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Abstract 

Acute graft-versus-host disease (GVHD) is one of the major complications after 

allogeneic hematopoietic stem cell transplantation (allo-HCT) that cause non-relapse 

morbidity and mortality. Although the increasing matching rate of the human leukocyte 

antigen (HLA) genes between donor and recipient (DR) has significantly reduced the risk 

of GVHD, clinically significant GVHD remains as a transplantation challenge, even in 

HLA-identical transplants. Candidate gene studies and genome-wide association studies 

have revealed susceptible individual genes and gene pairs from DR pairs that are 

associated with acute GVHD; however, the roles of genetic disparities between donor 

and recipient remain to be understood. 

  

To identify genetic factors linked to acute GVHD, we investigated the classical HLA and 

non-HLA genes and conducted a genome-wide clinical outcome association study. 

Assessment of 4,646 antigen recognition domain (ARD)-matched unrelated donor allo-

HCT cases showed that the frequency of mismatches outside the ARD in HLA genes is 

very low when the DR pairs are matched at ARD. Due to the low frequency of amino 

acid mismatches in the non-ARD region and their reportedly weak alloimmune reactions, 

we suggest that the non-ARD sequence mismatches within the ARD-matched DR pairs 

have limited influence on the development of acute GVHD, and may not be a primary 

factor. The genome-wide clinical outcome association study between DR pairs observed 

multiple autosomal minor histocompatibility antigens (MiHAs) restricted by HLA typing, 

though their association with acute GVHD outcome was not statistically significant. This 
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result suggests that HLA mismatching outweighs other genetic mismatches as 

contributors to acute GVHD risk. In the cases of female donors to male recipients, we 

identified the significant association of the Y chromosome-specific peptides encoded by 

PCDH11Y, USP9Y, UTY, and NLGN4Y with the acute GVHD outcome. 

  

Additionally, we developed a machine learning-based genetic variant selection algorithm 

for ultra-high dimensional transplant genomic studies. The algorithm successfully 

selected a set of genes from over 1 M genetic variants, all of which have evidence to be 

linked to the transplant-related complications. 

  

This work offers evidence and guidance for further research in acute GVHD and allo-

HCT and provides useful bioinformatics and data mining tools for transplant genomic 

studies. 
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Chapter 1 Introduction 
 
Allogeneic hematopoietic stem cell transplantation (allo-HCT) has been widely used as a 

curative treatment for a series of hematologic malignancies and inherited genetic 

diseases. Bone marrow is an organ that is rich in hematopoietic stem cells (HSCs) and 

was used as the primary source of donor stem cells in allo-HCT until the early 2000s 

(Griffioen, van Bergen, and Falkenburg 2016). Peripheral blood-derived stem cells 

(PBSCs) have become a popular alternative of HSCs since its first published report 

(Goldman et al. 1978). Especially in the autologous setting, PBSCs are preferred over 

bone marrow due to ease of collection and quick engraftments (Cutler and Antin 2001). 

Although PBSCs were more cautiously monitored in allo-HCTs, the number of allogeneic 

PBSC transplant cases has increased dramatically since the report of mobilized PBSCs 

through Granulocyte colony-stimulating factor (G-CSF) or Granulocyte-macrophage 

colony-stimulating factor (GM-CSF) (Schmitz et al. 1995; Welniak, Blazar, and Murphy 

2007) and the reports of the similar transplant outcomes using PBSCs to that of bone 

marrow stem cells. The use of PBSCs in allo-HCT exceeded that of the allo-HCT cases 

with bone marrow stem cells since 2014 (D’Souza and Zhu 2017). Another rich source of 

HSCs is umbilical cord blood (UCB), which has gained popularity as an attractive graft 

source (Benito et al. 2004; Sullivan 2008). UCB derived HSCs are immunologically 

naive, resulting in attenuated donor-derived immune response compared to bone 

marrow stem cells (Sullivan 2008). Multiple retrospective studies have suggested that 

transplant cases that use UCB-derived stem cells yield similar transplant outcomes to 

that of the bone marrow transplant cases, supporting a broader applications of UCB 
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stem cells and the promotion of cord blood banking (Eapen et al. 2007; Barker and 

Wagner 2003; Hwang et al. 2007; Ballen, Gluckman, and Broxmeyer 2013; Lou, Zhao, 

and Chen 2018).  

 

The most crucial criterion in allo-HCT is to identify the tissue compatibilities through the 

major histocompatibility complex (MHC) between a potential donor and the recipient to 

avoid graft rejection. More specifically, an ideal graft source would have identical human 

leukocyte antigen (HLA) genes as the recipient. The HLA gene system is one of the 

most extensively studied human gene regions due to its high polymorphism (Robinson et 

al. 2015; Gourraud et al. 2014; Horton et al. 2004; Xie et al. 2003) and its critical role in 

allogeneic solid organ transplant (liver, kidney etc.) and allo-HCT (Petersdorf 2013). The 

HLA region has also been used extensively to study  population diversity (Sanchez-

Mazas and Meyer 2014), the evolutionary history of human ancestry (Gourraud et al. 

2014; Uinuk-Ool, Takezaki, and Klein 2003), the association with multiple 

immunodeficiency diseases, such as HIV/AIDS (Goulder and Walker 2012), and other 

genetic diseases and cancer (Horton et al. 2004; de Bakker et al. 2006; Shiina et al. 

2009).  

 

One of the main transplant-related complications after HLA matching allo-HCT is called 

graft-versus-host disease (GVHD), which is caused by the graft immune cells (mainly T 

cells) that recognize peptides from the host as non-self antigens. This recognition 

initiates a chain of immune reactions and the cells in the recipient are attacked. These 

peptides are called the minor histocompatibility antigens (MiHAs) in distinction to the 

major histocompatibility complex (MHC) that leads to graft rejection. When the graft T  
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Figure 1.1 Illustration of genomic position of classical HLA genes and classical MHC molecules. 
The MHC molecule artwork is adapted from https://microbeonline.com/difference-mhc-class-mhc-

class-ii-proteins/. (a) Genomic position of HLA genes on chromosome 6, (b) HLA class I genes 
functional composition and the corresponding MHC class I molecule, and (c) HLA class II genes 

functional composition and the corresponding MHC class II molecule. Blue dotted arrows indicate 
the corresponding exon regions and the encoded antigen recognition domains (ARDs). Exons 2 

and 3 in HLA class I genes and Exon 2 in HLA class II genes encode the ARD, respectively. 

cells recognize MiHAs in the tumor cells, it leads to graft-versus-leukemia (GVL) effect, 

which is beneficial to disease remission. Graft selection in allo-HCT is to minimize the 

GVHD while maximizing GVL effect.  

 

The human leukocyte antigen (HLA) gene system 

The HLA genes are located on chromosome 6 at p21.31 and consist of three different 

classes of genes, as shown in Figure 1.1(a). Class I and II genes are structurally and 

functionally related and play an essential role in allo-HCT. Class III genes are not directly  
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Figure 1.2 Illustration of the HLA gene nomenclature. 

involved in donor-recipient histocompatibility testing, however, they function through 

inflammatory reactions (Petersdorf et al. 2018). The HLA genes are further categorized 

into classical and nonclassical genes based on the gene polymorphism and the direct 

interactions with T cells. Classical class I genes include HLA-A, -B and -C. These genes 

have high polymorphisms in exons 2, 3 and 4 that define different alleles and encode an 

α1, an α2, and an α3 domain of the MHC molecules. As shown in Figure 1.1(b), the α1 

and the α2 domain form a peptide-binding groove which presents a peptide of 8 to 10 

amino acids in length to CD8+ T cells (Halenius, Gerke, and Hengel 2015). This region 

is called the antigen recognition domain (ARD). Similarly, HLA-DRB1 and -DQB1 

belongs to the classical class II genes, which encode MHC molecules that present 

peptides with more variable lengths, ranging from 10 to 20 amino acids to CD4+ T cells.  

 
Graft histocompatibility testing largely depends on the determination of the classical HLA 

gene allele types of graft stem cells and the patients, which is referred to as HLA typing. 

For effective communications across HLA typing laboratories, clinicians and 
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researchers, the Harmonization of Histocompatibility Typing Terms Working Group 

defined a consensual Histocompatibility Typing Terms (Nunes et al. 2011). The HLA 

typing results are reported based on the World Health Organization (WHO) HLA 

Nomenclature Report (Marsh and WHO Nomenclature Committee for Factors of the HLA 

System 2018) and the IMGT/HLA database (Robinson et al. 2015). Figure 1.2 shows an 

example of HLA allele in a four-field name. Low-resolution typing refers to the alleles 

with only one field (e.g., HLA-B*44:XX) which corresponds to a serologic equivalent 

(B44), and a high-resolution HLA typing usually includes alleles with two-field names 

(e.g., HLA-B*44:02), which indicates alleles that encode the same protein sequence on 

the ARD of the MHC molecule. When an allele cannot be determined at a high 

resolution, the allele is reported at between high- and low-resolution and is assigned the 

name mostly based on associated population and the common and well-documented 

alleles (Mack et al. 2013). 

 

In practice, the allele types at five classical HLA gene loci, i.e., HLA-A, -B, -C, -DRB1 

and -DQB1, are determined and matched for each DR pair. All five gene loci matched 

(10 of 10 allele-matched) allo-HCT cases have shown significantly improved survival 

rate and transplant outcomes (Fürst et al. 2013). However, approximately 40% of 

patients after 10/10 HLA-matched allo-HCT still suffer from relapse and non-relapse 

causes of death, such as GVHD (D’Souza and Zhu 2017). In allo-HCT, GVHD is the 

major cause of non-relapse morbidity and mortality, affecting up to 40~60% (M. Jagasia 

et al. 2012), accounting for 20% of deaths after allogeneic HSCT (Pasquini and Zhu 

2015). Maximizing the graft-versus-leukemia (GVL) effect and limiting GVHD has been 

the main research topic to improve the effectiveness of allo-HCT. Specifically, these 
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effects are caused by the polymorphic peptides presented on the surface of HLA Class 

I/II molecules, which activate the donor-derived cytotoxic T cells and subsequent 

immune responses. The influence of mismatches of classical HLA genes between donor 

and recipient on GVHD have mainly been investigated and well established at the ARD 

level (Fürst et al. 2013); however, there has not yet been an established study on the 

influence of mismatches of non-ARD exons and/or introns on the GVHD outcomes after 

allo-HCT.  

Pathogenesis of acute graft-versus-host disease  

GVHD is an immunologically mediated complex disease resulting from donor-derived T 

cell activation and attack on recipient normal cells due to the genetic disparities between 

donor and recipient. Clinically, GVHD has an acute form and a chronic form. Acute 

GVHD shows damaging symptoms on the skin, liver, and the gastrointestinal tract, while 

chronic GVHD has more diverse manifestations (for instance, nails, mouth, eyes) and 

sometimes resembles autoimmune syndromes. For epidemiological studies, these two 

forms were defined based on the symptoms that occur before or after Day 100 after 

transplantation. However, this definition does not correctly distinguish the two forms of 

GVHD, and hence a recent updated National Institutes of Health classification clarified 

the categorization and scoring form for acute and chronic GVHD by including late-onset 

acute GVHD (after Day 100) and the “common” features that indicate signs and 

symptoms found in both acute and chronic GVHD (M. H. Jagasia et al. 2015). Table 1.1 

and Table 1.2 show the severity of each organ in acute GVHD, and the overall clinical 

grading of acute GVHD adapted from 1994 Consensus Conference on acute GVHD 

grading (Przepiorka et al. 1995; Ball, Egeler, and EBMT Paediatric Working Party 2008). 
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The development of acute GVHD conceptually includes three main sequential phases 

(Ferrara et al. 2009), or more specifically five basic steps (Socié and Blazar 2009). The 

first phase includes the activation of antigen presenting cells (APCs) due to host tissue 

damage caused by the underlying disease or the allo-HCT conditioning regimen. The 

second phase is activation and expansion of donor-derived T cells in response to the 

host and graft APCs as well as inflammatory cytokines (Bader et al. 2004). The last 

phase is an effector phase with a complex cascade of both cellular mediators (cytotoxic 

T lymphocytes, NK cells) and inflammatory mediators (TNF-α, INF-γ, IL-1). The 

dysregulation of cytokines resulted from these mediators eventually leads to the clinical 

manifestations of acute GVHD (Antin and Ferrara 1992; Couriel et al. 2004; Zeiser et al. 

2004; Ball, Egeler, and EBMT Paediatric Working Party 2008). 

 

The genetic disparities between donor and patient lead to the immunogenic polymorphic 

peptides, or the minor histocompatibility antigens (MiHAs). To the best of our knowledge, 

a very limited number of HLA restricted MiHAs have been identified and characterized in 

the literature, and the global roles of these MiHAs on the development of acute GVHD 

remain to be understood. Griffioen et al. reviewed forty-eight HLA Class I-restricted and 

eight HLA Class II-restricted autosomal MiHA genes that have been discovered and 

characterized through in vivo immune responses (Griffioen, van Bergen, and Falkenburg 

2016). They were individually and specifically searched on candidate genes such as 

HLA-ligandomes, hematopoiesis-restricted genes and single nucleotide polymorphism 

(SNP) association with the clinical outcome after transplantation. However, the 

interactions among these SNPs is still unclear, as well as their collective influences on 

acute GVHD. 
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To date, genome-wide association studies (GWAS) and candidate gene studies have 

identified SNPs associated with acute GVHD, including SNPs that cause the genetic 

disparities between the donor and the patient, i.e. MiHA SNPs (Griffioen, van Bergen, 

and Falkenburg 2016), and SNPs that modify gene functions (Petersdorf et al. 2015). 

However, the genetic risks for acute GVHD outcome have not been well defined yet 

(Hansen et al. 2010). Most such studies have focused on single locus variations 

individually and tested them for association with acute GVHD. Unlike the underlying 

assumptions of these studies, however, genes tend to work interactively within specific 

functional pathways, contributing to the disease phenotypes. 

 

It is reported that non-HLA genetic factors also play an essential role in HLA-identical 

allo-HCT (Yang and Sarwal 2017), including immune response and regulatory pathway 

gene polymorphisms (Lin et al. 2005b; Mullally and Ritz 2007), ki ller-cell 

immunoglobulin-like receptors (KIRs)(Littera et al. 2012), MHC Class I polypeptide-

related sequence A (MICA) (Park et al. 2016; Chojecki 2017; Fuerst et al. 2016), and 

minor histocompatibility antigens (MiHAs) (Griffioen, van Bergen, and Falkenburg 2016; 

Martin et al. 2017). These factors may trigger allo-immune responses in the recipient 

who has received HLA-identical stem cell transplant, either through incompatible 

receptor-ligand interactions or encoding non-self peptides that trigger the donor’s 

immune cells. Non-HLA gene studies are mainly targeted on the immune response 

related genes (candidate gene approach); however, the complex interactions among 

different genes in acute GVHD after HLA-identical allo-HCT remains to be understood. 

Gene-gene interaction, or epistasis, in the context of allogeneic transplantation, exhibits 

its unique features and challenges, compared to epistasis in traditional population 
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Table 1.1 Organ staging of acute GVHD, adapted from Przepiorka et al. (Przepiorka et al. 1995) 

Stage Skin Liver GI Tract 

0 No rash due to GVHD Bilirubin (< 2.0 mg/100 ml)  None (< 280 ml/m2) 

I Maculopapular rash 
<25% of body surface 
area without associated 
symptoms  

Bilirubin (2.0–3.0 mg/100 ml)  Diarrhea >500–1000 
ml/day (280–555 
ml/m2); nausea and 
emesis  

II Maculopapular rash or 
erythema with puritis or 
other associated 
symptoms ≥25% of 
body  

Bilirubin (3.0–5.9 mg/100 ml)  Diarrhea 1000–1500 
ml/day (556–833 
ml/m2); nausea and 
emesis  

III Generalized 
erythroderma; 
symptomatic macular, 
papular or vesicular 
eruption with bullous 
formation or 
desquamation covering 
≥50% of body surface 
area  

Bilirubin (6.0–14.9 mg/100 ml)  Diarrhea >1500 ml/day 
(>833 ml/m2); nausea 
and emesis  

IV Generalized exfoliative 
dermatitis or bullous 
eruption  

Bilirubin (>15 mg/100 ml)  Diarrhea >1500 ml/day 
(>833 ml/m2); nausea 
and emesis. Abdominal 
pain or ileus 

GI: Gastrointestinal tract 

Table 1.2 Clinical grading of the severity of acute GVHD,  
adapted from Przepiorka et al. (Przepiorka et al. 1995) 

Grade Skin Liver GI tract Functional impairment  

0 0 0 0 0 

I 1–2 0 0 0 

II 1–3 1 1 1 

III 2–3 2–3 2–3 2 

IV 2–4 2–4 2–4 2–4 

GI: Gastrointestinal tract 
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Figure 1.3 Genetic factors that influence the acute GVHD outcome in allo-HCT 

genetic models where the interactions are modeled under the assumptions of different 

inheritable genetic models (e.g., additive, dominant, recessive models). In the case of 

transplantation, it is likely that the synergistic interactions of several genes in a 

biochemical pathway from both the donor and the recipient play more critical roles in the 

development of acute GVHD. For example, the synergism between IL10 gene of the 

recipient and IL10 receptor 𝛽 gene of the donor in the IL10 metabolic pathway reportedly 

modulates the severity of acute GVHD (Lin et al. 2005a; Tseng et al. 2009). Figure 1.3 

shows the genetic factors that are involved in the development of acute GVHD.  

Main contributions of the dissertation 

Chapter 2 explores the HLA classical gene sequence diversity at scale and evaluates 

the mismatches outside the ARD region between ARD matched donor and recipient and 

their potential impact on the transplant outcomes. This research is the first systematic 

evaluation of the role of mismatches outside the ARD of the classical HLA genes on the 

allo-HCT outcomes. Additionally, the bioinformatics pipeline incorporates multiple 

sequence analysis with functional annotation for donor-recipient pairs. Note that the HLA 

Class II genes are highly prone to misalignment due to their extremely long and 
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polymorphic intron regions if aligned directly to the whole gene reference sequences. 

Targeted region alignment for Class II genes in the proposed pipeline significantly 

improves the alignment accuracy. All these features will benefit the HLA research 

community and provide new insights on HLA mismatch types in allo-HCT outcomes. 

This work has been presented in the 42nd and 44th ASHI annual symposiums, 

respectively (H. Huang et al. 2016, 2018). 

 

In Chapter 3, we expand our focus on the mismatches between donor and recipient to 

the whole genome level. We developed a bioinformatics analysis pipeline to compare 

the genomic sequences between donor and recipient, especially the non-synonymous 

mismatches restricted by HLA typing. We successfully identified Y-chromosome 

encoded minor histocompatibility antigens in sex-mismatched transplant cases that may 

be directly linked the acute GVHD symptoms. The bioinformatics tools provide a 

systematic analysis of whole genome sequences of the HLA-matched donor-recipient 

pairs and identify potential MiHAs efficiently in silico. This work has been published in 

Blood Advances (W. Wang et al. 2018).  

 

The complex transplant-related outcome goes beyond the genetic mismatches between 

donor and recipient. In Chapter 4, we therefore propose a data mining technique to 

investigate the complex genetic relationships among donor and recipient genomes and 

the transplant outcomes. Specifically, we develop a feature selection method, called 

iRBA-RF, to identify the most informative SNPs that are linked to the transplant outcome 

(e.g., acute GVHD) and provide possible biological functional explanations. The 

proposed model does not require prior biological knowledge, such as the functional 
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pathways and immunological signatures or any assumptions. The framework examines 

gene sets and their association with the transplant outcomes, as opposed to 

investigating individual genes associated with the outcomes, which is the current state in 

the literature. The proposed algorithm provides novel bioinformatics tools for transplant 

genomic studies where exploring the ultra-high dimensional genotype data is one of the 

biggest challenges. It will bring new insights into understanding genetic factors that drive 

GVHD/GVL effects after HLA-matched allogeneic HSCT. This work has been submitted 

to a peer-reviewed journal and undergoing the manuscript review process. 
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Chapter 2 HLA gene sequence diversity and the 

impact of sequence mismatches in allogeneic 

hematopoietic stem cell transplantation 

outcomes 
 

Abstract 

In allogeneic hematopoietic stem cell transplantation (allo-HCT), HLA allele matching 

between donor and recipient (DR) has traditionally focused on the polymorphic antigen 

recognition domain (ARD). While mismatching at the ARD is known to influence 

transplant outcomes, it is unclear about the role of the mismatches outside the ARD. An 

estimate of up to 70% of the allo-HCT recipients still develops post-transplant 

complications, such as acute graft-versus-host disease (GVHD), even after the use of 10 

out of 10 (HLA-A, -B, -C, DRB1, -DQB1) HLA allele-matched unrelated donors. In order 

to determine whether the sequence mismatches outside the ARD region are linked to 

the transplant-related complications, we assessed the genetic sequence variations of the 

classical HLA genes at a general population and characterized the frequency of 

mismatches in non-ARD regions when DR pairs are matched at the ARD level. The 

analysis of 15,865 healthy donors’ classical HLA gene sequences revealed that in 

addition to the expected high sequence variations in the ARD region, the noncoding 

regions (5’-, 3’- untranslated regions and introns) and non-ARD exons also exhibit high 

sequence diversities. Despite the high sequence variation across different regions, a 
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subsequent analysis of 4,646 10/10 HLA matched DR pairs’ HLA gene sequences 

showed limited mismatches outside the ARD regions. For HLA Class I alleles, 95.19% of 

the ARD matched alleles have identical sequences across the whole gene region. 0.67% 

of the mismatches were synonymous variants from the ARD region, while 0.17% and 

0.10% of mismatches observed in the non-ARD exons were synonymous and 

nonsynonymous variants, respectively. The intronic variation accounted for 4.39% of the 

mismatches. Similarly, for HLA Class II alleles, 0.28% of mismatches were synonymous 

ARD variants, and the mismatches in the non-ARD exons were also very rare 

(synonymous: 0.28%; nonsynonymous: 0.16%). A high degree of variation was 

observed in the intronic regions of the HLA class II genes, with only 77.3% of the allele 

pairs shared having identical sequences. Overall, 0.22% and 4.56% of HLA class I and 

class II allele pairs, respectively, showed both exon and intron mismatches. In 

conclusion, due to the low frequency of amino acid mismatches in the non-ARD region 

and their reportedly weak allo-immune reactions, we suggest that the non-ARD 

sequence mismatches within 10/10 HLA ARD matched DR pairs have limited influence 

on the development of post-transplant complications, such as acute GVHD, and may not 

be a primary factor. 

 

Keywords: human leukocyte antigen (HLA), antigen recognition domain, allogeneic 

hematopoietic stem cell transplantation (allo-HCT), graft-versus-host disease (GVHD) 

Introduction 

Allogeneic hematopoietic stem cell transplantation (allo-HCT) is the main curative 

treatment option for a series of blood and bone marrow related disorders, including 
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leukemia and lymphoma. One of the most crucial criteria in allo-HCT is to identify the 

histocompatibility (tissue compatibility) between the potential donor and the patient. The 

human leukocyte antigen (HLA) complex genes, also known as the major 

histocompatibility complex (MHC) genes, play a critical role in determining the 

histocompatibility of a potential donor with a recipient in a stem cell transplant. HLA 

complexes recognize and bind to antigens produced from non-self proteins and initiate 

corresponding immune responses, causing graft rejection, graft-versus-host disease 

(GVHD), and other post-transplant disorders.  

 

For allo-HCT purposes, the ideal donors are HLA genotypically identical siblings of the 

patients. In theory, the likelihood of having such a donor for a patient depends on the 

number of siblings, for instance, 25% for those with one sibling, 44% for those with two 

siblings, and 58% for those with three. Besse et al. showed that the actual probability of 

having an HLA-identical sibling depends on the patient’s age and their ancestry 

information and that in the U.S., only 13% to 51% of patients can find such a sibling 

donor (Besse et al. 2016). In other words, 49% to 87% of allo-HCT patients are expected 

to rely on an unrelated donor source. The current gold standard for donor selection is to 

test the HLA compatibility of 10 alleles at five classical HLA loci, i.e., HLA-A, -B, -C, -

DRB1, and -DQB1, as mismatches at either of these locus are significantly associated 

with deteriorated survival rates and post-transplant complications (S. J. Lee et al. 2007; 

Fürst et al. 2013; Petersdorf 2015; Morishima et al. 2015; Kekre et al. 2016; Petersdorf 

2017). Specifically, several multicenter retrospective allo-HCT outcome studies have 

shown that single-allele mismatched transplant cases have an estimated risk of acute 

GVHD ranges from 13% to 69% (Ciurea et al. 2011; Nakamae et al. 2010; Mehta et al.  
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Figure 2.1 The dramatic growth of curated HLA classical gene alleles since 1998 (v1.0) from 964 
alleles to 16,040 alleles (v3.31.0). 

2004; Kekre et al. 2016). Thus, HLA-A, -B, -C, -DRB1, -DQB1 (10/10) allele-matched 

unrelated donors are considered as the optimal alternatives when HLA identical siblings 

are not available. 

 

In practice, only the genetic regions in HLA genes that encode the antigen binding 

groove are characterized and compared between the potential donor and the recipient. 

The influence of genetic mismatches within the antigen-recognition domain (ARD) on the 

transplant outcome has been primarily investigated and well characterized based on the 

assumption that the ARD mismatches are the major player in the post-transplant 

complications. However, little is known about the functional implication of mismatches 

outside the ARD on allo-HCT outcomes.  

 

The high-throughput next-generation sequencing (NGS) platform has enabled the 

accurate and high-resolution typing of HLA genes. As a result, novel alleles have been  
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Table 2.1 Summary of curated HLA classical gene alleles 
in IMGT/HLA database (v3.31.0) (January 2018) 

HLA Gene Class Locus #Alleles #Full-length alleles %Full-length alleles 

Class I HLA-A 4,080 849 20.8 % 

HLA-B 4,948 969 19.6 % 

HLA-C 3,684 873 23.7 % 

*Class II HLA-DRB1 2,146 87 4.1 % 

HLA-DQB1 1,176 173 14.7 % 

Total 16,034 2,951 18.4 % 

* HLA Class II genes have extremely long intronic sequence (over 2000 bp). It is difficult 
accurately sequence the full gene region. For HLA class II genes, the sequences that cover from 
intron 1 through intron 3 are counted towards the “full-length alleles” in this summary.  
 

discovered at a tremendous rate in recent years, as shown in Figure 2.1. However, due 

to the particular interest on the ARD regions as well as challenges in characterizing full 

gene region sequences, as of January 2018, only less than 19% of the recognized 

classical five loci HLA alleles (HLA-A, -B, -C, -DRB1, -DQB1) have characterized full-

length gene sequences or sequences outside the ARD region in the IMGT/HLA 

database Release 3.31.0, as shown in Table 2.1 (Robinson et al. 2015; Marsh and WHO 

Nomenclature Committee for Factors of the HLA System 2018; European Bioinformatics 

Institute 2018). For HLA Class II alleles (HLA-DRB1 and -DQB1), the extremely long and 

repetitive intron regions (over 2000 bp) pose challenges on sequence alignment, 

assembly, and haplotype assignment, so that less than 8% of recognized Class II genes 

have characterized sequences outside ARD. Sequence variations outside the ARD 
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region are not well characterized, and the impact of donor-recipient (DR) pair HLA 

mismatches in non-ARD regions are poorly understood.  

 

Based on the HLA nomenclature system, alleles that share the same nucleotide 

sequence in the ARD regions are designated as the G allele groups, while alleles that 

encode the same polypeptide sequences in this region are designated as the P allele 

groups(Marsh and WHO Nomenclature Committee for Factors of the HLA System 2018). 

For instance, HLA-A*01:01:01G includes 72 alleles that have the same ARD exon 

sequences but different sequences in non-ARD exons and non-coding regions [5’-, 3’-

untranslated region (UTR) and introns]. Similarly, HLA-A*01:01P includes 157 alleles 

that encode the same polypeptides in ARD region but different amino acid sequences in 

the rest of the HLA molecule. The impact of amino acid substitutes outside the ARD 

region in the G group alleles on T cell recognition has not been well characterized, 

except the case where it results in the loss of HLA expression that affects the 

allorecognition process. 

 

Studies have shown that up to 70% of the patients who undergo 10/10 HLA matched 

unrelated allo-HCT still suffer from post-transplant complications, such as acute GVHD 

(Shaw et al. 2017; D’Souza and Zhu 2017). The purpose of this study is to determine 

whether the sequence mismatches outside the ARD region are linked to these 

transplant-related diseases after 10/10 HLA matched allo-HCT. We first assess the 

genetic sequence variations of the classical HLA genes at a general population, 

especially the non-ARD exons and non-coding regions, and then characterize the 



 19 

frequency of mismatches in non-ARD regions when DR pairs are fully matched at the 

ARD level.  

Materials and methods 

Healthy donors’ HLA gene sequences for gene sequence diversity 

analysis 

15,865 healthy donors including four broad races (African American: 15.4%; Asian and 

Pacific Islander: 11.6%; Caucasian: 22.0%; Hispanic Origin: 28.9%; Native American: 

22.1%) were selected from the Be The Match Registry® operated by the National 

Marrow Donor Program. The HLA Class I (HLA-A, -B, -C) alleles were sequenced 

through the Illumina MiSeq platform (Illumina, San Diego, CA). Several thousand pair-

ended short reads (150 bp) were then assembled into consensus sequences that 

include from 5’-untranslated region (UTR) to 3’-UTR. HLA Class II (HLA-DRB1, -DQB1) 

alleles have extremely long intronic regions with repetitive nucleotide sequence blocks. 

For instance, introns 2 and 3 of the HLA-DRB1 gene are 2,229 bp and 701 bp long, 

respectively, whereas exons 2 and 3 are only 270 bp and 282 bp long, respectively. 

These intron regions lead to a challenge in characterizing the full-length allele 

sequences. Typically, a targeted sequencing scheme is employed to extract the 

sequences of exons 2 and 3 for HLA Class II alleles. Here we employed the Pacific 

Biosciences RS-II platform to obtain high-quality elongated sequences with partial 

intronic regions. 

 

Multiple sequence alignment was performed on the five loci allele sequences using  



 20 

Clustal Omega (Sievers et al. 2011), and low-quality sequences were removed from the 

downstream analysis. This was followed by a gene annotation pipeline to annotate exon 

and intron regions. We employed the Shannon entropy of each aligned nucleotide site at 

each of the five loci to characterize the allele diversity. The Shannon entropy is defined 

as  

 

where  is the frequency of each nucleotide type in the cohort. If all four types of 

nucleotides (A, T, C, and G) have an equal frequency (25%) at a position, then this 

position has the maximum entropy of 2 (or 2.32 in the case of considering alignment 

gaps as there are five possible values at each position, i.e., A, T, C, G and a gap), and 

hence it is considered the most variable position. At a most conserved position, there is 

only one type of nucleotides, and the entropy has the minimum value of 0.   

Donor-recipient pair HLA gene sequences comparison 

A cohort of 10/10 (HLA-A, -B, -C, -DRB1, -DQB1) high-resolution matched retrospective 

transplant cases (n=4,646) performed between 2000 and 2017 was selected from the 

Center for International Blood and Marrow Transplant Research (CIBMTR) Repository, 

and the donor-recipient pairs’ HLA gene alleles were sequenced. HLA Class I alleles 

were sequenced through the Pacific Biosciences RS-II platform to characterize the full 

gene regions, whereas HLA Class II alleles were sequenced through the Illumina MiSeq 

platform for targeted exon regions. Figure 2.2 shows the developed comprehensive HLA 

allele sequence comparison pipeline that identifies and annotates the mismatched 

positions between two alleles by their functional regions and their protein sequence  



 21 

 

Figure 2.2 Diagram of the donor-recipient pair HLA gene sequence comparison pipeline 

 

 
(a) 

 
(b) 

Figure 2.3 Targeted alignment for HLA class II gene sequences 

differences using IMGT/HLA Database (v3.31.0). The sequence alignment for 

comparison was performed through the MUSCLE algorithm (Edgar 2004). 

 
The HLA Class II gene sequences often reported with partial intronic regions, as shown 

in Figure 2.3(a), which can cause misalignment when the query sequences are aligned 

against the full-length reference sequence. For instance, the exon region of the query 
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sequence may be stretched to the intron region after alignment with gaps in between. In 

order to avoid this issue, we adopted a target region alignment, i.e., instead of aligning 

against the full-length reference sequence, the query sequences were aligned against 

only exons 2 and 3 from the reference, respectively, as shown in Figure 2.3(b). This 

strategy significantly improved the alignment accuracy and efficiency for HLA Class II 

genes.   

Results 

Information theory-based measurement shows the genetic sequence 

variations in non-ARD exons and non-coding regions are as diverse 

as in the ARD regions. 

Figure 2.4 shows the nucleotide variation across the alignment positions. After 

alignment, the untranslated regions (URTs) generally show a high sequence variation for 

HLA Class I alleles. This may be due to the high polymorphism in the UTR regions; on 

the other hand, it also may be caused by the varying lengths of UTR regions for different 

alleles which introduced gaps in the alignment. In order to investigate the genetic 

variation without the alignment gaps, the positions with at least one gap were artificially 

given the value of -0.5 to filter out from the scatter plot, as shown in the right column of 

Figure 2.4.  

 

Figure 2.5 illustrates the entropy distribution in each functional region. As expected, the 

ARD regions show high sequence variation in general (entropy values between 0.01 and 



 23 

 

Figure 2.4 HLA class I gene alignment and their sequence diversity. Left column shows the 
entropy changes on the original alignment, and the right column shows the entropy after 

removing gaps from alignment. The positions which have at least one gap is given the value of  
-0.5. The shaded areas indicate exon regions. 
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Figure 2.5 HLA class I gene sequence variable sites by functional regions after sequence 
alignment. Left column: distribution of entropy values in each region; Right column: the proportion 

of diverse position within each region above different entropy thresholds. 
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Figure 2.6 HLA class II gene alignment and their sequence. 
 Left column: shaded area shows exon 2 while the rest shows exon 3. 
 Right column: proportion (%) of variation sites within exons 2 and 3.  

0.5). Highly variable sites (entropy>0.01) appear mostly in the noncoding regions (intron 

3 in HLA-A; introns 3 and 4 in HLA-B; introns 2, 3 and 5 in HLA-C). Among non-ARD 

exon regions, exons 5 and 6 show high variation. For HLA Class II alleles, due to the 

incomplete intron sequences and alignment challenges, we only assessed the exons 2 

and 3. Figure 2.6 shows similar results as HLA Class I genes, where non-ARD exon 

(exon 3) also shows a high variation.  
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10/10 high-resolution ARD-matched donor-recipient pairs have 

limited mismatches outside the ARD region 

When a donor-recipient pair is matched at ARD regions, we observed very limited 

mismatches outside the ARD region. For HLA Class I alleles, 95.19% of the ARD 

matched alleles have identical nucleotide sequences between donor and recipient pairs. 

There are 0.3% of nucleotide sequence mismatches within the ARD region; however, all 

of them are synonymous variants, which are translated into the same protein sequences. 

In the non-ARD exon region, we observed 0.3% and 0.13% of synonymous and 

nonsynonymous nucleotide mismatches, respectively. The intronic variation accounted 

for 4.17% of the mismatches.  

 

Similarly, for HLA Class II alleles, 0.28% of mismatches were synonymous ARD variants, 

and the mismatches in the non-ARD exons were also very rare, including 0.28% 

synonymous and 0.16% nonsynonymous variants. However, due to the high 

polymorphism in the intronic regions of the Class II genes, 26.48% of mismatches were 

intronic, and only 77.3% of allele pairs shared identical nucleotide sequences. For some 

allele pairs, nucleotide mismatches were observed in more than one region 

simultaneously. Specifically, 0.22 % and 4.56% of Class I and Class II allele pairs, 

respectively, showed mismatches in more than one functional region (exon and intron). 

Table 2.2 shows the detailed breakdown of mismatched allele pairs by HLA gene locus. 

A total of 25 different allele pairs showed nonsynonymous variants in non-ARD exons 

leading to different amino acid sequences of the MHC molecules, as shown in Table 2.3. 

Seven of these allele pairs showed different protein structures in the transmembrane 
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Table 2.2 Percentage (%) of mismatches between alleles from 10/10 ARD matched donor-
recipient pairs HLA full gene sequences by locus. 

Syn: synonymous; non-syn: nonsynonymous; 
non-coding: intron and/or the untranslated regions (UTRs). 

Locus Identical 
(%) 

Syn ARD 
(%) 

Non-syn 
ARD (%) 

Syn 
non-ARD 
exon (%) 

Non-syn 
non-ARD 
exon (%) 

Non-
coding  
(%) 

Total # 
allele 
pairs 

A 95.19 0.67 0 0.17 0.10 4.39 9286 

B 96.64 0.17 0 0.17 0.13 2.96 9290 

C 94.50 0.05 0 0.18 0.16 5.17 9266 

DRB1* 77.58 0.03 0 0.17 0.23 22.20 9090 

DQB1* 77.08 0.53 0 0.45 0.10 30.67 9292 

Class I 95.44 0.30 0 0.30 0.13 4.17 27842 

Class II* 77.33 0.28 0 0.28 0.16 26.48 18382 

* Class II genes were sequenced at the following targeted regions: full-length exon 2 (270 bp) 
with partial intron 1 and partial intron 2, full-length exon 3 (282 bp) with partial intron 2 and partial 
intron 3.  
 

Table 2.3 Observed non-ARD nonsynonymous mismatched alleles between donor and recipient 

Allele 1 Allele 2 Exon/Intron location;  
amino acid change from 
Allele 1 to Allele 2;  
protein location 

Count of 
observed 
DR pairs 

Allele 2: 
Common 
and well 
docume
nted 

HLA-A*23:01:01  HLA-A*23:17 Exon 5; His283Pro; TM 3 WD 

HLA-A*02:01:01:01/02L HLA-A*02:66 Exon 4; Thr225Ile; α3 1 Not CWD 

HLA-A*02:01:01:01/02L HLA-A*02:559 Exon 4; His188Arg; α3 1 Not CWD 

HLA-A*02:01:01:01/02L HLA-A*02:09 Exon 4; Ala236Glu; α3 1 Common 

HLA-A*11:01:01:01 HLA-A*11:86 Exon 4; Gly221Arg; α3 1 Not CWD 

HLA-A*24:02:01:06 HLA-A*24:79 Exon 4; Gly265Asp; α3 1 Not CWD 

HLA-A*01:01:01 HLA-A*01:37 Exon 4; Thr228Met ; α3 1 Not CWD 

HLA-B*44:02:01:03 HLA-
B*44:27:01 

Exons 4, 5, 7; Val199Ala, 
Val282Ile, A305T, 

6 Common 
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Cys325Ser; α3, TM, Cyt  

HLA-B*35:01:01:01 HLA-B*35:57 Exon 4; Val194Ile; α3 3 Not CWD 

HLA-B*51:01:01:01 HLA-B*51:193 Exon 5; Ile282Val; TM 2 Not CWD 

HLA-B*07:05:01 HLA-B*07:06 Exon 5; Ile282Val; TM 1 Common 

HLA-C*07:01:01:01 HLA-C*07:18 Exon 6, Intron 4; 
Ala324Val; Cyt 

5 Common 

HLA-C*04:01:01:01 HLA-C*04:82 Exon 5; 
Leu300_Gly301insAVL; 
TM  

1 WD 

HLA-C*12:03:01:01 HLA-C*12:143 Exon 6; Ala325Val; Cyt 1 Not CWD 

HLA-C*05:01:01:02 HLA-C*05:03 Exon 4; Glu183Asp, 
His184Pro, Val194Ile, 
Ala199Val; α3 

1 Not CWD 

HLA-C*15:02:01:01 HLA-C*15:13 Exon 4; Glu229Gln; α3 1 WD 

HLA-DRB1*14:01:01 HLA-
DRB1*14:54:0
1 

Exon 3; Tyr112His; β2 20 Common 

HLA-DRB1*13:01:01 HLA-
DRB1*13:117 

Exon 3; Arg133Trp; β2 1 Not CWD 

HLA-DQB1*03:01:01/04 HLA-
DQB1*03:19:0
1 

Exon 3; Thr185Ile; β2 2 Common 

HLA-DQB1*06:02:01 HLA-
DQB1*06:111 

Exon 3; Gly141Ser; β2 2 Not CWD 

HLA-
DQB1*03:01:01:02/03 

HLA-
DQB1*03:19 

Exon 3; Thr185Ile; β2 1 Common 

HLA-
DQB1*03:01:01:01/02/03 

HLA-
DQB1*03:09 

Exon 3; Gly168Ala, 
Asp169del; β2 

1 Common 

HLA-DQB1*03:03:02:01 HLA-
DQB1*03:31 

Exon 3; Val116Ile; β2 1 Not CWD 

HLA-DQB1*02:01:01 HLA-
DQB1*02:02:0
1 

Exon 3; Asp135Gly; β2 1 Common 

HLA-DQB1*02:02:01 HLA-
DQB1*02:10 

Exon 3; Val142Ile; β2 1 Not CWD 

CWD: common and well-documented allele; WD: well-documented allele; TM: transmembrane; 
Cyt: cytoplasmic tail; CWD alleles are based on CWD release 2.0. 
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segment or the cytoplasmic tail, while the rest differed in α3 (Class I) or β2 (Class II) 

chain below the antigen binding cleft. Especially, HLA-B*44:02:01:03 and HLA-

B*44:27:01 differ in all three regions outside the ARD, i.e., α3-chain, the transmembrane 

segment, and the cytoplasmic tail. Twelve of the alternative alleles (shown as Allele 2 in 

Table 2.3) were categorized as common or well-documented alleles according to the 

CWD catalogue 2.0.0 (Mack et al. 2013).  

 

Discussion and conclusion 

MHC genes are the most polymorphic gene regions among known the human gene 

system (Janeway et al. 2001). In this study, we showed the sequence diversity of the 

classical HLA genes in a general population, especially the high sequence variations in 

the non-ARD exons as well as the noncoding regions (5’-, 3’-UTR, or introns). Although 

the ARD region has been the focus in the practice of HLA matching, the high sequence 

variation outside the ARD region may also exert influence on the transplant outcomes.  

 

The investigation of the 10/10 HLA matched transplant cases showed that the ARD-

matched DR pairs have limited mismatches in the non-ARD exons (0.43%) and we 

observed the nonsynonymous mismatches at an even lower rate (0.13%). Alleles that 

share the same ARD sequences likely have the same non-ARD exon sequences. The 

low mismatch rate in non-ARD exons may be due to the high degree of linkage 

disequilibrium between the exons of the HLA alleles (Smith et al. 2005). The intron 

sequence mismatches were observed at a higher rate (4.17% for Class I and 26.48% for 

Class II), which may be explained by the different evolutionary forces in coding and non-
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coding regions of HLA alleles (Cereb, Hughes, and Yang 1997; Meyer and Blasczyk 

2000; Bergström et al. 2000). Intron variation is caused by the combined effects of 

mutation, recombination, and selection and it is reported that the recombination events 

concentrated in the introns near ARD exons (Cereb, Hughes, and Yang 1997; Kotsch 

and Blasczyk 2000; Meyer and Blasczyk 2000). Our observation of high intronic 

sequence variations is consistent with these reports. For HLA Class II alleles, we 

observed a much higher rate (26.48%) of intronic mismatches than a prior report with a 

smaller sample size (less than 2% of intronic mismatches, n=360) (Hou et al. 2017). This 

discrepancy may be due to the differences in typing methodologies and sequencing of 

highly repetitive intronic regions. As noted by Hou et al., in order to assess the impact of 

non-ARD mismatches on clinical outcomes of allo-HCT, an outcome association study 

may need at least 5,916 transplant pairs according to a log-rank test for 80% power at a 

significant level of  (Hou et al. 2017).  

 

However, the analysis of 4,646 transplant cases in this study suggests that sequence 

mismatching rate outside the ARD region between ARD-matched donor and recipient is 

relatively low and the mismatches of the corresponding amino acid sequences may be 

uncommon. Moreover, a recent study based on in vitro T cell assays by Roelen et al. 

suggested that non-ARD polypeptide mismatches may result in weak immunogenicity as 

they observed minimal T cell reactivity (Roelen et al. 2018). Even when there are amino 

acid mismatches outside the ARD region, they are unlikely the leading player to trigger 

the allo-immune reaction. Thus, we suggest that the non-ARD sequence mismatches 

between donor and recipient have limited influence on the development of post-

transplant complications, such as acute GVHD, and may not be a primary factor.  
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Several retrospective analysis of allo-HCT cases confirmed that donor-recipient HLA 

matching at the ARD level is the most critical factor that influences overall survival and 

the development of acute GVHD (S. J. Lee et al. 2007; Fürst et al. 2013; Kollman et al. 

2016). Furthermore, when more than one HLA matching donor is available, non-HLA 

characteristics, such as donor age and sex, have shown to be linked to the post-

transplant complications (Kollman et al. 2016; Petersdorf 2017). In order to uncover the 

genetic mechanisms of the development of acute GVHD and facilitate donor selection 

for allo-HCT with better transplant outcomes, it will be beneficial for future research to 

investigate the non-MHC genes, genetic and immunologic regulatory pathways and 

donor-recipient synergistic interactions. In the next two chapters, we discuss the non-

MHC gene factors and a method to detect potential genetic interactions from the DR pair 

whole genome sequences.  
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Chapter 3 Chromosome Y-encoded antigens 

associate with acute graft-versus-host disease in 

sex-mismatched stem cell transplant 1 

Abstract 

Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a curative option for 

blood cancers, but the coupled effects of graft-versus-tumor and graft-versus-host 

disease (GVHD) limit its broader application. Outcomes improve with matching at HLAs, 

but other factors are required to explain residual risk of GVHD. In an effort to identify 

genetic associations outside the major histocompatibility complex, we conducted a 

genome-wide clinical outcomes study on 205 acute myeloid leukemia patients and their 

fully HLA-A, -B, -C, -DRB1, and -DQB1–matched (10/10) unrelated donors. HLA-DPB1 

T-cell epitope permissibility mismatches were observed in less than half (45%) of acute 

GVHD cases, motivating a broader search for genetic factors affecting clinical outcomes. 

A novel bioinformatics workflow adapted from neoantigen discovery found no 
                                                
1 This research was originally published in Blood Advances. “Wei Wang*, Hu Huang*, Michael 
Halagan, Cynthia Vierra-Green, Michael Heuer, Jason E. Brelsford, Michael Haagenson, Richard 
H. Scheuermann, Amalio Telenti, William Biggs, Nathaniel M. Pearson, Julia Udell, Stephen 
Spellman, Martin Maiers, and Caleb Kennedy. Chromosome Y–encoded antigens associate 
with acute graft-versus-host disease in sex-mismatched stem cell transplant. Blood 
Advances 2, no. 19 (2018): 2419-2429.” © the American Society of Hematology.  
W.W. and H.H. made equally substantial contributions to this research. The main contributions of 
H.H. include the development of bioinformatics workflows to analyze the whole-genome 
sequence data, identity-by-descent (IBD) calculation, result visualization and interpretation, and 
manuscript review.   
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associations between acute GVHD and known, HLA-restricted minor histocompatibility 

antigens (MiHAs). These results were confirmed with microarray data from an additional 

988 samples. On the other hand, Y-chromosome–encoded single-nucleotide 

polymorphisms in 4 genes (PCDH11Y, USP9Y, UTY, and NLGN4Y) did associate with 

acute GVHD in male patients with female donors. Males in this category with acute 

GVHD had more Y-encoded variant peptides per patient with higher predicted HLA-

binding affinity than males without GVHD who matched X-paralogous alleles in their 

female donors. Methods and results described here have an immediate impact for allo-

HCT, warranting further development and larger genomic studies where MiHAs are 

clinically relevant, including cancer immunotherapy, solid organ transplant, and 

pregnancy. 

Introduction 

Allogeneic hematopoietic cell transplantation (allo-HCT) can cure certain inherited 

diseases and acquired malignancies of the blood, yet biological mechanisms that 

provide beneficial effects, such as graft-versus-tumor (GVT),(Copelan 2006; Horowitz et 

al. 1990; Miller et al. 2010) also contribute to life-threatening graft-versus-host disease 

(GVHD)(Ferrara et al. 2009). Outcomes improve dramatically with donor-recipient 

matching of HLAs, but GVHD still occurs at frequencies of up to 70% in fully matched 

unrelated pairs, and to a lesser degree in related, HLA-identical transplant recipients 

(Gooley et al. 2010), suggesting unaccounted-for genetic factors impact clinical 

responses. 

 

Minor histocompatibility antigens (MiHAs) are germline-encoded immunogenic peptides 
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presented by specific HLA molecules on the surface of cancer cells or normal tissues. 

Although donor and recipient mismatching at the major histocompatibility complex 

(MHC) confers the highest proportional risk of GVHD, many clinically relevant MiHAs 

with defined HLA restriction have been identified (Oostvogels, Lokhorst, and Mutis 

2016), including Y-chromosome–encoded antigens that affect outcomes in sex-

mismatched HCT (Popli et al. 2014). In other nonmalignant conditions, such as solid 

organ transplant or pregnancy, MiHAs carry risk of rejection (Kim and Gill 2009; Wagner 

2012; Pfeffer and Thorsby, n.d.) or miscarriage (Christiansen, Steffensen, and Nielsen 

2011; H. S. Nielsen et al. 2010), respectively. 

 
In leukemia, there is evidence for tumor-specific antigenicity by exogenous activation of 

gene expression (J. Molldrem et al. 1996; J. J. Molldrem et al. 1999; Gao et al. 2000), 

gene fusion (Cai et al. 2012), and alternative splicing (Pont et al. 2016). In all cancers, 

driver and passenger mutations mark tumor progression (Lindsley et al. 2017; Lazarian, 

Guièze, and Wu 2017; Alexandrov et al. 2013), which may guide biomarker discovery 

(Falchook et al. 2016; A. C. Huang et al. 2017) and individualized treatment (Budczies et 

al. 2017; Strønen et al. 2016; Rajasagi et al. 2014). A subset of cancer variants give rise 

to immunoreactive neoantigens encoded by somatic changes in tumor DNA, and these 

changes are presented exclusively by tumors and targeted by patients’ normal immune 

systems (Tran et al. 2015). In a clinical setting, this effect may theoretically be exploited 

for GVT in allo-HCT (Burkhardt and Wu 2013) or precision medicine approaches to 

cancer immunotherapy. 

 

Despite the physiological connection between MiHAs and neo-antigens, there are 

important differences that should guide genomic analysis. Neoantigen discovery from 
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DNA or RNA sequences requires high sensitivity to detect rare or private variants from 

heterogenous tumor tissue (Y.-C. Lu and Robbins 2016), which is often chemically 

preserved (Srinivasan, Sedmak, and Jewell 2002). Sequencing patient and adjacent 

normal samples adds cost but also reduces false positives (Jones et al. 2015; Garofalo 

et al. 2016). MiHAs, on the other hand, arise from heritable germline polymorphisms that 

may be common in populations and accessible with less expensive microarrays or 

lower-coverage sequencing panels (Sampson et al. 2014). In both cases, antigens are 

only immunoreactive if they are displayed by patient HLA in affected tissues. Therefore, 

it is important to annotate variants with predicted MHC restriction, binding affinity, and 

tissue-specific expression. 

 
We sought a controlled, clinical-outcomes–based study in HLA-matched donor–recipient 

pairs to discover genetic variation outside the MHC that may contribute to the risk of 

acute GVHD following allo-HCT. 

Methods 

Study design 

The study population consisted of high-resolution HLA-A–, HLA-B–, HLA-C–, HLA-

DRB1–, and HLA-DQB1–matched (10/10) unrelated donor and recipient allo-HCT pairs. 

Patients were selected to obtain equal numbers with and without clinical evidence of 

grade II-IV acute GVHD, which was assessed as described based on severity or degree 

of organ involvement before day 100 after transplant (Deeg and Antin 2006). All patients 

received myeloablative conditioning for acute myeloid leukemia (AML) or other blood 
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cancers in complete remission (CR1 or CR2). After quality control and other filtering (see 

Methods), acute GVHD positive and negative cohorts were balanced for age, disease 

status, self-reported race or ethnicity, GVHD prophylaxis, and other factors (Table 3.1). 

Clinical data collection 

Clinical data were collected by the Center for International Blood and Bone Marrow 

Transplant Research (CIBMTR), a collaboration between the National Marrow Donor 

Program and the Medical College of Wisconsin representing a worldwide network of 

transplant centers that contribute detailed data on HCT. The CIBMTR conducts research 

in compliance with all applicable federal regulations pertaining to the protection of 

human research participants. All participants provided informed consent for participation 

in the CIBMTR research program, including submission of biological samples to the 

Research Repository, and this study was approved by the National Marrow Donor 

Program Institutional Review Board. 

HLA typing and histocompatibility matching 

HLA matching was determined at high resolution for HLA-A, HLA-B, HLA-C, HLA-DRB1, 

and HLA-DQB1 through retrospective typing of stored pre-transplant samples and/or 

reported by the transplant center and match assessment performed per CIBMTR criteria 

as previously described (Spellman et al. 2008). 5-locus haplotype matching was 

performed with the HapLogic algorithm (Dehn et al. 2016). 

Whole-genome sequencing 

250 donor and 250 HCT recipient samples (500 samples total) were sequenced at  
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Human Longevity, Inc. (San Diego, CA) to a mean coverage depth of 303 with 2 3 150 

bp paired reads using Illumina HiSeq X instruments. 125 pairs came from transplants 

with clinical evidence of acute GVHD; 125 pairs came from transplants without evidence 

of GVHD. Ten recipient samples did not produce adequate sequencing data. A further 2 

recipient samples and 1 donor sample failed the heterozygosity test that was applied to 

remove contaminated samples. An additional 32 samples were missing data for their 

paired donor or recipient and were removed from analysis. The final set included 205 

pairs of donor-recipient samples (102 acute GVHD and 103 non-GVHD). Secondary 

analysis with Isaac alignment and variant calling pipeline (Raczy et al. 2013) resulted in 

1 binary alignment map (Li et al. 2009) and 1 variant call format (Danecek et al. 2011) 

file per sample using the human genome reference assembly hg38. Variants with below 

average read depth (30X) were excluded from analysis. 

Microarray data and analysis 

The microarray data and primary analysis for Supplementary Table 3.1 have been 

described previously (Madbouly et al. 2017). 

Bioinformatics 

Genomic similarity was measured using identity-by-descent (IBD) sequencing with 

default parameters (Browning and Browning 2013). This technique determines phase for 

donor and patient genotypes to form haplotype segments of varying lengths, which 

indicate common ancestry. Normalizing the lengths of these segments to those of 

specific genomic features (including the whole genome itself) gives a relative measure of 

genetic similarity for each feature (Figure 3.1). For comparison, the null distribution of  
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Table 3.1 Counts of patients and donors in the acute graft-versus-host (GVHD) and non-GVHD 
groups. P-values were calculated using the Pearson chi-square test for comparing discrete 
variables or the Kruskal-Wallis test for comparing continuous variables. Abbreviations: CR – 

complete remission, PBSC – peripheral blood stem-cells, TCE – T cell epitope, CMV – 
cytomegalovirus. 

  AGVHD No AGVHD   
Variable N (%) N (%) p-value 
Number of Recipients 102 103   
Number of centers 47 50   
Patient-related       
Recipient age at transplant     0.09 
   0-9 years 3 (3) 1 (1)   
   10-19 years 10 (10) 6 (6)   
   20-29 years 16 (16) 17 (17)   
   30-39 years 21 (21) 15 (15)   
   40-49 years 23 (23) 42 (41)   
   50-59 years 29 (28) 22 (21)   
   Median (Range) 41 (1-66) 44 (9-66) 0.58 
Recipient race/ethnicity     0.79 
   Caucasian, non-Hispanic 87 (92) 94 (92)   
   African-American, non-Hispanic 1 (1) 2 (2)   
   Asian, non-Hispanic 2 (2) 3 (3)   
   Hispanic, Caucasian 5 (5) 3 (3)   
   Unknown 7 (N/A) 1 (N/A)   
Recipient sex     0.009 
   Male 64 (63) 46 (45)   
   Female 38 (37) 57 (55)   
Karnofsky score     0.47 
   10-80 24 (24) 32 (31)   
   90-100 72 (71) 66 (64)   
   Missing 6 (6) 5 (5)   
Disease-related       
Disease status at transplant     0.61 
   Early (CR1) 71 (70) 75 (73)   
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   Intermediate (CR2+) 31 (30) 28 (27)   
Transplant-related       
Stem cell source     0.24 
   Marrow 27 (26) 35 (34)   
   PBSC 75 (74) 68 (66)   
TCE nonpermissiveness     0.22 
   Ambiguous DPB1 allele 0 1 (1)   
   Permissive DPB1 54 (54) 62 (63)   
   Non-permissive DPB1 46 (46) 35 (36)   
   Data Missing 2 (N/A) 5 (N/A)   
GVHD Prophylaxis     0.80 
   Tacrolimus + MMF +- others 22 (22) 20 (19)   
   Tacrolimus + MTX +- others (except MMF) 56 (55) 57 (55)   
   Tacrolimus + others (except MTX, MMF) 5 (5) 2 (2)   
   Tacrolimus alone 3 (3) 1 (1)   
   CSA + MMF +- others (except Tacrolimus) 2 (2) 3 (3)   
   CSA + MTX +- others (except Tacrolimus, 
MMF) 

12 (12) 18 (17)   

   CSA + others (except Tacrolimus, MTX, MMF) 1 (1) 1 (1)   
   CSA alone 1 (1) 1 (1)   
Donor/Recipient sex matching     0.007 
   Male/Male 44 (42) 40 (39)   
   Male/Female 24 (25) 38 (37)   
   Female/Male 21 (21) 6 (6)   
   Female/Female 13 (13) 19 (18)   
Donor/Recipient CMV serostatus     0.68 
   Negative/Negative 33 (32) 29 (28)   
   Negative/Positive 37 (36) 36 (35)   
   Positive/Negative 10 (10) 14 (14)   
   Positive/Positive 19 (19) 23 (22)   
   Unknown 3 (3) 1 (1)   
Donor age at donation     0.18 
   18-19 years 4 (4) 1 (1)   
   20-29 years 45 (44) 54 (52)   
   30-39 years 29 (28) 31 (30)   
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   40-49 years 16 (16) 15 (15)   
   50 and older 8 (8) 2 (2)   
   Median (Range) 30 (19-56) 28 (20-52) 0.11 
Donor race/ethnicity     0.46 
   Caucasian, non-Hispanic 92 (94) 92 (91)   
   African-American, non-Hispanic 0 2 (2)   
   Asian, non-Hispanic 2 (2) 4 (4)   
   Hispanic, Caucasian 1 (1) 0   
   Hispanic, race unknown 3 (3) 3 (3)   
   Unknown 4 (N/A) 2 (N/A)   
Year of transplant     0.61 
   2000 0 3 (3)   
   2001 2 (2) 4 (4)   
   2002 1 (1) 0   
   2003 1 (1) 3 (3)   
   2004 5 (5) 8 (8)   
   2005 15 (15) 11 (11)   
   2006 16 (16) 15 (15)   
   2007 17 (17) 17 (17)   
   2008 11 (11) 8 (8)   
   2009 14 (14) 9 (9)   
   2010 18 (18) 22 (21)   
   2011 2 (2) 3 (3)   
Follow-up among survivors, Months       
   N Eval 44 50   
   Median (Range) 60 (33-99) 61 (30-123) 0.93 

  
 
normalized IBD in each region is simulated from an all-by-all pairing of donors and 

recipients (excluding actual HLA-matched pairs). X and Y chromosomes were excluded 

from analysis. Removal of low-quality variants due to read misalignment resulted in 

small broken intervals in the ARD and MHC, explaining lower than expected genetic 

similarity for HLA-matched donor–recipient pairs within these regions. 
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Comparisons of donor-recipient variant call format files (Figure 3.2, Figure 3.3, Figure 

3.4; Supplementary Figure 3.2) was performed with RTG tools (Cleary et al. 2014) to 

generate patient-specific variants, which were functionally annotated with snpEff 

(Cingolani et al. 2012). Sex-mismatched pairs were considered as special cases with Y-

chromosome–specific variants in male recipients or genomic locations aligned to 

paralogous sites on the X chromosome. In all samples, missense and nonsense variants 

were mapped to their corresponding primary transcript and translated into amino acid 

sequences for proteasomal cleavage site prediction with netChop 3.1 (Keşmir et al. 

2002). MHC binding prediction was performed with netMHCpan 3.0 (M. Nielsen and 

Andreatta 2016) using patient HLA typing to determine MHC restriction. Ranked 

peptides were further annotated with minor allele frequencies from dbSNP (NCBI 

Resource Coordinators 2016) build 147. Acute GVHD usually affects the skin, liver, and 

gastrointestinal tract (Jacobsohn and Vogelsang 2007). While patient-specific MiHA 

expression is most informative, collecting these data requires invasive tissue biopsy 

specimens. Therefore, we opted to corroborate our results with public data from the 

Genotype-Tissue Expression Project (The GTEx Consortium 2015; GTEx Consortium 

2013; Keen and Moore 2015) using previously described methods (Kryuchkova-

Mostacci and Robinson-Rechavi 2017) to associate MiHAs with a measure of broad 

tissue-specific gene expression. The entire workflow is freely available at 

https://github.com/wwang-nmdp/MiHAIP.  

 

Visualization of X-Y paralogous regions (Figure 3.3A-C) were performed with manual 

curation using the BLAST-like alignment tool (Kent 2002). 
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Statistics 

P values were calculated using the  test for Table 3.1 and the Wilcoxon rank sum test 

with continuity correction for Figure 3.1, Figure 3.2A-C, Figure 3.3(A,D,E), and Figure 

3.4B. All other P values were calculated using hypergeometric tests with sample and 

population counts limited to patients with specified MHC restriction. Benjamini-Hochberg 

false discovery was applied to correct for multiple hypothesis testing in Supplementary 

Table 3.1. All tests were performed in R with default parameters. 

Results 

Donor-recipient matching extends beyond five HLA loci 

There is strong evidence that HLA-DPB1 T-cell epitope (TCE) matching correlates with 

allo-HCT outcome (Zino et al. 2004, 2007; Crocchiolo et al. 2009; Katharina 

Fleischhauer et al. 2012; Shaw et al. 2013; K. Fleischhauer et al. 2014; Pidala et al. 

2014). Generally speaking, mismatched alleles between donor and recipient may be 

benign (permissible) or alloreactive (nonpermissible) in either direction (graft versus host 

or host versus graft), with clinical consequences that include GVHD or rejection, 

respectively. Several methods are available to determine the direction and permissibility 

of HLA-DPB1 mismatching. Although pairs in this cohort were not explicitly matched at 

this locus at the time of transplant, a retrospective analysis revealed 16%, 60%, 68%, 

and 76% of donor–recipient pairs were matched by HLA-DPB1 allele, TCE permissibility 

(Zino et al. 2004), expression (Goyal et al. 2017), or functional distance (Crivello et al. 

2015), respectively (Supplementary Figure 3.1). This is consistent with baseline 
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likelihoods of finding HLA-DPB1 matches with productive 10/10 searches (Tram et al. 

2017). We found that HLA-DPB1 allele mismatching did not associate with acute GVHD 

(P = .92), whereas TCE mismatching did associate as expected (P = .038; 1-sided 

Fisher’s exact test), leaving 56 out of 102 acute GVHD cases (55%) unaccounted for by 

mismatching at 6 HLA loci. 

 

We hypothesized that HLA-matched unrelated donor-recipient pairs share genetic 

material outside the MHC. We used IBD inference (Browning and Browning 2013) to 

measure broad genomic similarity (see Methods), which revealed matching at the MHC 

regions as expected (Figure 3.1A). Overall, high rates of IBD were observed at the MHC, 

indicated by many outliers in randomized pairs, which can be attributed to very strong 

and recent natural selection acting upon these loci in the human population 

(Albrechtsen, Moltke, and Nielsen 2010). Genetic similarities extended further, albeit to a 

lesser degree, across chromosome 6 (Figure 3.1B) and genome-wide (P < 2.2e-16; 

Figure 3.1C). Unexpectedly, there was a single outlier in control experiments where 

donors and patients were randomly paired. This simulated pair shared 50% of their DNA, 

likely representing a parent-child or full siblings. To protect confidentiality, we did not 

analyze the relationship further. 

Autosomal MiHAs do not associate with acute GVHD 

To investigate patient-specific variation further, we developed an integrative 

bioinformatics workflow adapted from neoantigen discovery to perform comparative 

analysis of all HLA-matched donor-recipient pairs regardless of TCE permissibility 

(Supplementary Figure 3.2). 
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Figure 3.1 Frequency distributions of IBD segments normalized by the total lengths of regions of 
interest for the following: (A) MHC, including HLA-A, HLA-B, HLA-C, HLA-DR, and HLA-DQ; (B) 

chromosome 6; (C) and the whole genome. Horizontal black bars represent median values. 
Outliers (gray) are shown only for panel A (see text for details).  

 
The acute GVHD and non-GVHD groups displayed comparable numbers of missense 

variants (P = .32; Figure 3.2A) and known MiHAs (P = .80; Figure 3.2B) restricted with 

patient HLA (P = .76; Figure 3.2C). Ordering MHC-restricted MiHAs by log-ratio (Figure 

3.2D) revealed DPH1 (rs35394823) and LB-NISCH-1A (rs887515) as the lowest and 

highest ranking; however, no associations achieved statistical significance. Thus, we 

expanded our study to include pre-existing single-nuclear polymorphism microarray data 

from non-overlapping patient samples. With the addition of 988 HLA-matched donor–

recipient pairs (456 acute GVHD, 532 non-GVHD), no statistically significant 

associations were identified for 17 known MiHAs represented in both data sets 

(Supplementary Table 3.1). 

Y-chromosome–encoded variants associate with acute GVHD 

There were 89 sex-mismatched cases in our cohort (Figure 3.3A). Male recipients with 

female donors (F>M) were more likely to develop acute GVHD (78%) than male 
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recipients with male donors (52%, P < .02) Sequence analysis of the entire Y 

chromosome of F>M pairs identified only 6 missense variants (relative to the reference 

genome hg38) encoding a total of 9 variant peptides in 10 out of 21 recipients (48%) with 

acute GVHD. By contrast, the Y chromosomes of all 6 non-GVHD males matched the 

reference (Figure 3.3B). The variant peptides were confined to 4 genes: PCDH11Y, 

USP9Y, and UTY, which have reactive minor histocompatibility epitopes determined in 

vitro (Ofran et al. 2010; Vogt et al. 2000), and NLGN4Y, a neuroligin with unknown HCT 

significance. Except PCDH11Y, which is specific to the brain and heart, all genes have 

broad tissue expression (Supplementary Figure 3.3) and thus make qualified candidates 

for MiHA presentation in GVHD-affected tissues. Filtering by class I MHC restriction 

(Figure 3.3C) revealed several variant and reference peptides with strong affinity for their 

respective HLA allele in both the acute GVHD and non-GVHD groups (Figure 3.3D); 

however, there were significantly more predicted binders per GVHD male (P < .015; 

Figure 3.3E), suggesting a possible compound effect of multiple Y-linked MiHAs. HLA-

DPB1 alone did not explain the association, as 12 out of 21 F>M patients with acute 

GVHD (57%) were permissibly matched compared with 3 out of 5 without GVHD (60%) 

(P < .26; one patient was not typed at HLA-DBP1). 

Paralogous X-Y mismatching explains acute GVHD risk in male 

recipients with female donors 

Risk of chronic GVHD from allo-HCT is higher in male patients with female donors 

because of B-cell alloreactivity (Popli et al. 2014; Nakasone, Sahaf, and Miklos 2015; 

Miklos et al. 2005; Sahaf, Yang, and Arai 2013), which is detectable by antibody 

response that occurs after (Nakasone et al. 2015), but not before, transplant 
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Figure 3.2 Autosomal variants do not associate with GVHD. The number of patient-specific 
missense variants (A) as well as known unrestricted (B) and HLA-restricted (C) MiHAs is 

comparable in the acute GVHD and non-GVHD groups. (D) Known, HLA-restricted MiHAs 
ordered by log-odds ratio (acute GVHD to non-GVHD). SNP, single-nucleotide polymorphism.  
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Figure 3.3 Y-chromosome variants associate with acute GVHD. (A) Acute GVHD in sex-matched 
and sex-mismatched donor–recipient pairs, including a statistically significant association (star) in 

female-to-male (F>M) allogeneic stem cell transplant. Variants were identified in 4 genes 
(PCDH11Y, USP9Y, UTY, and NLGN4Y), which are displayed with approximate locations on the 
Y chromosome (B). Precise genomic coordinates and nucleotide and amino acid positions are 
tabulated, with variant residues shown in red. In some cases, alternative proteasomal cleavage 
prediction resulted in multiple peptides. (C-E) HLA-restricted affinity prediction for each color- 

coded peptide is shown for acute GVHD and non-GVHD patients (C) and summarized (D), with 
application of the recommended threshold for strong binders per male recipient (E). WT, wild-

type.  
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Figure 3.4 Paralogous X-Y mismatching explains acute GVHD risk in male recipients with female 
donors. (A) Six missense variants on the Y chromosome are exclusive to sex-mismatched male 
patients with acute GVHD. These variants correspond to 9 variant peptides, which are restricted 
to 4 genes. Genomic positions for PCDH11Y, USP9Y, UTY, and NLGN4Y are shown with dotted 
lines to paralogous genes on the X chromosome. Protein coding sequence alignments indicating 

identity matches (bars) and mismatches (dots) are shown for regions that contain individual 
variant residues (red) and peptides with high-affinity prediction (bold). Ending amino acid 

coordinates are given to the right of each sequence alignment. Two male-specific variants are 
named biallelic polymorphisms rs2524543 and rs2563389 with minor allele frequencies 46% and 

45%, respectively (red). Note the predicted cleavage sites (black triangles) created by coding 
variants in PCDH11Y and USP9Y. *For clarity, other alternative cleavage sites are not shown 

(see Figure 4 for details), and chromosome X is shown in reverse (39) orientation. (B) The 
number of predicted high-affinity binding peptides per patient in male-to-male allogeneic HCT 

recipients with and without acute GVHD.  
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Figure 3.5 MiHAs contribute to the therapeutic benefits and adverse effects of allo-HCT. In the 
donor-to-recipient direction, germline-encoded variant peptides (some of which may be presented 

by recipient HLA molecules) are expressed on both normal and tumor tissue and thus may 
contribute to GVT or graft-versus-host (GvH) effects. Tumor-specific somatic mutations that 

encode immunoreactive neoantigens contribute to GVT. In the recipient-to-donor direction, MiHAs 
may have host-versus-graft (HvG) effects in various clinical contexts leading to rejection in HCT 

and solid organ transplant (SOT) or miscarriage in pregnancy. Matching of HLAs reduces 
alloreactive responses from donor or host immune systems in transplantation settings. With cord 

blood HCT, HLA matching is usually performed at fewer (6) loci. This model does not fully 
illustrate the genomic and immunological complexities of graft predominance with multiple unit 

infusion. With haploidentical pairs, GvH effects in the recipient are controlled nongenetically with 

prophylaxis. Predictable patterns of germline inheritance determine match rates at HLA (4/8) and 
MiHAs (50%) with consequent effects on GVT. The presence and therapeutic benefit of 

neoantigens (because they are not heritable) are predicted to be independent of graft source.  
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(Nakasone et al. 2016). Results presented here extend risk in this patient segment to the 

acute form of GVHD by implicating male-specific variants in four genes. Although 

definitive clinical recommendations require confirmatory analysis, it is possible to 

investigate the genetic basis for risk in this cohort. 

 

PCDH11Y, USP9Y, UTY, and NLGN4Y have paralogs on the X chromosome (Lahn, 

Pearson, and Jegalian 2001) with 72%, 91%, 86%, and 24% amino acid identity, 

respectively. We mapped Y-encoded variant peptides from each male patient to 

paralogous sites on their female donor’s X chromosomes. All the variant peptides 

observed in males with acute GVHD mismatched corresponding sites (Figure 3.4A). By 

contrast, the 6 males without GVHD were X-Y matched at these sites, suggesting their 

donor-female immune systems were educated, and consequently non-alloreactive, to 

same-as-self peptides encoded at these positions. 

 

The only other category with increased (albeit statistically insignificant) risk of acute 

GVHD were male recipients with male donors (Figure 3.3A). Y-Y mismatching was 

explored as a possible explanation; however, the number of predicted high-affinity 

binders per patient (maximum 3) was comparable between recipients with and without 

acute GVHD in the M>M direction (P = .52; Figure 3.4B) and considerably lower than 

acute GVHD recipients in the F>M direction (maximum 12; Figure 3.3E). Furthermore, all 

female donors, regardless of recipient sex, lacked variants representing high-affinity 

binding peptides. These findings associate acute GVHD risk, with explanatory genetic 

factors, specifically in male patients with female donors, at least in this cohort. 
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Discussion 

Allo-HCT is a curative option for many disorders, yet side effects limit its widespread 

application. GVHD remains a principal barrier to more effective treatment and improved 

quality of life, but immune responses that contribute to therapeutic benefit and adverse 

events are physiologically coupled (Figure 3.5). In malignant conditions, tumor and 

normal cells are genetically distinct and analytically separable. In the context of allo-

HCT, immunoreactive peptides resulting from tumor-specific somatic mutations 

(neoantigens) may contribute specifically to GVL. On the other hand, the tissue-specific 

expression and immunogenicity of germline polymorphisms (MiHAs) determine their 

relative contributions to GVL or GVHD. As treatment options advance, it is important to 

precisely define genetic factors that affect (or do not affect) clinical outcomes.  

 

Despite research associating several autosomal MiHAs with clinical outcomes, none are 

routinely matched in allo-HCT. Target tissue expression partially determines the 

predominance of GVT or GVHD. For example, HA-2 (rs61739531) is expressed in cells 

of hematopoietic origin (Sellami et al. 2010) where there is evidence for GVL in AML with 

low risk of GVHD (Mutis et al. 1999). However, expression patterns are not wholly 

determinant. For example, ZAPHIR (rs2074071) associates with GVT, but not GVHD, in 

renal cell carcinoma patients receiving non-myleoablative allo-HCT (Broen et al. 2011). 

Similarly, other ubiquitously expressed MiHAs are associated with GVL in chronic 

myelogenous leukemia without evidence of GVHD, suggesting complex allo-reactivities 

from antigen processing, presentation, and costimulation (Griffioen et al. 2012). This is 

consistent with studies of cancer vaccines where therapeutic benefit results from the 
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synergistic effects of multiple cancer-specific neoepitopes combined with immune 

checkpoint blockade (Ott et al. 2017; Sahin et al. 2017). In all cases, MHC restriction is 

an important qualifier, but filtering patients by HLA reduces the number of samples 

available for retrospective analysis.  

 

Here, we analyzed common autosomal MiHAs with characterized HLA restriction in 

separate cohorts of 205 and 988 matched samples. We extended the capabilities of 

commonly used bioinformatics tools to aid comparative genomic analysis of donor–

recipient pairs, incorporating MHC matching and antigen restriction as well as HLA-

predicted binding affinity and tissue expression into a common workflow. This study was 

designed specifically to interrogate acute GVHD in AML patients who were in remission 

at the time of transplant. Consequently, leukemic cell counts were relatively low, and 

whole-genome sequences represented primarily germline polymorphism. Thus, 

bioinformatics analysis focused on MiHAs with broad tissue expression patterns. Future 

studies will apply these methods to patients with active disease, analyzing somatic 

variants (possible neoantigens) expressed in cells of hematopoietic origin within larger 

cohorts that are balanced for GVL-related outcomes including relapse.  

 

Our analysis of autosomes revealed no statistically significant associations with acute 

GVHD among individual MiHAs. These results confirm a recent genome-wide 

association study of unrelated allo-HCT where MHC mismatching outweighed other 

genetic factors as contributors to GVHD risk (Martin et al. 2017). As with neoantigens, it 

seems plausible that multiple recipient-specific variants contribute to GVHD; however, 

unlike clonal expansion of somatic mutations in cancer, population-genetic mechanisms 
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account for the co-occurrence of germline-encoded MiHAs. Indeed, there is evidence 

that arbitrary HLA-matched donor-recipient pairs may present thousands of MiHAs 

(Jameson-Lee et al. 2014), which have a cumulative effect on T-cell responses (Razzaq 

et al. 2016). Although MiHAs are individually common (with minor allele frequencies in 

our cohort ranging from 19% to 61%; Supplementary Table 3.1), alloreactive 

combinations may be rare, making it difficult to power case–control studies. Indeed, 

segmenting patients into subsets sharing	≥2 MiHAs lacked statistical power even when 

HLA restriction was limited to common alleles. Larger unrelated cohorts are necessary. 

Additionally, we plan comparable studies in related and haploidentical HCT pairs where 

shared donor-recipient haplotypes should reduce the number of MiHA combinations 

under consideration. These studies will also assess whether results reported here are 

relevant for patients receiving non-calcineurin-based GVHD prophylaxis.  

 

Our comprehensive analysis of sex-linked variation revealed multiple MiHAs encoded on 

the Y chromosome that associate with acute GVHD specifically in F>M allo-HCT 

patients. Relative to other chromosomes, the Y is better suited to case–control MiHA 

association studies, because it lacks population-scale genetic variability due to 

extremely low rates of diversifying recombination (Wilson Sayres, Lohmueller, and 

Nielsen 2014). Furthermore, since genetic and phenotypic sex are tightly coupled, it is 

easy to presegment genomic analysis into clinically weighted categories such as sex 

match or mismatch. Our limited cohort of primarily white patients suggests the majority 

of Y haplotypes in this population increase risk of acute GVHD for males with female 

donors. This is consistent with previous observations of increased chronic GVHD and 

lower relapse in F>M allo-HCT (Stern et al. 2008; Alois Gratwohl et al. 2009; A. Gratwohl 
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2012), adding a genetic basis for choosing HLA-matched male donors over nonparous 

females (Loren et al. 2006; Kollman et al. 2016). However, in cases where a female 

donor is otherwise the best option for male patients, results reported here may help 

select a more suitable match. 
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Chapter 4 Iterative feature selection method to 

discover predictive variables and interactions for 

high-dimensional transplant genomic data 2 

Abstract 

After allogeneic hematopoietic stem cell transplantation (allo-HCT), donor-derived 

immune cells can trigger devastating graft-versus-host disease (GVHD). The clinical 

effects of GVHD are well established; however, genetic mechanisms that contribute to 

the condition remain unclear. Candidate gene studies and genome-wide association 

studies have shown promising results, but they are limited to a few functionally derived 

genes and those with strong main effects. Transplant-related genomic studies examine 

two individuals simultaneously as a single case, which adds additional analytical 

challenges. In this study, we propose a hybrid feature selection algorithm, iterative 

Relief-based algorithm followed by a random forest (iRBA-RF), to reduce the SNPs from 

the original donor-recipient paired genotype data and select the most predictive SNP 

sets in association with the phenotypic outcome in question. The proposed method does 

not assume any main effect of the SNPs; instead, it takes into account the SNP 

interactions. We applied the iRBA-RF to a cohort (n=331) of acute myeloid leukemia 

                                                
2 This research has been submitted to a journal and undergoing a peer-review process. “Hu 
Huang, Cynthia Vierra-Green, Stephen Spellman, Caleb, Kennedy. Iterative feature selection 
method to discover predictive variables and interactions for high-dimensional transplant 
genomic data. (under review).” BioRxiv preprint DOI: https://doi.org/10.1101/605428. 
H.H. conceived the idea of machine learning application, designed and conducted the 
computational experiments, visualized and interpreted the results, and wrote the manuscript. 
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(AML) patients and their fully 10 of 10 (HLA-A, -B, -C, -DRB1, and -DQB1) HLA-matched 

healthy unrelated donors and assessed two case-control scenarios: AML patients vs 

healthy donor as case vs control and acute GVHD group vs non-GVHD group as case 

vs control, respectively. The results show that iRBA-RF can efficiently reduce the size of 

SNPs set down to less than 0.05%. Moreover, the literature review showed that the 

selected SNPs appear functionally involved in the pathologic pathways of the phenotypic 

diseases in question, which may potentially explain the underlying mechanisms. This 

proposed method can effectively and efficiently analyze ultra-high dimensional genomic 

data and could help provide new insights into the development of transplant-related 

complications from a genomic perspective.  

 

Keywords: allogeneic stem cell transplantation; whole genome array genotype; acute 

graft-versus-host disease; acute myeloid leukemia; machine learning; feature selection; 

Relief-based algorithm (RBA); random forest 

Introduction 

Acute graft-versus-host disease (GVHD) is one of the major complications after HLA-

matching allogeneic hematopoietic stem cell transplantation (allo-HCT) that cause non-

relapse morbidity and mortality, affecting up to 40~60% of transplant patients and 

accounting for 20% of deaths after allogeneic HCT. It is an immunologically mediated 

complex disease. To date, genome-wide association studies (GWAS) and candidate 

gene studies have identified SNPs associated with acute GVHD, including SNPs that 

cause the genetic disparities between the donor and the patient, i.e., the minor 

histocompatibility antigen (MiHA) single nucleotide polymorphisms (SNPs)(Griffioen, van 
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Bergen, and Falkenburg 2016), and SNPs that modify gene functions (Petersdorf et al. 

2015). However, the genetic risks for acute GVHD outcome have not been well defined 

yet(Hansen et al. 2010). Most such studies have focused on single locus variants 

individually or a few candidate gene locations and tested them for association with acute 

GVHD. Unlike the assumptions of these studies, however, genes tend to interact within 

specific regulatory and functional pathways, contributing to the disease development.  

 

Next-generation sequencing technologies have enabled affordable high-throughput 

whole genome microarray genotyping and sequencing. These technologies pose 

multiple unique challenges in transplant-related genomic studies that need to be 

addressed and taken into consideration. First, each allo-HCT case involves in two 

individuals, the donor and the patient, both of whose genomes directly influence the 

transplant outcomes. Thus, the genomic association models should consider two 

genomes simultaneously as a single ‘sample,’ whereas, in common disease association 

studies, only either the donor or recipient genome is considered as a single sample. 

Second, the transplant-related outcomes are caused by the genomic disparities between 

donor and recipient with their synergistic interactions, and hence there is no inheritability 

of the diseases. Third, the allele frequencies may not play as much of an important role 

as in the common disease association studies; instead, the combinations and 

mismatches of donor-recipient (DR) pair genotypes may be more influential. Fourth, the 

cohorts in the transplant genomic studies are more heterogeneous and harder to control 

than in common disease studies. Each year, there are limited transplant cases due to 

the challenges of finding HLA-matching unrelated donors and hence it is harder to recruit 

groups that share most of the conditions. Furthermore, the cohort size usually is very 
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small compared to the common disease studies, and this also leads to the lack of 

publicly available transplant-related genomic databases. 

 

Alloimmune complications after stem cell transplantation, such as acute GVHD, not only 

involve immune responses to conventional exogenous antigens but also responses to 

alloantigens. The latter is unique to transplant cases. The major player in GVHD is the 

activated T cells that recognize and eliminate alloantigens. These T cell functions are 

influenced by the complex interactions between regulatory networks, pathways, 

extracellular environment and the unique conditions induced by transplantation 

procedures (Perkey and Maillard 2018). Thus, it is reasonable to assume that both 

donor’s and recipient’s genomes matter in the development of acute GVHD. However, 

most transplant-related outcome studies often focus on patients’ genomes, and very few 

studies have examined both HLA-matching donor and recipient genomes together 

(Martin et al. 2017). Here, we assume the donor’s genome as equal weight as the 

recipients and form a paired genotype encoding matrix from each transplant case. With 

a sufficiently large sample size and appropriate models, we can capture the interacting 

signals from the paired genome. 

 

Similar to the general whole-genome research in common disease studies as Moore and 

Ritchie outlined (Moore and Ritchie 2004), transplant-related genomic research also 

faces three major challenges. The first challenge is to identify meaningful genetic 

variants along with clinical characteristics that are susceptible to transplant-related 

complications. The genetic variants include SNPs, genes, or specific gene regions. As 

described above, transplant-related complications are mostly caused by the genetic 
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disparities between donor and recipient and the combination of their clinical and 

demographic characteristics (e.g., sex, age, race, and ethnicity), rather than the disease 

heritability. The second challenge is to build robust and powerful predictive models that 

take both genetic and demographic variables into account and output the probability of 

developing adverse transplant outcomes given a candidate graft characteristic. The 

predictive models will help facilitate effective and optimized donor search strategies with 

the best transplant outcomes. While the first two challenges are from statistical and 

machine learning aspects, the last challenge is to interpret the genetic variants and the 

predictive models from a biological perspective and further advance our understanding 

of the transplant-related complications. Biological functional interpretation will help 

optimize the donor selection process, improve the transplant outcomes and prevent 

transplant-related complications. It is the most important and difficult challenge and 

requires a deep understanding of human immunology as well as genetic regulatory 

mechanisms. Wet lab bench experiments would be the most effective way to validate the 

hypotheses but it would be too time-consuming and could become implausible if there 

are too many factors to control. It is one of the current leading translational 

bioinformatics research focus areas.  

 

Traditional logistic regression models, -test, odds-ratio are efficient and intuitive when 

finding simple linear relationships from a large-scale data set; however, they have limited 

power in modeling high-order non-linear relationships among variables, especially for 

ultra-high dimensional data. Whole genome microarray genotype data usually cover over 

500,000 base pairs of genetic variables and a majority of them may be considered as 

noise since they do not show any susceptibility to the diseases in question. Data mining 
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or machine learning techniques build models without any linearity assumptions on the 

data and can identify the high-order interactive relationship among variables. This is 

especially attractive to genomic data mining tasks. From a machine learning point of 

view, there are two main tasks in this context: 1) select the most informative variables 

from the over 1 million SNPs; 2) predict the disease risk from the selected variables 

using classifiers. From a clinical point of view, these selected variables should be 

interpretable. Unlike Mendelian diseases, transplant-related outcomes are influenced by 

non-linear interactions of multiple genes between donor and recipient. Transplant-related 

outcomes are more likely a joint effect of multi-factors rather than one single main effect 

factor. The attribute or feature interaction methods in machine learning seem more 

appropriate in this case. The data-mining methods can detect nonlinear relationships 

that traditional regression-based models cannot represent, and this is especially true for 

dealing with high-dimensional data. In addition, the data-mining algorithms may also 

uncover the interactions between variables other than their main effects. Applications of 

machine learning in detecting gene-gene interactions in genetic epidemiology are 

reviewed in (McKinney et al. 2006; Cordell 2009; Koo et al. 2013).  

 

The purpose of this study is to investigate the application of machine learning techniques 

in transplant genomics. More specifically, we propose a hybrid feature selection model 

(iRBA-RF) by incorporating the iterative Relief-based algorithms (iRBA) and a random 

Forest (RF).  

 

The rest of the paper is organized as follows. First, we define the transplant genomics 

and outcome association study in the machine learning context. Second, we briefly 
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review feature selection and classification models. Then we apply the proposed iRBA-

RF model to transplant cases to identify critical genetic factors. Lastly, we show the 

predictive results and provide a possible biological interpretation, as well as the 

applicability, limitations and future work.   

Methods 

Problem Definition  

In allo-HCT, histocompatibility of stem cells is the primary concern of graft selection, and 

there are many factors involved in the donor screening process. In this study, we 

retrospectively investigated 10 of 10 (HLA-A, -B, -C, -DRB1, -DQB1) HLA allele fully-

matched unrelated donor transplant cases, and explored the potential genetic variants 

that may influence the transplant outcomes. In addition to minor histocompatibility 

antigens (MiHAs), there are other genes involving in regulatory immunological pathways 

that are critical to the development of GVHD. In complex diseases, there is 

overwhelming evidence that non-additive synergistic effects of multiple genetic factors 

play an essential role in the development of the diseases. As described before, we 

consider the donor genome the same weight as the recipients. 

 

In order to investigate the applicability of the proposed model in the transplant related 

genomic studies, we assess the following two case-control scenarios: 1) Scenario 1 

(AML case-control): acute myeloid leukemia (AML) patients as case and their HLA-

matched healthy donors as the healthy control; 2) Scenario 2 (acute GVHD case-

control): the donor-recipient (DR) pairs where the patients developed the acute GVHD 
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symptoms as the case and the DR pairs where the patients did not show any adverse 

symptoms as the controls. 

 

The main difference between these two scenarios in the context of machine learning is 

how the genotypes are represented as a feature matrix. Scenario 1 is a common case-

control situation where each individual’s genotype vector is a single observation, and the 

AML disease condition is the phenotypic outcome to be predicted. In Scenario 2, an 

observation is defined as the combined genotype vectors of the recipient and the donor, 

where the length of the vector is doubled compared to Scenario 1. In addition to the DR 

genotypes, other clinical characteristics are also included in the model, such as the HLA 

typing and the donor-recipient sex-mismatch status.  

iRBA-RF: a hybrid feature selection model for detecting attribute 

interactions 

In bioinformatics, the “large p small n” problem is a common challenge, including when it 

comes to genomic association analysis. The most common problems in genomics data 

are 1) noisy data 2) heterogeneous data types, and 3) ultra-high dimensional feature 

space. In machine learning, the feature selection procedure is employed to avoid the 

“curse of dimensionality” for small samples with high dimensions (Friedman 1997; 

Domingos 1998, 1999). The objective of feature selection is to select the most relevant 

feature subset to achieve the best classification/prediction performance without losing 

the generalization power (accuracy, speed, and generalization). A strong feature 

relevance indicates the feature is necessary for the predictive model, while an irrelevant 

feature does not contribute to the predictability. In some cases, the presence of certain 
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features would decrease the predictability of the model, in which case they are 

considered as noise. For a formal theoretic derivation of feature relevance, interested 

readers may refer to (Bell and Wang 2000).  

 

Depending on the feature search strategy and the level of predictive classifier 

integration, there are three different categories of feature selection methods: filter, 

wrapper and embedded. Filter approaches are independent of classifiers; instead, they 

examine the intrinsic properties and relationship between the phenotype in question. 

Specifically, the information theoretic metrics, such as mutual information (Ding and 

Peng 2005; Peng, Long, and Ding 2005) and entropy/information gain (Xing et al. 2001; 

Eom and Zhang 2004), are popular options to measure the intrinsic properties. Since 

these approaches do not involve training a classifier, they are computationally fast and 

applicable to a large dataset. Detailed reviews of feature selection techniques in 

bioinformatics can be found in (Saeys, Inza, and Larrañaga 2007; Bolón-Canedo et al. 

2014).  

 

Since we are interested in interpretable variables that are linked to the phenotypes within 

a reasonable computation time, we adopt the filter-based approaches. More specifically, 

we propose a hybrid feature selection model that combines an iterative Relief-based 

algorithm and a random forest (iRBA-RF), to iteratively eliminate the irrelevant features 

and select the top-ranked features, respectively. In the next subsections, we describe 

the details of each algorithm.  
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Iterative RBA for variable elimination  

The Relief-based algorithms (RBAs) was inspired by instance-based learning (Aha, 

Kibler, and Albert 1991; Callan, Fawcett, and Rissland 1991), where it draws instances 

at random and iteratively compute and updates the weights of features based on their 

nearest neighbors and their phenotypes. The features that distinguish the selected 

instance from its neighbors of a different class get more weight. The original Relief 

algorithm only compares one nearest neighbor of each class, which is sensitive to noisy 

data and restricted to a binary classification problem. There have been many studies to 

address the limitations and improve the performance of the original Relief algorithm. The 

most widely used RBA is ReliefF (Kononenko 1994), which relies on the nearest k 

neighbors, instead of one. By comparing the entire vector of values across all attributes 

among neighbors, ReliefF can capture the attribute (feature) interactions and has gained 

popularity in data mining applications. Figure 4.1 shows an example of ReliefF on acute 

GVHD outcome data set with k =3 nearest neighbors in each class, respectively.  

 

However, ReliefF is not robust to noisy features where it cannot capture the correct 

signal. An improved ReliefF called Tuned ReliefF (TuRF)(Moore and White 2007) was 

proposed to iteratively remove features that have low-quality scores, in most cases are 

noisy features. More extended RBAs were later developed and applied in genomic data 

analysis, including Spatially Uniform ReliefF (SURF) (Greene et al. 2009), SURF* 

(Greene et al. 2010), SWRF* (Stokes and Visweswaran 2012), Multiple-Threshold* 

(MultiSURF*)(Granizo-Mackenzie and Moore 2013), and MultiSURF (Urbanowicz, Olson, 

et al. 2018). They use different strategies to select neighboring hits and misses 
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Figure 4.1 Illustration of ReliefF algorithm with 𝑘 = 3 nearest hits and misses, respectively, on 
transplant outcome data.  

 

Figure 4.2 Illustration of iRBA, adapted from (Urbanowicz, Meeker, et al. 2018).  
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and calculate their weights to improve sensitivities and computational efficiency. 

Furthermore, unlike the original Relief algorithm, these improved versions can handle 

incomplete data and extend to multi-class problems. For an in-depth review of RBA-

based feature selection methods, readers may refer to Urbanowicz et al. (Urbanowicz, 

Meeker, et al. 2018).  

 

In typical genomic association studies, there are over 500,000 SNPs to be examined. 

Especially in the context of transplantation, donor-recipient pair genotypes may include 

over 1 million SNPs. This poses a challenge in computational efficiency. For such ultra-

high dimensional genomic data, iterative and efficient approaches that are wrapped 

around and integrated into the above core RBAs are recommended. VLSReliefF 

(Eppstein and Haake 2008) algorithm is reported to be able to detect feature interactions 

in a very large feature space both efficiently and accurately. The main idea is to 

randomly select s subsets of the feature set with Ns features and individually apply 

ReliefF to each group to calculate local feature weights. The global weights of each 

feature are the maximum value of the local feature weights among the subsets. In this 

study, we follow the framework of VSLReliefF and repeat the process multiple times to 

remove low-quality features iteratively, as shown in Figure 4.2. Instead of ReliefF, here 

we choose MultiSURF as the core RBA since it has shown to outperform in multi-way 

interaction detection as well as various associations, compared to the other RBA 

algorithms (Urbanowicz, Olson, et al. 2018). 
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Random forests for feature importance ranking and variance 

selection 

Random forests (RF) are ensembles of tree-structured classifiers that are constructed in 

the following random fashion: each tree is grown using a bootstrap sample, i.e., 

aggregated sampling with replacement, of original training set and a randomly chosen 

subset of features and a majority voting scheme to ensemble individual trees, as 

illustrated in Figure 4.3 (Breiman 2001). Instead of using the whole set of a training set, 

each tree is trained on the bootstrapped sample set, and the rest samples are used as a 

validation set to estimate the tree’s classification error. This validation set is called the 

out-of-bag (OOB) samples. The OOB scheme is used to monitor the generalization 

error, strength, and correlation of trees in the forests, as well as the variable importance. 

As more trees added to the RF, it is guaranteed to converge with a limited generalization 

error and does not suffer from overfitting problem due to the Law of Large Numbers 

(Breiman 2001).  

 

In addition to its effective predictive ability, RFs also measure the importance of the 

variables in terms of their relevance to the phenotypic outcome. This function has shown 

great potential in genome-wide association studies and bioinformatic applications due to 

its effectiveness and potential interpretability. The original RF measures the feature 

importance using two different metrics. 

 

The first variance importance metric is called Gini impurity index-based feature 

importance (GIFI). At a node in a tree, the objective is to reduce the class ambiguity as  
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(a) 

 
(b)  

Figure 4.3 Diagram of single decision tree and the random forests. (a) a single decision tree in 
the forest; (b) Random Forest classifying transplant outcome from the donor-recipient pair 

genotypes. 

the tree grows and the split at a node is determined by the feature that reduces the class 

ambiguity the most when the sample passes down the split. In RF, the impurity of splits 

is measured by the Gini impurity index (Breiman et al. 1984), defined as follows: 

suppose at a node ,  observations are trained using feature set 𝑅' =
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{𝑓'*, 𝑓',,… , 𝑓'.}. Write  to denote each observation, where  has 𝑑-dimensional 

features and  is the corresponding outcome label of  possible classes, 

. The frequency of class  at node  is defined as  

, 

where ∑ 𝑝'34
35* = 1. The final class of the observation at the node is determined as 

argmax
3

𝑝'3, i.e., the majority class in the node . For binary classification ( ), the 

Gini impurity index is defined as 

 

 

In our case-control cases, there are two classes: AML patient as 1 and healthy donor as 

0 for scenario 1; or acute GVHD group as 1 and non-acute GVHD group as 0 for 

scenario 2. In both cases, the Gini impurity index is 

 

where  and  are the probabilities of the two classes mentioned above, respectively, 

and .  

 

The GIFI score of a feature in a tree is calculated as the sum of the Gini impurity 

decrease from a parent node to its children nodes over all nodes in the tree. The GIFI 

score of a feature in the RF is then defined as the sum (or average) of the Gini 

importance values among all trees in the forest.  
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The second feature importance is based on the feature’s predictability. After estimating 

the OOB prediction error during the training phase, the feature values in the OOB data 

set are randomly permuted and fed into the trained RF. The difference between the OOB 

prediction error and the permuted prediction error is defined as the prediction-based 

feature importance. If this value is a large positive value, the corresponding feature has 

high predictability and is favored high in the ranking; whereas negative or zero values 

indicate the features are not predictive and thus are discarded in ranking.  

 

It has been shown that both of these metrics suffer a certain degree of selection bias 

when ranking features. The GIFI favors the features with many possible split points, i.e., 

categorical variables with many categories or continuous variable (Strobl et al. 2007). In 

genomic variance selection, it tends to be in favor of SNPs with high minor allele 

frequencies (MAF) (Nicodemus 2011; Boulesteix et al. 2012). Many studies have 

proposed correction methods to eliminate bias. Altmann et al. (Altmann et al. 2010) 

proposed to permute the response (phenotypic outcome) to calculate the null importance 

distribution while preserving the relationships between features. The algorithm is shown 

to reduce the feature selection bias induced by the GIFI but also provides the 

significance level P-values for each feature. Later, Janitza et al. (Janitza, Celik, and 

Boulesteix 2016) proposed an alternative approach to improve the computational speed 

while correcting the feature selection bias and providing the P-values for each feature. 

Nembrini et al. (Nembrini, König, and Wright 2018) provided a unified framework with a 

corrected impurity importance measure (AIR) to calculate the GIFI fast and they claimed 

that AIR outperforms the previous approaches in terms of computational performance 

and statistical power. All these bias correction methods have been incorporated and 
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implemented in the R package ranger (Wright and Ziegler 2017), and the Altmann-

corrected GIFI is adopted in this study.   

  

The prediction error-based feature importance (PEFI) does not have these issues; 

however, it tends to favor the features that locate closer to the root node since they tend 

to affect the prediction accuracy of a larger set of observations and the permutation-

based importance favors these variables (Strobl et al. 2007). A modified PEFI was 

proposed by Ishwaran (Ishwaran 2007), where it follows the same procedure as in the 

original RF, except instead of permuting the features in the out-of-bag data and test on 

the trained trees from the in-bag data, here the trees are randomized by using left-right 

random daughter assignment at each of the features. When a case is dropped down to 

the node with the feature in question, the left and the right daughter nodes of the 

following lower trees are chosen randomly with the same probability to till it reaches the 

leaf node. This procedure promotes the poor leaf node values for cases that pass 

through the nodes that split on the feature.  

 

The predictability of the selected feature set is assessed by using OOB samples with the 

overall classification error, area under the receiver operating characteristic curve (AUC), 

and the normalized Brier score defined by Ishwarn and Lu(Ishwaran and Lu 2018). Brier 

score is more stable than AUC when assessing the classifier performance. A value of 

100 normalized Brier score indicates random guessing and 0 being a perfect classifier.  

 

Figure 4.4 shows the proposed iRBA-RF feature selection model. During the first stage, 

noise and phenotypically irrelevant features are removed through the iRBA using  
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Figure 4.4 Illustration of iRBA-RF feature selection model 

MultiSURF as its core RBA. By removing the lowest ranked features, it retains the multi-

way interaction relationships between features from MultiSURF. The refined feature set 

is then fed into the RF model in the second stage. The RF then train models and rank 

the features through GIFI and/or PEFI metrics. In this study, we implemented the model 

by incorporating the scikit-rebate library written in Python (Urbanowicz, Olson, et al. 

2018) (available at https://github.com/EpistasisLab/scikit-rebate) and two random forest 

R packages, ranger (Wright and Ziegler 2017) and randomForestSRC (Ishwaran et 

al. 2008; Ishwaran and Lu 2018).  

Data Collection and Preprocessing 

A retrospective cohort of blood cancer patients and their HLA matching donors have 

been selected in this study. The microarray genotype data collection and primary 

analysis have been described in (Madbouly et al. 2017). In order to reduce the bias 

induced by disease types and the reference population, we chose AML patients and 

their transplant cases and used the original genotypes without imputation. After data 

quality control [Supplementary Material 4.7], 331 transplant cases (662 individuals in 
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total) of AML patients and HLA matching donors with 630,793 genotyped autosomal 

SNPs were included in this study. SNPs from the sex chromosome were excluded from 

this study; however, sex-mismatch conditions were considered as clinical characteristics 

in Scenario 2 acute GVHD case-control context. 

 

As described in the Methods section, we investigated the iRBA-RF model in two 

scenarios. In Scenario 1, the formatted genotype matrix has a size of 662×630,793 and 

the AML disease status as its target label; in Scenario 2, the formatted genotype matrix 

has a size of 331×1,261,586 and the acute GVHD status as the target label. 

Results 

Scenario 1: AML case-control experiment 

The original 630,793 SNPs were reduced to 200 SNPs through the iRBA-RF and they 

were further reduced to 176 SNPs and 164 SNPs using GIFI and PEFI, respectively. 

Table 4.1 shows the top 30 SNPs ranked by the GIFI scores with their significance P-

values. Of the 176 GIFI-based SNPs, 103 SNPs showed statistically significant scores at 

the confidence level . The full list for the 200 SNPs can be found in the 

Supplementary Table 4.1.   

 

The PEFI scores are further assessed through the delete-d Jackknife subsampling 

scheme as proposed in (Ishwaran and Lu 2018). Figure 4.5 illustrates the 95% 

asymptotic normal confidence intervals for the top 50 SNPs ranked by the median PEFI 

scores. For a full list of features by PEFI, please refer to Supplementary Table 4.2. 
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Compared to the SNPs listed in Table 4.1, 9 SNPs (rs2694642 (USP34), rs928770 

(KCNJ15),  rs10936248, rs2293836 (NRXN3), rs6915644 (EYS), rs1173099, rs788871, 

rs17329514,  rs675992) are ranked in the top 30 in both cases, whereas 3 SNPs 

(rs10002187, rs6106323, rs1365342) from Table 4.1 ranked between 31 and 50 in 

Figure 4.5.  

Table 4.1 Top 30 SNPs linked to AML, which are ranked by the Gini impurity importance using 
the bias-corrected Altmann-GIFI. For illustration purpose, here lists the top 30 SNPs out 200 

SNPs from the proposed feature selection model. 

Ran
k 

Marker CHR:POS Gene(s) Maj
or 

Minor MAF Import
ance 
score 

p-
values 

1 rs2694642 chr2:61369045 USP34 A G 0.315 1.669 0.010 

2 rs928770 chr21:38265545 KCNJ15 C T 0.287 0.932 0.010 

3 rs10936248 chr3:161818648  C T 0.383 0.854 0.020 

4 rs4698732 chr4:14336718  C T 0.442 0.832 0.010 

5 rs4692262 chr4:27923209 LOC1053
74552* 

C A 0.372 0.770 0.040 

6 rs11869908 chr17:72674911 SLC39A1
1 

G T 0.210 0.768 0.010 

7 rs7718156 chr5:172669363 NEURL1
B 

C A 0.321 0.719 0.010 

8 rs2293836 chr14:79840947 NRXN3 T C 0.112 0.694 0.010 

9 rs6915644 chr6:65106919 EYS G A 0.397 0.692 0.010 

10 rs10002187 chr4:149994262 DCLK2** G A 0.190 0.689 0.010 
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11 rs749773 chr2:165877228 TTC21B T C 0.199 0.644 0.020 

12 rs285206 chr20:43667902 MYBL2 T C 0.202 0.605 0.010 

13 rs10926025 chr1:239949314 LOC1053
73224 

C T 0.298 0.597 0.010 

14 rs12675334 chr8:83887031  A G 0.396 0.587 0.020 

15 rs9819506 chr3:172452314 GHSR*; 
BZW1P1*
*; 
TNFSF10
***; 
FNDC38*
** 

C T 0.427 0.578 0.030 

16 rs6106323 chr20:2169032 STK35**; 
LOC1053
72502** 

G A 0.257 0.574 0.010 

17 rs2914290 chr5:7629643 ADCY2 C T 0.181 0.565 0.010 

18 rs1365342 chr4:37097911 LOC1019
28721 

G A 0.329 0.564 0.040 

19 rs1173099 chr9:90679392 DIRAS2**
; 
OR7E109
P*** 

T G 0.260 0.556 0.010 

20 rs2222514 chr7:123206473 SLC13A*; 
LYPLA1P
1** 

A G 0.432 0.548 0.010 

21 rs12714359 chr2:2603252 LOC1053
73389***; 
LOC1079
85839*** 

A G 0.367 0.548 0.020 

22 rs2185591 chr20:43133279 PTPRT C A 0.423 0.542 0.020 

23 rs788871 chr1:30591356 MATN1**
* 

T C 0.474 0.528 0.030 
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24 rs17329514 chr18:71998994 LOC1027
25148***; 
LOC1053
72189*** 

A G 0.101 0.522 0.010 

25 rs41135 chr5:96830323 ERAP1 G A 0.369 0.519 0.020 

26 rs428148 chr2:70583509 TGFA*; 
ADD2*** 

C T 0.298 0.518 0.030 

27 rs10794031 chr10:12587675
1 

DHX32 A G 0.439 0.517 0.020 

28 rs725856 chr4:39746658 UBE2K A G 0.124 0.510 0.010 

29 rs675992 chr1:17888266 ACTL8*** A G 0.255 0.492 0.040 

30 rs2025009 chr14:68376888 RAD51B C G 0.476 0.491 0.020 

*: genes that are within 10 kb range of upstream or downstream from the marker 
**: genes that are outside 10 kb but within 50 kb range from the marker 
***: genes that are outside 50 kb but within 100 kb range from the marker 
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Figure 4.5 Delete-d Jackknife 95% asymptotic normal confidence intervals for the top 50 SNPs in 
the AML case-control scenario. The large positive variance importance values indicate the high 

predictability of the features, whereas zero and negative values suggest noise variables. 

Scenario 2: aGVHD case-control 

In the case of acute GVHD, the genotype matrix has twice as many dimensions as 

Scenario 1, since the donor and recipient genotypes were concatenated in the same 
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vector for each case. The original genotype matrix has a total of 1,261,586 SNPs, and 

after the iRBA-RF, the number was reduced to 400 SNPs. The classical HLA typing 

(HLA-A, -B, -C, -DQB1, -DRB1) and DR pair sex mismatch status are major factors that 

influence the transplant outcome, and hence these two types of variables were added to 

the reduced genotype matrix before RF feature ranking. A total of 411 variables (400 

SNPs, 10 HLA gene typing, 1 sex mismatch status) were ranked through the RF using 

GIFI and PEFI metrics, respectively.  

 

342 out of 411 variables were selected through GIFI scores, only 124 of which showed 

statistically significant scores at the confidence level . Top 30 variables by GIFI 

is listed in Table 4.2, and the full list can be found in Supplementary Table 4.3. Similar to 

Scenario 1, PEFI scores are assessed through delete-d jackknife subsampling 

procedure and estimated the 95% asymptotic normal confidence interval. 297 variables 

were selected through PEFI scores, top 50 of which are shown in Figure 4.6. The full list 

of PEFI features can be found in Supplementary Table 4.4.  

 

Compared to GIFI features in Table 4.2, 6 SNPs [rs10936748 (LOC105374224), 

rs3818283 (TEK), rs17161332 (SGCZ), rs17236893 (LOC101928583), rs10974006, 

rs2868956] are ranked in the top 30 in both cases, whereas 4 SNPs [rs1341852 

(LOC105370228), rs11160228, rs4863533, rs504371 (C6orf118)] from Table 4.2 ranked 

between 31 and 50 in Figure 4.6. 
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Table 4.2 Top 30 variables linked to acute GVHD, which are ranked by the bias-corrected 
Altmann-GIFI. For illustration purposes, here lists the top 30 variables out 411 SNPs from the 

iterative feature selection model.  

Ran
k 

Marker CHR: 
POS 

Gene(s) Maj
or 

Min
or 

MAF Source Importanc
e score 

P-
value 

1 rs109367
48 

chr3:17
328359
7 

LOC10537
4224 

T G 0.151 recipien
t 

0.562 0.020 

2 rs238992
3 

chr4:11
981054
2 

LINC0136
5** 

A G 0.246 donor 0.507 0.010 

3 rs171720
94 

chr7:42
622588 

LOC10537
5251 

G A 0.435 recipien
t 

0.474 0.010 

4 rs381828
3 

chr9:27
169126 

TEK C T 0.252 recipien
t 

0.473 0.010 

5 rs426232
2 

chr8:14
839455 

SGCZ G T 0.244 donor 0.472 0.020 

6 rs141026
7 

chr13:9
761411
1 

LOC10537
0324 

A C 0.306 donor 0.471 0.010 

7 rs171613
32 

chr7:78
675562 

MAGI2 T C 0.069 recipien
t 

0.417 0.010 

8 rs134185
2 

chr13:6
035065
3 

LOC10537
0228 

A G 0.449 recipien
t 

0.416 0.010 

9 rs794083
5 

chr11:3
244721 

MPGPRE*
* 

T C 0.140 recipien
t 

0.408 0.010 

10 rs718728
9 

chr16:6
793397
5 

PSMB10*; 
CTRL*; 
PSKH1*; 
LCAT*; 
SLC12A4* 

A C 0.320 donor 0.406 0.010 

11 rs463867
0 

chr18:2
770118
3 

LOC10537
2042*** 

A C 0.174 recipien
t 

0.404 0.010 
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12 rs354843 chr4:14
126765
0 

ZNF330**; 
RNF150**
* 

T C 0.269 donor 0.400 0.010 

13 rs719910 chr7:42
722647 

LINC0144
8** 

T C 0.399 recipien
t 

0.395 0.010 

14 rs646155
1 

chr7:21
312333 

 G A 0.383 recipien
t 

0.391 0.010 

15 rs172368
93 

chr3:17
074583
3 

LOC10192
8583 

A G 0.095 recipien
t 

0.367 0.010 

16 rs109740
06 

chr9:38
738297 

 G T 0.257 recipien
t 

0.364 0.020 

17 rs273592 chr11:3
085730
2 

LOC10798
4419 

A G 0.482 recipien
t 

0.361 0.010 

18 rs248195
5 

chr13:2
800944
4 

FLT3 G A 0.378 donor 0.360 0.010 

19 rs227130 chr20:8
452312 

PLCB1 G A 0.370 recipien
t 

0.350 0.020 

20 rs111602
28 

chr14:9
505180
6 

DICER1** G A 0.242 recipien
t 

0.336 0.010 

21 rs486353
3 

chr4:13
799240
0 

LOC10798
6315**; 
LOC10537
7447**; 
LINC0061
6**; 
SLC7A11*
** 

G A 0.270 recipien
t 

0.333 0.010 

22 rs286895
6 

chr19:2
832051
1 

LOC10798
5269** 

T C 0.235 recipien
t 

0.329 0.020 

23 rs130356
54 

chr2:13
989471
6 

 T C 0.182 recipien
t 

0.328 0.020 

24 rs509012 chr13:2
172052

FGF9** G A 0.225 donor 0.316 0.020 
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4 

25 rs105039
60 

chr8:34
340069 

RPL10AP
3*** 

A C 0.181 donor 0.314 0.010 

26 rs122035
92 

chr6:39
6321 

IRF4 C T 0.037 recipien
t 

0.304 0.010 

27 rs127635
63 

chr10:1
298997
1 

CCDC3 G A 0.220 recipien
t 

0.301 0.010 

28 rs468536
6 

chr3:16
614824 

DAZL* A G 0.445 donor 0.301 0.030 

29 rs504371 chr6:16
531056
3 

C6orf118; 
LOC10537
8113 

G T 0.431 recipien
t 

0.298 0.010 

30 rs216149
5 

chr5:10
375044
6 

LOC10537
9107 

C T 0.313 recipien
t 

0.297 0.010 

*: genes that are within 10 kb range of upstream or downstream from the marker 
**: genes that are outside 10 kb but within 50 kb range from the marker 
***: genes that are outside 50 kb but within 100 kb range from the marker 
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Figure 4.6 Delete-d Jackknife 95% asymptotic normal confidence intervals for the top 50 SNPs in 
the acute GHVD case-control scenario. The large positive variance importance values indicate 

the high predictability of the features, whereas zero and negative values suggest noise variables. 
‘r_’ indicates SNPs from recipients, while ‘d_’ for SNPs from donors. 
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Discussions 

Ideally, the features that are selected by iRBA-RF have the best predictability on the 

phenotypic outcomes and the related gene regions are actively involved in the pathways 

of the diseases in question. To assess the results, we first examined the predictability of 

the selected feature sets by comparing the classification performance to a random set of 

features with the same size. The classification performance was examined in three 

criteria: the normalized Brier score where a score of 100 indicates a random guess and 

the lower, the better classifier performance, the AUC, and the overall OOB error rate. 

Figure 4.7 shows the comparison among different feature sets. The random feature sets 

(Random200/Random400) were selected 1000 times, while the rest feature groups were 

trained and tested on OOB samples 1000 times. The selected features through iRBA-RF 

(Top200/Top400, GIFI, PEFI) in both scenarios show significantly superior classification 

performance in all three criteria (p < 2.2e-16). Within the selected groups 

(Top200/Top400, GIFI, PEFI), the pairwise t-tests showed a significant difference 

between each group using all three criteria (p < 0.001), except for the Brier scores 

between Top200 and GIFI groups. As shown in Figure 4.7, the classifiers using the 

PEFI-based feature sets generally showed better predictive performance, and this is 

mainly because PEFI-based features are ranked based on the classifier’s performance.  

 

From the functional point of view, the top-ranked features are not random and evidence 

can be found in the literature. In Scenario 1, multiple SNPs among the selected 200 

SNPs are from the following functional gene groups that are reported to be linked to 

AML (Cancer Genome Atlas Research Network et al. 2013; Peker 2018). These gene  
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(a) Scenario 1: AML case-control 

 
(b) Scenario 2: aGVHD vs non-GVHD 

Figure 4.7 (a) Scenario 1: AML case control.  (b) Scenario 2: aGVHD vs non-GVHD. Comparison 
of four different sets of features: (1) Random200 (or Random400): 200 (or 400) features randomly 
selected from the original feature set. (2) Top200 (or Top400): top ranking 200 (or 400) features 
selected by the iRBA-RF algorithm (3) GIFI: 176 (or 342) SNPs out of the selected 200 (or 400) 

SNPs using the GIFI score, (4) PEFI: 164 (or 297) features out of the selected 200 (or 400) SNPs 

using the PEFI score. Each feature sets were trained 1000 times and evaluated by the 
normalized Brier scores, AUC and overall error rate of OOB samples, respectively.  

groups include spliceosome (rs10794031, rs3205166), cohesin complex (rs2025009), 

epigenetic modifiers (rs1987193), serine/threonine kinase (rs10002187, rs994502, 

rs13000880), protein tyrosine phosphatases (rs2185591) and other myeloid transcription 
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factors (rs285206). Most of these SNPs didn’t show significant importance scores, 

however, SLC39A11 (rs11869908), MYBL2 (rs285206), PTPRT (rs2185591), DHX32 

(rs10794031), RAD15B (rs2025009) are ranked the top 30 GIFI with 𝑝 < 0.05.  

 

SLC39A11 (rs11869908), also known as ZIP11, is a zinc transporter gene that has been 

reported to be linked to multiple cancers (Pan et al. 2017). Specifically, a high 

expression of ZIP4 and low expression of ZIP11 are significantly associated with the 

higher grade of Glioma (Kang et al. 2015). In addition, mutations in IDH1 is reported to 

be highly correlated with higher expression of ZIP11, suggesting a possible synergistic 

interaction between IDH1 and ZIP11 (Kang et al. 2015). MYBL2 (rs285206) has an 

essential role in cell cycle progression, cell survival, and cell differentiation, and is found 

to be overexpressed in multiple cancer cases (Musa et al. 2017). Overexpression of 

MYBL2 is suggested to have a prognostic value for disease-free survival and cumulative 

incidence of remission for AML patients (Fuster et al. 2013; Musa et al. 2017). PTPRT 

(rs2185591) encodes cellular signaling proteins that regulate cell growth, differentiation, 

and oncogenic transformation and is reported to be in the genetic interaction network of 

AML mutational landscape (J. W. Lee et al. 2007; Becker et al. 2014; Ibáñez et al. 

2016). DHX32 is an RNA helicase that is reported to associate with the acute 

lymphoblastic leukemia (Abdelhaleem 2002, 2005). Notably, its dysregulation is believed 

to contribute to carcinogenesis (Alli, Ho, and Abdelhaleem 2005). RAD51B (rs2025009) 

encodes one of the RAD51 paralogs that participate in DNA repair, and the 

polymorphisms in the gene and the gene inactivation through chromosome translocation 

have been demonstrated to be linked to AML, breast cancer, head and neck cancer 
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(Nowacka-Zawisza et al. 2015; Miao et al. 2015; Rollinson et al. 2007; Cheng et al. 

2014).  

 

Other genes ranked high in the list have also shown evidence of roles in AML linked 

pathways. For instance, the top-ranked gene USP34 (rs2694642) is reported to regulate 

the levels of axin and stabilize beta-catenin and further modulate Wnt signaling pathway 

positively (Lui et al. 2011). Wnt/β-catenin pathway has shown to be essential in AML for 

leukemia stem cells to develop and thus allow malignant progression (Y. Wang et al. 

2010; Müller-Tidow et al. 2004; Holland et al. 2013; Tickenbrock et al. 2008; Reya et al. 

2003; Reya and Clevers 2005). KCNJ15 (rs928770) encodes potassium inwardly-

rectifying channel on the cell membrane and is reportedly a susceptible gene for Type 2 

diabetes(Okamoto et al. 2010, 2012) and linked to the hematological traits and clinical 

features of Down syndrome (Felipe et al. 2006; J.-B. Lee et al. 2016; Canzonetta et al. 

2012). NEURL1B is a paralog of NEURL1, and the deletion of this gene region has been 

linked to adult de novo AML (Cancer Genome Atlas Research Network et al. 2013). 

 

In the case of acute GVHD, most of the top-ranked SNPs do not lie in a gene region; 

however, they are within 50 kb range of downstream or upstream of the coding genes. 

Interestingly, multiple gene regions from donors are ranked high in both GIFI- and PEFI-

based feature set, suggesting the potential role of genetic polymorphisms from graft 

stem cells in the transplant outcomes. Genes that are linked to abnormalities of skin and 

the gastrointestinal (GI) tract are also selected by the iRBA-RF algorithm, all of which 

are the main symptoms of acute GVHD.  
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Notably, rs7187289 (donor) is located on chromosome 16q22.1, where five genes 

(PSMB10, CTRL, PSKH1, LCAT, SLC12A4) tightly clustered together(Larsen et al. 

1993). It is in the upstream of PSMB10, an immunoproteasome subunit that plays a vital 

role in major histocompatibility complex (MHC) class I restricted antigen processing and 

presentation(Nagata et al. 2003), T-cell polarization and differentiation, and cytokine 

production by macrophages(Kimura et al. 2015). Hence, PSMB10 is believed to involve 

in the development of inflammatory autoimmune diseases and hematologic 

malignancies and to be a marker of cell damage and immunological activity (Csizmar, 

Kim, and Sachs 2016). In renal transplantation, it has recently reported being associated 

with chronic antibody-mediated rejection (AMR) and posed as a potential intragraft and 

peripheral blood marker of acute rejection (Ashton-Chess et al. 2010; Iwase et al. 2011). 

The impairment of immunoproteasome subunits is critical for malignant cells to escape 

immune recognition, suggesting its possible role in the graft-versus-tumor effect after 

allo-HCT. LCAT is secreted by the liver and generally believed to maintain the 

unesterified cholesterol gradient between peripheral cells and high-density lipoprotein 

(HDL)(Asztalos et al. 2007). SLC12A4 encodes a human potassium chloride 

cotransporter 1 (KCC1) (Zhou et al. 2004), and the dysfunction of the membrane ion 

channels has been reported to link to several diseases, like sickle cell disease (Kato et 

al. 2018). 

 

Several gene regions in the list have direct roles in the signs of acute GVHD in the GI 

tract. CTRL is a chymotrypsin-like protease expressed in the pancreas and secreted in 

pancreatic juice (Whitcomb and Lowe 2007) and is well known to be downregulated in 

pancreatic cancer (Laurell et al. 2006). PSKH1 protein is mainly found in Golgi 
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apparatus, endoplasmic reticulum (ER), nucleus, cell membrane, cytoskeleton (G. Brede 

et al. 2000) and believed to play a role in intranuclear serine/arginine-rich domain (SR 

protein) trafficking and pre-mRNA processing (Gaute Brede, Solheim, and Prydz 2002). 

A recent study suggested it possibly linked to the pathogenesis of Crohn’s disease 

(Iborra et al. 2018). MAGI2 (rs17161332) encodes a scaffolding protein that involved in 

epithelial integrity, and studies have shown that the genetic variation in MAGI2 is linked 

to the inflammatory bowel disease (IBD), i.e., ulcerative colitis and Crohn’s disease 

(McGovern et al. 2009). Moreover, IRF4 (rs12203592) controls TH2 (type 2 T helper cell) 

responses and intestinal Th17 cell differentiation, mucosal cytokine IL-17 regulation, 

suggesting a central of IRF4 in immune regulation in the gut (Messmann et al. 2015; 

Cretney et al. 2011; Zheng et al. 2009; Huber et al. 2008; Persson et al. 2013; Schlitzer 

et al. 2013).  

 

The risk of getting a secondary solid cancer following allo-HCT is substantially higher 

than in general population, and the risk factors have been well documented (Curtis et al. 

1997; Inamoto et al. 2015; Tichelli et al. 2018). Melanoma, breast cancer, thyroid cancer, 

prostate cancer, and cervix cancer are the most frequently occurring cancer types after 

allo-HCT in the recipient’s later life. The genes that were selected in this study have 

evidence to link to the cancer progression and may be able to explain the incidents. The 

feature sets after iRBA-RF include multiple genes that play critical roles in the 

progression of carcinogenesis. For example, SGCZ (rs4262322) encodes a protein that 

plays a role in maintaining cell membrane stability and have been reported its role linked 

to cancer development and progression (Chi, Murphy, and Hu 2018). DICER1 

(rs11160228) encodes essential proteins for a micro-RNA processing pathway and plays 
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a central role in epigenetic modulation of gene expression, and downregulation of 

DICER1 expression has been reported to be linked to a wide range of cancer 

types(Bahubeshi, Tischkowitz, and Foulkes 2011; Radom-Aizik et al. 2010). 

 

A few leukocyte-specific genes, such as TEK, FLT3, and PLCB1 are also ranked high in 

the list. TEK (rs3818283) encodes angiopoietin-1 receptor that is critical to the induction 

and growth of new blood vessels and influence tumor growth. It has been reported that 

mutations in TEK are linked to AML suggesting its essential role in leukemogenesis 

depending on an uncharacterized cellular context (Tyner et al. 2009; De Palma et al. 

2005). A more recent study demonstrated that angiogenesis precedes leukocyte 

infiltration during inflammation suggesting the essential involvement of angiogenesis in 

the initiation of inflammatory diseases, such as acute GVHD and IBD (Riesner et al. 

2017). Proteins encoded by FLT3 (rs2481955) stimulates hematopoiesis and is 

reportedly expressed at high levels in a spectrum of hematologic malignancies, including 

AML. Mutations in FLT3 usually lead to a poor prognosis and is suggested to be a 

potential therapeutic target for kinase inhibitor (Gilliland and Griffin 2002). Similarly, 

PLCB1 (rs227130) is recently proposed as a potential therapeutic target for AML 

patients, since the monoallelic deletion or increased PLCB1 expression is a prognostic 

factor and is reportedly linked to the transition from myelodysplastic syndromes (MDS) to 

AML (Ratti et al. 2018; Damm et al. 2010; Fiume et al. 2014). 

 

These genes and their functional interpretation seem to explain potential underlying 

mechanisms; however, they by no means explain the actual biological functions nor do 

they provide a full picture of the genetic interactions in AML or acute GVHD. The SNPs 
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used in this study are common polymorphisms (MAF>0.005), and the locations are much 

sparser than the whole genome sequences. Thus, the representation of genes from the 

SNPs is merely a remote approximation. The highly ranked SNPs are not necessarily 

directly involved in the pathways linked to the disease; instead, some ungenotyped 

genes that share a high linkage disequilibrium with those SNPs may exert more 

significant influence on the disease status. On the other hand, the feature interactions 

captured through iRBA-RF suggest the statistical epistasis among these features or 

SNPs but not the biological epistasis. Therefore, functional interpretation from SNP sets 

needs much careful consideration. More rigorous experiments may be needed to 

validate the potential genetic interactions. Overall, it is a promising start to investigate 

the genetic interactions in transplant-related outcome studies while considering both 

donor’s and recipient’s genomes simultaneously.  

 

One of the advantages of using GIFI and PEFI-ranked features in RF is that it removes 

the arbitrariness of choosing the number of features. Positive values of GIFI or PEFI 

indicate the features contribute positively to the predictive power of the predictive models 

and a value of zero is an appropriate cutoff. The p-values of GIFI scores add additional 

confidence level to the selection, as do the confidence intervals to the PEFI scores. On 

the other hand, GIFI ranking and PEFI ranking are not always consistent with each 

other, as they are using two different criteria to measure the feature importance. 

Moreover, as many researchers have point out (Amrhein, Korner-Nievergelt, and Roth 

2017; Wellek 2017), a p-value is not a reliable metric to infer the significance, since it 

depends on assumptions of the models and the sample size and lacks reproducibility. Lu 

et al. (M. Lu and Ishwaran 2018) proposed standard error and confidence intervals of 
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PEFI as an alternative to the p-values of regression models and demonstrated the 

robustness of PEFI to the sample size and model assumptions. Especially, when the 

sample size is small, it is a more reliable indicator than p-values. Therefore, it is 

desirable to use the PEFI ranked feature set for further downstream analysis. 

 

There are several parameters to determine for the iRBA-RF model. The first step of 

feature elimination using iRBA requires four parameters: the optimal subset size (Ns), 

the number of iterations (Iteration), the percentage of features that will be removed after 

each iteration (pct), and the number of features to keep after the last iteration (featNum). 

The original VLSReliefF algorithm suggested a large sample size and relatively small Ns 

achieve reliable results (Eppstein and Haake 2008). By default, top 50th percentile 

(pct=0.5) rank of SNPs is selected after each iteration. However, in our experiment, this 

removes many interactive and relevant variables, and the final feature sets have very 

little predictive power. The goal of iRBA is to remove as many irrelevant variants as 

possible while keeping all possible interacting ones. In this study, we chose the following 

parameters for both scenarios: Ns=1000, Iteration=5, pct=0.25. As for featNum, we 

employed a grid search strategy to find the optimum values for each of the scenarios. As 

shown in Figure 4.8, featNum=200 for Scenario 1 and featNum=400 for Scenario 2 

achieved the best classification performance, measured by the normalized Brier score, 

AUC and overall OOB error rate. As for RF models, each forest has 300 trees 

(ntree=300) with the default mtry=sqrt(#dimensions). 

 

One caveat of the iRBA-RF model is that, unlike regression or a simple associations test, 

it cannot tell the direction of a variable’s impact on the disease (positive or negative,  
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                   (a) AML case-control scenario                                   (b) Acute GVHD scenario 

Figure 4.8 The effect of the number of SNPs. from 10,000, 5000, 1000, 900, 700, 500, 300, 200, 
100: the OOB prediction error reaches its minimum between 300 and 500 SNPs for both AML 
and acute GVHD. Number of features are shown on a log10 scale. OOB: Out-of-bag sample 

average prediction error, shown in percentage (%); AUC: Area under the ROC; Brier: the 
normalized Brier score. The optimal feature size would produce the minimum OOB error rate (%), 

the minimum Brier score and the maximum AUC value.  

protective or progressive) from the model. However, this may avoid or minimize the 

effect of Simpson’s paradox, where the positive or negative association of variables 

reverse sign due to the change of a confounding factor. Simpson’s paradox is a common 

issue in association studies, especially in a high-dimensional bioinformatics data set 

(Freitas 2019). Keep in mind that, the selected features collectively contribute to the 

predictive power and thus it is not an indication of the influence of a single SNPs on the 

disease. It is worth noting that the importance scores and feature ranking are a relative 

concept, and they have little indication of biological importance. In summary, the iRBA-

RF model offers a computationally efficient and functionally effective method to find the 

candidate variable groups whose interactions may exert to the disease status. With a 

larger cohort size with broader genomic coverage, it may effectively find the genetic 

interaction networks that are directly linked to the disease development.  
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Conclusion 

We developed a hybrid feature selection model, iRBA-RF, to reduce the feature space 

and ultimately rank and select the variants that may be linked to the diseases in 

question, AML, and acute GVHD. The proposed model successfully selected the most 

related SNPs out of over 600 K and 1 M SNPs and produced a reasonable predictive 

accuracy. The model was applied to genomic data in this study, but it can be extended 

to examine multi-omics data with other clinical characteristics, as well as the multi-class 

prediction problems.  

 

As discussed above, evidence of the genes can be found in the literature to be linked to 

the disease in question; however, in order to determine their biological role and further 

assist optimized donor selection process and personalized therapeutic development, 

experiments on a larger cohort size, along with immunological wet lab validation 

experiments on the selected genes, are desired. 
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Chapter 5 Discussions and Conclusion 

Allo-HCT is a curative option for many hematologic malignancies and inherited or 

acquired genetic disorders, yet side effects limit its broader application. GVHD remains a 

principal barrier to more effective treatment, and immune responses that contribute to 

therapeutic benefit and adverse events are physiologically coupled. As personalized 

therapeutic treatment options advance, it is essential to precisely identify genetic factors 

that affect clinical outcomes, either protectively or aggressively. 

 

In this dissertation, we focused on acute GVHD after 10/10 HLA matched (HLA-A, -B, -

C, -DRB1, and -DQB1) allo-HCT from a genomic perspective. MHC genes are the most 

polymorphic known genes known and HLA matching is one of the most critical factors in 

the process of optimal graft selection. Here, we showed the sequence diversity of the 

classical HLA genes that are used in current clinical settings and provided evidence of 

high sequence variations outside the ARD exons. Despite the relatively large number of 

HLA matched donor-recipient pairs with their full-length classical HLA gene sequences, 

the current study cohort was not able to provide statistically significant results to support 

transplant outcome associations of non-ARD region mismatches. However, due to the 

low frequency of amino acid mismatches in the non-ARD region and their reportedly 

weak alloimmune reactions, we suggest that the non-ARD sequence mismatches within 

the ARD-matched DR pairs have limited influence on the development of post-transplant 

complications, such as acute GVHD, and may not be a primary factor. Meanwhile, the 

HLA gene haplotype mismatches and their clinical association is another interesting area 
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to investigate, as many studies have shown evidence of better outcomes in HLA 

haploidentical allo-HCT.  

 

Like many other common complex diseases, acute GVHD and other transplant-related 

complications involve many other genes. We first investigated the missense variant 

mismatches between donor and recipient from the whole genome sequences to identify 

genes that encode MiHAs. The clinical outcome study on the identified autosomal MiHAs 

found no statistically significant association with acute GVHD outcome, which may 

suggest that MHC mismatching outweighs other genetic mismatches as contributors to 

acute GVHD risk. More carefully stratified studies may be needed to confirm each 

specific MiHA cases; however, such randomized case studies are a big challenge in allo-

HCT since the transplant cases each year are limited and each case is almost unique. 

On the other hand, we were able to identify multiple MiHAs encoded by genes from the 

Y chromosome that show statistically significant association with acute GVHD. Our 

limited study cohort of primarily ethnic Caucasians suggests that Y chromosome 

haplotypes in this population increase the risk of acute GVHD for male patients when 

paired with HLA matching female donors. This provides genetic evidence to support the 

clinical preferences of HLA-matched male donors over female donors with the same 

condition for male patients. For further genomics investigations with a more extensive 

and diverse cohort, we recommend controlling for confounding factors such as HLA-

DPB1 T-cell epitope permissibility and tissue-specific gene expression.  

 

One of the challenges in transplant genomic studies is the ultra-high dimensional 

genomic data from both donors and recipients. Here we developed a hybrid feature 
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selection model, iRBA-RF, to provide a bioinformatics data mining tool for such 

investigations and clinical outcome studies. The proposed iRBA-RF model successfully 

selected the most related SNPs that have evidence to be linked to the diseases in 

question, out of over 600 K and 1 M SNPs, and produced a reasonable predictive 

accuracy. The model may be extended to investigating multi-omics data (epigenomics, 

proteomics, microbiome, and metabolomics) with other clinical characteristics, as well as 

the multi-class prediction problems, which would be the future work to assess. Genetic 

factor discovery in silico may provide insightful interpretation of biological pathways; 

however, the clinical implications need further assessment and validation through 

immunological wet lab experiments.  

 

In summary, this work offers evidence and guidance for further research in acute GVHD 

and allo-HCT and provides useful bioinformatics and data mining tools for transplant 

genomic studies, and can be extended to broader investigations including epigenetics in 

acute GVHD, pre-transplantation screening of potential donors, biomarker discovery and 

risk assessment of transplant outcomes.  
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Appendix 

A.1 Supplementary tables and figures for Chapter 3 
[Supplementary Table 3.1.xlsx] 
Autosomal MiHAs do not associate with acute GVHD. Each row represents a single 

MiHA present in the whole genome sequencing (WGS) or microarray cohort (or both) 
with characterized restricted HLA allele, encoding single nucleotide polymorphism 

(SNP), gene, and counts in acute GVHD and non-GVHD groups. P-values were 
calculated, and multiple hypotheses corrected for, as described in Methods. MAF – 

minor allele frequency. 

 
Supplementary Figure 3.1: A Venn diagram shows individual counts in overlapping 

categories for donor-recipient pairs that were retrospectively matched at HLA-DPB1 by 
allele, T-cell epitope permissibility (TCE), expression, and functional distance.  
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Supplementary Figure 3.2: A genomic annotation workflow to identify known and novel 

outcomes-associated variants. Raw sequence data were processed as described 
(Methods) to generate a single binary alignment (BAM) and variant call format (VCF) file 

per sample. Comparative analysis of donor-recipient pairs resulted in a single VCF file 
containing patient-specific variants, which were annotated further. Male recipients with 

female donors were treated separately to analyze variants on the Y chromosome. 
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Supplementary Figure 3.3: Tissue-specific gene expression for PCDH11Y (A), USP9Y 

(B), UTY (C), and NLGN4Y (D).  
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A.2 Supplementary materials for Chapter 4  

Supplementary tables 4.1-4.4 
[Supplementary tables Chapter 4.xlsx] 
 
Supplementary Table 4.1 Top ranking SNPs from GIFI for Scenario 1: AML case-control 
Supplementary Table 4.2 Top ranking SNPs from PEFI for Scenario 1: AML case-control  
Supplementary Table 4.3 Top ranking SNPs from GIFI for Scenario 2: acute GVHD 
case-control 
Supplementary Table 4.4 Top ranking SNPs from PEFI for Scenario 2: acute GVHD 
case-control  
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Supplementary Table 4.5. Characteristics of acute myeloid leukemia 
patients transplant cases 
 

Variable Value 

No. of transplant cases 
No. of transplant centers 
Recipient age, median (range), years 

Age at transplant, yr 
<20  
20-59 
≥60  

Recipient race group 
CAU  
AFA  
API  
HIS  
Native American  
Other/multiple/declined/unknown 

Donor age, yrs 
18-29  
30-39 
40-49  
≥50 

Donor race group 
CAU  
AFA  
API  
HIS  
Native American  
Other/multiple/declined/unknown 

AML disease status at transplant 
Early 
Intermediate 
Advanced 
Other 

Graft Type 
Bone marrow  
Peripheral blood 

In vivo T cell depletion 
No  
Yes  

ATG given 
No 
Yes 

Donor/recipient CMV match 
Negative/negative  
Negative/positive  
Positive/negative 
Positive/positive  

331 
97 
42 (0~65 yrs) 
 
42     (12.7%) 
276   (83.4%) 
13     (3.9%) 
 
319   (96.4%) 
2       (0.6%) 
8       (2.4%) 
0       (0 %) 
1       (0.3%) 
1       (0.3%) 
 
152   (45.9%) 
89     (26.8%) 
71     (21.5%) 
19     (5.7%) 
 
284   (85.8%) 
3       (0.9%) 
9       (2.7%) 
0       (0 %) 
0       (0 %) 
35     (10.6%) 
 
243   (73.4%) 
10     (3.0%) 
77     (23.3%) 
1       (0.3%) 
 
132   (39.9%) 
199   (60.1%) 
 
238   (71.9%) 
93     (28.1%) 
 
243   (73.4%) 
88     (26.6%) 
 
107   (32.3%) 
114   (34.4%) 
33     (10.0%) 
69     (20.9%) 
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Unknown 
GVHD prophylaxis 

Ex vivo T cell depletion  
CD34 Selection 
Cyclophosphamide  
Tacrolimus + (MTX or MMF) ± other  
Tacrolimus ± other  
Tacrolimus alone  
CsA + (MMF or MTX) ± other (except 
Tacrolimus) 
CsA ± other (no MTX nor MMF)  
CsA alone  
Other  

HLA-DPB1 typing 
Double mismatch  
Single mismatch 
Matched 
Missing/not typed 

Donor/recipient sex match 
Male/male  
Male/female  
Female/male  
Female/female 

GVHD outcome 
Grades 0~I acute GVHD 
Grades II~IV acute GVHD 

8       (2.4%) 
 
20     (6.0%) 
0       (0%) 
5       (1.5%) 
206   (62.2%) 
15     (4.5%) 
4       (1.2%) 
74     (22.4%) 
2       (0.6%) 
3       (0.9%) 
2       (0.6%) 
 
58     (17.5%) 
115   (34.7%) 
31     (9.4%) 
127   (38.4%) 
 
127   (38.4%) 
97     (29.3%) 
40     (12.1%) 
67     (20.2%) 
 
185   (55.9%) 
146   (44.1%) 
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Supplementary Table 4.6. HLA typing summaries 
 

HLA-A  Freq  HLA-B Freq  HLA-C Freq 
A*02:01 
A*01:01 
A*03:01 
A*24:02 
A*11:01 
A*29:02 
A*68:01 
A*26:01 
A*32:01 
A*31:01 
A*25:01 
A*23:01 
A*30:01 
A*33:01 
A*68:02 
A*02:05 
A*30:02 
A*03:02 
A*24:03 
A*24:17 
A*30:04 
A*36:01 

174 
115 
94 
50 
32 
21 
21 
18 
17 
15 
13 
12 
12 
6 
6 
3 
3 
2 
1 
1 
1 
1 

 B*07:02 
B*08:01 
B*44:02 
B*40:01 
B*15:01 
B*35:01 
B*18:01 
B*27:05 
B*13:02 
B*44:03 
B*57:01 
B*14:02 
B*38:01 
B*37:01 
B*52:01 
B*49:01 
B*51:01 
B*55:01 
B*56:01 
B*14:01 
B*40:02 
B*35:03 
B*39:01 
B*41:01 
B*45:01 
B*50:01 
B*15:17 
B*27:02 
B*35:02 
B*47:01 
B*53:01 
B*58:01 
B*15:02 
B*15:03 
B*15:10 
B*15:18 
B*35:08 
B*58:02 

114 
107 
73 
41 
40 
37 
36 
21 
19 
19 
16 
15 
13 
11 
8 
7 
6 
6 
6 
5 
5 
3 
3 
3 
3 
3 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 

 C*07:01 
C*07:02 
C*05:01 
C*03:04 
C*06:02 
C*04:01 
C*03:03 
C*12:03 
C*08:02 
C*01:02 
C*02:02 
C*16:01 
C*07:04 
C*12:02 
C*14:02 
C*17:01 
C*02:10 
C*08:01 
C*15:02 

126 
115 
71 
56 
56 
54 
29 
26 
20 
19 
16 
12 
10 
8 
3 
2 
1 
1 
1 
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HLA-DRB1 Freq  HLA-DQB1 Freq 
DRB1*15:01 
DRB1*03:01 
DRB1*07:01 
DRB1*01:01 
DRB1*04:01 
DRB1*13:01 
DRB1*11:01 
DRB1*13:02 
DRB1*04:04 
DRB1*08:01 
DRB1*11:04 
DRB1*12:01 
DRB1*01:02 
DRB1*14:01 
DRB1*01:03 
DRB1*15:02 
DRB1*04:02 
DRB1*09:01 
DRB1*13:03 
DRB1*04:07 
DRB1*10:01 
DRB1*16:01 
DRB1*04:03 
DRB1*04:05 
DRB1*11:03 
DRB1*08:02 
DRB1*08:04 
DRB1*11:02 
DRB1*12:02 
DRB1*13:04 
DRB1*13:05 
DRB1*14:02 
DRB1*16:02 

116 
105 
74 
60 
56 
37 
30 
24 
23 
13 
12 
12 
11 
11 
10 
8 
4 
4 
4 
3 
3 
3 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 

 DQB1*06:02 
DQB1*02:01 
DQB1*03:01 
DQB1*05:01 
DQB1*02:02 
DQB1*03:02 
DQB1*06:03 
DQB1*06:04 
DQB1*03:03 
DQB1*04:02 
DQB1*05:03 
DQB1*06:01 
DQB1*05:02 
DQB1*06:09 

116 
106 
103 
77 
59 
48 
37 
21 
18 
15 
11 
8 
4 
3 
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Supplementary Material 4.7: Microarray genotype data preprocessing 
 
The original SNP genotype data was obtained and processed by Madbouly et al. and 

described in (Madbouly et al. 2017). In this study, we performed the quality control 

separately and did not use the imputed genotypes.  

 

We have removed individuals that show ambiguous sex genotype than their reported 

sex. The rest of parameters used in the SNP filtering is as follows. 1) If a SNP minor 

allele frequency (MAF) is less than 0.005 or showed up in less than 10 individuals, then 

those SNPs are filtered out. 2) SNPs that have less than 95% call rate are removed. 3) It 

is recommended to use the control-only samples for Hardy-Weinberg equilibrium (HWE) 

test (Anderson et al. 2010). Here we used the healthy donor-only samples and excluded 

the SNPs that have P-values lower than 0.001 after the HWE test. After these steps, we 

obtained 630,793 SNPs for the 331 donor-recipient pairs.  

 

 
 
 


