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Abstract

This thesis is concerned with the problem of detecting and recovering a low-rank
tensor in noise. A spiked random tensor is composed of a symmetric Gaussian p-tensor
and a fixed number of spikes. Each spike is a rank one p-tensor formed by a vector
whose entries are drawn i.i.d. from a probability measure on the real line with bounded
support. FEach spike is weighted by a signal-to-noise ratio (SNR). For a random tensor
with a single spike, it is possible to detect the presence of the spike when the SNR
exceeds a critical threshold, and impossible when the SNR is below this threshold. For
a random tensor with multiple spikes, detection of the low-rank structure is possible
when the SNR of at least one spike exceeds its critical threshold. Additionally, recovery
of the spikes by the minimum mean square error estimator has the same phase transition.
When at least one SNR is above its critical threshold, the minimum mean square error
estimator performs better than a random guess.

It is shown that the spike detection problem is equivalent to distinguishing between
the high- and low-temperature regimes of certain mean field spin glass models. The set
of SNRs for which detection is impossible is equal to the high-temperature regime of a
certain p-spin model. Thus the main tools to investigate the detection problem come

from the study of spin glasses.
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Chapter 1

Introduction and Main Results

1.1 Motivation and Outline

This thesis addresses the question of when it is possible to detect and recover underlying
low-rank structure from a random tensor formed as the sum of a fixed number of rank-
one tensors and a tensor of white Gaussian noise. This model is known as the spiked
tensor model. These results were first presented by Chen, Handschy, and Lerman in [I].

The detection of low-rank structure in tensors is motivated by the question of when
Principal Component Analysis (PCA) can uncover linear low-rank structure in noisy
data. PCA is equivalent to finding the eigen-decomposition of the sample covariance
matrix of observed data points. Suppose data points 1, ...,z € RY are drawn inde-
pendently from the multi-variate Gaussian distribution A(0, I + Buu’) with v € RY
a unit vector, and S > 0 a constant known as the signal-to-noise ratio (SNR). Under
this model, each data point is composed of the sum of a signal component and a noise
component, and the question is whether PCA can detect the presence of the signal
component and recover the signal.

Suppose N/L — v < 1 as L — oo. When = 0, the eigenvalues of the sample
covariance matrix follow the Marchenko-Pastur distribution [2]; however, when £ is
large enough, as N — oo, the largest eigenvalue of the sample covariance matrix falls
outside the support of the Marchenko-Pastur distribution. In particular, when § <
/7, the eigenvalues follow the Marchenko-Pastur distribution, but when 3 > /7, the

largest eigenvalue ‘pops out’ of the support of the Marchenko-Pastur distribution, a



phenomenon known as the BBP transition [3] [4].

In [5], the phase transition of spike detection is extended to spike recovery by PCA.
More precisely, when 8 > /7, there is a non-trivial asymptotic correlation between
the signal v and the top eigenvector of the sample covariance matrix. Thus one can
approximately recover u using PCA. However, when 8 < /7, this asymptotic correlation
is zero. Extension of detection and recovery to the case where v > 1 is also established
in [5]

The spiked Wigner matrix is another common signal-plus-noise model that exhibits
a similar phase transition. An N x N Gaussian Wigner matrix is a symmetric matrix
with independent entries W;; ~ N(0,1/2) for 1 < i < j < N and Wj; ~ N(0,1) for
1 < i < N. The spiked Wigner matrix with SNR 5 > 0 is defined as T = W +
%U’UJT with spike u € RN a vector with entries sampled i.i.d. from a probability
distribution on R with bounded support. When the SNR S is below a critical threshold,
the eigenvalue distribution of 7" follows Wigner’s semi-circle law and detection of the
low-rank structure is impossible. Once the value of 5 exceeds the critical threshold, the
largest eigenvalue jumps away from the support of the Wigner semi-circle law and the
top eigenvector nontrivially correlates with the signal [6] [7]. In this case, one can detect
and approximately recover the signal by PCA.

This thesis studies the extension of the detection and recovery problems for the
spiked Wigner model to higher-order tensors in the case of a single spike and in the
case of multiple spikes. In particular, we show that the detection and recovery problem
both exhibit sharp phase transitions. We define detection in terms of the total variation
distance between the spiked and unspiked tensors and recovery in terms of the minimum
mean square error estimator. One formula for the total variation distance between the
spiked and unspiked random tensors involves their likelihood ratio, which turns out to
be the free energy of certain p-spin spin glass models which are introduced in Chapter
The results on recovery by the minimum mean square error estimator follow from
the results on detection.

The remainder of the present chapter introduces the main results on detection and
recovery. Section formally defines the spiked random tensor and the concept of
spike detection. Section [L.3|states the main results for detection in the case of a single

spike, Section states the main results for detection in the case of multiple spikes, and
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Section [I.5] gives the result for recovery by the minimum mean square error estimator.
Chapter 2| defines the p-spin mean field models relevant to the spike detection prob-
lem and states critical results for these models. Chapter [3| gives the proofs of the main
theorems on detection and recovery assuming that the results stated in Chapter [2| hold.

Finally, Chapter [4] presents the proofs of the spin glass results of Chapter

1.2 Symmetric Gaussian Tensors

We now define the symmetric Gaussian tensor and the total variation distance between

two random tensors. Additionally, we explain what it means for two sequences of random

tensors to be distinguishable, a concept that defines the problem of spike detection.
Fix p € N. For any integer N > 1, define Q2 to be the set of all real-valued p-tensors

Y = (Yi,....ip)1<i1,....i,<N- The inner product of two tensors is defined as

VY'Y= > Y

1<it,0ip<N

Given a vector u € RY create a rank one p-tensor by taking the outer product

For Y € Qu and a permutation 7 of the set {1,2,...,p}, define the permuted tensor
Y™ by

47T . P— . .
Uyendp yw(zl),...,fr(zp)~

A tensor is symmetric when Y = Y7 for all permutations 7 of the set {1,2,...,p}.
From now on, Y will denote a random p-tensor with i.i.d. standard Gaussian entries.

Given such a tensor Y, the symmetric Gaussian p-tensor is
g >y (1.1)
Pl

Given any two symmetric random p-tensors U, V € Qp, the total variation distance
between U,V is
dry (U, V) =sup|P(U € A) — P(V € A)|,
A
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where the supremum is taken over all sets A in the Borel o-algebra generated by sym-

metric p-tensors.

Definition 1.2.1. Two sequences of symmetric random tensors Uy, Vy € Qn are in-
distinguishable if

lim dTv(UN, VN) = 0,
N—o00

and distinguishable if

lim dT\/(UN,VN) = 1.
N—o0

From the definition of total variation distance, when Uy and Vi are distinguishable,
there exists a sequence of measurable sets Ay such that limy_,oo P(Uy € Ay) =1 and
limy_,00 P(Vy € Any) = 0. For example, consider the N x N spiked Wigner matrix
Ty = Wx + %uuT. As mentioned in the previous section, if the SNR S is below a
critical threshold, in the limit, the eigenvalues of T follow the Wigner semi-circle law,
but if the SNR is above this threshold, the largest eigenvalue falls outside the support of
the Wigner semi-circle distribution. If § is greater than than the critical SNR, and Ay
is the event that the eigenvalue distribution of the matrix follows the Wigner semi-circle
law, then limy_,oo P(Wy € Ax) =1 and limy o0 P(Tn € An) = 0, so the spiked and
unspiked Wigner matrices are distinguishable.

More generally, suppose Uy, Vv are sequences of random tensors. Let 14 denote the
indicator function of a set A. Given a statistical hypothesis test Sy : Qn — {0, 1} such
that Sy(w) = 14, (w), the sum of Type I errors, or false positives, and Type II errors,

or false negatives, satisfy the relationship
mjn{Type I errors + Type IT errors} = 1 - total variation distance.

Thus, if Uy, Vy are distinguishable, then there must exist statistical hypothesis tests

Sy that distinguish the two tensors in the sense that

lim (P(Sy(Un)=1)+ P(Sn(Vn) =0)) = 0.

N—oo

On the other hand, when Uy, Vv are indistinguishable, there is no statistical hypothesis

test that can distinguish between the two tensors.



1.3 Results for Detection with a Single Spike

We now consider the case of a spiked random tensor with a single spike. As in the case of
the spiked Wigner matrix, we wish to know for which SNRs one can detect the presence
of the spike to distinguish between the spiked tensor and a tensor of pure noise. The
main result on spike detection for a single spike, Theorem 1], states that the detection
problem exhibits a sharp phase transition, and Theorem [2] gives a method to compute
the location of this phase transition.

Let A be a bounded subset of R and u a probability measure on the Borel o-field of
A satisfying [ ap(da) = 0. Assume that uy,...,uy are i.i.d. samples from p that are
also independent of the symmetric Gaussian tensor W. Set v = (uy,...,un). Given

B > 0, the spiked random tensor (with a single spike) with signal-to-noise ratio /3 is

5o

T=W+ <o oz%

Definition 1.3.1. Detection of the spike u®? is possible if W, T are distinguishable
according to Definition Detection is not possible if W, T are indistinguishable.

For each probability space (A, ) there exists a critical SNR /. depending on p such
that detection is possible only when the SNR satisfies 5. < 5.

Theorem 1. Assume that p is centered. Then for any p > 3 there exists a constant
Be > 0 such that

(i) If 0 < B < B. then detection is impossible.
(ii) If B > f. then detection is possible.

In [§], Perry, et al. show that for the Rademacher prior, where entries of u take
values +1 with probability 1/2, and the sparse Rademacher prior, where entries of u
take values £1/,/p with probability p/2 and 0 with probability 1 — p, there exist upper
and lower bounds S_ and 4 with S_ < 34, such that for g < S_ detection is impossible
and for § > (4, detection is possible. Chen [9] shows that in fact 5 = S in the case
of the Rademachor prior, and Theorem [1| closes the gap between S_ and (4 for a more

general class of priors which includes the Rademacher and sparse Rademacher priors.



6

The proof of Theorem [I]is given in Chapter 3] Lemma [2]in Section [2.4] relates the

total variation distance between T and W to the scalar-valued p-spin model defined in

Section The bulk of the work to prove Theorem [1] lies in investigating the behavior
of the scalar-valued p-spin model at low vs. high values of .

While Theorem [1] gives the existence of a phase transition in the detection problem,

Theorem [2] provides a way to determine the value of the critical SNR (.. Set

€)= 5 (1.2)

and

Ve = /aQ,u(da). (1.3)

For b, s > 0, define

w(s) =E (1.4)

(f aZ(a,b€'(s))p(da))”
[ Z(a,08'(s))p(da) |’

where Z(a,t) is the geometric Brownian motion

%t
Z(a,t) = exp (aBt - a2>

with B; a standard Brownian motion. Define an auxiliary function I'y(v) : [0,00) — R
by

(e = [ € 6)n(s) - ). (15)
0
Theorem 2. If p > 3 and u is centered, then (. is the largest B such that

sup I'g(v) =0.
vE[0,v4]
For many priors, the function v;(s) is straightforward to compute, meaning it is
possible to numerically integrate equation ([1.5)) to evaluate the auxiliary function I'y(s)

at various values of 8 which allows one approximate [5.. For example, consider the
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sparse Rademacher prior where entries of u = (uy,...,uy) are independently sampled
from the distribution

8571/\/5 + (1= p)do + 551/\/@
with parameter p € (0,1] that controls the sparsity of the vector u. When p = 1, this
is the Rademacher prior. Figure shows the critical SNR for the sparse Rademacher
prior for tensors of order p = 3,4, 5,10 and sparsity parameter p = .1,.2,.3,...,1. The

solid line in each plot is the function

H(p) = 2v/—plogp— (1 — p)log(1 — p) + plog2,

which is the upper bound for S. derived in [g].

For each combination of p and p,

pexp (*B%prl) sinh? ( \/521"9’} 1)
18(s) = E - ,
pexp (—627185 1)cosh (g\/ﬁzpsp 1>+(1 )

with g a standard Gaussian. Note that v, = [ a®u(da) = 1 for all parameters p € (0, 1].

To determine the critical SNR, the NIntegrate function from Wolfram Mathematica was
used to compute test values of I'y(v) for values of v in the interval (0, 1] in increments
of .001. The critical value of j3. is reported as the largest b such that I',(v) < 0 for all
test values of v, where the function I'y(v) was computed for values of b in increments of
.001.

The critical value . exhibits a tension between the sparsity of the vector u, which is
expected to have p non-zero entries, and the magnitude of the non-zero entries, 1/,/p.
For small values of p, the vector u is very sparse, but the non-zero entries of u are very
large in absolute value, and these very large values are easy to detect. As p grows, the
magnitude of the non-zero entries decreases, and the detection threshold 5. accordingly
must increase. Eventually, the sparsity parameter p is large enough that there are
enough non-zero entries for detection, even though the magnitude of these entries is
smaller, and . begins to decrease. As p, the order of the tensor grows, the proportion
of non-zero entries for a given p decreases, so maximum value of 8, occurs at higher

values of p for higher-order tensors.



Figure 1.1: Numerical simulations for the critical value . with sparse Rademacher
prior and various values of p. The top left plot is for p = 3, the top right for p = 4,
the bottom left for p = 5 and the bottom right for p = 10. The open circles are the
simulated critical values .. The dashed curve interpolates between these points and
the solid curve describes the function H (p).

1.4 Results for Detection with Multiple Spikes

The spiked random tensor with multiple spikes is formed as the sum of a Gaussian tensor
and a linear combination of k£ > 1 rank one tensors weighted by possibly different SNRs
B1, ..., Bk. Theorem [3] the main result of this section, relates the set of SNRs for which
detection is possible in the case of multiple spikes back to Theorem [I| the detection
result for the case of a single spike. It is reasonable to guess that the presence of

multiple rank one tensors would act as additional noise, increasing the SNR necessary
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for detection. Theorem [3] is remarkable because it shows that this does not happen:
adding additional spikes does not add additional noise.

Fix £k > 1. Consider bounded sets Aj,...,Ary C R and probability measures
U1, - .., on the Borel o-algebras of Aq,..., Ay respectively. For each 1 < r < k,
assume that uy(r),...,un(r) are independent samples from p, that are also indepen-
dent of the Gaussian tensor W. Define u(r) = (u1(r),...,un(r)). Assume additionally
that vectors u(r), u(r’) are independent of one another when r = r/. For f1,..., 8, > 0,
define 3 = (B1,...,Bt). The spiked random tensor with k spikes and signal-to-noise

ratio vector 3 is
k
1
=W ®p
Te =W+ No-r Zl Brulr)™".

The definition of detection in the case of multiple spikes is identical to the single spike

case.

Definition 1.4.1. Detection of the spikes u(r)®? is possible if W, T, are distinguishable
according to Definition Detection is not possible if W, T}, are indistinguishable.

For 1 <r <k, let 3., be the critical threshold for spike detection in the random

tensor

Br
W+ N2 u(r)®P.

Theorem |[3| states that in the case of multiple spikes, detection is possible when at
least one signal-to-noise ratio exceeds the critical signal-to-noise ratio of its associated

single-spike random tensor.

Theorem 3. Assume that u1, ..., ux are centered. For p > 3,
(i) If B € (0,B1.¢) x -+ x (0, Br.c) then detection is impossible.
(ii) If B € (Bi,c,00) X -+ X (B, 00) then detection is possible.

The likelihood ratio of Ty and W is the free energy of the vector-valued p-spin
model defined in Section Unlike the scalar-valued case, the vector-valued p-spin
model involves interactions between the different spikes. It turns out that, in the large-
system limit, these interactions do not contribute to the behavior of the vector-valued
model, and Theorem [3] follows.
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1.5 Results for Recovery by MMSE

In addition to asking when one can detect the presence or absence of a spike, one
may also ask if it is possible to recover any information about the spike itself. In
this section we show that recovery of the spike by the minimum mean square error

(MMSE) estimator has the same phase transition as the detection problem. Let § =

(0iy,...ip)1<is, ... i< denote an RN?_valued random variable generated by the o-field
0(Tk). The estimators 6 may depend on T}, the vectors u(r), or other randomness. The

minimum mean square error is
1 b i
WSEN ) i S B (Ym0 ) (10
1<iy,...,ip<N r=1

The minimum is achieved by the MMSE estimator

MMSE
117 Sip Zﬂr uzl o u’ip | Tk))

A dummy estimator is any estimator that does not depend on the randomness of

the vectors u(r). The best dummy estimator is

Az1, -l =E Z 57"”11 U, (T)

Therefore, replacing the minimum in equation (1.6) by the minimum over only dummy

estimators gives the bound

2

k 2 k
r=1 r=1

1<i1,...,ip§N

Since the u(r) are independent, when taking N — oo, the law of large numbers gives

lim sup MMSE y (3) < DMSE(j Z ByoP

N—oo
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where v, = [ a®u,(da).
Theorem [4] below states the precise result on recovery of the spikes by the MMSE

estimator.

Theorem 4. For p > 3,

(i) If B € (0,B1¢) X -+ x (0, Br,c) then limsupy_,,, MMSEy(3) = DMSE(j)
(i) If B € (Bre,00) X -+ X (Bk,e; 00) then limsup y_,.o MMSEy(3) < DMSE(B)

Lesieur et al. [I0] prove the same result by computing the limiting mutual informa-
tion between W and Tj,. The proof of Theorem [4] included here uses a different method

that relies on the detection results of the preceding sections.

1.5.1 Performance of Approximate Message Passing

Despite the fact that Theorem [ gives us information about where the MMSE esti-
mator performs better than random guessing, computation of the MMSE estimator is
intractable. In the matrix case (p = 2), the performance of the approximate message
passing (AMP) algorithm is well studied, and it is conjectured [10] that AMP achieves
the best possible mean square error of any polynomial time algorithm. For the spiked
matrix with Rademacher prior, [I1] shows that, in the large-system limit, AMP is Bayes
optimal and recovery by AMP exhibits the same phase transition at § = 1 as recovery
by spectral methods such as PCA. For general priors, there is typically an ‘easy’ region
of parameters 8 where AMP is Bayes optimal and MMSE < DMSE, a ‘hard’ region
where AMP is suboptimal, and an ‘impossible’ region where MMSE = DMSE. See, for
example, [12, 13, [14} [15] for a discussion of the performance of AMP in low-rank matrix
estimation in different settings.

For centered priors, the tensor case is drastically different than the matrix case. In
the tensor case with spikes from mean-zero priors, there is no ‘easy’ region AMP both
achieves the minimum mean square error and performs better than a dummy estimator.
Let MSEs5/p denote the mean square error achievable by AMP. For 8 > f., Lesieur,
et al. [10] show that MMSE < MSEp/p, and MMSE = MSE 45/p only for 5 < f..
However, from Theorem [d, MSE 45;p = MMSE = DMSE when 8 < (.. Thus, in the
region where MMSE < DMSE we unfortunately also have MMSE < MSE ga/p.
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AMP is a variation of Belief Propagation (BP) algorithms used for inference on
graphical models. Given a probability distribution that takes the form of a product
of factors, one may form a bipartite graph consisting of one vertex for each factor
of the probability distribution and one vertex for each variable. A factor vertex and
a variable vertex are connected if the factor takes the variable as an argument. In
belief propagation, messages are passed between connected factor and variable nodes.
Messages are chosen so that, in the limit, they give information about the probability
distribution in question. For example, in different versions of BP, the messages may
converge to the marginal distributions of the variables or the max-marginals.

AMP takes advantage of symmetry in the structure of the graphical model to reduce
the amount of information passed at each iteration of the algorithm and consequently
reduce the complexity. Instead of keeping track of the entire probability distributions
passed between nodes, AMP only keeps track of the mean and variance of the distri-
butions. Additionally, updates for these parameters are calculated using mean field
approximations that exploit the weak dependence of the incoming distribution on the
index of the variable node. A key feature of AMP is an ‘Onsager term’ corresponding
to a correction between the mean-field approximation and the original cavity field. This
term arises naturally in the derivation of AMP as shown below.

We give a detailed derivation of AMP from BP in the case of recovery by MMSE
for a tensor with a single spike. This closely follows the analysis in [16]. The case of
k spikes is no harder and essentially only entails replacing scalar products by vector
products throughout the derivation. However, for the sake of more concise notation, we

only derive the single-spike case. Consider the spiked tensor

1 1
T=——-ru®+ W
No-oEt T W
This has the same signal-to-noise ratio as the original spiked tensor, but the parameter
[ is considered as part of the noise tensor instead of part of the spike. Due to symmetry,
the final algorithm only depends on observing the tensor elements with i; < --- < 4p,
but the derivation is easier with all elements included.

For simpler notation, we will use lower-case letters to denote a tensor index, for

example a = (i1,...,%,). To develop AMP from BP, we need to distinguish between
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the modes of the tensor and create a variable for u; appearing in the first mode, a
variable for u; appearing in the second node, ..., and variable for u; appearing in the
p-th mode. Let capital letters 1 < A, B,C,--- < p denote the place in the product
Wiy -+ uq,. For example, the notation u;4 will mean that entry w; stands in the A-th
spot in the product and u ;g will mean entry u; stands in the B-th place in the product.
This will distinguish between different orderings of the same product. As we develop
AMP, symmetry will remove this dependence on ordering, but it is helpful in developing
the algorithm.
Let U = u®P. We are interested in the posterior distribution
1 N
PU|T) = Mgﬂ(ui)gP(Ta | Ua)s
where Z(T,U) is the appropriate normalizing constant. The factor graph of the posterior
distribution consists of (];[ ) -p! factor nodes, each corresponding to an index (i1, ..., %),
and N - p variable nodes, each corresponding to a variable u;4 in position A of the
product. Note that we do not include the factors p(u;) in the factor graph because, in
BP, the messages at any factor node depending on a single variable never change. A
factor node a and variable node iA are connected if i is the A-th element of the list
a=(i1,...,10p).

Note that each likelihood is Gaussian with
P(T, | Uy) ~ N(Ug,1/3%).

Define a cost function by

2 1. 2r
9(T, Ua) =log P(Ty | Us) = =~ (T — Ua)* — ; log 7
Thus the posterior distribution can be written
PUIT) = — ﬂu(u-) T eoceve. (1.7)
Z(T’ U) i=1 Z a
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The version of BP presented here is designed to compute the marginal posterior dis-
tributions of the variables u1,...,uyx. The simplification to AMP keeps track of only
the first and second moments of these marginals. The means of the marginals are the
estimators of the true signal.

For each factor node a = (i1,...,7p), denote the set of variable nodes connected
to a by da = {i11,...,i,P}. Also, for each variable node ¢, denote the set of factor
nodes connected to iA by 0iA = {a | iA € a}. Each iteration of BP consists of a set
of messages passed from variable nodes to their neighboring factor nodes and a set of
messages passed from the factor nodes back to the variable nodes. Let 0!, . (z;) denote
the message passed from node 7A to node a at step t of the algorithm, and similarly,

it _,ia(x;) the messages passed from node a to node ¢A. The BP updates proceed by

p(uia)

an%a<uiA) = H 77(,_>Z,4 uzA (18)
Zia—a bediA\a
1 (1-p)/2

nb*ﬂA(u’LA) Zt /eg(TI”N P Us) H dnjB—)b(u]B) (19)
b—id JBEBb\iA

f t t =t
The normalizing constants Z! and Z, ., are chosen to make n;,_ ., and 7, .. 4

A—a
probability measures. At each step, nf A_yq is the product of incoming messages from
the factor nodes. These messages are weighted by the cost function at that factor node,
marginalized, and passed back to the variable nodes.

The simplification to AMP proceeds in two steps. First, the messages are expanded
to quadratic order, after which it is only necessary to keep track of the coefficients of the
linear and quadratic terms of the expansion rather than entire probability distribution.
In the second step, mean-field approximations are used to remove the dependence on

the factor nodes.
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Step 1: Quadratic Approximation
Define

0
Sy = 79Ty, Us)

o2 K2 ?
Ry = —=9(T,, Up) (T, Up) .

Let & denote any error term of order O(N'~P) or smaller. These terms will vanish in

the large-system limit. Expanding g(T},, N(*=P)/20,) about U, = 0 gives

1RbS

g(Ty, NOP2U,) = ¢(Ty, 0) + SpUs + g bUE + €, (1.10)

1
Np-1)/2

and expanding exp g(T,, N1=P)/2U) about Uy, = 0 gives

SpUp +

1
Np-1)/2

9(Tp, NO=P)/2U) _ g(T},0) 1
e € + No-

RbUb> +E. (1.11)

Plugging the second expansion (|1.11)) into the factor-to-variable message (1.9)) gives

_ e9(T5,0) 1
Tb—ia(Uia) = 7 1+ N(pil)/zsb/Ub I @nis—s(uss) + o= 1Rb/Ub2 I dnis—s(uss)
jEAD\i jEab\i

(1.12)

Recall that Uy, = u;4 HjBeBb\iA ujp. Define i, and 6,5 as the mean and

variance, respectively, of the distribution 7;p_(ujp). Expanding the two integrals

above,
/Ub H dnjip—b(u;B) = uia H /udengB—w UjB) = UiA H Ui B—sb,
JjB€Edb\tA jB€Eb\i jBeEOb\tA
and

Joe

/Ub2 T dnis=s(up) =vis ] / wpdnipop(uip) =uly  [[ (Gjpontiip.y).

JBEAb\iA JFBEAb\iA JBEAb\iA
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We can then consider m,_.;4 as a power series in u;a:

eg(Tbvo)

~ Uu
To—iauia) = ——— | 1+ Mp%‘?msb 11
b—id JBEAb\iA ]Beab\zA

O—jB—)b—i_iLJQ‘B‘)b) +€

Using the equivalence of the two expansions (1.10) and (1.11)) gives

e9(T5,0) 1 1 Ry .2

Mo—ia(Uia) = Zoa 5P N D2 bliA IT @b+~ Np—1 g A T Gisos+ii5.)
jBEb\iA jBEAb\iA
1 2 -2
— T Shuia I @s.)+¢ (1.13)
jBEAb\iA

Next, substituting expression (|1.13) into the variable-to-factor messages (1.8)) gives

_ p(uia) UiA
Nia—al(uia) = el Bz Z Sy H Ujp—b +
bediA\a jBEIb\iA bediA\a jBEOb\iA

2
_ 2;;{1 S, jBEI;{\M Wy | +E.

All constant terms have been absorbed into the normalization constant Z;4_,,. Recall
that the original error terms on the expansions were of order O(N3(1=P)/2). The product
in the above expression is a product over p — 1 factors. Since p > 3, the combined error
is of order O(N'7P), so we can still represent it by &.

Define constants

Biase = wom2 = > S ] s

bE@zA\a jBeEOb\iA

and

Aiasa = N;,l Y85 I @ew— D2 B II @G+ adsy)

bediA\a  jBEOb\iA bediA\a jBEOb\iA

2NP T Z Ry, H (6586 +p )
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so that )
NiA—a(uia) = Lum)eBiAﬁ““iA_AiA?auiA.
ZiA—>a
The normalization constant is

2
AiAﬁauiA
2

Define a function

Recall that 1;4—,4 and 6,4, are the mean and variance of p;a—q(u;4). We can write

ﬂiA%a = f(AiA%a’ BiAHa)

and

. 0
OiA—a = aiBf(AiA%av BiAﬁa)-
Reintroducing the parameter ¢ to keep track of the iterations, we have a quadratic

approximation to belief propagation that proceeds by updates

1 ¢
BzA%a = N(p 1)/2 Z St H UjB—b
bediA\a  jBEOb\iA

AzAHazﬁ Z Sy H U jB—)b Z Ry H (6]2‘3—>b+<at)§3—>b)

bcdiA\a  jBEAb\i bcdiA\a  jBEOb\iA

~t+1
zZ—)a = f( 1A—a zA—m)

At 9

OiAsa ™ 3n OB (AZA—)(Z’ zA—m)

This algorithm necessitates updating constants rather than probability distributions at

each iteration.

Step 2: Mean Field Approximation
In the preceding quadratic approximation to BP, the constants B; o4, AiA—a, biA—a,
and 6;4_,, depend only weakly on the target node a. The next simplification exploits

this to remove the dependence on the target node a resulting in a set of constants
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Bia, Aia,t;4,0;4 that depend only on the variable node, reducing the number of con-

stants updated at each step.
Define

A;;A:Ni_l ng H (4" iB—b — Z Ry H ]B%b"i_ )jB—)b)

bEDIA  jBEOb\iA bediA\a  jBEID
(1.14)

Since Aja_sq — Aija ~ O(N'P), we may freely replace A;a . by A;4 and disregard the

error terms. Next, define

t ~1
Biy = N(p 1)/2 Z St H UjB—b> (1'15)

bediA  jBeOb\iA

and define the correction term by

1 "
tA—a — BfA BzA—m = ms’a H UE'B—MI’
jB€da\tA

6B!

We also need to define statistics ;4 and ;4 that do not depend on a target variable.
Define at, = f(AL}, Biy!) and 6%, = 8%]“(14’;1, B!1Y). The correction term for the

mean is
~1 ~1 ~1 t—1 t—1 t—1 t—1 t—1 t—1 t—1 t—1
5uiA—>a = UjA=UjA5q — f(AzA ’BiA )_f(AzA—nz’ BZA—m) - f(AzA 7Bz‘A )_f(AzA ’BZA—m) +E.

The last equality uses the fact that the AE LAl ~ O(N'"P). Using the identity

1A—a
BfAim = 5Bt 1_ 5BfAim, we can consider the function f(AfAl, BfAim) as a function
of B!, ., and expand to linear order about B!, ., to get
0
- t—1 pt—1 t—1 pt—1 t—1 pt—1y pt—1 t—1
Sl = PG BY - ((FAGL BN - Sp IR BB - BAL,))
9 1 1 1 t—1
~ 3B (A2 Bia )(Bix' — Bizl,,)
- 1 at=l
- UiA NP-1)/2 Sa H UiB—a (116)

jB€eda\iA
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We need only expand to linear order because all quadratic terms are of order O(N'~P)

PN R | -1
and can be neglected. Next, write Uip ., =Ujp — 5ujB_m to get

1 N N i1
No-1)/2 H UiB—a = NGp-1)/2 H (U —0tp ,,) = No-1)/2 H Ujp +E.
jB€da\iA jBeda\iA jB€eda\iA

Substituting this into equation ([1.16|) gives

_ . 1 g
6U§A—>a = UfAmSa H 'U/EAl. (117)
jBeda\iA

To remove the dependence of B!, on the factor node through the terms ﬂz B_sp» recall

that ﬁ§‘3—>b = ﬁ;B - 5113»B_>b. Substituting this into (1.15) gives

1
t ~t ~t
Biy = No-1/2 E Sb | | (Uj - 5“;'3»1;)
bEiA  jBeOb\iA

:mz&’ H ip — Z St H tpe | + €.

bediA jBEdb\iA jBEdb\iA kCEOb\{iA,jB}

Next, substituting the expression (1.17)) for 5@; By gives

1 ! .
t st Uia 2 At b i1
Bia= No-1)/2 Z St H UjB™ Np—1 Z SijBeab\iAUJB H UgcUyc -
bediA  jBEAb\iA bediA kCeob\[iA,jB)}

The second term in the preceding expression is called the Onsager correction term and
corrects for the difference between the mean-field approximation where one sums over
all b € 0iA and the original cavity field where one sums over b € 9iA \ a. This term is
closely related to the TAP equation for spin glasses and decouples the iterations of the
algorithm. The original BP algorithm is guaranteed to converge to the true marginal
distributions if the underlying graph is a tree. In the case of a tree graph, the messages
never backtrack. The graph for spiked tensors is quite loopy, and the Onsager term

corrects for backtracking caused by these loops.
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All that is left is to remove the dependence of A!, on the target nodes. Recall that

Sy = 7=9(T3, Up) = B*Ty,.

ou Up=0

Therefore, taking expectation with respect to the posterior distribution, one sees that
EPSb2 = 527

where Ep denotes expectation with respect to the posterior. Then, since

82

5029 + 55 =—B>+ 53,

Up=0

Ry = (Ty, Up)

we see that Ep Ry = 0. The quantities S, and Ry, are self-averaging, so replacing Sg and
Ry, in equation (1.14) by the averages gives

]B—>b
bE@zA ]Beab\zA

BT Nt
= Np—1 H Z(UJB)

B#A j=1

Notice that Af, does not actually depend on the variable node iA. Because of this, we
may define
BT S a2
= Np—l H Z(UJB)
B#A j=1

A similar computation for the Onsager correction term gives

Atl

1A ~t N
S8 > g I ek

beazA jBEOL\iA  kCEAb\{iAjB}

— At 1 5 Z Z H az]fcc,&zlfqol

be&A JBEb\iA kCeE)b\{iA,jB}

N
AfAlNﬂp ZZJ]B H (Zﬁicﬂic)
=1

B£A j C+#A,B
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Finally, symmetry between modes of the tensor gives the simplest version of AMP:

p—2

2 2 N N

gt B S T it il _-1F Sot| [ Satart]  a
T N(p_l)/2 2,22,--40p 1 ip Np—1 J 779 %

i< <ip j=1 j=1

—1

t 62 a tat ’
A= Ut

J=1

al~t =il + (1 - N f(A, B;)

d

At—1 ¢
=M, + (1= N —=f(A, B)).
O-Z UZ ( )dB (? )

The parameter A € [0,1) is a damping constant that controls the step-size at each
iteration. Setting A = 0 gives the straightforward AMP which can sometimes oscillate
around a fixed value instead of converging. Setting A > 0 helps avoid this behavior.
Other damping schemes may also be considered, but this is the most straightforward.
The performance of AMP is generally analyzed by studying the overlap between the

estimator and the ground truth, defined as
1
i=1
The updates to this quantity are the state evolution equations

db
Mt = g2(Mtypt (1.18)

d NP .
M"Y =R, ,, [ log Z(M?, Mtug + (M2 2)ug

with ug the ground truth and z ~ A(0,1). The expectation is with respect to both the
Gaussian random variable z as well as the distribution of the ground truth. The state
evolution equations are derived from the AMP algorithm by computing updates for the
quantity M*. See [16] for a careful derivation of the state evolution equations.

AMP converges to a stationary point of the state evolution equations. When the
expected value of the signal prior is zero, zero is a fixed point of the stationary equations
meaning that AMP may converge to a solution 4 such that the overlap of @ and the true

signal wug is zero, so the estimate is completely uninformative. The value . of Theorem
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[is the border between the hard and impossible regions, and, assuming 8 > 3., whether

or not zero is a stable fixed point determines whether one is in the easy or hard region.
Denote the transition between the easy and hard regions by 84.

As an example, consider the sparse Rademacher prior (which is the Rademacher

prior when p =1). A fixed point of the state evolution equations ([1.18)) satisfies

ﬁMp_l/Q 1
z —
N SN ——

—1/2
COSh(BQMp*l_A'_%Z

M = pE, tanh (62M”1 +

)

For the matrix case with Rademacher prior (p = 2, p = 1), this simplifies to
M = E, tanh(5*M + SV Mz).
Cleary M = 0 is a fixed point. Gaussian integration by parts yields

%Ez tanh(82M + SV Mz) = B2
Thus the fixed point M = 0 is stable for 3 < 1, so B4;y—1. This means that the easy
region is # > 1. It is well known that in this setting, 5. = 1, so in fact for the matrix
case with Rademacher prior, as mentioned above, no hard phase exists. The matrix
case with sparse Rademacher prior exhibits a phase transition in p. For large enough p,
zero is the only stable solution of the state evolution equation and also 34,5 = ., so the
performance of AMP is similar to the Rademacher case where there is no hard phase.
For smaller p, there are multiple stable fixed points of the state evolution equations and
additionally 4,4 > B¢, so a hard phase exists. See [I5] for a detailed discussion of the
sparse Rademacher matrix case.

When p > 3 and the spike prior has mean zero, zero is a stable fixed point of the state
evolution equations for all 8. For example, in the Rademacher case, it is straightforward

to compute that

d 21 p—1 (p—1)/2 B
dMEZ tanh(8°MP™" + M z) o 0.

This means there is no easy region for spike recovery by AMP in the tensor case.
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In Figure we compare the performance of AMP for the Rademacher prior in
the case of p =2 and p = 3 when AMP is initialized at an ‘uninformative’ vector that
has no correlation with the ground truth H For the Rademacher prior, there are two
fixed points of AMP, one with low error that has mean square error less than 1, and
one with high error with mean square error equal to 1. For p = 2 and 8 < 1, AMP
always converges to the high-error fixed point. However, for § > 1, as 8 grows, AMP
converges to the low-error solution more frequently. In stark contrast, for p = 3, AMP

never converges to the high-error solution, regardless of the value of 3.

p=2

p=3, Uni
!

e

Average MSE
o
5
-
Average MSE

Wil l 02k

Ui
e,
"
. . . . L YAA A . . I I
) 05 1 15 2 25 3 0 05 1 15 2 25 3

Figure 1.2: Average mean-square error for spike recovery by AMP for N = 50 and 50
trials. For p = 2 and p = 3 we run 50 trials of AMP and plot the averaged mean square
error for each values of 5 between 0 and 3 in increments of .01. For each trial, we
initialize u) ~ N(0,1). This is an ‘uninformative’ initialization that has no correlation
with the ground truth. The plot on the left is for p = 2 and clearly shows the phase
transition at § = 1. The plot on the right is for p = 3. For p = 3, AMP always converges
to the high-error fixed point.

In Figure we show some results for AMP for the spiked tensor with Rademacher
prior and p = 3 initialized at a vector u° that is correlated with the ground truth vector.
For each run of AMP, we initialize v = u; + N(0,.01), where u = (u1,...,uy) is the
ground truth. As [ surpasses the critical threshold 5. = 1.535, some runs of AMP
converge to the low-error fixed point. For each value of 8 € [0, 3] at increments of .01,

we run AMP until we achieve 20 convergent runs. As [ increases, more of the runs

!Code is available at https://github.com/mchandschy/UMN_Phd_Thesis_AMP


https://github.com/mchandschy/UMN_Phd_Thesis_AMP
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oscillate and do not converge, but the percentage of runs that converge to the high-

error fixed point goes to zero. Figure shows the average mean square error across

the 20 convergent runs, the total number of runs performed, and the percentage of runs

converging to the low- and high- error fixed points. We perform all runs with A = 0.

p=§s

1 T \ i W Taw 450 p=3, ion, Total Number of Runs
0o} VMW f\ | | | '
o5l M\‘\J\\ 400 - ”
o7 W\tn “l | |
ol W 300 |- M W ‘ “VML
u H Y WMM |
. g
W] e ik
e il
03f \A\J\\ =T W\"
02 M ] 100 I |“w
iw‘ {\ ‘(‘Hv I
0.1 b \“"“v;‘ 50 ,A,w\r\f“ . \‘
0.5 1 175 2 25 3 D0 0.5 1 1‘.75 2 25 3
p=3, ion, Low Error Runs - o=, : mv ializaton, High Erro Runs
1 il | HI
10 (HL'NI.
" I,
8- nor ‘ V\‘HH’VL
57t 5 60 V ‘W“L‘ﬁ
i \ P 2 V"‘V\lh \‘
5h ‘ £ ol w W
| ” /‘ f °l ‘Mhm
| W \“a“‘w I
2+ ‘ ‘ ol !
it ‘ ‘ ‘ ‘“ i \ i I ‘ , ‘ ‘ ‘ fendy
05 1 ;.s 05 1 15 2 25 3

Figure 1.3: AMP for N = 50 with informative initialization. For each value of (3, we
run AMP until we achieve 20 convergent runs. The top left plot shows the average
mean square error over the 20 convergent runs. The top right plot shows the total
number of runs performed for each value of 5. The bottom left and bottom right plots,
respectively, show the percentage of runs that converge to the low-error solution and
the percentage of runs that converge to the high-error solution.



Chapter 2
Pure p-Spin Models

This chapter introduces the mean field spin glass models related to the spike detection
problem and explains how these models relate to the total variation distance between
the spiked and unspiked random tensors. Section [2.2]introduces the scalar-valued p-spin
model corresponding to the single-spike case, and Section introduces the vector-
valued p-spin model corresponding to the case of multiple spikes. In Section[2.4] Lemmas
and [2| relate the free energy of these spin glass models to the total variation distance
between the spiked and un-spiked random tensors. Finally, Section outlines how the
results about the spin-glass models are used to prove Theorems and

2.1 A Brief History of Spin Glasses

In the late 1950s, physicists began to study the magnetic resonance of alloys composed
of ions in non-magnetic metal in an effort to study magnetic interactions between the
ions [I7]. In studies of manganese ions in non-magnetic copper, Owen, Browne, Knight,
and Kittel [18] noticed that alloys composed of .1-10% manganese exhibited anomalous
behavior at low temperatures. Observations of the specific heat - the amount of heat
required to raise the temperature of a unit mass of material by one degree Celcius -
suggested a magnetic phase transition. Below a critical temperature, the magnetic spins
froze in random directions rather than settling into a more orderly ferromagnetic or anti-
ferromagnetic configuration [19, 20]. Inspired by this disordered magnetic structure,

these alloys came to be known as ‘classic spin glasses;” the name is an analogy to the

25
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disordered molecular structure of a glass compared to the regular molecular structure
of a crystal.

The mathematical study of spin glasses began with the insight by Edwards and
Anderson [21] to model the interactions between the ions by the random Heisenberg
model. In this model, known as the Edwards-Anderson (EA) spin glass model, Ising
spins o1,...,0n € {+1,—1} are situated on a lattice where spin o; is an assignment
of the value +1 or —1 to site 7. Interactions between spins at neighboring sites on the
lattice are modeled by independent standard Gaussians, where g;; ~ N(0,1) models the
interaction between the spins at sites ¢ and j. A choice of g; = +1 or o; = —1 for each
site on the lattice is called a spin configuration. Given a spin configuration, the energy
of the system is given by the Hamiltonian Z<Z-j> gijoioj. The notation (i, j) indicates
that the sum is taken only over neighboring sites on the lattice.

In the Edwards-Anderson model, the interaction between two spins depends on the
distance between them: two spins interact only if they are neighbors. The EA model and
other distance-dependent models are difficult to analyze, which led to the introduction
of the so-called ‘infinite range’ models in which distance is ignored. The Sherrington-
Kirkpatrick (SK) model for spin-glasses, originally formulated in [22], generalizes the
EA model to an infinite range model by instead summing over all pairs of sites. The
SK model is one of the most well-studied and well-understood spin glass models. For
an in depth review of the SK model, see [23| 24, 25]. The models studied here are an
extension of the SK model, where spins take on values in a bounded subset of R and

the sum is over all interactions between sets of p spins.

2.2 The Scalar-Valued p-Spin Model

Recall the symmetric random tensor W defined in equation . Recall also the prob-
ability space (A,p) from which the entries of the vector u are drawn. Given a spin
configuration o = (o71,...,0n5) € AY, the Hamiltonian of the scalar-valued pure p-spin
model is

Xn(o) = ; Z Yii,.iyCiy - Olp = ;<Y, a®p>.

N-1)/2 i N-1)/2
<i1,e0ip<
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By the symmetry of the Hamiltonian, one may replace Y by W to get Xy(o) =
WG/V, o®P). Let o!,0? denote two different spin configurations. The Hamilto-

nian Xy (o) is a Gaussian process indexed by A" with covariance structure
EXn (o) Xn(0%) = N(R(o", o))",

where R(c',0?) is the overlap between configurations o', 02 defined as

N
1
R(o',0%) = N Z olo?. (2.1)
i=1

Define the normalized Hamiltonian at inverse temperature 8 by

2
Hy (o) = Xn(0) — B?NR(UI,O'Q)I). (2.2)

It is normalized in the sense that

Eefinvs(0) = 1.

The Hamiltonian induces a natural probability measure on the space A" known as
the Gibbs measure and defined by

elns ,u®N(dU)

Givalo) = — —

The normalizing constant Zy g, called the partition function, is

Zn g :/ eHNﬁ(")u(@N(da).
AN

Let (-)g denote expectation with respect to the Gibbs measure. At larger values
of B (low temperature), the Gibbs measure concentrates on spin configurations o that
maximize Hy g(o). In contrast, smaller values of  (high temperature) do not amplify
the differences between values of Hy g(o) for different configurations o. Consequently,
at high temperatures, sampling from the Gibbs measure is likely to produce common,

as opposed to large, values of Hy(0o).
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The free energy associated to Hy g is

1

Fn(B) N

log ZN,,B-

Denote the thermodynamic limit of the free energy by F'(f3):

F(p) = lim Fy(B).

N—oo

In Chapter [4] it is shown that for every 8 > 0 this limit exists and is non-random. For
all N > 1 and g8 > 0, Jensen’s inequality gives

EFn(B) < 0.

Therefore, taking the limit as N — oo shows that F(3) < 0 for all 5 > 0. Define the

high-temperature regime of the scalar-valued model by

R={B[F(B) =0},

and define 5. = supR. Proposition [1] states that the high-temperature regime is the
interval R = (0, ;), the same set of parameters given in Theorem (1| for which detection

is impossible.

Proposition 1. If p > 2, then R = (0,3.). Also, for § > 0, f € R if and only if
SUPye(0,v.] Fﬁ (’U) < 0.

The following two results describe the behavior of the scalar-valued model in the
high-temperature regime. Theorem [5| states that in the high-temperature regime the
overlap of two spin configurations o', 02 sampled according to the Gibbs measure con-
centrates at 0, and Proposition gives control of the fluctuation of the free energy Fy(3)

in the high temperature regime. The two results are used together to prove Theorem

Theorem 5. Forp > 2, m € N and 0 < 8 < fB., there exists a constant K depending

only on p,m, 3 such that
K

E<\R(01702)|2m>5 < N7

for all s € [0, 5] and all N > 1.
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Proposition 2. For p > 2 and 0 < 8 < f3. there exists a constant K depending only
on p, 8 such that

K
P(‘FN(B)‘ Z& < W

forall £ >0, N > 1.

2.3 The Vector-Valued p-Spin Model

Recall the probability spaces (Aq,pu1),..., (Ag, k) from which the entries of vectors

u(1),...,u(k), respectively, are drawn. Define
) k k
(1) = (H e 11 Ar) .
r=1 r=1

Recall also SNR vector of the spiked tensor with multiple spikes, 8 = (B41,...,B)-
A spin configuration & € AV is a matrix whose rows are scalar-valued spins o(1) €
AV o(k) e AY.

For each 1 < r < k, the pure, scalar-valued p-spin model is

1

= W<Y’ a(r)®P).

Xn(o(r))

The normalized vector-valued Hamiltonian is

1 u 57'6 /
Hy 5(0) = N1z Z/BT‘XN(O-(T)) - Z “NR(o(r),a(r'))P.
r=1

2
1<rnr’'<k

The Gibbs measure corresponding to the vector-valued Hamiltonian is

Hy 5(0) 7 QN ( 3=
e VAT e (do)
Gy plo) =
N,B ZN,B
with partition function
Zyjg= / v @ N (d7).
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The associated free energy is

- 1
Fyn(B) = N log Zy 5-

Define F() = limy_00 Fn(8). When p is even, Panchenko [26] shows that this limit
exists for the pure p-spin model with vector spins, which can be extended to the present
case using an argument similar to the proof of Proposition @l When &k = 1, the limit
exists for odd p, but it is an open question whether it exists for odd p and k > 1.

As in the scalar-valued case, an application of Jensen’s inequality to EFx () shows

that F'(8) < 0. Define the high-temperature regime of the vector-valued model by
R={B|F(B)=0}

For 1 < r < k, let B,. be the critical value separating the high-temperature and
low-temperature regimes of the marginal scalar-valued model Hy g()(co(r)). Theorem
|§| states that the high-temperature regime R is the product of the high-temperature
regimes of these marginal systems. In this region, the effect of the cross-overlap terms
R(o(r),o(r"))P is negligible and the k marginal systems Hy g, (c(r)) act like independent

systems.
Theorem 6. Forp >3, R =(0,51,) x -+ x (0, Bk.c).

To prove Theorem [6 we must show that the cross-overlap terms R(o(r), o (r'))P
with 7 # 1’ concentrate at zero. This result is given in Section which presents the
proof of Theorem [6] An earlier version of the proof of Theorem [3| required versions of
Theorem [5| and Proposition [2]to control the overlaps and free energy fluctuation, stated
as Theorem [7] and Proposition [3] below. These results are unnecessary for the proof
method presented here, but are still included as interesting results in the study of spin

glasses.

Theorem 7. Assume that p > 2 is even, m € N and 8 = (B1, ..., Bk) satisfies 0 < B, <
Bre for all 1 <r < k. Then there exists a constant K > 0 depending only k,p, m, and
B such that for any 1 <r <k and s € [0,1]

K

E([R(c" (), 0*(")*") 5 < 5
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for all N > 1.

Proposition 3. For p > 2 and 8 as in Theorem [7] there exists a constant K > 0
depending only on k, p, B such that for any ¢ > 0

= K
P (‘FN(ﬁ)‘ > Z) < W

for all N > 1.

2.4 Total Variation Distance

Chapter|[l] gave an interpretation of total variation distance in terms of the sum of Type
I and Type II errors of a statistical hypothesis test. The present section relates total
variation distance to the likelihood ratio test and the free energy of the scalar- and
vector-valued spin glasses in Lemmas [1] and [2, respectively.

Lemma [l gives a formula in terms of the ratio of the densities of T and W or Ty
and W. The result is [9, Lemma 2], but the proof is reproduced here for completeness.
In Lemma [2] the connections to spin-glasses becomes clear. The ratio of the densities
in Lemma [1]is N Fy () in the case of a single spike and N Fy () in the case of multiple
spikes.

Lemma 1. Suppose U,V are two N-dimensional random vectors with densities fy, fv,

respectively, with fiy # 0 and fy # 0 almost everywhere. Then

= [ o(8 <o) [ (5 )

Proof. First,

iUV =5 [ 19v) = fo@lde = [ (i) — fue)de

To see the second equality, simply note that

3 L vt~ sutayas = 5 ( [ v ondz+ [ (ol - Fr(oi).
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and write

/fU>fv (fU(x> - fV(x))dx N (1 - /fU<fV fU(x)dx) - (1 N /fU<fV fV(95>d90>
= /f ) = ot

To see the first equality, define A = {z | fy(z) < fy(x)}. Then, for any measurable
set B,

[P(V € B)— P(UU € B)| = /B (fr(z) — fu(z))de

/ (v (@) — fule))de + / (v (@) — fu(e))da
BNA BNAc

< max { b

This inequality holds because, by the definition of the set A, the first integral is positive

[ v = s | [ (vl fotais| |
— max{|P(V € A) — P(U € A)|, |P(U € A%) — P(V € A9)|}
=|P(VeA) —PU e A).

| (@)~ fota)da].
BNA

/ (v (@) — fule))de
BNAc¢

and the second is negative. Continuing,

|mv6m—PweBngmm{

Thus dry (U, V) = |P(V € A) — P(U € A)|. Finally,
IP(V € 4) - P(U € A)| = /A (fr(z) — fuo(@))dz
3 ([ ) - p@nas+1- [ jows-1+ [ fv(ff»‘)dfv>
J vt = futands + [ (Guterde ~ ois)
A Ac

() - fU<a:>|dx) |
RN
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To finish the proof,

[ (<)o [ Lo
Lo o
- /.. 1;32:3« (1 - ?U?é?) fulrydr
= (fv(r) = fu(r))dr
Joen

This shows the first equality of the lemma. For the second equality, simply switch the
roles of U, V.

O

Lemma 2. For any 3 € (0,00) and 8 € (0,00)* the total variation distances can be

written as

and

Proof. The Gaussian random tensor W has density fi(w) = & exp(—3(w,w)). Here
C' is a normalizing constant whose specific value is not important. For any Borel mea-

surable set A,

k

- Eu/ 1 k Jw (w)dw,
Aim Zr:l BT'U«(T)®17

where E,, denotes expectation with respect to the randomness in u(1),...,u(k) only,

and Py denotes probability with respect to fy(w) only. Performing the change of
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variables w — w — W Z’::I Bru(r)®P and then using Fubini’s theorem to change

the order of integration gives
1 k
A r=1
1 k
= | Eufw <w - Z 6Tu(r)®p> dw.
/A N-1)/2 -
Therefore
1 k
_ ®
fr.(w) = Eufw <w T NG-D2 Zl Bru(r) p)

k k
— 1 1 1 Xp 1 ®p
Tt <_2 <w = N7 2 A0 = s 0 Bt

1
2Np—1

S BB ()P, u(r) o)

k
1
_ ®
= fW(w)Eu exp m Z 67- <w, u(’)") p> —
r=1 1<rr’<k

— fiv(w) [ D ),

Since fi(w) # 0 almost everywhere, dividing by fy(w) and taking the log gives
log(fr,, (w)/ fw (w)) = NFn(3). Plugging this in to Lemma |1 gives

1
dTv(VV, Tk) :/0 P <FN(,3) < 10]%]$> dzx.

The expression for total variation distance in the single-spike case comes from using

k =1 in the preceding argument. O

2.5 Structure of the Proofs of Theorems [1}, 2, [3, and

The remainder of the thesis is devoted to proving Theorems and 4l Chapter
presents the proofs of Theorems and [] assuming the results of the present
chapter. It is clear from the representation of the total variation distance given in
Lemma [2| that to solve the detection problem it is necessary to study the behavior of

the free energies Fiy(3) and Fy(3). By Proposition |1} the high-temperature region of
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the scalar-valued spin glass is the interval (0, ;). Proposition [2/ bounds the fluctuations
of the free energy Fx () for 8 in this interval. This result, combined with Lemma [2} is
used to prove Theorem [I} To prove Theorem [3] the free energy of the vector-valued spin
glass is related to the free energies of the marginal scalar-valued systems, and then the
proof proceeds in a manner identical to that of Theorem |1 Theorem [2] follows almost
immediately from Proposition

Chapter [4] builds the theory and results needed to prove the structure of the high-
temperature regimes of the scalar- and vector-valued models as well as the concentration
of overlaps used to prove Propositions [2] and [8] The key result of Chapter [ is a cavity
method to control the moments of the spin overlaps. For many models, including the SK
model, the cavity method only works in a small subset of the high-temperature regime;
however, the cavity method presented here holds in the entirety of the high-temperature

regime for both the scalar- and vector-valued p-spin models.



Chapter 3

Proofs of Detection and Recovery
Results

This chapter presents the proofs of Theorems Bl and [4 the results on the de-
tection problem for a single spike, a method to compute the critical SNR, the result
for the detection of multiple spikes, and recovery by the minimum mean square error,
respectively. These proofs rely on the results of Sections and which control the
fluctuations of the free energies of the scalar- and vector-valued p-spin models. The

present chapter assumes that these results hold.

3.1 Detection with a Single Spike: Proofs of Theorems
and [2

Theorem [I] states that detection is not possible when 0 < 8 < (., and detection is
possible when 8 > (.. The proof that detection is impossible for 5 € [0, .) relies
on the fact that the high-temperature regime of the scalar-valued p-spin model is the
interval (0, 8.) and the behavior of the free energy Fn (/) for 3 in this set. The proof
that detection is possible when 8 > . depends on the behavior of the free energy and

a simple application of the dominated convergence theorem.

Proof. (Theorem (1) Recall that the high-temperature regime of the spin glass Hy (o)
is defined as R = {# > 0 | F(8) = 0}, and f. = supR. By Proposition |l R = [0, 5.).

36
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First suppose that 5 € R, so that F'(8) = 0. From Lemma the total variation distance
between W and T is

dry (W, T) = /01 P <FN(B) < 1o]gvx> dz.

Performing the change of variables y = —log x gives

dry (W, T) = /OOO P (FN(ﬁ) < ;Vy) e Vdy < /Ooo P (FN(B) < ;ﬁ’) dy.

The inequality holds since the integrand is positive and e™¥ <1 for all 0 < y < oo.

For any € > 0, splitting the right-most integral into two pieces at € gives

avwr) < [ p (FN</3> }") a+ [P (FNw) < jvy) dy

/dy+/ |FN |>—)dy
—s+/€ <|FN( )l >%) e Vdy.

Since 0 < 8 < B, by Proposition [2, there exists a constant K > 0 depending only on
p, 8 such that for all / > 0 and all N > 1,

K

P(|FEn(B)] > ) < AN

Therefore,

K 1 K

Choose € = N_p%z so that
1+ K

N T
Taking N — oo shows that limy_oo dry (W, T) = 0, so W, T are indistinguishable and

dry (W, T) <

detection is impossible.

Next consider f > (.. Since f € R, Fn(8) < 0. Recall that Fx(8) — F(5)
log x
N

almost surely, therefore Fn(5) — — F(f) almost surely for any x > 0. Almost sure
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convergence implies convergence in distribution, therefore

Jim P (FN(,B) - 10]%795 < 0) = P(F(B) < 0) = 1.

The dominated convergence theorem allows the interchange of the limit and the integral

SO
lim dpy(W,T) = 1 ‘p(r (8) - %87 ) 4
im = lim — -
N—oo v ’ N—oo 0 N N
1
log
= lim P(F — 0)d
A Ngnoo < N(B) N < > v
=1.
Thus W, T are distinguishable and detection is possible. ]

Theorem [2| follows directly from Proposition |1, which gives an alternate characteri-

zation of the high-temperature regime in terms of the auxiliary function I'p(v).

Proof. (Theorem [2) Suppose, for the sake of contradiction, that sup,ejg,,I's.(v) <
0. Since I'g(v) is continuous in f3, it is therefore possible to find 8 > f. such that
SUPyc(0,0,] I'5(v) < 0. By Proposition I} this means 8 € R, which contradicts the
maximality of fe. O

3.2 Detection with Multiple Spikes: Proof of Theorem 3

Theorem [3| states that for a random tensor with multiple spikes, detection is possible
when the SNR for at least one of the spikes exceeds the critical threshold for the cor-
responding single-spike tensor. The proof relies on Lemma [3| a version of the triangle
inequality for total variation distance that bounds dpy (W, T)) by the sum of the total
variation distances between W and the single-spike tensors. Then it is possible to use
Proposition [2] and the arguments in the proof of Theorem [I| to control each individual

single-spike total variation distance.

Lemma 3. Assume that Y7, Y5 are independent random p-tensors which are also inde-
pendent of W. Then dTv(VV, W+Y+ 3/2) < dTv(VV, W + Yl) + dTv(W/, W + }/2)
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Proof. From the triangle inequality,

dry (W, W + Y1 + Ya) :sip\P(WeA)—P(W—l—Yl—i—Yg € A)
:sgp|P(WeA)—P(W+Y1eA)+P(W+Y1eA)—P(W+Y1+Y26A)|
gsgp|P(WeA)—P(W+Y1 € A)]
+Sjp\P(W+Y1GA)—P(W+Y1+YQ€A)]

=dry(W,W + Y1) +dry(W + Y1, W + Y1 + Y2).
Since Y7 and Y5 are independent,

dryW+Y1,W+Y1+Y,) = sB‘pﬂEyl(P(W EA-Y))-PW+Yoe A—Y1))|
§Eylsgp|P(W€A—Y1)—P(W—I—Y2 €eA-Y)|
< Ey, sgp|P(W €cA)—P(W+Yye A
= Slj.lp‘P(W €A)—P(W+Y,e A

= dry (W, W +Y3).

O

A previous version of the proof of Theorem [3| controlled the fluctuations of free
energy Fy(B3) in the high-temperature regime using Proposition [3| in much the same
way that Proposition [2] is used in the proof of Theorem [l however, Lemma [3| renders
this argument unnecessary. Theorem [7] and Proposition [3] are still interesting in the
study of spin glasses, and are still included here even though they are not necessary to

solve the detection problem.

Proof. (Theorem @ First assume that 8 € (0,81,c) X --+ x (0, Bge). For 1 <r <k,

define single spike models

Br

Tkﬂ« =W + 7N(p_1)/2u

(r)°.
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By Lemma [3]

k
dry (W, Ti) < dry (W, Te ).

r=1
Combining the claim of Proposition [2] and the arguments in the proof of Theorem
for each 1 < r < k there exist constants K, > 0 such that dpy (W, T},) < KT/N”%Q.

Therefore .

. . K,
< —_— =
Jim dry (W Ty) < lim ;_1 N 0,

so W, T} , are indistinguishable and detection is impossible.
Next assume that 3 & (0, B1.¢] x - -+ X (0, Be.c]- By TheoremlEI7 the high-temperature

regime is R = (0, 81,c) X -+ X (0, Br.), so F(B) < 0. Using the representation of total

variation distance in Lemma

lim dpy (W, T,) > li 'f/lP Fn(F) < %) g
N TV k) = B N N )

1 - log
> o
> /0 l}\g&fﬁ’ <FN(ﬂ) < )d:p

= /1 P(F(B) < 0)dx
0
=1

The second line uses Fatou’s lemma. Thus W, T}, are distinguishable and detection is

possible. O

3.3 Spike Recovery by MMSE: Proof of Theorem

In this section we prove Theorem [d] which states that recovery of the spike by the min-
imum mean square error estimator has the same phase transition as the spike detection
problem. The proof requires an auxiliary Hamiltonian and an auxiliary mean square
error. Lemma [ states several properties of the auxiliary mean square error, and these

properties are used to prove Theorem
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Fix an SNR vector 3 = (31, ..., ). For t > 0 define a new random tensor T(t) by

k
T(t) = W+ g D Brulr),
r=1

and define an auxiliary Hamiltonian

k
AHp (5) = Vi > Be{Tu(t), o(r)®P) — % > BBuNR(a(r),o(r))P.

(r—1)/2
N r=1 1<rr'<k

When ¢ = 1, the auxiliary Hamiltonian is the Hamiltonian Hy 5(¢) with disorder Y’
replaced by the random tensor Tj. Expanding T} (t), the auxiliary Hamiltonian can also

be written as

k
AHN,t(a):L’ZWZ@ma(T)@p)—g > BBuNR(a(r),o(r)P+t > BB NR(a(r),u(r))".

N(—
1<r,r'<k 1<r,r'<k

Let AFn+(f) denote the free energy of the auxiliary Hamiltonian and AGn; the as-

sociated Gibbs measure. Let (-)/* denote the corresponding Gibbs average. Note that

AFy,(B) = Fn(B).

A key component of the proof of Theorem [4]is the fact that the auxiliary Gibbs mea-
sure AGn is equal to the conditional distribution of (u(1),...,u(k)) given Ty(t). Let
E, denote the expected value in the randomness of u(1),...,u(k) only. Recall the den-
sity of the symmetric Gaussian tensor fi (w) = & exp(—3(w,w)). Since u(1), ..., u(k)

are independent of W, the conditional probability is
P((u(1),...,u(k)) € B | Ts(t) = w)
[ [ (w0 = /= S0 Bru)®) - Ly, iy
R Eu [fw (w— /= Sim Bru(r)er) |
Jpexw (v X Belw, 0 (0)) = £, B8N R(o(r), o () ) u*™ (d2)
S (i S w0 (r)#) = 55, BB NRlo(r), o)) 5N (do)

Taking w = Tj(t) gives AGn +(B).
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Define an auxiliary minimum mean square error by

2
= o1 A
MMSE}L\‘;(,B, t) = II%IH m Z (Z 6ruz1 uzp( ) 0i17---7ip>

1<it,ip<N r=1

where the minimum is taken over all random variables 6 generated by the sigma field
o(Ty(t)). When t = 1, we have MMSE4 (3,1) = MMSEy (). Lemma 4] below gives a
representation of MMSE4(5,t) in terms of the auxiliary free energy. Setting t = 1 and

using this representation will help prove Theorem [4]
Lemma 4. The following hold.

(i) EAFy(B,t) is a nondecreasing, nonnegative, and convex function of ¢.
d _
(i) MMSEN(B,t) = > BBvER(u(r), u(r'))? — 2 EAFy(B,1).

dt
1<rr’' <k
Proof. By Gaussian integration by parts, the derivative of EAFy(3,t) with respect to
t is
d
GEARVG = X s (- JEIRG (0,050 + BRG0P )

1<rr’'<k

Recall that AGn+(-) = P((u(1),...,u(k)) € - | Ti(t)). Therefore

E(R(o(r), u(r'))i! = E [E [(R(o(r), u(r'))")i" | Ti(t)]]
=E(R(0" (r),a*("))"){".

Plugging in to the derivative,

SEARN(B) =5 Y BBERENr), 26

dt
1<r,r’'<k

Note that the minimizer of MMSE4 (3,t) occurs at

k

—Zﬁr [, (r) iy (M T(B)] = D By -0, )i

r=1
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Therefore
_ 1 k ?
MMSE4 (3, 1) = ~ > (Z Brttiy (1) -+ iy (r) = Y Brlo, - ..al-p>;‘>
1<it,oip<N r=1 r=1
k
= Y BBy (ER(u(r),u(r’))? — 2B(R(u' (r), o* ("))} + E(R(c" (r), 0 ())"){")
ror/=1

k
= Y BeBe (ER(u(r), u(r))’ = 2E(R(0" (r), o> (r")"){')

rr/=1
k

= 3 BBER(u(r).ulr)) — 2 EAFN(B.0).
rr/=1

This completes the proof of part (ii).

To prove part (i), set 6;, =0 to get the upper bound for MMSE4 (5, )

.....

MMSE# (3, 1) Z BrBrER(u(r), u(r))".

ror/=1
Thus we must have
k
d
> BeBuER(u(r), u(r)” — 2 EAFN(B,1) Z BrBrER(u(r), u())",
ror/=1 ror/=1

so we can conclude that SEAFy(B,t) > 0. Therefore EAFy(3,t) is non-decreasing in
t. Tt is straightforward to compute that AFy(3,0) = 0; therefore, EAFN(j3,t) is non
negative for ¢ > 0.

Finally, if MMSE%(B,t) is non-increasing in ¢, then thAF ~(B,t) must be non-
decreasing in t and therefore EAFy (3, t) must be convex in t. To show that MMSE4 (3, t)

is non-increasing in ¢, note that

1
i) = meﬁr ®p+ﬁ
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Let W’ be an independent copy of W. For t' > t,

Iy CRE TS S o L Y LR
N (0 T NG 2T il

This is equal in distribution to %Tk(t) for any 0 < t < ¢/. Since W' and Ty(t') are

independent,
Elui, - -y, | Ti(t)] = Elui, -y, | Ti(t), W' = Elug, - - iy, | Te(t'), Th(t)).

Therefore

. 2
MMSEg(5,t) = Nr > E <Z Br (wiy - -uiy, — Elugy -y, | Te(t), Tk(t))>
v

Conditioning only on T} (t) instead of on T} (t) and Tj(t'), we are given less information,
so the estimate is not as good and the inequality holds. This concludes the proof of

part (i). O

3.3.1 Proof of Theorem [4]

We now turn to the proof of Theorem |4, The key tool is Lemma 4] (ii). We show that
when 3 € (0,81,) x -+ % (0, Bk.), in the limit %EAFN(B, 1) is equal to zero. Then an

application of the strong law of large numbers shows that

lim sup MMSE y () = lim sup MMSE4(3,1) = DMSE..
N—o0 N—oo
On the other hand, when 8 & (0,81.) x -+ X (0, Bk,c), we show that %EAFN(B, 1) is

strictly positive in the limit and consequently

lim sup MMSEy () < DMSE.

N—oo
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Recall that Lemma [I] gives two representations of the total variation distance between

random tensors U,V with densities fy, fy:

drv(U,V) =/01P<;582 <:c> dx:/01P<;ZEZ§ > i) da.

The result of Lemma [2] comes from setting U = T}, and V = W and using the first

expression above. Using the second expression gives

1
dpy (T, W) :/0 P <AFN(6, 1) > _101%[:5) dz.

Proof. (Theorem : We begin by proving statement (i) of Theorem Suppose f €
(0,B1,e) x -+ x (0, Bge). By Fatou’s Lemma,

o< [ timintp (AF (B.1) > — 287 4y < limin p(ar (B.1) > —95%Y 4o — limint dpy (Ty, W)
< ), tpmint P (AFN(B1) > 55 ) o < tginf |1 (AFV(A 1) > = ) = ik (T, W),
Theorem [3] guarantees that
lim dpy (T, W) = 0,
N—o00
so we must in fact have
- log z
liminf P ( AF 1 — = 1
im in ( N(B,1) > N) 0 (3.1)

for all « € [0, 1].
For ¢ > 0, define By(¢) = {AFn(B,1) < €}. By equation (3.1, for all ¢ > 0 we
have
limsup P(Bn(e)) = 1.

N—oo

Write

EAFN(B,1) = EAFN(B, )1y () + EAFN(3, )1py (o)
<e+ EAFN(B, ].)1BN(€)C.
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Applying Holder’s inequality yields

_ _ 1/2
EAFy(5,1) < e+ (BAFy (5, 1)) (BI3,,(.).)

=t + (EAFN(3,1)%)"? P(By(2) /2.

Since vector entries u;(r) all come from bounded sets, the quantity (EAFy (3, 1)2)1/ % is
bounded. We may therefore take the limsup on both sides above and then take ¢ — 0
to see that

limsupEAFN(B,1) < 0.

N—o0
By Lemma [ part (i), EAFx(f5,t) is non-negative, convex, and non-decreasing in ¢,
so for all ¢ € [0, 1],
Nliinoo EAFN(3,t) = 0.
Therefore,

lim diEAFN(B, t) = 0.

N—oo dt

By Lemma 4| part (ii),

d

MMSER (1) = > AeBvER(u(r),u(r))’ — 2 EAFN(F,t).
1<rr’'<k
Since the derivative is eqal to zero for all t € [0, 1],
lim sup MMSE () = lim sup MMSE# (5, 1)
N—oo N—oo
1
=limsup o 3 B AER(u(r). u(r))

1<rr’'<k

= lim sup % Z BT,BT/E Z Uiy (’r) Ce U, (T)uil (T’l) e Uip(T’)

N—o0

1<r;r’'<k 1<idy,...ip<N
1 i ’
= h]glj;lop N7 | Z E <Z Brugy (1) - - U, (r))
1<iy,...,ip<N r=1
= DMSE(B).

The last equality is by the strong law of large numbers. This proves statement (i).
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The key to prove statement (ii) is the fact that
liminf LEAF (B,1) >0
iminf — .
N—ooo dt NP
This, combined with the strong law of large numbers, will show that in the limit
limsupy_,., MMSE®X (3,1) < DMSE.

Suppose that 3 € (B1,c,00) X +++ X (Bge, 00). Define an interpolating Hamiltonian
and free energy by

IHN78(5') = HN’B((?) + s Z BrBr N R(o(r), U(r/))p

1<rr’' <k

and
IFN(B,s) = ;flog/exp (IHMB(&)) 1N (dz),

respectively. This Hamiltonian interpolates between the original Hamiltonian Hy 5(5)
when ¢ = 0 and the auxiliary Hamiltonian AHy 1(5) when ¢t = 1. Therefore I Fy(3,1) =
AFN(B,1) and IFn(B,0) = Fn(B). Note that IFy(j3,s) is convex in s, the proof of
which easily follows from an application of Holder’s inequality.

The derivative %EAF (B, t) was computed in the proof of Lemma using Gaussian
integration by parts, and the derivative %I Fy(B,s) is straightforward to compute.

Comparing these two derivitavies,

d = 1d > 1d _
_— = - — > _— .
thAFN(B, 1) QdSIFN(B’ 1) = 2d8EIFN(B7S) (3 2)

for all s € [0,1]. The inequality is by convexity. Since the function %EI Fy(B,s) is
continuous for s € [0, 1], it achieves its maximum on this interval. Therefore, from this
and equation the Lipschitz constants of the functions EIFy(3,s) are uniformly
bounded, and therefore the functions are equicontinuous. Thus, by the Arzela-Ascoli
Theorem, there exists a uniformly convergent subsequence EIFy, (3,s). Denote the
limit along this subsequence by IF(f3,s). Along the subsequence we also have

lim %EAFNH(B,I) =2 lim iEIFNn(B,l).

n—00 n—oo ds
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Since the functions EIFy (3, s) are convex in s, the function I1F(f, s) is also convex.
Since convex functions have at most countably many points of discontinuity, there exists

a point sg € (0,1) such that IF(3,so) is differentiable. Also, at this point,

lim iIEIF]\,(B, s0) = iIF(B, 50)- (3.3)

n—oo ds ds

Recall from Lemma {4 (i) that EAFy(3,1) > 0. By Theorem |§|7 /3 is not in the high-
temperature regime so
F(B) = limsupEFy(3) < 0.

N—oo

Since IFxn(B,1) = AFN(B,1) and IFy(5,0) = Fy(B), by the above observations we
have that

IF(B,0) = lim EIFy,(B,0) = limsupEFy(3) < 0 < lgninf]EAFN(B, 1) =IF(3,1).
n—,oo — 00

N—o0

Thus at sg we in fact have d%] F(j3,59) > 0. Combining this with equations (3.2 and
(3.3) gives

.. d =
l}\%ilof aEAFNﬁ, 1>0. (3.4)

Finally, Lemma [4] part (ii) states that

lim sup MMSE y(3) = lim sup MMSE#X (8, 1).

N—oo N—oo

Applying the law of large numbers to the right-hand side gives

_ d _
lim sup MMSE y (5) = DMSE —2lim inf = EAFy(5, 1) < DMSE.
—00

N—o0

The inequality is by equation ({3.4]). This proves part (ii) of Theorem O



Chapter 4

Overlap Concentration: Proofs of

Spin-Glass Results

Theorem [l relies on using Proposition [2] to bound the fluctuations of the free energy
Fx(B) in the high temperature regime R = (0, 5.). The bound of Proposition [2| requires
delicate control of the expected value of the Gibbs average of overlaps R(c',0?), and
the present chapter builds the machinery to achieve this control.

Section introduces the Parisi formula for the scalar-valued p-spin model, which
gives a formula for the limiting free energy F'(f). Computing the Parisi formula re-
quires minimizing a functional over a set of probability measures. In Section it is
shown that in the high-temperature regime, the optimal probability measure is a Dirac
measure. Also, it is shown that the auxiliary function I'y(v) is increasing in b, and these
two results are combined to prove Proposition

Section [4.5] presents the proofs of Theorem [5] and Proposition [2] Theorem [5] gives
a bound for the moments E(R(c!, 02)?™))5. Section presents a cavity argument to
prove this bound. The cavity method for the scalar- and vector-valued p-spin models
holds for the entire high-temperature regime, a stark contrast to the cavity method for
the Sherrington-Kirkpatrick model which only holds in a subset of the high-temperature
regime. In addition to a bound on the even moments, the proof of Theorem [5| relies
on a bound of E(I(|R(c!,6%)| > €))s. The bound is given in section using the

Guerra-Talagrand 1-replica symmetry breaking bound.

49
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Finally, Section [4.6] presents the proofs of Theorem [7] and Proposition [3] These
mainly follow the same steps as the proofs of Theorem [5| and Proposition |2, respec-
tively, with the added complication that they require control of the total overlap. In
addition to showing that the moments R(c'(r),02(r)) concentrate at zero, which is
a direct consequence of Theorem [5 it must also be shown that cross-overlap terms

R(ot(r),02(r")) concentrate at zero.

4.1 Parisi Formula

Define V = {u? | u € A}. For any v € V, denote by M, the set of all cumulative
distribution functions of probability measures on the interval [0,v]. For a € M, and
A € R, define the Parisi functional by

2 v
P N) = Ba(0,0,0) — ho— - / a(s)€" (s)sds,
0

where @3, (s, 2, A) : [0,v] x R x R is the weak solution to the PDE

625//

8sq)ﬁ,v,a = _?(83390@&11@ + a<3)(6xq)6,v,a)2)

with boundary condition

D340V, 2, ) = 10g/€wa+)\azu(da)'

The Parisi formula was first established for mixed even p-spin models with Ising
spins by Talagrand [27]. Panchenko extended this to the generalized SK models with
spins coming from bounded sets [28] and to the mixed even p-spin model with vector

spins [26]. In the present case, the Parisi formula states that

1
lim —1 BXN(@) BN (o) = inf o, \).
i e [ SEO ) = B Pl

Define
BvP
2

QB,U(Oé, /\) = Pﬁw(av )‘) -

The Parisi formula of Proposition @ is given in terms of the functionals Qg , which
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account for the normalizing term added to the Hamiltonian Hy ().

Proposition 4. (Parisi Formula) For any 8 > 0,

F(p)= lim Fn(B) = Supin£ Qpu(a, A).

N—o0 VEY @,

Proof. For any measurable set A C V define the free energy restricted to A by

1
Fn(B,A) = +log e @) =N (do).
N o:R(o,0)€A
For any 7 > 0 and v € V, define A, (v) = (v—mn,v+mn). For o such that R(o,0) € A, (v),
note that
B B

1 1
S log [ XN o) < Fy (8, 4,(0)) <~ (0 log [ XN (do),

From [28, Theorem 1], it is known that

lim lim

1
BXN(o) ,®N (4 inf P A
e o) = 11 s ,
740 NA)OON/O':R(O',O')EAW(U) # ( ) My,R A ( )

thus

lim lim E (8, Ag(v)) = inf Qg A).

Therefore, for any § > 0 there exists n(v), N (v) such that for N > N(v) and 0 < n < n(v)
F A — inf 0. 4.1
1PN (B, Ay(v) — inf Qe A)f < (4.1)

Note that the set of sets {A,(v) | v € V}, where for each v, the radius 7 is chosen
so that n < n(v), forms an open cover of V. Since V is bounded and any accumulation
point of V is contained in at least one set A,(v) by construction, we can pass to a finite
sub-cover {A4,(v;) | 1 < j < n} for V, the closure of V. This collection of sets is also a
cover of V.

Foreach 1 < j < n,

Fn (B, Ay(vj)) < Fn(B). (4.2)
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Also,

logn

1 n
Fn(B) < Nlogzlem NFx(B, Ay(v;)) <
p=

+ max Fy(f, Ay(vy)). (4.3)

1<j<n

logn

For N large enough, =%~ < 6. Rearranging equation H gives

inf - F A, (v; inf '
112X Qa,N) =0 < Fn(B, Ap(vj)) < ./\/lle;X]R Q(a, ) +0
Combining with equation (4.2)) to get a lower bound and equation (4.3) to get an upper

bound gives

inf Q(a,\) —0 < Fn(f) <25+ max inf Q(a, ).

vj xR lgjgn/\/luj xR

Finally, since the left-hand inequality holds for all 1 < j < n, we may take the maximum

over j to get

. s < T <1 < :
121;2(” MIUI;fo Q(a,\) — 0 < lmoréf Fn(B) < h]{/n_?;lop Fn(B) <26+ 11;1]@;{” Mlvr;fXR Q(a, A).

Since inf M, xR Q(a, \) is continuous in v, taking § — 0 gives the result.

4.2 Structure of R: Proof of Proposition

This section presents the proof of Proposition (I} a key result that states that the high-
temperature regime of the scalar-valued p-spin model takes the form of an interval,
R = [0, 5.). Two technical lemmas, presented in Subsection are needed. The first
lemma uses It6’s formula to compute the differential of vg(s) to show that this process
is a sub-martingale. It will follow that I'p(v) is increasing in b. The second lemma
computes the optimizers of the Parisi formula when 8 € R. In Subsection [£.2.2] these

results are combined to prove Proposition
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4.2.1 Two Technical Lemmas

Recall that

o g | U aZ(a b (9)u(da))”
() = e b () lda) |

where Z(a,t) = e*Bt=9°t/2 i5 a geometric Brownian motion and £(s) = s?/2. Recall also
that the auxiliary function for computing 8. is Tg(v) = [; £"(s)(ys(s) — s)ds. Lemma
shows that ~3(s) is strictly increasing in § and it follows directly that I'(v) is also

strictly increasing in .

Lemma 5. If 0 < § < 3’ then y3(s) < vg(s) for all s > 0.

Proof. Note that Z(a,0) = 1. Thus v5(0) = E ([ a,u(da))2 = 0 since we assume p is
centered. For j =0,1,2,3, set

A W2
gy(ta) = [ e (o).

Set X; = g1(t, By)? and Y; = go(t, B:)~!. Setting t = B¢/ (s) gives v5(s) = EX;Y;. O

Using It6’s formula to compute dX; gives

20B,
= (201091 + 910v291 + (0291)?) dt + 2910,91d B,
= —g1g3dt + 29192d By + g1gsdt + g3dt

= g%dt + 2g192dBy.

1
aX; = <leatgl + - (2918&91)) dt + 2910:91d B
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Also,
0, 1d2od -
dmz(—%?_%jﬁ_ag%&

95 2dz g§ 95
0, 1 (0w 0:90)? s

_ <_ o _ 2 ( 90 ol 930) )) dt — & N aB,
90 2 90 90 90

1 1 2
— Py 28 Iy I,

22 295 98 9

2
— g 9Lap,.
90 90

Using the product rule for It processes, d(XY;) = XidY; + Vid Xy + d( Xy, Yy), gives

2 g% g1 ~1/.2 2g%g2
d(X;Yy) = g1 | —5dt = =3dBy ) + g5 (92t +20192dBy) — = 5=di
90 90 95
4 2 2
2 2
- (ggj)+92_ 91292)dt+ (_Q;Jr 9192>dBt
90 90 90 90 90
7 ) 91 | 2019
=go<§—2) dt+<—§+ 12>dBt.
90 90 90 g0

Since the drift term is positive, the process X;Y; is a sub-martingale, meaning EX;Y; <
EXyYy for any 0 <t < t'.
If equality holds for some ¢t < t/, then

g 9 9 ?
0= EXt’Yt’ — EXtY% = / E qo <§ — ) ds.
t 90 90

It follows that we must have

2
0= g1 92
== - =,
90 90
or equivalently
B (L2S 2 B (L2S
faea sT T2 fa2€a sT T2
e
feaBS_ags feaBS_GQS

for all t < s < t'. Interpreting the above as a Gibbs average, we have (a)? = (a?). By
Jensen’s inequality, (a)? < (a2), with equality if and only if there is exactly one value

a € A. This gives a contradiction since we assume that there is more than one value in
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the set A. Therefore the equality is strict. Setting ¢t = B¢’ (s) shows that vg(s) is strictly
increasing in f.

The next lemma gives the optimizers of the Parisi formula when F(8) = 0. Recall
that v. = [a?u(da). Define a,, € My, by a,(s) =1 for s € [0,v]. Define
Bl 5% ()

A*:— =
2 2

Lemma 6. The following two statements hold:
(i) If v # v, then infy Qg (cy, A) < 0
(ii) If v = v, then inf) Qg (v, A) = 0 where the minimizer is given by A = A,.

If for some S > 0, the supremum over v € V in the Parisi formula occurs at v # v,

Lemma [f] (i) states that

FB) = (a,)\)ier.l/\f/lUxR Qsv(aA) < (ai,,,\)ig/fwva sl d) <0,
and therefore 8 ¢ R. Thus if 5 € R, then the supremum must occur at v, and in
this case Lemma |§| (i) says that it is enough to minimizer over all CDFs «, rather
than the all « € M,. Since a,(s) = 1 for all s € [0,v], this means that the Parisi
measure is a Dirac measure at zero. Since the Parisi measure gives the limiting overlap
distribution, Lemma [6] implies that the scalar-valued p-spin model follows our intuition
that in the high-temperature regime, the overlaps concentrate at a single value; in this
case the overlaps R(c!,0?) concentrate at zero. This is the first step toward proving

the concentration results formally stated in Theorem [5] and [7}

Proof. Take z ~ N(0,1). With a,, the Parisi PDE @3, can be solved using the Cole-
Hopf transform (see Appendix [A.3)) giving the Parisi functional

Ppw(aw, A) = 10gE/eﬁzma+)‘a2M(da — v — / ¢"(s)sds
2(

2 ,Up—l
zlog/eﬁp2 a?+Aa? wu(da) — v — Fp=1) 5 p.
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Therefore,

2 v —1 2 _ 1 2
iI;f Qs (0w, A) = inf <log/eﬁp2paz+m2u(da) — v — ﬁ(pQ)UP — @M’)

p2pvP—1 a2 2 p—1
= inf <log/e( ? H\) p(da) — v <ﬁ p;) +)\>> .

Set N = 2P0 2 v*1 |\ so that the above becomes

ir/{f Qg p(, A) = if\l/f <log/e)‘/a2u(da) - XU> .
Define F'(v,\) = log [ e)‘“ (da) — Av. Using Hoélder’s inequality gives

Fv,tA1 + (1 —t)A2) = log/et’\l‘ﬂe(l_t))‘?“?u(da) —thv— (1 —t)\v

< log <</ eAl“QM(da)>1/t (/ eAQGQM(da)>1/1_t> —tAiv — (1 = t)Agv
=t <log / eMa’y, )\w) +(1-1) <1og / e 1y(da) — )\gv>
t ).

= F(U,)\l) (1 —t) ’U,)\Q

Thus F(v, A) is convex in the argument A. The derivative of F' with respect to A is

2 a2
ONF (v, ) = f“— _v

f e/\a

Plugging in v = v*,

(I2 )\a
ONF (s, \) = ffeA / 2u(da).

To find the minimizer, note that
P (v..0) = [ utda) ~ [ ap(da) =

-1
s0 F(vy, \') is minimized at A’ = 0 which is equivalent to A = —%. This completes
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the proof of part (ii).
To prove part (i), notice that F(v,0) = log [ 1u(da) = logl = 0. Also, if v # v,

then 05\F'(v,0) # 0, and A = 0 is not a minimizer. Therefore we must have
irifF(v, A) <0
for v # v,. O

4.2.2 Proof of Proposition

Recall that Proposition (1| states that R = [0,5.) and that 8 € R if and only if
SUPye[0,v.] Fﬁ(’l)) < 0.

Proof. First suppose € R. Then, by definition, F(3) = 0. By Proposition
0= F(p) =supinf Og..(a, A).
By Lemma [0}, if v # v, then
1an£ Qpu(a, ) < ir){f Qpu(ay, A) <0,
so it must be the case that
F(8) = inf Qg ().

Again from Lemma [6] (v, , As) is a minimizer of the right-hand side above above, so

F(B) = Qp . (aw,; Ax).

Recall that

2 Vi
Qo (0, A2) = B, (0,0, 0) — 2 / a(s)E"(s)ds +
0

B%(p — 1)v¥
> PP~ )%

2
Since the boundary condition ®g,, (v,z, ) is convex, the map (a,\) € M,, x R —
Qp., (o, A) is convex. Set ag = (1 — ), + 0o and N\g = (1 — 0)A, + 0X for 6 € [0, 1].

By convexity, since (o, , A«) is a minimizer of Qg ,,, the derivative of Qg ,, (v, Ag) with
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respect to # as § — 0 from the right must be non-negative. Computing this derivative

yields

d
@Qﬁ,v* (ag, Ag)

2 Ve
- . /O &(s)(als) — . (8)) (7 (s) — )ds + ( [ antao) - ) A=)
2 Vi
=5 [ €60 —an ) 6sts) - s)ds.

Using the fact that a,,, =1 on [0, v, |, write

/0 £"(3)(a(5) — aw, (5))(73(s) — s)ds = / /O £(5) (v (5) — s)aldv)ds — /0 € (5)(y5(s) — 5)ds.

0

_ / N / () (4p(s) — )dsar(dv) — / () (4p(s) — s)ds
0 v 0

- / £(s)(75(s) — s)ds — / £"(3)(v3(s) — 5)ds
v 0

. /0 £(3)(73(s) — 5)ds

= —Ts(v).

Thus the optimality condition %Qﬁ,v*(a(;, Ao > 0 translates to I'g(v) < 0 for all

oo
v € [0, v4), or equivalently, sup,¢ (g, I's(v) < 0. The reverse direction is identical.

To show that R is an interval, recall from Lemma [5[ that I'g(v) is increasing in f.
By this and the preceding argument, if 3 € R then 8’ € R for all 0 < 8/ < (3 since

I'g(v) < I'g(v) for all v € [0, v,] which implies that

sup I'g(v) < sup T'g(v) <0.
vE[0,v4] vE[0,v4]

Since . = sup R, we must have sup,c(g,,1I's(v) > 0 for all 8 > .. Suppose that
SUPyefo,u.] I's.(v) < 0. Since I'g(v) is continuous in B, it is therefore possible to find
B' > B¢ such that sup,c(g,,) Ipr(v) < 0. Thus p° € R, which contradicts the maximality
of Bc. Therefore, R = (0, 8] and 3, is the largest 3 such that sup,cp,,  I's(v) =0. O
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4.3 Guerra Talagrand 1-RSB Bound and Overlap Concen-

tration

Theorem [5| states that for the vector-valued spin glass, the overlaps R(o!(r),o?(r))
concentrate at zero for spins o', 02 sampled from the Gibbs measure associated to the
vector-valued Hamiltonian. The first step towards this result is the Guerra-Talagrand
1-replica symmetry breaking bound which controls the free energy of two coupled copies
of the Hamiltonian Hy g(o).

Set M3(R) as the set of all real-valued 2 x 2 matrices with the metric

|V =V |lmax = max |V,.,.n — V! .

!
1</ <2 T

The inner product on this space is
(V, V) = ViV
‘?j

Given two spin configurations o', o2 define their overlap matrix by

Given any set A C My(R) such that all elements of A are positive semi-definite, write
‘[’ to mean the integral over the set {(o',0?) : R(c',06?) € A}. For any such A, define
the coupled free energy restricted to the set A by

CFN(B,A) = ]1]log/AeHN,B(”l)‘*‘HN,B(UQ)H@N(dal)M®N(do2). (4.4)

Recall that V = {v? | v € A} and M, is the set of all cumulative distribution
functions on the interval [0,v]. Fix v € V and fix vy € R such that vyp > 0 and

v Vo
Vo U

is positive semi-definite. This is satisfied when 0 < vy < v. Define a function 7" : [0, v] —

V.=
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M3 (R) by

11

[(1) (1)] s € [vg, V]

For any a € M, let ¥gy(s,x,\) be the weak solution to the following PDE for
(s,z,\) € [0,v) x R? x My(R):

[1 1] s € [0,vp)
T(s) =

625”

5 (Vg0 T) + a(TVE, VT))

OsWp v =~
with boundary condition
Vvl 3) =log [ 0000 (o)

Here, the gradient refers to the derivatives with respect to z = (x1,x2) only. The

existence of the solution gy, is shown in [29]. Define a Parisi functional

Par(ah) = Uara(0.0.3) = V) - 3 [ opsatoas+ [ opsaois).

The function T'(s) together with the CDF « play the role of the functional order pa-
rameter represting possible distributions for each entry of the overlap matrix R(c!, o2).

For 1 > 0 define
Ap(V) ={V" € May(R) | |[V" = V[max <1}

The Guerra-Talagrand bound of [30] states that if p is even, then for any (a,\) €
M, x Ma(R),

1
lim lim sup — log/ eﬁXN(”l)J“BXN(”Z)u@N(dal),LL@N(d02) < Pay(a,A).
N0 N—oo Ap(V)

Set Qs v(a,A) = Py (a,\) — 3%vP. Thus when p is even, the coupled free energy of
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equation (4.4) restricted to A,(V') is bounded in a similar way:

CFy(8, Ay (V) = %log /A . oHx (0 VN 50%) LN (1) N (40
_ % log / eﬁxN(Ul)+6XN(02)_B2TN(R(01701)p+R(02702)p)M®N(do-l)M®N(d0.2)
An(V)
< %log /A:(V) PXN TV HBXN (D) =BN =0 | DN (1) O (452)
_ %log /An(v) BXN(@)HBXN () BN (451) 10N (d62) — BN (v — )P,
Thus
%ﬁﬁlhfvnffopECFN(ﬁ’A"(v)) < Qpv(a, ). (4.5)

Whether the same bound holds for odd p for general choices of a, A is still an
open question. Chen [9] showed that specific choices of a, A give the Guerra-Talagrand
1-Replica Symmetry Breaking (1-RSB) Bound for even and odd p. Specifically, for
0 < vy < v, set My, to be the set of all & € M, such that & = ¢ on [0, vp) for some
constant ¢ < 1 and a = 1 on [vg,v]. This type of measure is known as 1-RSB. A replica
symmetric measure is a Dirac measure. If the Parisi measure is replica symmetric, all
overlaps concentrate at a single value. If the Parisi measure is 1-RSB, the overlaps
concentrate at two values - there is one level of replica symmetry breaking. Proposition
states that equation holds for 1-RSB measures. The proof of Proposition [5]in the
present setting is nearly identical to the proof of [9, Proposition 2], and is not reproduced

here.

Proposition 5. For p > 2,V € V, vy € [0,v], A € Ma(R) and o € M, 4,

lim limsup ECFn (8, Ay(v)) < Qg v (a, A).
MO0 N—oo
Proposition [5|is important because if it can be shown that Qg1 (c, \) < 0, then the
coupled free energy CFn(53, A, (V)) exhibits a free energy cost: it is strictly negative.
Then, applying a covering argument similar to that used in the proof of Proposition

shows that the overlaps R(c!,0?) are concentrated at zero, as formally stated in
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Proposition [6] below.

Proposition 6. Assume that 0 < 8 < (. and that sop € (0,1). For any £ > 0, there

2

exists a constant K > 0, depending only on f3, sg, and e such that if o', 02 are i.i.d.

samples from Gy 43 then
E(I(|R(0",0%)] > €))sp < Ke N/ (4.6)

for all N > 1 and all s € [sg, 1].

Proof. Let 0 < & < v, be fixed. Assume that vy € [e,v.]. Fix a diagonal matrix
A € M>(R) with diagonal entries A\j 1 = Ay o = —B32¢'(v,) /2. Let a € M, satisfy a =0

on [0,v9) and a = 1 on [vg, vs]. Define

for 0 € [0, 1].
Using the Cole-Hopf transformation, one may compute that
52

1 2 1-6
L 10w Bgu(€ (w0 B )+ €00 )

P ((1 -0 [ ¢sas+ [ s”<s>sds) o,

Q,@,V(a97)‘) =2 <

where go(t,z) = [ ow—a’t/ 2u(da) and By is a standard Brownian motion. Also,
39 Qp.v (g, M)lg_y = BT s(vo).
By the monotonicity of y5(vp) in Lemma
99 Qp,v (a9, N)lg—y < BT, (v0) < 0.

Thus Qg v (ag, \) is decreasing at § = 0. Since Qg ,(ag, A) is continuous in (vg, #), there
exists 0 > 0 such that

sup inf Qgy(ag,A) < —0.
vo€le,v.] 0€[0,1] /BV( - 3)
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Combining this bound with Proposition [5], we see that

lim limsup ECFn (8, Ay(V)) < —4. (4.7)
MO N—oo

Since we assume that § € R, we have that F'(8) = 0, so the above is

limlimsup ECFy (8, Ay(V)) < F(B) — 6.

0 N—ooo

For each V, there exists N(v) and n(V') such that for all N > N(V) and n < n(V)
ECFN(B,A,(V)) < F(B) — 4.

Then By Gaussian concentration of measure (see Appendix |[A.2)), there exists K > 0
such that

P <]CFN(6,A,7(V)) —ECFx(B,Ay(V))] > g) < Ke VK,

Thus with probability at least 1 — Ke™ /K.
1)
CEN(B,Ay(V)) < F(B) — 3 (4.8)

For each vy € [e, v4], choose 0 < 1 < ny. Let

Aa:{V:

For small enough ¢ the set of sets A, (V) cover A.. Thus, as in the proof of Proposition

V1 Vo

e <vp < s, |1 —vi| <, V=00
Vo U1

we may choose a finite subcover A, (V;) for 1 < j < n. Following the arguments of
Proposition [f] for each 1 < j <n

logn

logn
N Tmax CEn (5, Ay(V)) <

o
N +F(ﬁ)—§.

1 n
CFy (B, A) < log;exp NFy (B, 4y(V;)) <
]:
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For N large enough, logn/N < §/4, and

CEy(,4) < F(5) - §.
Rearranging this expression gives
(IR € A))y < e N/
with probability at least 1 — Ke /%X Thus there exists K’ > 0 such that
E(I(R € A))g < K'e MK,
When p is even, Hy g(c) = Hy g(—0), so for even p,
E(I(|R(c",0%)] <&, |R(c, oY) € Ac(v), |R(0?,02)| € Ac(va)))p < 2K'e™N/E' . (4.9)
When p is odd, use Jensen’s inequality on the expected value to see that

1
]ECFN(ﬁaAn(V» < — lOg/ QBQR(UI’Jz)pM®N(dUI,dJ2) < ,82(U0 + n)P <0
N UlR(O’)EAn(V)

for any v9p < —¢ and 0 < 7 < £/2. Again using a covering argument and Gaussian

concentration of measure gives the existence of a constant K” > 0 such that for odd p

E(I(R(c',0%) < —¢, R(0},0") € Ac(v)), R(0%,02) € Ac(v.)))g < K"e MK (4.10)
Combining equations and there exists a constant L > 0 such that

E(I(|R(c, 02)] > &, |R(ct, 0b)| € Ac(vs), |R(02,62)| € Ac(vi)))p < Le ™ NE. (4.11)

Also, from Proposition [7] stated in Section [4.6] which controls the total overlap for the

vector-valued Hamiltonian, there exists a constant L’ > 0 such that

E(I(R(c',0") & A.(v)))g < L'e NV, (4.12)
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Combining equations [£.11] and [4.12]

E<I(’R(Ula‘72)’ > €)>5 < Le NI 4 o1 e~ N/L"

Finally, we show that (4.6) holds for all s € [sg, 1]. Denote the coupled free energy

of two pure p-spin models by

CFKT((/BaAn(V)) log/ " ,BXN(U V+BX N (02) ®N(do_ ) ®N(d0 )
7]

Since ECF5 (8, A(V)) is convex in the temperature parameter 3, the convergence of

lim sup IEC'FK;((,B, A,(V))

N—oo

is uniform.
For 01,02 € A,(V), we know that both |R(c!, 01) —v.| < nand |R(0?,0%) —v.| < n.
This restriction on the overlaps gives the upper and lower bounds

—B%(ve+n) Himsup ECFR (8, A, (V) < limsup ECFn (8, A, (V) < limsup ECFR (8, A, (V))— B2 (v.—n).

N—o00 N—o0 N—oc0

Thus the convergence of ECFn (3, A,(V')) is uniform. For every vy € [e,v], there exists
n(vp) and N(vg) such that for all n < n(vg) and N > N(vp),

5

ECFN(B,A,(V)) < —3

We may pass to a finite sub-cover of [¢, v] and consider only the sets A, (V}) for 1 < j <mn,

where the matrix V; has off-diagonal entries v; € [e,v] and diagonal entries v.
Similar to the methods in the proof of Proposition [ for any 1 < j <n

CFx (8, Ay(V;)) < CFy (ﬁ,UA ) prNCFNﬁ, 2(V)) < BTy max OFw (8, Ag(V7)).

1<j<n
Jj=1 =I=

We also notice that the error probability for the Gaussian concentration of measure
inequality can be uniformly controlled in temperature. Furthermore, the auxiliary func-
tion I'g is continuous. Combining these facts, we conclude that all coupled free energies

for temperatures s exhibit a uniform energy cost. That is, there exists a § > 0 such
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that a bound of the form (4.7) holds for all s4. This in turn implies that (4.6) holds

and completes our proof. O

4.4 Cavity Argument

The cavity method is used to control the even overlap moments. At its heart, the cavity
method is induction on N, the number of spins in the system. The method creates an
interpolating path between a system with N — 1 spins and a system of IV spins and
controls how much the overlap moments change along the path. The goal is to show
that this change is not ‘too large’ and thus control the overlap moments of the N spin
system based on bounds known for the N — 1 spin system.

The cavity method here depends on a good interpolating Hamiltonian with Hy 5(7)
at one end of the interpolating path and a well-behaved Hamiltonian at the other. While
the previous sections focused exclusively on the scalar-valued model, most proofs in this
section are presented for the vector-valued model only, but the argument is extended to
the scalar-valued model by setting k = 1.

To define the interpolating Hamiltonian, for any A C {1,2,...,p}, define I, =
{(i1,...,1p) € {1,..., N}P} where iy = N exactly when s € A. Define

1
Xf\‘;(a(r)) T N2 Z Yii,ip0iy (1) -0 (7).
(i1,..‘,ip)€IA
For any sets A, A’ with A # A’,
1 —,rr \p— r_r
EXRH(o(r) X0 () = = (Rig "y (erep) 4

and
EXR(o(r) XN (o(r) = 0.

Here, for more compact notation define,
N

Ry, = R (1), 0%(r)) = 1 D ol (r)o ()
=1
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and
| V-l

¥ 2 o0t

- __
Ry 5" =

The purpose of the interpolating Hamiltonian is to decouple the N-th spin oy =
(on(1),...,0n(k)). Notice that A = @ is the only set that does not depend on g. The
processes X v (c(r)) make up the ‘well-behaved’ end of the path. For ¢ € [0,1] define
the interpolating Hamiltonian by

k p
Hy5,0) =Y 6 [ XR(o(m) +VEd_ > Xj(o(r)
r=1

J=1 A Al=j

—rr! t z
T T
J=1 A:|A|

(R*ﬂ“ﬂ"/)p*j (gg’)j
1<r,r’<k J

One may check that when ¢t = 1, the interpolating Hamiltonian is equal to the orig-
inal Hamiltonian, Hy 571(6) = Hy 3. Also, when t = 0, the interpolating Hamiltonian

is equal to Hy_1 at the temperature vector with entries

(N —1)p=1)/2

Br NP-1)/2

Let v5,(f) = E(f) 3, denote the expected Gibbs average for the Gibbs measure associ-
ated to Hy 5, When t = 1, we write vz, (f) = v5(f).

4.4.1 Technical Lemmas

This section presents several technical lemmas necessary to the cavity method. Lemmas
and together bound v ,(-) by v3(t). Lemma |§| shows that RI’;/ is close to Ri’;’rlz
overlaps at either end of the interpolating path are close. Finally, Lemma [10] gives a
bound for the moments of R;&T’T, based on bounds for the moments of R}’.

Define €} = o (r).
Lemma 7. If f is a real-valued, bounded function of &', ...,&", then

k
1 — ' \p—j /1 _T'\j
vy (f) = D BB <§>Nﬂ Y wa(fR ) (e )

p
ror/=1 7=1 1<4<l/<n
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Proof. Computing the derivative is straightforward but tedious. First, taking the deriva-

tive in ¢ yields

E p n 2 n ) .
Yy Y ( <fZXfe<af<r>>> - 2J§E<f <Re,["">p—]<ezsz>f>
A:|Al=j £

r=1 j=1 (=1

b
2Vt

k n
Y 5 (Za(rSadeton) - nlm (it o))
(=1

r=1j=1 A|Al=j

E(fX{(c™(r)) - 215]2 i <f(R;+T1Tn+1) (5n+1€n+1)j>)

The second and fourth terms cancel by symmetry between sites.

By Gaussian integration by parts, the above becomes

Z 57«2@“’2 Z Z E<fEX]€I(J(T))XJIe(O'(R/))>—nZE(fEX]fe(o-f(r))Xﬁ(o_n-‘,—l(r/))>

1<rr’'<k J=1 A:|Al=5 \1<40/<n £<n

—n Y E(fEXR (0" (0(r) X5 (o' () + n(n+ DE(EX{ (0" (r) XH (0" 3(r)
£<n+1

Taking the expectation inside the Gibbs average and combining like terms using sym-

metry between sites gives the result. O
Lemma 8. For f a non-negative and bounded function of &!,...,5"
vg.4(f) < exp n22PTipr%p Z BrBr | va(f).
1<r,r'<k

Proof. For any pair 1 < £,/ < n + 2 and any pair 1 < r,7’ < k, the overlap terms in



69

the expression for v% ,(f) can be bounded by a constant as follows:

B
= \p—j Y 1 4 4 ¢ v "
((Ry o™ P (e V| < 5 > |5, (r)eri, (') -0, (r)og,_, (7)) leger
1<y oenyip—j SN —1
< NP—J Z M
1< yeenyip— j SN—1
(N —1)P=I M2
B Np—i
< M?P. (4.13)

Using this to bound ‘l/é (f)] gives

p
BB DS <P)2n2w§,t(f)
1<rr’ <k j=1 J
< M?* Z ﬁrﬂr’2p+ln2yﬁ,t(f)‘

1<rr’'<k

This first inequality uses the bound in equation ([4.13)), the fact that 1/N7~! < 1 and
the fact that Vé t( f) is composed of 2n? terms, and the second inequality uses the fact
that 327, () =20 —1 <27,

In particular

—Vé,t(f)§M2p2p+1n2yg’t(f) Z By By

1<r,r <k
Since f is non-negative, v5,(f) is non-negative for every ¢ € [0,1], thus dividing the
above by ngt( f) does not change the direction of the inequality. Integrating the result
gives

/

t - 1
. / ,B,t(f) dt < / n2op+1pr2p Z B, Byt
0 t

Vvi(f) 1<r ' <k
ve

log pald) < n2optips?r Z By By
VBvl(f) 1<r,r'<k

Exponentiating both sides and multiplying by I/B( f) > 0 gives the result. O
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Lemma 9. For any m > 1 and any pair 1 < r,r’ <k,

7' \m —rr'\m M?m m -7
(R = (Rt < S (IR 1™+ 1Ry ™)

)

Proof. For any =,y € R,

’xm—i-l . ym—i-l‘ —

m
(w—y)> afym*
/=0

m
L -/
<z =y laf ™
=0
Without loss of generality, assume that |z| < |y|. Then
m m m
l —/
=yl Y|zl y™ < e =yl D lyl™ < Jz—yl Y (2™ +]y™) = mlz =yl (] + |y ™).
=0 =0 =0

Using this inequality gives

‘(R?’g’)erl _ (Rl—’,zfyr’)erl’ < m|R71~:g/ B Rl_”;’rl| <|R ’m N |R_ o ’ )

m N N-1
= % [ ot o) = X ol et )| (RS 1™ + 1R ™)
i=1 i=1
= Dok ek ()] (1RYS 1™ + Ry s ™ ™)
s%(m ™+ Ry )

Lemma 10. Assume that there exists some K > 1 such that

o K
'\ 2
vg((Ry5)™) < N7
for any 0 < j < m. Then
o 22mM4mK
val(RigT ) < 2
Proof. Write
— / ]. /
Ry M = 71"2 —Na’iag.
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Using the binomial theorem to expand (R;’Qr7rl)m gives

2m
p; 2m 1 ’a »
vs (Rig™)™) <3 ( . )NQm_j vs (1RYS Vletes ™)

=0
2m 2m—j
2m M2 J rol 4
S (M () mzn (1.14)
=0

For any 0 < 5 < 2m, choose ji, j2 such that 0 < j1,7jo < m and j; + jo = j. Then, by
the Cauchy-Schwarz inequality,

T _ T2 1/2, T2 1/2 _
J1|R1,2|J2) < Vﬂ(|R1,2| ) Vﬂ(’R1,2| 72[)E < Nit/2+j2/2 — Ni/2"

va(|RT5)) = vg(|RYY

Substituting this in gives the bound

o 2 /9 M2\ K
(s ) <2 () (%) v

§=0
M2 1 2m
(%)
N VN
2 2m
<K <M+1>
VN
K22mM4m
<=z =
< N
The last inequality used the fact that M > 1. O

4.4.2 Cavity Argument

We now turn to the cavity argument to bound the even moments of the overlaps R}’,.

Lemma 11. Let m be a non-negative integer and 3 € (0,00)*. Assume that there

exists a constant Ky > 1 such that

; K
_ Y25y < 0
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forall 0 < j <mand all N > 1. Then, for all N > 1,

K>(B)

Nm+1

) +

(m+1 < 2 _ T

Jnax vg((Ry) ) < Ki(B) max vg(|Ryy

where K1(f3), K2(3) are two non-negative continuous functions of 3 that are independent

of N. In addition, K1(B8) < K1(B8') whenever 8, < A for all 1 < r < k. Furthermore,
K1(B) = 0 if and only if 3 = 0.

The proof proceeds in four main steps. First v5((R} 2)2m+2) is bounded by vz((R; 5 5 )2ty
and a remainder of the appropriate order O(N~"). In the second and third steps,
VB((RI”;’T)Q’”“) is bounded by the derivative l/ﬂ t((R;:g)Qm“) which is controlled by
Lemmas [7] and [§] Finally step 4 follows the same pattern as step 1.

Proof. Step 1: By symmetry between sites, write
2m+2 7y 2mA+1
va((Ry5)*™ ) = vg(eiea(Ryp)™™ ).

Next, set
€ = va(ETeh (5™ = (Rpg")™™+)

)

so that
v5((RY 57T = vz(etes(Ry, yTP) £

)

Applying the triangle inequality and then Lemma [9] controls || by

_ 2mM* _

(€] < MPyg(|(Ry)™ = (R )™ ) < = a(IRTSP™) + v (1R 5 [*™)-

(4.15)
By the assumptions,
K
va(|RTS[%) N‘; (4.16)
for all 1 < 57 < m, so by Lemma
_ 22mM4mK0

v(|Ryy " [") < —Nm (4.17)
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Combining the bounds of equations (4.16)) and (4.17) and plugging in to equation m
gives
Cq

€< o

where C; = 2mM*Ky(1 + 22 M*™). So far we have

Cq

va((Ry5)™ %) < wp(ehe(Riy)™ ) + o

)

(4.18)

Step 2: For each 1 < r <k, define f, = efeh(R;3"")*"! so that equation (4.18) reads

Cq

va((RY5)*™ ) <wa(fy) + Nl

Since H y 5 (o) does not depend on oy,
v50(fr) = v50(ches Jva (R 5") = 0.

It is easy to see that v (he5') = 0 since spins oy (r) and oy (1) are independent under
the Gibbs measure corresponding to Hy 3.

By the mean value theorem, there exists ¢ € (0,1) such that

Vi () = va(h) = vgol ) = va(fr)-

Thus

Cy

W. (4-19)

va((R5)P™2) < sup v, (/)| +
0<t<1 ’

1

Since f, is a function of two replicas ', 52, applying Lemma [7] with f = f, and n = 2
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bounds the derivative 1/ ( fr) by

J M2 j+1 —,,7T|2m _SS
NI EEY 5853/2(?)%(v5t<\R 1 e o)

1<s,s'<k j=1 J
— — / 4
+2u5 (IR, P R P
+ 203, (R P Ry 3 )

+ Bug ([ Ry P Ry ) L (4.20)
For 1 <5 < pset

2 1 —J T;
le—m—I— el and 717 = .
J 2m +1 Toori—1

Note that 1/ le +1/ Tj2 = 1. Thus, applying Holder’s inequality to equation (4.20)) yields

) |
il s 3 8> (M) EEE (vl preetss g g ey
B\l = s s/' j Ni-1 B,t 1,2 Bt\+41,2

B b 20 (B I S g (R e

+ QI/B,t(‘Riérvrl2m+1+pfj)1/7] Vﬁ t(‘R_ ,8,8" ’2m+1p ])1/7—

o+ Bug (| Ryg " P ) T g (R P )

p M2 j+1 -, — T — ! —J T2
=8 Y BB Z <j>(Nj)-1va,t<\Rl,2”rzm“+p NSy (| Ry Prtite=d) s,

1<s,s8’'<k =

Applying the Cauchy-Schwarz inequality to the terms involving cross-overlaps Rg_é,s’s
with s # s’ gives

/ . 2 — _
v (R [Pt e= T < g (|Ry s [Pt tte=d) 12y

T (IR P U,

Plugging this in to the previous expression and using Lemmato bound vg,(-) by v5(-)
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gives

p M2 A —,r7r2m —i\1/7t
V. (F <CB) Y BB Z <J>(NJ)—1 (va(l Ry et

1<s,8’<k 7j=1

*(|RI’28’S ’2m+1+p—j)1/27'].2

XVB_(|RI,28/,SI|2m+1+p_j)1/27'j2> 7 (421)

where

=y

C(B) =8exp | 2°F°M* Y~ BBy

1<rr’'<k

Step 3: In this step, the goal is to reduce the power 2m + 1 4+ p — j of the overlaps to
the power 2m + p, which is accomplished by considering two different cases: the case

when j = 1 and the case when j > 1. When j = 1, the terms of the sum are

va(|Res " Pr) (R P T g Ry

)1/27f’

so the overlaps already have the desired power and no work is required.
When j > 1, pulling out 1 + p — j powers of the overlap and using the fact that
Ri’;’r < M? shows that the terms of the sum are bounded above by

(M2)1+p—jyg(|Ri,2hT|2m)1/7']-1 VB(|Ri,287S|2m)1/27'] Vﬁ(|R1i728/7S/ |2m)1/27'j2‘

The assumptions of Lemma [10] are satisfied, so there exists a constant Ky such that

(M2)1+p—jy_(|R7,7‘,’r‘|2m)1/7’]§l _<|R*,S,S )1/27’]»2 _(|R775’75/|2m)1/27} < (M2)1+p J22mM4mK
puML2 Va2 AL — Nm
The sum over all terms 7 > 1 in equation (4.21]) is upper bounded by
p (M2)j+1 22mM4mKO 22m+p(M2)2m+p+1KO 199
Z j Ni-1 Nm — Nm+1 ( ' )

Jj=2

Plugging the bound in equation (4.22)) into (4.21) and then plugging this back into
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[4.19| finally gives the bound

o) — 7'.1 — T~2 —s' s 7.2
va(RyH)™™ ) < CB)Ce Y BuBova(IRis ™) 5 wa(I Ry P 0) 25 s Ry Pmte) V2
1<s,8'<k

C(B)Cs

+ Nm+1 )

(4.23)

where

Cy:=pM* and Cj:=2>"P(M?)*mirHlE, Z BrBr + Ch.

1<rp’'<k

Step 4: Similar to Step 1, Lemmas |§| and relate the overlaps Rl_,’;’r back to

overlaps R{. First

2m+3)‘

va(IR s [P P) Y w(| Ry P P) 2 v (IR PR AT < (M2yed

-, r,Tr
1% V3 max vz(|R, 5’
B B 1<r<k 5(| 1,2

As in Step 1, add and subtract v5(|Ry5[*™?) so that, by Lemma |§|,

max VB(‘RiéT7T|2m+3) — max VB(’(Rl—’éT,T’)2m+3 + (R71"72)2m+3 _ (RI’Z)QWFBD

1<r<k 1<r<k ’ ;
2m+ 3 _
_ 7T 12m+-3 2 _ ,THT |1 2m+-2 _ T 2m—+2
< g (vaREP™) 4 22002 (g ) 4 w5 P) )
< max 3[R + 2202 (23 (max ws( Ry + masx (RGP ).
= <<k ONTL2 N I<r<k BMNT12 1<r<k 12
(4.24)
By the assumptions,
_ K,
T 2my 70 )
gggka(lRl,zl )= wm (4.25)
By Lemma
max vB(|RyH*™) < 22" MY Ko /N™. (4.26)

1<r<k
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Plugging equations (4.25)) and (4.26) into equation (4.24]) gives

_ Cy
_ 1T 12mA+-3 B 7 12m+3
1272k vl T < 1rSh Va1l ™) Fme
where
Cy = (2m + 3)MOKo(1 + 22 M*™).
Set

Ki(B)=C(B)Cy Y BBy and Ky(B)=C(B)Cs+ Cy.

1<s,8'<k

Finally, plugging back into equation [.23] gives

mr3y . Ka(B)
) 3

_ 7,7\ 2m~+3 < K 2 _ r,r i
V,B((Rl,2) < Ki(B) fgfg(k V,B(|R1,2

4.5 Proof of Theorem [5| and Proposition

With the bound of the cavity method in hand, it is now possible to prove Theorem
and Proposition 2l Recall that Theorem [5] states that if 0 < 8 < f, then there exists a
constant K > 0 independent of N such that

E(IR(o",0*)]*™)s < 1

for all s € [0, 8] and all N > 1. Proposition [2| uses Theorem |5/ to bound the fluctuations
of the free energy Fi (). For more compact notation, define Ry = R(o!,0?).

Proof. (Theorem [5)) Fix 0 < 8 < .. The proof is by induction on m. When m = 0, for
all s € [0, 1],

0 1
vsp(|Riol) =1 = 55

Assume that for some m > 0 there exists a constant K > 0 such that

K
vea(|R12/*™) < N
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for all s € [0,/] and all N > 1. From Lemma [L1] there exist non-negative continuous
functions Kj(sf3), K2(sf) such that

m m Ko(s
11 272) < K (58| B o) 4 S

The function K;(sf) is non-decreasing in s and K;(0) = 0. Define
9 1

sop=supqs€[0,1] | Ki(sf)M= < 30

Note that the set of s for which Kj(s8)M? < 1/2 is an interval as Ki(sf3) is increasing

in s. The proof is split into two cases.
Case 1: Assume s € [0, so]. Then, observing that |Ry | < M2,
K (sp)
vl RiaP2) < Ka(sBs(|RraP™) + 2250

1
< K1 (508) M| Ry o2 4 22(50)

Nm+1
K (sB)
Nm+1 :

IN

1
Sveal|Raaf™ ) +

Rearranging,

ves(|R1 2" F?) < Nmil

Case 2: Assume s € (o, 1]. Choose ¢ > 0 so that e max,e[,,1) K1(s8) < . This is

valid since K (sf) is continuous on the compact set [so, 1]. By Proposition @ for any

€ > 0 there exists K’ > 0 such that
veg (I(|Ri2| > €)) < K'e” /K
for all s € [sp,1] and all N > 1. Note that K’ is independent of s. Next,

Vep(|R12/"™?) = vgg(| R 2™ T2 I(|R12| > €)) + vsp(|R1 o PP I(|Ry2| < €))
< M2y o (I(| Ry ol > €)) + evep(| Ruo™ 2 I(|Ryg| < €))
< M2(2m+3)K/67N/K’ + 57/5,8(|R1,2|2m+2)-




Therefore
m m KQ(S/B)
o (B2 "2) < KalsBvas(|FES ) + 250
’ Ko(s
< Ky(s8) (M2 KT NIK | (R of22)) 4 B2P)
1 ’ 2K5(s
< 5 (|R1 2|2m+2) + K, (8,8)M2 2m+3)K/ —N/K + N27,5+?) )
Rearranging,

KQ(S/B)

Nm+1

ng(|R2m+2) < 2K1(8ﬁ)M2(2m+3)K’e*N/K’ N

- 2K (sB8) M>m+3) 4 2K5(sP)
— Nm+1

The second inequality holds for large enough N. Setting

K= sup 2Ka(sB)+ sup (2Ki(sB)M>Cm+3) 4 9K, (sB))
s€[0,s0] s€[s0,1]

gives
K
Nm+1

vsg(|R12/*™?) <

for all N > 1 and all s € [0,1] as desired.
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O

Chebyshev’s inequality and the Gaussian Poincare inequality relate the quantity
P(|Fn(B)| > £) to the quantity vg(RY,). This, together with the bound of Theorem

controls the free energy fluctuations as desired for Proposition
Proof. (Proposition @) For any ¢ > 0, Chebyshev’s inequality gives

EFy(3)?

P(IFv(B) 2 0 < =57 =

— (Var(FN(ﬁ)) + (EFN(B))?).

Since
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the Gaussian Poincaré inequality gives

2
Var(FN(ﬁ) NerlE Z U“ C O, % = %E<R(o’1, 02)P>6.

Also, Gaussian integration by parts gives

é%WwWPvﬂWMfﬁwmv
SO
3
EFy(B) :EFN(0)+/O EFy(s)ds
B
__ / SE(R(o", 0)P)ds
0
Thus

2

(M%wW=<A%WMfJW%%)

Combining, we so far have

2 8 2
P(|Fx(B)| > 0) < efNE<R(al,02)P>5+;2</ sE(R(c*, 0?)P) ds> .

Finally, from Theorem [5| there exists a constant K > 0 such that

B’K
P(|Fn(B)] > ¥) < EQNP/QN 52 / Np/z
- ,B2K ﬁ4K2
~ 2NeRN AN

8 )
< EnGrop T K.
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4.6 Proof of Theorem

The most interesting characteristic of the detection problem is that additional spikes
do not add additional noise in the spiked tensor model. This results directly from
the structure of high-temperature regime of the vector-valued model Hy 5(5). The
high-temperature regime of the vector-valued model is simply the product of the high-
temperature regimes of the marginal scalar-valued systems Hy g(o(r)), as stated in
Theorem [6] To prove that the high-temperature regime has this structure, we need
concentration of the total overlap, as stated below in Proposition

Recall that vy, = f a2,ur (da), and define a diagonal matrix Vi € RF*k with entries
(Vi)ryr = Usp. Forany e >0 and V € RFxk

A (V) = {V' e RF* | |V = V'||lmax < €}

For any & € A, define a matrix R(¢) € R¥* with entries (R(5)),» = R(o(r),o(r")).
Concentration of the total overlap means that R(o) is close to Vi with high probability,

as stated formally below.

Proposition 7. Assume that § € R. Let & be sampled from G ~,3- Then for any e >0
there exist positive constants K, ¢ such that for any N > 1,

E(I(R(7) & A-(Va)))z < Ke N/, (4.27)
Also, with probability at least 1 — Ke VK,
Fn (B, A:(V2)°) < Fn(B) — 6. (4.28)

Proof. Suppose that equation hold holds with probability 1 — K e N/K for some
K > 0. That is,

_ 1 _
— log N5 1 (ds) < — log / v (d5) — 6.
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Multiplying by N, combining the logarithms and exponentiating both sides gives

Ja.vye !5 u(d) _N§

(I(R(o) & A=(Vs)))5 = [ o ) <e

Thus equation (4.27)) holds. We therefore need only prove equation
For 1 < r,r" <k, define

Ac(r,r') ={a [ |R(o(r),o(r')) = (Va)ry| > €.

Notice that

Vi)¢ C U Ac(r, ).

rr!

Thus
N
limsup EFy (3, A:(Vi)¢) < limsup E— logZ/ (o)
N—o00 N—o00
1
< limsup — / N (da). (4.29)
N—o0 Ae(Vi)

The second inequality results from applying Jenson’s inequality to E'log(x).

Since the coordinates of o(r) are i.i.d. with distribution p,, and o(r) is independent
of o(r’) for any r # r’, each set A.(r,r’) is bounded away from [ abu,(da)u,(db). Also,
for every r, the set A, is bounded so the sets A.(r,r’) are bounded as well. Thus, by a
stronger version of Cramér’s Theorem for large deviations, see for example the proof of

[31, Theorem 2.2.3], there exists a positive constant § such that

Z N(dg) < e ™N°.

1<r <k Y TEA(

Therefore there exists § > 0 such that

limsup EFyn (8, A:(Vi)¢) < F(B) —

N—oo

From this, the result follows by applying the Gaussian concentration of measure in-

equality to both free energies of the above inequality.
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We now use the overlap concentration established above to prove Theorem [6] the

structure of the high temperature regime for the vector-valued model.

Proof. (Theorem @: First we show that R C (0,81,¢] x -+ X (0, Br]. Suppose that

B = (B,..-,B:) € R. Then F(3) = 0 by definition of R. If R(5) € A.(Vi), then for
r#£r,

[R(o(r),a(r)? = (V7P| = |R(o(r), o (r'))| < F.
From Proposition[7] for any € > 0 there exists a constant K > 0 such that for all N > 1,
E(I(R(5) € Ac(V*)) >1— Ke VK (4.30)

Using Gaussian concentration of measure and an argument similar to the beginning of

the proof of Proposition 7} it is possible to show that the equation (4.31) implies that

limsup Fiv (8, Ae(Vi)) > limsup Fy(B) = 0.
N—oo N—o00
By Jensen’s inequality,
limsup FN(B? A&(V:")) S 07

N—oo
therefore
limsup Fn (8, A (Vi) = limsup Fx(5).

N—00 N—oo
As a result, for & € A.(V.) we can substitute e for the overlap terms R(c(r),o(r"))

with r # r’ in the Hamiltonian Hy 5(5) to get

k
. = . 1 _ eP
lim sup Fiy (5) < limsup — log /A 0y P (Z HN,&(a(r))) AN = ) BBy

N—o0 N—oo —1 p—

k
< limsupZFN,T(ﬁr) - % Z By By

N—oo .o r#r!
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Taking € — 0 gives

k
0= F(B) < ZFT(/BT)
r=1

Since F.(8,) < 0 for all 1 < r < k, it must be that F.(5,) = 0 for all 1 < r < k.
Therefore 3, € (0, By.c], s0 R € (0, B1.e] X =+ x (0, Br.c-

We next prove that (0, 81c] X -+ x (0, 8kc] C R by contradiction, and distinguish
between two cases.
Case 1: Suppose 3 € (0,51,) x -+ x (0, Br.c), but 3 & R. This means that F(8,) =0
for 1 <r <k, but F(8) < 0. Thus there exists some 7 > 0 such that F(3) < —n, so for

large enough N, EFN(/) < —n. By Gaussian concentration of measure, there exists a

constant K > 0 such that
Fn(B, A:(V)) < Fn(B) < —g (4.31)

with probability at least 1 — Ke N/E,
For any € > 0,
n

Fy (B, A:(V2)) < Fn(B) < 3

for all N > 1, where the first inequality is by the definitions of the two free energies.
By definition of the set A.(V}),

_ 1 k p
Fi(B Ac(V2)) = 5718 | o (Z Hy s, (a(r))) N (o) — 5 ;@m (4.32)

r=1

Combining equations (4.31)) and (4.32)), we have

k
%log )exp <Z HN’BT(O'(’I“))> %N (de) < % Z BBy — g

A (Vi rer!

r=1

Choose ¢ small enough so that % D v BrBr < 2. Then

Jblog/ exp <Z HN,&(G(?“))) 72N (d) < _Z'
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Since it is assumed that F/(5,) =0 for all 1 < r <k, the above is equivalent to

1 : : 1
v log / o P (Z Hu s, <o(r>>> pN(do) < 3 Fw(Br) = 5

r=1

Let (-)’ denoe the Gibbs average with respect to the product measure Hle Gn g, (do(r)).
An argument identical to the proof of Proposition [7] gives the existence of a constant
K > 0 such that

E(I(R(5) € A.(V,))) < Ke N/K, (4.33)

For a sample ¢ from Hle Gn g, (0(r)), the spins o(1),...,0(k) are independent of one

another, so when k = 1, Proposition [7] gives

lim E(I(|R(c(r),o(r)) —vms] <e)) = 1. (4.34)

N—oo

Also, by Proposition [6] for any € > 0,

lim E(I(R(c'(r),o?(r))| <¢e)) = 1. (4.35)

N—o0
For r # ', using the independence of o(1),...,o(k) gives

N
E(R(o(r), o()?) = 13 O Blor(r)oy(r)on(r oy (1))
ij=1

1 N
= 33 2 Bloir)o;(r)oi(r)o; ()"

ij=1
Applying Cauchy-Schwarz then gives
1/2

1/2
E(R(o(r), (")) < (; ZE<<oi<r>aj<r>>’>2) (; ZE<<oi<r'>o—j<r'>>’>2)

— (E(R(a*(r), 0> (r)))?)? (B(R(o (), 2 ()))?) 2.
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Therefore, by equation [4.35]

Jim E(R((r), a())?) =o.
This and give
lim E(I(R(0) € A:(V4)))' = 1,

N—o00
In other words, the total overlap R(5) is close to the optimal matrix V, which contra-

dicts equation [4.33

Case 2: Assume 8 =€ (0,81 x --+ X (0,Bke] and B & (0,B1¢) x -+ % (0, Br.e)-
In other words, B3, = B, for at least one value 1 < r < k. Each of the free energies
Fi(B1),..., Fi(Be) are continuous functions of f31,..., S respectively. Thus F(3) can
be approximated by F(3') for 8/ € (0,81,) X --- x (0, k). Then from Case I the

conclusion holds. O

4.7 Proof of Theorem [7] and Proposition

The proof of Theorem [7] is nearly identical to the proof of Theorem [B] so most of the
details are omitted. Originally, the result of Theorem[7]was used in the proof of detection
in the case of multiple spikes, but the proof technique has changed from the original
version rendering Theorem [7] unnecessary; however, it is still included in this thesis as

an interesting result in the study of the vector-valued p-spin model.

Proof. (Theorem @): By Lemma if there exists a constant Ky > 1 such that

. Ko
ax va((R0)%) < —
1127«%3@ Vﬁ(( 1,2) ) < N

forall 0 < j <m and all N > 1 then

2m+3) + K2(B)

max VB((R;ZE)ZmJFQ) < Ki(fB) max va(|Ryy Nm+l

1<r<k 1<r<k

for all N > 1. The proof of Theorem [7] follows exactly the same steps as the proof of
Theorem [Bl O
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Proof. (Proposition @ Using the Chebyshev inequality, Gaussian Poincaré inequality
and Gaussian integration by parts as in the proof of Proposition [2] yields

2

= 2 7 2 ! T,
PUFNB) 20 < e S BBEIRG M5+ 5 | 3 Bub /O SE(|RY5IP)

1<rr’'<k 1<rp’<k

Applying the result of Theorem [7] gives the desired result. O
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Appendix A

Appendix

A.1 Gaussian Integration by Parts

Gaussian integration by parts is used repeatedly in this thesis and the study of spin

glasses in general. Take g ~ N(0,02) and F(z) any differentiable function that satisfies

lim F(x)e_‘TQ/QU2 =0.
|z| =00
The most basic version of Gaussian integration by parts, see, for example [23] Appendix
A 4] states that
EgF(g) = Eg°EF(g).

If g, 21,..., 2, are Gaussians and F'(z) : R" — R is differentiable and satisfies

lim | F(z)le ll® = o

[lz]| =00
for all @ > 0, there is a multivariate Gaussian integration by parts [23] that states

oF

EgF(z1,...,2,) = ZE(QZZ)E(TW(ZL e

<n

,Zn).

The version used in this thesis extends the multi-variate version to families of Gaussians

that are not necessarily finite. If g = (g(p)),ev is a Gaussian process indexed by U € RY
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and F(g) is a differentiable function of RV then given o € U, by [28, Lemma 4],

oF

Eg(o)F(g) = Eafg[Eg(U)g(P)],

where the right-hand side denotes the expectation of the variational derivative of F' in

the direction of Eg(o)g(p).

A.2 Gaussian Concentration of Measure

Gaussian concentration of measure is used repeatedly to show that a free energy and
the expectation of that free energy are close with high probability. The key result is [23),
Proposition 1.3.5] which states that if F' is a Lipschitz function on RM with Lipschitz

constant A, and g = (g1,...,9nm) with ¢1,..., g i.1.d. standard Gaussians, then
P(|F(g) — EF(g)| > t) < 2e7"/44, (A1)

For any A C A, taking the gradient of Fiy(3, A) in the distinct random variables Gir...sip
with 1 <4 <--- <4, < N, there exists a constant K > 0 such that

Plugging this in to gives

P(|Fx(B, A) — EFy (5, A)| > t) < 2e " N/AK,
Thus there exist 7 > 0 and Ky > 0 such that

P(|F (B, A) —EFn(B, A)| > n) < Koe /50,

which is the result used throughout this thesis.
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A.3 Cole-Hopf Transformation

The Cole-Hopf transform is a transform used to solve Burgers equation
Up + Uy = Klgg. (A.2)
Taking the derivative in = of equation (A.2)) and setting U, = u implies U satisfies the

Hamilton-Jacobi equation

(U)?

Ui+ 5

= kUyzg, (A.3)

which is similar to the Parisi PDE. If ¢ satisfies the heat equation ¢y = K¢, the
Cole-Hopf transform
B(Hj’,t) =-2K 10g[¢($,t>]

solves equation (A.3]).
Recall that ®g, (s, z,A) : [0,v] x R x R is the weak solution to the PDE

/325"

asq)ﬁ,v,a = _?(aaxvq)ﬁ,v,a + a<3>(azq)ﬁ,v,a)2)

with boundary condition

D340V, 2,) = log/exa—“\(ﬂu(da).

When a(s) is the CDF of a finitely supported probability measure, the Cole-Hopf trans-
formation can be used to solve the Parisi PDE as shown in the following adaptation of

[32, Lemma 3].

Suppose 0 < a < b < wv. Let A be a smooth function on R with limsup,_, . |A(z)|/|z] <
0o. Suppose a(s) = m on the interval [a,b]. Let z(s) be a Gaussian random variable

with covariance

Ez(s) = £"(b) — €"(s).

Then
1
Pgyals,z, )= . log EexpmA(z + Bz(s))
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satisfies the Parisi PDE on the interval [a, b]. Note that the boundary condition of the

Parisi PDE satisfies the growth requirement, so the preceding result can be used to solve
the Parisi PDE backward from v.
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