
Methods for Analyzing Multi-Subject Resting-State

Neuroimaging Time Series Data

a dissertation

submitted to the faculty of the school of public health

of the university of minnesota
by

Brian B. Hart

in partial fulfillment of the requirements
for the degree of

doctor of philosophy

Dr. Mark Fiecas and
Dr. Lynn Eberly, Advisers

May 2019



c© Brian B. Hart 2019



Acknowledgements

I have many people to thank for contributing to my dissertation in so many different

ways. I want to thank my friends and family who have supported me throughout

the past five years. I want to especially thank my parents who provided me with the

opportunity to pursue my studies as far as I wanted and encouraged me along the

way and my wife Erin who patiently allowed me to live as a stay at home dog dad

as I wrote my dissertation over the past few years. Thank you to my fellow students

who struggled through the course work and waded into the world of research along

side me. I would not have gone on to a PhD program without the guidance of Dr.

Paul Roback and Dr. Katie Ziegler-Graham at St. Olaf. Thanks to Sally Olander

for answering any question and solving any problem that came up over the last five

years. Classes taught by Dr. John Hughes, Susan Wei, and Dr. Wei Pan have all be

instrumental to how I think about and practice statistics. I have been lucky to work

with incredible scientists and mentors through my research assistantships, all of which

deserve mention. Dr. Shweta Sharma and Dr. Jim Neaton gave me a taste of the

world of international clinical trials, Olga Gurvich introduced my to consulting while

working with students from the School of Nursing, and Dr. Katie Cullen and Dr.

David Redish challenged me with collaborative work in a new area. Thanks to my

co-authors Dr. Ivor Cribben and Dr. Michele Guindani who provided guidance and

expertise to help our research through the writing and publication process. Thanks

to Dr. Steve Malone for providing expertise on the Minnesota Twin Family Study,

supplying the data for much of my work, and serving on my dissertation committee.

Thanks to Dr. Lynn Eberly for serving on my committee and being a fantastic mentor

in terms of both statistics and professionalism. Thanks to Dr. Jim Hodges who was

always willing to read through a draft of a paper or proposal and provide thoughtful

feedback. Discussion from imaging group meetings, seminars, and your class were

i



always enlightening and you have certainly helped form my view on the usefulness

(or lack there of) of asymptotics. Finally, thank you Dr. Mark Fiecas. You have been

a fantastic advisor and mentor over the past three years. You taught me much of what

I know about time series and neuroimaging, provided research guidance when asked,

gave me freedom to work independently, and introduced me to the larger network of

international statisticians.

ii



Dedication

This work is dedicated to my parents who gave me the opportunity to pursue my

education and to my wife Erin for supporting me throughout my PhD studies.

iii



Contents

List of Tables viii

List of Figures xii

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Resting State Neuroimaging Data . . . . . . . . . . . . . . . . 1

1.1.2 Varied Analysis Goals and Approaches . . . . . . . . . . . . . 3

1.1.3 Accounting for Experimental Design . . . . . . . . . . . . . . 4

1.1.4 Bayesian Nonparametrics . . . . . . . . . . . . . . . . . . . . . 5

1.2 Estimating Functional Connectivity in Longitudinal fMRI Data . . . 6

1.3 Spectral Analysis of EEG Data from Twins . . . . . . . . . . . . . . 7

1.4 EEG Microstate Analysis on Twins . . . . . . . . . . . . . . . . . . . 7

2 A Longitudinal Model for Functional Connectivity Networks Using

Resting-State fMRI 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Estimating Within Visit Covariance . . . . . . . . . . . . . . . 14

2.2.3 Estimating Between Subject Covariance, Ψ, and β . . . . . . 16

2.2.4 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Simulation Study Setup . . . . . . . . . . . . . . . . . . . . . 20

iv



2.2.6 ADNI Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 ADNI Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.2 ADNI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . 36

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 A Non-parametric Bayesian Model for Estimating Spectral Densities

of Resting-State EEG Twin Data 40

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.2 Endophenotypes . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.3 Minnesota Twin Family Study . . . . . . . . . . . . . . . . . . 43

3.2 Model Specification and Inference . . . . . . . . . . . . . . . . . . . . 45

3.2.1 The Single Subject Model . . . . . . . . . . . . . . . . . . . . 45

3.2.2 The Multi-Subject Model . . . . . . . . . . . . . . . . . . . . 47

3.2.3 Estimating the Heritability of the Power Spectrum . . . . . . 48

3.2.4 MCMC Sampling Algorithm . . . . . . . . . . . . . . . . . . . 50

3.3 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Data Simulation Process . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Simulation Study Results . . . . . . . . . . . . . . . . . . . . 55

3.4 MTFS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.2 Analysis Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4.3 MTFS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



3.5 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 63

4 A Grouped Beta Process Model for Multivariate Resting-State EEG

Microstate Analysis on Twins 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.1 EEG Microstates and Dynamic Functional Connectivity . . . 66

4.1.2 Twin Microstate Analysis . . . . . . . . . . . . . . . . . . . . 68

4.2 Model Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 The MS-VAR Model . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 Latent State Models . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 Feature Models and The Indian Buffet Process . . . . . . . . . 71

4.2.4 The GBP-AR-HMM Model . . . . . . . . . . . . . . . . . . . 73

4.3 Model and Prior Specification . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 MS-VAR Model . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Feature Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.3 The GBP-AR-HMM Model . . . . . . . . . . . . . . . . . . . 76

4.3.4 MCMC Sampling Algorithm . . . . . . . . . . . . . . . . . . . 77

4.4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Data Simulation process . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.3 Simulation Study Results . . . . . . . . . . . . . . . . . . . . 80

4.5 MTFS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.2 MTFS Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Bibliography 91

A Supplementary Materials for Chapter 2 100

vi



B Supplementary Materials for Chapter 3 103

B.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C Supplementary Materials for Chapter 4 106

vii



List of Tables

2.1 Simulation settings used in the simulation study. Each setting was

used to simulate 3, 5, and 10 ROI data. . . . . . . . . . . . . . . . . . 22

2.2 Type I error rates for simulation study for all globally null simulation

settings. Type I errors for the main effect (group difference in inter-

cepts) and interaction effect (group difference in longitudinal slopes)

are reported both globally and locally. The global Type I errors are

averaged across all simulations. The local Type I errors reported are

unadjusted and averaged across all simulations and all null ROI pairs.

In the LME Local, MANCOVA Global columns all local test results

come from LME model and all global test results come from the MAN-

COVA model. The standard errors for the Type I error rate across all

null local tests and an average of 0.008 with a maximum of 0.023 and

were comparable across all models. . . . . . . . . . . . . . . . . . . . 26

2.3 The power calculations for the simulation study. Power results for

the main effect (group difference in intercepts) and interaction effect

(group difference in longitudinal slopes) are reported both globally and

locally. The global power results are averaged across all simulations.

The local power results reported are FDR adjusted. In the LME Lo-

cal, MANCOVA Global columns all local test results come from LME

model and all global test results come from the MANCOVA model. . 27

viii



2.4 Type I error rates for 10 ROI simulation scenarios for all globally null

simulation settings for the one-step convergence full variance model.

Type I errors for the main effect (group difference in intercepts) and

interaction effect (group difference in longitudinal slopes) are reported

both globally and locally. The global Type I errors are averaged across

all simulations. The local Type I errors reported are unadjusted and

averaged across all simulations and all null ROI pairs. Power results

are reported both globally and locally. The global power results are

averaged across all simulations. The local power results reported are

FDR adjusted and averaged across all simulations and all non-null ROI

pairs. The average and maximum standard error for the local tests were

0.014 and 0.016 for Type I error rates and 0.008 and 0.015 for power

calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Hypothesis tests on the ADNI data. Global tests and all local tests

with unadjusted p-values of < 0.05 are shown for Models 1-4. The

numbers in italics are from the global hypothesis tests. . . . . . . . . 32

3.1 The estimated heritability for each of the four frequency bands and

three EEG recording channels. Heritability estimates were calculated

using GCV smoothed periodograms and Falconer’s formula. . . . . . 44

3.2 Mean (sd) mean integrated absolute error (MIAE) across the 1,116

MTFS subjects. Bold numbers indicate the best performing model in

each scenario and frequency band. . . . . . . . . . . . . . . . . . . . . 55

3.3 The median and inter-quartile range of different spectral density fea-

tures across the 1116 MTFS subjects along with the heritability calcu-

lated from the sample for each feature and channel. . . . . . . . . . . 62

ix



4.1 Results from fitting the GBP-AR-HMM and BP-AR-HMM models to

each of the four different simulation scenarios. The Relative θ(k) Aver-

age MSE lines represent the MSE in the emission parameters averaged

across all simulated twin pairs in a given scenario as a percent im-

provement in the average MSE compared to the BP model. Because

the BP model represents the reference group, the relative MSE in those

columns is filled by a hyphen (-). % K correct is the percent of poste-

rior samples that correctly identified the number of true microstates, K

MSE is the mean squared error in the estimated number of microstates. 81

4.2 Results from fitting the GBP-AR-HMM model to each of the 246 fe-

male twin pairs in the MTFS data. Results shown are the median and

IQR of the estimated parameters at either the individual participant

or twin pair level. For the participant level estimates, we have also pro-

vided the correlation of these estimates among MZ twins and among

DZ twins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.1 Type I error rates for simulation study. Type I errors for the main effect

(group difference in intercepts) and interaction effect (group difference

in slopes) are reported both globally and locally. The global Type I

errors are averaged across all models. The local Type I errors reported

are unadjusted and averaged across all simulations and all null ROI

pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B.1 The median and inter-quartile range of different spectral density fea-

tures across the 1116 MTFS subjects along with the heritability calcu-

lated from the sample for each feature. The orginal analysis represents

the fit when K=100 and L=20. The reduced K analysis uses K=75

and the reduced L analysis uses L=15. . . . . . . . . . . . . . . . . . 105

x



C.1 The emission parameters for each of the four microstates used to sim-

ulate the data for the simulation study. . . . . . . . . . . . . . . . . . 106

C.2 Given a state self-transition parameter of ρ, each simulated participant

was randomly assigned to one of these four true transition matrices

with equal probability. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xi



List of Figures

2.1 A diagram of the model for a single subject. . . . . . . . . . . . . . . 15

2.2 A workflow chart of the estimation and inferential procedure of our

variance components model. . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Spaghetti plots of the correlation between two ROI against age. Each

point represents a visit, and each line represents a subject. The ROI

represented in these plots are the left and right hippocampus (HCl and

HCr), right precuneus (PQr), and right parahippocampus (PHCr). . . 30

2.4 Model 1 results. Top left: A plot of the estimated intercept terms for

the CN group (bottom left triangle) and AD group (top right trian-

gle). Top right: A plot of the estimated slope terms for the CN group

(bottom left triangle) and AD group (top right triangle). Bottom left:

a plot of the group differences (AD estimates - CN estimates) for the

estimated intercepts (top right triangle) and slopes (bottom left tri-

angle). Bottom right: A plot of the − log10 corrected and adjusted

p-values from all local hypothesis tests of group differences (AD esti-

mates - CN estimates) for the estimated intercepts (top right triangle)

and slopes (bottom left triangle). . . . . . . . . . . . . . . . . . . . . 33

xii



2.5 Model 4 results. Top left: A plot of the estimated intercept terms for

the CN group (bottom left triangle) and AD group (top right trian-

gle). Top right: A plot of the estimated slope terms for the CN group

(bottom left triangle) and AD group (top right triangle). Bottom left:

a plot of the group differences (AD estimates - CN estimates) for the

estimated intercepts (top right triangle) and slopes (bottom left tri-

angle). Bottom right: A plot of the − log10 corrected and adjusted

p-values from all local hypothesis tests of group differences (AD esti-

mates - CN estimates) for the estimated intercepts (top right triangle)

and slopes (bottom left triangle). . . . . . . . . . . . . . . . . . . . . 34

3.1 A schematic representation of the NBDP model. The BDP is used to

estimate a group level spectrum for each of the K different groups.

The nested DP then assigns each of the N subjects to one of the K

group spectral densities. . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Simulated spectra from each of the four simulation scenarios. Each

black line represents the true spectrum for a single simulated subject.

Each colored line represents the true spectra of the AR groups without

any random noise added to the AR coefficients. . . . . . . . . . . . . 54

3.3 Top row: The estimated spectral density curves for each channel and

each of the 1116 participants in the MTFS. Each line represents a single

subject. Bottom row: The estimated heritability and 95% point-wise

credible interval across the power spectrum calculated using Falconer’s

formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Optimal state sequences estimated from the GBP-AR-HMM model

output using the SALSO algorithm limited to 4 states for a single sim-

ulated twin pair along with the true state sequences for those simulated

participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xiii



4.2 Optimal state sequences for twin pair 222 estimated from the GBP-

AR-HMM model output using the SALSO algorithm limited to the

posterior mode number of states for a single MZ MTFS twin pair. . . 87

4.3 A two second segment of the optimal state sequences for twin pair 222

shown in Figure 4.2 with the trivariate EEG time series from pair 222

overlaid on top of the state sequence. The table on the right shows the

estimated emission parameter for these microstates conditional on the

SALSO state labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.1 Model 2 results. Top left: A plot of the estimated intercept terms for

the CN group (bottom left triangle) and AD group (top right trian-

gle). Top right: A plot of the estimated slope terms for the CN group

(bottom left triangle) and AD group (top right triangle). Bottom left:

a plot of the group differences (AD estimates - CN estimates) for the

estimated intercepts (top right triangle) and slopes (bottom left tri-

angle). Bottom right: A plot of the − log10 corrected and adjusted

p-values from all local hypothesis tests of group differences (AD esti-

mates - CN estimates) for the estimated intercepts (top right triangle)

and slopes (bottom left triangle). . . . . . . . . . . . . . . . . . . . . 101

A.2 Model 3 results. Top left: A plot of the estimated intercept terms for

the CN group (bottom left triangle) and AD group (top right trian-

gle). Top right: A plot of the estimated slope terms for the CN group

(bottom left triangle) and AD group (top right triangle). Bottom left:

a plot of the group differences (AD estimates - CN estimates) for the

estimated intercepts (top right triangle) and slopes (bottom left tri-

angle). Bottom right: A plot of the − log10 corrected and adjusted

p-values from all local hypothesis tests of group differences (AD esti-

mates - CN estimates) for the estimated intercepts (top right triangle)

and slopes (bottom left triangle). . . . . . . . . . . . . . . . . . . . . 102

xiv



B.1 The top row shows the estimated spectral density curves for the Cz

channel for each of the 1116 participants in the MTFS. Each line repre-

sents a single subject. The bottom row show the estimated heritability

and 95% point-wise credible interval across the power spectrum calcu-

lated using Falconer’s formula. The left column shows the results from

the original analysis with K=100 and L=20, while the middle column

shows an the results from the sensitivity analysis with K=75 and L=20

and the right column shows an the results from the sensitivity analysis

with K=100 and L=15. . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xv



Chapter 1

Introduction

1.1 Overview

1.1.1 Resting State Neuroimaging Data

Resting-state neuroimaging data is increasingly available from a variety of differ-

ent imaging modalities, of which functional magnetic resonance imaging (fMRI) and

electroencephalography (EEG) are two of the most common and the focus of this dis-

sertation. Unlike task based imaging, participants are generally told to relax and do

nothing in particular during a resting-state scan. Instead of trying to discern which

networks or areas of the brain predominate during certain tasks, resting-state imaging

gives researchers the opportunity to capture the underlying intrinsic activity patterns

in the brain. This intrinsic brain activity characterizes the typical behavior of the

brain and how it changes over time. Resting-state data has the ability to show that

different people not only react to and perform tasks in different manners, but that

the background activity and fundamental cognitive processing may occur in different

manners as well.

Each imaging modality offers different advantages when it comes to resting-state

data collection. fMRI offers very high spatial resolution by measuring the blood

oxygenation level dependent (BOLD) signal at hundreds of thousands of locations

within the brain. The high spatial resolution comes at the cost of temporal resolution,
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as fMRI typically only captures a single image of the brain every 2 seconds. Even

the latest fMRI technology struggles to sample faster than once every half a second.

Another factor that inhibits the temporal resolution of fMRI data is that it measures

the oxygenation level as a proxy for brain activity, the idea being that more active

areas of the brain will receive increased blood flow to account for the extra demand

for oxygen. Because the BOLD signal measures blood oxygenation, the signal can

only move as fast as blood and may not fully capture the electrical activity of the

brain.

Despite these drawbacks, the high spatial resolution of fMRI data makes it an ideal

choice for analyses intended to localize brain activity to specific regions of interest.

High spatial resolution comes with its own set of challenges for the statistician. A

typical resting-state fMRI acquisition protocol may collect upwards of 5 minutes

worth of data sampled every 2 seconds. This results in a multivariate time series

measuring the BOLD signal at approximately 300,000 locations across 150-250 time

points, resulting in very large datasets with complex spatial and temporal dependence

structures. To reduce the data to a digestible form, brain atlases are often used to

group sets of voxels (3D locations in the brain at which the BOLD signal is captured)

into functionally or spatial similar sets known as regions of interest (ROI) prior to

analysis. Once the data has been summarized to a set of between 5 and 120 ROI, many

methods assume spatial independence between ROI to further simplify the problem.

Even at this stage the statistician must account for temporal autocorrelation present

in the fMRI data, a main goal of the method presented in Chapter 2.

EEG data offers a solution to the relatively poor temporal resolution of fMRI data.

EEG data is typically sampled at a rate between 128 and 1000 Hertz (HZ). Because

EEG directly measures electrical activity, it also does not suffer from the drawbacks

of the BOLD signal in terms of capturing brain activity at a high temporal resolution.

The electrical activity captured by EEG can directly match the pace of the electrical

activity of the brain. This impressive temporal resolution comes at the cost of the

spatial definition offered by fMRI. Non-invasive EEG is only measured on the surface
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of the scalp at between 3 and 256 different locations (often referred to as channels or

nodes).

Even in the case of the newer 256 channel EEG devices, because all measure-

ments are from the surface, localizing the signal to its source within the brain offers

an additional challenge for the statistician. Additionally, the spatial and temporal

dependencies present in fMRI data also occur in EEG data. The size of the data also

becomes an issue with EEG data. If 5 minutes of resting-state EEG data is collected

from 3 different channels at 128 HZ, as is the case with the Minnesota Twin Fam-

ily Study (MTFS) data used in Chapters 3 and 4, the resulting dataset has 115,200

observations per participant. When considering hundreds of participants at once,

the size of the data again becomes unmanageable and data reduction techniques are

required prior to analysis.

1.1.2 Varied Analysis Goals and Approaches

Given resting-state data for a particular imaging modality, a variety of research ques-

tions can be addressed depending on the type of analysis chosen by the statistician.

Chapters 2, 3, and 4 each address distinct research questions by viewing the time

series in a different light and selecting different types of time series analyses.

Chapter 2 uses fMRI data to study what is known as functional connectivity (FC),

defined as temporal dependence, measured through cross-correlations, in the BOLD

signals of different brain regions (Friston et al., 1993). Resting-state FC attempts

to estimate the intrinsic network present in the resting brain given a set of ROI.

We examine FC networks from participants of the Alzheimer’s Disease Neuroimaging

Initiative (ADNI), assessing the differences in FC between patients with Alzheimer’s

disease (AD) and their cognitively normal (CN) counterparts.

Chapter 3 uses EEG data to perform spectral time series analysis on data collected

from adolescent twins through the MTFS. Spectral time series analysis is a frequency

domain technique, which decomposes the time series into a set of waveforms oscillating
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at different frequencies and determines which frequencies are driving the variation in

the EEG time series. Spectral analysis offers a completely different view of time series

data compared to the time domain methods such as the FC analysis in Chapter 2

and the EEG microstate analysis in Chapter 4.

Chapter 4 also uses MTFS resting-state EEG data but to a completely different

end. Rather than summarizing the EEG time series’ variance characteristics through

spectral analysis, Chapter 4 considers the dynamics of the EEG brain activity through

a microstate analysis. Microstate analysis shares some similarities with the fMRI FC

analysis in Chapter 2, but allows the network of activity patterns to change across

the resting-state recording. In this way, microstate analysis does not seek a single

predominant pattern but seeks a set of states such that one of these states dominates

for a short block of time before switching rapidly to another state.

1.1.3 Accounting for Experimental Design

On top of the challenges posed by the size and dependence structure of the data,

resting-state neuroimaging data is often collected as part of a larger study. Whichever

avenue of analysis one follows, it is desirable to account for the structure of the data

by modeling the dependence between participants or between visits from a single

participant.

In the case of Chapter 2, the ADNI data was collected longitudinally and each

participant was scanned between 1 and 6 times over the course of a few years. In our

analysis, we explicitly model this longitudinal structure to both adequately account

for within-subject dependence and to allow inference on the change in FC as the

participants age. As we show, simpler methods that fail to account for the longitudinal

nature of the data result in inflated type I error rates.

We use the same resting state EEG data from the MTFS for both Chapter 3 and

Chapter 4. In this data collected from twins, we found that monozygotic (MZ) twins

are generally more similar than dizygotic (DZ) twins, who are generally more similar
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than two randomly selected individuals. Chapter 3 tackles this twin study design

by sharing information across all participants when performing spectral analysis, but

allowing certain participants to be more similar than others. This model finds groups

of participants with very similar spectral characteristics and estimates their spectral

densities together while allowing separate groups of participants to have vastly dif-

ferent estimates. We fit the EEG microstate analysis in Chapter 4 on the twin pair

level in recognition that twins may even share underlying microstates. The model

estimates the switching dynamics of these microstates separately for each participant

and also learns the amount of shared information within a twin pair to allow different

levels of similarity stemming from the MZ or DZ twin relationships.

1.1.4 Bayesian Nonparametrics

Before more thoroughly introducing each chapter, we briefly introduce a class of meth-

ods used in Chapters 3 and 4 of this dissertation. The term Bayesian Nonparametrics

is used to refer to a class of models which includes the Dirichlet Process (DP), nested

DP (Rodriguez et al., 2008), beta process (BP) (Fox et al., 2014), and Indian buffet

process (IBP) (Ghahramani & Griffiths, 2006) among others. While their applica-

tions and interpretations are varied, this collection of methods is generally used to

solve two problems: 1) Estimate the mixture weights in a potentially infinite mixture

model and 2) Cluster similar observations together where the number of clusters is

unknown. We use the first of these in Chapter 3 when mixing together beta prob-

ability density functions (PDFs) to find estimated spectral density curves. We use

the second in Chapter 3 to cluster participants with similar spectral densities and in

Chapter 4 to cluster observations with similar underlying behavior into microstates.

While the clustering nature of these Bayesian nonparametric models is a useful tool

to explain the heterogeneity within the samples, one should be wary of using them

for inference on the true number of clusters as discussed in Chapter 4.

We now introduce the three remaining chapters of the dissertation with a brief
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abstract for each before moving on to full presentations of these models.

1.2 Estimating Functional Connectivity in Longi-

tudinal fMRI Data

Many neuroimaging studies collect functional magnetic resonance imaging (fMRI)

data in a longitudinal manner. However, the current fMRI literature lacks a general

framework for analyzing functional connectivity (FC) networks in fMRI data obtained

from a longitudinal study. In this work, we build a novel longitudinal FC model using

a variance components approach. First, for all subjects’ visits, we account for the au-

tocorrelation inherent in the fMRI time series data using a non-parametric technique.

Second, we use a generalized least squares approach to estimate 1) the within-subject

variance component shared across the population, 2) the baseline FC strength, and 3)

the FC’s longitudinal trend. Our novel method for longitudinal FC networks seeks to

account for the within-subject dependence across multiple visits, the variability due

to the subjects being sampled from a population, and the autocorrelation present in

fMRI time series data, while restricting the number of parameters in order to make

the method computationally feasible and stable. We develop a permutation testing

procedure to draw valid inference on group differences in the baseline FC network and

change in FC over longitudinal time between a set of patients and a comparable set of

controls. To examine performance, we run a series of simulations and apply the model

to longitudinal fMRI data collected from the Alzheimer’s Disease Neuroimaging Ini-

tiative (ADNI) database. Overall, we found no difference in the global FC network

between Alzheimer’s disease patients and healthy controls, but did find differing local

aging patterns in the FC between the left hippocampus and the posterior cingulate

cortex.
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1.3 Spectral Analysis of EEG Data from Twins

Electroencephalography (EEG) is a non-invasive neuroimaging modality that cap-

tures electrical brain activity many times per second. We seek to estimate power

spectra from EEG data that was gathered for 557 adolescent twin pairs through the

Minnesota Twin Family Study (MTFS). Typically, spectral analysis methods treat

time series from each subject separately, and independent spectral densities are fit

to each time series. Since the EEG data was collected on twins, it is reasonable to

assume that the time series have similar underlying characteristics, so borrowing in-

formation across subjects can significantly improve estimation. We propose a Nested

Bernstein Dirichlet Prior model to estimate the power spectrum of the EEG signal for

each subject by smoothing periodograms within and across subjects while requiring

minimal user input to tuning parameters. Furthermore, we leverage the MTFS twin

study design to estimate the heritability of EEG power spectra. The method also

facilitates heritability analyses on features of the estimated spectral density curves

such as peak frequency and frequency band power. Through simulation studies de-

signed to mimic the MTFS, we show our method out-performs a set of other popular

methods.

1.4 EEG Microstate Analysis on Twins

EEG microstate analysis is an investigation into the collection of distinct temporal

blocks that characterize the electrical activity of the brain. Brain activity within each

of these microstates is stable, but it can switch rapidly between different microstates

in a non-random way. We propose a Bayesian nonparametric model that concurrently

estimates the number of microstates and their underlying behavior. We use a Markov

switching vector autoregressive (VAR) framework, where a hidden Markov model

(HMM) controls the non-random state switching dynamics of the EEG activity and

a VAR model defines the behavior of all time points within a given state. We analyze
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resting state EEG data from twin pairs collected through the Minnesota Twin Family

Study, consisting of 70 epochs that each correspond to 2 seconds of EEG data for a

total of 140 seconds of data per participant. We fit our model at the twin pair level,

sharing information within epochs from the same participant and within epochs from

the same twin pair. We capture within twin pair similarity by using a Beta process

Bernoulli process to consider an infinite library of microstates and allowing each

participant to select a finite number of states from this library. The state spaces

of highly similar twins may completely overlap while dissimilar twins could select

completely distinct state spaces. In this way, our flexible Bayesian nonparametric

model defines a sparse set of states which describe the EEG data. All epochs from a

single participant use the same set of states and are assumed to adhere to the same

state switching dynamics in the HMM model, enforcing within-participant similarity.
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Chapter 2

A Longitudinal Model for
Functional Connectivity Networks
Using Resting-State fMRI

2.1 Introduction

Resting-state functional magnetic resonance imaging (fMRI) captures a series of im-

ages of the brain in subjects who are not given a particular task to perform while

in the scanner. The scanner repeatedly captures blood oxygenation level dependent

(BOLD) signals at hundreds of thousands of locations within the brain, creating a

time series of images of the brain. By capturing the BOLD signal of the resting brain,

resting-state fMRI provides an opportunity for researchers to examine the functional

connectivity (FC) within a set of regions not tied to a particular task. We define

FC as the temporal dependence, measured through cross-correlations, in the BOLD

signals between brain regions (Friston et al., 1993). Identifying group differences in

FC can help better understand the underlying neurological process of a disease and

its progression. Observed group differences can also potentially form biomarkers to

be used for early detection and treatment of neurological disorders (Fox & Raichle,

2007).

Previous works have demonstrated the utility of FC analysis. For example, past

research has identified altered FC between healthy aging patients and those with
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Alzheimer’s disease (AD). Even among cognitively normal (CN) individuals, FC

demonstrates aging effects that are heterogeneous between different brain regions

(Chen et al., 2016). Chase (2014) and Hafkemeijer et al. (2012) showed altered FC

patterns beyond healthy aging in patients with dementia and AD. Others, including

Wang et al. (2007) have noted abnormal FC in various stages of AD. Wang et al.

(2012) even demonstrated the impact of family history of AD on FC. In addition,

Xiang et al. (2013) showed decreased FC from CN patients to mild cognitively im-

paired (MCI) patients to AD patients, and Li et al. (2015) found decreased FC for

CN patients who progressed to MCI over the following 24 months compared to non-

progressers. These previous works, however, used cross-sectional models, which only

consider data from a single time point. Ren et al. (2016), using longitudinal data,

showed abnormal FC in various stages of AD and Staffaroni et al. (2018) analyzed

default mode network (DMN) connectivity longitudinally in patients with AD, but

summarized to a single connectivity strength metric of the network instead of con-

sidering all pair-wise comparisons.

Of the studies mentioned above, only Ren et al. (2016) and Staffaroni et al. (2018)

used truly longitudinal fMRI data. Aging effects are often measured by comparing

young and elderly groups rather than following one group of subjects over time. A

comprehensive longitudinal model that tests for differences in baseline and trend is

needed to verify and expand on the previous results. Zhu et al. (2015) performed a

longitudinal FC analysis for concussion patients, but their method was ad hoc and

specific to their unique dataset. Finn & Constable (2016) demonstrated that CN

patients have distinct brain signatures in fMRI images, implying that separate scans

from a single individual exhibit dependence, and Ge et al. (2017) demonstrated the

heritability of fMRI FC in a longitudinal study. These findings can be leveraged in a

longitudinal framework to better model aging effects.

Methods for both longitudinal imaging data and cross-sectional fMRI FC exist,

but, to our knowledge, no modeling framework exists for fMRI FC collected in a

longitudinal manner. Recent work by Fiecas et al. (2017) developed a model to carry
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out hypothesis tests on the difference between FC networks, but this method was

developed for a cross-sectional study. Taking another approach, Simpson et al. (2013)

provided an overview of graphical network analysis techniques for fMRI connectivity.

The methods they described measure graphical network traits such as small-worldness

and graph centrality, but also fail to account for any longitudinal dependence present

in the data. Other methods have been developed for analyzing longitudinal data from

other modalities, though these methods are not appropriate for modeling longitudinal

FC networks. For instance, Gertheiss et al. (2013) used longitudinal diffusion tensor

imaging (DTI) data to model health outcomes. Unfortunately, the differing nature of

DTI and fMRI data (i.e. fMRI data consists of a time series for each visit) make the

direct application of this method impossible. Guillaume et al. (2014) also proposed

a massive univariate longitudinal model for neuroimaging data, but it also was not

designed to account for the autocorrelation present in fMRI time series.

A wealth of literature exists on methods for longitudinal data analysis to account

for the dependence between two visits from a single participant (Laird, 2004), but

these methods have not yet been integrated with current fMRI FC models. In this pa-

per, we fill this large gap in the literature by proposing a novel longitudinal fMRI FC

network model and inference procedure that considers the set of all possible pairwise

groupings of the chosen ROI in resting-state fMRI data. Our longitudinal variance

components FC network model accounts for within-subject dependence across mul-

tiple visits, variability due to subjects being sampled from a population, and any

autocorrelation present in individual fMRI time series. We also propose an efficient

permutation-based inference procedure that allows for valid hypothesis testing of

group differences in baseline FC and FC aging effects. We show that our method

is superior to the mass univariate linear mixed effects (LME) model commonly used

for longitudinal neuroimaging data. Our work will build on previous results on the

clinical utility of FC as a potential biomarker for AD. It should be noted that in

this paper we use the terms FC and FC network interchangeably, but note that a

distinction is sometimes drawn between the two. In particular, our model focuses
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on inference on the strength of the edges in the network and not on the trends in

the topological properties of the overall network such as the methods of Simpson &

Laurienti (2015) and Simpson & Laurienti (2016). We adopt the FC network term

for our method to emphasize our ability to perform valid inference on the set of all

pairwise connections in a pre-defined network instead of simply performing marginal

inference on each ROI pair.

Our contributions to the field in this article are 1) a novel general framework

for longitudinal analysis of fMRI FC networks, and 2) a novel application of the

permutation testing procedure of Ter Braak (1992) to fMRI FC analysis to allow

valid inference at the local and global level. The remainder of the paper is orga-

nized as follows. Section 2 formally introduces the model, including the estimation

and inference procedures. It also explains the design of the simulation study and

describes the application of our model to data from the Alheimer’s Disease Neu-

roimaging Initiative (ADNI). Section 3 presents the results of the simulation study

and ADNI data analysis. We close with a discussion of the simulation study and

ADNI data analysis results along with proposals for future work in Section 4 and a

conclusion in Section 5. R code for the methods proposed in this paper may be found

at https://github.com/mfiecas/longitudinalFC.

2.2 Materials and Methods

2.2.1 Model Specification

Suppose we have a cohort of N individuals and let P denote the number of ROI

selected for a FC network analysis. We collect a P -variate, fMRI time series of length

T from the preprocessed fMRI images of each of the N subjects at each visit. Let the

subscripts i and j denote subject and visit, respectively. Subject i returns for Ji total

visits, and the cohort has a total of J =
∑N

i=1 Ji visits. Let yi represent the vector of

sample correlation coefficients for subject i of length QJi, where Q = P (P − 1)/2 is
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the number of ROI pairs. Within yi, the Q correlations from the first visit, yi1, are

followed by the Q correlations from the second visit, yi2, and so on until the Ji-th

visit. The full response vector y is formed by stacking the N different yi vectors and

is, thus, of length QJ . Our longitudinal model for FC is a linear model with baseline

effect β0 and longitudinal trend β1, where each of these model parameters is a vector

of length Q. We denote the time at visit j for subject i as vij. The vector vi is formed

by stacking the Ji distinct vij ⊗1Q vectors for subject i, where 1Q is a vector of ones

of length Q and ⊗ is the Kronecker product. Likewise v is formed by stacking the N

distinct vi vectors. Depending on the nature of the data and the research questions

at hand, vij can be set to the visit number, the time since baseline, or the patient’s

age. Then, denoting element-wise multiplication with ∗, our model has the following

linear form:

y = 1J ⊗ β0 + v ∗ (1J ⊗ β1) + ε, where Var (ε) = Σ + Ψ. (2.1)

The key element in our longitudinal linear model is the variance structure of the

error term. We separate the error variance into two components, Σ and Ψ, each

of dimension QJ × QJ . Σ accounts for the within-visit variance and the tempo-

ral autocorrelation in the fMRI time series, and Ψ accounts for the variability and

covariability arising from the heterogeneity across subjects and the within-subject

covariation coming from the longitudinal design. Σ is block diagonal where each

Q×Q block, Σij, accounts for the within-visit variance present in visit j for subject

i for the Q pairs of ROI. Ψ is also block diagonal with a QJi × QJi block for par-

ticipant i. These diagonal blocks do not differ between subjects except through their

dimensions, which depend on the number of visits for each subject. Let Ψdiag be an

arbitrary diagonal block of Ψ. We then further break Ψdiag into two components,

Ψ0 and Ψ1. Ψ0 is a Q × Q block that is repeated along the diagonal of each Ψdiag.

This term models the within-visit covariability not captured by Σ. Ψ1 is a Q × Q

block that populates the off diagonal blocks of Ψdiag, modeling the within-subject,
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across-visit covariability coming from the longitudinal design.

We write Equation 2.1 in the form of a linear model with a vector response,

allowing us to use existing methods for estimating the parameters and for statistical

inference. To this end, our model can also be written in the standard linear model

form with a design matrix X. Let X ij = [1 vij]⊗IQ, where IQ is the Q×Q identity

matrix. To form X i, the portion of the design matrix specific to subject i, we stack

the Ji individual X ij. Likewise, to form X we stack the N individual X i. If we

define β as a vector of length 2Q where the first Q elements are β0 and the last Q

elements are β1, then Equation 2.1 can be written as y = Xβ+ ε. Figure 2.1 shows

a diagram of the model layout for a single subject.

2.2.2 Estimating Within Visit Covariance

We start by estimating the sample correlation coefficient for all ROI pairs for all

visits and their corresponding variances and covariances. Let (w1t, . . . , wPt)
′ for

t ∈ {1, 2, . . . , T} be the time series of preprocessed BOLD signals from P ROI for a sin-

gle visit, so that wpt indicates the t-th time point from the p-th ROI. Then for the p-th

and q-th ROI, rpq =
∑T

t=1(wpt − w̄p)(wqt − w̄q)/
√∑T

t=1(wpt − w̄p)2
∑T

t=1(wqt − w̄q)2.

We now address how to estimate the variance (or standard error) of sample cor-

relations and the covariation between pairs of sample correlations, whenever these

sample correlations are obtained from data that exhibit some degree of autocorre-

lation. To this end, we follow the approach described by Roy (1989) and Melard

et al. (1991). First, define γ̂pq(u) =
∑T−u

t=1 (wpt − w̄p)(wq,t+u − w̄q)/T . Then, letting

h(·) be the modified Bartlett window with bandwidth b(T ), we set Θ̂(p, q, p′, q′) =∑T−1
u=−T+1 h

2(u)γ̂pq(u)γ̂p′q′(u). Using γ̂ and Θ̂, we then let ∆̂(p, q, p′, q′) = Θ̂(p, q, p′, q′)/
√
γ̂pp(0)γ̂qq(0)γ̂p′p′(0)γ̂q′q′(0).

Finally, we can obtain an estimate of the variance and covariance using the following
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Figure 2.1: A diagram of the model for a single subject.
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formula:

Ĉov(rpq, rp′q′) = [0.5rpqrp′q′{∆̂(p, p′, p, p′) + ∆̂(p, q′, p, q′) + ∆̂(q, p′, q, p′) + ∆̂(q, q′, q, q′)}

− rpq{∆̂(p, p′, p, q′) + ∆̂(q, p′, q, q′)} − rp′q′{∆̂(q, p′, p, p′) + ∆̂(q, q′, p, q′)}

+ ∆̂(p, p′, q, q′) + ∆̂(q, p′, p, q′)]/T, (2.2)

where setting p = p′ and q = q′ gives us the variance of the sample correlation

between the p-th and q-th ROI time series. We use Equation 2.2 to populate each

Σij block to get our estimates Σ̂ij. Roy (1989) derived the large sample covariance of

two correlation coefficients from autocorrelated time series, and Melard et al. (1991)

showed that Equation 2.2 consistently estimates this large sample variance.

2.2.3 Estimating Between Subject Covariance, Ψ, and β

Using a generalized least squares (GLS) approach, we now proceed with the estima-

tion of the between subject covariance Ψ and the regression coefficients β, conditional

on the previously estimated within-visit covariances, Σ̂ij. We use consistent estima-

tors from the work of Laird (2004). Although the framework allows for many different

structures for Ψ, we assume a block compound symmetry structure so that all di-

agonal blocks, Ψ0, are equal and all off diagonal blocks, Ψ1, are equal. The block

compound symmetry assumption keeps the parameter space to a reasonable size, but

note that one could easily consider other forms of Ψ, such as an autoregressive struc-

ture, with minimal modification to the estimation procedure. We use the ordinary

least squares estimator β̂ = (X ′X)−1X ′y to provide a good starting estimate of β.

We then update the two components of Ψ using method of moments style estimators.

These estimators resemble the empirical variance estimates. To estimate Ψ0 we find

the sum of squared errors for each visit and subtract the previously estimated Σ̂ij

for each visit. We then sum all of these terms and divide the remaining covariance

matrix by the total number of visits. This estimator is then an empirical estimate of

the variance remaining after accounting for the already calculated Σij terms averaged

16



across all visits for all subjects. We estimate Ψ1 in a similar fashion, but here we no

longer have to subtract any Σ terms since Σ is set to zero for the off diagonal blocks

which Ψ1 occupies. Ψ1 then empirically estimates the average covariance between

any two visits from a single participant. Exact formulas for Ψ0 and Ψ1 are shown

below:

Ψ̂0 =
1∑N
i=1 Ji

{ N∑
i=1

Ji∑
j=1

(yij −X ijβ̂)(yij −X ijβ̂)′ − Σ̂ij

}
, and (2.3)

Ψ̂1 =
1∑N

i=1
Ji(Ji−1)

2

N∑
i=1

∑
j 6=k

(yij −X ijβ̂)(yik −X ikβ̂)′. (2.4)

To increase model parsimony, different structures can be considered for Σij, Ψ0,

and Ψ1. For example, to enforce a diagonal structure, set all off-diagonal elements

to 0, or to enforce a compound symmetry structure, set all diagonal elements to the

average of the diagonal elements and likewise for the off-diagonal elements (Laird,

2004). Changing the form of Σij, Ψ0, and Ψ1 allows the model to be fit with flexible

variance assumptions as is often done in traditional generalized least squares linear

models. We recommend selection of a parsimonious structure for the variance com-

ponents to stabilize estimation and allow ROI pairs to borrow information from each

other in the estimation of their variance terms.

With an estimate of Ψ obtained using Equations 2.3 and 2.4, we can now use

the standard GLS formula to update the regression coefficients as follows: β̂ =

{X ′(Σ̂+Ψ̂)−1X}−1X ′(Σ̂+Ψ̂)−1y. At this point we have two choices: iteratively up-

date Ψ̂ and β̂ until convergence (full convergence), or accept the estimates (one-step)

and proceed with the inferential procedure. As we will see later, we will use a per-

mutation test for inference, making it vital that we have a computationally efficient

way to estimate the effects β and variance component Ψ. The one-step estimator

provides a significant advantage in computing time as Ψ̂ and β̂ must be estimated

for each permutation of the inference procedure (Ganjgahi et al., 2015). One-step
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GLS estimators are not new and have many desirable statistical properties, including

maintaining consistency (Amemiya, 1977).

We estimate β̂, Ψ̂, and Σ̂ for each group (CN and AD for ADNI) separately using

this estimation procedure. Superscripts on the parameter estimates denote the group

(e.g. β̂
G1
, Ψ̂

G1
, and Σ̂

G1
are the estimates for group 1).

2.2.4 Inference

We consider two general hypothesis tests in our longitudinal FC model: the group

difference in the baseline FC, and the group difference in the longitudinal trend in FC;

other tests are possible with slight modifications to the procedure that we describe

below. For each hypothesis, we would like to test the group difference in both the

global FC network of pre-defined ROI and the local ROI pair FC. We refer to the

vector wide test of a difference in the parameter vector β0 or β1 as a global test

and refer to a test of a group difference in a single element of β0 or β1 as a local

test. To accomplish our hypothesis testing objectives, we use the Wald statistic,

{C(β̂
G1
−β̂

G2
)}′[C{V̂ar(β̂

G1
)+V̂ar(β̂

G2
)}C ′]−1C(β̂

G1
−β̂

G2
), and adjust the contrast

matrix, C, depending on the hypothesis of interest. For instance, to test for a global

difference in β0, we replace all β terms with the β0 vector for the proper group and

set the contrast matrix, C, to the Q×Q identity matrix.

We estimate the variance of each group’s regression coefficients using V̂ar(β̂) =

{X ′(Σ̂ + Ψ̂)−1X}−1. Because the standard χ2 statistical leads to very high type I

error levels when more than 3 ROI are selected, we resort to the following permutation

testing procedure:

1. Calculate residuals from the fitted model for each subject: ei = yi −X iβ̂
G

for

subject i in group G.

2. Permute group assignments of ei.

3. Add the nuisance signal back to ei based on new permuted group assignments

G∗. For the main effect (intercept) tests we add in the longitudinal trends by
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setting e∗ij = eij + vijβ̂
G∗

1 . Likewise, for the interaction (slope) tests we set

e∗ij = eij + β̂
G∗

0 .

4. Refit the model on e∗, the permuted, adjusted, and stacked residuals from step

3.

5. Calculate a new Wald statistic for the fitted values of β̂
G∗

and Ψ̂
G∗

.

We repeat steps 2 through 5 a large number of times to create a permutation distri-

bution to be used as a reference distribution of the originally calculated test statistic.

Although not immediately evident, step 3 in this permutation procedure is essential

for valid inference. If we are testing for a difference in baseline FC, we must add in

the longitudinal trend of the new permuted group assignment and, likewise, must add

in the permuted group baseline FC when testing for differences in longitudinal trend.

This step ensures that we are controlling for potential group differences in β0 when

testing for difference in β1 and vice versa. The number of permutations determines

the precision of the p-value and should be chosen to be large enough to offer sufficient

precision after any multiple comparisons adjustment. In our particular data example

using ADNI data with 10 ROI we chose to run 10,000 permutations. Because the

obtained p-values are estimated discrete values, we additionally use a permutation

p-value correction procedure, the necessity of which was shown by Phipson et al.

(2010). To account for the fact that 2Q local hypotheses are tested simultaneously,

we then apply the false discovery rate (FDR) controlling procedure of Benjamini &

Hochberg (1995) to the corrected p-values from the local tests. The permutation p-

value correction helps avoid unadjusted p-values with value 0 which may improperly

maintain significance after a multiple comparisons correction.

Chung & Romano (2013) showed that studentized test statistics, such as the pro-

posed Wald statistic, allow for valid inference in many permutation test settings. A

recent comparison of the performance of different permutation strategies by Win-

kler et al. (2014) showed that the Ter Braak permutation testing procedure we use

maintains nominal Type I error and is fairly robust (Ter Braak, 1992). This method
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Figure 2.2: A workflow chart of the estimation and inferential procedure of our vari-
ance components model.

offers the additional advantage that the data only needs to be permuted once and

the model only fit twice at each iteration of the permutation test to test all local

and global hypotheses. Testing all hypotheses under a single permutation schedule

greatly reduces the computational burden of the testing procedure.

Figure 2.2 shows a workflow chart of the previously described procedures used to

estimate the model parameters and test hypotheses.

2.2.5 Simulation Study Setup

A series of simulations were designed with different data generating mechanisms to

assess model performance. In all scenarios each time series contained 120 time points

and had an autocorrelation structure that followed a first-order autoregressive process

with an AR parameter of 0.3. A multivariate time series was simulated for each

subject at three visits. For each visit, the Q correlations were simulated from a

multivariate normal distribution where the mean and variance varied by group based

on the simulation setting. For group 1, the mean vector was always assumed to
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be 0 and the covariance matrix was the same across all simulation settings. The

simulations used P of either 3, 5, or 10 as the dimension of the multivariate normal

distribution. For the 3 and 5 dimension settings only the first element of the group

2 mean vector was allowed to vary by simulation setting, while the other elements

were set to match group 1. For the 10 dimension settings the first 5 elements of

the group 2 mean vector varied by simulation setting and the other elements were

again set to match group 1. 1,000 Monte Carlo simulations were run for all simulation

settings with 3 and 5 dimensions, and 500 simulations were run for the 10 dimensional

simulation settings. Group sizes of 15 and 30 were considered. The true variance of

the correlations was either equal for the two groups or the group 2 variance was double

the group 1 variance. 500 permutations were used for the permutation test for all

settings. Although more than 500 permutations would likely be desired in practice,

the average effect across all simulations will remain the same with a reduced number

of permutations with the advantage of a significant savings in computing time. The

group size, number of visits, and time series length were selected to reflect values

found in typical fMRI studies. The effect size of 0.1 is realistic for fMRI longitudinal

scenarios. In the ADNI data an effect size of 0.1 or larger was observed for 20%

of the baseline effects and a third of the trend effects over the range of ages under

study. Considering a smaller effect size would lead to very similar conclusions with

slight decreases in power across all models considered. A summary of the simulation

settings used can be found in Table 2.1.

We chose to fit three versions of our model with different variance assumptions

and estimation methods so they can be compared to each other. The first model

considered was a full convergence model that iterated between Ψ̂ and β̂ until con-

vergence. It assumed an unstructured Σij and compound symmetry for Ψ0 and Ψ1.

This model is referred to as the full convergence full variance model. The second

was a one-step model which stops after one iteration of solving for Ψ̂ and β̂. It also

assumed an unstructured Σij and compound symmetry for Ψ0 and Ψ1 and is referred

to as the one-step convergence full variance model. The third model was a one-step
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Simulation
Setting

Group
Size

Variance β0 β1

1 15 Equal 0 0
2 15 Equal 0.1 0.1
3 15 Equal 0.1 0
4 15 Equal 0 0.1
5 30 Equal 0 0
6 30 Equal 0.1 0.1
7 30 Equal 0.1 0
8 30 Equal 0 0.1

9 15 Group 2 Double 0 0
10 15 Group 2 Double 0.1 0.1
11 15 Group 2 Double 0.1 0
12 15 Group 2 Double 0 0.1
13 30 Group 2 Double 0 0
14 30 Group 2 Double 0.1 0.1
15 30 Group 2 Double 0.1 0
16 30 Group 2 Double 0 0.1

Table 2.1: Simulation settings used in the simulation study. Each setting was used
to simulate 3, 5, and 10 ROI data.

model which assumed a diagonal structure for Σij and scaled identity structures for

Ψ0 and Ψ1. This model is referred to as the one-step convergence reduced variance

model. For a comparison to common practice, we also consider a massive univariate

linear mixed effects (LME) model on the correlation coefficients with a random inter-

cept per subject. Unfortunately, because the LME is a massive univariate approach,

we can only run local hypothesis tests on ROI pair effects. For a comparison of global

hypothesis tests results, we also fit a multivariate analysis of covariance (MANCOVA)

model (Johnson & Wichern, 2002).

2.2.6 ADNI Data

Data used in the preparation of this article were obtained from the ADNI database

(http://adni.loni.usc.edu). ADNI was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of

ADNI has been to test whether serial magnetic resonance imaging, positron emission

tomography, other biological markers, and clinical and neuropsychological assessment
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can be combined to measure the progression of MCI and early AD. For up-to-date

information, see www.adni-info.org.

We preprocessed the ADNI data using both FSL (version 5.0.9, https://fsl.

fmrib.ox.ac.uk/) and AFNI (version AFNI 17.0.15, https://afni.nimh.nih.gov/).

The preprocessing steps were as follows. We 1) applied motion correction to the im-

ages using FSL’s mcflirt (rigid body transform; cost function normalized correlation;

reference volume the middle volume) and then 2) normalized the images into the

Montreal Neurological Institute space using FSL’s flirt (affine transform; cost func-

tion correlation ratio). We used FSL’s fast to 3) obtain a probabilistic segmentation

of the brain to obtain white matter and cerebrospinal fluid (CSF) probabilistic maps,

thresholded at 0.75. Using FSL’s fslmaths, we 4) spatially smoothed the volumes us-

ing a Gaussian kernel with FWHM=5 mm. We used AFNI’s 3dDetrend to 5) remove

nuisance signals, namely the six motion parameters, white matter and CSF signals,

and the global signal. Finally, 6) the linear trend was removed from each time series

using linear regression and a 4th order Butterworth low-pass filter with a 0.1 Hertz

cutoff was applied to each fMRI time series.

A subset of the ADNI data was used to demonstrate a practical application of

our model. The data consists of longitudinal resting-state fMRI images collected at

baseline, 3 months from baseline, 6 months from baseline, 12 months from baseline,

and annually thereafter. There are two groups of interest, the CN group and the AD

group. We focused our attention on late-onset AD and included only patients who

were 65 years of age or older at baseline (van der Flier et al., 2011; Holland et al.,

2012). To better separate the AD and CN groups, only patients who remained in one

group for the entirety of the follow-up were considered in our analysis. The remaining

CN group consists of 111 visits from 30 patients (17 females and 13 males) with each

patient having between 1 and 6 visits. The AD group consists of 79 visits from 26

patients (11 females and 15 males) with each patient having between 1 and 5 visits.

The average age was 75.9 for the CN group with a range of 65.2 to 95.7, while the

AD group average age was 76.7 with a range of 66.5 to 88.6.
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Our new method analyzes fMRI data at the region of interest (ROI) level. Thus,

before fitting the model, the investigator must select a number of ROI to include in

the FC network analysis. We used the Automated Anatomical Label (AAL) atlas to

subdivide the brain into 116 anatomical regions (Tzourio-Mazoyer et al., 2002). We

define the ROI level time series for a given region as the average of the time series from

each voxel (3D location) within that region of the brain. We then selected P = 10

ROI for analysis of the ADNI data based on previous literature which has shown

differences in FC between AD and CN patients in the DMN and hippocampi (Supekar

et al., 2008; Greicius et al., 2004; Sorg et al., 2007). The ten regions we selected were

the left and right hippocampus (HC), parahippocampus (PHC), posterior cingulate

(PCC), precuneus (PQ), and prefrontal cortex (PFC). In all results that follow an l

suffix for an ROI denotes the left side of the brain and an r suffix denotes the right

side. Because a full brain analysis of all 116 regions is not currently feasible using

our method, investigators should select a set of ROI for their particular dataset and

research question based on expert knowledge and literature review.

Four models were fit to the ADNI data with differing assumptions. Model 1 is

a one-step estimation model which assumes compound symmetry structure for Ψ0

and Ψ1 and unstructured Σij. Model 2 makes the same assumptions for Ψ0, Ψ1,

and Σij but uses the full convergence estimator. Model 3 is a one-step estimation

model assuming scaled identity structures for Ψ0 and Ψ1 and a diagonal structure

for Σij. Finally, Model 4 uses one-step estimation, assumes a diagonal structure for

Ψ0, sets all elements of Ψ1 to 0, and assumes a diagonal structure for Σij. This final

model is similar to a massive univariate approach which ignores the within-subject

dependence. 10,000 permutations were run for all models fit to the ADNI data. The

intercept of each model represents the FC strength of each group at age 65. Due

to failure to control Type I error rates in the simulation study, we did not fit the

LME/MANCOVA method to the ADNI data.
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2.3 Results

2.3.1 Simulation Study

Tables 2.2 and 2.3 show the simulation study results. Table 2.2 shows the global and

local Type I error for the main effect (difference in baseline FC) and interaction (dif-

ference in change in FC across longitudinal time) across all simulations. The reported

global test results are the average global Type I errors across 500 or 1,000 Monte Carlo

runs. The local test results are the average Type I errors of the unadjusted p-values

for all null hypotheses across the 500 or 1,000 Monte Carlo runs. While the local

p-values would be adjusted in practice, the numbers in the table provide easy refer-

ence to a nominal Type I error of 0.05. Table 2.3 shows the average global power

and average local power using false discovery rate adjusted p-values. All permutation

p-values were corrected in accordance with Phipson et al. (2010). Additional simula-

tion study results can be found in Table A.1 in the Appendix. Table 2.4 shows the

simulation results from fitting the one-step convergence full variance model to the 10

ROI simulated data. The final section of each of these tables shows the results for

the LME/MANCOVA approach. In these sections, all local test results come from

LME model and all global test results come from the MANCOVA model.

Table 2.2 shows roughly nominal Type I error rates for all three specifications

of our model. The LME model also controls Type I error at a nominal level. The

MANCOVA global tests show highly inflated Type I error for the main effect test

and deflated Type I error rates for the interaction test. While there was some slight

inflation in all three specifications of our model, especially for the 10 ROI simula-

tions, the inflation was attenuated by the increase in sample size from 15 to 30 per

group. Table 2.3 demonstrates adequate power, both locally and globally for all

three specifications of our model. The LME model showed decreased power for local

tests, especially when considering the 5 ROI scenario. This reduced power for the 5

ROI scenarios shows the LME model’s decreased performance in higher dimensional
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Convergence: Full One-Step One-Step LME Local
Variance: Full Full Reduced MANCOVA Global

Setting 3
ROI

5
ROI

3
ROI

5
ROI

3
ROI

5
ROI

3
ROI

5
ROI

Main
Effect
Global
Test

1 0.061 0.052 0.057 0.055 0.056 0.054 0.159 0.232
4 0.065 0.065 0.067 0.071 0.067 0.063 0.822 0.700
5 0.045 0.049 0.046 0.050 0.043 0.047 0.132 0.257
8 0.046 0.050 0.054 0.047 0.048 0.049 0.975 0.948
9 0.058 0.049 0.055 0.053 0.056 0.048 0.172 0.301
12 0.068 0.058 0.069 0.056 0.070 0.060 0.718 0.684
13 0.057 0.054 0.058 0.053 0.058 0.060 0.175 0.297
16 0.049 0.066 0.055 0.059 0.058 0.053 0.943 0.902

Main
Effect
Local
Tests

1 0.071 0.061 0.073 0.061 0.066 0.062 0.049 0.047
4 0.064 0.067 0.067 0.069 0.064 0.067 0.052 0.052
5 0.050 0.059 0.048 0.058 0.048 0.057 0.048 0.047
8 0.053 0.058 0.051 0.058 0.052 0.057 0.048 0.050
9 0.064 0.063 0.061 0.062 0.064 0.064 0.049 0.048
12 0.068 0.062 0.069 0.063 0.065 0.063 0.050 0.049
13 0.063 0.055 0.062 0.055 0.060 0.056 0.049 0.047
16 0.054 0.059 0.055 0.058 0.053 0.057 0.053 0.046

Interaction
Global
Test

1 0.062 0.054 0.052 0.057 0.049 0.052 0.021 0.009
3 0.046 0.054 0.044 0.049 0.044 0.049 0.017 0.010
5 0.054 0.059 0.058 0.061 0.056 0.058 0.015 0.007
7 0.052 0.067 0.049 0.063 0.051 0.051 0.021 0.011
9 0.057 0.067 0.050 0.062 0.051 0.069 0.012 0.005
11 0.079 0.071 0.078 0.061 0.073 0.063 0.012 0.014
13 0.068 0.065 0.071 0.061 0.075 0.057 0.012 0.001
15 0.056 0.041 0.057 0.049 0.059 0.040 0.013 0.006

Interaction
Local
Tests

1 0.059 0.062 0.058 0.062 0.059 0.064 0.052 0.048
3 0.055 0.060 0.054 0.057 0.057 0.060 0.048 0.046
5 0.050 0.055 0.049 0.054 0.049 0.055 0.054 0.048
7 0.054 0.059 0.053 0.058 0.058 0.059 0.050 0.049
9 0.063 0.065 0.065 0.061 0.064 0.063 0.045 0.048
11 0.074 0.067 0.071 0.061 0.074 0.064 0.044 0.047
13 0.061 0.059 0.062 0.057 0.063 0.060 0.047 0.050
15 0.057 0.055 0.057 0.055 0.058 0.055 0.053 0.044

Table 2.2: Type I error rates for simulation study for all globally null simulation set-
tings. Type I errors for the main effect (group difference in intercepts) and interaction
effect (group difference in longitudinal slopes) are reported both globally and locally.
The global Type I errors are averaged across all simulations. The local Type I errors
reported are unadjusted and averaged across all simulations and all null ROI pairs.
In the LME Local, MANCOVA Global columns all local test results come from LME
model and all global test results come from the MANCOVA model. The standard
errors for the Type I error rate across all null local tests and an average of 0.008 with
a maximum of 0.023 and were comparable across all models.
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Convergence: Full One-Step One-Step LME Local
Variance: Full Full Reduced MANCOVA Global

Setting 3
ROI

5
ROI

3
ROI

5
ROI

3
ROI

5
ROI

3
ROI

5
ROI

Main
Effect
Global
Test

2 0.382 0.223 0.369 0.229 0.372 0.211 0.999 0.995
3 0.389 0.214 0.390 0.203 0.391 0.204 0.799 0.730
6 0.674 0.491 0.679 0.489 0.682 0.469 1.000 1.000
7 0.684 0.468 0.686 0.470 0.670 0.456 0.972 0.953
10 0.300 0.196 0.294 0.185 0.303 0.185 0.996 0.987
11 0.328 0.180 0.321 0.170 0.316 0.177 0.727 0.647
14 0.582 0.383 0.581 0.385 0.579 0.367 1.000 1.000
15 0.582 0.383 0.580 0.380 0.572 0.371 0.932 0.902

Main
Effect
Local
Tests

2 0.375 0.215 0.370 0.176 0.388 0.251 0.290 0.109
3 0.315 0.172 0.314 0.138 0.324 0.200 0.239 0.081
6 0.700 0.531 0.706 0.504 0.712 0.528 0.703 0.509
7 0.622 0.419 0.621 0.409 0.629 0.454 0.570 0.292
10 0.288 0.155 0.283 0.132 0.283 0.187 0.228 0.067
11 0.258 0.135 0.244 0.102 0.261 0.148 0.180 0.057
14 0.583 0.421 0.578 0.388 0.592 0.408 0.581 0.315
15 0.515 0.355 0.515 0.317 0.515 0.346 0.444 0.193

Interaction
Global
Test

2 0.757 0.525 0.765 0.492 0.771 0.550 0.605 0.271
4 0.767 0.537 0.753 0.494 0.783 0.557 0.624 0.253
6 0.983 0.881 0.983 0.877 0.986 0.888 0.928 0.668
8 0.977 0.899 0.980 0.894 0.977 0.906 0.930 0.660
10 0.706 0.502 0.694 0.444 0.719 0.515 0.478 0.175
12 0.959 0.460 0.958 0.422 0.954 0.483 0.845 0.185
14 0.959 0.842 0.958 0.831 0.954 0.838 0.845 0.541
16 0.950 0.839 0.952 0.821 0.945 0.828 0.863 0.525

Interaction
Local
Tests

2 0.752 0.527 0.737 0.410 0.780 0.645 0.712 0.398
4 0.719 0.470 0.692 0.373 0.734 0.572 0.669 0.340
6 0.989 0.919 0.987 0.875 0.992 0.943 0.981 0.917
8 0.967 0.863 0.973 0.817 0.973 0.902 0.961 0.814
10 0.687 0.442 0.667 0.360 0.693 0.555 0.603 0.273
12 0.645 0.417 0.617 0.335 0.648 0.515 0.568 0.274
14 0.965 0.869 0.967 0.819 0.957 0.892 0.945 0.822
16 0.938 0.817 0.935 0.770 0.932 0.848 0.932 0.742

Table 2.3: The power calculations for the simulation study. Power results for the
main effect (group difference in intercepts) and interaction effect (group difference
in longitudinal slopes) are reported both globally and locally. The global power
results are averaged across all simulations. The local power results reported are FDR
adjusted. In the LME Local, MANCOVA Global columns all local test results come
from LME model and all global test results come from the MANCOVA model.
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Type I Error Rate Power

Main Effect Interaction Main Effect Interaction
Setting Global Local Global Local Global Local Global Local

1 0.066 0.066 0.072 0.067 - - - -
2 - 0.069 - 0.073 0.482 0.086 0.742 0.164
3 - 0.067 0.076 0.071 0.466 0.037 - -
4 0.064 0.069 - 0.073 - - 0.728 0.130
5 0.066 0.058 0.078 0.059 - - - -
6 - 0.054 - 0.054 0.902 0.305 0.942 0.514
7 - 0.054 0.070 0.056 0.884 0.103 - -
8 0.066 0.056 - 0.057 - - 0.936 0.430
9 0.054 0.071 0.070 0.072 - - - -

10 - 0.067 - 0.069 0.356 0.066 0.726 0.125
11 - 0.064 0.090 0.067 0.386 0.026 - -
12 0.068 0.069 - 0.073 - - 0.668 0.094
13 0.062 0.057 0.072 0.060 - - - -
14 - 0.056 - 0.056 0.836 0.241 0.922 0.454
15 - 0.056 0.068 0.058 0.800 0.060 - -
16 0.078 0.059 - 0.060 - - 0.890 0.363

Table 2.4: Type I error rates for 10 ROI simulation scenarios for all globally null
simulation settings for the one-step convergence full variance model. Type I errors for
the main effect (group difference in intercepts) and interaction effect (group difference
in longitudinal slopes) are reported both globally and locally. The global Type I errors
are averaged across all simulations. The local Type I errors reported are unadjusted
and averaged across all simulations and all null ROI pairs. Power results are reported
both globally and locally. The global power results are averaged across all simulations.
The local power results reported are FDR adjusted and averaged across all simulations
and all non-null ROI pairs. The average and maximum standard error for the local
tests were 0.014 and 0.016 for Type I error rates and 0.008 and 0.015 for power
calculations.
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scenarios. The MANCOVA global test had very high power in the main effect tests

where it failed to control Type I error and relatively poor power in the interaction test

where it demonstrated deflated Type I error. As expected, across all models power

increased with larger group size and decreased with a larger true group 2 variance.

Overall, for balancing Type I error and power, our models outperform the LME at

the local level and the MANCOVA at the global level.

2.3.2 ADNI Results

We motivate the challenges of longitudinal FC analysis with a preliminary examina-

tion of the ADNI data. Figure 2.3 shows spaghetti plots of the FC between the pre-

processed fMRI time series obtained from two ROI pairs for the AD and CN groups.

The clustering of points within each line shows the within-subject dependence. In

addition, there is considerable within-subject and within-group noise present in the

estimates of FC. What is not evident from the figure is that the time series from

which these correlations were obtained exhibit autocorrelation that contributes to

the overall variability in FC. To add another level of complication, the figure depicts

the marginal relationship between two ROI, but to properly model all of the selected

ROI we need a joint model that considers the set of all possible pairwise groupings

of the chosen ROI.

Table 2.5 shows results from the global hypothesis tests and all local hypothesis

tests that were significant before p-value adjustment for all four models. Neither

the overall main effect or interaction term were found to be significant in the global

tests for any of the four models considered. The only ROI pair level differences that

remained significant after p-value adjustment and correction in any of the models were

the differences in the CN and AD group longitudinal slopes in the FC between the

left HC and the right and left PCC in Models 1 and 2. These two analyses conclude

that the FC between HCl and PCC declines at a significantly quicker rate in the AD

population than in their CN counterparts. The estimated Model 1 and Model 4 group
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Figure 2.3: Spaghetti plots of the correlation between two ROI against age. Each
point represents a visit, and each line represents a subject. The ROI represented
in these plots are the left and right hippocampus (HCl and HCr), right precuneus
(PQr), and right parahippocampus (PHCr).
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intercepts, group longitudinal trends, group differences in intercepts and longitudinal

trends, and − log10 p-values after correction and adjustment from local hypothesis

tests are presented graphically in Figures 2.4 and 2.5 respectively. Similar figures for

Models 2 and 3 can be found in Figures A.1 and A.2 in the Appendix.

2.4 Discussion and Conclusion

2.4.1 Simulation Study

All three specifications of our model out-performed the LME/MANCOVA model.

The LME model controlled Type I error rates at a nominal level, but saw decreased

power, particularly as the dimension of the data increased. The MANCOVA global

tests performed very poorly, failing to control Type I error at a 0.05 level. Our models’

improved performance in comparison to the LME/MANCOVA approach shows the

utility of our method for both local and global hypothesis testing.

Some interesting results also arise from comparison of the three specifications of

our model. The two full variance settings match the true model of the simulated data,

yet the reduced variance model did not suffer in comparison, even winning in certain

scenarios. The reduced variance model may have offered similar performance because

the smaller parameter space allowed for improved estimation. The reduced variance

model did not capture the full true variance, but it still performed well by allowing

the FC for each ROI pair to be correlated across multiple visits for a given subject.

Performance may also change if stronger within-subject correlation was assumed for

the simulations.

For the chosen simulation settings, the full convergence, full variance model showed

a moderate increase in power for local hypothesis tests compared to the one-step, full

variance model. The slight advantage for full convergence was less evident in the 3

ROI setting and did not translate to either global hypothesis test. Another primary

difference in the three models was the computational time. The full convergence
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βCN βAD Test Statistic Unadjusted p-value Adjusted p-value

Model 1: One-step, Compound Symmetry Ψ0 and Ψ1, and Unstructured Σ

Main Effects 33.92 0.392
HCl and PCCl 0.025 0.198 3.98 0.015 0.222
HCl and PCCr 0.033 0.228 5.02 0.004 0.114
HCr and PCCr -0.005 0.166 3.87 0.012 0.222

Interactions 33.46 0.327
HCl and PCCl 0.005 -0.013 7.05 <0.001 0.027
HCl and PCCr 0.004 -0.014 7.33 <0.001 0.027
HCr and PCCr 0.005 -0.008 4.08 0.013 0.222
PHCl and PCCr 0.008 -0.003 3.19 0.039 0.501

Model 2: Full Convergence, Compound Symmetry Ψ0 and Ψ1, and Unstructured Σ

Main Effects 33.10 0.399
HCl and PCCl 0.024 0.198 3.95 0.015 0.230
HCl and PCCr 0.033 0.227 4.88 0.005 0.141
HCr and PCCr -0.006 0.165 3.82 0.013 0.230

Interactions 32.89 0.326
HCl and PCCl 0.005 -0.013 7.02 <0.001 0.032
HCl and PCCr 0.004 -0.014 7.15 <0.001 0.032
HCr and PCCr 0.005 -0.008 4.02 0.015 0.230
PHCl and PCCr 0.008 -0.003 3.13 0.041 0.531

Model 3: One-step, Scaled Identity Ψ0 and Ψ1, and Diagonal Σ

Main Effects 39.10 0.483
HCl and PCCl 0.041 0.243 5.02 0.007 0.167
HCl and PCCr 0.052 0.275 6.13 0.003 0.078
HCr and PCCr 0.030 0.167 2.32 0.029 0.432
PCCl and PFCr 0.397 0.215 4.30 0.020 0.356

Interactions 45.68 0.284
HCl and PCCl 0.003 -0.014 6.30 0.002 0.078
HCl and PCCr 0.001 -0.017 6.75 0.001 0.078
PHCl and PCCr 0.006 -0.005 2.65 0.045 0.506
PCCl and PFCr -0.005 0.008 3.55 0.037 0.476

Model 4: One-step, Scaled Identity Ψ0, Zero Ψ1, and Diagonal Σ

Main Effects 62.65 0.568
HCl and PCCr 0.078 0.281 8.41 0.013 0.585
PHCl and PFCr -0.116 -0.237 2.84 0.013 0.585
PHCr and PQl 0.040 -0.162 6.61 0.040 0.726
PCCl and PFCr 0.402 0.223 4.35 0.042 0.726

Interactions 68.63 0.421
HCl and PCCl 0.000 -0.013 5.60 0.038 0.726
HCl and PCCr -0.001 -0.018 9.11 0.007 0.585

Table 2.5: Hypothesis tests on the ADNI data. Global tests and all local tests with
unadjusted p-values of < 0.05 are shown for Models 1-4. The numbers in italics are
from the global hypothesis tests.
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Figure 2.4: Model 1 results. Top left: A plot of the estimated intercept terms for
the CN group (bottom left triangle) and AD group (top right triangle). Top right:
A plot of the estimated slope terms for the CN group (bottom left triangle) and AD
group (top right triangle). Bottom left: a plot of the group differences (AD estimates
- CN estimates) for the estimated intercepts (top right triangle) and slopes (bottom
left triangle). Bottom right: A plot of the − log10 corrected and adjusted p-values
from all local hypothesis tests of group differences (AD estimates - CN estimates) for
the estimated intercepts (top right triangle) and slopes (bottom left triangle).
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Figure 2.5: Model 4 results. Top left: A plot of the estimated intercept terms for
the CN group (bottom left triangle) and AD group (top right triangle). Top right:
A plot of the estimated slope terms for the CN group (bottom left triangle) and AD
group (top right triangle). Bottom left: a plot of the group differences (AD estimates
- CN estimates) for the estimated intercepts (top right triangle) and slopes (bottom
left triangle). Bottom right: A plot of the − log10 corrected and adjusted p-values
from all local hypothesis tests of group differences (AD estimates - CN estimates) for
the estimated intercepts (top right triangle) and slopes (bottom left triangle).

34



model took, on average, over 2.5 times longer to run. For reference, using a 3.7

GHz Quad-Core Intel Xeon with 16GB ram, the average times to fit the one-step full

variance model with 30 subjects per group for 3, 5, and 10 ROI were 3.8 seconds, 54.9

seconds, and 87.2 minutes, respectively. These results show that the time increases

quickly with the dimension of the model. The computational time is largely driven by

the permutation procedure. Thus, if a larger number of permutations is desired for

the testing procedure, then the computational time will see a corresponding increase.

The one-step model may serve as an adequate replacement for the full-convergence

model in certain computationally demanding scenarios.

2.4.2 ADNI

The four models fit to the ADNI data present slightly different results. The difference

between Model 1 and Model 2 is minimal. The nearly identical results show that the

full and one-step convergence models can lead to very comparable results. With

nearly identical resulting estimates and inference, the one-step estimator should be

preferred in this case due to its significant computational advantage

Some more pronounced differences in results arise when Model 1 and 2 are com-

pared with Models 3 and 4. All of the models produce similar estimates for β0 and

β1, but Model 4 saw a large reduction in power. When comparing Figures 2.4 and

2.5 three of the four plots look very similar, yet the plots displaying − log10 p-values

demonstrate reduced power in Model 4. As mentioned earlier, Model 4 is essentially a

univariate approach which does not account for the dependence within-visit between

ROI pairs or the dependence between visits. Model 3 models the between visit de-

pendence and gets a considerable boost in power compared to Model 4 in the analysis

of the ADNI data. Although the results are somewhat mixed, Model 1 and Model 2

see a further slight boost in power over Model 3 for certain ROI pairs by accounting

for the dependence between ROI pairs within a visit. The increased power of Model

1 and Model 2 to detect group differences over Model 4 exemplifies the utility of our
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novel longitudinal approach to fMRI FC network analysis.

Although the output from Models 1 and 2 differs slightly from that of Model 3,

they share some common patterns. In these models many of the local hypotheses that

were significant prior to the FDR correction appear between the HC/PHC and the

PCC. These group differences strengthen the one local hypothesis that is significant

after FDR correction from Models 1 and 2, which shows a significantly larger decrease

in FC between the HCl and PCCr in the AD group than in the CN group. While

the significant results become marginal after FDR correction for Model 3, the fact

that many other HC/PHC connections with the PCC show a similar pattern helps to

indicate differing baseline and longitudinal trend effects in the FC of the two groups.

This clustering of group differences can be seen in Figure 2.4 with the smallest p-

values (red and orange circles) appearing between the HC/PHC and PCC. Wang

et al. (2006), Sorg et al. (2007), and Greicius et al. (2004) all noted decreased FC

between the HC and PCC in patients with AD in analyses of cross-sectional data.

Similar results from Supekar et al. (2008) showed decreased clustering coefficients

for the HC. Our analysis confirms these results with the addition of a longitudinal

component to the analysis. Our results not only conclude that AD and CN patients

have differing FC between the HC and PCC, as the previous works have shown, but

we also more clearly describe the group differences in FC across ages between these

two regions.

2.4.3 Limitations and Future Work

Our familiar linear model framework allows for easy adoption and understanding of

the model and its results. Additionally, the linear model framework offers many

natural extensions. One could easily include terms for additional covariates such as

scanner effect or sex. Different structures for the variance components could also be

implemented to capture a wider range of possible correlation structures.

Our current method has the advantage of allowing joint modeling of FC network
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between a set of ROI rather than taking a massive univariate approach. We see this

joint modeling as a significant step forward, but complete brain analyses are still not

yet feasible due to high computational demands of a model fit to many ROI and the

limited sample size of many fMRI studies. Here we have fit models to 10 ROI, but

many brain atlases include more than 100 regions. Our longitudinal FC model is

likely only feasible for networks containing up to 15 ROI. In the future, dimension

reduction techniques, such as regularization, could be introduced into the model to

allow analysis of an entire brain atlas using sparse FC networks. The ability to run

a full brain FC analysis would alleviate the problems arising from ROI selection but

may also make interpretation more difficult as there would be thousands of pairwise

connections to consider.

The selection of the proper structure for the variance components deserves more

attention. While a block compound symmetry structure for Ψ has a natural in-

terpretation similar to that of a random intercept, there are certainly other viable

structures. Choosing between structures is not a trivial task. One way to alleviate

the model selection dilemma is to introduce a more robust sandwich type estimator

of V̂ar(β̂), in which case incorrect specification of the variance would lead to valid

inference with only a reduction in power.

Finally, GLS estimators such as ours typically require a missing completely at ran-

dom (MCAR) assumption. While MCAR may not be reasonable for many datasets,

our method relies less on this assumption because we opt for a permutation proce-

dure. Our estimators maintain consistency in the missing at random scenario and

our permutation testing procedure does not rely on distributional assumptions for

the error terms required when using asymptotic results for inference (Laird, 2004).

2.5 Conclusion

We have introduced a novel variance components longitudinal model to estimate and

draw inference on the group differences in FC networks using resting-state fMRI
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data. The model properly accounts for the correlation inherent in repeated measures

data and the autocorrelation present in fMRI time series from which we construct

the FC networks. For statistical inference for global and local tests about FC, we

used a computationally efficient permutation testing procedure which out-performs

the massive univariate LME/MANCOVA approach. The linear model framework and

use of generalized least squares estimators offers great simplicity and a large number

of natural extensions. This work fills a current gap in the literature by providing

a general framework for estimation and hypothesis testing of longitudinal FC data.

As a practical example, we applied the method to resting-state fMRI data from the

ADNI database. Our analysis found a faster decline in FC between the HCl and the

PCC in AD patients compared to the CN controls. This finding confirms the results

of previous studies and helps solidify the central roles of the hippocampus and DMN

in AD.
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Chapter 3

A Non-parametric Bayesian Model
for Estimating Spectral Densities
of Resting-State EEG Twin Data

3.1 Introduction

Electroencephalography (EEG) is a non-invasive neuroimaging modality that captures

electrical brain activity many times per second by placing recording electrodes at

various locations on the head. With sampling rates as high as 1000 Hertz (Hz), EEG

data offers the benefit of very high temporal resolution. We seek to estimate power

spectra from EEG data that was gathered for 557 adolescent twin pairs through the

Minnesota Twin Family Study (MTFS) (Iacono et al., 1999). The EEG time series

data collected from the twin study design of the MTFS calls for new methods that

take into account the study design in order to account for the heterogeneity of the data

and borrow information within and between twin pairs. We harness the strengths of a

twin study design in a resting-state EEG dataset to develop a novel statistical model

that will accomplish two primary goals: 1) identify the frequencies that drive the

variations in the EEG data, an analysis approach known as spectral analysis, and 2)

draw inference on spectral features and the proportion of variation in these features

that can be attributed to genetic factors, a quantity known as heritability.
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3.1.1 Spectral Analysis

Spectral analysis, a common approach used to analyze EEG data, decomposes a time

series into a set of waves oscillating at different frequencies. The primary tool for

spectral analysis is the spectral density function, also known as the power spectrum,

which is a density of variances that can be understood as an ANOVA where the

spectral density curve shows the proportion of the total variance of a time series that

is explained by waveforms oscillating at each frequency (Shumway & Stoffer, 2010).

By decomposing an EEG time series in such a manner, the spectral density, assuming

weak stationarity of the time series, provides a summary of the variance characteristics

of the EEG signal. The resulting estimated density curves provide signatures that

describe whether low or high frequency oscillations dominate the variance of the time

series.

Many common spectral density estimation methods use parametric forms such as

autoregressive models (Shumway & Stoffer, 2010). These parametric methods are

often very fast and simple, but do not allow sharing of information across multiple

time series, as is desired in our twin study data. An alternative approach to estimate

the spectral density, following the lead of Wahba (1980), is to use Bayesian smooth-

ing splines. These approaches use the Whittle likelihood, an approximation of the

true spectral likelihood (Whittle, 1953), within Markov chain Monte Carlo (MCMC)

algorithms.

Moving beyond the simple scenario of a single time series, some work has begun

to address experimental design when estimating EEG spectral densities, beginning

with Brillinger (1973) who assessed replicated time series as a manner to increase the

signal to noise ratio. Diggle & Al Wasel (1997) and Krafty et al. (2011) expanded

on these models with mixed effects models for repeated biomedical time series. More

recently, Bruce et al. (2017) and Krafty et al. (2017) modeled covariate modulated

spectral densities, while work such as Fiecas & Ombao (2016) considered continuously

evolving spectral densities through a learning experiment. Finally, Cadonna et al.
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(2018) recently developed a Bayesian method to estimate the spectral densities of

multiple time series through mixture models.

Each of these methods improves upon spectral analysis of a single time series

by considering the design of the experiment in which the time series were collected.

Likewise, our goal in this work is to develop a method that takes advantage of the

MTFS twin study design to accurately estimate individual spectral densities in order

to improve estimation and inference about characteristics of these densities such as

frequency band power and their corresponding heritability.

3.1.2 Endophenotypes

The utility of spectral analysis of EEG data from a twin design and heritability

analysis of the power spectra averaged within a frequency band is to establish en-

dophenotypes, neurobiological indicators that link psychiatric disorders to genetic risk

factors. Iacono et al. (2017) laid out seven different criteria for endophenotypes, one

of which is that the feature must be shown to be heritable. Heritability is defined as

the percentage of variation of a trait that can be explained by genetic variation. A

heritability value of 1.0 signifies that variations in the trait are entirely genetic, while

a heritabilty value of 0.0 signifies that variations in the trait are entirely environmen-

tal, and thus the trait is not a candidate endophenotype. Heritability estimates help

establish how much and through which characteristics genetics contribute to electrical

activity in the brain as measured by resting-state EEG.

Iacono et al. (2017) provided a summary of the current state of endophenotype

research. In particular, they discussed the difficulty of moving beyond heritability

analysis to show significant SNP and gene correlations with traits due to the often

modest sample sizes available in EEG studies. In fact, SNP and gene-level analyses

have only recently proved fruitful through a genome wide association study performed

in Smit et al. (2017). Because of limited sample sizes, we focus our attention on

improving and expanding on the heritability measures of the EEG power spectrum.
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With the goal of improved and expanded EEG spectral endophenotypes in mind,

we build a multi-subject spectral density model and derive a novel heritability estima-

tor for spectral density curves. Compared with traditional heritability estimators that

first summarize the power spectrum to a single measure, e.g., by taking the average

power within a frequency band, our novel estimator for heritability better accounts for

the power spectrum changing within a given frequency band. Indeed, our heritability

estimator preserves information from the entire EEG time series without having to

resort to band averaging. Furthermore, we allow calculation of the heritability of

the entire spectral density curve, which is not possible using existing methods. The

heritability of the entire spectral density gives us information on the contribution of

genetic factors to the set waveforms that make up the time series data, giving a more

complete picture of heritability of the EEG spectral density. By enabling heritability

estimation of the full spectrum and estimating this heritability using data from the

MTFS, we expand the set of potential EEG endophenotypes.

3.1.3 Minnesota Twin Family Study

The MTFS is a population-based study of same-sex reared-together male and female

twins (and their parents), the overarching goal of which is to understand genetic and

environmental influences on substance abuse and related psychopathology. Data for

this study consisted of resting-state EEG data from 365 monozygotic (MZ) and 192

dizygotic (DZ) twin pairs of approximately 17 years of age. More details on the MTFS

data are provided in Section 3.4.1.

Table 3.1 shows estimated heritability for the four frequency bands defined as

follows: Delta (1-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), and Beta (12-30 Hz).

These estimates come from using standard estimators on the MTFS data. All three

channels show high levels of heritability in each frequency band, although the level

of heritability does vary from channel to channel and frequency band to frequency

band. Given the differences in heritability estimates across frequency bands, it is easy
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Channel Frequency Band Heritability

Cz

Delta (1-4 Hz) 0.67
Theta (4-8 Hz) 1.00
Alpha (8-12 Hz) 0.87
Beta (12-30 Hz) 0.72

O1

Delta (1-4 Hz) 0.41
Theta (4-8 Hz) 0.70
Alpha (8-12 Hz) 0.60
Beta (12-30 Hz) 0.36

O2

Delta (1-4 Hz) 0.49
Theta (4-8 Hz) 0.70
Alpha (8-12 Hz) 0.45
Beta (12-30 Hz) 0.36

Table 3.1: The estimated heritability for each of the four frequency bands and three
EEG recording channels. Heritability estimates were calculated using GCV smoothed
periodograms and Falconer’s formula.

to imagine heritability as a smooth function over frequencies, which we will develop

in the present work.

While many resting-state EEG spectral densities share similar general shapes and

peaks, the fact that features of these curves are heritable also suggests that certain

curves (i.e., those from twins) will be more similar than others. Thus, in developing

a model for spectral densities, we need a framework that allows some sharing of

information between all participants, but also allows different levels of similarity to

match the different relationships between the participants who are either unrelated,

DZ twins, or MZ twins.

The fact that the heritability differs between frequency bands suggests that a

strict correlation structure imposed upon twin relationships may not be appropriate

in this application. The importance of the twin relationship can vary from twin pair

to twin pair and from one frequency band to another within a single twin pair. To

learn the heterogeneity structure of the sample and allow flexible joint modeling of

the spectral densities, we embed our estimation framework within a Bayesian nested

Dirichlet process (DP) structure (Rodriguez et al., 2008). This allows us to group

very similar spectral densities and shrinks their estimates towards each other while
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allowing different groups to have potentially divergent estimates. In combination with

our novel heritability estimator, the nested DP multi-subject spectral density model

will account for the twin study design of our data and allow us to accomplish both of

our stated goals efficiently.

3.2 Model Specification and Inference

3.2.1 The Single Subject Model

We start by considering a model for the spectral density of a single time series to serve

as the base of our multi-subject model. Suppose we observe a univariate time series,

Yt for t = 1, . . . , T , and that the time series has been standardized to have mean zero

and unit variance. We model the spectral density function as a mixture of probability

density functions (PDFs), ensuring a strictly non-negative estimated spectral density

that integrates to Var(Yt) = 1. Since we will be working in the frequency domain, we

use the Whittle likelihood (Whittle, 1953), given by

L(f | Y ) ∝
∏
ω∈Ω

1

f(ω)
exp

( |d(ω)|2

f(ω)

)
, (3.1)

where f(ω) is the spectral density, and d(ω) = T−0.5
∑T

t=1 Yt exp(−i2πωt) is the

discrete Fourier transform of the time series Yt. The quantity |d(ω)|2 is known as the

periodogram. Because the spectral density is considered only on an interval from zero

to the Nyquist frequency (half the sampling rate), one natural model is a mixture

of beta PDFs with domain scaled to lie in (0, 0.5). Such a mixture of beta PDFs is

commonly known as a basis of Bernstein polynomials. For ease of notation we assume

all frequencies have been scaled to fall within the (0, 0.5) interval. Let the spectral

density be

f(ω) =
Λ∑
λ=1

G
(λ− 1

Λ
,
λ

Λ

]
β(ω;λ,Λ− λ+ 1), (3.2)
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where Λ is the degree of the Bernstein polynomial, β(ω;λ,Λ − λ + 1) is the beta

density evaluated at ω with parameters λ and Λ − λ + 1, and G
(
λ−1

Λ
, λ

Λ

]
= G( λ

Λ
) −

G(λ−1
Λ

). We employ a Bayesian non-parametric approach and assume that G is a

cumulative distribution function obtained as the realization of a Dirichlet process

(Petrone, 1999a). That is, G can be written as a discrete probability distribution,

G(x) =
∑∞

l=1 plδzl(0, x], x ∈ [0, 0.5], with atoms zl randomly drawn from a base

measure G0, zl
iid∼ G0, with support on (0, 0.5) and weights pl characterized through

the stick-breaking representation (Sethuraman, 1994), i.e., let p1 = v1 and pl =

vl
∏l−1

s=1(1−vs) where vl ∼ beta(1, αv) with concentration parameter αv. It follows that

G is a random probability measure, such that E(G(x)) = G0(0, x], for all x ∈ [0, 0.5].

The concentration parameter αv characterizes the variability of the realizations G

around the base measure G0. In symbols, we write G ∼ DP (αv, G0). In the following,

we will consider a finite truncation approximation with truncation level L so that

vL = 1 and G =
∑L

l=1 plδzl (Ishwaran & James, 2001). We now re-write our model as

f(ω) =
Λ∑
λ=1

L∑
l=1

plI
[λ− 1

Λ
< zl ≤

λ

Λ

]
β(ω;λ,Λ− λ+ 1). (3.3)

This model, henceforth referred to as the Bernstein Dirichlet Prior (BDP) model, was

introduced by Petrone (1999a) and applied to spectral density estimation for a single

time series by Choudhuri et al. (2004). These two papers along with Petrone (1999b)

and Barrientos et al. (2017) demonstrated the utility and theoretical properties of the

BDP model for spectral density estimation.

In this BDP model, Λ controls the number of beta PDF mixture components

when estimating a single spectral density curve. A higher Λ corresponds to a larger

number of Bernstein polynomial components, and thus the ability to capture sharper

peaks in the underlying spectral density. The DP, G, then properly assigns weights

to each component of the selected basis. Along these lines, Petrone (1999b) offered

some nice intuition for the BDP model as a smoothed histogram, where Λ can be

viewed as the number of bins in the histogram and G assigns each observation to one
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of the available bins.

Note that we do not specify a scalar, referred to as τ by Choudhuri et al. (2004),

which only serves to multiply the spectral density by the total variance of the time

series. By standardizing the time series to mean zero and unit variance, we remove

the need to estimate τ while still capturing the desired information about the shape

of f(ω).

3.2.2 The Multi-Subject Model

Having formulated the BDP model to estimate a single spectral density curve, we now

consider a model to estimate many spectral densities from time series collected on

a sample consisting of twin pairs. Because the twin relationships induce similarities

across spectral density estimates, we propose grouping similar individual spectral

densities by nesting the BDP model within a second DP. The partitions enforced by

the nested DP explain the heterogeneity between subjects by assigning subjects with

very different spectra to separate groups while also allowing very similar subjects to

receive accordingly similar spectral density estimates by frequently grouping these

subjects together.

More specifically, we assume that the individual spectral density may be assigned

to one of K groups, with each group characterized by a specific spectrum profile,

i.e., K realizations {G∗1, . . . , G∗K} from a BDP as in Equation 3.3. The individual

spectral density for subject n is estimated as in Equation 3.2. Let Gn be subject n’s

draw from the nested DP, then, in formulas, Gn ∼ Q with Q =
∑K

k=1 π
∗
kδG∗k and each

G∗k =
∑L

l=1 pklδzkl defined as in Section 3.2.1 for k = 1, . . . , K. The weights πk describe

the proportion of subjects assigned to group k = 1, . . . , K and we assume they are

defined similarly to the pl, through a stick-breaking construction, πk = uk
∏k−1

s=1(1−us)

where uk ∼ beta(1, αu). We refer to our model as the nested Bernstein Dirichlet prior

(NBDP) model. Let ζn be an allocation variable, such that ζn = k for k = 1, . . . , K

and n = 1, . . . , N , if and only if subject n is assigned to group k. Then the spectral
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density for subject n can be written as:

fζn(ω) =

Λζn∑
λ=1

L∑
l=1

pζnlI
[λ− 1

Λζn

< zζnl ≤
λ

Λζn

]
β(ω;λ,Λζn − λ+ 1), (3.4)

where we allow different Λζn in each group.

Figure 3.1 shows a diagram representing the NBDP model. In the context of

multi-subject EEG data, the nested DP models the heterogeneity of the sampled

EEG spectral densities by partitioning the set of subjects into homogeneous groups.

Meanwhile, the BDP fits a functional curve for each group. We use an MCMC

sampling algorithm, where at each iteration we first assign each subject to one of

the K available groups with function-level estimate Gk. These Gk BDP functional

curve estimates are then updated to best fit the subjects assigned to that group.

We stress that we are not concerned with the partitions induced by the model, but

only employ the nested DP to account for the heterogeneity across subjects, which

allows improved estimates of power spectra and heritability. The flexible nature of

the NBDP groupings allows us to capture potentially complex twin relationships that

vary across twin pairs and across frequencies.

3.2.3 Estimating the Heritability of the Power Spectrum

Given the posterior distributions of the individual power spectra obtained using our

NBDP model, we need a valid method for estimating heritability of these resting-

state EEG power spectra using the available twin pair relationships in the MTFS

data. As previously mentioned, establishing that spectral characteristics are herita-

ble is essential for developing endophenotypes that tie these neurobiological indicators

to their genetic underpinnings. Falconer’s formula estimates the heritability of the

power spectrum at frequency ω as h2(ω) = 2(rMZ(ω) − rDZ(ω)), where rMZ(ω) and

rDZ(ω) are the correlation in the estimated individual spectral densities at frequency

ω among MZ and DZ twins respectively (Falconer, 1960). Intuitively, MZ twins are
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ω

Figure 3.1: A schematic representation of the NBDP model. The BDP is used to
estimate a group level spectrum for each of the K different groups. The nested DP
then assigns each of the N subjects to one of the K group spectral densities.
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genetically identical and DZ twins share 50% of their genetics on average. Falconer’s

formula estimates heritability by estimating half of the genetic effect as the difference

between MZ and DZ correlations and multiplying this by 2 to get the full genetic

effect. While this estimator gives us the heritability of a single frequency, it is more

scientifically useful to consider neighborhoods of frequencies, say (ω1, ω2), known as

frequency bands. Findings such as those in Malone et al. (2014) and Rudo-Hutt

(2015) generally use frequency band results instead of attempting to interpret each

individual frequency. To estimate frequency band heritability we propose a new esti-

mator that integrates across frequencies, weighting the heritability at each frequency

by the total variation in the power spectra at that frequency and then dividing by

the total integrated variability in the power spectra. Our novel estimator takes the

form

h2(ω1, ω2) =

∫ ω2

ω1
h2(ω)Var(f(ω))dω∫ ω2

ω1
Var(f(ω))dω

. (3.5)

We estimate Var(f(ω)) by taking the sample variance at each frequency across all of

the curves from our posterior distribution. This novel heritability estimator allows

us to calculate heritability for any frequency band without having to first reduce

the spectral density curves to a single power estimate. Note that we can compute

the heritability of the entire spectral density curve, which we call the full spectrum

heritability, by setting the bounds of integration in Equation (3.5) to (0, Nyquist

frequency). This full spectrum heritability could not be calculated using existing

methods, and so it allows the introduction of a new set of endophenotypes based on

the full spectrum of an EEG time series.

3.2.4 MCMC Sampling Algorithm

Given Ω = {1/T, 2/T, . . . , (bT/2c − 1)/T}, the Whittle likelihood for subject n

is L(fn|Y n) ∝
∏

ω∈Ω exp[|dn(ω)|2/fζn(ω)]/fζn(ω), and the posterior density of our
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NBDP model is proportional to

[ N∏
n=1

∏
ω∈Ω

1

fζn(ω)
exp
( |dn(ω)|2

fζn(ω)

)]
×
[ K∏
k=1

L−1∏
l=1

αv(1− vkl)αv−1

]
×
[ K∏
k=1

L∏
l=1

g0(zkl)

]

×
[ K∏
k=1

ρ(Λk)

]
×
[K−1∏
k=1

αu(1− uk)αu−1

]
,

(3.6)

where ρ(Λk) is the prior on the degree of the Bernstein polynomial. Typical vague

prior specifications set αv and αu equal to 1, let G0 be a uniform on the interval

from zero to the nyquist frequency, and specify ρ(Λk) as a discrete uniform prior on

integers from 1 to some large integer (we use 300). Note that this prior specification

significantly simplifies the posterior distribution to be proportional to

N∏
n=1

∏
ω∈Ω

1

fζn(ω)
exp
( |dn(ω)|2

fζn(ω)

)
. (3.7)

Our MCMC procedure takes the following steps:

1. For k ∈ (1, . . . , K−1), sample the stick breaking weight for the population-level

DP, uk, from its conditional posterior distribution, uk|Λk, ζ,vk, zk ∼ beta(1 +∑N
n=1 I(ζn = k), αu +

∑N
n=1 I(ζn > k)).

2. Sample the group assignment, ζn, for each subject from a multinomial distribu-

tion where

Pr(ζn = k|Λk, uk,vk, zk) ∝ πk
∑Λk

λ=1

∑L
l=1 pklI[(λ−1)/Λk < zkl ≤ λ/Λk]β(ω;λ,Λk−

λ+ 1).

3. For k ∈ (1, . . . , K), sample the degree of the Bernstein Polynomial, Λk, using

a Metropolis-Hastings step with Poisson proposal density with the mean equal

to the last value of Λk.

4. For k ∈ (1, . . . , K) and l ∈ (1, . . . , L − 1), sample the function-level DP stick

breaking weight, vkl, using a Metropolis-Hastings step with a uniform proposal
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on a sample space extending εl on either side of the previous sample and taking

the proposed value modulus 1.

5. For k ∈ (1, . . . , K) and l ∈ (1, . . . , L − 1), sample the function-level DP atom,

zkl, using a Metropolis-Hastings step with the same proposal used for vkl.

We use a truncation approximation at both levels. Given the truncation levels

are set sufficiently high, the truncation approximation has minimal impact on the

resulting estimates and increasing the truncation level only increases computing time

of the MCMC sampler.

3.3 Simulation Study

In this section, we use simulated data to show the gains in estimation performance

when using our NBDP model relative to existing approaches typically used in the time

series community for spectral analysis. We point out that, while we can simulate time

series data with a twin correlation structure, we cannot obtain the analytical form

for the heritability h2(ω) and the band heritability h2(ω1, ω2). Thus, in this section,

we evaluate performance only with respect to estimating the spectral density and the

power within certain frequency bands.

3.3.1 Data Simulation Process

Simulation experiments were designed to mimic the MTFS data as closely as possible.

We considered four different scenarios, each with 1000 simulated subjects. In two of

these scenarios we simulated the data in pairs to replicate the effects of the twin

relationships, using 300 MZ twin pairs and 200 DZ twin pairs in the simulations. As

in the MTFS data each simulated time series represents 8 seconds of data sampled

at 60 Hz, resulting in 480 time points and 239 non-zero frequencies. The MTFS data

was sampled at a higher rate, but only 239 non-zero frequencies fell below the 30 Hz

cut-off of the low-pass filter.
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Five separate autoregressive (AR) processes with spectral densities that visually

resembled those estimated from the MTFS data were selected with orders between

5 and 18. For each simulated subject, one of the five AR processes was selected

and random noise was added to the AR parameters. Scenario 1 simulated a grouped

twin scenario by considering all 5 AR processes, assigning twins to the same AR

process, and enforcing correlation in the random noise of the AR parameters for

MZ twins. Scenario 2 assigned an AR process and generated the AR parameter noise

independently for each subject. Scenarios 3 and 4 only considered a single AR process

with random noise increased relative to scenarios 1 and 2. Scenario 3 also induced

twin structure by making the AR parameter random noise moderately correlated for

DZ twins and highly correlated for MZ twins. The simulated true spectra from the

four different scenarios are shown in Figure 3.2.

3.3.2 Model Comparison

For model comparisons, we chose three competitor models. The first was the gener-

alized cross validation span selection periodogram smoother of Ombao et al. (2001).

For this method, henceforth referred to as GCV, we considered spans between 3 and

100 for each subject. The second was the stationary version of Rosen et al. (2009),

which uses Bayesian smoothing splines, fit to each subject separately. We considered

versions of this model that used J = 10 and J = 20 spline basis components. These

models will be referred to as Spline10 and Spline20, respectively. The final competitor

we considered is the BDP model (Choudhuri et al., 2004), which forms the base of

our NBDP model but does not allow borrowing of information across subjects. A

discrete uniform prior was used for the degree of the Bernstein polynomial, Λ, for

each subject in the BDP model and a truncation level of L = 20 was used. 50,000

posterior samples were collected for the Spline10, Spline20, and BDP samplers. We

fit our NBDP method to each scenario with the same priors chosen for the BDP

model. We additionally specified the truncation level of the subject-partitioning DP

53



Figure 3.2: Simulated spectra from each of the four simulation scenarios. Each black
line represents the true spectrum for a single simulated subject. Each colored line
represents the true spectra of the AR groups without any random noise added to the
AR coefficients.
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at K = 100 and collected 100,000 posterior samples from the NBDP model.

To compare the accuracy of the resulting estimated spectral density curves we

calculated the integrated absolute error (IAE) for each subject. For a given estimated

spectral density f̂(ω) and true density f(ω), IAE =
∫
ω
|f̂(ω)− f(ω)|∂ω.

3.3.3 Simulation Study Results

Scenario Method Delta Theta Alpha Beta Full Spectrum

Scenario 1:
5 Groups
with Twins

GCV 0.36 (0.20) 0.38 (0.17) 0.36 (0.19) 0.23 (0.10) 1.44 (0.40)
Spline10 0.37 (0.22) 0.37 (0.19) 0.33 (0.17) 0.20 (0.09) 1.38 (0.40)
Spline20 0.42 (0.22) 0.45 (0.19) 0.45 (0.21) 0.27 (0.10) 1.70 (0.41)
BDP 0.35 (0.19) 0.52 (0.23) 0.40 (0.19) 0.20 (0.09) 1.62 (0.36)
NBDP 0.28 (0.16) 0.32 (0.18) 0.33 (0.16) 0.17 (0.07) 1.22 (0.32)

Scenario 2:
5 Groups
without
Twins

GCV 0.36 (0.21) 0.38 (0.17) 0.35 (0.17) 0.22 (0.10) 1.42 (0.38)
Spline10 0.37 (0.22) 0.36 (0.18) 0.33 (0.17) 0.20 (0.09) 1.36 (0.39)
Spline20 0.42 (0.23) 0.45 (0.20) 0.44 (0.22) 0.27 (0.10) 1.69 (0.41)
BDP 0.35 (0.19) 0.52 (0.23) 0.39 (0.19) 0.19 (0.09) 1.60 (0.36)
NBDP 0.28 (0.17) 0.34 (0.20) 0.36 (0.18) 0.17 (0.07) 1.28 (0.33)

Scenario 3:
1 Group
with Twins

GCV 0.33 (0.16) 0.35 (0.15) 0.43 (0.18) 0.25 (0.10) 1.45 (0.35)
Spline10 0.34 (0.17) 0.35 (0.17) 0.42 (0.19) 0.21 (0.09) 1.41 (0.38)
Spline20 0.39 (0.19) 0.43 (0.18) 0.51 (0.21) 0.26 (0.10) 1.69 (0.38)
BDP 0.33 (0.16) 0.51 (0.24) 0.49 (0.22) 0.20 (0.08) 1.67 (0.44)
NBDP 0.30 (0.15) 0.34 (0.15) 0.39 (0.20) 0.18 (0.06) 1.35 (0.35)

Scenario 4:
1 Group
without
Twins

GCV 0.33 (0.16) 0.36 (0.15) 0.45 (0.19) 0.25 (0.10) 1.48 (0.37)
Spline10 0.34 (0.17) 0.36 (0.17) 0.44 (0.19) 0.21 (0.09) 1.44 (0.38)
Spline20 0.39 (0.19) 0.43 (0.18) 0.52 (0.22) 0.26 (0.09) 1.71 (0.42)
BDP 0.33 (0.16) 0.50 (0.24) 0.51 (0.22) 0.20 (0.08) 1.68 (0.43)
NBDP 0.30 (0.15) 0.33 (0.15) 0.42 (0.20) 0.20 (0.07) 1.37 (0.35)

Table 3.2: Mean (sd) mean integrated absolute error (MIAE) across the 1,116 MTFS
subjects. Bold numbers indicate the best performing model in each scenario and
frequency band.

Table 3.2 contains the mean and standard deviation of the mean IAE for each

model and simulation scenario. We also split the results into the four frequency bands

commonly considered in EEG analysis. Our NBDP method had the best mean IAE

in all four simulation scenarios when considering the entire spectrum. This advantage

diminished as the amount of between subject similarity decreased through the four
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simulation scenarios, but the NBDP model maintained the lowest mean IAE and the

lowest standard deviation of IAE across all four scenarios.

The Spline20 method showed the worst performance in all four scenarios, as it

likely over-fit the data with too many spline components. The spline method re-

ceived a considerable boost in performance when J = 10 basis components were

used, finishing second in all scenarios behind our NBDP model. While the spline

model with J = 10 performed relatively well, the number of spline components must

be selected a priori in this model, whereas the BDP and NBDP models adaptively

select the proper order of Bernstein polynomial to use based on the data. Comparison

of the 10 and 20 component spline methods shows that using the incorrect number

of components can seriously impact the performance of the model.

The BDP method showed the second worst performance of the models under

comparison in all scenarios. The large improvement from the BDP model to our

NBDP model demonstrates the added value of a nested model that shares information

between subjects. The decreasing advantage of the NBDP model from scenarios 1 to

4 is to be expected due to increased between-subject heterogeneity, and is reflected

in the pattern in the Alpha band IAE. The only frequency bands where the NBDP

model did not perform best were the Alpha band in scenario 2, where the Spline10

model had an advantage, and the Beta band in scenario 4, where the BDP model very

slightly prevailed. The Spline10 model’s small advantage in mean IAE in scenario 2

may come from its ability to better estimate a sharp alpha peak for certain subjects,

but the NBDP model was still competitive. The decreased mean IAE in the Delta and

Theta bands for the NBDP model in scenario 2 still resulted in a near 6% reduction

in mean IAE for the full spectrum in comparison with the Spline10 model.

In EEG spectral density analysis the frequency with the highest spectral power

over the entire spectrum (i.e., the peak frequency) and within the Alpha band (i.e., the

Alpha peak frequency) are of interest. We calculated the error in the peak frequency

and Alpha peak frequency for each simulated spectral density in each simulation

scenario. When considering peak frequency, our NBDP method struggled when the
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true spectral density had two peaks of relatively similar height, as is the case for

roughly 40% of the subjects in scenarios 1 and 2 and all of the subjects in scenarios 3

and 4. The NBDP method favored the lower frequency peak when choosing between

the two local maxima. This trait of the NBDP model is inherited from the BDP

model, however, when considering Alpha peak frequency the NBDP method was

much improved. It still exhibited a slightly skewed distribution, but the median

error was near zero for all four scenarios and the performance was comparable to the

GCV and spline methods. Importantly, the NBDP method performed much better

than the BDP method for Alpha peak estimation, another example of the gains from

jointly fitting the spectral densities for all subjects. By using the nested DP model,

borrowing information across subjects allowed us to overcome the deficiencies of the

BDP model in estimating Alpha peak frequency.

Note that the Bayesian machinery of the NBDP model makes inference on fea-

tures of the spectral density curves such as peak frequency and alpha peak frequency

very straight-forward using functions of the posterior samples. The GCV model does

not offer a similar general approach to inference on features of the estimated spec-

tral densities and each spectral feature requires the use large-sample results or the

bootstrap.

Finally, we note that the methods compared do differ in terms of computing

time. For example, MCMC iterations while fitting the model to a single simulation

scenario took 6.2 seconds on average for the NBDP model compared to an average

of 1.4 seconds for the Spline10 model. While the NBDP model is computationally

expensive, the improved spectral density estimates shown in the simulation results

justify the additional time required to fit the model.

3.4 MTFS Analysis

Our analysis of the MTFS data had two primary goals: 1) conduct spectral analysis

in the resting-state EEG data to quantify the power within frequency bands of in-
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terest, and 2) compute the band heritability for each frequency band, as well as the

heritability of the entire spectral density.

3.4.1 Data Description

We applied our method to resting-state EEG data collected from the MTFS which

constituted part of the molecular-genetic studies of Malone et al. (2014) and Smit

et al. (2017). Specifically, the data used here were from the intake assessment of male

and female twins from the age-17 cohort of MTFS twins and consisted of data from

3 electrodes common to both sex cohorts (Cz, O1 and O2), collected with a sampling

rate of 128 Hz and 12 bits. The Cz electrode is located at the center midline on the

top of the head and the O1 and O2 electrodes are located on either side of the midline

at the rear of the head. Considering each channel separately, we applied our method

to 8 seconds of data resulting in time series of length 1024. In total, our sample

included 1116 adolescents consisting of participants from 365 distinct MZ twin pairs

and 192 DZ twin pairs. The sample had approximately equal numbers of individuals

of each sex with 565 females and 551 males.

While twin participants sat comfortably in a darkened room with their eyes closed,

EEG signals were recorded by means of identical Grass 12 Neurodata systems, with a

pass band from 1 to 30 Hz (amplifier rolloff, 6 dB/octave). Notes recorded when the

data were originally collected guided identification of data that needed to be excluded

because of recording problems. Subjects who reported having fallen asleep or were

noted to have fallen asleep were excluded. EEG segments containing transient arti-

facts and excessively small or large voltage deflections were tagged for exclusion by a

computer algorithm written in Matlab. Multivariate outliers across the 3 electrodes

were identified using a robust version of Mahalanobis distance from the robustbase

package in the R statistical programming environment and visually reviewed for con-

tamination by high-frequency noise, other artifacts (e.g., electrocardiogram), or signs

of sleepiness. Individual recording sites were excluded from analyses if fewer than 45
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2-second artifact-free sweeps were available.

3.4.2 Analysis Setup

For analysis of the MTFS data we consider our NBDP model with truncation levels

of L = 20 for the function-level DP and K = 100 for population-level DP. We limited

the analysis to frequencies below 30 Hz. We chose a discrete uniform prior on integers

from 1 to 300 for the prior distribution on the degree of the Bernstein polynomials for

each group, ρ(Λk). Putting a flat prior on the number of Bernstein polynomials allows

the data to choose the amount of smoothing to apply to the periodogram. We set both

concentration parameters, αv and αu, equal to 1 and the base distribution G0 was

assumed to be uniform. We used the εl values suggested by Choudhuri et al. (2004)

for the Metropolis-Hastings steps to sample zkl and pkl. 100,000 posterior samples

were collected from a single chain for the NBDP model. These same specifications

were used for analysis of the time series from each of the three channels.

3.4.3 MTFS Results

Figure 3.3 shows, for each channel, the estimated power spectrum for each of the

1116 subjects in the MTFS. The somewhat clustered nature of our NBDP model

is visible in these estimated curves, as many individual subjects’ estimated curves

fall nearly on top of each other, creating a darker black line. These groupings are

defined by different characteristics such as the Alpha band peak visible around 10 Hz.

Most subjects have some sort of peak between 7 and 12 Hz, but the exact frequency

and power of this peak changes by group. The nested DP often detected the twin

structure in the data, clustering MZ twins Cz power spectra together in 26.4% of

posterior samples compared with 8.9% for DZ twins and only 4.6% for non-twins.

The bottom plot in Figure 3.3 shows, for each channel, Falconer’s estimate of

heritability for each frequency of the spectrum along with 95% point-wise credible in-

tervals. Although it differed somewhat by channel, we found high levels of heritability
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Figure 3.3: Top row: The estimated spectral density curves for each channel and each
of the 1116 participants in the MTFS. Each line represents a single subject. Bottom
row: The estimated heritability and 95% point-wise credible interval across the power
spectrum calculated using Falconer’s formula.

60



across the spectrum for all three channels, particularly in the Theta and Alpha bands.

The highest levels of heritability correspond with the Alpha band peak, suggesting

that this feature of the data may be largely genetically driven. All three heritability

curves demonstrate similar shapes, and the Cz and O2 curves share a particularly

strong resemblance to one another.

Table 3.3 reports the median and inter-quartile range of frequency band power

and peak frequency estimates for the 1116 MTFS subjects along with the estimated

sample heritability for each feature. For the frequency band heritability measurements

we used the novel form of Equation 3.5. Compared to the Cz channel, the O1 and

O2 channels exhibited larger Alpha peak power, Alpha band power, and Beta band

power along with smaller Delta and Theta band power. Features such as the Delta

and Alpha band peaks, which are clear when visually inspecting the estimated curves

in Figure 3.3, are not as apparent after aggregating power across bands. Note that

the full spectrum power is 1 for all subjects due to the nature of the NBDP model and

the fact that the original time series were standardized to unit variance. As with the

heritability curve in Figure 3.3, Table 3.3 shows low heritability in the Delta band,

high heritability in the Theta and Alpha bands, and somewhat diminished heritability

in the Beta band. While the Cz channel Beta band heritability is substantial, it should

be noted that there is relatively little variation in the power spectra above 12 Hz,

which denotes the beginning of the Beta band. Since heritability is the percentage of

variation attributable to genetics, it is important to consider the overall variability of

the data. Our novel heritability estimator also estimated full spectrum heritabilities of

0.68, 0.45, and 0.56 for the Cz, O1, and O2 channels respectively. Our establishment

of the heritability of the full spectral density curve for these three channels paves

the way for future research to establish endophenotypes by connecting the spectral

density curve with psychiatric disorders.

Table 3.3 also shows the heritability estimates for the peak frequency and Alpha

peak frequency. Both peak frequency and Alpha peak frequency showed high levels

of heritability, though the Alpha peak appeared to be more heritable.
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Channel Feature Median (IQR) Heritability (95% CI)

Cz

Delta Band Power (1-4 Hz) 0.25 (0.23 - 0.32) 0.43 (0.33, 0.53)
Theta Band Power (4-8 Hz) 0.28 (0.25 - 0.31) 0.88 (0.84, 0.92)
Alpha Band Power (8-12 Hz) 0.29 (0.23 - 0.33) 0.77 (0.69, 0.87)
Beta Band Power (12-30 Hz) 0.13 (0.12 - 0.18) 0.65 (0.55, 0.77)
Full Spectrum 1.00 0.68 (0.62, 0.74)
Peak Frequency 2.25 (1.63 - 8.63) 0.51 (0.35, 0.66)
Alpha Peak Frequency 8.63 (8.13 - 9.63) 0.81 (0.70, 0.91)

O1

Delta Band Power (1-4 Hz) 0.18 (0.15 - 0.21) 0.30 (0.18, 0.40)
Theta Band Power (4-8 Hz) 0.21 (0.16 - 0.24) 0.49 (0.43, 0.57)
Alpha Band Power (8-12 Hz) 0.39 (0.30 - 0.45) 0.48 (0.44, 0.54)
Beta Band Power (12-30 Hz) 0.19 (0.14 - 0.26) 0.39 (0.32, 0.46)
Full Spectrum 1.00 0.45 (0.41, 0.50)
Peak Frequency 9.50 (8.63 - 10.25) 0.37 (0.21, 0.54)
Alpha Peak Frequency 9.56 (9.00 - 10.25) 0.52 (0.35, 0.67)

O2

Delta Band Power (1-4 Hz) 0.17 (0.15 - 0.21) 0.40 (0.32, 0.47)
Theta Band Power (4-8 Hz) 0.21 (0.17 - 0.26) 0.67 (0.60, 0.73)
Alpha Band Power (8-12 Hz) 0.38 (0.30 - 0.45) 0.58 (0.53, 0.63)
Beta Band Power (12-30 Hz) 0.21 (0.15 - 0.26) 0.56 (0.50, 0.60)
Full Spectrum 1.00 0.56 (0.52, 0.60)
Peak Frequency 9.63 (8.50 - 10.38) 0.25 (0.13, 0.38)
Alpha Peak Frequency 9.63 (8.88 - 10.38) 0.86 (0.69, 1.00)

Table 3.3: The median and inter-quartile range of different spectral density features
across the 1116 MTFS subjects along with the heritability calculated from the sample
for each feature and channel.
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We investigated the sensitivity of our results with respect to the hyperparameters

of our model. Overall, the results are qualitatively similar to the ones we present

here. More details are in Appendix B.

3.5 Discussion and Conclusions

We developed a novel Bayesian non-parametric model for estimating the spectral den-

sities of multi-subject, resting-state EEG data and their associated heritability. Our

model embeds the BDP within a nested DP to share information across subjects with

similar spectral densities, which led to large improvements in estimation as we showed

in our simulation study. We applied our method to resting-state EEG data from the

MTFS and showed that the resulting estimated spectral densities were highly herita-

ble, especially in the Theta and Alpha bands. Additionally, the peak frequency and

Alpha peak frequency were also heritable. These findings are consistent with Malone

et al. (2014) and Smit et al. (2005). We extend these works by allowing inferential

statements about the features of the spectral density, such as peak frequency and

power within frequency bands, using our rigorous Bayesian non-parametric frame-

work. Proper inference on features of the spectral densities and their heritability is

straightforward once the posterior samples have been collected, and such inference

does not rely on asymptotic results for these features.

Furthermore, our novel heritability estimator also allows the calculation of the

heritability of the entire power spectrum, and we estimated the full spectrum her-

itability for the Cz, O1, and O2 channels to be 0.68, 0.45, and 0.56, respectively.

These findings alone point to the genetic underpinnings of resting-state EEG signals

and their oscillatory behavior measured in the frequency domain. Our finding that a

large proportion of the variability in the spectral density can be attributed to genetic

factors leads to the possibility of the entire spectral density being an endophenotype.

Once a trait has been established as heritable, it still remains to show this genetic

risk factor is related to the psychiatric disorder under study. Past findings have shown
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increased or decreased power within defined frequency bands to be associated with

conditions such as alcoholism, depression, and ADHD (Rudo-Hutt, 2015). Quanti-

tative genetics analysis approaches applied to EEG spectral densities highlight their

potential for linking psychiatric disorders with genetic risk factors (Malone et al.,

2014). To establish the full spectral density as an endophenotype we would need

to establish its association with psychiatric conditions through techniques such as

functional regression, which is beyond the scope of this work.

The nested DP allows us to account for the heterogeneity between subjects, while

simultaneously accounting for the potentially complex correlation between subjects

that may arise due to the twin design of the study. This allows us to model the hetero-

geneity in the spectral features of the data, which has potential clinical implications.

For instance, Harper et al. (2018) showed the association between spectral power and

behavioral disinhibition. Furthermore, Lizio et al. (2011) showed potential clinical

utility for Alpha peak frequency, and Grandy et al. (2013) showed that variation in

Alpha peak frequency is associated with cognitive ability.

One possible extension of our model would be to include covariate information

in the BDP portion of our model through dependent Dirichlet processes (MacEach-

ern, 1999). Barrientos et al. (2017) proposed and compared methods to make the

weights and atoms of the BDP dependent on a matrix of covariates. Incorporation of

covariate information, such as age or disease status, at the BDP level could, at the

cost of increased computation, improve functional curve estimation and allow more

flexibility in the estimation procedure, and it would allow subjects assigned to the

same group at a single MCMC iteration to have different estimated spectral densities

based on their covariate values. By including psychiatric disorders as covariates, a

dependent DP extension of our model may be able to establish endophenotypes in a

more unified framework. Bruce et al. (2017) offers a method for modeling spectral

densities conditional on covariates, but not within a DP framework.

Edwards et al. (2017) formulated a B-spline prior model, which can be viewed

as a generalization of the BDP model, and showed that it captured sharp peaks
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in spectral densities better than the BDP model at the cost of a 2-3 fold increase

in computing time. There is potential for improved performance of our model by

replacing the Bernstein polynomial basis with a B-spline basis within the nested DP,

however, the significant increase in computational burden would make the method

very cumbersome with datasets as large as the MTFS.
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Chapter 4

A Grouped Beta Process Model
for Multivariate Resting-State
EEG Microstate Analysis on Twins

4.1 Introduction

4.1.1 EEG Microstates and Dynamic Functional Connectiv-

ity

In the last two decades a type of analysis known as electroencephalography (EEG)

microstate analysis has become popular with resting-state EEG data. In microstate

analysis, a multivariate EEG time series is segmented into blocks where a certain time

series pattern or EEG topography explains the behavior within each block. These

defined EEG patterns or topographic maps are commonly referred to as microstates

and it is generally assumed that a limited number of microstates (typically between 4

and 13) explain each EEG time series (Khanna et al., 2015). At each time point, the

EEG activity is generated from one of these states, which are stable, persist as the

active state anywhere from tens to hundreds of milliseconds, and repeat across long

ranges of time within a single EEG recording (Lehmann et al., 1987). In EEG data,

the transitions between these states have been shown to be sudden and nonrandom,

where the order in which the states appear is potentially important (Betzel et al.,
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2012; Lehmann et al., 2005).

The early work of Koenig & Lehmann (1996) showed differing topographic mi-

crostates for the production of nouns compared to vowels and Stevens & Kircher

(1998) found that elderly demented patients experienced shorter durations in each

microstate. Koenig et al. (2002) defined four topographic maps that are commonly

used in microstate analyses, taking a spatial first-order view of microstates. These

four microstates, also referred to as the canonical microstates, have been shown to

mediate trial-by-trial risk-taking (Pedroni et al., 2017), associate with different men-

tal tasks such as visualizing and verbalizing (Milz et al., 2016), and differ between

schizophrenic and healthy aging adults (Andreou et al., 2014; Lehmann et al., 2005).

Brodbeck et al. (2012) showed slight differences in the four canonical states in dif-

ferent stages of wakefulness and sleep and Schlegel et al. (2012) showed the usage of

these states to differ based on belief in paranormal activity. One common theory is

that these four microstates represent atoms of thought that combine to form human

cognition (Lehmann et al., 1998). Khanna et al. (2015) gave a thorough review of the

EEG microstate literature.

Other very similar concepts exist alongside the topographic EEG microstate lit-

erature. Van de Ville et al. (2010) provided evidence that EEG microstate sequences

in resting-state imaging were scale-free, and thus could be connected with the vast

amount of research done in exploring dynamic functional connectivity (FC) in func-

tional magnetic resonance imaging (fMRI). Since then Allen et al. (2014) verified the

connection between fMRI FC and EEG microstates and Allen et al. (2018) showed

distinctions between the EEG spectra associated with time points concurrent to 5

identified fMRI FC networks. The literature on fMRI dynamic FC has also revealed

differential behavior in schizophrenic patients, adding to the EEG literature proport-

ing similar claims (Damaraju et al., 2014). Thorough overviews of the vast fMRI

dynamic FC literature for resting-state and task-based fMRI can be found in Hutchi-

son et al. (2013) and Gonzalez-Castillo & Bandettini (2018), respectively.

Through all of this research, it is clear that much can be learned about the brain
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through study of its dynamic spatio-temporal networks. The modalities used to

study these microstates or dynamic networks may vary and there are a plethora of

different manners of quantifying these patterns (Sakkalis, 2011), but each approach

to quantifying the dynamic activity of the resting brain may have something to offer

to the bigger picture.

4.1.2 Twin Microstate Analysis

Here we analyze data from the Minnesota Twin and Family Study (MTFS) (Iacono

et al., 1999). The MTFS is a population-based study of twins, the overarching goal of

which is to understand genetic and environmental influences on substance abuse and

related psychopathology. We analyze a set of twin pairs from the MTFS, treating

each epoch, which is a short segment of the EEG data, collected from a participant

as a separate time series. More details on the MTFS data are provided in Section

4.5.1.

While there is a substantial literature on EEG microstates and fMRI dynamic FC,

the heritability of microstates and dynamic networks is still largely an open question

(Pluta et al., 2018). Works such as Ge et al. (2017) and Fu et al. (2015) have analyzed

the heritability of fMRI FC, but have yet to extend the results to dynamic networks.

In the EEG microstate literature, only Vidaurre et al. (2017) has addressed this

issue, finding that certain EEG microstate characteristics exhibit heritability. The

twin study design of the MTFS gives us an opportunity to build on this finding and

continue the important work of gaining insight into the genetic basis of brain activity.

Vidaurre et al. (2017) not only showed that EEG microstates demonstrate heri-

tability, but that they also exhibit subject-specific characteristics. Thus, it is desirable

that, although we treat each epoch as a separate time series, information about the

underlying state sequences and transitions between those states is shared between

epochs from the same participant. With the heritability in mind, we choose to build

an EEG microstate model at the twin pair level as opposed to the individual level

68



to share information between twins in the estimation of the microstate character-

istics and dynamics. By jointly modeling the EEG microstates of a twin pair, we

take advantage of the fact that twins will likely be more similar than two unrelated

participants. Existing EEG microstate modeling approaches, however, do not ac-

count for the similarity between cotwins. The goal of this work is to develop a model

that will 1) allow for different levels of information sharing within a twin pair since

MZ twins will likely share more microstate features than DZ twins, and 2) explicitly

allow for sharing of information across epochs from a single participant in recogni-

tion of subject-specific EEG microstate traits and across twins in recognition of the

heritability of these microstates.

This paper is organized as follows. In Section 2, we give a conceptual overview of

the different modeling components that we will use for our model. In Section 3, we

formally define our model using the different components from the previous section.

In Section 4, we illustrate the performance of our model using simulated data, and

then we present our analysis of the MTFS data in Section 5. Finally, in Section 6 we

give concluding remarks.

4.2 Model Building Blocks

Before giving the details of our proposed EEG microstate model, we present a col-

lection of different models which will each serve as part of the final proposed model.

This section serves as a conceptual introduction to these modeling components and

Section 4.3 formally specifies the model and it’s notation.

4.2.1 The MS-VAR Model

Using the findings of previous studies of EEG microstates and dynamic FC, we

propose a Markov switch vector auto-regressive (MS-VAR) EEG microstate model

(Stoffer & Shumway, 2006). In this MS-VAR model, the underlying EEG microstate

sequence changes across time. The dynamics of this state sequence follow a hidden
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Markov model (HMM) framework. In an HMM model a person’s EEG signal is in one

of K available states and a transition matrix defines the probability of transitioning

from that state to each of the K−1 other available states. These transition probabil-

ities differ based on the current state of the EEG time series, but do not change over

time. In this way, the HMM framework is able to capture a set of stable microstates

such as those of Koenig et al. (2002) and allow sudden and nonrandom transitions

between these microstates as described in Betzel et al. (2012). We enhance the HMM

model by using the sticky HMM of Fox et al. (2011b) which adds a sticky parameter

that makes it more likely that transitions will result in successive time points being

assigned to the same state more likely.

Conditional on the state sequence, the behavior of the EEG time series at a

given time point in an MS-VAR model reduces to a vector autoregressive (VAR)

model. In a VAR model a set of parameters describes the behavior of the time series

as a regression on a set of previous time points with an additive Gaussian noise.

Each of the K available microstates will have a distinct corresponding set of VAR

parameters, which are referred to as the emission parameters of the HMM. These

emission parameters describe the behavior of the time points in each latent state by

defining the lag/lead relationships between different EEG recording channels and the

amount of noise seen within a state.

4.2.2 Latent State Models

Given a sticky MS-VAR structure, we now discuss ways to model the different mi-

crostates through latent state and feature models. Based on Koenig et al. (2002), four

microstates are frequently used in EEG microstate analyses, but other research has

suggested there are as many as 13 microstates commonly used (Khanna et al., 2015).

By allowing the state space of our model to shrink or grow as dictated by the data,

we allow models with any number of states and are able to perform inference on the

number of latent states used during an EEG time series, a potentially scientifically
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interesting parameter.

A few Bayesian nonparametric models for time series with switching dynamics

have been proposed, overviews of which can be found in Lehman et al. (2015) and

Fox et al. (2010). Fox et al. (2011a) and Fox et al. (2011b) introduced HMM models

with switching dynamics that fit into the framework we seek for a single time series

by using the hierarchical Dirichlet process (HDP) of Teh et al. (2005).

4.2.3 Feature Models and The Indian Buffet Process

Because our MTFS data comes from twins and EEG microstates have been shown

to be heritable (Vidaurre et al., 2017), we seek a model to share information within

a twin pair. Fox et al. (2014) offered another Bayesian nonparametric framework

that expands on Fox et al. (2011b) to jointly model a set of time series using a

feature-based model. This model is known as the Beta process autoregressive hidden

Markov model (BP-AR-HMM or BP for short). In the BP-AR-HMM model, a Beta

process Bernoulli process model replaces the HDP of Fox et al. (2011b). Feature

models such as the Beta process Bernoulli process model the potentially overlapping

latent state spaces of multiple different time series simultaneously while determining

the degree of the overlap. For each time series considered, one can imagine flipping

a coin for each of a countably infinite number of microstates where the probability

of heads is determined by the Beta process. If the coin lands on heads then that

feature (microstate) is turned on and can be used in the state sequence of that time

series. In this manner, each time series selects a set of features from a feature space

that is shared between all of the time series being modeled, allowing a single EEG

microstate to appear in the state-sequence for both twins in a pair. The model still

retains the flexibility to allow a single participant to exhibit unique microstates not

present in the state-sequence of their co-twin. Also note that in the BP-AR-HMM

model transition probabilities are estimated separately for each time series. Even if

twins share features, they need not have the same microstate dynamics.

71



The Beta process Bernoulli process model is defined by two parameters, denoted

α and c, where α controls the total number of features that appear in the N different

time series and c controls the number of features unique to each time series. Ghahra-

mani & Griffiths (2006) provided insight into this distribution which is also known as

a two-parameter Indian Buffet Process (IBP). Note that when c = 1 we are left with

the typical one-parameter IBP. The generative model for the two-parameter IBP can

be thought of as a set of random draws from Poisson distributions which determine

the number of previously unused features selected by each time series. The number

of features available to the first time series is drawn from a Poisson distribution with

mean α. The second time series then flips a coin for each feature to determine which

of the first time series’ features are also available to the second time series, where the

probability of the feature being available to the second time series is 1/(c + 1). The

second time series then draws from another Poisson distribution with mean αc/(c+1).

This process continues so that, for the n-th time series, the previously sampled fea-

tures are selected with probability mk/(c+n−1), where mk is the number of previous

time series which selected feature k, and a new draw from a Poisson distribution with

mean αc/(c+n−1) determines the number of new features selected by time series n.

To develop intuition for this generative process and the effect each parameter has

on the total number of features selected by this model and the amount of sharing

of features between time series it is helpful to consider the extreme values of c. As

c approaches 0, the number of new features selected by each new time series also

approaches 0, thus the features drawn from the Poisson(α) distribution of the first

time series will be used to describe all of the time series being jointly model. As c

grows toward infinity, the likelihood of selecting a previously selected feature shrinks

towards 0 and the mean of each new Poisson draw approaches α until each time

series will select a unique set of features with no shared features between time series.

The IBP model then allows any amount of sharing of microstates between time series

while trying to determine a sparse set of microstates that adequately describe the

EEG signals.
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4.2.4 The GBP-AR-HMM Model

While the BP-AR-HMM model is sufficient to model a single time series from a

single individual, we have 70 epochs which may or may not be contiguous from each

individual in a twin pair. We thus want to model each of these epochs as a separate

time series, creating 140 time series coming from two different participants which

we would like to jointly model. To accomplish this goal we propose an extension of

the BP-AR-HMM model which we call the grouped BP-AR-HMM model (GBP-AR-

HMM or GBP for short). In the GBP-AR-HMM model, each time series is assigned to

a group a-priori. The feature selection and transition distributions are then modeled

at the group level as opposed to the time series level. When applied to our MTFS

EEG data, we define each participant as a group. In this way, the 70 epochs from

each participant are grouped together with a shared a set of underlying microstates

and state dynamics.

Forcing all 70 epochs to share a set of features and transition distributions ensures

that epochs from the same participant exhibit consistent microstate dynamics across

the EEG recording. The transition distributions will be estimated separately for each

participant, but because we fit the model at the twin pair level, twins will share

the same library of available features to sample from, allowing the analysis to learn

the amount of shared information between twins. The flexibility of the GBP model

means you can jointly fit epochs from participants whom you expect to have differing

amounts of similarity. For example, MZ twins will likely be more similar than DZ

twins which will be more similar than two randomly selected participants, but the

model will be able to learn the overlap in the state-space in any of those situations.

4.3 Model and Prior Specification

With the GBP-AR-HMM model and its individual components introduced concep-

tually in the previous section, we now proceed to formally define these components
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and the overall GBP model.

4.3.1 MS-VAR Model

In the simplest case of a univariate time series following a first order auto-regressive

model, the observation at time point t, yt, is modeled as yt = Ayt−1 + εt where

εt ∼ N (0, σ2) and εt are independent across t. Extending this to an order R model,

denoted VAR(R), we have yt =
∑R

r=1 Aryt−r + εt. In a multivariate time series this

definition of a VAR model still holds, except that for a p-dimensional time series, yt

is now a p-dimensional vector for any t, Ai is a p×p matrix, and εt is a p-dimensional

vector drawn from a normal distribution with mean 0 and variance Σ.

Now to move from a VAR to a MS-VAR, we introduce a latent state, zt, defined

at each time t. Indexing the autoregression coefficients A and error variance Σ by the

underlying state, the switching-VAR model can be written as yt =
∑R

r=1 A
(zt)
r yt−r+εt

where εt ∼ MVN (0,Σ(zt)) and MVN denotes the multivariate normal distribution

and εt is independent across t. As mentioned previously, the sequence of latent states

in our MS-VAR model is determined through the HMM portion of the model. To-

gether we denote the emission parameters for microstate k as θ(k) = {A(k),Σ(k)}

where we have dropped the subscripts on A(k) when referring to the concatenated set

of R autoregression coefficient matrices. For both the simulation study and MTFS

analysis we use R = 1 to keep the dimensionality of the parameter space to a reason-

able size.

With consideration of an efficient MCMC sampler in mind, we use a matrix-normal

inverse-Wishart (MNIW) prior for θ(k) (West & Harrison, 2006). Under the MNIW

prior, A(k) ∼MN (M,V,L) where MN is a matrix normal distribution with mean

matrix M and left and right covariance matrices L−1 and V. In general we set M

to be a matrix of zeros, V to the p × p identity matrix, and L to a scaled p × p

identity matrix. The MNIW prior also assumes Σ(k) ∼ IW(n0,S0), where IW is an

inverse-Wishart distribution with n0 degrees of freedom and scale matrix S0. We
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chose n0 = p + 2 and follow the recommendation of Fox et al. (2011a) in setting S0

equal to 0.75 times the empirical covariance of the first difference of the time series.

The conjugacy of this prior allows efficient parameter updating and a sampler that

includes both birth-death and split-merge sampling steps. These birth-death and

split-merge steps vastly improve the efficiency of the sampler (Fox et al., 2014).

The sticky HMM model used for the Markovian dynamics requires specification

of a prior for each transition probability. Let g(n) be the group assigned to time

series n. In our MTFS EEG application, time series n is a single recorded epoch

and g(n) is the participant recorded during that epoch. For time series group g

we define a random variable that is proportional to the transition probability from

state j to k as η
(g)
jk |γ, κ ∼ gamma(γ + κδ(j, k), 1), where δ(j, k) = 1 if j = k and

δ(j, k) = 0 otherwise. Then γ controls the number of pseudo-observations the prior

assigns to each possible state transition. The second parameter κ then controls the

amount of stickiness in the HMM model by determining the number of extra pseudo-

observations to assign to self transitions. We use gamma priors on both of these

parameters so that γ ∼ gamma(aγ, bγ) and κ ∼ gamma(aκ, bκ). In our models we set

aγ = 1, bγ = 1, aκ = 1, and bκ = 0.01.

4.3.2 Feature Model

Our GBP-AR-HMM model considers an infinite number of potential features (mi-

crostates), but during a single stage in the sampler there are only K available fea-

tures. We keep track of whether each available feature is turned on or off for each

time series in a feature matrix F , where f
(g)
k = 1 if the k-th feature is selected by the

g-th time series group and f
(g)
k = 0 otherwise. The vector of feature indicators for the

g-th time series group is denoted as f (g). The feature selection process is controlled

by the two-parameter IBP model discussed earlier. We place gamma priors on both

hyper parameters so that α ∼ gamma(aα, bα) and c ∼ gamma(ac, bc). In both our

MTFS analysis and our simulation studies we set aα = 1, bα = 1, ac = 1, and bc = 1.
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Again, note that the time series groups must be specified before fitting the model. In

the case of our MTFS data, we fit a single twin pair at a time and specify two time

series groups, each containing the 70 epochs from one of the twins.

As previously mentioned, one can equivalently view the Beta process Bernoulli

process model as a countably infinite number of coin flips for each time series group

to determine which features are selected. Given this view of the model we draw from

a beta process with base measure B0, B ∼ BP (c, B0) to get B =
∑∞

k=1 ωkδθ(k) . We

set B0 to a uniform distribution on the unit interval. To connect this generative

process to the two-parameter IBP it is crucial to notice that
∑∞

k=1 ωk = α. The ωk

represent the coin flipping probabilities and they sum to α, resulting in an average of

α features selected for each time series group.

Because not all features are available to all of the time series groups in this fea-

ture model, we most translate each transition distribution into a feature constrained

transition distribution. Let η(g) be the matrix containing the unconstrained transi-

tion distributions, η
(g)
jk . If we denote the column vector containing η

(g)
jk for all k and

a single given j as η
(g)
j , then the feature constrained transition distribution for time

series group g and state j is π
(g)
j = η

(g)
j f (g)/(

∑∞
k η

(g)
jk f

(g)). Given f (g), γ, and κ, this

specification for π is equivalent to π
(g)
j |f (g), γ, κ ∼ Dir([γ, . . . , γ, γ + κ, γ, . . .]f (g)).

4.3.3 The GBP-AR-HMM Model

We now put the parts of the GBP-AR-HMM model together to describe the full

generative model.

1. Draw from beta process with base measure B0, B ∼ BP (c, B0) to get B =∑∞
k=1 ωkδθ(k) where δ is the Kronecker delta

2. For each time series group g ∈ 1, . . . , G:

(a) Draw feature vector f (g)|B ∼ BeP (B)
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(b) Draw feature constrained transition distributions π
(g)
k |f (g) ∼ Dir([γ, . . . , γ, γ+

κ, γ, . . .]f (g)) for each feature k such that f
(g)
k = 1

(c) For each time series n with g(n) = g

i. For time t ∈ {1, . . . , T} draw the state sequence z
(n)
t |z

(n)
t−1 ∼ π

(g)

z
(n)
t−1

ii. For time t ∈ {1, . . . , T} draw observations y
(n)
t |z

(n)
t ∼ N (

∑R
r=1 A(z

(n)
t )

r y
(n)
t−r,Σ

(z
(i)
t ))

Note that the grouping of time series allows us to share information about microstates

and their dynamics between epochs from the same participant.

4.3.4 MCMC Sampling Algorithm

Our MCMC sampling algorithm largely follows the algorithm by Fox et al. (2014)

for the BP-AR-HMM model, and so for a more detailed description of posterior

derivations and sampling steps the reader is referred to the supplemental material

from Fox et al. (2014). Here we give a general overview of the MCMC sampler and

discuss the changes required to adapt the sampler from the BP-AR-HMM to our

proposed GBP-AR-HMM model.

The MCMC procedure takes the following steps:

1. For each time series group, g, sample the feature vector f (g).

2. For each time series, n, sample the state, z
(n)
t , at each time point, t, from

available features k with f
(g)
k = 1.

3. For each time series group, g, perform a birth-death step on features that are

unique to that group and sample new state-sequences to match proposed birth

or death if accepted.

4. Perform a split-merge step to attempt to join two features into a single feature

or split a single feature into two features and sample new state-sequences if the

move is accepted.
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5. For each available feature (i.e., state), k, sample new emission parameters, A(k)

and Σ(k), from the MNIW conjugate form.

6. For each time series group g, sample new transition distribution parameters

η(g).

7. Update the HMM and IBP hyper-parameters γ, κ, α, and c.

Note that, compared to the MCMC procedure of Fox et al. (2014) for the BP-

AR-HMM model, our MCMC procedure for the GBP-AR-HMM model considers the

likelihood of all time series within a group in steps 1, 3, and 6. Indeed, in the

non-grouped model, each time series has its own transition distribution and feature

allocation, so these steps are performed for each time series instead of each time series

group. On the other hand, in the grouped model proposed here, all time series within

the same group share transition distributions and feature allocations.

Through the use of split-merge and birth-death types of moves, this sampler is able

to efficiently move through the large parameter space (Dahl, 2005; Jain & Neal, 2004).

The use of annealing during burn-in ensures that the model quickly finds a state

space with high posterior density. With long time series, computational underflow

becomes an issue, necessitating the steps of Scott (2002) to ensure the stability of

the sampler. R code for the methods proposed in this paper may be found at https:

//github.com/mfiecas/GBP.

4.4 Simulation Study

4.4.1 Data Simulation process

We considered four different simulation scenarios, each with a different data size.

In Scenario 1, each simulated participant had 50 epochs with 128 time points each.

Scenario 2 also had 50 epochs but only 64 time points in each epoch. Scenarios 3 and
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4 only had 20 epochs with 128 and 64 time points respectively. The four scenarios

allow us to examine the performance of the model on EEG datasets of differing sizes.

In each scenario data was simulated for 200 twin pairs. A true library of 4 mi-

crostates was designed so that A(k) and Σ(k) mimicked output from fitting the model

to the real MTFS data. The state self-transition probabilities for each twin pair were

simulated from a bivariate normal distribution with the MZ twins having a higher cor-

relation than the DZ twins. Each simulated participant was then randomly selected

to have one of four different transition matrix structures. The first transition matrix

visited all four microstates, the second visited only the first three, the third visited

the first, second, and fourth microstates, and the final transition matrix structure

only visited the first two microstates. Randomly selecting from these four different

transition matrix structures resulted in twin pairs with a potentially different number

of states and different overlaps in their state spaces. Together the self-transition prob-

ability and the transition matrix structure completely define the transition matrix for

each simulated participant. Given the data length, true states, and true transition

matrices, data of the appropriate length can be simulated for each of the 200 twin

pairs in each scenario. The emission parameters and transition matrix structures used

to simulate the data are shown in Table C.1 and C.2 in Appendix ??.

4.4.2 Model Comparison

We compare the results from using our model with those from fitting the BP-AR-

HMM model (Fox et al., 2014) to the set of all epochs from each twin pair without

grouping the epochs from each participant. To assess the classification accuracy of the

modeling results we needed a way to partition the time points into the correct number

of states at each iteration. To accomplish this we turned to the sequentially-allocated

latent structure optimization (SALSO) algorithm from the sdols R package (Dahl &

Müller, 2017). The SALSO algorithm attempts to find a posterior mode in Bayesian

latent state models, and thus provides a method for obtaining a best estimated state
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sequence based on the model output. We restricted the SALSO algorithm to the

number of true microstates when summarizing both the GBP-AR-HMM and BP-

AR-HMM model results. While SALSO is a useful tool for summarizing the output

from this model and comparing simulation study results, it is not necessary and could

be replaced with another method to select a posterior mode for the state sequence.

To compare model performance, we calculated the percent of time points correctly

classified given the SALSO optimal state sequence across all simulated participants.

The results are reported for the time series overall and for each of the four true

microstates. We also compared the mean squared error (MSE) of the estimated

emission parameters, θ(k) = {A(k),Σ(k)}, averaged across all simulated participants

in each scenario. The results presented in Table 4.1 are a percentage improvement

in MSE relative to the BP-AR-HMM model results, so a value of 0.6 in the GBP

column signifies that the average MSE for the GPB model was 60% lower than the

average MSE for the BP model fit to the same scenario. Finally, Table 4.1 displays the

percent of the posterior samples that correctly identify the number of true microstates,

the MSE in the estimated true number of microstates and the MSE of the average

duration of a microstate.

4.4.3 Simulation Study Results

The results in Table 4.1 show the GBP-AR-HMM model to be superior to the BP-AR-

HMM model in all four scenarios in terms of classification rate. The non-grouped BP

model particularly struggled to classify microstates three and four, which occurred less

often in the data. In Scenarios 2 and 4, where the time series were each 64 time points,

the BP model missed on nearly all of the time points in these microstates while the

GBP model maintained its relatively high level of performance. Interestingly, neither

model showed a clear trend of increasing performance with increasing data and even

saw slight decreases in performances in many cases.

The GBP model also showed much lower average MSE in emission parameters
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
GBP BP GBP BP GBP BP GBP BP

Overall Classification % 58.8 47.4 59.5 42.7 62.8 49.2 61.0 43.3
State 1 Classification % 61.4 56.4 61.8 52.2 72.9 51.7 72.0 53.2
State 2 Classification % 50.6 48.0 52.6 53.5 51.6 52.4 52.0 52.7
State 3 Classification % 74.4 37.0 72.2 1.5 70.0 45.2 65.7 4.6
State 4 Classification % 67.3 19.8 66.3 2.1 61.0 29.8 48.5 1.2
Relative θ(1) Average MSE 0.61 - 0.61 - 0.50 - 0.56 -
Relative θ(2) Average MSE 0.60 - 0.83 - 0.58 - 0.81 -
Relative θ(3) Average MSE 0.81 - 0.85 - 0.68 - 0.72 -
Relative θ(4) Average MSE 0.23 - 0.34 - 0.32 - 0.33 -
% K Correct 1.5 6.0 5.0 44.5 44.0 24.0 56.0 44.0
K MSE 411.9 20.6 179.1 0.6 26.6 15.2 6.6 0.7
Microstate Duration MSE 36 253,640 7 468,568 4 37,820 24 91,367

Table 4.1: Results from fitting the GBP-AR-HMM and BP-AR-HMM models to
each of the four different simulation scenarios. The Relative θ(k) Average MSE lines
represent the MSE in the emission parameters averaged across all simulated twin pairs
in a given scenario as a percent improvement in the average MSE compared to the
BP model. Because the BP model represents the reference group, the relative MSE
in those columns is filled by a hyphen (-). % K correct is the percent of posterior
samples that correctly identified the number of true microstates, K MSE is the mean
squared error in the estimated number of microstates.
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for all four true microstates and in all four simulation scenarios compared to the

BP model. The average MSE was reduced by at least 23% for the GBP model

compared to the BP model, reaching an 85% improvement for microstate 3 in Scenario

2. While the 85% reduction may not be surprising given the BP model’s inability

to identify time points in microstate 3, the emission parameters for microstate 2 saw

a similarly dramatic improvement from the BP model to the GBP model despite

similar classification rates across the two models. We again note that neither model

improved as the size of the data increased.

The one area where the BP model has an advantage over the GBP model is

in the identification of the true number of microstates. The BP model tends to

underestimate the number of microstates and thus sees improved performance in these

simulations where the true number of microstates is small. The GBP model tends

to over-estimate the number of true microstates in attempt to more fully explain the

data. As the data size increases the GBP model uses more microstates. This behavior

improves the estimation of the emission parameters at the cost of inference on the

number of true microstates, an apparent drawback of the model. Because of these

findings, we recommend limiting the number of microstates considered in posterior

microstate label modes to match the findings in the literature (e.g., between 4 and 13

states). Alternatively, a more informative prior could be put on α to force the model

to consider fewer microstates.

Despite the BP model’s edge in estimating the number of microstates, its limita-

tions are most apparent when considering the MSE of the average microstate duration.

The BP model estimates long segments where the microstate is static in a single state

and thus does not mimic the reality of the data. This stems from its tendency to

underestimate the number of true microstates, the same trait that appeared to help

with identifying the true number of microstates with a limited amount of error. The

GBP model is far more able to capture the state switching dynamics compared with

the BP model, resulting in much lower microstate duration MSEs.

Figure 4.1 shows the estimated optimal state sequences for a given twin pair along
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Figure 4.1: Optimal state sequences estimated from the GBP-AR-HMM model output
using the SALSO algorithm limited to 4 states for a single simulated twin pair along
with the true state sequences for those simulated participants.

with their simulated true state sequences. While the classification isn’t perfect, there

is a large amount of overlap between the estimated and true state sequences. The

model adequately captured the general state distribution, transition distributions,

and microstate durations. It was also able to identify the true set of microstates for

each participant by estimating that each only has three of the four true microstates.

4.5 MTFS Analysis

4.5.1 Data Description

We applied our method to resting-state EEG data on age-17 female twins collected

from 3 electrodes (Cz, O1 and O2) as part of the MTFS. The Cz electrode is located

at the center midline on the top of the head and the O1 and O2 electrodes are located

on either side of the midline at the rear of the head. The data was collected with

a sampling rate of 128 Hz and 12 bits. Considering each epoch as a separate time

series and fitting the model at the twin pair level, we applied our method to 70 epochs
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of data from each twin with each epoch containing 128 observations collected over

2 seconds. Data for each epoch was demeaned and standardized to unit variance.

In total, our sample included 140 seconds of data from 492 adolescents consisting of

participants from 167 distinct MZ twin pairs and 79 DZ twin pairs.

While twin participants sat comfortably in a darkened room with their eyes closed,

EEG signals were recorded by means of identical Grass 12 Neurodata systems, with a

pass band from 1 to 30 Hz (amplifier rolloff, 6 dB/octave). Notes recorded when the

data were originally collected guided identification of data that needed to be excluded

because of recording problems. Subjects who reported having fallen asleep or were

noted to have fallen asleep were excluded. EEG segments containing transient arti-

facts and excessively small or large voltage deflections were tagged for exclusion by a

computer algorithm written in Matlab. Multivariate outliers across the 3 electrodes

were identified using a robust version of Mahalanobis distance from the robustbase

package in the R statistical programming environment and visually reviewed for con-

tamination by high-frequency noise, other artifacts (e.g., electrocardiogram), or signs

of sleepiness. Individual recording sites were excluded from analyses if fewer than

45 2-sec artifact-free sweeps were available. The same priors specified in previous

sections were used for the analysis of all 246 twin pairs.

4.5.2 MTFS Results

Table 4.2 shows the results from fitting our model to the MTFS data. The average

microstate durations show that most participants exhibited very rapid microstate

switching dynamics, only staying in a single microstate for an average of 3.4 time

points, which is equivalent to a little over a tenth of a second. Interestingly, MZ twins

showed greater within twin pair correlation in their estimated average microstate

durations when compared with DZ twins, suggesting the average microstate duration

and microstate switching dynamics may be driven in part by genetics. The same

cannot be said for the mode of the number of microstates used by each participant,
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which were highly correlated within a twin pair but failed to show a difference in

correlation between MZ and DZ twins.

Participant Level Parameters Median [IQR] rMZ rDZ

Average Microstate Duration 3.4 [2.4, 4.7] 0.54 0.39
Mode Number of Microstates Used 10 [8, 12] 0.86 0.86

Twin Pair Level Parameters Median [IQR]

Mode Number of Microstates Used 12 [9, 14]
c 0.05 [0.02, 0.11]
α 36.5 [28.0, 45.8]
κ 0.02 [0.01, 0.05]
γ 0.00004 [0.00002, 0.00020]

Table 4.2: Results from fitting the GBP-AR-HMM model to each of the 246 female
twin pairs in the MTFS data. Results shown are the median and IQR of the estimated
parameters at either the individual participant or twin pair level. For the participant
level estimates, we have also provided the correlation of these estimates among MZ
twins and among DZ twins.

Although our simulation results did not instill confidence in the GBP model’s

ability to identify to correct number of microstates with data sets as large as the

MTFS data, the posterior mode of the number of microstates used by each participant

generally fell within the ranges expected after a review of the literature. Although 4

microstates are typically used for microstate analysis, Khanna et al. (2015) showed

that between 4 and 13 different microstates have been identified in various microstate

EEG analyses. Here we find that half of all participants are estimated to have between

8 and 12 microstates. These results suggest that while the simulations showed the

GBP model’s tendency to over-estimate the number of true microstates, when applied

to the real data the results support the conclusions drawn by other methods. We see

the GBP model’s ability to capture varying degrees of state space complexity as a

strength of the model in comparison with models that are required to set a number

of microstates a priori. Note that our results can be reduced to a desired number of

states through methods such as SALSO if desired.

The twin pair level parameters also shed light on the behavior of our GBP model.
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As expected, the posterior mode of the number of microstates used for both twins in a

pair is slightly higher than that of an individual twin. This result suggests some states

are unique to each participant within a pair, but the majority of states are shared

by both twins. The extremely low estimates of the c parameter also suggest a high

amount of overlap in the state spaces of the twins within a pair. As c approaches 0 in

the MCMC sampler, the library of state spaces available to a set of twins converges

toward a single set for the pair instead of a unique set for each participant. Despite

this near complete overlap in state spaces, the estimated number of state spaces used

by each participant shows that while all states may have been available to both twins,

a participant may have only actually used a subset of the available microstates. This

conclusion is supported by the estimates of α, which are roughly three times the

number of estimated number of microstates used by a twin pair. The parameter

α can be interpreted as the average number of microstates in the finite library of

microstates available to a twin pair across the MCMC sampler. We thus conclude

that the GBP model has a tendency to select a large library of possible microstates

of which only a subset are actually used by the state sequences of the EEG data.

The final two parameters estimated from our MTFS analysis, κ and α are also es-

timated to be nearly equal to 0. These parameters control the prior on the microstate

switching dynamics of the HMM portion of the model. The very low estimates of these

parameters suggest that the prior on the state switching dynamics is overwhelmed by

the data with time series as long as those in the MTFS, and thus do not contribute to

the posterior distribution in a significant way. Therefore, the posterior distribution

on the state-switching dynamics is controlled almost entirely by the switches esti-

mated from the data and that the switching dynamics do not exhibit a strong sticky

tendency in our dataset.

Figure 4.2 shows the SALSO estimated optimal state sequence for a single MZ

twin pair. Similar plots could be created for each twin pair, but we focus on the

results from a single twin pair as an example of how the output from the twin pair

level models can be summarized and interpreted. Note that because this is resting

86



Figure 4.2: Optimal state sequences for twin pair 222 estimated from the GBP-
AR-HMM model output using the SALSO algorithm limited to the posterior mode
number of states for a single MZ MTFS twin pair.

state data, there is no reason to believe the microstate sequences of the two twins

are temporally registered. The state sequence plots are, instead, useful for visualizing

the microstate dynamics of the twin pair. Both twins visit all six of the estimated

microstates and state five is the most common microstate for each twin. Beyond

that, the microstate dynamics of the twins differ greatly. 41.7% of the time points

are classified as state 5 for twin 1 compared with 82.1% for twin 2. Additionally, twin

1 has much shorter microstate durations in state five and rapidly transitions among

all six states. Twin 2 has very long durations in state five and visits each of the other

states for brief stints before switching back to the dominant state five. From this plot,

we can see these twins were estimated to share the same set of microstates, justifying

our modeling at the twin pair level. At the same time, the switching dynamics are

notably different across subjects, supporting the models ability to estimate the HMM

transition probability matrices separately for each participant.

Figure 4.3 shows a short segment of the SALSO estimated optimal state sequences
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Figure 4.3: A two second segment of the optimal state sequences for twin pair 222
shown in Figure 4.2 with the trivariate EEG time series from pair 222 overlaid on top
of the state sequence. The table on the right shows the estimated emission parameter
for these microstates conditional on the SALSO state labels.

for the same twin pair shown in Figure 4.2. The figure also has the original trivariate

EEG time series overlaid on the estimated state sequences along with the estimated

emission parameters for each of the six microstates in the SALSO state sequences.

The dominance of State 5 is again apparent in these smaller sections of the estimated

state sequences. In state 5, the three EEG dimensions are largely desynchronized

(i.e., uncorrelated) as the off diagonals of both A(5) and Σ(5) are near zero. The

other five states then correspond to different levels and patterns of synchronization

between the three EEG recording channels, primarily between O1 and O2 which are

located symmetrically on either side at the back of the head. While similar patterns

of synchronization may appear in other twin pairs, we emphasize that this analysis

only examines a single twin pair as a proof of the utility of the output of our model.
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4.6 Conclusion

We have developed a novel EEG microstate model for resting-state EEG data col-

lected on twins. Our model accounts for the fact that multiple epochs collected from

the same participant will likely share the same set of microstate dynamics and also

recognizes that some microstates may be shared by twins. We use a non-parametric

Bayesian framework to model the state space in our MS-VAR model. When compared

to the BP-AR-HMM model, which does not jointly model the transition matrices of

epochs from the same participant, via a simulation study our GBP-AR-HMM model

showed superior classification rates, emission parameter estimation, and microstate

duration estimation while struggling to estimate the true number of microstates.

We also fit our GBP-AR-HMM model to 246 female twin pairs from the MTFS.

The estimated parameters suggest a large overlap in the state spaces of many twin

pairs and an estimated number of true microstates which falls within the range typ-

ically found in other studies. Closer examination of output from the model through

algorithms such as SALSO allows for easy visualization of the microstate dynamics

of each twin pair. We also found the average microstate duration had a correlation

of 0.54 between MZ twins compared to only 0.39 for DZ twins, suggesting the heri-

tability of microstate duration. This finding supports the recent findings of Vidaurre

et al. (2017) of the heritability of EEG microstates. While it is beyond the scope of

this paper, future work will tie these heritable traits with behavioral characteristics

with the overall goal of tying genes, brain, and behavior.

Our GBP-AR-HMM model offers a nice extension of the BP-AR-HMM model

which better fits the twin structure of our data, but there are still several potential

avenues for further extension. The HMM model could be replaced with a hidden semi-

Markov model which would allow for more flexible modeling of microstate duration

(Johnson & Willsky, 2013). Such a change would come at the cost of computational

time, which may be prohibitive given the large size of the MTFS and other resting-

state EEG datasets. Variational Bayes approaches to inference, such as Hughes et al.
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(2015), could also be applied to our model to speed up inference and allow the model

to be fit to even larger datasets.
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Convergence: Full One-Step One-Step LME Local
Variance: Full Full Reduced MANCOVA Global

Setting 3
ROI

5
ROI

3
ROI

5
ROI

3
ROI

5
ROI

3
ROI

5
ROI

Main
Effect
Local
Tests

2 0.050 0.062 0.050 0.067 0.054 0.066 0.041 0.046
3 0.054 0.060 0.050 0.057 0.056 0.061 0.049 0.046
6 0.052 0.057 0.053 0.057 0.053 0.059 0.050 0.047
7 0.048 0.058 0.046 0.057 0.048 0.057 0.044 0.050
10 0.061 0.064 0.056 0.062 0.057 0.062 0.044 0.050
11 0.066 0.065 0.068 0.061 0.066 0.063 0.045 0.047
14 0.054 0.059 0.057 0.057 0.052 0.057 0.045 0.047
15 0.056 0.059 0.057 0.057 0.060 0.057 0.056 0.048

Interaction
Local
Tests

2 0.060 0.062 0.060 0.068 0.060 0.063 0.049 0.050
4 0.072 0.062 0.074 0.068 0.072 0.060 0.050 0.049
6 0.056 0.054 0.054 0.056 0.056 0.057 0.056 0.046
8 0.058 0.058 0.054 0.057 0.054 0.058 0.050 0.049
10 0.058 0.067 0.055 0.065 0.061 0.065 0.048 0.054
12 0.068 0.060 0.070 0.061 0.066 0.062 0.054 0.046
14 0.062 0.053 0.064 0.055 0.063 0.053 0.046 0.050
16 0.064 0.054 0.062 0.053 0.062 0.053 0.048 0.050

Table A.1: Type I error rates for simulation study. Type I errors for the main effect
(group difference in intercepts) and interaction effect (group difference in slopes) are
reported both globally and locally. The global Type I errors are averaged across all
models. The local Type I errors reported are unadjusted and averaged across all
simulations and all null ROI pairs.
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Figure A.1: Model 2 results. Top left: A plot of the estimated intercept terms for
the CN group (bottom left triangle) and AD group (top right triangle). Top right:
A plot of the estimated slope terms for the CN group (bottom left triangle) and AD
group (top right triangle). Bottom left: a plot of the group differences (AD estimates
- CN estimates) for the estimated intercepts (top right triangle) and slopes (bottom
left triangle). Bottom right: A plot of the − log10 corrected and adjusted p-values
from all local hypothesis tests of group differences (AD estimates - CN estimates) for
the estimated intercepts (top right triangle) and slopes (bottom left triangle).
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Figure A.2: Model 3 results. Top left: A plot of the estimated intercept terms for
the CN group (bottom left triangle) and AD group (top right triangle). Top right:
A plot of the estimated slope terms for the CN group (bottom left triangle) and AD
group (top right triangle). Bottom left: a plot of the group differences (AD estimates
- CN estimates) for the estimated intercepts (top right triangle) and slopes (bottom
left triangle). Bottom right: A plot of the − log10 corrected and adjusted p-values
from all local hypothesis tests of group differences (AD estimates - CN estimates) for
the estimated intercepts (top right triangle) and slopes (bottom left triangle).
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B.1 Sensitivity Analysis

The assess the sensitivity of our model to the truncation levels selected for the nested

DP, we performed a sensitivity analysis. We fit a version of the model to the Cz

channel data with the upper level truncation level reduced from K=100 to K=75 and

a version of the model with the lower level truncation level reduced from L=20 to

L=15. The results comparing these two model fits with the original fit where K=100

and L=20 are shown in Figure B.1 and Table B.1. The computation time required

to fit the model is linear in both L and K, so the new models with lower truncation

levels did run significantly faster. The results wre qualitatively very similar, showing

that, beyond a certain point, increasing K and L only increases the computation time

and the model is not sensitive to their specific values.
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Figure B.1: The top row shows the estimated spectral density curves for the Cz
channel for each of the 1116 participants in the MTFS. Each line represents a single
subject. The bottom row show the estimated heritability and 95% point-wise credible
interval across the power spectrum calculated using Falconer’s formula. The left
column shows the results from the original analysis with K=100 and L=20, while
the middle column shows an the results from the sensitivity analysis with K=75 and
L=20 and the right column shows an the results from the sensitivity analysis with
K=100 and L=15.
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Analysis Feature Median (IQR) Heritability (95% CI)

Original

Delta Band Power (1-4 Hz) 0.25 (0.23 - 0.32) 0.43 (0.33, 0.53)
Theta Band Power (4-8 Hz) 0.28 (0.25 - 0.31) 0.88 (0.84, 0.92)
Alpha Band Power (8-12 Hz) 0.29 (0.23 - 0.33) 0.77 (0.69, 0.87)
Beta Band Power (12-30 Hz) 0.13 (0.12 - 0.18) 0.65 (0.55, 0.77)
Full Spectrum 1.00 0.68 (0.62, 0.74)
Peak Frequency 2.25 (1.63 - 8.63) 0.51 (0.35, 0.66)
Alpha Peak Frequency 8.63 (8.13 - 9.63) 0.81 (0.70, 0.91)

Reduced
K

Delta Band Power (1-4 Hz) 0.26 (0.24 - 0.31) 0.35 (0.26, 0.45)
Theta Band Power (4-8 Hz) 0.28 (0.24 - 0.31) 0.85 (0.76, 0.92)
Alpha Band Power (8-12 Hz) 0.29 (0.23 - 0.36) 0.79 (0.63, 0.88)
Beta Band Power (12-30 Hz) 0.13 (0.11 - 0.18) 0.68 (0.60, 0.476)
Full Spectrum 1.00 0.68 (0.58, 0.74)
Peak Frequency 7.38 (2.00 - 9.50) 0.50 (0.33, 0.67)
Alpha Peak Frequency 8.38 (8.13 - 9.75) 0.81 (0.52, 0.96)

Reduced
L

Delta Band Power (1-4 Hz) 0.26 (0.24 - 0.32) 0.33 (0.24, 0.43)
Theta Band Power (4-8 Hz) 0.27 (0.25 - 0.31) 0.82 (0.67, 0.89)
Alpha Band Power (8-12 Hz) 0.28 (0.22 - 0.35) 0.78 (0.67, 0.85)
Beta Band Power (12-30 Hz) 0.14 (0.12 - 0.17) 0.63 (0.52, 0.71)
Full Spectrum 1.00 0.65 (0.56, 0.71)
Peak Frequency 7.63 (1.88 - 9.25) 0.55 (0.39, 0.72)
Alpha Peak Frequency 8.75 (8.13 - 9.50) 0.80 (0.49, 0.93)

Table B.1: The median and inter-quartile range of different spectral density features
across the 1116 MTFS subjects along with the heritability calculated from the sample
for each feature. The orginal analysis represents the fit when K=100 and L=20. The
reduced K analysis uses K=75 and the reduced L analysis uses L=15.
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Simulated Microstate A(k) Σ(k)

1

0.8 0.0 0.0
0.0 0.8 0.0
0.0 0.0 0.8

 0.35 0.00 0.00
0.00 0.25 0.10
0.00 0.10 0.35



2

0.9 −0.3 0.0
0.5 0.6 0.1
0.4 −0.2 0.8

 0.30 0.10 0.00
0.10 0.20 0.10
0.00 0.10 0.40



3

0.7 0.1 −0.1
0.0 1.1 −0.6
0.0 0.6 0.3

 0.30 0.00 0.00
0.00 0.20 0.10
0.00 0.10 0.35



4

0.6 0.0 0.0
0.0 0.5 0.0
0.0 0.0 0.60

 0.60 0.00 0.00
0.00 0.70 0.30
0.00 0.30 0.80



Table C.1: The emission parameters for each of the four microstates used to simulate
the data for the simulation study.
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Transition Class A(k)

1 (1− ρ) *


ρ/(1− ρ) 0.8 0.1 0.1

0.1 ρ/(1− ρ) 0.4 0.5
0.5 0.5 ρ/(1− ρ) 0.0
0.4 0.4 0.2 ρ/(1− ρ)



2 (1− ρ) *


ρ/(1− ρ) 0.7 0.3 0.0

0.8 ρ/(1− ρ) 0.2 0.0
0.7 0.3 ρ/(1− ρ) 0.0
0.0 0.0 0.0 0.0



3 (1− ρ) *


ρ/(1− ρ) 0.7 0.0 0.3

0.8 ρ/(1− ρ) 0.0 0.2
0.0 0.0 0.0 0.0
0.5 0.5 0.0 ρ/(1− ρ)



4 (1− ρ) *


ρ/(1− ρ) 1.0 0.0 0.0

1.0 ρ/(1− ρ) 0.0 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0



Table C.2: Given a state self-transition parameter of ρ, each simulated participant was
randomly assigned to one of these four true transition matrices with equal probability.
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