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Abstract

The pervasive Internet surveillance and the wide-deployment of Internet censors lead to
the need for making traffic anonymous. However, recent studies demonstrate the informa-
tion leakage in anonymous traffic that can be used to de-anonymize Internet users.

This thesis focuses on how to measure and prevent such information leakage in anony-
mous traffic. Choosing Tor anonymous networks as the target, the first part of this thesis
conducts the first large-scale information leakage measurement in anonymous traffic and
discovers that the popular practice of validating WF defenses by accuracy alone is flawed.
We make this measurement possible by designing and implementing our website fingerprint
density estimation (WeFDE) framework. The second part of this thesis focuses on pre-
venting such information leakage. Specifically, we design two anti-censorship systems which
are able to survive traffic analysis and provide unblocked online video watching and social
networking.
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1 Introduction
Past decade witnesses the pervasive Internet surveillance and the wide-spread deployment
of Internet censors. The Snowden leaks reveal the NSAs massive spying programs targeting
individuals, private tech companies, and foreign countries; more than one-third of the worlds
population lives under Internet censorship [39]. These issues lead Internet users to the call
for being anonymous, so as to protect their online privacy and freedom against surveillance
and censorship.

Then comes the popularity of anonymous networks such as Tor, which has 2 million
daily active users. The Tor network not only applies encryption upon its traffic, but also it
instructs a user to connect through three Tor relays until hitting the destination, so as to
keep the user anonymous. The success of the Tor project even goes beyond anonymity: Tor
is also able to help users to circumvent Internet censorship! Meanwhile, the blossom of anti-
censorship systems came after China blocking Tor by differentiating Tors cipher suite. These
systems share one core idea: proxy steganography, which intends to make proxy connections
resemble innocent cover protocols. Blocking these anti-censorship systems costs the censor
the shutdown of the innocent cover applications, which the censor is considered unwilling to
do due to the collateral damage. The success of Tor and the blossom of stenographic proxies
seem to resonate the optimism held by Google former CEO Eric Schmidt, who predicted in
2013 that, censorship around the world could end in a decade, and better use of encryption
will help people overcome government surveillance [70].

Traffic analysis is the bad news. In face of traffic analysis, encryption is not enough.
An example is the success of website fingerprinting (WF) attacks upon Tor networks. By
analyzing traffic features such as the packet count and order, WF attackers are able to
de-anonymize Tor users with over 90% accuracy in the lab setting. Another example is the
vulnerability of stenographic proxies to traffic analysis. Censors are able to detect imitation
flaws to recognize the usage of the stenographic proxies; the content mismatch between the
stenographic proxy and the cover protocol leads to distinct traffic features, rendering traffic
analysis effective in detecting the usage of stenographic proxies. As Susan Landau and
Whitfield Diffie put, Traffic analysis, not cryptanalysis, is the backbone of communications
intelligence [28].

Thesis Overview. It’s the information leakage in traffic that makes traffic analysis
possible. However, how to measure and prevent information leakage in anonymous traffic
is still unclear. This thesis aims at answering the question. Specifically, it includes:

• Information Leakage Measurement. Choosing Tor networks as the target, we con-
duct the first large-scale information leakage measurement in anonymous traffic, and
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we discover that the popular practice of validating WF defenses by accuracy alone
is flawed. We make this measurement possible by designing and implementing our
website fingerprint density estimation (WeFDE) framework [52].

• Information Leakage Prevention. To defend the stenographic proxy against traf-
fic analysis, we design and implement two anti-censorship circumvention systems
Mailet [53] and Facet [54], which are able to survive traffic analysis and provide
unblocked online video watching and social networking.

1.1 Measuring Information Leakage in WF Attacks and Defenses

Website fingerprinting attacks exploit the features of the traffic to de-anonymize Tor net-
works. By looking at the packet count or order, the attacker can learn which website a
Tor user is visiting with over 90% accuracy. In response, website fingerprinting defenses are
proposed to reshape the traffic so as to eliminate the information leakage from the traffic
features.

We conducts the first large-scale information leakage measurement in anonymous traffic.
Such large-scale measurement was lacking in the literature due to two barriers: (a) features
are high dimensional, suffering from the curse of the dimensionality; and (b) the complex
properties of the features. We design and implement website fingerprint density estimation
(WeFDE) framework to overcome above challenges: we use the adaptive kernel method to
model the probability distribution of the features, which is able to adaptively deal with
discrete, continuous, or even partly discrete and partly continuous features; we measure
the pairwise mutual information of features to reduce dimension with the help of DBSCAN
clustering algorithm. We apply WeFDE to a comprehensive list of 3043 features (including,
to the best of our knowledge, all features in the Tor WF literature) extracted from a 211219
Tor web browsing visits for about 2200 websites.

We discovers that the popular practice of validating WF defenses by accuracy alone is
flawed. Most of works on WF defenses evaluate the effect of the defense by classification
accuracy: if the accuracy of the classifier is low enough, the defense is believed to be secure
with minimal information leakage; one defense is believed to be better than another if it
results in lower accuracy. But our information leakage measurement results demonstrate
that, low information leakage implies low classification accuracy, but the converse is not
necessarily true, thus we argue that validating WF defenses by accuracy alone is flawed!
The reasons include: (a) accuracy is classifier-dependent, and (b) accuracy is all-or-nothing.

We also provides the new information-theoretic insights upon WF features. Our study
finds that: (a) 45.36% of 183 most informative features are redundant; (b) an individ-
ual feature leaks no more than 3.45 bits information in the closed-world setting with 100
websites, which is the maximum leakage we observe in our experiment from the feature of
rounded outgoing packet count; (c) download stream, though having more packets than
upload stream, leaks less information; (d) a larger world size has little impact on a WF
features individual information leakage.
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1.2 Preventing Information Leakage in Anti-censorship System Design

Existing stenographic proxies are vulnerable to traffic analysis. The first reason is that some
proxies try to imitate unblocked cover protocols. As convincingly mimicking a sophisticated
distributed system is an insurmountable challenge, the censor is able to find discrepancies
for detecting the proxy. The second reason is content inconsistencies, which can arise when
the behavior of a cover protocol depends on the characteristics of the traffic it carries and
proxies do not match content to these characteristics. For example, since the FreeWave
server tunnels modem traffic instead of voice signal over a VoIP channel, its communication
session can be identified by traffic analysis.

In light of these potential problems, finding a single cover protocol to carry arbitrary
Internet content seems difficult. However, a recent survey of Chinese users of circumven-
tion tools found most users circumvent the Chinese Great Firewall to use three services:
unfiltered search engines such as Google, uncensored social networks such as Facebook and
Twitter, and video sharing sites like YouTube and Vine. My research methodology is to
serve most circumvention needs through a small set of unobservable transports, so that the
information leakage in the traffic of anti-censorship systems is minimized. We design and
implement two unobservable transports: Mailet provides safe and unfiltered social website
access through email channels with the help of secure computation; Facet enables the users
in censored regime to watch YouTube and Vimeo videos in real-time.

Mailet: Instant Social Networking under Censorship. Mailet is an unobserv-
able transport which provides unfiltered social website access by using email applications.
Mailet servers and clients exchange the text content of a social media website via emails.
Specifically, the client sends an email to an inbox accessed by the server with the specified
service details included; and on behalf of the client, the Mailet server communicates with
the social website and emails back the response text, if any. This design guarantees channel
consistency and has no imitation flaws. This makes Mailet immune to existing attacks.

Mailet is secure against untrustworthy proxies. One big challenge for the Mailet design is
how the proxy can prove to the social website that it has been granted by the user to manage
its online account. The straightforward approach is to let the user share the credential with
the proxy, which is apparently risky and should not be done anytime; another approach is
to let the user authorize the proxy through OAuth standard, which would not work for two
reasons: (a) the authorization would fail because the user cannot access the social website
to complete OAuth protocol, and (b) even the proxy is authorized by the user, but if it is
malicious, the user cannot prevent any malicious attempt within its account. Our design
enables Mailet proxies to provide privileged services without learning the social media login
credentials of the client, using a threshold trust approach. In Mailet, the client is allowed to
split and distribute the credential to a set of Mailet servers, and each server holds a share of
the secret. Without learning the other shares, a single server cannot recover the credential
alone.

A challenge in decentralized credential mechanism is how to privately combine and
represent the credential to social websites. In other words, the Mailet servers should col-
laboratively recover the original credential, and include it in a TLS connection to the social
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website, while still preventing each other from learning the other copy. This task is usually
regarded as a secure two-party computation problem: two parties (Mailet proxies) holding
separate secret inputs (the credential copies) evaluate a common function (a TLS record
message) without disclosing their inputs to each other. However, since a TLS record mes-
sage in Mailet is usually large (several hundred bytes), a standard two-party computation
is too costly. We implemented a credential recovery by using an optimized 2PC algorithm.
The results show that 2PC has to take nearly 6 seconds to finish and consumes about 6 MB
bandwidth between Mailet proxies. In addition, it uses about 90% CPU and 9

To overcome this challenge, we propose a novel GCM based Credential Recovery (GCM-
CR) approach to secretly combine the decentralized credential without using the high over-
head secure two-party computation. This design uses Galois/Counter Mode (GCM) cipher
suite in the TLS connection, and takes the advantage of Encrypt-then-MAC (EtM) of GCM
mode to compute a valid TLS record message. Since this scheme involves no 2PC, a valid
TLS record can be computed efficiently. Comparing with the conventional 2PC computa-
tion, our approach can achieve a speedup of 120.

Facet: Streaming over Videoconferencing for Censorship Circumvention.
Facet is a system that enables the clients in a censored regime to watch YouTube, Vine
and Vimeo videos in real-time. The basic idea of Facet is to send videos from these sites
as the video content of a videoconferencing call in the case of our prototype, a Skype call
between a Facet server and a client. Like all proxy steganography systems, it relies on the
assumption that the censor is unwilling to indiscriminately block all or most sessions of the
cover protocol (Skype) to avoid collateral damage. Under this assumption, Facet provides
the following features:

• No emulation flaws. because the video is transmitted over an actual two-way Skype
call, there is no difference between implementations to allow identification;

• content consistent. Arbitrary videos may have different characteristics from video-
conferencing calls, leading to detectable differences in packet sizes. We implement
one of the most popular binary classifiers for VoIP traffic and show that unaltered
YouTube videos sent over Skype are distinguishable from Skype calls. To defeat this,
we introduce video morphing, in which the Facet server frames the requested video
within a randomly selected videoconference call. This increases the false positive rate
of a classifier that can recognize 90% of Facet calls to nearly 40%.

• real-time delivery. Most stenographic anti-censorship tools are designed for regular
web browsing, and often have limited bandwidth for clients. In contrast, Facet is
aimed at delivering real-time video service for clients achieving the same throughput
as the videoconferencing service.

• our approach is provider independent. Since the emulator devices in Facet are built
independently from the videoconferencing systems, Facet can be adopted widely on
any conferencing platform.
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• no deployment at client side. For Facet clients, there is no need to install any client
software (which is often blocked), or to pre-share secrets with the server.

1.3 Roadmap of the Thesis

Section 2 introduces the related works in anonymous traffic; Section 3 gives the attack
model we consider in this thesis. Section 4 focuses on how to measure information leakage
in anonymous traffic and introduces WeFDE framework; Section 5 and Section 6 focus on
how to prevent information leakage in anonymous traffic by proposing Mailet and Facet
systems; Section 7 concludes this thesis.



2 Related Works
This section introduces the related works in Internet Surveillance. Specifically, we first
introduce the Internet surveillance which is aimed at recognizing unwanted traffic and block
it, and then we describe the surveillance for de-anomymization.

2.1 Censorship as a Result of Internet Surveillance

Internet surveillance can be applied with the goal of blocking the unwanted traffic. The
surveillance entity can be company network administrator, Internet Service Provider (ISP),
or even national censors. To circumvent this surveillance for blockage, a set of parrot
circumvention systems are proposed. The goal of the systems is to prevent surveillance entity
from detection by traffic analysis. The following introduces these parrot circumvention
systems and the discovered flaws in these systems.

2.1.1 Parrot Circumvention Systems and Their Imitation Flaws

Parrot Circumvention Systems. The parrot circumvention systems disguise their com-
munications with the circumvention system user by emulating the well-known non-blocked
protocols. SkypeMorph [60] disguises the communication between a Tor client and bridge
as Skype Voice over Internet Protocol (VoIP). SkypeMorph starts the video call between
the bridge and client as camouflage, then it drops the genuine connection and transmit
Tor’s TCP traffic over non-Skype UDP. A packetizer module is used to emulate the Skype
UDP traffic. StegoTorus [87] obfuscates the Tor protocol. It can choose HTTP request as a
cover protocol and embeds hiddentexts in the URL and cookie fields. For HTTP responses,
StegoTorus utilizes the attached files such as PDF and Flash to carry the hiddentexts. Cen-
sorSpoofer [82] is designed to provide an unblocked web browsing service by IP spoofing.
Consider the upstream traffic of the web browsing is lightweight, it uses low capacity chan-
nels like emails for transmission. For downstream traffic, it directly sends the traffic to the
user but with the faked IP source address to fool the censor. As a consequence, the IP
address of the proxy is concealed in both upstream and downstream traffic.

Imitation Flaws. [33] shows the parrot systems fail to achieve the unobservability.
Firstly, SkypeMorph and StegoTorus fail to imitate side channels, which are created by the
genuine systems for traffic control, user login, etc. Secondly, StegoTorus and CensorSpoofer
fail to imitate reactions. StegoTorus returns different error messages when the censor sends
HTTP requests to it, and CensorSpoofer fails to properly select the spoofed IP address/port,
making the address/port behave differently in responding to a censor’s probe. Thirdly,
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SkypeMorph and StegoTorus are incorrect in imitation. Both SkypeMorph and StegoTorus
wrongly imitate Skype UDP packets for lack of SoM field. Also StegoTorus generates
incorrect PDF lacking the xref table.

2.1.2 Circumvention Systems without Imitation Flaw

FreeWave [36] is designed to circumvent the Internet censorship by hijacking the Skype
protocol. The web browsing traffic between a FreeWave client and server is modulated into
acoustic signals, so that it can be carried via Skype acoustic channels. Since FreeWave
directly uses the genuine Skype VoIP service, it is claimed to avoid flaws in camouflage.

SWEET [97] is proposed to provide the unblockable web browsing service via email
channels. In the infrastructure, the user in the censored regime encapsulates its web brows-
ing traffic in emails, and sends these emails to the SWEET server. At the server side, it
extracts the traffic from the emails, and forward the traffic to the expected destination.
After receiving the replies from websites, the SWEET server embeds the responses in the
emails and sends them back to the user. Since the email service provider does not col-
lude with the censor, the SWEET is claimed unobservable due to the censor’s disability in
recognizing the SWEET session.

CloudTransport [12] uses the cloud storage service to circumvent the Internet censorship.
It proposes a passive-rendezvous protocol, which enables the CloudTransport client and
bridge to communicate through oblivious cloud systems.

2.1.3 Inevitable Inconsistency.

Recent work [26] reveals even perfect emulation can not guarantee the proxy unobservability
and unblockability. The failure roots in the inevitable content and channel inconsistencies
between genuine and proxy protocols.

Content Inconsistency. In FreeWave, a modulated acoustic signal rather than human
speech is transmitted over VoIP. This content inconsistency is proved sufficient for a censor
to identify FreeWave connection by traffic analysis. For SWEET, it utilizes the email
channels to transmit the network layer traffic, making the connections distinguishable from
the genuine email users. For instance, the SWEET client and server have to exchange
8 emails on average in order to complete one web browsing request. Since this burst of
emails is rare for genuine email users, it gives the censor the opportunity to identify the
SWEET connections. Besides, this deficiency limits the SWEET user to at most 10 to 15
web browsing requests, far from satisfying the user’s needs.

Channel Inconsistency. Both SkypeMorph and FreeWave require reliable channels to
transmit Tor TCP packets or synchronization frames. But VoIP usually adopt unreliable
UDP transmission. This inconsistency enables a censor to stall SkypeMorph and FreeWave
by packet dropping, while having negligible impacts on the genuine VoIP service. For
SWEET, such channel inconsistency also exists. The email channel is delay tolerant, but
the SWEET infrastructure can hardly handle the delayed email delivery, which makes the
HTTP/HTTPS connections timeout or stalls the handshake protocol. That means the
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sensor could delay the email delivery to interrupt the SWEET connection without severely
affecting normal email users.

2.2 Anonymity under Internet Surveillance

Internet users may turn to anonymous networks such as Tor to hide their Internet activity.
Unfortunately, these anonymous users are often the target for surveillance entity to monitor
and de-anonymize. One popular approach that the surveillance entity can deploy is website
fingerprinting attacks. This section introduces the existing website fingerprinting methods,
defense designs against such attacks, and how WF attacks and defenses are measured.

2.2.1 Website Fingerprinting Attacks

The first category of WF attacks targeted encrypted protocols with no packet length hid-
ing [56]. Liberatore and Levine [56] exploited the unique packet length of HTTPS to
fingerprint a website. They adopted Jaccard coefficient and Näıve Bayes classifier as two
methods, being able to identify between 66% and 90% of the time for 2000 websites. More
recent website fingerprinting attacks focus on Tor anonymous service, in which the unique
packet length is hidden by fixed-size Tor cells. Cai et al. [16] used edit distance to com-
pare Tor packet sequences, and achieved 86% accuracy in the closed-world scenario with
100 websites. Wang and Goldberg [85] further improve the accuracy to 91% by using Tor
cells instead of TCP/IP packets, deleting SENDMEs, and applying new metrics such as
fast Levenshtein. Their later work [84] increases the accuracy by using a KNN classifier.
Panchenko et al. [65] introduces a new method to extract the packet number information,
which increases the accuracy by 2%. Recently, Hayes and Danezis [32] use random forests
to construct the current state-of-art website fingerprinting attack.

2.2.2 Website Fingerprinting Defenses

Several defenses have been proposed to defeat WF attacks. One category of defenses try to
randomize the traffic fingerprints by traffic morphing [90], loading a background page [66],
or randomized pipelining [68]. These are demonstrated ineffective by several works [16,84].

Another category of defenses try to hide traffic features by deterministic approaches.
By holding the packets or creating dummy packets, BuFLO [21] requires the packets sent in
fixed size and fixed time interval. The packets are padded until reaching a transmission time
threshold τ if their original transmission time is shorter. Otherwise, BuFLO lets the traffic
finish. CS-BuFLO [14] is proposed to extend BuFLO to include congestion sensitivity and
some rate adaptation. Tamaraw [15] improves the efficiency of BuFLO by two methods.
First, it allows different transmission rate for outbound and inbound traffic. Second, it
pads to make the packet count a multiple of parameter L: if the packet number in one
direction is more than nL and less than (n+ 1)L, it sends padding packets until the count
is (n + 1)L. Supersequence [84] utilizes clustering algorithms to group websites. For each
group of websites, Supersequence computes a super trace to be the manner of transmitting
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the instances of the websites under this group. WTF-PAD [44] uses adaptive padding to
be efficient. Our paper includes these defenses for information leakage evaluation. We leave
recently proposed defenses [18,86] in our feature work.

2.2.3 Website Fingerprinting Evaluation

Juarez et al. [43] evaluates the effectiveness of WF attacks in practical scenarios, enumer-
ating several assumptions about user settings, adversary capabilities, and the nature of the
web that do not always hold. Without these assumptions, the accuracy of the attacks are
significantly decreased. Cai et al. [15] use a comparative method to analyze defenses. They
apply generators to transform a website class C into C ′, making C and C ′ differ only by
one (category of) feature. Then they evaluate whether a specific defense is successful in
hiding the feature. Though they claim this method can shed light on which features convey
more information, the information leakage comparison between features is unclear and not
quantified.

Cherubin [29] provides the lower bound estimate for the error of a WF attacker. Given
a set of features, the error of the Nearest Neighbor classifier is used to estimate the lower
bound of the Bayes error, which is further used to be the lower bound for the error of
any classifier. Based on such lower bound, a new privacy metric called (ξ,Φ)–privacy is
proposed. Though this privacy metric is not dependent on any specific classifier, it is still
a variant of the accuracy/error metric, and therefore the flaw of accuracy also applies to
(ξ,Φ)–privacy.



3 Attack Model
This section introduces the attack models of Internet Surveillance. In this proposal, we
consider two types of Internet Surveillance, which are surveillance for blocking unwanted
Internet Traffic, and surveillance with the purpose of deanonymizing users’ Internet activity.

3.1 Surveillance for Censorship.

We assume a state-level censor seeking to block unwanted Internet connections and the
usage of circumvention tools. Specifically, the censor is considered to have the following
capabilities:

In-depth Traffic Analysis. Censor can sniff the suspicious traffic and block it if
signs of unwanted connections are found. The techniques can be keyword filtering, static
IP address filtering, and protocol fingerprinting. Also, the censor is considered capable of
analyzing covert traffic by statistical techniques. Recent studies [89,91,92] show the packet
length in covert protocols leaks information about the transmitted traffic, and it can be
used by the censor to infer the usage of circumvention tools.

Proactive Detection. The censor can be proactive. It can act as a user of circumven-
tion tools for blockage. This attack can be proactive probing or enumeration attacks. For
probing, the censor sends probes to potential circumvention proxies, which will be blocked
if responding to provide the circumvention service. Enumeration attacks refer to the censor
enumerating a proxy pool list, manually or automatically, for blocking these proxies. Both
of these two attacks have been shown in real-world censorship.

Active Interference. The censor can interrupt circumvention tools by actively in-
terfering. Particularly, the censor can delay, drop, or even inject packets into the session
of potential circumvention systems. Such active interference, if crafted properly, does not
necessarily increases the false alarms. For example, Geddes et al. [27] show the censor can
drop Acks in Skype sessions to disrupt SkypeMorph with little interference to the genuine
Skype sessions.

The censor is considered to permit widely-used encrypted protocols such as TLS and
IPsec. In addition, the censor is assumed unwilling to block begign Internet applications,
such as videoconferencing (Skype, Google Hangout, and QQ), or Internet Email service.
The reason could be business related or the political costs of doing so.
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3.2 Surveillance for De-anonymization

This kind of Internet surveillance is to de-anonymize Internet users’ activity. We suppose
users come to anonymous networks for protecting their online anonymity. Then website
fingerprinting attacks are what the attackers use to de-anonymize the users in anonymous
networks. The attacker can be an Internet Service Provider (ISP) or a malicious Tor entry
guard. It is supposed to be passive (no packet manipulation), but it can eavesdrop the
traffic originated from or destinated to the user. Without turning to traffic contents or
its IP addresses (both can be encrypted or obfuscated), the attacker inspects the traffic
fingerprints for detection. These fingerprints can be packet length or the transmission
time. Neither Cryptographic algorithms nor the anonymous services such as Tor can cover
such fingerprints. State of art attacks [32, 65, 84] demonstrate that the fingerprints carry
sufficient information that the attacker can pinpoint the visited website by more than 90%
accuracy (with assumptions). In the following, we introduce two attack models of the
website fingerprinting attack.

Closed-World Attack Model. An attacker in the closed-world knows a set of websites
C = {c1, c2, · · · , cn} the user may visit. We adopt an equal-prior model, in which the user
visits a website with probability 1/n. The attacker’s goal is to decide which one has been
visited.

Open-World Attack Model. The attacker in this attack model has a set of websites
for monitoring; its goal is to decide whether the user visited a monitored website or not, and
if yes, which monitored website. Though the user may visit any website, a non-monitored
set of websites are introduced to approximate the user visiting the non-monitored websites.
We consider a popularity-prior model, in which we give prior probabilities to websites by
their popularity, without considering whether the websites are monitored or not.



4 Measuring Information Leakage
in Website Fingerprinting

4.1 Overview

The Tor anonymity network uses layered encryption and traffic relays to provide private,
uncensored network access to millions of users per day. This use of encryption hides the
exact contents of messages sent over Tor, and the use of sequences of three relays prevents
any single relay from knowing the network identity of both the client and the server. In
combination, these mechanisms provide effective resistance to basic traffic analysis.

However, because Tor provides low-latency, low-overhead communication, it does not
hide traffic features such as the volume, timing, and direction of communications. Recent
works [32, 65, 84] have shown that these features leak information about which website has
been visited to the extent that a passive adversary that records this information is able to
train a classifier to recognize the website with more than 90% accuracy in a closed-world
scenario with 100 websites. This attack is often referred to as a Website Fingerprinting
(WF) attack. In response, many works [14, 15, 18, 21, 62, 66, 68, 84, 86, 90] have proposed
defenses that attempt to hide this information, by padding connections with extra traffic
or rearranging the sequence in which files are requested.

Defense Evaluation. To evaluate a defense, the popular practice is to train classifiers
based on altered traffic characteristics and evaluate the effect of the defense by classification
accuracy. If the accuracy of the classifier is low enough, the defense is believed to be secure
with minimal information leakage; one defense is believed to be better than another if it
results in lower accuracy.

Accuracy vs. Information Leakage. We raise a question: does low accuracy always
mean low information leakage from WF defenses? Our answer is no. The first reason is
that accuracy is classifier-dependent. It is possible that the information leakage of a WF
defense is high, but the classifier is ineffective, so that its accuracy is low. More importantly,
accuracy is all-or-nothing: classifiers output a single guess and if it is wrong, this is judged
to mean the defense has been successful. But it ignores cases where a classifier may confuse
some pages with a small set of others. In such situations, an attacker may well be able to
significantly reduce the set of likely pages represented by a fingerprint, even if they cannot
reliably choose the correct page from among this set. We can see that the fingerprint
can contain a great deal of information about the web page even if the classifier cannot
accurately identify the correct page. Accuracy is prone to underestimate the information
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Figure 1: Accuracy vs. Information Leakage: from a classifier’s perspective (closed-world
setting with 100 websites)

leakage in WF defenses, or in other words, low accuracy doesn’t necessarily mean low
information leakage.

We further prove the above observation by the information-theoretic quantification upon
a given accuracy. We find that in a closed-world setting with n websites, a feature set
yielding a classifier with accuracy α could leak information through the classifier with the
uncertain range (1 − α) log2(n − 1) (the difference between the maximum and minimum).
The proof also shows that such uncertainty increases with lower accuracy. Figure 1 shows
that when n = 100 and α = 0.95, the uncertain range is only 0.33 bit; but when α = 0.05,
the possible leakage could be as high as 6.36 bits and as low as 0.06 bits! This uncertainty
reveals the potential discrepancy between information leakage and accuracy in evaluating
WF defenses, though its impact on WF attacks is limited. Low information leakage implies
low classification accuracy, but the converse is not necessarily true, thus we argue that
validating WF defenses by accuracy alone is flawed.

Feature Evaluation. Different features may carry different amounts of information. WF
defense designers can evaluate features to find more informative ones to hide [15]; attackers
can do so to discover highly informative features and optimize their feature set [32]. Exist-
ing works [15, 32] designed comparative methods to rank the features by their information
leakage, but these methodologies do not give a straightforward way to quantify the rela-
tionships between features. How much information do features A and B share? If feature
A is more informative than features B or C alone, are features B and C together more
informative than A? These methodologies are unable to answer these questions.

We argue that these coarse-grained evaluations of features and defenses are overly sim-
plistic. The analysis of new WF attack features and defenses should start with the ques-
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tion: how much information is leaked? To answer this question, two challenges should be
addressed. The first challenge is finding a way to model the behavior of WF features and
the interaction between them; these features can have highly complex relationships and
behavior, exhibiting distributions that could be discrete, continuous, or even partly discrete
and partly continuous. The second challenge is the curse of dimensionality when estimating
the total information leakage, as the state-of-art feature sets are usually high-dimensional.
Unfortunately, existing works [19, 59] limited their experimental measurement to features’
individual information leakage, and they cannot overcome these challenges.

Information Leakage Measurement Framework. In this paper, we develop WeFDE
(for Website Fingerprint Density Estimation), a methodology for modelling the likelihood
functions of website fingerprints, and a set of tools for measuring the information leaked
by these fingerprints. To address the first challenge, WeFDE uses adaptive kernel density
estimation [79] to model the probability density function of a feature or a category of
features. By allowing kernels to determine their bandwidth separately, we can adaptively
model both continuous and discrete density functions; by estimating multi-dimensional
kernels over sets of features, we can model the interactions between features. We address
the second challenge by introducing a set of dimension reduction approaches. Firstly, we
measure features’ pairwise mutual information to exclude redundant features. Secondly,
we use Kononenko’s Algorithm [17, 49] and DBSCAN [23] to separate features into sub-
groups, which have pairwise mutual information higher than a threshold ε within each
group, and lower than ε among different groups. Then we apply adaptive kernels for each
sub-group with reduced dimensionality. Finally, our experiment shows that by including
enough highly informative features we are able to approximate the overall information
leakage. This enables us to further reduce the dimensionality of our measurement.

Measurement Results. We apply WeFDE to a comprehensive list of 3043 features (in-
cluding, to the best of our knowledge, all features in the Tor WF literature [16, 21, 32, 65,
67, 75, 84, 85]) extracted from a 211219 Tor web browsing visits for about 2200 websites.
Among the features of WF attacks, we find that: (a) 45.36% of 183 most informative fea-
tures are redundant; (b) an individual feature leaks no more than 3.45 bits information in
the closed-world setting with 100 websites, which is the maximum leakage we observe in
our experiment from the feature of rounded outgoing packet count; (c) download stream,
though having more packets than upload stream, leaks less information; (d) a larger world
size has little impact on a WF feature’s individual information leakage. We also include
WF defenses such as Tamaraw [15], BuFLO [21], Supersequence [84], WTF-PAD [44], and
CS-BuFLO [14] to study the discrepancy between accuracy and information leakage. Our
experimental results confirm this discrepancy and demonstrate that accuracy alone is not
reliable to validate a WF defense or compare multiple ones. We also find that the infor-
mation leakage of WTF-PAD [44] is unusually high. Interestingly, recent work [?] confirms
our result by achieving 90% classification accuracy against WTF-PAD.

Contributions. We provide our contributions as follows. First, this paper identifies that
validating WF defenses by accuracy alone is flawed. By information-theoretic quantification,
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Source Instances Batches

Closed-World Alexa 1-100 55779 20
Open-
World

Monitor [84] 17985 8
Non-Monitor Alexa 1-2000 137455 10

Table 1: DATASET. We adopt Crawler [10] to collect the network traffic in batches. This
crawler uses Selenium to automate the Tor Browser Bundle and applies Stem library to
control the Tor process. It extended the circuit renewal period to 600,000 minutes and
disabled UseEntryGuard to avoid using a fixed set of entry guards. We apply the method
in [65] to extract the cell packets from the traffic and measure the information leakage based
on the cell packets.2

we find that when classification accuracy is low, its corresponding information leakage is
far from certain. Second, we propose WeFDE which makes it possible to measure the joint
information leakage from a large set of features. In contrast, existing works only limited their
experimental measurement to features’ individual information leakage, and they cannot
cope with features of complex property. WeFDE overcomes these two limitations. Third,
we use WeFDE to perform information leakage measurement for all 3043 features proposed
in the Tor website fingerprinting literature, based on a large dataset having 211219 Tor
web browsing visits to about 2200 websites. As far as we know, our work is the first large-
scale information leakage measurement in the literature. Fourth, our measurement results
provide the new information-theoretic insights upon WF features, and these results give the
empirical confirmation that accuracy is not reliable to validate a WF defense or compare
multiple ones.

4.2 Traffic and its features

A user’s traffic is a sequence of packets with timestamps which are originated from or
destinated to it. We use T (C) to denote the traffic when the user visited the website C.
Then

T (C) = 〈(t0, l0), (t1, l1), · · · , (tm, lm)〉 , (1)

where (ti, li) corresponds to a packet of length |li| in bytes with a timestamp ti in seconds.
The sign of li indicates the direction of the packet: a positive value denotes that it is
originated from the server, otherwise the user sent the packet. Table 1 describes our collected
traffic for information leakage measurement.

In the state-of-art website fingerprinting attacks [32, 65, 84], it is the features of the
traffic rather than the traffic itself that an attacker uses for deanonymization. One of the
contribution of this paper is that it measures a complete set of existing traffic features in
literatures of website fingerprinting attacks in Tor [21,32,65,67,75,84]. Table 2 summarizes
these features by category. More details about the feature set can be found in the following.

2Our dataset allows the websites to have different number of instances. This uneven distribution is
mostly caused by the failed visits in the crawling process. Note that it doesn’t impact our information
leakage measurement.
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1. Packet count. Counting the number of packets is found helpful for an attacker.
Specifically, we include the following features based on packet count: (a) the total packet
count, (b) the count of outgoing packets, (c) the count of incoming packets, (d) the ratio
between the incoming packet count and that of the total, and (e) the ratio between the
outgoing packet count and that of the total.

2. Time Statistics. Firstly, we look at the packet inter-arrival time for the total, incoming,
and outgoing streams, individually. We extract the following statistics and add them into
our feature set: (a) maximum, (b) mean, (c) standard deviation, and (d) the third quartile.
Secondly, we embrace the features based on transmission time. We add the first, second,
third quartile and total transmission time into our feature set.

3–4. Packet Ordering. we explore the n-gram features which are widely adopted features
extracting packet ordering. A n-gram is a contiguous sequence of n packet lengths from a
traffic sequence. Let’s take 2-gram as an example. Suppose the traffic sequence is 〈(l1, t1),
(l2, t2), (l3, t3), (l4, t4)〉, then the 2-grams are (l1, l2), (l2, l3) and (l3, l4). We consider the
frequencies of each grams as features and we measure bigram, trigram, 4-gram, 5-gram, and
6-gram for comparison.

In addition, the number of packets transmitted before each successive incoming or out-
going packets also captures the ordering of the packets. We record such features by scanning
the first 300 packets of the incoming and those of the outgoing respectively.

5–7 and 9. Intervals and Bursts. We firstly adopt interval-based features to capture the
traffic bursts. An interval is defined as a traffic window between a packet and the previous
packet with the same direction.

We use two approaches for interval-based features: Interval-I [84] records the first 300
intervals of incoming packets and those of the outgoing, Interval-II [75] uses a vector V
in which V(i) records the number of intervals with the packet number i. We use two
vectors to count the incoming and outgoing intervals separately, and we fix the vectors’
dimension to be 300 (An interval having more than 300 packets is counted as a interval
with 300 packets). We also apply grouping [67] on V to obtain extra features:

∑5
i=3 V(i),∑8

i=6 V(i), and
∑13

i=9 V(i). We name this approach to be Interval-III.
We also adopt [84]’s approach of counting the bursts for outgoing packets. A burst

of outgoing packets is defined as a sequence of outgoing packets, in which there are no
two adjacent incoming packets. We extract the packet number in each burst and use the
maximum and the average as features. We also add the total burst number, as well as the
number of bursts with more than 5 packets, 10 packets, and 20 packets, respectively.

8. Packet Distribution. We divide the packet sequence into non-overlapping chunks of
30 packets and count the number of outgoing packets in first 200 chunks as features. We
ignore the chunks after the 200 chunks if any, and pad 0s to have 200 features in case of
having less than 200 chunks [84].

We also apply the approaches in [32] to have additional features: (a) calculate the
standard deviation, mean, median, and maximum of the 200 features, and (b) split them
into 20 evenly sized subsets and sum each subset to be new features.
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Index Category Name [Adopted by] No.

1 Packet Count [21,32,65,67,84] 13
2 Time Statistics [21,32,84] 24
3 Ngram [this paper] 124
4 Transposition [32,84] 604
5 Interval-I [32, 84] 600
6 Interval-II [75] 602
7 Interval-III [67] 586
8 Packet Distribution [32] 225
9 Bursts [84] 11
10 First 20 Packets [84] 20
11 First 30 Packets [32] 2
12 Last 30 Packets [32] 2
13 Packet Count per Second [32] 126
14 CUMUL Features [65] 104

Table 2: Feature Set: 14 categories with 3043 features

10–12. First 30 and Last 30 Packets. We explore the information leakage from the
first and last 30 packets. Particularly, we include first 20 packets as features, and we extract
the packet count features (incoming packet count and outgoing packet count) from the first
and last 30 packets, respectively.

13. Packet count Per Second. We count the packet number in every second. To make
the feature number fixed, we count the first 100 seconds and pad 0s if the transmission time
is less than 100 seconds. The standard deviation, mean, median, minimum, and maximum
of these features are also included.

We also include the alternative count of packets per second features [32]. We split the
packet count per second features into 20 evenly sized subsets and sum each subset to obtain
the alternative features.

14. CUMUL Features. Panchenko et al. [65] introduce the CUMUL features. A cu-
mulative representation is extracted from the packet trace, and n features are derived by
sampling the piecewise linear interpolant of the representation at n equidistant points. We
adopt such features with n = 100.

It’s worth noting that “packet” here refers to a Tor cell packet. We extract our features
based on the cell packet traces. In addition, in 2011 [67] includes a feature named HTML
marker, which counts the total size of incoming packets from the first outgoing packet and
the next outgoing packet. Such summation was considered to be the size of the HTML
document and therefore is informative. We find such claim is not accurate anymore, and we
find no updated details of how to reproduce such a feature. As a result, we do not include
this feature in our measurement.
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4.3 System Design

4.3.1 Methodology

The features leak information about which website is visited. Total packet count is a good
example. Figure 2 shows that visiting www.google.de creates 700 to 1000 packets, while
browsing www.facebook.com results in 1100 to 1600 packets. Suppose an attacker passively
monitors a Tor user’s traffic, and it knows that the user has visited one of these two websites
(closed-world assumption). By inspecting the total packet count of the traffic, the attacker
can tell which website is visited.

Different features may carry different amounts of information. Figure 2 displays the
download time in visiting www.google.de and www.facebook.com. The former loads in
about 3 to 20 seconds, and the latter takes 5 to 20 seconds; Their distributions of download
time are not easily separable. As a result, the attacker learns much less information from
the download time than from total packet count in the same closed-world scenario.

This raises question of how to quantify the information leakage for different features. We
adopt mutual information [57], which evaluates the amount of information about a random
variable obtained through another variable, for this measurement, defined as:

DEFINITION. Let F be a random variable denoting the traffic’s fingerprint, and suppose
W to be the website information, then I(F ;W ) is the amount of information that an attacker
can learn from F about W , and I(F ;W ) equals to:

I(F ;W ) = H(W )−H(W |F ) (2)

In the following, we describe our system to measure this information leakage.

4.3.2 System Overview

Aimed at quantifying the information leakage of a feature or a set of features, we design
and develop our Website Fingerprint Density Estimation, or WeFDE. Compared with
existing systems such as leakiEst [19], WeFDE is able to measure joint information leakage
for more than one feature, and it is particularly designed for measuring the leakage from
WF defenses, in which a feature could be partly continuous and partly discrete.

Figure 17 shows the architecture of WeFDE. The information leakage quantification
begins with the Website Fingerprint Modeler, which estimates the probability density func-
tions of features. In case of measuring joint information of a set of features, Mutual In-
formation Analyzer is activated to help the Modeler to refine its models to mitigate the
curse of dimensionality. During the information leakage quantification, the Website Finger-
print Modeler is used to generate samples. By Monte Carlo approach [31], the Information
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Figure 3: WeFDE’s Architecture

Leakage Quantifier derives the final information leakage by evaluating and averaging the
samples’ leakage. In the following, we describe our modules in detail.

4.3.3 Website Fingerprint Modeler

The task of Website Fingerprint Modeler is to model the probability density function (PDF)
of features. A popular approach is to use a histogram. However, as the traffic features
exhibit a great range of variety, it’s hard to decide on the number of bins and width. WeFDE
adopts Adaptive Kernel Density Estimate (AKDE) [71], which outperforms histogram in
smoothness and continuity. AKDE is a non-parametric method to estimate a random
variable’s the probability density function. It uses kernel functions—a non-negative function
that integrates to one and has mean zero—to approximate the shape of the distribution.

Adaptive Kernel Density Estimate in WeFDE. This part gives details about
Adaptive Kernel Density Estimate (AKDE) and the bandwidth selection approaches in
WeFDE.

We start by how WeFDE applies AKDE to estimate a single feature’s probability dis-
tribution:

p̂(f̄ |cj) =
1

n

m∑
c=1

1

hc
K(

f̄ − pc
hc

) (3)

where
hc is the bandwidth in AKDE,
K(· ) is the kernel function of a Gaussian, and
p1, p2, · · · , pm are the observations for f̄ in visiting cj

Choosing proper bandwidths is important for AKDE to make an accurate estimate. If
a feature is continuous, WeFDE adopts plug-in estimator [78]. In case of failure, we use
the rule-of-thumb approach [78] as the alternative. If the feature is discrete, we let the
bandwidth be a very small constant (0.001 in this paper). The choice of the small constant
has no impact on the measurement, as long as each website uses the same constant as the
bandwidth in its AKDE.

Our AKDE may model a discrete feature as if it’s continuous. The reason is that the
domain of the feature f̄ could be very large and requires much more samples than we can
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collect in order to accurately estimate in discrete. Take total packet count of Facebook.com
as an example. We observe 238 different values from our 600 samples in the range of 576
and 1865. If the feature is processed as discrete, the estimated probability for observed
values would be inaccurate, and the missed values would be considered impossible in the
inappropriate way. Our solution is to consider such a discrete feature to be continuous,
so that the kernels would smooth the probability distribution estimation and assign an
appropriate probability to the missed values, making our measurement more accurate.

Our AKDE is able to distinguish a continuous-like discrete feature. Take the feature
of transmission time as an example. This feature is used to be continuous, but when
defenses such as Tamaraw [15] are applied, the feature would become discrete. Our AKDE
is able to recognize by two approaches. The first approach is about using a threshold β. If
the same traffic instances are observed more than β times in our dataset, these instances
are distinguished as discrete cases, and our AKDE would consider their features to be
discrete. The second approach is template matching used in BuFLO case. We precompute
a pattern of traffic believed to be discrete, and we consider the instances matching the
pattern as discrete as well. In case of BuFLO, the pattern is the resulted traffic instance
with transmission time τ .

Moreover, our AKDE can handle a feature which is partly continuous and partly discrete
(or in other words, a mixture of continuous and discrete random variables). Such features
exist in a WF defense such as BuFLO [21] which always sends at least T seconds. These
features would be discrete if the genuine traffic can be completed within time T , otherwise,
the features would be continuous. Thanks to AKDE which allows different observations
to have their separate bandwidths, we compute the bandwidths separately for discrete and
continuous feature values. According to [24, 25], AKDE is able to model a feature with
mixed nature by selecting adaptive bandwidths for its observations.

We further extend WeFDE to model a set of features by adopting the multivariate form
of AKDE. However, when applying multivariate AKDE to estimate a high dimensional
PDF, we find AKDE inaccurate. The cause is the curse of dimensionality: as the dimen-
sion of the PDF increases, AKDE requires exponentially more observations for accurate
estimate. Considering that the set of features to be measured jointly could be large (3043
features in case of total information measurement), we need dimension reduction techniques.
In the following, we introduce our Mutual Information Analyzer to mitigate the curse of
dimensionality.

4.3.4 Mutual Information Analyzer

The introduction of Mutual Information Analyzer is for mitigating the curse of dimen-
sionality in multivariate AKDE. It helps the Website Fingerprint Modeler to prune the
features which share redundant information with other features, and to cluster features by
dependency for separate modelling.

This Analyzer is based on the features’ pairwise mutual information. To make the
mutual information of any two features have the same range, WeFDE normalizes it by
Kvalseth’s method [50] (other normalization approaches [81] may also work). Let NMImax(c, r)
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denote the normalized mutual information between feature c and r, then it equals to:

NMImax(c, r) =
I(c; r)

max{H(c), H(r)}

Since I(r; c) is less than or equal to H(c) and H(r), NMImax(c, r) is in [0, 1]. A higher value

of NMImax(c, r) indicates higher dependence between r and c or in other words, they share
more information with each other.

Grouping By Dependency. A workaround from curse of dimensionality in higher di-
mension is to adopt Naive Bayes method, which assumes the set of features to be measured
is conditionally independent. Naive Bayes requires many fewer observations, thanks to
the features’ probability distribution separately estimated. However, we find dependence
between some features of the website fingerprint, violating the assumption of Naive Bayes.

We adopt Kononenko’s algorithm (KA) [17, 49], which clusters the highly-dependent
features into disjoint groups. In each group, we model the joint PDF of its features by
applying AKDE. Among different groups, conditional independence is assumed. KA takes
the advantage of how Naive Bayes mitigates the curse of dimensionality, while keeping
realistic assumptions about conditional independence between groups.

We use clustering algorithms to partition the features into disjoint groups. An ideal
clustering algorithm should guarantee that any two features in the same group have de-
pendence larger than a threshold, and the dependence of the features in different groups
is smaller than the same threshold. This threshold allows us to adjust the independence
degree between two groups. We find that DBSCAN [23] is the right choice.

DBSCAN is a density-based clustering algorithm. It assigns a feature to a cluster
if this feature’s distance from any feature of the cluster is smaller than a threshold ε,
otherwise the feature starts a new cluster. Such a design enables DBSCAN to meet our
goal above. To measure features’ dependence, we calculate their normalized pairwise mutual
information matrix M ; then to fit in with DBSCAN, we convert M into a distance matrix
D by D = 1 − M , where 1 is a matrix of ones. A feature would have distance 0 with
itself, and distance 1 to an independent feature. We can tune ε in DBSCAN to adjust the
degree of independence between groups. We choose ε = 0.4 in the experiments based on
its empirical performance in the trade-off between its impact on information measurement
accuracy and KA’s effectiveness in dimension reduction.

We model the PDF of the fingerprint by assuming independence between groups. Sup-
pose KA partitions the fingerprint ~f into k groups, ~g1, ~g2, · · · , ~gk, with each feature belong-
ing to one and only one group. To evaluate the probability p(~f |cj), we instead calculate
p̂(~g1|cj)p̂(~g2|cj) · · · p̂(~gk|cj), where p̂(·) is the PDF estimated by AKDE.

As a hybrid of the AKDE and Naive Bayes, Kononenko’s algorithm avoids the disadvan-
tages of each. First, Kononenko’s algorithm does not have the incorrect assumption that the
fingerprint features are independent. It only assumes independence between groups, as any
two of them have mutual information below ε. Second, Kononenko’s algorithm mitigates
the curse of dimensionality. The groups in Kononenko’s algorithm have much less features
than the total number of features.
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Figure 5: The Outcome of Mutual Information Analyzer

Dimension Reduction. Besides the KA method to mitigate the curse of dimensionality,
we employ two other approaches to further reduce the dimension.

The first approach is to exclude features being represented by other features. We use the
pairwise mutual information to find pairs of features that have higher mutual information
than a threshold (0.9 in this paper). Then we prune the feature set by eliminating one of
the features and keeping the other.

Our second approach is to pick out a number of the most informative features to ap-
proximate all features’ information leakage. Given a set of features to measure, we sort the
features by its individual information leakage. Instead of measuring all features’ informa-
tion leakage, we pick out top n features that leak the most information about the visited
websites. The measurement results by varying n are shown in Figure 8 and Figure 12. It
shows that with n increasing, the top n features’ information leakage would increase at
first but finally reach a plateau. This phenomenon shows that the information leakage of
sufficient top informative features is able to approximate that of the overall features. Such
observation is also backed by [32], which discovered that including more top informative
features beyond 100 has little gain for classification.
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of Variance Retained in
PCA

We didn’t choose other dimension reduction methods such
as Principal Component Analysis (PCA) [42]. Our goal is to
mitigate the curse of dimensionality in modelling website fin-
gerprints by AKDE; but methods like PCA transform website
fingerprints into opaque components which are much less under-
standable. More importantly, our experimental results demon-
strate the poor performance of PCA. Figure 4 shows that the
percentage of variance retained when PCA reduces to a specific
dimension. Note that the percentage of variance is the popular
approach to estimate the information loss in PCA. It displays
that if our goal is to reduce the dimension from 3043 to 100, the

percentage of variance retained after PCA is under 50%, indicating the high information
loss. Thus, PCA doesn’t fit in our case.

The Results. Figure 5 displays the outcome of our Mutual Information Analyzer. We
picked out 100 most informative features (excluding the redundant ones), and we apply
Mutual Information Analyzer to obtain 6 clusters. Figure 5 shows how many features each
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category contributes, and which cluster the feature belongs to.
We find that redundant features are pervasive among the highly informative features. We

look at 183 most informative features, and 45.36% of them are redundant. This phenomenon
suggests future feature set engineering may be able to find many redundant features to prune
without hurting its performance for website fingerprints.

Figure 5 shows a cluster may consist of features from different categories. For example,
Cluster2 has features from category 1, 8, and 14, and Cluster3 has features from category
1, 3, and 14. This phenomenon shows features from different categories may share much
information (that’s why they are clustered together). Figure 5 also shows features from
same category are not necessarily in the same cluster. For instance, the category 4 features
are clustered into three different clusters.

Figure 5 also shows that categories do not necessarily have features to be included
in clusters. We find that some categories lack top informative features, ending up with
absence of their features in clusters. Here, we clarify that we don’t claim WeFDE to be
free of information loss. In fact, just like other dimension reduction approaches such as
PCA, there is information loss in WeFDE, but it is minimal [32]. It’s also worth noting
that though some categories or features are not chosen by WeFDE, this doesn’t necessarily
mean all of their information is lost, as their information may be shared and represented
by other included categories or features.
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Looking at individual features, we find 33 out of 83 highly informative features are
redundant with total packet count. These features include incoming packet count and 2-
gram (-1,-1), but exclude outgoing packet count (NMI between total and outgoing packet
count is 0.4414). The reason is that the number of incoming packets are much more than
the number of outgoing packets in website browsing, so that total packet count is highly
dependent on incoming packet count.

Due to page limit, we release all our measurement results in our anonymous Github
repository3.
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Figure 7: Empirical Cumulative Distribution Function (ECDF) for Information Leakage of
Individual Features

4.4 Closed-World Information Leakage
In closed-world setting, an attacker is assumed to know the possible websites that a user
may visit. The information leakage under this setting comes to which website is visited.
The following part gives more details about how to calculate this information.

Closed-world Setting. Suppose C is a random variable denoting possible websites
that a user may visit. Then the information leakage I(F ;C) in the closed-world scenario is:

I(C;F ) = H(C)−H(C|F )

H(C) = −
∑
ci∈C

Pr(ci) log2 Pr(ci)

H(C|F ) =

∫
Φ
p(x)H(C|x)dx

(4)

where
Pr(ci) is the probability that the visited website is ci,
Φ is the domain for the feature F , and
p(x) is the probability density function for variable x.
In the measurement, we adopt Alexa top 100 websites with 55779 visits in our closed-

world setting, as is shown in Table 1. We assume equal prior probability for websites,

3https://github.com/s0irrlor7m/InfoLeakWebsiteFingerprint
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Figure 8: Closed-World Setting: Information Leakage by Categories (bit)

and we set Monte Carlo sample number to 5000. We measure 3043 features’ individual
information leakage and their joint leakage by categories. We run this measurement and
the following ones on a workstation with 32 cores (Intel Xeon CPU E5-2630 v3 @ 2.40GHz).
The measurement time differs depending on the settings, but a typical measurement like
the following can be finished within 10 hours. The following introduces part of our results.
Full measurement results can be found at our anonymous Github repository.

Individual Information Leakage. Our measurement results upon individual features
are shown in Figure 7. Among these 3043 features, we find: (a) 2.1% features leak more than
3 bits information, meaning that an attacker is able to narrow down the possibilities to one
eighth by any of these features; (b) 19.91% features leak less than 3 bit but more than 2 bits
information; (c) 23.43% features leak 1 bit to 2 bits information; and (d) 54.55% features
leak less than 1 bit information. It is clear that nearly half of the features are able to help
an attacker to reduce the size of the anonymity set by half. Yet our experiment shows that
a single feature leaks no more than 3.45 bits information, which is the maximum leakage
we observe in our experiment from the feature of rounded outgoing packet count. We also
observe that outgoing packet count without rounding leaks 3.26 bits information, 0.19 bit
less than the rounded one. We observe similar information leakage increase by rounding for
total packet count and incoming packet count. Our results confirm the observation in [67]
that rounding packet count can help website fingerprinting attacks.

Web-browsing is characterized by asymmetric traffic. The incoming packets, which con-
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tain the requested contents, usually outnumber the outgoing packets carrying the request.
A natural question is, does download stream having more packets leak more information
than upload stream? The answer is no: download stream leaks 3.04 bits information, 0.22
bit less than the incoming stream. Our measurement suggests that defense design should
give no less (if not more) attention to upload stream in hiding both streams’ packet count.

The most informative timing feature is the average of inter-packet timing for download
stream with 1.43 bit leakage. Among inter-packet timing features, the maximum leaks
the least information with around 0.7 bit leakage. Another category of timing features is
transmission time. We observe that the information leakage increases from 25% percentile
to 100% percentile transmission time. The most information leakage for transmission time
comes to the total transmission time, which leaks 1.21 bit information. Furthermore, our
measurement shows that information leakage of timing features has little difference for
upload and download stream.

We also experiment the impact of world size on individual feature’s information leakage.
We try to answer: with a larger world size, whether the information leakage of indiviual
features increases or decreases. We further adopt Alexa top 500 and top 1000 separately for
closed-world setting, and we conduct the same information leakage measurement as above.
Note that the information leakage upper bound under the world size 100, 500, and 1000
is 6.64, 8.97, and 9.97 bits, respectively. Our finding is that the impact of world size on
information leakage is minimal, as is shown in Figure 6. Particularly, when the world size
increases from 500 to 1000, the features’ individual information leakage is almost the same.
Further analysis will be given in subsection 4.4.1.

Joint Information Measurement. Among the 100 most informative features, many
of the features share redudant information with other features. We set a threshold to 0.9,
and if two features have mutual information larger than 0.9, we would consider a feature
sharing most of its information with another one. Our results show that 62 of the 100
most informative features can be represented by the other 38 features, demonstrating the
prevalence of redundant features in website fingerprint. This finding shows the necessity and
effectiveness of our Mutual Information Analyzer in recognizing features sharing redundant
information. Figure 8 also shows that after including sufficient non-redundant features,
the category information leakage tends to reach plateau. This phenomenon shows that we
can approximate the information of a category by including sufficient non-redundant most
informative features in this category.

Categories such as Time, Ngram, Transposition, Interval-II, Interval-III, Packet Distri-
bution, Packet per Second, and CUMUL leak most of the information about the visited
websites; other categories such as Packet Count, Interval-I, Burst, First20, First30 Packet
Count, Last30 Packet Count leak 5.75, 5.86, 6.2, 4.20, 1.29, and 1.03 bits information, re-
spectively. Our measurement shows that Interval-II and Interval-III leak more information
than Inerval-I, with 6.63 bits for both Interval-II and Interval-III. In addition, we find that
Interval-II and Interval-III are faster than Interval-I in reaching the plateau, indicating the
former twos not only leak more information but also with less features. It is clear that
recording intervals by their frequency of packet count (adopted in Interval-II and Interval-
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III) is more preferable than recording them in sequence (Interval-I).
We also experiment the impact of world-size on information leakage upon categories in

closed-world setting. We find that with the increase of world size, most categories exhibit
more information leakage, except First30 and Last30 Packet Count. Note that categories
such as First20, Burst, Packet Count show little increase when the world size increases from
1000 to 2000. We leave the discussion to subsection 4.4.1.

4.4.1 World Size and Information Leakage

In this section, we discuss the impact of the world size on our information leakage measure-
ment.

We start with the closed-world setting. We observe that with the increase of the world
size, the information leakage for most categories and the total increases as well, while the
individual information leakage of features is little impacted (particularly when the world
size increases from 1000 to 2000). To explain the conflicting observations, we highlight the
notion of maximum possible information leakage of a setting. A feature (or a set of features)
leaks no more information than the information that the setting has. For example, in our
closed-world setting with 100 websites, the total information leakage is 6.63 bits. But if we
let the world size be 2, the total leakage is no more than 1 bit, no matter how distinguishable
the fingerprint is. Therefore we argue that the increased information leakage with larger
world size for most categories and the total is because the website fingerprint has the ability
to leak more information than the information that our closed-world settings have. This
phenomenon leads to an interesting question: what is the maximum information leakage
the website fingerprint is able to leak in a sufficiently larger world size, which we include in
our future work.

For the features’ individual information leakage, we observe that the leakage in each
setting is much less than the information that these setting have, and that the world size
has little impact on the measurement. We explain the reason for the little impact of the
world size by the following theorem:

Theorem 2. Let’s consider x closed-world settings with equal world size n. Suppose
a feature F = f̄ has valid information leakage of I1, I2, · · · , Ix in each closed-world setting.
In the combined closed-world setting with nx world size, the information leakage of F = f̄
would be I1+I2+···+Ix

x .
Proof: let’s denote the information leakage in each closed-world setting to be:

Il = log2(n) +
∑

l∈{1,··· ,n}

ql(i)log2(ql(i)) (5)

, where ql(i) is the probability of visiting the ith website in the lth closed-world setting
conditioned on F = f̄ .
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Figure 9: Defenses with Different World Size.

In the combined closed-world setting, the information leakage of F = f̄ is

log2(nx) +
∑

l∈{1,··· ,x}

{
∑

i∈{1,··· ,n}

ql(i)

x
log2(

ql(i)

x
)}

= log2(n) +
1

x

∑
l∈{1,··· ,x}

∑
i∈{1,··· ,n}

ql(i)log2(ql(i))

=
I1 + I2 + · · ·+ Ix

x

(6)

This theorem reveals the relation between world size and information leakage. With each
closed-world setting including sufficient websites, the combined larger world size would have
little impact on the information leakage.

We also evaluate world size impact on defenses in closed-world setting. Figure 9 shows
that in Tamaraw, world size has little impact on information leakage. No matter how large
the world size is, the information leakage for Tamaraw is around 3.3, 2.72, 2.45 bits for
L = 100, 500, 1000. BuFLO with τ = 120 is not impacted by world size, but BuFLO with
τ = 20, 60 see the increase of information leakage. The different impact from world size
roots in BuFLO’s mixed nature.

We discuss the world size impact on the open-world setting. Here the world size refers to
the size of the non-monitored websites. We find that with a larger world size, the maximum
information leakage decreases. In addition, as is shown in Section 4.6, world size also has
little impact on the measure.

4.5 Validation
Information Leakage Measurement Validation. This section shows how accurate our
measurement is. We adopt bootstrapping with 20 trials to give the 90% confidence interval
for the information leakage measurement. Figure 10 (a) shows the confidence intervals for
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Figure 10: Information Leakage Measurement Validation: 90% Confidence Interval for the
Measurement

top 100 most informative features. We find that the width of the intervals is less than 0.178
bit, and the median is around 0.1 bit. Figure 10 (b) gives the 90% confidence interval for
15 categories. The width of these intervals is less than 0.245 bit, with the median 0.03
bit. We find that the interval having the largest width is the category of Interval-I. The
bootstrapping results validate our information leakage measurement.

bootstrapping: accuracy estimation for information leakage quantification
We use bootstrapping [22] to estimate the accuracy of our information-theoretic mea-

surement. bootstrapping is a statistical technique which uses random sampling with re-
placement to measure the properties of an estimator.

We implement bootstrapping to estimate the confidence interval of the information
leakage. We describe our bootstrapping in the following:

• Step 1: for the observations of the each website, we apply random sampling with
replacement, in which every observation is equally likely to be drawed and is allowed
to be drawed more than once (with replacement). We let the sampling size be equal
to observation size.

• Step 2: we apply our measurement on the newly constructed dataset of resamples and
obtain the information leakage.

• Step 3: Step 1 and Step 2 are repeated K times to obtain K values for the information
leakage; We therefore find the CI confidence interval based on these K values.

Subsampling [69] is a special bootstrapping technique. It uses sampling without replace-
ment, and its sampling size is usually much smaller than the observation size.

Dataset Validation. We use the top 100 Alexa websites in the closed-world setting,
as do previous works. But what if the top 100 Alexa websites are not representative for Tor
networks? Do our information leakage results still hold? While the representative websites
are still unknown, we validate our results by subsampling [69].
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Figure 11: Dataset and Generalization: the 90% confidence interval by website subsampling

Subsampling is a bootstrapping technique without replacement (more details are given
in Section 4.5). It provides the bootstrapped confidence interval for our information leakage
results when the representative websites are unknown. In the experiment, we have 2200
websites for subsampling. In each round, we randomly sample 100 websites without re-
placement to construct the bootstrapped dataset. Repeating the same procedure n times
(n = 20 in our experiment), we have n such datasets to obtain n bootstrapped measure-
ments. Finally, we get the bootstrapped confidence interval for validation.

Figure 11 displays the 90% confidence interval for the top 100 most informative features
and 15 categories of features. Not surprisingly, including different websites in the closed-
world setting does make a difference in the measurement, but Figure 11 shows such impact
is very limited. Among top 100 informative features, most of them have confidence interval
with less than 0.5 bit width, so do most of categories (even less for some categories). The
exception only comes to category Interval-I. By subsampling, we validate our information
leakage results even when the true representative websites are still unknown.

4.6 Open-world Information Leakage
In the closed-world scenario, the attacker knows all possible websites that a user may visit,
and the goal is to decide which website is visited; In the open-world setting, the attacker
has a set of monitored websites and tries to decide whether the monitored websites are
visited and which one. The difference in information leakage is that the open-world has
n + 1 possible outcomes, whereas the closed-world has n outcomes where n is the number
of (monitored) websites. We include the details about how to quantify this information in
the following.

Open-world Setting. The information leakage I(F ;O) in the open-world scenario is:

I(F ;O) = H(O)−H(O|F ) (7)
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Figure 12: Open-World Setting: Information Leakage by Categories

H(O) = −
∑
ci∈M

Pr(ci) log2 Pr(ci)

−

∑
cj∈N

Pr(cj)

 log2 {
∑
cj∈N

Pr(cj)}
(8)

H(O|F ) =

∫
F
p(f)H(O|f)df (9)

H(O|f) = −
∑
ci∈M

Pr(ci|f) log2(Pr(ci|f))

−

∑
cj∈N

Pr(cj |f)

 log2 {
∑
cj∈N

Pr(cj |f)}
(10)

where O is a random variable denoting the visited website belongs to the monitored
or the non-monitored, and if it is monitored, which one. M denotes the monitored set
of websites, and N denotes the non-monitored set of websites. F denotes the domain for
feature F .
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Experimental Results This section describes part of our results for the open-world
information leakage. For more information, please visit our Github repository.

Experiment Setup. We adopt the list of monitored websites from [84] and collected
17984 traffic instances in total. Our non-monitored websites come from Alexa’s top 2000
with 137455 instances in total. We approximate the websites’ prior probability by Zipf
law [11, 30], which enables us to estimate a website’s prior probability by its rank. We
conduct experiments with top 500, 1000, 2000 non-monitored websites separately, and we
show the experimental results in Figure 12.

Figure 12 shows that the open-world information leakage is decreased when including
more non-monitored websites, with 1.82, 1.71, 1.62 bit for top500, top1000, top2000, re-
spectively. Including more non-monitored websites decreases the entropy of the open-world
setting rather than increasing it. The reduced information is in part because of the prior on
monitored websites. Compared with closed-world setting with similar world size, open-world
scenario carries much less information.

Similar with the closed-world setting, Figure 12 shows that most categories except
First20, First30 and Last30 Packet count, and Interval-I leak most of the information.
This shows that the difference in world setting has little impact on categories’ capability in
leaking information.

We also investigate how the size of the non-monitored websites influences our measure-
ment. We focus on the total leakage and build the AKDE models for the non-monitored
websites with the varying size of the non-monitored, respectively. We evaluate how the
difference of these AKDE models influences measurement. Specifically, we evaluate (a) how
monitored samples are evaluated at these AKDE models, and (b) how samples generated
by these AKDE models are evaluated at the monitored AKDE. Figure 13 shows the results.
Figure 13 (a) shows that these AKDE models of the non-monitored, though differing in
size, assign low probability (below 10−10 with 95% percentile) to monitored samples. Fig-
ure 13 (b) shows that though these AKDE models for the non-monitored generate different
samples, the difference on how these samples are evaluated by the AKDE model of the
monitored is little: they are all assigned low probability below 10−20 with 95% percentile.
The results lead to the estimation that introducing extra lower rank websites into the non-
monitored set would not significantly change the low probability that the non-monitored
AKDE assigns to monitored samples, and the low probability that the monitored AKDE as-
signs to samples generated by the non-monitored AKDE, thanks to the low prior probability
of these websites. The information leakage is therefore little impacted.

4.7 Measuring WF Defenses with Information Leakage
This section firstly gives the theoretical analysis on why accuracy is not a reliable metric to
validate a WF defense. Then we measure the WF defenses’ information leakage to confirm
the analysis. Note that we choose the closed-world setting in the evaluation, as the setting is
most advantageous for attackers, and we can get an upper bound for the defense’s security.
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Figure 13: Size of the Non-Monitored Websites and Open-World Information Leakage Mea-
surement: (a) Monitored Samples at Non-Monitored AKDE, and (b) Non-Monitored Sam-
ples at Monitored AKDE

4.7.1 Accuracy and Information Leakage

Using accuracy to prove a defense to be secure is flawed. This section would investigate
the information leakage corresponding to a specific accuracy. We find that given a specific
accuracy, the actual information leakage is far from certain.

Theorem 1. Let {c1, c2, · · · , cn} denote a set of websites with prior probabilities
p1, p2, · · · , pn, and vi denote a visit to website ci. Suppose a website fingerprinting classi-
fier D which recognizes a visit vi to be D(vi). The classifier would succeed if D(vi) = ci,
otherwise it fails. Assume a defense has been applied, and this classifier has α accuracy in
classifying each website’s visits. Then the information leakage obtained by the classifier is
uncertain: the range of the possible information leakage is

(1− α)log2(n− 1) (11)

Proof: Let I(D;V ) denote the information leakage that the classifier attains. we have

I(D;V ) =H(D)−H(D|V )

=H(D)−
∑
vi∈V

p(vi)H(D|vi) (12)

We then evaluate H(D|vi), vi ∈ V . With the accuracy α, we have Pr(D = vi|vi) =
α. However, it is uncertain about the probability Pr(D = vj |vi) where j 6= i, from the
knowledge of the accuracy. We put the possibility in two extremes to obtain the range of
possible evaluation. In one case, suppose that the classifier determines vi to be from the
website Cĵ with probability 1− α, so that the maximum of I(D;V ) is obtained as

max{I(D;V )} = H(D) + α log2 α+ (1− α) log2 (1− α) (13)
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Figure 14: Website Fingerprinting Defenses: Accuracy vs. Information Leakage

In the other case, suppose that the probabilities Pr(D = vj |vi) = (1−α)/(n− 1) where
j 6= i, which means that except the correct decision, the classifier determines the visit vi to
belong to any website other than Ci with equal probability. Such a case yields the minimum
possible information leakage, which is:

min{I(D;V )} = H(D) + α log2 α+ (1− α)log2
1− α
n− 1

(14)

As a result, the range of potential information leakage I(D;V ) conveyed by the accuracy
α is

(1− α)log2(n− 1) (15)

An Example. Figure 1 shows an example for the theorem. Note that the range is invariable
no matter what we assume for websites’ prior probability. We can see a wide range of
possible information leakage when a low accuracy is given, showing that low accuracy doesn’t
necessarily guarantee low information leakage.

4.7.2 Information Leakage Measurement upon WF Defenses

We include Tamaraw [15], BuFLO [21], Supersequence [84], WTF-PAD [44], and CS-
BuFLO [14] to quantify the information leakage upon defensed traffic.

We adopt the implementation of BuFLO, Tamaraw, and Supersequence [8] to generate
the defensed traffic, with τ =5, 10, 20, 30, 40, 50, 60, 80, 100, or 120 for BuFLO, L ranging
from 10 to 100 with step 10 and from 200 to 1000 with step 100 for Tamaraw. We include
the method 3 of Supersequence, with 2, 5, or 10 super clusters, and 4, 8, or 12 stopping
points. We also include the method 4 of Supersequence, with 2 super clusters, 4 stopping
points, and 2, 4, 6, 8, 10, 20, 35, or 50 clusters. We use the implementation [7] to create the
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WTF-PAD traffic. We were recommended to use the default normal rcv distributions on
our dataset, as finding an optimal set of distributions for a new dataset is currently a work
in progress [7]. We apply the KNN classifier [84] on our WTF-PAD traces, and we can get
similar accuracy (18.03% in our case). This classification result validates our WTF-PAD
traces. We use the implementation [29] to generate simulated CS-BuFLO traces.

Upon each type of defensed traces, we evaluate the overall information leakage and
the classification accuracy at the same time. The measurement is conducted in closed-
world setting with 94 websites. To evaluate the total information leakage, we assume equal
prior probability for websites and adopt k = 5000 for Monte Carlo Evaluation. We use
bootstrap [22] with 50 trials to estimate the 96% confidence interval for the information
leakage and accuracy. For details about bootstrap, please see Section 4.5. Note that we redo
the dimension reductions for each defense, as a WF defense changes the information leakage
of a feature and the mutual information between two features. The classifier we adopt is a
variant of the KNN classifier [84]. The only change we make is the feature set: we use our
own feature set instead of its original one. The purpose is to have equivalent feature sets for
classifications and information leakage measurements. The reason for choosing this KNN
classifier is that it is one of the most popular website fingerprinting classifiers to launch
attacks and evaluate defense mechanisms. It’s also worth noting that the original feature
set of the KNN classifier is a subset of our feature set. The experimental results are shown
in Figure 14.

4.7.3 Accuracy is inaccurate

Accuracy is widely used to compare the security of different defenses. A defense mechanism
is designed and tuned to satisfy a lower accuracy as an evidence of superiority over existing
defenses [21]. With defense overhead being considered, new defense mechanisms [15,44] are
sought and configured to lower the overhead without sacrificing accuracy too much. But if
accuracy fails to be a reliable metric for security, it would become a pitfall and mislead the
design and deployment of defense mechanisms. This section describes the flaws of accuracy
and proves such a possibility.

Accuracy may fail because of its dependence on specific classifiers. If a defense
achieves low classification accuracy, it’s not safe to conclude that this defense is secure,
since the used classifiers may not be optimal. More powerful classifiers may exist and
output higher classification accuracy. We prove this possibility in our experiment. To
validate WTF-PAD, four classifiers were used including the original KNN classifier, and the
reported highest accuracy was 26%. But using the KNN classifier with our feature set, we
observe 33.99% accuracy. Thus, accuracy is not reliable to validate a defense because of its
dependence on specific classifiers.

Defenses having equivalent accuracy may leak varying amount of informa-
tion. Figure 14 demonstrates such a phenomenon when taking BuFLO (τ = 40) and
Tamaraw (L = 10) into consideration. Accuracy of both defenses is nearly equivalent, with
9.39% for BuFLO and 9.68% for Tamaraw. In sense of accuracy, BuFLO (τ = 40) was
considered to be as secure as Tamaraw(L = 10). However, our experimental results disap-
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prove such a conclusion, showing BuFLO (τ = 40) leaks 2.31 bits more information than
Tamaraw (which leaks 3.26 bits information). We observe the similar phenomenon between
WTF-PAD and Supersequence.

More importantly, a defense believed to be more secure by accuracy may
leak more information. Take BuFLO (τ = 60) as an example. Its accuracy is 7.39%,
while accuracy of Tamaraw with L = 10, 20, 30 is 9.68%, 9.15%, and 8.35% respectively.
Accuracy supports BuFLO (τ = 60) is more secure than Tamaraw with L = 10, 20, 30.
However, our measurement shows that BuFLO (τ = 60) leaks 4.56 bit information, 1.3 bit,
1.61 bit, and 1.75 bit more than Tamaraw with L = 10, 20, 30! Take WTF-PAD as another
example. The accuracy for WTF-PAD is 33.99%, much lower than the 53.19% accuracy of
Supersequence method 4 with 2 super clusters, 50 clusters, and 4 stopping points. But the
information leakage of WTF-PAD is around 6.4 bits, much higher than the leakage of the
latter which is about 5.6 bits. Our experimental results prove the unreliability of accuracy
in comparing defenses by security.
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Figure 15: Information (bits) about the number of images in a page given by each of the
3043 individual traffic features found in our preliminary work
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4.8 An Example of Applying WeFDE
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Figure 16: Information (bits) about the number of included Javascript libraries in a page
given by each traffic feature

The success of website fingerprinting attacks is due to the fact that the varying contents
of a web page cause variation in the traffic features an attacker can observe. While recent
works [29,63,64] have found that some classes of contents can influence the fingerprintability
of a page more than others, most works continue to focus on the indirect link between a
web page and traffic features.

The link between content types and traffic features is unexplored. The goal of this
proposal is to shed light on such link. Specifically, we will investigate: (a) how different types
of contents influence the traffic features, (b) how to use traffic features to infer underlying
types of contents.

The benefits of doing so are twofold. Firstly, the results will capture how an attacker
might learn the users browsing behaviour even when the browsed webpage is unsupervised.
Traditional website fingerprinting attacks usually adopt the supervised or semi-supervised
learning in the sense that a set of pages is supposed to be visited or monitored. However,
this assumption is unrealistic, the potential web pages that a user may visit is so many that
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it is unrealistic to assume a small set of them. Our results may show that even a page is
unsupervised, it is still possible to learn information about the users behaviours. Secondly,
knowing enough about the contents of a download can enable linking back to a specific
page.

4.8.1 Evaluation Results.

Our preliminary results calculate the information leakage from individual features about the
webpage contents. We apply the WeFDE framework to measure the information leakage
from features about the number of images embedded and Javascript libraries included in a
page. The dataset consists of 157 websites, with 121431 instances in total. We count how
many images or Javascripts are in each website page, and label it with this count, using
binning to smooth the class sizes. The results are shown in Figures 15 and 16.

The results show that the individual features leak a signinficant amount of information
about the contents. For example, total packet count alone leaks 1.81 bits information about
the embedded image count. Our preliminary results on webpage classification indicate
that there are enough independent features that by combining several similarly informative
features, the image count should be uniquely identifiable. Since we observe a similar level of
information about javascript count, this suggests that for many content classes, the content
to feature mapping can be reconstructed.



5 Mailet: Social Networking un-
der Censorship

5.1 overview

Social Media websites such as Twitter and Facebook have grown to play a prominent role
not only in the social lives of their users, but as an important source of news about current
events [51], communication hub in emergencies [80], and a coordination mechanism for
social and political activism [77]. Correspondingly, governments in many countries have
either permanently or temporarily blocked or threatened to block access to these sites; for
example the herdict.org censorship data site reports at least 10 different countries blocking
Facebook at some point in 2014 and 11 blocking Twitter. In response to this blocking, users
in these countries often turn to circumvention tools; one survey of circumvention users found
that accessing social media sites was the second most common reason for using these tools,
with over 70% of respondents citing this intent [1].

In response to the popularity of some circumvention tools, several nation states have
deployed technology that blocks access to these tools, through a combination of address
blocking, protocol filtering based on deep packet inspection (DPI) and active probing to
reduce false positives. This has led researchers to engage in an “arms race” of protocols
and attacks for “unobservable transport.” Steganographic “parrot” protocols [60,82,87] at-
tempt to imitate protocols the censor will be reluctant to block, but many of these schemes
were shown to suffer from imitation flaws [33]. Decoy Routing schemes [34, 46, 93, 94] use
backbone routers as proxies to imitate connections to arbitrary unblocked hosts, but were
shown to require impractically large and targeted deployments in order to avoid availability
attacks [38, 73]. “Hide-within” systems [12, 36, 97] attempt to hide both the true destina-
tion and the covert nature of circumvention connections by tunnelling connections through
popular services such as email, VoIP, and cloud storage. In addition to requiring high band-
width overhead, these schemes were shown to suffer from detection and blocking attacks
stemming from inconsistency between the data volume and loss tolerance of the proxy and
cover applications [26].

As a result of this arms race, it is unclear whether there can be a single cover protocol
that can handle arbitrary Internet content. An alternative strategy is to develop a small
number of systems, each of which is difficult to detect or block when carrying a specific type
of content. This strategy is supported by the finding that in China, most circumvention use
is motivated by unfiltered search, unfiltered social media access, and video sharing sites [1].



5 MAILET: SOCIAL NETWORKING UNDER CENSORSHIP 40

An example of this strategy is Facet [55], which was designed to provide uncensored access
to YouTube, Vine and Vimeo by playing the videos over an encrypted Skype call; since these
videos are content-consistent the attacks on other “hide-within” schemes do not apply.

Given the important role of social media sites, finding an unobservable and difficult
to block transport protocol for these systems is an important next step. Note that these
services present several challenges not present in the social video context: they are not
loss-tolerant, so they cannot rely on voice or video-based channels; they are authenticated,
so the system should provide different privileges to different users; and the content provided
is private, so it should be difficult for the circumvention to access or modify the content
without the user’s consent.

We present Mailet, an unobservable transport which provides unfiltered social website
access by using email applications. Mailet servers and clients exchange the text content of
a social media website via email. Specifically, the client sends an email to an inbox accessed
by the server with the specified service details included; and on behalf of the client, the
Mailet server communicates with the social website and emails back the response text, if
any. This design guarantees channel consistency and has no imitation flaws. This makes
Mailet immune to existing attacks. In addition, Mailet has several desirable features:

Mailet is secure against untrustworthy proxies. The Mailet design enables Mailet
servers to provide privileged services without learning the social media login credentials of
the client, using a threshold trust approach. In Mailet, the client is allowed to split and
distribute the credential to a set of Mailet servers, and each server holds a share of the secret.
Without learning the other shares, a single server can not recover the credential alone.
When presenting the credential to the social website, Mailet servers should combine the
shares privately. However, existing social websites do not support decentralized or privacy-
preserving authentication, and expect to interact with clients through a single TLS session.
Mailet solves this problem by proposing a highly efficient Galois/Counter Mode (GCM)
based secure computation to enable the servers to recover the credential without disclosing
their separate credential copies to each other. This computed TLS message contains the
complete credential and is consistent with the social website interface. Comparing with the
conventional secure two-party computation (2PC), which enables two parties to evaluate a
function without revealing their inputs to each other [41, 58, 96], our approach can achieve
a speedup of 120. This high efficiency can make a normal Mailet server to support up to
200 simultaneous sessions with each service request being completed in about 1 second.

Mailet users do not require additional software. Users can access Mailet through
any standard mail client that supports starttls, or any standard webmail service not
controlled by the censor. This resolves the secure distribution or bootstrapping problem
common in circumvention software.

Mailet resists proxy enumeration. Users interact with Mailet by sending email to
mailboxes on widely-used mail services. Even if the censor learns the IP address of the
Mailet servers, blocking direct connections is futile because users and servers never directly
communicate. Thus blocking access to Mailet involves preventing users from sending and
receiving email from users of all of the popular email hosting services on the web.
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Figure 17: Mailet System Architecture: the user in the censored regime splits its
credential into two copies, which are then distributed to two Mailet servers. This protects
the credential of the user, while still being able to fulfill the user’s service requests after the
two servers running secure computation to recover the credential privately.

We have implemented the Mailet protocol for use with Twitter. We describe this im-
plementation, which we release as open source software4, and evaluate its performance and
security as a circumvention tool both experimentally and analytically. We find that its
performance is adequate and hope that other organizations will be willing to deploy Mailet
servers as well, providing stronger security against server collusion and providing users with
a free and secure alternative circumvention tool.

5.2 Mailet Design

The Mailet system uses email channels to facilitate communication between clients in a cen-
sored regime and social media websites. Instead of using email as a carrier for TCP/IP [97],
Mailet directly transmits application-level content. This design reduces bandwidth require-
ments between clients and Mailet servers, while also increasing resistance to traffic analy-
sis and differential channel attacks. The primary challenge associated with this design is
protecting the clients’ credential information. Social websites require a client to submit
authentication credential in order to provide some privileged services, but cannot be relied
on to provide a notion of limited delegation; thus for the Mailet system to represent a client
it must have authentication credentials for that client’s account. This poses a potential
security threat to the client, since a malicious or compromised Mailet server could leak or
otherwise misuse these credentials.

To protect the clients’ credential information, Mailet is designed so that the system can
use the credential even though no individual server will know it. In order to achieve this
goal, we introduce a decentralized Mailet server structure, in which sub Mailet servers are
controlled by separate parties, and clients distribute credential information among some of
them, so that these servers can collectively represent the user while no individual server can
access the credentials. In the following, we introduce the Mailet server design.

4https://github.com/magicle/Mailet
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5.2.1 Architecture.

Mailet servers and clients communicate with each other by email. Clients send commands
and message to be posted to servers via email, and servers use email to deliver site contents
to clients. In the system architecture, there are four types of entities:

• Mailet Clients are assumed to be able to access an uncompromised email service,
but are assumed to have no direct access to the social website, due to censorship or
surveillance.

• Email Service Providers. The Mailet server and client can have different email service
providers, and these providers are assumed to be uncompromised by the censor. We
argue that this is a reasonable assumption. Since Mailet servers are outside of the
censored regime, they can reach uncompromised email service providers. For Mailet
clients, the abundance of independent email providers makes it difficult for a censor
to compromise or filter all of them.

• Mailet Servers. The Mailet design includes multiple servers in order to protect the
credential information of the clients. When a client first enrolls in Mailet, it distributes
its credential information among two randomly selected servers, which collaboratively
present the credential information to the social websites. Each server has its own (set
of) email inbox(es) for communicating with clients.

• Social Websites. In our paper, we implement the Mailet system for Twitter. Social
websites only accept direct connections via TLS, which cannot include third parties;
thus Mailet’s protocols must be designed to match this interface.

For connections that do not require credentials, such as searching tweets, the client can
select a random server to provide the service. For example, if the user wants to search for
tweets, the client can send an email with the command “searchtweet” plus the keyword to
the server, which will search by the specified keywords and email the results to the client.
However, most commands require the client to prove its identity to the website server by
providing its credential. In these situations, Mailet servers use the decentralized credential
mechanism described in the next section to allow transmission of the credential to the social
website server while preventing its recovery by any Mailet server.

5.3 Decentralized Credential

Mailet clients need to share their credentials with Mailet servers when they requires privi-
leged services from social websites, so that the Mailet servers can present the credential to
websites on behalf of its clients. While this concept of the content proxy enhances Mailet in
terms of unobservability and usability, it poses a potential threat to its clients’ credentials
if the Mailet servers are honest-but-curious or even malicious.

To protect the clients’ credential, we propose the decentralized credential mechanism.
Instead of “putting all the eggs in a single basket”, Mailet design allows a Mailet client to
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(b) Mailet Server B

Figure 18: 2PC Time Cost Breakdown: Mailet server A holds the cryptographic keys of
the TLS session and a part of the TLS plaintext, while Mailet server B having the other part
of the plaintext. The computation ends up with a valid TLS message having the client’s
genuine credential. This TLS message is then presented by server B to social websites to
finish the service request. RC4-SHA is used as the cipher suite of the TLS session.

split its credential into two copies, and distribute them in two separate servers (which are
randomly selected by the client). For each server, its holding of one copy cannot enable it
to recover the original credential. This decentralized credential design effectively protects
the clients credential.

A challenge in decentralized credential mechanism is how to privately combine and
represent the credential to social websites. In other words, the Mailet servers should col-
laboratively recover the original credential, and include it in a TLS connection to the social
website, while still preventing each other from learning the other copy. This task is usually
regarded as a secure two-party computation problem: two parties (Mailet servers) holding
separate secret inputs (the credential copies) evaluate a common function (a TLS record
message) without disclosing their inputs to each other. However, since a TLS record mes-
sage in Mailet is usually large (several hundred bytes), a standard two-party computation
is too costly. We implemented a credential recovery by using an optimized 2PC algorithm,
and the costs (time, CPU and memory usage) are shown in Figure 18 and Table 3.5 The
results show that 2PC has to take nearly 6 seconds to finish and consumes about 6 MB
bandwidth between Mailet servers. In addition, it uses about 90% CPU and 9% memory

5We adopted the FastGC framework [41] and implemented the 2PC in 1600 lines of Java.
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Figure 19: TLS Record Format: the general case

for each computer with a Quad-Core processor and 4GB memory.
To overcome this challenge, we propose a novel GCM based Credential Recovery (GCM-

CR) approach to secretly combine the decentralized credential without using the high over-
head secure two-party computation. This design uses Galois/Counter Mode (GCM) cipher
suite in the TLS connection, and takes the advantage of Encrypt-then-MAC (EtM) of GCM
mode to compute a valid TLS record message. Since this scheme involves no 2PC, a valid
TLS record can be computed efficiently. Comparing with the conventional 2PC computa-
tion, our approach can achieve a speedup of 120. In our context, the speedup is equal to

L2PC
LGCM−CR

, where L2PC and LGCM−CR are the latency of the traditional 2PC computation
and the GCM-CR approach, respectively. Furthermore, we propose Checking-by-Sampling
(CbS) mechanism to enhance the Mailet design against a malicious Mailet server crafting
malicious messages on behalf of the client. Before delving into the details about decentral-
ized credential, we first briefly introduce the Transport Layer Security (TLS) protocol.

5.3.1 TLS Protocol

Social media users connect to the website server by TLS protocol. A TLS handshake
protocol is firstly executed by both sides to negotiate the cipher suite to use, exchange
random numbers, and agree on a common pre-master secret by public-key cryptography.

Category Mailet Server A Mailet Server B

OT Prep. 13.1 8.97

Label Transfer 0.79 0

OT Label Transfer 14.8 21.26

Circuit Evaluation 6631.13 0

Total 6659.82 30.23

Table 3: 2PC Downstream Bandwidth Consumption (KB)
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Figure 20: Data Application Format: under stream cipher encryption with HMAC-
SHA1 as MAC algorithm

Afterwards, under the negotiated cryptographic parameters, users communicate with the
website server by encrypted TLS application data, which may include the user’s credential
or the message to post. Then for an attacker, it can neither learn the application data nor
forge a malicious message on behalf of the user or the website server.

The TLS message type can be figured out by any third party, which enables a Mailet
server to intercept at the right time. The method is to examine the ContentType field.
Figure 19 shows all the possible TLS message types and their ContentType field values.
Besides of ContentType, a TLS message also contains ProtocolVersion field, Length field
(the length of the Fragment in byte), and Fragment field. An example of the TLS format
for application data under stream cipher encryption is shown in Figure 23. The content
field is the encrypted application data, and the MAC field is the Message Authentication
Code (MAC) for the application data, a sequence number, ProtocolVersion, ContentType,
and length of the application data. The MAC is computed before the application data is
encrypted. More details are given in the Appendix.

5.3.2 Credential Sharing and Recovering

Credential Sharing. Mailet’s design incorporates multiple servers to store the client’s
credential information. For example, in Figure 17, the No. 1 and No. 3 servers are ran-
domly chosen by the client to hold credential shares Cred1 and Cred2, separately. The
credential generation method is as follows. First, the client generates a random string as
the credential Cred1, whose length is equal to that of the original credential. By XORing
credential Cred1 and the original credential, the client obtains the other credential Cred2.
Finally, the client distributes these two credentials to the chosen servers. Now neither of
these two servers can recover the client’s credential alone.

Credential Recovering. When the client initiates a command that requires credential
use, the two Mailet servers S1 and S2 storing shares of the client’s credential Cred must
collaborate to conduct a TLS session with the social website server that includes Cred. S1

and S2 could recover Cred simply by jointly computing Cred1⊕Cred2, but this would not
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Figure 21: Initiator and Interceptor Structure: the Interceptor intercepts the TLS
application data from the Initiator to the social media website. By collaborating with the
Initiator, it regenerates a valid TLS application data which has the genuine credential.

be secure since then both servers would know Cred.
The approach in this section for privately generating the valid TLS record message

relies on the Initiator-Interceptor structure. Particularly, we assign the servers asymmetric
roles: one server is the Initiator, and the other is the Interceptor, shown in Figure 21. The
initiator initiates the client side of the TLS handshake with the social website server, using
the interceptor as a proxy to pass messages to the server, so that from the point of view
of the social website, the connection originates from the interceptor. At the conclusion
of the handshake, the initiator and the social website server share symmetric keys, so the
interceptor is unable to decrypt the traffic passed to the social website.

After the TLS handshake, the initiator continues to forward TLS records through the
interceptor to initiate the application-level session; once the TLS record containing only
Cred1 arrives at the Interceptor, the interceptor holds on this message, and regenerates a
valid TLS record having Cred = Cred1 ⊕ Cred2 with the help of the Initiator. Finally,
the Interceptor sends the regenerated message instead of the original TLS message. The
approach to regenerating a valid TLS record is described in the following.

5.3.3 GCM based Credential Recovery

We introduce the credential recovery without involving 2PC. The GCM-CR approach uses
the cipher suites of GCM mode in the TLS session, and takes the advantage of GCM’s
stream cipher property and EtM feature.

Galois/Counter Mode (GCM). GCM is an operation mode for symmetric key block
ciphers. It is an authenticated encryption algorithm, and can provide data confidentiality
and integrity simultaneously. Due to its high speed with low cost and low latency, GCM
mode has been included in TLS cipher suite list, and widely implemented by popular web-
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Figure 22: Credential Recovery with GCM Mode: the Interceptor receives H and
Ek(IV ||00000001) from the Initiator and creates a valid Auth Tag for the ciphertext in-
cluding the genuine credential.

site servers.

Recover the Credential in Ciphertext. For the encryption, GCM resembles the counter
mode encryption, and turns a block cipher into a stream cipher. This makes the creden-
tial recovery in the ciphertext convenient. For the Initiator, it encrypts the TLS record
message with cred1 in place of the original credential cred, and passes this message to the
Interceptor. The Interceptor can locate the credential cred1 with the help of the Initiator,
and XOR Cred2 with the ciphertext bytes in this location, so that when the website server
decrypts the TLS message, the plaintext will contain Cred. Since the Interceptor does
not know the symmetric key, it cannot recover Cred, while the initiator does not see the
completed record, and also cannot recover Cred. However, recovering the credential in the
ciphertext/plaintext alone is not sufficient. The Interceptor has to generate a correct MAC
to make the TLS record message valid.

Validate the TLS Record. In GCM mode, the plaintext is first encrypted, then an
authentication tag is computed based on the ciphertext by a GHASH function. This
Encryption-then-MAC (EtM) property enables the Interceptor, which has access to the
ciphertext, to compute a valid authentication tag without having to do a 2PC with the
Initiator. The authentication tag generation is shown in Figure 22. Note that the Initiator
should share the H (the encryption of 128 bit 0s) and Ek(IV ||00000001) (the encryption of
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Figure 23: Checking-by-Sampling: the Interceptor randomly chooses n − 1 sessions to
check the correctness of the non-credential HTTP fields. The commitment H(KEYi) is
required to force the Initiator to provide the true TLS session key in the latter phase.

the first counter) with the Interceptor. This does not break the security of the cryptographic
system. It leaks neither the TLS session key nor the Initiator’s credential Cred1.

Though GCM-CR can effectively protect the clients’ credentials in the honest-but-
curious attack model, it cannot prevent a malicious server from corrupting the protocols.
Both Initiator and Interceptor can maliciously flip the bits in other fields of the TLS record
message without being noticed by each other, so that they can change the APP ID to be
authorized and the message to be posted, etc.. In the following, we give a solution to prevent
the Initiator from crafting malicious messages.

5.3.4 Interaction Integrity

By applying the decentralized credential mechanism, A corrupted Mailet server is prevented
from knowing the user’s credential. However, this server might seek to modify the TLS
message in a covert way to manipulate the outcomes of the protocol. An incorrect tweet
may be posted, or a wrong third-party App is authorized because of this attack. In this
section, we propose approaches to detect and prevent such attacks.

A Corrupted Mailet Interceptor. This Interceptor may flip the bits of the TLS cipher-
text to manipulate a HTTP field value in the GCM-CR. To prevent such attacks, Mailet
can randomize the order of fields in requests, and pad requests with separator strings of
random length, making it difficult to predict the location of the desired field. In addition,
an Initiator can screen the response from Twitter for a corrupted Interceptor. For exam-
ple, when posting a tweet, the Initiator receives a response including the tweet ID, which
allows it to retrieve the tweet. An inaccurate tweet indicates the presence of a corrupted
Interceptor.
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Figure 24: Time for None-Privileged Mailet Services (s): (a) and (b) give the ECDF
of a client’s waiting time and the Mailet server’s Request Fulfillment Time (RFT); (c)
shows the ECDF of the email channel’s delay; (d) represents the ECDF of the RFT when the
authorized Mailet server fulfilled the privileged services by the Twitter APIs as a comparison
with the GCM-CR based approach.

A Corrupted Mailet Initiator. Violating the interaction integrity is much easier when
the corrupted Mailet server takes the role of the Initiator. This is because this malicious
Initiator can craft any arbitrary plaintext of the TLS message in GCM-CR. In order to
enhance Mailet design against a malicious Initiator, Checking-by-Sampling (CbS) mecha-
nism is proposed. Instead of initiating a single TLS session with the website server, the
Initiator starts n parallel sessions which are all passed through the Interceptor. For all these
sessions, the Initiator cuts off the ciphertext of its credential copy and passes only the rest
of the TLS record messages with n commitments to corresponding TLS session keys. The
commitment for each TLS session can be the cryptographic hash of the session keys. For
the Interceptor, it chooses n− 1 out of n TLS sessions to open by requesting the Initiator
to provide n− 1 corresponding session keys. The Interceptor checks the commitments, and
if malicious messages are detected, it stops the collaborative computation with the Initia-
tor. Otherwise, the Initiator is believed to be honest and the only TLS session left is used
for credential recovery. Before doing so, the Initiator should complete this TLS record by
providing the Interceptor with its credential ciphertext.

This enhancement can practically prevent an malicious Initiator. Even for a smart
malicious Initiator, it only has 1/n probability to succeed for each session. Being malicious
for multiple sessions, the malicious Initiator would be probably detected and reported.

5.4 Performance Analysis

This section measures the Mailet system from the perspective of performance. It evaluates
the CPU, memory, and time cost of the Mailet servers, and demonstrates the feasibility of
Mailet.
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Figure 25: Time for Privileged Mailet Services (s): (a) and (b) show the ECDF of
Mailet servers’ Request Fulfillment Time (RFT); (c) and (d) measure the ECDF of RFT
when CbS is adopted.

5.4.1 Mailet Server Overhead

This part evaluates the Mailet server’s overhead in terms of CPU and memory usage. Before
giving the experimental results, we first introduce the experiment setup.

Experiment Setup. We started our experiment on two desktop computers A and B,
which were connected by a local area network (LAN). The computers are Dell Precision
T1500s, with the Ubuntu 14.04.1 LTS operating system. The processor for each computer
is an Intel Core i7 CPU 860 (Quad-Core) 2.80GHz. The memory size for computer A is
8GB, and for computer B it is 4GB. They both have 8GB for swap space. The Initiator
resided at B, and A was used as the Interceptor. The password in the credential is 10 bytes
long, and the account is 17 bytes long.

We used a laptop as the Mailet user, which is a Lenovo Thinkpad T400 with an Intel
T9900 processor and 6GB memory. This user sended service requests to the two Mailet
servers over the Internet, and the services included authorization, posting a tweet, and
retweeting. At the servers’ sides, after receiving a request, they started to log the accumu-
lative CPU and memory usages of the Mailet system until this request is fulfilled. The final
measurement results are the average of multiple trials. In addition, the system cost with
Check-by-Sampling mechanism was also logged as a comparison.

Evaluation Results. Table 4 gives a summary about the CPU and memory usage for
the Initiator and Interceptor. In the table, the cost of the services (authorization, posting a
tweet, and retweeting) is the cost of the Initiator and the Interceptor handling a single service
request. Note that this measurement excludes the cost of the email clients for clarifications.
The results show that the whole Mailet system (including email clients) only consumes
less than 5.3% of the CPU and at most 1.0% of the memory space. If the Mailet servers
adopt the Checking-by-Sampling mechanism to avoid a malicious Initiator, the overhead
still remains low. Take retweet as an example. When no CbS approach is applied (n = 1),
the CPU usage is 2.0% for the Initiator and 1.8% for the Interceptor. When CbS is applied
with n = 8 (which means the Initiator starts 8 TLS sessions), the CPU usage only rises to
3.15% and 2.0%. In both cases, the Initiator consumes 0.1% memory while the Interceptor
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occupies 0.2% memory. These results show the high efficiency of our GCM-CR approach.

5.4.2 Service Measurement

This part gives the performance analysis for Mailet. In the experiment, we measured the
Mailet service in the following metrics:

• Mailet User’s Waiting Time. This is the period of time between when a user makes
a request and when this user receives the response from the Mailet servers. This time
includes the time of sending and receiving the emails at both sides of the Mailet user
and the server, and the time of the server fulfilling the request by the decentralized
credential or Twitter API calls.

• Request Fulfillment Time (RFT). RFT is the period of time that the Mailet server
needs to handle a request. For non-privileged services, RFT is the time that the server
takes to complete the Twitter API call. For privileged services, RFT refers to the time
cost of fulfilling a request by the decentralized credential mechanism. Note that RFT
excludes the time cost of the email clients.

• GCM-CR Time. This refers to the period of time that the Interceptor spends on
recovering the credential in ciphertext and calculating a valid authentication tag. Note
that this time cost includes the time spent on the Initiator’s transmitting parameters
such as H. For privileged services, the GCM-CR time is part of the RFT, and therefore
it is shorter than the RFT.

For each kind of requests, we logged the above metrics and had 100 trials. For each
metric, the final measurement is the average of the 100 results. The experimental results
are shown in Figure 24 and Figure 25.

None-Privileged Service. Figure 24 (a) gives the time in retrieving the client’s own
tweets. Since collecting a user’s tweets does not necessarily require the permission from this
user, we implemented by using the Twitter API without having the user’s credential. For
the client, the waiting time is from 8 seconds to 16 seconds. On the server side, with 90%

Initiator
Category

Interceptor
CPU MEM CPU MEM

0.4% 0.8% Email Client 0.5% 0.2%
4.88% 0.2% Authorization 1.71% 0.1%
2.25% 0.1% Post a Tweet, n=1 1.3% 0.2%

4% 0.1% Post a Tweet, n=8 1.7% 0.2%
2.0% 0.1% Retweet, n=1 1.8% 0.2%
3.15% 0.1% Retweet, n=8 2.0% 0.2%

Table 4: CPU and Memory Consumption for Mailet



5 MAILET: SOCIAL NETWORKING UNDER CENSORSHIP 52

probability, the API calls can be completed in less than 0.2 seconds. These results show
that the time cost of the email conversations contributes most to the client’s waiting time.

Figure 24 (b) shows the time for the service of searching by keywords. The Mailet server
is configured to return 20 search results in a session, and RFT is less than 1 second. At the
client side, the waiting time is in the range of 3 seconds to 8 seconds. It is worth noting
that the search service can be completed without the user’s credential. Consequently we
implemented this service by using the Twitter API.

Figure 24 (c) presents the time of sending/receiving emails for the Mailet client and
the server. The x-coordinate is set in log scales, and the y-coordinate is the Empirical
Cumulative Distribution Function (ECDF). Both the Mailet client and server have to spend
at least 1 second sending or receiving emails with 50% probability.

To compare GCM-CR with the normal Twitter service access, Figure 24 (d) gives RFT
for posting a tweet/retweeting by Twitter API at the server side when this server is autho-
rized by the user. The server uses about 0.5 seconds to retweet, less than the time of its
posting a tweet, which is in the range of 0.8 to 1.2. For GCM-CR, the server uses about
0.6 seconds to retweet, and 0.8 seconds to post a tweet. This comparison demonstrates the
high efficiency of GCM-CR.

These experimental results show that the email conversations contribute the most to the
client’s waiting time, while most Twitter API calls can be completed by the Mailet server
in less than 1 second. These results demonstrate that Mailet can provide quick access to
non-privileged services of Twitter for its clients.

Privileged Service. The measurements for privileged services are given in Figure 25.
Figure 25 (a) (b) shows how fast GCM-CR can be completed, and how quickly the

Mailet servers handle the services of posting a tweet or retweeting. It shows the GCM-CR
time is under 0.05 seconds, which has a speedup of 120 when being compared with the
conventional 2PC computation. In addition, the figures show that the Mailet servers can
handle a post request in 0.8 seconds and a retweet request in 0.6 seconds on average.

Figure 25 (c) and (d) shows the RFT when the Checking-by-Sampling strategy is applied.
For the post request, when a larger n is adopted (which means the Initiator starts more
TLS connections), the RFT is increased. If n = 4, it takes the Mailet servers about 1.2
seconds to complete a post request. For the case n = 8, the RFT is about 2 seconds. For
the system deployer, it can tune the parameter n to make a trade-off between usability and
security. It is worth noting that if long-term detection is applied in Mailet deployment, a
small n (for example n = 2) is suitable.

The experimental results demonstrate the high performance of the Mailet design, while
having small CPU and memory usages.



6 Streaming over Videoconferenc-
ing for Anti-censorship

6.1 Introduction

As the Internet has become a more useful tool for communicating information between indi-
viduals, censors working for Nation State Adversaries have responded by blocking access to
the unfiltered versions of these sites. Additionally, these censors have also deployed increas-
ingly sophisticated tools to identify and block access to the tools designed to circumvent
this censorship, such as Tor [20] and other proxy services. These tools include sophisticated
protocol fingerprinting via deep packet inspection (DPI), and even active probing attacks,
in which suspected relays are contacted by the censors in order to confirm participation in
the Tor protocol.

In response, researchers have developed systems that attempt to provide proxy steganog-
raphy, which intend to make proxy connections resemble innocent “cover” protocols. For
example, “decoy routing” [35, 47, 95] systems make connections to relays resemble TLS
connections to random websites by hiding the relays in routers; SkypeMorph [61], Censor-
Spoofer [83], StegoTorus [88] and FreeWave [37] attempt to make proxy connections look
like VoIP calls; and Collage [13] hides information in photos posted to content-sharing sites
such as Flickr.

However, recent research [27, 33, 74] has revealed that these systems fail against more
sophisticated censors due to several different inconsistencies between the proxy protocol and
the cover protocol:

• Emulation inconsistencies can occur because either the client or proxy does not per-
fectly implement the cover protocol. StegoTorus’ HTTP module does not respond to
requests in the same way as any well-known HTTP server, and SkypeMorph does not
simulate the TCP control connections [33].

• Channel inconsistencies can occur because the cover protocol responds differently to
channel behavior than the proxy protocol, allowing an adversary to disrupt proxy
connections while minimally impacting innocent connections. Decoy routing imple-
mentations can fail if the censor distributes packets across multiple AS paths to the
“overt” destination, whereas TLS connections will not be affected [74]; VoIP and
videoconferencing protocols are typically loss tolerant whereas proxies fetch general
data and cannot tolerate packet loss [27].
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• Content inconsistencies can arise when the behavior of a cover protocol depends on
the characteristics of the traffic it carries and proxies do not match content to these
characteristics; for example, since the FreeWave server tunnels modem traffic instead
of voice signal over a VoIP channel, its communication session can be identified by
traffic analysis [27,89,91,92].

In light of these potential problems, finding a single cover protocol to carry arbitrary Internet
content seems difficult. However, a recent survey of Chinese users of circumvention tools [2]
found most users circumvent the Chinese “Great Firewall” to use three services: unfiltered
search engines such as Google, uncensored social networks such as Facebook and Twitter,
and video sharing sites like YouTube and Vine. This raises the possibility of serving most
circumvention needs through a small set of unobservable transports.

In this paper, we present Facet, a system that enables the clients in a censored regime
to watch YouTube, Vine and Vimeo videos in real-time. The basic idea of Facet is to send
videos from these sites as the video content of a videoconferencing call – in the case of our
prototype, a Skype call – between a Facet server and a client. Like all proxy steganography
systems, it relies on the assumption that the censor is unwilling to indiscriminately block
all or most sessions of the cover protocol (Skype) to avoid “collateral damage”. Under this
assumption, Facet provides the following features:

• Facet is Emulation Consistent: because the video is transmitted over an actual two-
way Skype call, there is no difference between implementations to allow identification.

• Facet is Channel Consistent: we transmit videos over a channel intended for videos,
so any disruption to a Facet session would cause the same disruption to a regular call.

• Facet is Content Consistent: Arbitrary videos may have different characteristics
from videoconferencing calls, leading to detectable differences in packet sizes. We
implement a binary classifier similar to the approach from Wright et al. [92] and show
that unaltered YouTube videos sent over Skype are distinguishable from Skype calls.
To defeat this, we introduce “video morphing,” in which the Facet server frames the
requested video within a randomly selected videoconference call. This increases the
false positive rate of a classifier that can recognize 90% of Facet calls to nearly 40%.

• As a result, Facet provides Unobservability. Since videoconferencing streams are
encrypted in transmission, it is difficult for censors to detect Facet sessions. Even if the
videoconferencing software (or servers, in case calls are not routed directly between
peers) is compromised, the use of randomized video morphing forces the censor to
decode and analyze all video calls in real-time to detect Facet sessions.

• Facet’s throughput is high enough to provide real-time video delivery. Most
steganographic anti-censorship tools are designed for regular web browsing, and often
have limited bandwidth for clients. In contrast, Facet is aimed at delivering real-time
video service for clients, and achieves the same throughput as the videoconferencing
service.
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Figure 26: Facet Pipeline: to deliver censored videos in real-time

• Our approach is provider independent. Since the emulator devices in Facet are
built independently from the videoconferencing systems, Facet can be adopted widely
on any conferencing platform, such as Google Hangout, Skype, FaceTime or QQ. This
feature not only provides accessibility to users who have access to different videocon-
ferencing systems, it also provides the ability to evade blocking targeted at a single
protocol or implementation.

• No deployment at client side. For Facet clients, there is no need to install any
client software (which is often blocked), or to pre-share secrets with the server. This
property makes Facet easier to use and maintain, since software updates only need to
be applied by servers outside of the censored region.

We built a proof-of-concept implementation based on Skype videoconferencing service, and
tested it in a real-world environment.

6.2 The Facet Design

Facet delivers censored videos in real-time. As is shown in Figure 17, the procedure of a
Facet connection is:

1. The Facet server distributes its conferencing ID for service discovery. The distribu-
tion can be public or private, depending on the architecture of the videoconferencing
system.

2. A Facet client sends a contact request to the server. After the server accepts the
request, they establish initial connections.

3. The client sends the Uniform Resource Locator of the censored video to the server by
an instant message or an email.

4. The server extracts the client’s request, initiates audio & video emulators, and places
a conferencing call to the client.

5. Simultaneously, the server forwards the URL to the Facet pipeline, which will down-
load, decode, and resize the requested video, finally streaming it into the emulator
devices.

6. After accepting the videoconferencing request, the client can watch the video in the
videoconferencing session.

7. The client can also send control commands to the server for video playback or adjusting
video speed.
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8. After the video is over, or the client ends the conferencing, the Facet server destructs
the emulators, and ends the session.

Navigation. For the Facet clients, an important question is how to navigate and
discover the URL of the censored video. There are three methods for discovery.

Encrypted Video Search. For regimes where encrypted web search services (provided by
Google, etc.) are not blocked, the client can use such a service for navigation. The client
can specify the keywords and websites for video searching, and the search engine will return
the results with the URLs of the videos.

Video Subscription. The client can also use a subscription service. For websites such as
YouTube, the client can make a subscription to the videos, and periodically it will receive
emails including subscribed video information, such as URLs and titles.

Search Engine Proxy. Facet implementation also includes a search engine proxy using
email tunnels. The client can email search keywords to the Facet server, which will fetch the
search results, and email a screenshot of the page back to the client. Then the client can find
the videos to watch and their URLs The email address of the Facet server can be publicly
distributed, and the unobservability of the email tunnels guarantees its security [97].

Service Discovery. The Facet server has two strategies to distribute its conferencing
ID.

Public Distribution. For centralized videoconferencing systems, such as Google Hangout
and FaceTime, the Facet conferencing ID can be publicly distributed. Though this strategy
also discloses the ID to the censor, it does not increase the censor’s ability to block the
service. Since the videoconferencing traffic is encrypted the censor can not link the con-
ferencing ID to a specific session to block. Even though the censor may proactively probe
the service, it can not pinpoint the Facet server IP address, because this address is hidden
behind the videoconferencing server. Thus, the censor’s ability to distinguish and block the
Facet session is not improved, even when it knows the server’s conferencing ID.

Private Distribution. For decentralized videoconferencing systems such as Skype, the
two entities send traffic to each other directly. Consequently, the Facet server ID should
only be distributed privately. Otherwise, the censor can pinpoint and block the Facet server
IP address by proactively probing the service.

Security. The censor may block the potential Facet session in which the video stream
is only unidirectional. In this situation, the Facet client should enable the camera in the
conferencing. To prevent denial-of-service (DoS) attacks, the Facet server is configured to
not accept strangers’ requests. Thus, a potential Facet client is required to register with
the server, by sending an “add contact” request to the server’s conferencing ID. Only after
this request is proved by the Facet server, can the client access to the service. Also, the
Facet server enforces usage limits on each registered client ID to further defend against DoS
attacks.
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Element Fuctionality

souphttpsrc receive HTTP network data as a libsoup client

decodebin2 decode and demultiplex the data stream from souphttpsrc

queue audio/video stream queue

videoscale resize the received video frame to match the camera emulator

videorate manipulate the timestamps on video frames to adjust frame rate

pulsesink direct audio to the PulseAudio server

v4l2sink play the video in v4l2 device

ffmpegcolorspace convert the video from one colorspace to another

Table 5: Gstreamer Elements

6.3 Implementation

The Facet server is implemented by selecting Skype as the videoconferencing system. The
server is built on Ubuntu 12.04 Precise Pangolin, and can support most popular video sites,
such as YouTube, Vine, and Vimeo.

6.3.1 Facet Pipeline

The real-time delivery of the censored videos requires Facet to construct a pipeline to handle
video downloading, decoding, and playing in parallel. The pipeline implementation mainly
relies on Gstreamer [3], an open source multimedia framework. A typical Facet pipeline
is shown in Figure 26, which consists of the Downloader, Video Handler, and Camera &
Microphone Emulators.

Downloader. Popular video websites usually utilize HTTP based dynamic video
streaming [40], so the downloader needs to decode the video URL to obtain the actual
data streaming address. This address is obtained by utilizing youtube-dl, which is an
open source video downloading toolkit, and can support websites such as YouTube, Vimeo,
Vine, and MetaCafe. Then, this obtained streaming address is forwarded to a Gstreamer
element souphttpsrc to download the video. It is worth noting that souphttpsrc can
directly forward the received stream to the video handler, without having to wait until
downloading the entire video.

Video Handler. The video handler is implemented with the Gstreamer framework to
convert the downloaded stream live. The functionality of Gstreamer elements is listed in
Table 5. The stream is split by decodebin2 to obtain the video & audio stream. Each is
placed into its respective emulator for playing. Since the downloaded video stream may fail
to satisfy the emulator’s requirement in colorspace, resolution, and frame rate, additional
elements such as videoscale, videorate, and ffmpegcolorspace are utilized to make the
conversion.

Emulator. Facet initiates two emulators to deliver the video & audio stream. For
the camera emulator, our Facet implementation utilizes v4l2loopback, a kernel module to



6 STREAMING OVER VIDEOCONFERENCING FOR ANTI-CENSORSHIP 58

create a v4l2 device emulator. For the microphone emulator, Facet utilizes pactl, a program
controlling PulseAudio sound server, to initiate a microphone device instance. Both of these
two emulators can be recognized by the conferencing systems.

6.3.2 Other Implementation Details

The Facet server needs to initiate or end videoconferencing request automatically. For
our implementation, we use skype4py [6] for automation, which is a python wrapper for
the Skype API. Also, the server can run multiple videoconferencing sessions to serve more
clients. Our implementation shows for a Facet server which has 15 Mbit/s bandwidth and
4 virtual cores, it can support up to 20 simultaneous sessions.

Another implementation detail is URL submission. Facet supports instant message
submission: the user can give the video URL to server by using the videoconferencing’s
instant message service. Facet also supports email submission, which is more secure when
the videoconferencing provider is considered to collude with the censor. A detailed analysis
is given in Section 8.

(a) 2-gram Distribution for Chat Videos (b) 2-gram Distribution for YouTube
Videos

Figure 27: Traffic Analysis: Chat and YouTube videos have different traffic patterns.

6.4 Traffic Analysis

Since videoconferencing adopts VBR codecs and length preserving encryption, the packet
length can leak information about the content being transmitted. Previous research shows
the rate of distinguishing phrases, languages, and even speaker identity in a VoIP conversa-
tion. Thus, it is necessary to study whether the censor can distinguish the Facet connection
by traffic analysis.

Classifier. [92] reveals a χ2 classifier to distinguish the language in a VoIP call. With
about 90% accuracy, the classifier can narrow down from the two possible languages to
one. We adopt this best known binary classifier, and investigate whether a censor can
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identify the Facet session, or in other words, how accurate it can determine whether the
videoconferencing is genuine or not.

The χ2 classifier takes the packet length as input, and adopts n-gram as feature extrac-
tion, which is a contiguous sequence of n packet lengths from the time series traffic. Suppose
the traffic is (a, b, c, d), where a, b, c, and d are the packet lengths, then the 2-grams are
(a, b), (b, c), and (c, d). The reason for not including traffic delay in the classifier is that
this feature is not stable. It can be easily affected by network conditions. Besides, the delay
in VoIP traffic is usually fixed [91]. The packet length is discretized into equal partitions
of size K before calculating the n-gram, to avoid the curse of dimensionality and improve
the classification accuracy. GK(n) is used to denote the set of all the possible discretized
n-grams. Then, for a given traffic, the probability over each element of GK(n) can be used
as its fingerprint for classification.

Training. Let T0 denote the set of genuine chat videos, and T1 denotes the set of the
censored videos in the training process. The models for the genuine chat and censored
videos are built as follows:

P̄ r(i, g) =
1∑

v∈Ti
Nv
∗
∑
v∈Ti

Nv ∗ Pr(i, v, g), g ∈ GK(n) (16)

where Nv denotes the number of grams for video v.
Classifying. The original classifier assigns a test case to the category whose model is

closer to that of the test case in terms of χ2 distance. This decision rule only allows fixed
false positive/negative rates. Considering a censor should be able to adjust its aggressiveness
in blocking unwanted connections, we use the following rule:

Θ =
∆(v, T0, GK(n))

∆(v, T1, GK(n))
H0 <
≥ H1

δ (17)

where H0 represents the video is classified as chat video, and H1 denotes it is determined
to be a censored video. Θ is the χ2 distance ratio, and ∆(v, Ti, GK(n)) is the χ2 distance
between video v and training set Ti:

∆(v, Ti, GK(n)) =
∑

g∈GK(n)

[P̄ r(i, g)− Pr(i, v, g)]2

Pr(i, v, g)
(18)

This allows the censor to adjust the value of δ to change its blocking strategy. In the
experiment part we will discuss how the censor chooses a proper δ value in order to block a
given percentage of unwanted traffic. In addition, the classifier includes the gram selection
algorithm introduced in [92]. The general idea is to exclude the grams which have negative
influence on classification results.

For our dataset, we use the 2 fold cross-validation in evaluation [48]. The dataset is
randomly separated into two groups d0 and d1 with equal size. Each group will alternatively
be the training set in two rounds.
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Accuracy. The censored video dataset consists of 1013 popular YouTube videos, and
1045 YouNow videos are used as the chat video set (details are given in section 9). With
n = 2 and K = 50 the experimental results are shown in Figure 27 and Figure 28. The
classification is measured by false positive rate, the probability of wrongly determining the
traffic of chat videos as that of YouTube videos, and the false negative rate, the probability
of determining the traffic of YouTube videos as that of chat videos [76]. It shows with a rate
of 90%, the censor can correctly distinguish the traffic pattern of the streamed YouTube
video, with only the cost of 10% false positive rate. Another observation is that the censor
can even adjust needs to disrupt only 2% of genuine videoconferencing connections to block
80% of Facet connections. This result is further demonstrated by the difference on averaged
traffic patterns between chat videos and YouTube videos in Figure 27(a) and 27(b). Thus,
traffic morphing is necessary to protect Facet from blockage.

10
−3

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

False Positive Rate

F
la

s
e
 N

e
g

a
ti

v
e
 R

a
te

Figure 28: Traffic Analysis: the receiver operating characteristic (ROC) curve of the
classifier

6.5 Morphing

Video & audio morphing are introduced to defend against the censor’s traffic analysis. An
intuitive method for traffic shaping is to manipulate packets, but [33] demonstrated the
flaws in such morphing. In Facet, the property of video & audio is transformed to simulate
that of chat video & audio, modifying the traffic pattern without packet dropping.

6.5.1 Audio Morphing

Observation. Region 1 in Figure 27 reveals for genuine conferencing, there are more
packets with a length in the range of 100 to 150 bytes and less packets with a length in
the range of 150 to 200 bytes as compared to Facet streaming the YouTube videos. The
primary reason for this difference is that the conferencing audio has lower quality, and
shorter packets can be used to transmit the audio. This difference is further demonstrated
by the discrepancy in sampling rate. The relation between audio quality and sampling rate
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is that the higher the sampling rate, the better the quality [4]. For our chat video dataset,
the sampling rate is 11,500hz, but a typical YouTube video has a sampling rate of 44,100hz.
In addition, the chat videos have only one channel with 16 bit width, while YouTube videos
have two channels with 32 bit width.

Audio Morphing. The Facet audio is resampled live to simulate the quality of the
chat audio, and this requires Facet pipeline to include a audioresample element. In the
following, we take the YouTube audio as an example, and show how to determine the
resampling rate empirically. For the chat video dataset, the video & audio is streamed
simultaneously, while for the YouTube dataset, YouTube audio and chat video are streamed.
Thus, the difference in traffic pattern is only related with the audio. Figure 29 (a) shows
when the sampling rate is 3,000, the morphing is at its best. Also, the YouTube audio
which usually has two channels is converted into mono-channel, and the bit width is set to
16.

It is worth noting that though the classifier can still do better than random guessing,
the audio morphing can practically disable the detection as is analyzed in Section 8.

6.5.2 Video Morphing

Observation. Region 2 of Figure 27 shows chat video traffic has more large packets than
that of YouTube videos. Our results show chat videos have more packets in the range of
400 to 600 bytes, and 800 to 1000 bytes than YouTube videos. The possible explanation
is that the chat videos are usually slower motion which causes the video encoder to handle
them differently.

The encoder can use the temporal redundancy of the slow motion video to optimize
its coding efficiency. Take the H.264 codec as an example. There are mainly three types
of frames in H.264: the I frame, B frame, and P frame [5, 45]. The I frame is encoded
independently from other frames, only exploiting the spatial redundancy to compress the
video stream. Differently, the P frame and B frame depend on the previous frames or
even future frames, taking advantage of temporal redundancy. Typically, the I frame is
significantly larger than the P and B frames. Thus, for videos with different temporal
redundancy, the encoding results are different.

Video Morphing. The video morphing in Facet is based on the block-oriented feature
of H.264 codecs. In H.264, each frame is divided into multiple small square blocks called
macroblocks. The coding tools or kernels are applied to these macroblocks rather than
the whole frame. Facet performs its traffic shaping by manipulating these macroblocks.
Specifically, it places the censored video on several adjacent blocks, with a randomly selected
chat video being played on the remainder of the blocks. By adjusting the width and height
of the censored video, the traffic pattern is expected to shift between that of the censored
video and the chat video. This mechanism is illustrated in Figure 29 (b).

The Facet server can make the trade off between steganography and the video quality.
We define the steganography level s to be the scale of the censored video. Suppose the
original width and height for the video is w and h, then the embedded video has width
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Figure 29: (a) Audio Morphing: choose resampling rate, and (b) Video Morphing: embed
the censored video in a chat video

w · s and height h · s. The experimental results in Section 9 show the video morphing can
effectively defeat the censor’s traffic analysis.

6.6 Experiment

6.6.1 Dataset

Chat Video Set. The chat videos are from YouNow.com, a popular live video blogging
website. YouNow videos can simulate the chat video well for the following reasons. First,
it does not lack interactions. A special feature of YouNow is that it allows the audiences
to interact with the blogger by instant messages. Consequently, the blogger often pauses
and answers questions, simulating the interactions in genuine video chat. Second, the users
seldom use any video editing in the live video blogging (the reason could be the inconvenience
of live editing), the videos hold the nature of webcam video chats. Third, the YouNow has
a large amount of diversified webcam videos representing different situations in video chats.
All these features make YouNow videos suitable.

The videos were collected on Sep 17, 24, and Oct 5. The users were picked out by
using YouNow’s “recently Broadcasted” feature, and for each user only their latest video is
included. Finally, 1045 YouNow videos are included in the chat video set.

Censored Video Set. Highly viewed YouTube videos are chosen to construct the
censored video set. YouTube charts list the most popular videos by category for a time
period of one week, one month, or all time. For each category, we harvested all the videos
with length more than 1.5 minutes. 1013 YouTube videos under 15 categories are included
in the dataset, as is shown in Table 6. The video format is selected to be FLV, and the
resolution is 360p.
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Figure 30: YouTube Video without Morphing: probability density function of χ2

distance ratio Θ

6.6.2 Experimental Setup

The experiment is run on a MacBook Pro with a 2.3Ghz Intel Core i7 processor, and OS X
version 10.9. A guest operating system, Ubuntu Precise Pangolin (12.04), is installed on a
VMware virtual machine, in which the Facet server is implemented. The host machine acts
as the Facet client. The connection between host and guest machine is through a private
virtual network [9].

Skype is selected as the videoconferencing system. The traffic between the two videocon-
ferencing clients is exchanged through the VMware private virtual network. For the host,
the Skype version number is 6.9 (701), and for the guest machine, the version is 4.2.0.11.
Skype uses H.264 as the video codec, and SILK V3 as the audio codec. The Frames Per
Second (FPS) is 30.

Both of chat videos and YouTube videos are streamed into camera & microphone em-
ulators. For each video, the packet capture is started after the video has been playing for
30 seconds, and the capture lasts for one minute. Skype’s technical call information shows
the packet loss rate is 0% in the experiment. For the camera emulator, we set the timeout
to 1000 seconds, with YUY2 format. The emulator resolution is selected to be 320× 240.

6.6.3 Morphing Effectiveness

This part evaluates the effectiveness of Facet morphing. The experiment captures the
traffic of the chat video set, morphed YouTube videos with s = 0.125, 0.25 and 0.5, and
non-morphed YouTube videos. Then, the chat video set is grouped with each of these four
YouTube video sets individually for binary classification.
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Figure 31: False Positive Rate (no Morphing): if the censor blocks 70%, 80%, or 90%
Facet connections.

Category No. Category No. Category No.

Animation 80 Autos 39 Travel 38
Comedy 85 Edu 84 Sci 51

Entertain 74 Gaming 98 Sport 59
Howto 86 Music 94 People 64
News 57 Nonprofit 58 Pet 46

Table 6: YouTube Video Set

We set n = 2 and n = 3 respectively. We do not include a larger n case, because the
classifier with n > 3 performs poorly (and therefore not representative) due to the curse of
dimensionality [72]. Suppose n = 4. If for each packet, there are 20 discretized lengths, then
204 = 160000 grams are possible for videoconferencing traffic. When dimensionality is high,
the volume of the space becomes so large that the the training samples are too sparse to
represent the model, therefore, the classification in high dimensional space performs poorly.
Also, we tune the discretization parameter K to be 20.

Figure 30 and Figure 32 give the probability density function (PDF) of the test statistic
(χ2 distance ratio Θ) for different cases, which indicates how the classifier performs for
binary classification. Also, the false positive rate (or false negative rate) is given, when it
equals to false negative rate (or false positive rate). This value can be used to compare the
classifier performance for different cases.

Figure 30 shows the PDF of Θ when the classifier is used to distinguish genuine YouTube
and chat video traffic. (a) uses 2-gram as the feature extraction, and (b) 3-gram. Both of
them have K = 20. These figures show the traffic of chat and YouTube videos have distinct
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Figure 32: YouTube Video with Morphing: probability density function of χ2 distance
ratio Θ

Θ distributions, thus the censor can specify a proper threshold to block a majority of
unwanted traffic while keeping most of the genuine conferencing connections alive.

Figure 32 is the PDF of Θ when the classifier is used to determine morphed YouTube
video traffic from chat video traffic with K = 20. For (a) and (d) s = 0.125, and the figures
show Θ of the morphed YouTube video has more distribution in the 0 to 1 range, which
means by morphing, the YouTube video is more likely to be regarded as the chat video. From
the perspective of false positive/negative rate, the classifier only has FPR = FNR = 0.25
for 2-gram and FPR = FNR = 0.27 for 3-gram. The results demonstrate the morphing
effectiveness.

Also, the distribution of Θ for different morphing levels is given in (b) (c) (e) (f). We
show with a smaller morphing level s, the distribution of Θ for morphed YouTube videos
resides more on the range of 0 to 1, and the false positive/negative rate is higher. This
demonstrates when morphing level s is smaller, the morphed YouTube video session is more
secure against traffic analysis.
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(c) n = 2, FNR = 0.1
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Figure 33: False Positive Rate (with Morphing): if the censor blocks 70%, 80%, or
90% Facet connections.

6.6.4 Security Against Blockage

In our attack model, the censor is assumed to be unwilling to block or disrupt the genuine
conferencing. Here, we investigate in order to block a given fraction of Facet connections,
how likely the censor is to affect the genuine conferencing.

The censor is set to block 0.9, 0.8 and 0.7 Facet connections. The corresponding false
positive rate is investigated for morphed YouTube videos as well as the genuine YouTube
videos. The experiment results are given in Figure 31 and Figure 33.

In Figure 31(a) and (b), the false positive rate is given when the censor tries to block
70%, 80%, or 90% Facet sessions playing genuine YouTube videos. We can see without
morphing, the censor only has to disrupt 4% genuine videoconferencing to block 80% Facet
connections. If it is aimed at blocking 70%, the false positive rate is even lower, only 2%.
The figures show the necessity of adopting morphing mechanisms in the Facet design.

Figure 33 (a) to (f) show the false positive rate when the censor attempts to block 70%,
80%, or 90% Facet sessions playing morphed YouTube videos. For (a) and (d), the false
negative rate is set to 0.3, and we can see even if the censor chooses the optimal parameters,
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Figure 34: Bandwidth Consumption: Facet vs. Squid

Downstream Upstream

Skype Gstreamer Skype Gstreamer

Mean 42.49 232.62 409.11 8.71

Max 51.83 265.32 471.91 10.81

Min 30.85 189.63 215.90 6.48

Med. 45.36 236.58 424.94 8.45

Std. 7.11 12.88 49.96 1.39

Table 7: Facet Traffic Break Down (kbit/s)

such as K = 20 and n = 2, it has to disrupt more than 20% genuine videoconferencing. For
(c) and (f), when the censor attempts to block 90% of the Facet connections, it has to block
40% of the genuine videoconferencing connections. To conclude, if the censor wants to mas-
sively block the Facet connections, it has to disrupt at least 20% genuine videoconferencing
connections. This cost, under our assumption, can make Facet less vulnerable to blockage,
especially considering genuine videoconferencing connections are enormously more frequent
than those of Facet.

Also, the figures show the smaller s is, the more secure the Facet server is against
blockage. But considering the aggressiveness and capability of the censor may vary, the
value s can be adjusted by the Facet server to provide a higher quality service. In addition,
it shows the classifier with n = 2 in general outperforms the classifier with n = 3, though
3-grams can have more complete feature extraction. The reason for this is the curse of
dimensionality.

6.6.5 Performance Analysis

Setup. 106 YouTube videos (length below 180s) are selected from our dataset. When the
Facet server plays these videos, the upstream & downstream bandwidth, together with CPU
& Memory usage are recorded. The client is set to disable the camera. For comparison, a
traditional web proxy Squid is adopted. In the experiment, the client uses the Squid and
plays the YouTube videos by Firefox. Also, the video resolution is set to 240p in both cases.
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Experimental Results. The bandwidth costs are given in Figure 34 and Table 7. It
shows the downstream bandwidth of the Facet server is lower than the Squid server. If the
client uses Facet, about 150 kbit/s downstream bandwidth is saved. A possible reason for
this difference is that for web browsing, extra information (such as advertisements, etc.)
are fetched, and for a Facet connection, the client only downloads the video. For upstream,
the bandwidth costs of these two systems are close. It is worth noting that although the
downstream bandwidth of the Facet server will be increased if the client enables its camera,
Table 3 shows the downstream bandwidth is still less than 700 kbit/s if the client’s camera
has the same resolution with the server. These experimental results show Facet server has
high efficiency in bandwidth usage. For a server with 15 Mbit/s bandwidth, it can support
up to 20 simultaneous sessions.

The computational costs for these two systems are shown in Table 8. For Facet server,
the costs comes from making a Skype video call (Skype), downloading and redirecting video
& audio stream (Gstreamer), and executing a Skype wrapper (Python). Though the table
shows the Facet server consumes more CPU cycles and memory than Squid (most of which
comes from the Skype video call), this cost is acceptable. Still, a computer with one virtual
core can support up to 5 Facet sessions, and for a computer with 4 virtual cores, it can
support 20 sessions.

Category Program CPU Memory (4GB)

Facet (s=1)
Skype 14.4% 2.4%

Gstreamer 3.7% 0.5%
Python 0.6% 0.1%

Web Proxy Squid 0.4% 0.3%

Table 8: Facet CPU & Memory Usage



7 Conclusion
Information leakage in anonymous traffic allows attackers or censors to exploit such leakage
to de-anonymize the traffic. This thesis conducts the first larg-scale information leakage
measurement upon Tor netowrks, which is one of the most popular anonymous networks. We
find that the traditional way of validating a defense by classification accuracy alone is flawed.
The second part of this thesis focuses on how to prevent information leakage in anonymous
traffic. Targetting at anti-censorship design, we propose Mailet and Facet systems to provide
realtime video watching and social networking with minimual information leakage.
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