3 and µ is centered, then βc is the largest β such that

sup
v∈[0,v∗]

Γβ(v) = 0.

For many priors, the function γb(s) is straightforward to compute, meaning it is

possible to numerically integrate equation (1.5) to evaluate the auxiliary function Γb(s)

at various values of β which allows one approximate βc. For example, consider the
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sparse Rademacher prior where entries of u = (u1, . . . , uN ) are independently sampled

from the distribution
ρ

2
δ−1/

√
ρ + (1− ρ)δ0 +

ρ

2
δ1/
√
ρ,

with parameter ρ ∈ (0, 1] that controls the sparsity of the vector u. When ρ = 1, this

is the Rademacher prior. Figure 1.1 shows the critical SNR for the sparse Rademacher

prior for tensors of order p = 3, 4, 5, 10 and sparsity parameter ρ = .1, .2, .3, . . . , 1. The

solid line in each plot is the function

H(ρ) = 2
√
−ρ log ρ− (1− ρ) log(1− ρ) + ρ log 2,

which is the upper bound for βc derived in [8].

For each combination of p and ρ,

γβ(s) = E

 ρ exp
(
−β2psp−1

ρ

)
sinh2

(
g
√

β2psp−1

2ρ

)
ρ exp

(
−β2psp−1

4ρ

)
cosh

(
g
√

β2psp−1

2ρ

)
+ (1− ρ)

 ,
with g a standard Gaussian. Note that v∗ =

∫
a2µ(da) = 1 for all parameters ρ ∈ (0, 1].

To determine the critical SNR, the NIntegrate function from Wolfram Mathematica was

used to compute test values of Γb(v) for values of v in the interval (0, 1] in increments

of .001. The critical value of βc is reported as the largest b such that Γb(v) ≤ 0 for all

test values of v, where the function Γb(v) was computed for values of b in increments of

.001.

The critical value βc exhibits a tension between the sparsity of the vector u, which is

expected to have ρ non-zero entries, and the magnitude of the non-zero entries, 1/
√
ρ.

For small values of ρ, the vector u is very sparse, but the non-zero entries of u are very

large in absolute value, and these very large values are easy to detect. As ρ grows, the

magnitude of the non-zero entries decreases, and the detection threshold βc accordingly

must increase. Eventually, the sparsity parameter ρ is large enough that there are

enough non-zero entries for detection, even though the magnitude of these entries is

smaller, and βc begins to decrease. As p, the order of the tensor grows, the proportion

of non-zero entries for a given ρ decreases, so maximum value of βc occurs at higher

values of ρ for higher-order tensors.
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Figure 1.1: Numerical simulations for the critical value βc with sparse Rademacher
prior and various values of p. The top left plot is for p = 3, the top right for p = 4,
the bottom left for p = 5 and the bottom right for p = 10. The open circles are the
simulated critical values βc. The dashed curve interpolates between these points and
the solid curve describes the function H(ρ).

1.4 Results for Detection with Multiple Spikes

The spiked random tensor with multiple spikes is formed as the sum of a Gaussian tensor

and a linear combination of k > 1 rank one tensors weighted by possibly different SNRs

β1, . . . , βk. Theorem 3, the main result of this section, relates the set of SNRs for which

detection is possible in the case of multiple spikes back to Theorem 1, the detection

result for the case of a single spike. It is reasonable to guess that the presence of

multiple rank one tensors would act as additional noise, increasing the SNR necessary
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for detection. Theorem 3 is remarkable because it shows that this does not happen:

adding additional spikes does not add additional noise.

Fix k > 1. Consider bounded sets Λ1, . . . ,Λk ⊂ R and probability measures

µ1, . . . , µk on the Borel σ-algebras of Λ1, . . . ,Λk respectively. For each 1 ≤ r ≤ k,

assume that u1(r), . . . , uN (r) are independent samples from µr that are also indepen-

dent of the Gaussian tensor W . Define u(r) = (u1(r), . . . , uN (r)). Assume additionally

that vectors u(r), u(r′) are independent of one another when r 6= r′. For β1, . . . , βk > 0,

define β̄ = (β1, . . . , βk). The spiked random tensor with k spikes and signal-to-noise

ratio vector β̄ is

Tk = W +
1

N (p−1)/2

k∑
r=1

βru(r)⊗p.

The definition of detection in the case of multiple spikes is identical to the single spike

case.

Definition 1.4.1. Detection of the spikes u(r)⊗p is possible if W,Tk are distinguishable

according to Definition 1.2.1. Detection is not possible if W,Tk are indistinguishable.

For 1 ≤ r ≤ k, let βr,c be the critical threshold for spike detection in the random

tensor

W +
βr

N (p−1)/2
u(r)⊗p.

Theorem 3 states that in the case of multiple spikes, detection is possible when at

least one signal-to-noise ratio exceeds the critical signal-to-noise ratio of its associated

single-spike random tensor.

Theorem 3. Assume that µ1, . . . , µk are centered. For p ≥ 3,

(i) If β̄ ∈ (0, β1,c)× · · · × (0, βk,c) then detection is impossible.

(ii) If β̄ ∈ (β1,c,∞)× · · · × (βk,c,∞) then detection is possible.

The likelihood ratio of Tk and W is the free energy of the vector-valued p-spin

model defined in Section 2.3. Unlike the scalar-valued case, the vector-valued p-spin

model involves interactions between the different spikes. It turns out that, in the large-

system limit, these interactions do not contribute to the behavior of the vector-valued

model, and Theorem 3 follows.
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1.5 Results for Recovery by MMSE

In addition to asking when one can detect the presence or absence of a spike, one

may also ask if it is possible to recover any information about the spike itself. In

this section we show that recovery of the spike by the minimum mean square error

(MMSE) estimator has the same phase transition as the detection problem. Let θ̂ =

(θ̂i1,...,ip)1≤i1,...,ip≤N denote an RNp
-valued random variable generated by the σ-field

σ(Tk). The estimators θ̂ may depend on Tk, the vectors u(r), or other randomness. The

minimum mean square error is

MMSEN (β̄) = min
θ̂

1

Np

∑
1≤i1,...,ip≤N

E

(
k∑
r=1

ui1(r) · · ·ui,p(r)− θ̂i1,...,ip

)2

. (1.6)

The minimum is achieved by the MMSE estimator

θ̂MMSE
i1,...,ip =

k∑
r=1

βrE(ui1 · · ·uip | Tk).

A dummy estimator is any estimator that does not depend on the randomness of

the vectors u(r). The best dummy estimator is

θ̂i1,...,ip = E
k∑
r=1

βrui1(r) · · ·uip(r).

Therefore, replacing the minimum in equation (1.6) by the minimum over only dummy

estimators gives the bound

MMSEN (β̄) ≤ 1

Np

∑
1≤i1,...,ip≤N

E

(
k∑
r=1

βrui1(r) · · ·uip(r)

)2

−

(
E

k∑
r=1

βrui1(r) · · ·uip(r)

)2
 .

Since the u(r) are independent, when taking N →∞, the law of large numbers gives

lim sup
N→∞

MMSEN (β̄) ≤ DMSE(β̄) :=
N∑
r=1

βrv
p
∗,r
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where v∗,r =
∫
a2µr(da).

Theorem 4 below states the precise result on recovery of the spikes by the MMSE

estimator.

Theorem 4. For p ≥ 3,

(i) If β̄ ∈ (0, β1,c)× · · · × (0, βk,c) then lim supN→∞MMSEN (β̄) = DMSE(β̄)

(ii) If β̄ ∈ (β1,c,∞)× · · · × (βk,c,∞) then lim supN→∞MMSEN (β̄) < DMSE(β̄)

Lesieur et al. [10] prove the same result by computing the limiting mutual informa-

tion between W and Tk. The proof of Theorem 4 included here uses a different method

that relies on the detection results of the preceding sections.

1.5.1 Performance of Approximate Message Passing

Despite the fact that Theorem 4 gives us information about where the MMSE esti-

mator performs better than random guessing, computation of the MMSE estimator is

intractable. In the matrix case (p = 2), the performance of the approximate message

passing (AMP) algorithm is well studied, and it is conjectured [10] that AMP achieves

the best possible mean square error of any polynomial time algorithm. For the spiked

matrix with Rademacher prior, [11] shows that, in the large-system limit, AMP is Bayes

optimal and recovery by AMP exhibits the same phase transition at β = 1 as recovery

by spectral methods such as PCA. For general priors, there is typically an ‘easy’ region

of parameters β where AMP is Bayes optimal and MMSE < DMSE, a ‘hard’ region

where AMP is suboptimal, and an ‘impossible’ region where MMSE = DMSE. See, for

example, [12, 13, 14, 15] for a discussion of the performance of AMP in low-rank matrix

estimation in different settings.

For centered priors, the tensor case is drastically different than the matrix case. In

the tensor case with spikes from mean-zero priors, there is no ‘easy’ region AMP both

achieves the minimum mean square error and performs better than a dummy estimator.

Let MSEAMP denote the mean square error achievable by AMP. For β > βc, Lesieur,

et al. [10] show that MMSE < MSEAMP , and MMSE = MSEAMP only for β < βc.

However, from Theorem 4, MSEAMP = MMSE = DMSE when β < βc. Thus, in the

region where MMSE < DMSE we unfortunately also have MMSE < MSEAMP .
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AMP is a variation of Belief Propagation (BP) algorithms used for inference on

graphical models. Given a probability distribution that takes the form of a product

of factors, one may form a bipartite graph consisting of one vertex for each factor

of the probability distribution and one vertex for each variable. A factor vertex and

a variable vertex are connected if the factor takes the variable as an argument. In

belief propagation, messages are passed between connected factor and variable nodes.

Messages are chosen so that, in the limit, they give information about the probability

distribution in question. For example, in different versions of BP, the messages may

converge to the marginal distributions of the variables or the max-marginals.

AMP takes advantage of symmetry in the structure of the graphical model to reduce

the amount of information passed at each iteration of the algorithm and consequently

reduce the complexity. Instead of keeping track of the entire probability distributions

passed between nodes, AMP only keeps track of the mean and variance of the distri-

butions. Additionally, updates for these parameters are calculated using mean field

approximations that exploit the weak dependence of the incoming distribution on the

index of the variable node. A key feature of AMP is an ‘Onsager term’ corresponding

to a correction between the mean-field approximation and the original cavity field. This

term arises naturally in the derivation of AMP as shown below.

We give a detailed derivation of AMP from BP in the case of recovery by MMSE

for a tensor with a single spike. This closely follows the analysis in [16]. The case of

k spikes is no harder and essentially only entails replacing scalar products by vector

products throughout the derivation. However, for the sake of more concise notation, we

only derive the single-spike case. Consider the spiked tensor

T =
1

N (p−1)/2
u⊗p +

1

β
W.

This has the same signal-to-noise ratio as the original spiked tensor, but the parameter

β is considered as part of the noise tensor instead of part of the spike. Due to symmetry,

the final algorithm only depends on observing the tensor elements with i1 < · · · < ip,

but the derivation is easier with all elements included.

For simpler notation, we will use lower-case letters to denote a tensor index, for

example a = (i1, . . . , ip). To develop AMP from BP, we need to distinguish between
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the modes of the tensor and create a variable for ui appearing in the first mode, a

variable for ui appearing in the second node, . . . , and variable for ui appearing in the

p-th mode. Let capital letters 1 ≤ A,B,C, · · · ≤ p denote the place in the product

ui1 · · ·uip . For example, the notation uiA will mean that entry ui stands in the A-th

spot in the product and ujB will mean entry uj stands in the B-th place in the product.

This will distinguish between different orderings of the same product. As we develop

AMP, symmetry will remove this dependence on ordering, but it is helpful in developing

the algorithm.

Let U = u⊗p. We are interested in the posterior distribution

P (U |T ) =
1

Z(T,U)

N∏
i=1

µ(ui)
∏
a

P (Ta | Ua),

where Z(T,U) is the appropriate normalizing constant. The factor graph of the posterior

distribution consists of
(
N
p

)
·p! factor nodes, each corresponding to an index (i1, . . . , ip),

and N · p variable nodes, each corresponding to a variable uiA in position A of the

product. Note that we do not include the factors µ(ui) in the factor graph because, in

BP, the messages at any factor node depending on a single variable never change. A

factor node a and variable node iA are connected if i is the A-th element of the list

a = (i1, . . . , ip).

Note that each likelihood is Gaussian with

P (Ta | Ua) ∼ N (Ua, 1/β
2).

Define a cost function by

g(Ta, Ua) = logP (Ta | Ua) = −β
2

2
(Ta − Ua)2 − 1

2
log

2π

β2
.

Thus the posterior distribution can be written

P (U |T ) =
1

Z(T,U)

N∏
i=1

µ(ui)
∏
a

eg(Ta,Ua). (1.7)
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The version of BP presented here is designed to compute the marginal posterior dis-

tributions of the variables u1, . . . , uN . The simplification to AMP keeps track of only

the first and second moments of these marginals. The means of the marginals are the

estimators of the true signal.

For each factor node a = (i1, . . . , ip), denote the set of variable nodes connected

to a by ∂a = {i11, . . . , ipP}. Also, for each variable node i, denote the set of factor

nodes connected to iA by ∂iA = {a | iA ∈ a}. Each iteration of BP consists of a set

of messages passed from variable nodes to their neighboring factor nodes and a set of

messages passed from the factor nodes back to the variable nodes. Let ηtiA→a(xi) denote

the message passed from node iA to node a at step t of the algorithm, and similarly,

η̃ta→iA(xi) the messages passed from node a to node iA. The BP updates proceed by

ηtiA→a(uiA) =
µ(uiA)

ZtiA→a

∏
b∈∂iA\a

η̃t−1
b→iA(uiA) (1.8)

η̃tb→iA(uiA) =
1

Ztb→iA

∫
eg(Tb,N

(1−p)/2Ub)
∏

jB∈∂b\iA

dηtjB→b(ujB). (1.9)

The normalizing constants ZtiA→a and Ztb→iA are chosen to make ηtiA→a and η̃tb→iA

probability measures. At each step, ηtiA→a is the product of incoming messages from

the factor nodes. These messages are weighted by the cost function at that factor node,

marginalized, and passed back to the variable nodes.

The simplification to AMP proceeds in two steps. First, the messages are expanded

to quadratic order, after which it is only necessary to keep track of the coefficients of the

linear and quadratic terms of the expansion rather than entire probability distribution.

In the second step, mean-field approximations are used to remove the dependence on

the factor nodes.
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Step 1: Quadratic Approximation

Define

Sb =
∂

∂Ub
g(Tb, Ub)

∣∣∣∣
Ub=0

Rb =
∂2

∂U2
b

g(Tb, Ub)

∣∣∣∣
Ub=0

+

(
∂

∂Ub
g(Tb, Ub)

∣∣∣∣
Ub=0

)2

.

Let E denote any error term of order O(N1−p) or smaller. These terms will vanish in

the large-system limit. Expanding g(Tb, N
(1−p)/2Ub) about Ub = 0 gives

g(Tb, N
(1−p)/2Ub) = g(Tb, 0) +

1

N (p−1)/2
SbUb +

1

Np−1

Rb − S2
b

2
U2
b + E , (1.10)

and expanding exp g(Tb, N
(1−p)/2Ub) about Ub = 0 gives

eg(Tb,N
(1−p)/2Ub) = eg(Tb,0)

(
1 +

1

N (p−1)/2
SbUb +

1

Np−1
RbU

2
b

)
+ E . (1.11)

Plugging the second expansion (1.11) into the factor-to-variable message (1.9) gives

η̃b→iA(uiA) =
eg(Tb,0)

Zb→iA

1 +
1

N (p−1)/2Sb

∫
Ub

∏
j∈∂b\i

dηjB→b(ujB) +
1

Np−1Rb

∫
U2
b

∏
j∈∂b\i

dηjB→b(ujB)

+ E .

(1.12)

Recall that Ub = uiA
∏
jB∈∂b\iA ujB. Define ûjB→b and σ̂jB→b as the mean and

variance, respectively, of the distribution ηjB→b(ujB). Expanding the two integrals

above,∫
Ub

∏
jB∈∂b\iA

dηjB→b(ujB) = uiA
∏

jB∈∂b\i

∫
ujBdηjB→b(ujB) = uiA

∏
jB∈∂b\iA

ûjB→b,

and∫
U2
b

∏
jB∈∂b\iA

dηjB→b(ujB) = u2
iA

∏
jB∈∂b\iA

∫
u2
jBdηjB→b(ujB) = u2

iA

∏
jB∈∂b\iA

(σ̂jB→b+û
2
jB→b).
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We can then consider η̃b→iA as a power series in uiA:

η̃b→iA(uiA) =
eg(Tb,0)

Zb→iA

1 +
uiA

N (p−1)/2
Sb

∏
jB∈∂b\iA

ûjB→b +
u2
iA

Np−1
Rb

∏
jB∈∂b\iA

(σ̂jB→b + û2
jB→b)

+E .

Using the equivalence of the two expansions (1.10) and (1.11) gives

η̃b→iA(uiA) =
eg(Tb,0)

Zb→iA
exp

 1

N (p−1)/2
SbuiA

∏
jB∈b\iA

ûjB→b +
1

Np−1

Rb
2
u2
iA

∏
jB∈∂b\iA

(σ̂jB→b + û2
jB→b)

− 1

Np−1
Sbu

2
iA

∏
jB∈∂b\iA

û2
jB→b

+ E . (1.13)

Next, substituting expression (1.13) into the variable-to-factor messages (1.8) gives

ηiA→a(uiA) =
µ(uiA)

ZiA→a
exp

 uiA
N (p−1)/2

∑
b∈∂iA\a

Sb
∏

jB∈∂b\iA

ûjB→b +
u2iA

2Np−1

∑
b∈∂iA\a

Rb
∏

jB∈∂b\iA

(σ̂jB→b + û2jB→b)

− u2iA
2Np−1Sb

∏
jB∈∂b\iA

û2jB→b

+ E .

All constant terms have been absorbed into the normalization constant ZiA→a. Recall

that the original error terms on the expansions were of order O(N3(1−p)/2). The product

in the above expression is a product over p− 1 factors. Since p ≥ 3, the combined error

is of order O(N1−p), so we can still represent it by E .

Define constants

BiA→a =
1

N (p−1)/2

∑
b∈∂iA\a

Sb
∏

jB∈∂b\iA

ûjB→b

and

AiA→a =
1

Np−1

 ∑
b∈∂iA\a

S2
b

∏
jB∈∂b\iA

û2
jB→b −

∑
b∈∂iA\a

Rb
∏

jB∈∂b\iA

(σ̂jB→b + û2
jB→b)


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so that

ηiA→a(uiA) =
µ(uiA)

ZiA→a
eBiA→auiA−

AiA→au
2
iA

2 .

The normalization constant is

ZiA→a =

∫
dµ(uiA)eBiA→auiA−

AiA→au
2
iA

2 .

Define a function

f(A,B) =
d

dB
log

∫
dµ(uiA)eBuiA−

Au2
iA

2 .

Recall that ûiA→a and σ̂iA→a are the mean and variance of µiA→a(uiA). We can write

ûiA→a = f(AiA→a, BiA→a)

and

σ̂iA→a =
∂

∂B
f(AiA→a, BiA→a).

Reintroducing the parameter t to keep track of the iterations, we have a quadratic

approximation to belief propagation that proceeds by updates

Bt
iA→a =

1

N (p−1)/2

∑
b∈∂iA\a

Sb
∏

jB∈∂b\iA

ûtjB→b

AtiA→a =
1

Np−1

 ∑
b∈∂iA\a

S2
b

∏
jB∈∂b\i

(ût)2
jB→b −

∑
b∈∂iA\a

Rb
∏

jB∈∂b\iA

(σ̂2
jB→b + (ût)2

jB→b)


ût+1
iA→a = f(AtiA→a, B

t
iA→a)

σ̂t+1
iA→a =

∂

∂B
f(AtiA→a, B

t
iA→a).

This algorithm necessitates updating constants rather than probability distributions at

each iteration.

Step 2: Mean Field Approximation

In the preceding quadratic approximation to BP, the constantsBiA→a, AiA→a, ûiA→a,

and σ̂iA→a depend only weakly on the target node a. The next simplification exploits

this to remove the dependence on the target node a resulting in a set of constants
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BiA, AiA, ûiA, σ̂iA that depend only on the variable node, reducing the number of con-

stants updated at each step.

Define

AtiA =
1

Np−1

 ∑
b∈∂iA

S2
b

∏
jB∈∂b\iA

(ût)2
jB→b −

∑
b∈∂iA\a

Rb
∏
jB∈∂b

(σ̂2
jB→b + (ût)2

jB→b)


(1.14)

Since AiA→a −AiA ∼ O(N1−p), we may freely replace AiA→a by AiA and disregard the

error terms. Next, define

Bt
iA =

1

N (p−1)/2

∑
b∈∂iA

Sb
∏

jB∈∂b\iA

ûtjB→b, (1.15)

and define the correction term by

δBt
iA→a = Bt

iA −Bt
iA→a =

1

N (p−1)/2
Sa

∏
jB∈∂a\iA

ûtjB→a.

We also need to define statistics ûiA and σ̂iA that do not depend on a target variable.

Define ûtiA = f(At−1
iA , Bt−1

iA ) and σ̂tiA = ∂
∂Bf(At−1

iA , Bt−1
iA ). The correction term for the

mean is

δûtiA→a = ûtiA−ûtiA→a = f(At−1
iA , Bt−1

iA )−f(At−1
iA→a, B

t−1
iA→a) = f(At−1

iA , Bt−1
iA )−f(At−1

iA , Bt−1
iA→a)+E .

The last equality uses the fact that the At−1
iA − A

t−1
iA→a ∼ O(N1−p). Using the identity

Bt−1
iA→a = δBt−1

iA − δB
t−1
iA→a, we can consider the function f(At−1

iA , Bt−1
iA→a) as a function

of δBt
iA→a and expand to linear order about δBt

iA→a to get

δûtiA→a = f(At−1
iA , Bt−1

iA )−
(
f(At−1

iA , Bt−1
iA )− ∂

∂B
f(At−1

iA , Bt−1
iA )(Bt−1

iA −B
t−1
iA→a)

)
=

∂

∂B
f(At−1

iA , Bt−1
iA )(Bt−1

iA −B
t−1
iA→a)

= σ̂tiA
1

N (p−1)/2
Sa

∏
jB∈∂a\iA

ût−1
jB→a. (1.16)
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We need only expand to linear order because all quadratic terms are of order O(N1−p)

and can be neglected. Next, write ût−1
jB→a = ût−1

jB − δû
t−1
jB→a to get

1

N (p−1)/2

∏
jB∈∂a\iA

ût−1
jB→a =

1

N (p−1)/2

∏
jB∈∂a\iA

(ût−1
jB −δû

t−1
jB→a) =

1

N (p−1)/2

∏
jB∈∂a\iA

ût−1
jB +E .

Substituting this into equation (1.16) gives

δûtiA→a = σ̂tiA
1

N (p−1)/2
Sa

∏
jB∈∂a\iA

ût−1
iA . (1.17)

To remove the dependence of Bt
iA on the factor node through the terms ûtjB→b, recall

that ûtjB→b = ûtjB − δûtjB→b. Substituting this into (1.15) gives

Bt
iA =

1

N (p−1)/2

∑
b∈∂iA

Sb
∏

jB∈∂b\iA

(ûtj − δûtjB→b)

=
1

N (p−1)/2

∑
b∈∂iA

Sb

 ∏
jB∈∂b\iA

ûtjB −
∑

jB∈∂b\iA

δûtjB→b
∏

kC∈∂b\{iA,jB}

ûtkC

+ E .

Next, substituting the expression (1.17) for δûtjB→b gives

Bt
iA =

1

N (p−1)/2

∑
b∈∂iA

Sb
∏

jB∈∂b\iA

ûtjB−
ût−1
iA

Np−1

∑
b∈∂iA

S2
b

∑̂
jB∈∂b\iA

σ̂tjB
∏

kC∈∂b\{iA,jB}

ûtkC û
t−1
kC .

The second term in the preceding expression is called the Onsager correction term and

corrects for the difference between the mean-field approximation where one sums over

all b ∈ ∂iA and the original cavity field where one sums over b ∈ ∂iA \ a. This term is

closely related to the TAP equation for spin glasses and decouples the iterations of the

algorithm. The original BP algorithm is guaranteed to converge to the true marginal

distributions if the underlying graph is a tree. In the case of a tree graph, the messages

never backtrack. The graph for spiked tensors is quite loopy, and the Onsager term

corrects for backtracking caused by these loops.
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All that is left is to remove the dependence of AtiA on the target nodes. Recall that

Sb =
∂

∂U
g(Tb, Ub)

∣∣∣∣
Ub=0

= β2Tb.

Therefore, taking expectation with respect to the posterior distribution, one sees that

EPS2
b = β2,

where EP denotes expectation with respect to the posterior. Then, since

Rb =
∂2

∂U2
g(Tb, Ub)

∣∣∣∣
Ub=0

+ S2
b = −β2 + S2

b ,

we see that EPRb = 0. The quantities Sb and Rb are self-averaging, so replacing S2
b and

Rb in equation (1.14) by the averages gives

AtiA =
β2

Np−1

∑
b∈∂iA

∏
jB∈∂b\iA

(ût)2
jB→b

=
β2

Np−1

∏
B 6=A

N∑
j=1

(ûtjB)2.

Notice that AtiA does not actually depend on the variable node iA. Because of this, we

may define

At =
β2

Np−1

∏
B 6=A

N∑
j=1

(ûtjB)2.

A similar computation for the Onsager correction term gives

ût−1
iA

Np−1

∑
b∈∂iA

S2
b

∑
jB∈∂b\iA

σ̂tjB
∏

kC∈∂b\{iA,jB}

ûtkC û
t−1
kC

= ût−1
iA

β2

Np−1

∑
b∈∂iA

∑
jB∈∂b\iA

σ̂tjB
∏

kC∈∂b\{iA,jB}

ûtkC û
t−1
kC

= ût−1
iA

β2

Np−1

∑
B 6=A

∑
j

σ̂tjB
∏

C 6=A,B

(
N∑
k=1

ûtkC û
t
kC

)
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Finally, symmetry between modes of the tensor gives the simplest version of AMP:

Bt
i =

β2

N (p−1)/2

∑
i2<···<ip

Ti,i2,...,ip û
t
i1 · · · û

t
ip −

(p− 1)β2

Np−1

 N∑
j=1

σ̂tj

 N∑
j=1

ûtj û
t−1
j

p−2

ût−1
i

At =
β2

Np−1

 N∑
j=1

ûtj û
t
j

p−1

ût−1
i = λûti + (1− λ)f(A,Bi)

σ̂t−1
i = λσ̂ti + (1− λ)

d

dB
f(A,Bi).

The parameter λ ∈ [0, 1) is a damping constant that controls the step-size at each

iteration. Setting λ = 0 gives the straightforward AMP which can sometimes oscillate

around a fixed value instead of converging. Setting λ > 0 helps avoid this behavior.

Other damping schemes may also be considered, but this is the most straightforward.

The performance of AMP is generally analyzed by studying the overlap between the

estimator and the ground truth, defined as

M t =
1

N

N∑
i=1

ûtiui.

The updates to this quantity are the state evolution equations

M t+1 = Ez,x0

[
d

db
logZ(M̂ t, M̂ tu0 + (M̂ t)1/2z)u0

]
M̂ t = β2(M t)p−1 (1.18)

with u0 the ground truth and z ∼ N (0, 1). The expectation is with respect to both the

Gaussian random variable z as well as the distribution of the ground truth. The state

evolution equations are derived from the AMP algorithm by computing updates for the

quantity M t. See [16] for a careful derivation of the state evolution equations.

AMP converges to a stationary point of the state evolution equations. When the

expected value of the signal prior is zero, zero is a fixed point of the stationary equations

meaning that AMP may converge to a solution û such that the overlap of û and the true

signal u0 is zero, so the estimate is completely uninformative. The value βc of Theorem
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1 is the border between the hard and impossible regions, and, assuming β > βc, whether

or not zero is a stable fixed point determines whether one is in the easy or hard region.

Denote the transition between the easy and hard regions by βAlg.

As an example, consider the sparse Rademacher prior (which is the Rademacher

prior when ρ = 1). A fixed point of the state evolution equations (1.18) satisfies

M = ρEz tanh

(
β2Mp−1 +

βMp−1/2

√
ρ

z

)
1

ρ+ (1− ρ) eβ
2Mp−1/2ρ

cosh(β2Mp−1+βMp−1/2
√
ρ

z)

.

For the matrix case with Rademacher prior (p = 2, ρ = 1), this simplifies to

M = Ez tanh(β2M + β
√
Mz).

Cleary M = 0 is a fixed point. Gaussian integration by parts yields

d

dM
Ez tanh(β2M + β

√
Mz)

∣∣∣∣
M=0

= β2.

Thus the fixed point M = 0 is stable for β < 1, so βAlg=1. This means that the easy

region is β > 1. It is well known that in this setting, βc = 1, so in fact for the matrix

case with Rademacher prior, as mentioned above, no hard phase exists. The matrix

case with sparse Rademacher prior exhibits a phase transition in ρ. For large enough ρ,

zero is the only stable solution of the state evolution equation and also βAlg = βc, so the

performance of AMP is similar to the Rademacher case where there is no hard phase.

For smaller ρ, there are multiple stable fixed points of the state evolution equations and

additionally βAlg > βc, so a hard phase exists. See [15] for a detailed discussion of the

sparse Rademacher matrix case.

When p ≥ 3 and the spike prior has mean zero, zero is a stable fixed point of the state

evolution equations for all β. For example, in the Rademacher case, it is straightforward

to compute that

d

dM
Ez tanh(β2Mp−1 + βM (p−1)/2z)

∣∣∣∣
M=0

= 0.

This means there is no easy region for spike recovery by AMP in the tensor case.
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In Figure 1.2, we compare the performance of AMP for the Rademacher prior in

the case of p = 2 and p = 3 when AMP is initialized at an ‘uninformative’ vector that

has no correlation with the ground truth 1. For the Rademacher prior, there are two

fixed points of AMP, one with low error that has mean square error less than 1, and

one with high error with mean square error equal to 1. For p = 2 and β < 1, AMP

always converges to the high-error fixed point. However, for β > 1, as β grows, AMP

converges to the low-error solution more frequently. In stark contrast, for p = 3, AMP

never converges to the high-error solution, regardless of the value of β.

Figure 1.2: Average mean-square error for spike recovery by AMP for N = 50 and 50
trials. For p = 2 and p = 3 we run 50 trials of AMP and plot the averaged mean square
error for each values of β between 0 and 3 in increments of .01. For each trial, we
initialize u0

i ∼ N(0, 1). This is an ‘uninformative’ initialization that has no correlation
with the ground truth. The plot on the left is for p = 2 and clearly shows the phase
transition at β = 1. The plot on the right is for p = 3. For p = 3, AMP always converges
to the high-error fixed point.

In Figure 1.3, we show some results for AMP for the spiked tensor with Rademacher

prior and p = 3 initialized at a vector u0 that is correlated with the ground truth vector.

For each run of AMP, we initialize u0
i = ui +N (0, .01), where u = (u1, . . . , uN ) is the

ground truth. As β surpasses the critical threshold βc = 1.535, some runs of AMP

converge to the low-error fixed point. For each value of β ∈ [0, 3] at increments of .01,

we run AMP until we achieve 20 convergent runs. As β increases, more of the runs

1Code is available at https://github.com/mchandschy/UMN_Phd_Thesis_AMP

https://github.com/mchandschy/UMN_Phd_Thesis_AMP
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oscillate and do not converge, but the percentage of runs that converge to the high-

error fixed point goes to zero. Figure 1.3 shows the average mean square error across

the 20 convergent runs, the total number of runs performed, and the percentage of runs

converging to the low- and high- error fixed points. We perform all runs with λ = 0.

Figure 1.3: AMP for N = 50 with informative initialization. For each value of β, we
run AMP until we achieve 20 convergent runs. The top left plot shows the average
mean square error over the 20 convergent runs. The top right plot shows the total
number of runs performed for each value of β. The bottom left and bottom right plots,
respectively, show the percentage of runs that converge to the low-error solution and
the percentage of runs that converge to the high-error solution.



Chapter 2

Pure p-Spin Models

This chapter introduces the mean field spin glass models related to the spike detection

problem and explains how these models relate to the total variation distance between

the spiked and unspiked random tensors. Section 2.2 introduces the scalar-valued p-spin

model corresponding to the single-spike case, and Section 2.3 introduces the vector-

valued p-spin model corresponding to the case of multiple spikes. In Section 2.4, Lemmas

1 and 2 relate the free energy of these spin glass models to the total variation distance

between the spiked and un-spiked random tensors. Finally, Section 2.5 outlines how the

results about the spin-glass models are used to prove Theorems 1, 2, 3, and 4.

2.1 A Brief History of Spin Glasses

In the late 1950s, physicists began to study the magnetic resonance of alloys composed

of ions in non-magnetic metal in an effort to study magnetic interactions between the

ions [17]. In studies of manganese ions in non-magnetic copper, Owen, Browne, Knight,

and Kittel [18] noticed that alloys composed of .1-10% manganese exhibited anomalous

behavior at low temperatures. Observations of the specific heat - the amount of heat

required to raise the temperature of a unit mass of material by one degree Celcius -

suggested a magnetic phase transition. Below a critical temperature, the magnetic spins

froze in random directions rather than settling into a more orderly ferromagnetic or anti-

ferromagnetic configuration [19, 20]. Inspired by this disordered magnetic structure,

these alloys came to be known as ‘classic spin glasses;’ the name is an analogy to the

25
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disordered molecular structure of a glass compared to the regular molecular structure

of a crystal.

The mathematical study of spin glasses began with the insight by Edwards and

Anderson [21] to model the interactions between the ions by the random Heisenberg

model. In this model, known as the Edwards-Anderson (EA) spin glass model, Ising

spins σ1, . . . , σN ∈ {+1,−1} are situated on a lattice where spin σi is an assignment

of the value +1 or −1 to site i. Interactions between spins at neighboring sites on the

lattice are modeled by independent standard Gaussians, where gij ∼ N (0, 1) models the

interaction between the spins at sites i and j. A choice of σi = +1 or σi = −1 for each

site on the lattice is called a spin configuration. Given a spin configuration, the energy

of the system is given by the Hamiltonian
∑
〈ij〉 gijσiσj . The notation 〈i, j〉 indicates

that the sum is taken only over neighboring sites on the lattice.

In the Edwards-Anderson model, the interaction between two spins depends on the

distance between them: two spins interact only if they are neighbors. The EA model and

other distance-dependent models are difficult to analyze, which led to the introduction

of the so-called ‘infinite range’ models in which distance is ignored. The Sherrington-

Kirkpatrick (SK) model for spin-glasses, originally formulated in [22], generalizes the

EA model to an infinite range model by instead summing over all pairs of sites. The

SK model is one of the most well-studied and well-understood spin glass models. For

an in depth review of the SK model, see [23, 24, 25]. The models studied here are an

extension of the SK model, where spins take on values in a bounded subset of R and

the sum is over all interactions between sets of p spins.

2.2 The Scalar-Valued p-Spin Model

Recall the symmetric random tensor W defined in equation (1.1). Recall also the prob-

ability space (Λ, µ) from which the entries of the vector u are drawn. Given a spin

configuration σ = (σ1, . . . , σN ) ∈ ΛN , the Hamiltonian of the scalar-valued pure p-spin

model is

XN (σ) =
1

N (p−1)/2

∑
1≤i1,...,ip≤N

Yi1,...,ipσi1 · · ·σip =
1

N (p−1)/2
〈Y, σ⊗p〉.
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By the symmetry of the Hamiltonian, one may replace Y by W to get XN (σ) =
1

N(p−1)/2 〈W,σ⊗p〉. Let σ1, σ2 denote two different spin configurations. The Hamilto-

nian XN (σ) is a Gaussian process indexed by ΛN with covariance structure

EXN (σ1)XN (σ2) = N(R(σ1, σ2))p,

where R(σ1, σ2) is the overlap between configurations σ1, σ2 defined as

R(σ1, σ2) =
1

N

N∑
i=1

σ1
i σ

2
i . (2.1)

Define the normalized Hamiltonian at inverse temperature β by

HN,β(σ) = βXN (σ)− β2N

2
R(σ1, σ2)p. (2.2)

It is normalized in the sense that

EeHN,β(σ) = 1.

The Hamiltonian 2.2 induces a natural probability measure on the space ΛN known as

the Gibbs measure and defined by

GN,β(σ) =
eHN,βµ⊗N (dσ)

ZN,β
.

The normalizing constant ZN,β, called the partition function, is

ZN,β =

∫
ΛN

eHN,β(σ)µ⊗N (dσ).

Let 〈·〉β denote expectation with respect to the Gibbs measure. At larger values

of β (low temperature), the Gibbs measure concentrates on spin configurations σ that

maximize HN,β(σ). In contrast, smaller values of β (high temperature) do not amplify

the differences between values of HN,β(σ) for different configurations σ. Consequently,

at high temperatures, sampling from the Gibbs measure is likely to produce common,

as opposed to large, values of HN (σ).
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The free energy associated to HN,β is

FN (β) =
1

N
logZN,β.

Denote the thermodynamic limit of the free energy by F (β):

F (β) = lim
N→∞

FN (β).

In Chapter 4 it is shown that for every β > 0 this limit exists and is non-random. For

all N ≥ 1 and β > 0, Jensen’s inequality gives

EFN (β) ≤ 0.

Therefore, taking the limit as N → ∞ shows that F (β) ≤ 0 for all β > 0. Define the

high-temperature regime of the scalar-valued model by

R = {β | F (β) = 0},

and define βc = supR. Proposition 1 states that the high-temperature regime is the

interval R = (0, βc), the same set of parameters given in Theorem 1 for which detection

is impossible.

Proposition 1. If p ≥ 2, then R = (0, βc). Also, for β > 0, β ∈ R if and only if

supv∈(0,v∗] Γβ(v) ≤ 0.

The following two results describe the behavior of the scalar-valued model in the

high-temperature regime. Theorem 5 states that in the high-temperature regime the

overlap of two spin configurations σ1, σ2 sampled according to the Gibbs measure con-

centrates at 0, and Proposition 2 gives control of the fluctuation of the free energy FN (β)

in the high temperature regime. The two results are used together to prove Theorem 1.

Theorem 5. For p ≥ 2, m ∈ N and 0 < β < βc, there exists a constant K depending

only on p,m, β such that

E
〈
|R(σ1, σ2)|2m

〉
s
≤ K

Nm

for all s ∈ [0, β] and all N ≥ 1.
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Proposition 2. For p ≥ 2 and 0 < β < βc there exists a constant K depending only

on p, β such that

P (|FN (β)| ≥ `) ≤ K

`2Np/2+1

for all ` > 0, N ≥ 1.

2.3 The Vector-Valued p-Spin Model

Recall the probability spaces (Λ1, µ1), . . . , (Λk, µk) from which the entries of vectors

u(1), . . . , u(k), respectively, are drawn. Define

(µ̄, Λ̄) =

(
k∏
r=1

µr,
k∏
r=1

Λr

)
.

Recall also SNR vector of the spiked tensor with multiple spikes, β̄ = (β1, . . . , βk).

A spin configuration σ̄ ∈ Λ̄N is a matrix whose rows are scalar-valued spins σ(1) ∈
ΛN1 , . . . , σ(k) ∈ ΛNk .

For each 1 ≤ r ≤ k, the pure, scalar-valued p-spin model is

XN (σ(r)) =
1

N (p−1)/2
〈Y, σ(r)⊗p〉.

The normalized vector-valued Hamiltonian is

HN,β̄(σ̄) =
1

N (p−1)/2

k∑
r=1

βrXN (σ(r))−
∑

1≤r,r′≤k

βrβr′

2
NR(σ(r), σ(r′))p.

The Gibbs measure corresponding to the vector-valued Hamiltonian is

GN,β̄(σ) =
eHN,β̄(σ̄)µ̄⊗N (dσ̄)

ZN,β̄

with partition function

ZN,β̄ =

∫
eHN,β̄(σ̄)µ̄⊗N (dσ̄).
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The associated free energy is

FN (β̄) =
1

N
logZN,β̄.

Define F (β̄) = limN→∞ FN (β̄). When p is even, Panchenko [26] shows that this limit

exists for the pure p-spin model with vector spins, which can be extended to the present

case using an argument similar to the proof of Proposition 4. When k = 1, the limit

exists for odd p, but it is an open question whether it exists for odd p and k > 1.

As in the scalar-valued case, an application of Jensen’s inequality to EFN (β̄) shows

that F (β̄) ≤ 0. Define the high-temperature regime of the vector-valued model by

R̄ = {β̄ | F (β̄) = 0}.

For 1 ≤ r ≤ k, let βr,c be the critical value separating the high-temperature and

low-temperature regimes of the marginal scalar-valued model HN,β(r)(σ(r)). Theorem

6 states that the high-temperature regime R̄ is the product of the high-temperature

regimes of these marginal systems. In this region, the effect of the cross-overlap terms

R(σ(r), σ(r′))p is negligible and the k marginal systems HN,βr(σ(r)) act like independent

systems.

Theorem 6. For p ≥ 3, R̄ = (0, β1,c)× · · · × (0, βk,c).

To prove Theorem 6, we must show that the cross-overlap terms R(σ(r), σ(r′))p

with r 6= r′ concentrate at zero. This result is given in Section 4.6 which presents the

proof of Theorem 6. An earlier version of the proof of Theorem 3 required versions of

Theorem 5 and Proposition 2 to control the overlaps and free energy fluctuation, stated

as Theorem 7 and Proposition 3 below. These results are unnecessary for the proof

method presented here, but are still included as interesting results in the study of spin

glasses.

Theorem 7. Assume that p ≥ 2 is even, m ∈ N and β̄ = (β1, . . . , βk) satisfies 0 < βr <

βr,c for all 1 ≤ r ≤ k. Then there exists a constant K > 0 depending only k, p,m, and

β̄ such that for any 1 ≤ r ≤ k and s ∈ [0, 1]

E
〈
|R(σ1(r), σ2(r)|2m

〉
sβ̄
≤ K

Nm
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for all N ≥ 1.

Proposition 3. For p ≥ 2 and β̄ as in Theorem 7, there exists a constant K > 0

depending only on k, p, β̄ such that for any ` > 0

P
(
|FN (β̄)| > `

)
≤ K

`2Np/2+1

for all N ≥ 1.

2.4 Total Variation Distance

Chapter 1 gave an interpretation of total variation distance in terms of the sum of Type

I and Type II errors of a statistical hypothesis test. The present section relates total

variation distance to the likelihood ratio test and the free energy of the scalar- and

vector-valued spin glasses in Lemmas 1 and 2, respectively.

Lemma 1 gives a formula in terms of the ratio of the densities of T and W or Tk

and W . The result is [9, Lemma 2], but the proof is reproduced here for completeness.

In Lemma 2, the connections to spin-glasses becomes clear. The ratio of the densities

in Lemma 1 is NFN (β) in the case of a single spike and NFN (β̄) in the case of multiple

spikes.

Lemma 1. Suppose U, V are two N -dimensional random vectors with densities fU , fV ,

respectively, with fU 6= 0 and fV 6= 0 almost everywhere. Then

dTV (U, V ) =

∫ 1

0
P

(
fU (V )

fV (V )
< x

)
dx =

∫ 1

0
P

(
fU (U)

fV (U)
>

1

x

)
dx.

Proof. First,

dTV (U, V ) =
1

2

∫
Rn
|fV (x)− fU (x)|dx =

∫
fU≤fV

(fV (x)− fU (x))dx.

To see the second equality, simply note that

1

2

∫
Rn
|fV (x)− fU (x)|dx =

1

2

(∫
fU≤fV

(fV (x)− fU (x))dx+

∫
fU>fV

(fU (x)− fV (x))dx

)
,
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and write∫
fU>fV

(fU (x)− fV (x))dx =

(
1−

∫
fU≤fV

fU (x)dx

)
−
(

1−
∫
fU≤fV

fV (x)dx

)
=

∫
fU≤fV

(fV (x)− fU (x))dx.

To see the first equality, define A = {x | fU (x) ≤ fV (x)}. Then, for any measurable

set B,

|P (V ∈ B)− P (U ∈ B)| =
∣∣∣∣∫
B

(fV (x)− fU (x))dx

∣∣∣∣
=

∣∣∣∣∫
B∩A

(fV (x)− fU (x))dx+

∫
B∩Ac

(fV (x)− fU (x))dx

∣∣∣∣
≤ max

{∣∣∣∣∫
B∩A

(fV (x)− fU (x))dx

∣∣∣∣ , ∣∣∣∣∫
B∩Ac

(fV (x)− fU (x))dx

∣∣∣∣} .
This inequality holds because, by the definition of the set A, the first integral is positive

and the second is negative. Continuing,

|P (V ∈ B)− P (U ∈ B)| ≤ max

{∣∣∣∣∫
A

(fV (x)− fU (x))dx

∣∣∣∣ , ∣∣∣∣∫
Ac

(fV (x)− fU (x))dx

∣∣∣∣}
= max {|P (V ∈ A)− P (U ∈ A)|, |P (U ∈ Ac)− P (V ∈ Ac)|}

= |P (V ∈ A)− P (U ∈ A)|.

Thus dTV (U, V ) = |P (V ∈ A)− P (U ∈ A)|. Finally,

|P (V ∈ A)− P (U ∈ A)| =
∫
A

(fV (x)− fU (x))dx

=
1

2

(∫
A

(fV (x)− fU (x))dx+ 1−
∫
A
fU (x)dx− 1 +

∫
A
fV (x)dx

)
=

1

2

(∫
A

(fV (x)− fU (x))dx+

∫
Ac

(fU (x)dx− fV (x))dx

)
=

1

2

(∫
RN
|fV (x)− fU (x)|dx

)
.
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To finish the proof,∫ 1

0
P

(
fU (V )

fV (V )
< x

)
dx =

∫ 1

0

∫
RN

1 fU (r)

fV (r)
<x

(r)fV (r)drdx

=

∫
RN

∫ 1

0
1 fU (r)

fV (r)
<x

(r)dxfV (r)dr

=

∫
RN

1 fU (r)

fV (r)
≤1

(r)

(
1− fU (r)

fV (r)

)
fV (r)dr

=

∫
fU≤fV

(fV (r)− fU (r))dr.

This shows the first equality of the lemma. For the second equality, simply switch the

roles of U, V .

Lemma 2. For any β ∈ (0,∞) and β̄ ∈ (0,∞)k the total variation distances can be

written as

dTV (W,T ) =

∫ 1

0
P

(
FN (β) <

log x

N

)
dx

and

dTV (W,Tk) =

∫ 1

0
P

(
FN (β̄) <

log x

N

)
dx.

Proof. The Gaussian random tensor W has density fW (w) = 1
C exp(−1

2〈w,w〉). Here

C is a normalizing constant whose specific value is not important. For any Borel mea-

surable set A,

P (Tk ∈ A) = P

(
W +

1

N (p−1)/2

k∑
r=1

βru(r)⊗p ∈ A

)

= EuPW

(
W ∈ A− 1

N (p−1)/2

k∑
r=1

βru(r)⊗p

)

= Eu
∫
A− 1

N(p−1)/2

∑k
r=1 βru(r)⊗p

fW (w)dw,

where Eu denotes expectation with respect to the randomness in u(1), . . . , u(k) only,

and PW denotes probability with respect to fW (w) only. Performing the change of
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variables w 7→ w − 1
N(p−1)/2

∑k
r=1 βru(r)⊗p and then using Fubini’s theorem to change

the order of integration gives

P (Tk ∈ A) = Eu
∫
A
fW

(
w − 1

N (p−1)/2

k∑
r=1

βru(r)⊗p

)
dw

=

∫
A
EufW

(
w − 1

N (p−1)/2

k∑
r=1

βru(r)⊗p

)
dw.

Therefore

fTk(w) = EufW

(
w − 1

N (p−1)/2

k∑
r=1

βru(r)⊗p

)

=
1

C
Eu exp

(
−1

2

〈
w − 1

N (p−1)/2

k∑
r=1

βru(r)⊗p, w − 1

N (p−1)/2

k∑
r=1

βru(r)⊗p

〉)

= fW (w)Eu exp

 1

N (p−1)/2

k∑
r=1

βr〈w, u(r)⊗p〉 − 1

2Np−1

∑
1≤r,r′≤k

βrβr′〈u(r)⊗p, u(r′)⊗p〉


= fW (w)

∫
eHN,β̄(σ)µ⊗N (dσ).

Since fW (w) 6= 0 almost everywhere, dividing by fW (w) and taking the log gives

log(fTk(w)/fW (w)) = NFN (β̄). Plugging this in to Lemma 1 gives

dTV (W,Tk) =

∫ 1

0
P

(
FN (β̄) <

log x

N

)
dx.

The expression for total variation distance in the single-spike case comes from using

k = 1 in the preceding argument.

2.5 Structure of the Proofs of Theorems 1, 2, 3, and 4

The remainder of the thesis is devoted to proving Theorems 1, 2, 3, and 4. Chapter

3 presents the proofs of Theorems 1, 2, 3, and 4 assuming the results of the present

chapter. It is clear from the representation of the total variation distance given in

Lemma 2 that to solve the detection problem it is necessary to study the behavior of

the free energies FN (β) and FN (β̄). By Proposition 1, the high-temperature region of
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the scalar-valued spin glass is the interval (0, βc). Proposition 2 bounds the fluctuations

of the free energy FN (β) for β in this interval. This result, combined with Lemma 2, is

used to prove Theorem 1. To prove Theorem 3, the free energy of the vector-valued spin

glass is related to the free energies of the marginal scalar-valued systems, and then the

proof proceeds in a manner identical to that of Theorem 1. Theorem 2 follows almost

immediately from Proposition 1.

Chapter 4 builds the theory and results needed to prove the structure of the high-

temperature regimes of the scalar- and vector-valued models as well as the concentration

of overlaps used to prove Propositions 2 and 3. The key result of Chapter 4 is a cavity

method to control the moments of the spin overlaps. For many models, including the SK

model, the cavity method only works in a small subset of the high-temperature regime;

however, the cavity method presented here holds in the entirety of the high-temperature

regime for both the scalar- and vector-valued p-spin models.



Chapter 3

Proofs of Detection and Recovery

Results

This chapter presents the proofs of Theorems 1, 2, 3, and 4: the results on the de-

tection problem for a single spike, a method to compute the critical SNR, the result

for the detection of multiple spikes, and recovery by the minimum mean square error,

respectively. These proofs rely on the results of Sections 2.2 and 2.3, which control the

fluctuations of the free energies of the scalar- and vector-valued p-spin models. The

present chapter assumes that these results hold.

3.1 Detection with a Single Spike: Proofs of Theorems 1

and 2

Theorem 1 states that detection is not possible when 0 ≤ β < βc, and detection is

possible when β > βc. The proof that detection is impossible for β ∈ [0, βc) relies

on the fact that the high-temperature regime of the scalar-valued p-spin model is the

interval (0, βc) and the behavior of the free energy FN (β) for β in this set. The proof

that detection is possible when β > βc depends on the behavior of the free energy and

a simple application of the dominated convergence theorem.

Proof. (Theorem 1) Recall that the high-temperature regime of the spin glass HN (σ)

is defined as R = {β > 0 | F (β) = 0}, and βc = supR. By Proposition 1, R = [0, βc).

36
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First suppose that β ∈ R, so that F (β) = 0. From Lemma 2, the total variation distance

between W and T is

dTV (W,T ) =

∫ 1

0
P

(
FN (β) <

log x

N

)
dx.

Performing the change of variables y = − log x gives

dTV (W,T ) =

∫ ∞
0

P

(
FN (β) <

−y
N

)
e−ydy ≤

∫ ∞
0

P

(
FN (β) <

−y
N

)
dy.

The inequality holds since the integrand is positive and e−y ≤ 1 for all 0 ≤ y <∞.

For any ε > 0, splitting the right-most integral into two pieces at ε gives

dTV (W,T ) ≤
∫ ε

0
P

(
FN (β) <

−y
N

)
dy +

∫ ∞
ε

P

(
FN (β) <

−y
N

)
dy

≤
∫ ε

0
dy +

∫ ∞
ε

P
(
|FN (β)| > y

N

)
dy

= ε+

∫ ∞
ε

P
(
|FN (β)| > y

N

)
e−ydy.

Since 0 < β < βc, by Proposition 2, there exists a constant K > 0 depending only on

p, β such that for all ` > 0 and all N ≥ 1,

P (|FN (β)| > `) ≤ K

`2N
p
2

+1
.

Therefore,

dTV (W,T ) ≤ ε+
K

N
p
2
−1

∫ ∞
ε

1

y2
dy = ε+

K

εN
p
2
−1
.

Choose ε = N−
p−2

4 so that

dTV (W,T ) ≤ 1 +K

N
p−2

4

.

Taking N → ∞ shows that limN→∞ dTV (W,T ) = 0, so W,T are indistinguishable and

detection is impossible.

Next consider β > βc. Since β 6∈ R, FN (β) < 0. Recall that FN (β) → F (β)

almost surely, therefore FN (β)− log x
N → F (β) almost surely for any x > 0. Almost sure



38

convergence implies convergence in distribution, therefore

lim
N→∞

P

(
FN (β)− log x

N
< 0

)
= P (F (β) < 0) = 1.

The dominated convergence theorem allows the interchange of the limit and the integral

so

lim
N→∞

dTV (W,T ) = lim
N→∞

∫ 1

0
P

(
FN (β)− log x

N
< 0

)
dx

=

∫ 1

0
lim
N→∞

P

(
FN (β)− log x

N
< 0

)
dx

= 1.

Thus W,T are distinguishable and detection is possible.

Theorem 2 follows directly from Proposition 1, which gives an alternate characteri-

zation of the high-temperature regime in terms of the auxiliary function Γb(v).

Proof. (Theorem 2) Suppose, for the sake of contradiction, that supv∈[0,v∗] Γβc(v) <

0. Since Γβ(v) is continuous in β, it is therefore possible to find β > βc such that

supv∈[0,v∗] Γβ(v) ≤ 0. By Proposition 1, this means β ∈ R, which contradicts the

maximality of βc.

3.2 Detection with Multiple Spikes: Proof of Theorem 3

Theorem 3 states that for a random tensor with multiple spikes, detection is possible

when the SNR for at least one of the spikes exceeds the critical threshold for the cor-

responding single-spike tensor. The proof relies on Lemma 3, a version of the triangle

inequality for total variation distance that bounds dTV (W,Tk) by the sum of the total

variation distances between W and the single-spike tensors. Then it is possible to use

Proposition 2 and the arguments in the proof of Theorem 1 to control each individual

single-spike total variation distance.

Lemma 3. Assume that Y1, Y2 are independent random p-tensors which are also inde-

pendent of W . Then dTV (W,W + Y1 + Y2) ≤ dTV (W,W + Y1) + dTV (W,W + Y2).
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Proof. From the triangle inequality,

dTV (W,W + Y1 + Y2) = sup
A
|P (W ∈ A)− P (W + Y1 + Y2 ∈ A)|

= sup
A
|P (W ∈ A)− P (W + Y1 ∈ A) + P (W + Y1 ∈ A)− P (W + Y1 + Y2 ∈ A)|

≤ sup
A
|P (W ∈ A)− P (W + Y1 ∈ A)|

+ sup
A
|P (W + Y1 ∈ A)− P (W + Y1 + Y2 ∈ A)|

= dTV (W,W + Y1) + dTV (W + Y1,W + Y1 + Y2).

Since Y1 and Y2 are independent,

dTV (W + Y1,W + Y1 + Y2) = sup
A
|EY1(P (W ∈ A− Y1)− P (W + Y2 ∈ A− Y1))|

≤ EY1 sup
A
|P (W ∈ A− Y1)− P (W + Y2 ∈ A− Y1)|

≤ EY1 sup
A
|P (W ∈ A)− P (W + Y2 ∈ A)|

= sup
A
|P (W ∈ A)− P (W + Y2 ∈ A)|

= dTV (W,W + Y2).

A previous version of the proof of Theorem 3 controlled the fluctuations of free

energy FN (β̄) in the high-temperature regime using Proposition 3 in much the same

way that Proposition 2 is used in the proof of Theorem 1; however, Lemma 3 renders

this argument unnecessary. Theorem 7 and Proposition 3 are still interesting in the

study of spin glasses, and are still included here even though they are not necessary to

solve the detection problem.

Proof. (Theorem 3) First assume that β̄ ∈ (0, β1,c) × · · · × (0, βk,c). For 1 ≤ r ≤ k,

define single spike models

Tk,r = W +
βr

N (p−1)/2
u(r)⊗p.
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By Lemma 3,

dTV (W,Tk) ≤
k∑
r=1

dTV (W,Tk,r).

Combining the claim of Proposition 2 and the arguments in the proof of Theorem 1,

for each 1 ≤ r ≤ k there exist constants Kr > 0 such that dTV (W,Tk,r) ≤ Kr/N
p−2

4 .

Therefore

lim
N→∞

dTV (W,Tk) ≤ lim
N→∞

k∑
r=1

Kr

N
p−2

4

= 0,

so W,Tk,r are indistinguishable and detection is impossible.

Next assume that β̄ 6∈ (0, β1,c]× · · ·× (0, βk,c]. By Theorem 6, the high-temperature

regime is R = (0, β1,c) × · · · × (0, βk,c), so F (β̄) < 0. Using the representation of total

variation distance in Lemma 2,

lim
N→∞

dTV (W,Tk) ≥ lim inf
N→∞

∫ 1

0
P

(
FN (β̄) <

log x

N

)
dx

≥
∫ 1

0
lim inf
N→∞

P

(
FN (β̄) <

log x

N

)
dx

=

∫ 1

0
P (F (β̄) < 0)dx

= 1.

The second line uses Fatou’s lemma. Thus W,Tk are distinguishable and detection is

possible.

3.3 Spike Recovery by MMSE: Proof of Theorem 4

In this section we prove Theorem 4, which states that recovery of the spike by the min-

imum mean square error estimator has the same phase transition as the spike detection

problem. The proof requires an auxiliary Hamiltonian and an auxiliary mean square

error. Lemma 4 states several properties of the auxiliary mean square error, and these

properties are used to prove Theorem 4
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Fix an SNR vector β̄ = (β1, . . . , βk). For t ≥ 0 define a new random tensor Tk(t) by

Tk(t) = W +

√
t

Np−1

k∑
r=1

βru(r)⊗p,

and define an auxiliary Hamiltonian

AHN,t(σ̄) =

√
t

N (p−1)/2

k∑
r=1

βr〈Tk(t), σ(r)⊗p〉 − t

2

∑
1≤r,r′≤k

βrβr′NR(σ(r), σ(r′))p.

When t = 1, the auxiliary Hamiltonian is the Hamiltonian HN,β̄(σ̄) with disorder Y

replaced by the random tensor Tk. Expanding Tk(t), the auxiliary Hamiltonian can also

be written as

AHN,t(σ̄) =

√
t

N (p−1)/2

k∑
r=1

βr〈Y, σ(r)⊗p〉− t
2

∑
1≤r,r′≤k

βrβr′NR(σ(r), σ(r′))p+t
∑

1≤r,r′≤k

βrβr′NR(σ(r), u(r′))p.

Let AFN,t(β̄) denote the free energy of the auxiliary Hamiltonian and AGN,t the as-

sociated Gibbs measure. Let 〈·〉At denote the corresponding Gibbs average. Note that

AFN,1(β̄) = FN (β̄).

A key component of the proof of Theorem 4 is the fact that the auxiliary Gibbs mea-

sure AGN,t is equal to the conditional distribution of (u(1), . . . , u(k)) given Tk(t). Let

Eu denote the expected value in the randomness of u(1), . . . , u(k) only. Recall the den-

sity of the symmetric Gaussian tensor fW (w) = 1
C exp(−1

2〈w,w〉). Since u(1), . . . , u(k)

are independent of W , the conditional probability is

P ((u(1), . . . , u(k)) ∈ B | Tk(t) = w)

=
Eu
[
fW

(
w −

√
t

Np−1

∑k
r=1 βru(r)⊗p

)
· 1(u(1),...,u(k))∈B

]
Eu
[
fW

(
w −

√
t

Np−1

∑k
r=1 βru(r)⊗p

)]
=

∫
B exp

(√
t

Np−1

∑k
r=1 βr〈w, σ(r)⊗p〉 − t

2

∑
r,r′ βrβr′NR(σ(r), σ(r′))p

)
µ⊗N (dσ̄)∫

exp
(√

t
Np−1

∑k
r=1 βr〈w, σ(r)⊗p〉 − t

2

∑
r,r′ βrβr′NR(σ(r), σ(r′))p

)
µ⊗N (dσ̄)

.

Taking w = Tk(t) gives AGN,t(B).
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Define an auxiliary minimum mean square error by

MMSEAN (β̄, t) = min
θ̂

1

Np

∑
1≤i1,...,ip≤N

E

(
k∑
r=1

βrui1(r) · · ·uip(r)− θ̂i1,...,ip

)2

where the minimum is taken over all random variables θ̂ generated by the sigma field

σ(Tk(t)). When t = 1, we have MMSEAN (β̄, 1) = MMSEN (β̄). Lemma 4 below gives a

representation of MMSEAN (β̄, t) in terms of the auxiliary free energy. Setting t = 1 and

using this representation will help prove Theorem 4.

Lemma 4. The following hold.

(i) EAFN (β̄, t) is a nondecreasing, nonnegative, and convex function of t.

(ii) MMSEAN (β̄, t) =
∑

1≤r,r′≤k
βrβr′ER(u(r), u(r′))p − 2

d

dt
EAFN (β̄, t).

Proof. By Gaussian integration by parts, the derivative of EAFN (β̄, t) with respect to

t is

d

dt
EAFN (β̄, t) =

∑
1≤r,r′≤k

βrβr′

(
−1

2
E〈R(σ1(r), σ2(r′)〉At + E〈R(σ(r), u(r′))p〉At

)
.

Recall that AGN,t(·) = P ((u(1), . . . , u(k)) ∈ · | Tk(t)). Therefore

E〈R(σ(r), u(r′))p〉At = E
[
E
[
〈R(σ(r), u(r′))p〉At | Tk(t)

]]
= E〈R(σ1(r), σ2(r′))p〉At .

Plugging in to the derivative,

d

dt
EAFN (β̄, t) =

1

2

∑
1≤r,r′≤k

βrβr′E〈R(σ1(r), σ2(r′))p〉At .

Note that the minimizer of MMSEAN (β̄, t) occurs at

θ̂Ai1,...,ip :=
k∑
r=1

βrE[ui1(r) · · ·uip(r)|Tk(t)] =

k∑
r=1

βr〈σi1 · · ·σip〉At .
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Therefore

MMSEAN (β̄, t) =
1

Np

∑
1≤i1,...,ip≤N

E

(
k∑
r=1

βrui1(r) · · ·uip(r)−
k∑
r=1

βr〈σi1 · · ·σip〉At

)2

=

k∑
r,r′=1

βrβr′
(
ER(u(r), u(r′))p − 2E〈R(u1(r), σ2(r′))p〉At + E〈R(σ1(r), σ2(r′))p〉At

)
=

k∑
r,r′=1

βrβr′
(
ER(u(r), u(r′))p − 2E〈R(σ1(r), σ2(r′))p〉At

)
=

k∑
r,r′=1

βrβr′ER(u(r), u(r′))p − 2
d

dt
EAFN (β̄, t).

This completes the proof of part (ii).

To prove part (i), set θ̂i1,...,ip = 0 to get the upper bound for MMSEAN (β̄, t)

MMSEAN (β̄, t) ≤
k∑

r,r′=1

βrβr′ER(u(r), u(r′))p.

Thus we must have

k∑
r,r′=1

βrβr′ER(u(r), u(r′))p − 2
d

dt
EAFN (β̄, t) ≤

k∑
r,r′=1

βrβr′ER(u(r), u(r′))p,

so we can conclude that d
dtEAFN (β̄, t) ≥ 0. Therefore EAFN (β̄, t) is non-decreasing in

t. It is straightforward to compute that AFN (β̄, 0) = 0; therefore, EAFN (β̄, t) is non

negative for t ≥ 0.

Finally, if MMSEAN (β̄, t) is non-increasing in t, then d
dtEAFN (β̄, t) must be non-

decreasing in t and therefore EAFN (β̄, t) must be convex in t. To show that MMSEAN (β̄, t)

is non-increasing in t, note that

1√
t
Tk(t) =

1

N (p−1)/2

k∑
r=1

βru(r)⊗p +
1√
t
W.
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Let W ′ be an independent copy of W . For t′ > t,

1√
t′
Tk(t

′) +

√
1

t
− 1

t′
W ′ =

1

N (p−1)/2

k∑
r=1

βru(r)⊗p +
1√
t′
W +

√
1

t
− 1

t′
W ′.

This is equal in distribution to 1√
t
Tk(t) for any 0 ≤ t < t′. Since W ′ and Tk(t

′) are

independent,

E[ui1 · · ·uip | Tk(t′)] = E[ui1 · · ·uip | Tk(t′),W ′] = E[ui1 · · ·uip | Tk(t′), Tk(t)].

Therefore

MMSEAN (β̄, t′) =
1

Np

∑
1≤i1,...,ip≤N

E

(
k∑
r=1

βr
(
ui1 · · ·uip − E[ui1 · · ·uip | Tk(t′), Tk(t)

))2

≤ 1

Np

∑
1≤i1,...,ip≤N

E

(
k∑
r=1

βr
(
ui1 · · ·uip − E[ui1 · · ·uip | Tk(t)

))2

= MMSEAN (β̄, t).

Conditioning only on Tk(t) instead of on Tk(t) and Tk(t
′), we are given less information,

so the estimate is not as good and the inequality holds. This concludes the proof of

part (i).

3.3.1 Proof of Theorem 4

We now turn to the proof of Theorem 4. The key tool is Lemma 4 (ii). We show that

when β̄ ∈ (0, β1,c)× · · · × (0, βk,c), in the limit d
dtEAFN (β̄, 1) is equal to zero. Then an

application of the strong law of large numbers shows that

lim sup
N→∞

MMSEN (β̄) = lim sup
N→∞

MMSEAN (β̄, 1) = DMSE .

On the other hand, when β̄ 6∈ (0, β1,c) × · · · × (0, βk,c), we show that d
dtEAFN (β̄, 1) is

strictly positive in the limit and consequently

lim sup
N→∞

MMSEN (β̄) < DMSE .
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Recall that Lemma 1 gives two representations of the total variation distance between

random tensors U, V with densities fU , fV :

dTV (U, V ) =

∫ 1

0
P

(
fU (V )

fV (V )
< x

)
dx =

∫ 1

0
P

(
fU (U)

fV (U)
>

1

x

)
dx.

The result of Lemma 2 comes from setting U = Tk and V = W and using the first

expression above. Using the second expression gives

dTV (Tk,W ) =

∫ 1

0
P

(
AFN (β̄, 1) > − log x

N

)
dx.

Proof. (Theorem 4): We begin by proving statement (i) of Theorem 4. Suppose β̄ ∈
(0, β1,c)× · · · × (0, βk,c). By Fatou’s Lemma,

0 ≤
∫ 1

0

lim inf
N→∞

P

(
AFN (β̄, 1) > − log x

N

)
dx ≤ lim inf

N→∞

∫ 1

0

P

(
AFN (β̄, 1) > − log x

N

)
dx = lim inf

N→∞
dTV (Tk,W ).

Theorem 3 guarantees that

lim
N→∞

dTV (Tk,W ) = 0,

so we must in fact have

lim inf
N→∞

P

(
AFN (β̄, 1) > − log x

N

)
= 0 (3.1)

for all x ∈ [0, 1].

For ε > 0, define BN (ε) = {AFN (β̄, 1) ≤ ε}. By equation (3.1), for all ε > 0 we

have

lim sup
N→∞

P (BN (ε)) = 1.

Write

EAFN (β̄, 1) = EAFN (β̄, 1)1BN (ε) + EAFN (β̄, 1)1BN (ε)c

≤ ε+ EAFN (β̄, 1)1BN (ε)c .
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Applying Hölder’s inequality yields

EAFN (β̄, 1) ≤ ε+
(
EAFN (β̄, 1)2

)1/2 (EI2
BN (ε)c

)1/2

= ε+
(
EAFN (β̄, 1)2

)1/2
P (BN (ε))1/2.

Since vector entries ui(r) all come from bounded sets, the quantity
(
EAFN (β̄, 1)2

)1/2
is

bounded. We may therefore take the lim sup on both sides above and then take ε→ 0

to see that

lim sup
N→∞

EAFN (β̄, 1) ≤ 0.

By Lemma 4 part (i), EAFN (β̄, t) is non-negative, convex, and non-decreasing in t,

so for all t ∈ [0, 1],

lim
N→∞

EAFN (β̄, t) = 0.

Therefore,

lim
N→∞

d

dt
EAFN (β̄, t) = 0.

By Lemma 4 part (ii),

MMSEAN (β̄, t) =
∑

1≤r,r′≤k
βrβr′ER(u(r), u(r′))p − 2

d

dt
EAFN (β̄, t).

Since the derivative is eqal to zero for all t ∈ [0, 1],

lim sup
N→∞

MMSEN (β̄) = lim sup
N→∞

MMSEAN (β̄, 1)

= lim sup
N→∞

1

Np

∑
1≤r,r′≤k

βrβr′ER(u(r), u(r′))p

= lim sup
N→∞

1

Np

∑
1≤r,r′≤k

βrβr′E
∑

1≤i1,...ip≤N
ui1(r) · · ·uip(r)ui1(r′) · · ·uip(r′)

= lim sup
N→∞

1

Np

∑
1≤i1,...,ip≤N

E

(
k∑
r=1

βrui1(r) · · ·uip(r)

)2

= DMSE(β̄).

The last equality is by the strong law of large numbers. This proves statement (i).
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The key to prove statement (ii) is the fact that

lim inf
N→∞

d

dt
EAFN (β̄, 1) > 0.

This, combined with the strong law of large numbers, will show that in the limit

lim supN→∞MMSEAN (β̄, 1) < DMSE.

Suppose that β̄ ∈ (β1,c,∞) × · · · × (βk,c,∞). Define an interpolating Hamiltonian

and free energy by

IHN,s(σ̄) = HN,β̄(σ̄) + s
∑

1≤r,r′≤k
βrβr′NR(σ(r), σ(r′))p

and

IFN (β̄, s) =
1

N
log

∫
exp

(
IHN,β̄(σ̄)

)
µ⊗N (dσ̄),

respectively. This Hamiltonian interpolates between the original Hamiltonian HN,β̄(σ̄)

when t = 0 and the auxiliary Hamiltonian AHN,1(σ̄) when t = 1. Therefore IFN (β̄, 1) =

AFN (β̄, 1) and IFN (β̄, 0) = FN (β̄). Note that IFN (β̄, s) is convex in s, the proof of

which easily follows from an application of Hölder’s inequality.

The derivative d
dtEAFN (β̄, t) was computed in the proof of Lemma 4 using Gaussian

integration by parts, and the derivative d
dsIFN (β̄, s) is straightforward to compute.

Comparing these two derivitavies,

d

dt
EAFN (β̄, 1) =

1

2

d

ds
IFN (β̄, 1) ≥ 1

2

d

ds
EIFN (β̄, s) (3.2)

for all s ∈ [0, 1]. The inequality is by convexity. Since the function d
dsEIFN (β̄, s) is

continuous for s ∈ [0, 1], it achieves its maximum on this interval. Therefore, from this

and equation (3.2) the Lipschitz constants of the functions EIFN (β̄, s) are uniformly

bounded, and therefore the functions are equicontinuous. Thus, by the Arzela-Ascoli

Theorem, there exists a uniformly convergent subsequence EIFNn(β̄, s). Denote the

limit along this subsequence by IF (β̄, s). Along the subsequence we also have

lim
n→∞

d

dt
EAFNn(β̄, 1) = 2 lim

n→∞

d

ds
EIFNn(β̄, 1).
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Since the functions EIFN (β̄, s) are convex in s, the function IF (β̄, s) is also convex.

Since convex functions have at most countably many points of discontinuity, there exists

a point s0 ∈ (0, 1) such that IF (β̄, s0) is differentiable. Also, at this point,

lim
n→∞

d

ds
EIFN (β̄, s0) =

d

ds
IF (β̄, s0). (3.3)

Recall from Lemma 4 (i) that EAFN (β̄, 1) ≥ 0. By Theorem 6, β̄ is not in the high-

temperature regime so

F (β̄) = lim sup
N→∞

EFN (β̄) < 0.

Since IFN (β̄, 1) = AFN (β̄, 1) and IFN (β̄, 0) = FN (β̄), by the above observations we

have that

IF (β̄, 0) = lim
n→∞

EIFNn(β̄, 0) = lim sup
N→∞

EFN (β̄) < 0 ≤ lim inf
N→∞

EAFN (β̄, 1) = IF (β̄, 1).

Thus at s0 we in fact have d
dsIF (β̄, s0) > 0. Combining this with equations (3.2) and

(3.3) gives

lim inf
N→∞

d

dt
EAFN β̄, 1 > 0. (3.4)

Finally, Lemma 4 part (ii) states that

lim sup
N→∞

MMSEN (β̄) = lim sup
N→∞

MMSEAN (β̄, 1).

Applying the law of large numbers to the right-hand side gives

lim sup
N→∞

MMSEN (β̄) = DMSE−2 lim inf
N→∞

d

dt
EAFN (β̄, 1) < DMSE .

The inequality is by equation (3.4). This proves part (ii) of Theorem 4.



Chapter 4

Overlap Concentration: Proofs of

Spin-Glass Results

Theorem 1 relies on using Proposition 2 to bound the fluctuations of the free energy

FN (β) in the high temperature regime R = (0, βc). The bound of Proposition 2 requires

delicate control of the expected value of the Gibbs average of overlaps R(σ1, σ2), and

the present chapter builds the machinery to achieve this control.

Section 4.1 introduces the Parisi formula for the scalar-valued p-spin model, which

gives a formula for the limiting free energy F (β). Computing the Parisi formula re-

quires minimizing a functional over a set of probability measures. In Section 4.5, it is

shown that in the high-temperature regime, the optimal probability measure is a Dirac

measure. Also, it is shown that the auxiliary function Γb(v) is increasing in b, and these

two results are combined to prove Proposition 1.

Section 4.5 presents the proofs of Theorem 5 and Proposition 2. Theorem 5 gives

a bound for the moments E〈R(σ1, σ2)2m)〉β. Section 4.4 presents a cavity argument to

prove this bound. The cavity method for the scalar- and vector-valued p-spin models

holds for the entire high-temperature regime, a stark contrast to the cavity method for

the Sherrington-Kirkpatrick model which only holds in a subset of the high-temperature

regime. In addition to a bound on the even moments, the proof of Theorem 5 relies

on a bound of E〈I(|R(σ1, σ2)| > ε)〉β. The bound is given in section 4.3 using the

Guerra-Talagrand 1-replica symmetry breaking bound.

49
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Finally, Section 4.6 presents the proofs of Theorem 7 and Proposition 3. These

mainly follow the same steps as the proofs of Theorem 5 and Proposition 2, respec-

tively, with the added complication that they require control of the total overlap. In

addition to showing that the moments R(σ1(r), σ2(r)) concentrate at zero, which is

a direct consequence of Theorem 5, it must also be shown that cross-overlap terms

R(σ1(r), σ2(r′)) concentrate at zero.

4.1 Parisi Formula

Define V = {u2 | u ∈ Λ}. For any v ∈ V , denote by Mv the set of all cumulative

distribution functions of probability measures on the interval [0, v]. For α ∈ Mv and

λ ∈ R, define the Parisi functional by

Pβ,v(α, λ) = Φβ,v,α(0, 0, λ)− λv − β2

2

∫ v

0
α(s)ξ′′(s)sds,

where Φβ,v,α(s, x, λ) : [0, v]× R× R is the weak solution to the PDE

∂sΦβ,v,α = −β
2ξ′′

2
(∂xxΦβ,v,α + α(s)(∂xΦβ,v,α)2)

with boundary condition

Φβ,v,α(v, x, λ) = log

∫
exa+λa2

µ(da).

The Parisi formula was first established for mixed even p-spin models with Ising

spins by Talagrand [27]. Panchenko extended this to the generalized SK models with

spins coming from bounded sets [28] and to the mixed even p-spin model with vector

spins [26]. In the present case, the Parisi formula states that

lim
N→∞

1

N
log

∫
eβXN (σ)µ⊗N (dσ) = sup

v∈V
inf

(α,λ)∈Mv×R
Pβ,v(α, λ).

Define

Qβ,v(α, λ) = Pβ,v(α, λ)− β2vp

2
.

The Parisi formula of Proposition 4 is given in terms of the functionals Qβ,α which
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account for the normalizing term added to the Hamiltonian HN (β).

Proposition 4. (Parisi Formula) For any β > 0,

F (β) = lim
N→∞

FN (β) = sup
v∈V

inf
α,λ
Qβ,v(α, λ).

Proof. For any measurable set A ⊂ V define the free energy restricted to A by

FN (β,A) =
1

N
log

∫
σ:R(σ,σ)∈A

eHN,β(σ)µ⊗N (dσ).

For any η > 0 and v ∈ V, define Aη(v) = (v−η, v+η). For σ such that R(σ, σ) ∈ Aη(v),

note that

−β
2

2
(v+η)p+

1

N
log

∫
eβXN (σ)µ⊗N (dσ) ≤ FN (β,Aη(v)) ≤ −β

2

2
(v−η)p+

1

N
log

∫
eβXN (σ)µ⊗N (dσ).

From [28, Theorem 1], it is known that

lim
η↓0

lim
N→∞

1

N

∫
σ:R(σ,σ)∈Aη(v)

eβXN (σ)µ⊗N (dσ) = inf
Mv ,R

Pβ,v(α, λ),

thus

lim
η↓0

lim
N→∞

FN (β,Aη(v)) = inf
Mv×R

Qβ,v(α, λ).

Therefore, for any δ > 0 there exists η(v), N(v) such that forN > N(v) and 0 ≤ η < η(v)

|FN (β,Aη(v))− inf
Mv×R

Qβ,v(α, λ)| < δ. (4.1)

Note that the set of sets {Aη(v) | v ∈ V}, where for each v, the radius η is chosen

so that η < η(v), forms an open cover of V. Since V is bounded and any accumulation

point of V is contained in at least one set Aη(v) by construction, we can pass to a finite

sub-cover {Aη(vj) | 1 ≤ j ≤ n} for V̄, the closure of V. This collection of sets is also a

cover of V.

For each 1 ≤ j ≤ n,

FN (β,Aη(vj)) ≤ FN (β). (4.2)
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Also,

FN (β) ≤ 1

N
log

n∑
j=1

expNFN (β,Aη(vj)) ≤
log n

N
+ max

1≤j≤n
FN (β,Aη(vj)). (4.3)

For N large enough, logn
N < δ. Rearranging equation 4.1 gives

inf
Mvj×R

Q(α, λ)− δ < FN (β,Aη(vj)) < inf
Mvj×R

Q(α, λ) + δ.

Combining with equation (4.2) to get a lower bound and equation (4.3) to get an upper

bound gives

inf
Mvj×R

Q(α, λ)− δ < FN (β) < 2δ + max
1≤j≤n

inf
Mvj×R

Q(α, λ).

Finally, since the left-hand inequality holds for all 1 ≤ j ≤ n, we may take the maximum

over j to get

max
1≤j≤n

inf
Mvj×R

Q(α, λ)− δ ≤ lim inf
N→∞

FN (β) ≤ lim sup
N→∞

FN (β) ≤ 2δ + max
1≤j≤n

inf
Mvj×R

Q(α, λ).

Since infMvj×RQ(α, λ) is continuous in v, taking δ → 0 gives the result.

4.2 Structure of R: Proof of Proposition 1

This section presents the proof of Proposition 1, a key result that states that the high-

temperature regime of the scalar-valued p-spin model takes the form of an interval,

R = [0, βc). Two technical lemmas, presented in Subsection 4.2.1, are needed. The first

lemma uses Itô’s formula to compute the differential of γβ(s) to show that this process

is a sub-martingale. It will follow that Γb(v) is increasing in b. The second lemma

computes the optimizers of the Parisi formula when β ∈ R. In Subsection 4.2.2 these

results are combined to prove Proposition 1.
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4.2.1 Two Technical Lemmas

Recall that

γβ(s) = E

[(∫
aZ(a, bξ′(s))µ(da)

)2∫
Z(a, bξ′(s))µ(da)

]
,

where Z(a, t) = eaBt−a
2t/2 is a geometric Brownian motion and ξ(s) = sp/2. Recall also

that the auxiliary function for computing βc is Γβ(v) =
∫ v

0 ξ
′′(s)(γβ(s)− s)ds. Lemma

5 shows that γβ(s) is strictly increasing in β and it follows directly that Γβ(v) is also

strictly increasing in β.

Lemma 5. If 0 < β < β′ then γβ(s) < γβ′(s) for all s > 0.

Proof. Note that Z(a, 0) = 1. Thus γβ(0) = E
(∫
aµ(da)

)2
= 0 since we assume µ is

centered. For j = 0, 1, 2, 3, set

gj(t, x) =

∫
ajeax−

a2t
2 µ(da).

Set Xt = g1(t, Bt)
2 and Yt = g0(t, Bt)

−1. Setting t = βξ′(s) gives γβ(s) = EXtYt.

Using Itô’s formula to compute dXt gives

dXt =

(
2g1∂tg1 +

1

2

∂

∂Bt
(2g1∂Btg1)

)
dt+ 2g1∂xg1dBt

=
(
2g1∂tg1 + g1∂xxg1 + (∂xg1)2

)
dt+ 2g1∂xg1dBt

= −g1g3dt+ 2g1g2dBt + g1g3dt+ g2
2dt

= g2
2dt+ 2g1g2dBt.
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Also,

dYt =

(
−∂tg0

g2
0

− 1

2

d

dx

∂g0

g2
0

)
dt− ∂xg0

g2
0

dBt

=

(
−∂tg0

g2
0

− 1

2

(
∂xxg0

g2
0

− 2
(∂xg0)2

g3
0

))
dt− ∂xg0

g2
0

dBt

=
1

2

g2

g2
0

dt− 1

2

g2

g2
0

+
g2

1

g3
0

dt− g1

g2
0

dBt

=
g2

1

g3
0

dt− g1

g2
0

dBt.

Using the product rule for Itô processes, d(XtYt) = XtdYt +YtdXt + d〈Xt, Yt〉, gives

d(XtYt) = g2
1

(
g2

1

g3
0

dt− g1

g2
0

dBt

)
+ g−1

0

(
g2

2dt+ 2g1g2dBt
)
− 2g2

1g2

g2
0

dt

=

(
g4

1

g3
0

+
g2

2

g0
− 2g2

1g2

g2
0

)
dt+

(
−g1

g2
0

+
2g1g2

g0

)
dBt

= g0

(
g2

1

g2
0

− g2

g0

)2

dt+

(
−g1

g2
0

+
2g1g2

g0

)
dBt.

Since the drift term is positive, the process XtYt is a sub-martingale, meaning EXtYt ≤
EXt′Yt′ for any 0 ≤ t < t′.

If equality holds for some t < t′, then

0 = EXt′Yt′ − EXtYt =

∫ t′

t
E

(
g0

(
g2

1

g2
0

− g2

g0

)2
)
ds.

It follows that we must have

0 =
g2

1

g2
0

− g2

g0
,

or equivalently ∫ aeaBs−a2s
2∫

eaBs−
a2s
2

2

=

∫
a2eaBs−

a2s
2∫

eaBs−
a2s
2

for all t ≤ s ≤ t′. Interpreting the above as a Gibbs average, we have 〈a〉2 = 〈a2〉. By

Jensen’s inequality, 〈a〉2 ≤ 〈a2〉, with equality if and only if there is exactly one value

a ∈ Λ. This gives a contradiction since we assume that there is more than one value in
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the set Λ. Therefore the equality is strict. Setting t = βξ′(s) shows that γβ(s) is strictly

increasing in β.

The next lemma gives the optimizers of the Parisi formula when F (β) = 0. Recall

that v∗ =
∫
a2µ(da). Define αv ∈Mv by αv(s) = 1 for s ∈ [0, v]. Define

λ∗ = −β
2pvp−1
∗

2
= −β

2ξ′(v∗)

2
.

Lemma 6. The following two statements hold:

(i) If v 6= v∗ then infλQβ,v(αv, λ) < 0

(ii) If v = v∗ then infλQβ,v(αv, λ) = 0 where the minimizer is given by λ = λ∗.

If for some β > 0, the supremum over v ∈ V in the Parisi formula occurs at v 6= v∗,

Lemma 6 (i) states that

F (β) = inf
(α,λ)∈Mv×R

Qβ,v(α, λ) ≤ inf
(αv ,λ)∈Mv×R

Qβ,v(α, λ) < 0,

and therefore β 6∈ R. Thus if β ∈ R, then the supremum must occur at v∗ and in

this case Lemma 6 (ii) says that it is enough to minimizer over all CDFs αv rather

than the all α ∈ Mv. Since αv(s) = 1 for all s ∈ [0, v], this means that the Parisi

measure is a Dirac measure at zero. Since the Parisi measure gives the limiting overlap

distribution, Lemma 6 implies that the scalar-valued p-spin model follows our intuition

that in the high-temperature regime, the overlaps concentrate at a single value; in this

case the overlaps R(σ1, σ2) concentrate at zero. This is the first step toward proving

the concentration results formally stated in Theorem 5 and 7.

Proof. Take z ∼ N (0, 1). With αv, the Parisi PDE Φβ,α can be solved using the Cole-

Hopf transform (see Appendix A.3) giving the Parisi functional

Pβ,v(αv, λ) = logE
∫
eβz
√
ξ′(v)a+λa2

µ(da)− λv − β2

2

∫ v

0
ξ′′(s)sds

= log

∫
e
β2pvp−1

2
a2+λa2

µ(da)− λv − β2(p− 1)

2
vp.
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Therefore,

inf
λ
Qβ,v(αv, λ) = inf

(
log

∫
e
β2pvp−1

2
a2+λa2

µ(da)− λv − β2(p− 1)

2
vp − β2

2
vp
)

= inf

(
log

∫
e

(
β2pvp−1

2
+λ

)
a2

µ(da)− v
(
β2pvp−1

2
+ λ

))
.

Set λ′ = β2pvp−1

2 + λ so that the above becomes

inf
λ
Qβ,v(αv, λ) = inf

λ′

(
log

∫
eλ
′a2
µ(da)− λ′v

)
.

Define F (v, λ) = log
∫
eλa

2
µ(da)− λv. Using Hölder’s inequality gives

F (v, tλ1 + (1− t)λ2) = log

∫
etλ1a2

e(1−t)λ2a2
µ(da)− tλ1v − (1− t)λ2v

≤ log

((∫
eλ1a2

µ(da)

)1/t(∫
eλ2a2

µ(da)

)1/1−t
)
− tλ1v − (1− t)λ2v

= t

(
log

∫
eλ1a2

µ(da)− λ1v

)
+ (1− t)

(
log

∫
eλ2a2

µ(da)− λ2v

)
= tF (v, λ1) + (1− t)F (v, λ2).

Thus F (v, λ) is convex in the argument λ. The derivative of F with respect to λ is

∂λF (v, λ) =

∫
a2eλa

2
µ(da)∫

eλa2µ(da)
− v.

Plugging in v = v∗,

∂λF (v∗, λ) =

∫
a2eλa

2
µ(da)∫

eλa2µ(da)
−
∫
a2µ(da).

To find the minimizer, note that

∂λF (v∗, 0) =

∫
a2µ(da)−

∫
a2µ(da) = 0,

so F (v∗, λ
′) is minimized at λ′ = 0 which is equivalent to λ = −β2pvp−1

∗
2 . This completes
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the proof of part (ii).

To prove part (i), notice that F (v, 0) = log
∫

1µ(da) = log 1 = 0. Also, if v 6= v∗,

then ∂λF (v, 0) 6= 0, and λ = 0 is not a minimizer. Therefore we must have

inf
λ
F (v, λ) < 0

for v 6= v∗.

4.2.2 Proof of Proposition 1

Recall that Proposition 1 states that R = [0, βc) and that β ∈ R if and only if

supv∈[0,v∗] Γβ(v) ≤ 0.

Proof. First suppose β ∈ R. Then, by definition, F (β) = 0. By Proposition 4,

0 = F (β) = sup
v

inf
α,λ
Qβ,v(α, λ).

By Lemma 6, if v 6= v∗ then

inf
α,λ
Qβ,v(α, λ) ≤ inf

λ
Qβ,v(αv, λ) < 0,

so it must be the case that

F (β) = inf
α,λ
Qβ,v∗(α, λ).

Again from Lemma 6, (αv∗ , λ∗) is a minimizer of the right-hand side above above, so

F (β) = Qβ,v∗(αv∗ , λ∗).

Recall that

Qβ,v∗(α, λ∗) = Φβ,v∗,α(0, 0, λ∗)−
β2

2

∫ v∗

0
α(s)ξ′′(s)ds+

β2(p− 1)vp∗
2

.

Since the boundary condition Φβ,v∗,α(v, x, λ) is convex, the map (α, λ) ∈ Mv∗ × R 7→
Qβ,v∗(α, λ) is convex. Set αθ = (1− θ)αv∗ + θα and λθ = (1− θ)λ∗ + θλ for θ ∈ [0, 1].

By convexity, since (αv∗ , λ∗) is a minimizer of Qβ,v∗ , the derivative of Qβ,v∗(αθ, λθ) with
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respect to θ as θ → 0 from the right must be non-negative. Computing this derivative

yields

d

dθ
Qβ,v∗(αθ, λθ)

∣∣∣∣
θ=0

=
β2

2

∫ v∗

0
ξ′′(s)(α(s)− αv∗(s))(γβ(s)− s)ds+

(∫
a2µ(da)− v∗

)
(λ− λ∗)

=
β2

2

∫ v∗

0
ξ′′(s)(α(s)− αv∗(s))(γβ(s)− s)ds.

Using the fact that αv∗ ≡ 1 on [0, αv∗ ], write∫ v∗

0
ξ′′(s)(α(s)− αv∗(s))(γβ(s)− s)ds =

∫ v∗

0

∫ s

0
ξ′′(s)(γβ(s)− s)α(dv)ds−

∫ v∗

0
ξ′′(s)(γβ(s)− s)ds.

=

∫ v∗

0

∫ v∗

v
ξ′′(s)(γβ(s)− s)dsα(dv)−

∫ v∗

0
ξ′′(s)(γβ(s)− s)ds

=

∫ v∗

v
ξ′′(s)(γβ(s)− s)ds−

∫ v∗

0
ξ′′(s)(γβ(s)− s)ds

= −
∫ v

0
ξ′′(s)(γβ(s)− s)ds

= −Γβ(v).

Thus the optimality condition d
dθQβ,v∗(αθ, λθ)

∣∣
θ=0
≥ 0 translates to Γβ(v) ≤ 0 for all

v ∈ [0, v∗), or equivalently, supv∈(0,v∗] Γβ(v) ≤ 0. The reverse direction is identical.

To show that R is an interval, recall from Lemma 5 that Γβ(v) is increasing in β.

By this and the preceding argument, if β ∈ R then β′ ∈ R for all 0 < β′ ≤ β since

Γβ′(v) < Γβ(v) for all v ∈ [0, v∗] which implies that

sup
v∈[0,v∗]

Γβ′(v) < sup
v∈[0,v∗]

Γβ′(v) ≤ 0.

Since βc = supR, we must have supv∈[0,v∗] Γβ(v) > 0 for all β > βc. Suppose that

supv∈[0,v∗] Γβc(v) < 0. Since Γβ(v) is continuous in β, it is therefore possible to find

β′ > βc such that supv∈[0,v∗] Γβ′(v) ≤ 0. Thus β′ ∈ R, which contradicts the maximality

of βc. Therefore, R = (0, βc] and βc is the largest β such that supv∈[0,v∗] Γβ(v) = 0.
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4.3 Guerra Talagrand 1-RSB Bound and Overlap Concen-

tration

Theorem 5 states that for the vector-valued spin glass, the overlaps R(σ1(r), σ2(r))

concentrate at zero for spins σ1, σ2 sampled from the Gibbs measure associated to the

vector-valued Hamiltonian. The first step towards this result is the Guerra-Talagrand

1-replica symmetry breaking bound which controls the free energy of two coupled copies

of the Hamiltonian HN,β(σ).

Set M2(R) as the set of all real-valued 2× 2 matrices with the metric

‖V − V ′‖max = max
1≤r,r′≤2

|Vr,r′ − V ′r,r′ |.

The inner product on this space is

〈V, V ′〉 =
∑
i,j

VijV
′
ij .

Given two spin configurations σ1, σ2 define their overlap matrix by

R(σ1, σ2) =

[
R(σ1, σ1) R(σ1, σ2)

R(σ2, σ1) R(σ2, σ2)

]
.

Given any set A ⊆ M2(R) such that all elements of A are positive semi-definite, write

‘
∫
A’ to mean the integral over the set {(σ1, σ2) : R(σ1, σ2) ∈ A}. For any such A, define

the coupled free energy restricted to the set A by

CFN (β,A) =
1

N
log

∫
A
eHN,β(σ1)+HN,β(σ2)µ⊗N (dσ1)µ⊗N (dσ2). (4.4)

Recall that V = {v2 | v ∈ Λ} and Mv is the set of all cumulative distribution

functions on the interval [0, v]. Fix v ∈ V and fix v0 ∈ R such that v0 > 0 and

V :=

[
v v0

v0 v

]

is positive semi-definite. This is satisfied when 0 < v0 ≤ v. Define a function T : [0, v]→
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M2(R) by

T (s) =



[
1 1

1 1

]
s ∈ [0, v0)[

1 0

0 1

]
s ∈ [v0, v]

.

For any α ∈ Mv let Ψβ,V,α(s, x, λ) be the weak solution to the following PDE for

(s, x, λ) ∈ [0, v)× R2 ×M2(R):

∂sΨβ,V,α = −β
2ξ′′

2

(
〈∇2Ψβ,V,α, T 〉+ α〈T∇Ψ,∇Ψ〉

)
with boundary condition

Ψβ,V,α(v, x, λ) = log

∫
e〈a,x〉+〈λa,a〉µ× µ(da).

Here, the gradient refers to the derivatives with respect to x = (x1, x2) only. The

existence of the solution Ψβ,V,α is shown in [29]. Define a Parisi functional

Pβ,V (α, λ) = Ψβ,V,α(0, 0, λ)− 〈λ, V 〉 − β2

(∫ v

0
ξ′′(s)sα(s)ds+

∫ v0

0
ξ′′(s)sα(s)ds

)
.

The function T (s) together with the CDF α play the role of the functional order pa-

rameter represting possible distributions for each entry of the overlap matrix R(σ1, σ2).

For η > 0 define

Aη(V ) = {V ′ ∈M2(R) | ‖V ′ − V ‖max < η}.

The Guerra-Talagrand bound of [30] states that if p is even, then for any (α, λ) ∈
Mv ×M2(R),

lim
η↓0

lim sup
N→∞

1

N
log

∫
Aη(V )

eβXN (σ1)+βXN (σ2)µ⊗N (dσ1)µ⊗N (dσ2) ≤ Pβ,V (α, λ).

Set Qβ,V (α, λ) = Pβ,V (α, λ) − β2vp. Thus when p is even, the coupled free energy of
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equation (4.4) restricted to Aη(V ) is bounded in a similar way:

CFN (β,Aη(V )) =
1

N
log

∫
Aη(V )

eHN,β(σ1)+HN,β(σ2)µ⊗N (dσ1)µ⊗N (dσ2)

=
1

N
log

∫
Aη(V )

eβXN (σ1)+βXN (σ2)−β
2N
2

(R(σ1,σ1)p+R(σ2,σ2)p)µ⊗N (dσ1)µ⊗N (dσ2)

≤ 1

N
log

∫
Aη(V )

eβXN (σ1)+βXN (σ2)−β2N(v−η)pµ⊗N (dσ1)µ⊗N (dσ2)

=
1

N
log

∫
Aη(V )

eβXN (σ1)+βXN (σ2)µ⊗N (dσ1)µ⊗N (dσ2)− β2N(v − η)p.

Thus

lim
η↓0

lim sup
N→∞

ECFN (β,Aη(V )) ≤ Qβ,V (α, λ). (4.5)

Whether the same bound holds for odd p for general choices of α, λ is still an

open question. Chen [9] showed that specific choices of α, λ give the Guerra-Talagrand

1-Replica Symmetry Breaking (1-RSB) Bound for even and odd p. Specifically, for

0 < v0 < v, set Mv,v0 to be the set of all α ∈ Mv such that α ≡ c on [0, v0) for some

constant c ≤ 1 and α ≡ 1 on [v0, v]. This type of measure is known as 1-RSB. A replica

symmetric measure is a Dirac measure. If the Parisi measure is replica symmetric, all

overlaps concentrate at a single value. If the Parisi measure is 1-RSB, the overlaps

concentrate at two values - there is one level of replica symmetry breaking. Proposition

5 states that equation 4.5 holds for 1-RSB measures. The proof of Proposition 5 in the

present setting is nearly identical to the proof of [9, Proposition 2], and is not reproduced

here.

Proposition 5. For p ≥ 2, V ∈ V, v0 ∈ [0, v], λ ∈M2(R) and α ∈Mv,v0 ,

lim
η↓0

lim sup
N→∞

ECFN (β,Aη(v)) ≤ Qβ,V (α, λ).

Proposition 5 is important because if it can be shown that Qβ,V (α, λ) < 0, then the

coupled free energy CFN (β,Aη(V )) exhibits a free energy cost: it is strictly negative.

Then, applying a covering argument similar to that used in the proof of Proposition

4 shows that the overlaps R(σ1, σ2) are concentrated at zero, as formally stated in
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Proposition 6 below.

Proposition 6. Assume that 0 < β < βc and that s0 ∈ (0, 1). For any ε > 0, there

exists a constant K > 0, depending only on β, s0, and ε such that if σ1, σ2 are i.i.d.

samples from GN,sβ then

E〈I(|R(σ1, σ2)| ≥ ε)〉sβ ≤ Ke−N/K (4.6)

for all N ≥ 1 and all s ∈ [s0, 1].

Proof. Let 0 < ε < v∗ be fixed. Assume that v0 ∈ [ε, v∗]. Fix a diagonal matrix

λ ∈M2(R) with diagonal entries λ1,1 = λ2,2 = −β2ξ′(v∗)/2. Let α ∈Mv∗ satisfy α ≡ 0

on [0, v0) and α ≡ 1 on [v0, v∗]. Define

αθ(s) =

{
1−θ

2 s ∈ [0, v0)

1 s ∈ [v0, v∗]

for θ ∈ [0, 1].

Using the Cole-Hopf transformation, one may compute that

Qβ,V (αθ, λ) = 2

(
1

1− θ
logEg0(β2ξ′(v0), Bβξ′(v0)1/2)1−θ +

β2

2
ξ′(v∗)v∗

)
− β2

(
(1− θ)

∫ v0

0
ξ′′(s)sds+

∫ v∗

v0

ξ′′(s)sds

)
− β2vp∗ ,

where g0(t, x) =
∫
eax−a

2t/2µ(da) and Bt is a standard Brownian motion. Also,

∂θQβ,V (αθ, λ)|θ=0 = β2Γβ(v0).

By the monotonicity of γβ(v0) in Lemma 5,

∂θQβ,V (αθ, λ)|θ=0 < β2
cΓβc(v0) ≤ 0.

Thus Qβ,V (αθ, λ) is decreasing at θ = 0. Since Qβ,v(αθ, λ) is continuous in (v0, θ), there

exists δ > 0 such that

sup
v0∈[ε,v∗]

inf
θ∈[0,1]

Qβ,V (αθ, λ) ≤ −δ.
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Combining this bound with Proposition 5, we see that

lim
η↓0

lim sup
N→∞

ECFN (β,Aη(V )) < −δ. (4.7)

Since we assume that β ∈ R, we have that F (β) = 0, so the above is

lim
η↓0

lim sup
N→∞

ECFN (β,Aη(V )) < F (β)− δ.

For each V , there exists N(v) and η(V ) such that for all N ≥ N(V ) and η < η(V )

ECFN (β,Aη(V )) < F (β)− δ.

Then By Gaussian concentration of measure (see Appendix A.2), there exists K > 0

such that

P

(
|CFN (β,Aη(V ))− ECFN (β,Aη(V ))| ≥ δ

2

)
≤ Ke−N/K .

Thus with probability at least 1−Ke−N/K ,

CFN (β,Aη(V )) ≤ F (β)− δ

2
. (4.8)

For each v0 ∈ [ε, v∗], choose 0 < η < ηV . Let

Aε =

{
V =

[
v1 v0

v0 v1

]
| ε ≤ v0 ≤ v∗, |v1 − v∗| ≤ ε, V � 0

}
.

For small enough ε the set of sets Aη(V ) cover Aε. Thus, as in the proof of Proposition

5, we may choose a finite subcover Aη(Vj) for 1 ≤ j ≤ n. Following the arguments of

Proposition 5, for each 1 ≤ j ≤ n

CFN (β,Aε) ≤
1

N
log

n∑
j=1

expNFN (β,Aη(Vj)) ≤
log n

N
+ max

1≤j≤n
CFN (β,Aη(Vj)) <

log n

N
+F (β)−δ

2
.
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For N large enough, logn/N < δ/4, and

CFN (β,Aε) < F (β)− δ

4
.

Rearranging this expression gives

〈I(R ∈ Aε)〉β ≤ e
−Nδ/4.

with probability at least 1−Ke−N/K . Thus there exists K ′ > 0 such that

E 〈I(R ∈ Aε)〉β ≤ K
′e−N/K

′
.

When p is even, HN,β(σ) = HN,β(−σ), so for even p,

E〈I(|R(σ1, σ2)| ≤ ε, |R(σ1, σ1)| ∈ Aε(v∗), |R(σ2, σ2)| ∈ Aε(v∗))〉β ≤ 2K ′e−N/K
′
. (4.9)

When p is odd, use Jensen’s inequality on the expected value to see that

ECFN (β,Aη(V )) ≤ 1

N
log

∫
σ|R(σ)∈Aη(V )

eβ
2R(σ1,σ2)pµ⊗N (dσ1, dσ2) < β2(v0 + η)p < 0

for any v0 ≤ −ε and 0 < η < ε/2. Again using a covering argument and Gaussian

concentration of measure gives the existence of a constant K ′′ > 0 such that for odd p

E〈I(R(σ1, σ2) ≤ −ε,R(σ1, σ1) ∈ Aε(v∗), R(σ2, σ2) ∈ Aε(v∗))〉β ≤ K ′′e−N/K
′′
. (4.10)

Combining equations 4.9, and 4.10, there exists a constant L > 0 such that

E〈I(|R(σ1, σ2)| ≥ ε, |R(σ1, σ1)| ∈ Aε(v∗), |R(σ2, σ2)| ∈ Aε(v∗))〉β ≤ Le−N/L. (4.11)

Also, from Proposition 7 stated in Section 4.6, which controls the total overlap for the

vector-valued Hamiltonian, there exists a constant L′ > 0 such that

E〈I(R(σ1, σ1) 6∈ Aε(v))〉β ≤ L′e−N/L
′
. (4.12)
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Combining equations 4.11 and 4.12,

E〈I(|R(σ1, σ2)| ≥ ε)〉β ≤ Le−N/L + 2L′e−N/L
′
.

Finally, we show that (4.6) holds for all s ∈ [s0, 1]. Denote the coupled free energy

of two pure p-spin models by

CFXN (β,Aη(V )) =
1

N
log

∫
Aη(V )

eβXN (σ1)+βXN (σ2)µ⊗N (dσ1)µ⊗N (dσ2).

Since ECFXN (β,Aη(V )) is convex in the temperature parameter β, the convergence of

lim sup
N→∞

ECFXN (β,Aη(V ))

is uniform.

For σ1, σ2 ∈ Aη(V ), we know that both |R(σ1, σ1)−v∗| < η and |R(σ2, σ2)−v∗| < η.

This restriction on the overlaps gives the upper and lower bounds

−β2(v∗+η)+lim sup
N→∞

ECFXN (β,Aη(V )) ≤ lim sup
N→∞

ECFN (β,Aη(V )) ≤ lim sup
N→∞

ECFXN (β,Aη(V ))−β2(v∗−η).

Thus the convergence of ECFN (β,Aη(V )) is uniform. For every v0 ∈ [ε, v], there exists

η(v0) and N(v0) such that for all η < η(v0) and N ≥ N(v0),

ECFN (β,Aη(V )) < −δ
2
.

We may pass to a finite sub-cover of [ε, v] and consider only the sets Aη(Vj) for 1 ≤ j ≤ n,

where the matrix Vj has off-diagonal entries vj ∈ [ε, v] and diagonal entries v.

Similar to the methods in the proof of Proposition 4, for any 1 ≤ j ≤ n

CFN (β,Aη(Vj)) ≤ CFN

β, n⋃
j=1

Aη(Vj)

 ≤ 1

N

n∑
j=1

expNCFN (β,Aη(Vj)) ≤
log n

N
+ max

1≤j≤n
CFN (β,Aη(Vj)).

We also notice that the error probability for the Gaussian concentration of measure

inequality can be uniformly controlled in temperature. Furthermore, the auxiliary func-

tion Γβ is continuous. Combining these facts, we conclude that all coupled free energies

for temperatures sβ exhibit a uniform energy cost. That is, there exists a δ > 0 such
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that a bound of the form (4.7) holds for all sβ. This in turn implies that (4.6) holds

and completes our proof.

4.4 Cavity Argument

The cavity method is used to control the even overlap moments. At its heart, the cavity

method is induction on N , the number of spins in the system. The method creates an

interpolating path between a system with N − 1 spins and a system of N spins and

controls how much the overlap moments change along the path. The goal is to show

that this change is not ‘too large’ and thus control the overlap moments of the N spin

system based on bounds known for the N − 1 spin system.

The cavity method here depends on a good interpolating Hamiltonian with HN,β̄(σ̄)

at one end of the interpolating path and a well-behaved Hamiltonian at the other. While

the previous sections focused exclusively on the scalar-valued model, most proofs in this

section are presented for the vector-valued model only, but the argument is extended to

the scalar-valued model by setting k = 1.

To define the interpolating Hamiltonian, for any A ⊆ {1, 2, . . . , p}, define IA =

{(i1, . . . , ip) ∈ {1, . . . , N}p} where is = N exactly when s ∈ A. Define

XA
N (σ(r)) =

1

N (p−1)/2

∑
(i1,...,ip)∈IA

Yi1,...,ipσi1(r) · · ·σip(r).

For any sets A,A′ with A 6= A′,

EXA
N (σ(r))XA

N (σ(r′)) =
1

N j−1
(R−,r,r

′

1,2 )p−|A|(εr1ε
r
2)|A|

and

EXA
N (σ(r))XA′

N (σ(r′)) = 0.

Here, for more compact notation define,

Rr,r1,2 = R(σ1(r), σ2(r)) =
1

N

N∑
i=1

σ1
i (r)σ

2
i (r
′)
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and

R−,r,r1,2 =
1

N

N−1∑
i=1

σ1
i (r)σ

2
i (r
′).

The purpose of the interpolating Hamiltonian is to decouple the N -th spin σ̄N =

(σN (1), . . . , σN (k)). Notice that A = ∅ is the only set that does not depend on σ̄N . The

processes X∅
N (σ(r)) make up the ‘well-behaved’ end of the path. For t ∈ [0, 1] define

the interpolating Hamiltonian by

HN,β̄,t(σ̄) =

k∑
r=1

βr

X∅
N (σ(r)) +

√
t

p∑
j=1

∑
A:|A|=j

XA
N (σ(r))


−

∑
1≤r,r′≤k

βrβr′

(R−,r,r
′
)p +

t

N j−1

p∑
j=1

∑
A:|A|=j

(R−,r,r
′
)p−j(εrεr

′
)j

 .

One may check that when t = 1, the interpolating Hamiltonian is equal to the orig-

inal Hamiltonian, HN,β̄,1(σ̄) = HN,β̄. Also, when t = 0, the interpolating Hamiltonian

is equal to HN−1 at the temperature vector with entries

βr
(N − 1)(p−1)/2

N (p−1)/2
.

Let νβ̄,t(f) = E〈f〉β̄,t denote the expected Gibbs average for the Gibbs measure associ-

ated to HN,β̄,t. When t = 1, we write νβ̄,1(f) = νβ̄(f).

4.4.1 Technical Lemmas

This section presents several technical lemmas necessary to the cavity method. Lemmas

7 and 8 together bound νβ̄,t(·) by νβ̄(t). Lemma 9 shows that Rr,r
′

1,2 is close to R−,r,r
′

1,2 :

overlaps at either end of the interpolating path are close. Finally, Lemma 10 gives a

bound for the moments of R−,r,r
′

1,2 based on bounds for the moments of Rr,r1,2.

Define εr` = σ`N (r).

Lemma 7. If f is a real-valued, bounded function of σ̄1, . . . , σ̄n, then

ν ′β̄,t(f) =

k∑
r,r′=1

βrβr′

p∑
j=1

(
p

j

)
1

N j

 ∑
1≤`<`′≤n

νt,β̄(f(R−,r,r
′

`,`′ )p−j(εr`ε
r′
`′ )

j

 .
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Proof. Computing the derivative is straightforward but tedious. First, taking the deriva-

tive in t yields

ν ′β̄,t(f) =
k∑
r=1

p∑
j=1

∑
A:|A|=j

(
βr√
t
E

〈
f

n∑
`=1

XA
N (σ`(r))

〉
− β2

2N j−1
E

〈
f

n∑
`=1

(R−,r,r`,` )p−j(εr`ε
r
`)
j

〉

− n βr

2
√
t
E
〈
fXA

N (σn+1(r))
〉
− β2

2N j−1
E
〈
f(R−

′r,r
n+1,n+1)p−j(εn+1εn+1)j

〉)
=

k∑
r=1

p∑
j=1

∑
A:|A|=j

(
βr√
t
E

〈
f

n∑
`=1

XA
N (σ`(r))

〉
− n βr

2
√
t
E
〈
fXA

N (σn+1(r))
〉)

.

The second and fourth terms cancel by symmetry between sites.

By Gaussian integration by parts, the above becomes

∑
1≤r,r′≤k

βrβr′

2

p∑
j=1

∑
A:|A|=j

 ∑
1≤`,`′≤n

E〈fEXA
N (σ(r))XA

N (σ(R′))〉 − n
∑
`≤n

E〈fEXA
N (σ`(r))XA

N (σn+1(r′))〉

−n
∑
`≤n+1

E〈fEXA
N (σn+1(σ(r))XA

N (σ`(r′))〉+ n(n+ 1)E〈fEXA
N (σn+1(r))XA

N (σn+2(r))

 .

Taking the expectation inside the Gibbs average and combining like terms using sym-

metry between sites gives the result.

Lemma 8. For f a non-negative and bounded function of σ̄1, . . . , σ̄r

νβ̄,t(f) ≤ exp

n22p+1M2p
∑

1≤r,r′≤k
βrβr′

 νβ̄(f).

Proof. For any pair 1 ≤ `, `′ ≤ n + 2 and any pair 1 ≤ r, r′ ≤ k, the overlap terms in
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the expression for ν ′
β̄,t

(f) can be bounded by a constant as follows:

|(R−,r,r
′

`,`′ )p−j(εr`ε
r′
`′ )

j | ≤ 1

Np−j

∑
1≤i1,...,ip−j≤N−1

|σ`i1(r)σ`
′
i1(r′) · · ·σ`ip−j (r)σ

`′
ip−j (r

′)||εr`εr
′
`′ |j

≤ 1

Np−j

∑
1≤i1,...,ip−j≤N−1

M2p

=
(N − 1)p−jM2p

Np−j

≤M2p. (4.13)

Using this to bound |ν ′
β̄,t

(f)| gives

|ν ′β̄,t(f)| ≤M2p
∑

1≤r,r′≤k
βrβr′

p∑
j=1

(
p

j

)
2n2νβ̄,t(f)

≤M2p
∑

1≤r,r′≤k
βrβr′2

p+1n2νβ̄,t(f).

This first inequality uses the bound in equation (4.13), the fact that 1/N j−1 ≤ 1 and

the fact that ν ′
β̄,t

(f) is composed of 2n2 terms, and the second inequality uses the fact

that
∑p

j=1

(
p
j

)
= 2p − 1 ≤ 2p.

In particular

−ν ′β̄,t(f) ≤M2p2p+1n2νβ̄,t(f)
∑

1≤r,r′≤k
βrβr′ .

Since f is non-negative, νβ̄,t(f) is non-negative for every t ∈ [0, 1], thus dividing the

above by νβ̄,t(f) does not change the direction of the inequality. Integrating the result

gives

−
∫ t

0

ν ′
β̄,t

(f)

νβ̄,f (f)
dt ≤

∫ 1

t
n22p+1M2p

∑
1≤r,r′≤k

βrβr′dt

log

(
νβ̄,t(f)

νβ̄,1(f)

)
≤ n22p+1M2p

∑
1≤r,r′≤k

βrβr′ .

Exponentiating both sides and multiplying by νβ̄(f) ≥ 0 gives the result.
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Lemma 9. For any m ≥ 1 and any pair 1 ≤ r, r′ ≤ k,

|(Rr,r
′

1,2 )m+1 − (R−,r,r
′

1,2 )m+1| ≤ M2m

N

(
|Rr,r

′

1,2 |
m + |R−,r,r

′

1,2 |m
)
.

Proof. For any x, y ∈ R,

|xm+1 − ym+1| =

∣∣∣∣∣(x− y)

m∑
`=0

x`ym−`

∣∣∣∣∣ ≤ |x− y|
m∑
`=0

|x|`|y|m−`.

Without loss of generality, assume that |x| ≤ |y|. Then

|x−y|
m∑
`=0

|x|`|y|m−` ≤ |x−y|
m∑
`=0

|y|m ≤ |x−y|
m∑
`=0

(|x|m+ |y|m) = m|x−y|(|x|m+ |y|m).

Using this inequality gives

|(Rr,r
′

1,2 )m+1 − (R−,r,r
′

1,2 )m+1| ≤ m|Rr,r
′

1,2 −R
−,r,r′
1,2 |

(
|Rr,r

′

1,2 |
m + |R−,r,r

′

1,2 |m
)

=
m

N

∣∣∣∣∣
N∑
i=1

σ1
i (r)σ

2
i (r
′)−

N−1∑
i=1

σ1
i (r)σ

2
i (r
′)

∣∣∣∣∣ (|Rr,r′1,2 |
m + |R−,r,r

′

1,2 |m
)

=
m

N
|σ1
N (r)σ2

N (r′)|
(
|Rr,r

′

1,2 |
m + |R−,r,r

′

1,2 |m
)

≤ mM2

N

(
|Rr,r

′

1,2 |
m + |R−,r,r

′

1,2 |m
)
.

Lemma 10. Assume that there exists some K ≥ 1 such that

νβ̄((Rr,r
′

1,2 )2j) ≤ K

N j

for any 0 ≤ j ≤ m. Then

νβ̄((R−,r,r
′

1,2 )2m) ≤ 22mM4mK

Nm
.

Proof. Write

R−r,r
′

1,2 = Rr,r
′

1,2 −
1

N
εr1ε

r′
2 .
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Using the binomial theorem to expand (R−,r,r
′

1,2 )m gives

νβ̄

(
(R−,r,r

′

1,2 )2m
)
≤

2m∑
j=0

(
2m

j

)
1

N2m−j νβ̄

(
|Rr,r

′

1,2 |
j |εr1εr2|2m−j

)

≤
2m∑
j=0

(
2m

j

)(
M2

N

)2m−j
νβ̄(|Rr,r

′

1,2 |
j). (4.14)

For any 0 ≤ j ≤ 2m, choose j1, j2 such that 0 ≤ j1, j2 ≤ m and j1 + j2 = j. Then, by

the Cauchy-Schwarz inequality,

νβ̄(|Rr,r1,2|
j) = νβ̄(|Rr,r1,2|

j1 |Rr,r1,2|
j2) ≤ νβ̄(|Rr,r1,2|

2j1 |)1/2νβ̄(|Rr,r1,2|
2j2 |)1/2 ≤ K

N j1/2+j2/2
=

K

N j/2
.

Substituting this in 4.14 gives the bound

νβ̄

(
(R−,r,r

′

1,2 )2m
)
≤

2m∑
j=0

(
2m

j

)(
M2

N

)2m−j
K

N j/2

= K

(
M2

N
+

1√
N

)2m

≤ K
(
M2 + 1√

N

)2m

≤ K22mM4m

Nm
.

The last inequality used the fact that M ≥ 1.

4.4.2 Cavity Argument

We now turn to the cavity argument to bound the even moments of the overlaps Rr,r1,2.

Lemma 11. Let m be a non-negative integer and β̄ ∈ (0,∞)k. Assume that there

exists a constant K0 ≥ 1 such that

max
1≤r≤k

νβ̄((Rr,r1,2)2j) ≤ K0

N j



72

for all 0 ≤ j ≤ m and all N ≥ 1. Then, for all N ≥ 1,

max
1≤r≤k

νβ̄((Rr,r1,2)2(m+1)) ≤ K1(β̄) max
1≤r≤k

νβ̄(|Rr,r1,2|
2m+3) +

K2(β̄)

Nm+1

where K1(β̄),K2(β̄) are two non-negative continuous functions of β̄ that are independent

of N . In addition, K1(β̄) ≤ K1(β̄′) whenever βr ≤ β′r for all 1 ≤ r ≤ k. Furthermore,

K1(β̄) = 0 if and only if β̄ = 0.

The proof proceeds in four main steps. First νβ̄((Rr,r1,2)2m+2) is bounded by νβ̄((R−r,r1,2 )2m+2)

and a remainder of the appropriate order O(N−m). In the second and third steps,

νβ̄((R−,r,r1,2 )2m+2) is bounded by the derivative ν ′
β̄,t

((Rr,r1,2)2m+2) which is controlled by

Lemmas 7 and 8. Finally step 4 follows the same pattern as step 1.

Proof. Step 1: By symmetry between sites, write

νβ̄((Rr,r1,2)2m+2) = νβ̄(εr1ε
r
2(Rr,r1,2)2m+1).

Next, set

E = νβ̄(εr1ε
r
2((Rr,r1,2)2m+1 − (R−,r,r1,2 )2m+1))

so that

νβ̄((Rr,r1,2)2m+2) = νβ̄(εr1ε
r
2(R−,r,r1,2 )2m+1) + E .

Applying the triangle inequality and then Lemma 9 controls |E| by

|E| ≤M2νβ̄(|(Rr,r1,2)2m+1 − (R−,r,r1,2 )2m+1|) ≤ 2mM4

N
(νβ̄(|Rr,r1,2|

2m) + νβ̄(|R−,r,r1,2 |
2m)).

(4.15)

By the assumptions,

νβ̄(|Rr,r1,2|
2j) ≤ K0

N j
(4.16)

for all 1 ≤ j ≤ m, so by Lemma 10,

νβ̄(|R−,r,r1,2 |
2m) ≤ 22mM4mK0

Nm
. (4.17)
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Combining the bounds of equations (4.16) and (4.17) and plugging in to equation 4.15

gives

|E| ≤ C1

Nm+1
,

where C1 = 2mM4K0(1 + 22mM4m). So far we have

νβ̄((Rr,r1,2)2m+2) ≤ νβ̄(εr1ε
r
2(R−,r,r1,2 )2m+1) +

C1

Nm+1
(4.18)

Step 2: For each 1 ≤ r ≤ k, define fr = εs1ε
r
2(R−,r,r1,2 )2m+1 so that equation (4.18) reads

νβ̄((Rr,r1,2)2m+2) ≤ νβ̄(fr) +
C1

Nm+1
.

Since HN,β̄,0(σ) does not depend on σN ,

νβ̄,0(fr) = νβ̄,0(εr1ε
r′
2 )νβ̄,0(R−,r,r1,2 ) = 0.

It is easy to see that νβ̄,0(εr1ε
r′
2 ) = 0 since spins σN (r) and σN (r′) are independent under

the Gibbs measure corresponding to HN,β̄,0.

By the mean value theorem, there exists c ∈ (0, 1) such that

ν ′β̄,c(fr) = νβ̄(fr)− νβ̄,0(fr) = νβ̄(fr).

Thus

νβ̄((Rr,r1,2)2m+2) ≤ sup
0≤t≤1

|ν ′β̄,t(fr)|+
C1

Nm+1
. (4.19)

Since fr is a function of two replicas σ̄1, σ̄2, applying Lemma 7 with f = fr and n = 2
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bounds the derivative ν ′
β̄,t

(fr) by

|ν ′β̄,t(fr)| ≤
∑

1≤s,s′≤k
βsβs′

p∑
j=1

(
p

j

)
(M2)j+1

N j−1

(
νβ̄,t(|R

−,r,r
1,2 |

2m+1|R−,s,s
′

1,2 |p−j)

+ 2νβ̄,t(|R
−,r,r
1,2 |

2m+1|R−,s,s
′

1,3 |p−j)

+ 2νβ̄,t(|R
−,r,r
1,2 |

2m+1|R−s,s
′

2,3 |
p−j)

+ 3νβ̄,t(|R
−,r,r
1,2 |

2m+1|R−,s,s
′

3,4 |p−j)
)
. (4.20)

For 1 ≤ j ≤ p set

τ1
j =

2m+ 1 + p− j
2m+ 1

and τ2
j =

τ1
j

τ1
j − 1

.

Note that 1/τ1
j + 1/τ2

j = 1. Thus, applying Hölder’s inequality to equation (4.20) yields

|ν ′β̄,t(fr)| ≤
∑

1≤s,s′≤k
βsβs′

p∑
j=1

(
p

j

)
(M2)j+1

N j−1

(
νβ̄,t(|R

−,r.r
1,2 |

2m+1+p−j |)1/τ1
j νβ̄,t(R

−,s.s′
1,2 |2m+1+p−j)1/τ2

j

+ 2νβ̄,t(|R
−,r,r
1,2 |

2m+1+p−j |)1/τ1
j νβ̄,t(R

−,s,s′
1,3 |2m+1+p−j)1/τ2

j

+ 2νβ̄,t(|R
−,r,r
1,2 |

2m+1+p−j)1/τ1
j νβ̄,t(|R

−,s,s′
2,3 |2m+1p−j)1/τ2

j

+ 3νβ̄,t(|R
−,r,r
1,2 |

2m+1+p−j)1/τ1
j νβ̄,t(|R

−,s,s′
3,4 |2m+1+p−j)1/τ2

j

)
.

= 8
∑

1≤s,s′≤k
βsβs′

p∑
j=1

(
p

j

)
(M2)j+1

N j−1
νβ̄,t(|R

−,r,r
1,2 |

2m+1+p−j)1/τ1
j νβ̄,t(|R

−,s,s′
1,2 |2m+1+p−j)1/τ2

j .

Applying the Cauchy-Schwarz inequality to the terms involving cross-overlaps R−,s,s
′

`,`′

with s 6= s′ gives

νβ̄,t(|R
s,s′

`,`′ |
2m+1+p−j)1/τ2

j ≤ νβ̄,t(|R
−,s,s
1,2 |

2m+1+p−j)1/2τ2
j νβ̄,t(|R

−,s′,s′
1,2 |2m+1+p−j)1/τ2j2 .

Plugging this in to the previous expression and using Lemma 8 to bound νβ̄,t(·) by νβ̄(·)



75

gives

|ν ′β̄,t(fr)| ≤ C(β̄)
∑

1≤s,s′≤k
βsβs′

p∑
j=1

(
p

j

)
(M2)j+1

N j−1

(
νβ̄(|R−,r,r1,2 |

2m+1+p−j)1/τ1
j

× νβ̄(|R−,s,s1,2 |
2m+1+p−j)1/2τ2

j

×νβ̄(|R−,s
′,s′

1,2 |2m+1+p−j)1/2τ2
j

)
, (4.21)

where

C(β̄) = 8 exp

2p+3M2p
∑

1≤r,r′≤k
βrβr′

 .

Step 3: In this step, the goal is to reduce the power 2m+ 1 + p− j of the overlaps to

the power 2m + p, which is accomplished by considering two different cases: the case

when j = 1 and the case when j > 1. When j = 1, the terms of the sum are

νβ̄(|R−,r,r1,2 |
2m+p)1/τ1

j νβ̄(|R−,s,s1,2 |
2m+p)1/2τ2

j νβ̄(|R−,s
′,s′

1,2 |2m+p)1/2τ2
j ,

so the overlaps already have the desired power and no work is required.

When j > 1, pulling out 1 + p − j powers of the overlap and using the fact that

R−,r,r1,2 ≤M2 shows that the terms of the sum are bounded above by

(M2)1+p−jνβ̄(|R−,r,r1,2 |
2m)1/τ1

j νβ̄(|R−,s,s1,2 |
2m)1/2τ2

j νβ̄(|R−,s
′,s′

1,2 |2m)1/2τ2
j .

The assumptions of Lemma 10 are satisfied, so there exists a constant K0 such that

(M2)1+p−jνβ̄(|R−,r,r1,2 |
2m)1/τ1

j νβ̄(|R−,s,s1,2 |
2m)1/2τ2

j νβ̄(|R−,s
′,s′

1,2 |2m)1/2τ2
j ≤ (M2)1+p−j 22mM4mK0

Nm
.

The sum over all terms j > 1 in equation (4.21) is upper bounded by

p∑
j=2

(
p

j

)
(M2)j+1

N j−1

22mM4mK0

Nm
≤ 22m+p(M2)2m+p+1K0

Nm+1
. (4.22)

Plugging the bound in equation (4.22) into (4.21) and then plugging this back into
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4.19 finally gives the bound

νβ̄((Rr,r1,2)2m+2) ≤ C(β̄)C2

∑
1≤s,s′≤k

βsβs′νβ̄(|R−,r,r1,2 |
2m+p)1/τ1

j νβ̄(|R−,s,s1,2 |
2m+p)1/2τ2

j νβ̄(|R−,s
′,s′

1,2 |2m+p)1/2τ2
j

+
C(β̄)C3

Nm+1
, (4.23)

where

C2 := pM4 and C3 := 22m+p(M2)2m+p+1K0

∑
1≤r,r′≤k

βrβr′ + C1.

Step 4: Similar to Step 1, Lemmas 9 and 10 relate the overlaps R−,r,r1,2 back to

overlaps Rr,r1,2. First

νβ̄(|R−,r,r1,2 |
2m+p)1/τ1

j νβ̄(|R−,s,s1,2 |
2m+p)1/2τ2

j νβ̄(|R−,s
′,s′

1,2 |2m+p)1/2τ2
j ≤ (M2)p−3 max

1≤r≤k
νβ̄(|R−,r,r1,2 |

2m+3).

As in Step 1, add and subtract νβ̄(|Rr,r1,2|2m+3) so that, by Lemma 9,

max
1≤r≤k

νβ̄(|R−,r,r1,2 |
2m+3) = max

1≤r≤k
νβ̄(|(R−,r,r1,2 )2m+3 + (Rr,r1,2)2m+3 − (Rr,r1,2)2m+3|)

≤ max
1≤r≤k

(
νβ̄(|Rr,r1,2|

2m+3) +
2m+ 3

N
M2

(
νβ̄(|R−,r,r1,2 |

2m+2) + νβ̄(|Rr,r1,2|
2m+2)

))
≤ max

1≤r≤k
νβ̄(|Rr,r1,2|

2m+3) +
2m+ 3

N
(M2)3

(
max

1≤r≤k
νβ̄(|R−,r,r1,2 |

2m) + max
1≤r≤k

(|Rr,r1,2|
2m)

)
.

(4.24)

By the assumptions,

max
1≤r≤k

νβ̄(|Rr,r1,2|
2m) ≤ K0

Nm
. (4.25)

By Lemma 10,

max
1≤r≤k

νβ̄(|Rr,r1,2|
2m) ≤ 22mM4mK0/N

m. (4.26)



77

Plugging equations (4.25) and (4.26) into equation (4.24) gives

max
1≤r≤k

νβ̄(|R−,r,r1,2 |
2m+3) ≤ max

1≤r≤k
νβ̄(|Rr,r1,2|

2m+3)
C4

Nm+1
.

where

C4 = (2m+ 3)M6K0(1 + 22mM4m).

Set

K1(β̄) = C(β̄)C2

∑
1≤s,s′≤k

βsβs′ and K2(β̄) = C(β̄)C3 + C4.

Finally, plugging back into equation 4.23 gives

νβ̄((Rr,r1,2)2m+3 ≤ K1(β̄) max
1≤r≤k

νβ̄(|Rr,r1,2|
2m+3) +

K2(β̄)

Nm+1
.

4.5 Proof of Theorem 5 and Proposition 2

With the bound of the cavity method in hand, it is now possible to prove Theorem 5

and Proposition 2. Recall that Theorem 5 states that if 0 < β < βc, then there exists a

constant K > 0 independent of N such that

E〈|R(σ1, σ2)|2m〉s ≤
K

Nm

for all s ∈ [0, β] and all N ≥ 1. Proposition 2 uses Theorem 5 to bound the fluctuations

of the free energy FN (β). For more compact notation, define R1,2 = R(σ1, σ2).

Proof. (Theorem 5) Fix 0 < β < βc. The proof is by induction on m. When m = 0, for

all s ∈ [0, 1],

νsβ(|R1,2|0) = 1 =
1

N0
.

Assume that for some m ≥ 0 there exists a constant K > 0 such that

νsβ(|R1,2|2m) ≤ K

Nm
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for all s ∈ [0, β] and all N ≥ 1. From Lemma 11 there exist non-negative continuous

functions K1(sβ),K2(sβ) such that

νsβ(|R1,2|2m+2) ≤ K1(sβ)νsβ(|R1,2|2m+3) +
K2(sβ)

Nm+1
.

The function K1(sβ) is non-decreasing in s and K1(0) = 0. Define

s0 = sup

{
s ∈ [0, 1] | K1(sβ)M2 ≤ 1

2

}
.

Note that the set of s for which K1(sβ)M2 ≤ 1/2 is an interval as K1(sβ) is increasing

in s. The proof is split into two cases.

Case 1: Assume s ∈ [0, s0]. Then, observing that |R1,2| ≤M2,

νsβ(|R1,2|2m+2) ≤ K1(sβ)νsβ(|R1,2|2m+3) +
K2(sβ)

Nm+1

≤ K1(s0β)M2νsβ(|R1,2|2m+2) +
K2(sβ)

Nm+1

≤ 1

2
νsβ(|R1,2|2m+2) +

K2(sβ)

Nm+1
.

Rearranging,

νsβ(|R1,2|2m+2) ≤ 2K2(sβ)

Nm+1
.

Case 2: Assume s ∈ (s0, 1]. Choose ε > 0 so that εmaxs∈[s0,1]K1(sβ) < 1
2 . This is

valid since K1(sβ) is continuous on the compact set [s0, 1]. By Proposition 6, for any

ε > 0 there exists K ′ > 0 such that

νsβ (I(|R1,2| ≥ ε)) ≤ K ′e−N/K
′

for all s ∈ [s0, 1] and all N ≥ 1. Note that K ′ is independent of s. Next,

νsβ(|R1,2|2m+3) = νsβ(|R1,2|2m+3I(|R1,2| > ε)) + νsβ(|R1,2|2m+3I(|R1,2| ≤ ε))

≤M2(2m+3)νsβ(I(|R1,2| > ε)) + ενsβ(|R1,2|2m+2I(|R1,2| ≤ ε))

≤M2(2m+3)K ′e−N/K
′
+ ενsβ(|R1,2|2m+2).
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Therefore

νsβ(|R1,2|2m+2) ≤ K1(sβ)νsβ(|R2m+3
1,2 ) +

K2(sβ)

Nm+1

≤ K1(sβ)
(
M2(2m+3)K ′e−N/K

′
+ ενsβ(|R1,2|2m+2)

)
+
K2(sβ)

Nm+1

≤ 1

2
νsβ(|R1,2|2m+2) +K1(sβ)M2(2m+3)K ′e−N/K

′
+

2K2(sβ)

Nm+1
.

Rearranging,

νsβ(|R2m+2
1,2 ) ≤ 2K1(sβ)M2(2m+3)K ′e−N/K

′
+
K2(sβ)

Nm+1

≤ 2K1(sβ)M2(2m+3) + 2K2(sβ)

Nm+1
.

The second inequality holds for large enough N . Setting

K = sup
s∈[0,s0]

2K2(sβ) + sup
s∈[s0,1]

(2K1(sβ)M2(2m+3) + 2K2(sβ))

gives

νsβ(|R1,2|2m+2) ≤ K

Nm+1

for all N ≥ 1 and all s ∈ [0, 1] as desired.

Chebyshev’s inequality and the Gaussian Poincarè inequality relate the quantity

P (|FN (β)| ≥ `) to the quantity νβ(Rp1,2). This, together with the bound of Theorem 5,

controls the free energy fluctuations as desired for Proposition 2.

Proof. (Proposition 2) For any ` > 0, Chebyshev’s inequality gives

P (|FN (β)| ≥ `) ≤ EFN (β)2

`2
=

1

`2
(
Var(FN (β)) + (EFN (β))2

)
.

Since

∂gi1,...,ipFN (β) =
β

N (p+1)/2
〈σi1 · · ·σip〉β,
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the Gaussian Poincaré inequality gives

Var(FN (β)) ≤ β2

Np+1
E

∑
1≤i1,...,ip

〈σi1 · · ·σip〉2β =
β2

N
E〈R(σ1, σ2)p〉β.

Also, Gaussian integration by parts gives

∂

∂β
EFN (β) = −βE〈R(σ1, σ2)p〉β,

so

EFN (β) = EFN (0) +

∫ β

0
EFN (s)ds

= −
∫ β

0
sE〈R(σ1, σ2)p〉sds

Thus

(EFN (β))2 =

(∫ β

0
sE〈R(σ1, σ2)p〉sds

)2

.

Combining, we so far have

P (|FN (β)| ≥ `) ≤ β2

`2N
E〈R(σ1, σ2)p〉β +

1

`2

(∫ β

0
sE〈R(σ1, σ2)p〉sds

)2

.

Finally, from Theorem 5 there exists a constant K > 0 such that

P (|FN (β)| ≥ `) ≤ β2K

`2Np/2N
+

1

`2

(∫ β

0
s
K

Np/2
ds

)2

=
β2K

`2Np/2N
+
β4K2

4Np`2
.

≤ β2

`2N (p+2)/2
(1 + β2K).
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4.6 Proof of Theorem 6

The most interesting characteristic of the detection problem is that additional spikes

do not add additional noise in the spiked tensor model. This results directly from

the structure of high-temperature regime of the vector-valued model HN,β̄(σ̄). The

high-temperature regime of the vector-valued model is simply the product of the high-

temperature regimes of the marginal scalar-valued systems HN,β(σ(r)), as stated in

Theorem 6. To prove that the high-temperature regime has this structure, we need

concentration of the total overlap, as stated below in Proposition 7.

Recall that v∗,r =
∫
a2µr(da), and define a diagonal matrix V∗ ∈ Rk×k with entries

(V∗)r,r = v∗,r. For any ε > 0 and V ∈ Rk×k

Aε(V ) = {V ′ ∈ Rk×k | ‖V − V ′‖max < ε}.

For any σ̄ ∈ Λ̄, define a matrix R(σ̄) ∈ Rk×k with entries (R(σ̄))r,r′ = R(σ(r), σ(r′)).

Concentration of the total overlap means that R(σ) is close to V∗ with high probability,

as stated formally below.

Proposition 7. Assume that β̄ ∈ R̄. Let σ̄ be sampled from GN,β̄. Then for any ε > 0

there exist positive constants K, δ such that for any N ≥ 1,

E〈I(R(σ̄) 6∈ Aε(V∗))〉β̄ ≤ Ke−N/K . (4.27)

Also, with probability at least 1−Ke−N/K ,

FN (β̄, Aε(V∗)
c) ≤ FN (β̄)− δ. (4.28)

Proof. Suppose that equation 4.28 hold holds with probability 1 − Ke−N/K for some

K > 0. That is,

1

N
log

∫
Aε(V∗)c

eHN,β̄(σ̄)µ(dσ̄) ≤ 1

N
log

∫
eHN,β̄(σ̄)µ(dσ̄)− δ.
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Multiplying by N , combining the logarithms and exponentiating both sides gives

〈I(R(σ̄) 6∈ Aε(V∗))〉β̄ =

∫
Aε(V∗)c

eHN,β̄(σ̄)µ(dσ̄)∫
eHN,β̄(σ̄)µ(dσ̄)

< e−Nδ.

Thus equation (4.27) holds. We therefore need only prove equation 4.28.

For 1 ≤ r, r′ ≤ k, define

Aε(r, r
′) = {σ̄ | |R(σ(r), σ(r′))− (V∗)r,r′ | > ε.

Notice that

Aε(V∗)
c ⊂

⋃
r,r′

Aε(r, r
′).

Thus

lim sup
N→∞

EFN (β̄, Aε(V∗)
c) ≤ lim sup

N→∞
E

1

N
log
∑
r,r′

∫
Aε(r,r′)

eHN,β̄(σ̄)µ̄⊗N (σ̄)

≤ lim sup
N→∞

1

N

∫
Aε(V∗)c

µ̄⊗N (dσ̄). (4.29)

The second inequality results from applying Jenson’s inequality to E log(x).

Since the coordinates of σ(r) are i.i.d. with distribution µr, and σ(r) is independent

of σ(r′) for any r 6= r′, each set Aε(r, r
′) is bounded away from

∫
abµr(da)µr′(db). Also,

for every r, the set Λr is bounded so the sets Aε(r, r
′) are bounded as well. Thus, by a

stronger version of Cramér’s Theorem for large deviations, see for example the proof of

[31, Theorem 2.2.3], there exists a positive constant δ such that

∑
1≤r,r′≤k

∫
σ̄∈Aε(r,r′)

µ⊗N (dσ̄) ≤ e−Nδ.

Therefore there exists δ > 0 such that

lim sup
N→∞

EFN (β̄, Aε(V∗)
c) ≤ F (β̄)− δ.

From this, the result follows by applying the Gaussian concentration of measure in-

equality to both free energies of the above inequality.
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We now use the overlap concentration established above to prove Theorem 6, the

structure of the high temperature regime for the vector-valued model.

Proof. (Theorem 6): First we show that R̄ ⊆ (0, β1,c] × · · · × (0, βk,c]. Suppose that

β̄ = (β1, . . . , βk) ∈ R̄. Then F (β̄) = 0 by definition of R̄. If R(σ̄) ∈ Aε(V∗), then for

r 6= r′,

|R(σ(r), σ(r′))p − (V r,r′
∗ )p| = |R(σ(r), σ(r′))p| ≤ εp.

From Proposition 7, for any ε > 0 there exists a constant K > 0 such that for all N ≥ 1,

E〈I(R(σ̄) ∈ Aε(V ∗)〉 ≥ 1−Ke−N/K (4.30)

Using Gaussian concentration of measure and an argument similar to the beginning of

the proof of Proposition 7, it is possible to show that the equation (4.31) implies that

lim sup
N→∞

FN (β,Aε(V∗)) ≥ lim sup
N→∞

FN (β̄) = 0.

By Jensen’s inequality,

lim sup
N→∞

FN (β,Aε(V∗)) ≤ 0,

therefore

lim sup
N→∞

FN (β̄, Aε(V∗)) = lim sup
N→∞

FN (β̄).

As a result, for σ̄ ∈ Aε(V∗) we can substitute εp for the overlap terms R(σ(r), σ(r′))

with r 6= r′ in the Hamiltonian HN,β̄(σ̄) to get

lim sup
N→∞

FN (β̄) ≤ lim sup
N→∞

1

N
log

∫
Aε(V∗)

exp

(
k∑
r=1

HN,βr(σ(r))

)
µ̄⊗N − εp

2

∑
r 6=r′

βrβr′

≤ lim sup
N→∞

k∑
r=1

FN,r(βr)−
εp

2

∑
r 6=r′

βrβr′ .
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Taking ε→ 0 gives

0 = F (β̄) ≤
k∑
r=1

Fr(βr).

Since Fr(βr) ≤ 0 for all 1 ≤ r ≤ k, it must be that Fr(βr) = 0 for all 1 ≤ r ≤ k.

Therefore βr ∈ (0, βr,c], so R̄ ∈ (0, β1,c]× · · · × (0, βk,c].

We next prove that (0, β1,c] × · · · × (0, βk,c] ⊂ R̄ by contradiction, and distinguish

between two cases.

Case 1: Suppose β̄ ∈ (0, β1,c)× · · · × (0, βk,c), but β̄ 6∈ R̄. This means that F (βr) = 0

for 1 ≤ r ≤ k, but F (β̄) < 0. Thus there exists some η > 0 such that F (β̄) < −η, so for

large enough N , EFN (β̄) < −η. By Gaussian concentration of measure, there exists a

constant K > 0 such that

FN (β̄, Aε(V∗)) ≤ FN (β̄) < −η
2

(4.31)

with probability at least 1−Ke−N/K .

For any ε > 0,

FN (β̄, Aε(V∗)) ≤ FN (β̄) < −η
2

for all N ≥ 1, where the first inequality is by the definitions of the two free energies.

By definition of the set Aε(V∗),

FN (β̄, Aε(V∗)) ≥
1

N
log

∫
Aε(V∗)

exp

(
k∑
r=1

HN,βr(σ(r))

)
µ̄⊗N (dσ̄)− εp

2

∑
r 6=r′

βrβr′ . (4.32)

Combining equations (4.31) and (4.32), we have

1

N
log

∫
Aε(V∗)

exp

(
k∑
r=1

HN,βr(σ(r))

)
µ̄⊗N (dσ̄) <

εp

2

∑
r 6=r′

βrβr′ −
η

2
.

Choose ε small enough so that εp

2

∑
r 6=r′ βrβr′ <

η
4 . Then

1

N
log

∫
Aε(V∗)

exp

(
k∑
r=1

HN,βr(σ(r))

)
µ̄⊗N (dσ̄) < −η

4
.
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Since it is assumed that F (βr) = 0 for all 1 ≤ r ≤ k, the above is equivalent to

1

N
log

∫
Aε(V∗)

exp

(
k∑
r=1

HN,βr(σ(r))

)
µ̄⊗N (dσ̄) <

k∑
r=1

FN (βr)−
η

4
.

Let 〈·〉′ denoe the Gibbs average with respect to the product measure
∏k
r=1GN,βr(dσ(r)).

An argument identical to the proof of Proposition 7 gives the existence of a constant

K > 0 such that

E〈I(R(σ̄) ∈ Aε(V∗))〉′ ≤ Ke−N/K . (4.33)

For a sample σ̄ from
∏k
r=1GN,βr(σ(r)), the spins σ(1), . . . , σ(k) are independent of one

another, so when k = 1, Proposition 7 gives

lim
N→∞

E〈I(|R(σ(r), σ(r))− vr,∗| ≤ ε)〉′ = 1. (4.34)

Also, by Proposition 6, for any ε > 0,

lim
N→∞

E〈I(R(σ1(r), σ2(r))| ≤ ε)〉′ = 1. (4.35)

For r 6= r′, using the independence of σ(1), . . . , σ(k) gives

E〈R(σ(r), σ(r′))2〉′ = 1

N2

N∑
i,j=1

E〈σi(r)σj(r)σi(r′)σj(r′)〉′

=
1

N2

N∑
i,j=1

E〈σi(r)σj(r)〉〈σi(r′)σj(r′)〉′.

Applying Cauchy-Schwarz then gives

E〈R(σ(r), σ(r′))2〉′ ≤

 1

N2

∑
i,j

E(〈σi(r)σj(r)〉′)2

1/2 1

N2

∑
i,j

E(〈σi(r′)σj(r′)〉′)2

1/2

=
(
E(〈R(σ1(r), σ2(r)〉′)2

)1/2 (E(〈R(σ1(r′), σ2(r′)〉′)2
)1/2

.
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Therefore, by equation 4.35,

lim
N→∞

E〈R(σ(r), σ(r′))2〉′ = 0.

This and 4.34 give

lim
N→∞

E〈I(R(σ̄) ∈ Aε(V∗))〉′ = 1,

In other words, the total overlap R(σ̄) is close to the optimal matrix V∗ which contra-

dicts equation 4.33.

Case 2: Assume β̄ =∈ (0, β1,c] × · · · × (0, βk,c] and β̄ 6∈ (0, β1,c) × · · · × (0, βk,c).

In other words, βr = βr,c for at least one value 1 ≤ r ≤ k. Each of the free energies

F1(β1), . . . , Fk(βk) are continuous functions of β1, . . . , βk respectively. Thus F (β̄) can

be approximated by F (β̄′) for β̄′ ∈ (0, β1,c) × · · · × (0, βk,c). Then from Case I the

conclusion holds.

4.7 Proof of Theorem 7 and Proposition 3

The proof of Theorem 7 is nearly identical to the proof of Theorem 5, so most of the

details are omitted. Originally, the result of Theorem 7 was used in the proof of detection

in the case of multiple spikes, but the proof technique has changed from the original

version rendering Theorem 7 unnecessary; however, it is still included in this thesis as

an interesting result in the study of the vector-valued p-spin model.

Proof. (Theorem 7): By Lemma 11, if there exists a constant K0 ≥ 1 such that

max
1≤r≤k

νβ̄((Rr,r1,2)2j) ≤ K0

N j

for all 0 ≤ j ≤ m and all N ≥ 1 then

max
1≤r≤k

νβ̄((Rr,r1,2)2m+2) ≤ K1(β̄) max
1≤r≤k

νβ̄(|Rr,r1,2|
2m+3) +

K2(β̄)

Nm+1

for all N ≥ 1. The proof of Theorem 7 follows exactly the same steps as the proof of

Theorem 5.
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Proof. (Proposition 3) Using the Chebyshev inequality, Gaussian Poincaré inequality

and Gaussian integration by parts as in the proof of Proposition 2 yields

P (|FN (β̄)| ≥ `) ≤ 2

`2N

∑
1≤r,r′≤k

βrβr′E〈|Rr,r
′

1,2 |
p〉β̄ +

2

`2

 ∑
1≤r,r′≤k

βrβr′

∫ 1

0
sE〈|Rr,r,1,2 |

p〉

2

.

Applying the result of Theorem 7 gives the desired result.
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Appendix A

Appendix

A.1 Gaussian Integration by Parts

Gaussian integration by parts is used repeatedly in this thesis and the study of spin

glasses in general. Take g ∼ N (0, σ2) and F (x) any differentiable function that satisfies

lim
|x|→∞

F (x)e−x
2/2σ2

= 0.

The most basic version of Gaussian integration by parts, see, for example [23, Appendix

A.4] states that

EgF (g) = Eg2EF (g).

If g, z1, . . . , zn are Gaussians and F (x) : Rn → R is differentiable and satisfies

lim
‖x‖→∞

|F (x)|e−a‖x‖2 = 0

for all a > 0, there is a multivariate Gaussian integration by parts [23] that states

EgF (z1, . . . , zn) =
∑
`≤n

E(gz`)E
∂F

∂x`
(z1, . . . , zn).

The version used in this thesis extends the multi-variate version to families of Gaussians

that are not necessarily finite. If g = (g(ρ))ρ∈U is a Gaussian process indexed by U ∈ RN

92



93

and F (g) is a differentiable function of RU then given σ ∈ U , by [28, Lemma 4],

Eg(σ)F (g) = E
∂F

∂g
[Eg(σ)g(ρ)],

where the right-hand side denotes the expectation of the variational derivative of F in

the direction of Eg(σ)g(ρ).

A.2 Gaussian Concentration of Measure

Gaussian concentration of measure is used repeatedly to show that a free energy and

the expectation of that free energy are close with high probability. The key result is [23,

Proposition 1.3.5] which states that if F is a Lipschitz function on RM with Lipschitz

constant A, and g = (g1, . . . , gM ) with g1, . . . , gM i.i.d. standard Gaussians, then

P (|F (g)− EF (g)| ≥ t) ≤ 2e−t
2/4A2

. (A.1)

For any A ⊆ Λ̄, taking the gradient of FN (β̄, A) in the distinct random variables gi1,...,ip

with 1 ≤ i1 < · · · < ip ≤ N , there exists a constant K > 0 such that

‖∇FN (β̄, A)‖22 ≤
K

N
.

Plugging this in to A.1 gives

P (|FN (β̄, A)− EFN (β̄, A)| ≥ t) ≤ 2e−t
2N/4K .

Thus there exist η > 0 and K0 > 0 such that

P (|FN (β̄, A)− EFN (β̄, A)| ≥ η) ≤ K0e
−N/K0 ,

which is the result used throughout this thesis.
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A.3 Cole-Hopf Transformation

The Cole-Hopf transform is a transform used to solve Burgers equation

ut + uux = κuxx. (A.2)

Taking the derivative in x of equation (A.2) and setting Ux = u implies U satisfies the

Hamilton-Jacobi equation

Ut +
(Ut)

2

2
= κUxx, (A.3)

which is similar to the Parisi PDE. If φ satisfies the heat equation φt = κφxx, the

Cole-Hopf transform

B(x, t) = −2κ log[φ(x, t)]

solves equation (A.3).

Recall that Φβ,v,α(s, x, λ) : [0, v]× R× R is the weak solution to the PDE

∂sΦβ,v,α = −β
2ξ′′

2
(∂xxΦβ,v,α + α(s)(∂xΦβ,v,α)2)

with boundary condition

Φβ,v,α(v, x, λ) = log

∫
exa+λa2

µ(da).

When α(s) is the CDF of a finitely supported probability measure, the Cole-Hopf trans-

formation can be used to solve the Parisi PDE as shown in the following adaptation of

[32, Lemma 3].

Suppose 0 ≤ a < b ≤ v. Let A be a smooth function on R with lim supx→∞ |A(x)|/|x| <
∞. Suppose α(s) = m on the interval [a, b]. Let z(s) be a Gaussian random variable

with covariance

Ez(s)2 = ξ′′(b)− ξ′′(s).

Then

Φβ,v,α(s, x, λ) =
1

m
logE expmA(x+ βz(s))
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satisfies the Parisi PDE on the interval [a, b]. Note that the boundary condition of the

Parisi PDE satisfies the growth requirement, so the preceding result can be used to solve

the Parisi PDE backward from v.
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