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Abstract 

Artificial intelligence algorithms and hardware are being developed at a rapid pace 

for emerging applications such as self-driving cars, speech/image/video recognition, deep 

learning, etc. Today’s AI tasks are performed at remote datacenters, while in the future, 

more AI workloads are expected to run on edge devices. To fulfill this goal, innovative 

design techniques are needed to improve energy-efficiency, form factor, and as well as the 

security of AI chips.  

In this dissertation, two topics are focused on to address these challenges: building 

energy-efficient AI chips based on various neural network architectures, and designing 

“chip fingerprint” circuits as well as counterfeit chip sensors to improve hardware security. 

First of all, in order to deploy AI tasks on edge devices, we come up with energy and 

area efficient computing platforms based on both multi-layer perceptron (MLP) neural 

network and long short-term memory (LSTM) neural network. For the MLP neural 

network, we built a new neural network computation paradigm based on time domain 

computing. Our first time-based neural network prototype shows orders of magnitude less 

area and lower power consumption compared to traditional digital or analog domain 

approaches. A parallel two-layer MLP architecture realized using the proposed core 

achieves a 91% accuracy in handwritten digit recognition application using MNIST 

database. For the LSTM neural network, we proposed a binarized LSTM architecture, 

which greatly simplifies the circuit complexity and reduces the memory footprint, making 

it suitable to be deployed on edge devices. This proposed network is demonstrated using 
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an application of heart rate prediction from photoplethysmorgrahpy (PPG) signals, and 

achieves a good prediction accuracy.  

Secondly, to enhance the security of the devices and ensure secure data 

communication between devices, we need to make sure the authenticity of the chip. 

Physical Unclonable Function (PUF) is a circuit primitive that can serve as a chip 

“fingerprint” by generating a unique ID for each chip. The stability of this generated ID is 

of utmost importance. We proposed a method to select the most stable cells in a large 

memory array to make sure the output of a memory based PUF is always consistent. 

Another source of security concerns comes from the counterfeit ICs, and recycled and 

remarked ICs account for more than 80% of the counterfeit electronics. To effectively 

detect those counterfeit chips that have been physically compromised, we came up with a 

passive IC tamper sensor. This proposed sensor is demonstrated to be able to efficiently 

and reliably detect suspicious activities such as high temperature cycling, ambient humidity 

rise, and increased dust particles in the chip cavity.   
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Chapter 1. Introduction 

 Deep neural networks (DNNs) are now achieving super-human level performance in 

many real-life applications. For example, human Go masters turned out to be no match for 

Google’s AlphaGo [1], and at the 2016 ImageNet challenge [2], computers could recognize 

images better than humans, with less than 3.5% [3] error. These breakthroughs are possible 

because of two primary reasons: (i) greatly improved computing power and (ii) 

advancements in convolution based DNN algorithms. By performing millions of 

convolution operations repeatedly, real-life applications such as image classification 

become possible. Neural networks in general have two operating phases: training (or 

learning) mode and inference (or prediction) mode. The weights are determined during the 

training mode, either supervised or unsupervised. The biological and artificial neuron 

models are shown in Fig. 1.1.  
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Fig. 1.1: Biological neuron model (left) and artificial neuron model (right). 

 

 DNN applications usually involve millions of weights, which may take weeks or 
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months to obtain even on a super computer. Inference tasks are also compute intensive: for 

instance, the total number of multiply-and-accumulate operations required for AlexNet [2] 

is around 832 million with around 60 million weight parameters. Due to their high power 

consumption and extensive hardware requirements, most inference engines today run on 

the cloud (i.e. remote datacenter computers). This practice has worked so far; however 

moving forward, the current cloud computing model is expected to face critical challenges. 

For example, today’s DNN algorithms are designed for cloud computing and therefore are 

sub-optimal for AI inference tasks performed on ultra-low power mobile devices. Thus, to 

deploy the AI tasks on mobile edge devices, we need to come up with efficient hardware 

architectures.  

 Meanwhile, if edge devices often handle sensitive data (i.e. medical, banking, image, 

voice) which can raise security concerns. As edge devices penetrate deeper into our daily 

lives, enhancing the security of these devices has become a critical design consideration. 

To address security concerns while sharing data between the edge devices and the cloud, 

we need to make sure that the devices involved in the communication are trustworthy.  

 A promising approach for ensuring trustworthiness of each device is embedding a 

“fingerprint” in each chip that is unique and unclonable. Physical unclonable function 

(PUF) [4] is a circuit that was introduced recently which harnesses inherent manufacturing 

variations to generate a chip fingerprint. Since manufacturing variations are random, 

uncontrollable, and unclonable, each device has a unique “fingerprint”. One of the most 

important requirements for PUFs is to generate an output that is stable. A stable PUF circuit 

ensures that the PUF generates the same key every time, regardless of the temperature, 
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voltage, number of year in service, etc. Another requirement for PUF is that it should be 

lightweight, which means it should not take a large area or require too much effort to 

design. Memory circuit is an attractive option for PUFs as it is readily available in 

practically all digital systems. The key is generated from the uninitialized power-up state 

of a memory cell. The power-up state is determined by the unique manufacturing variation.  

 While on the other hand, ensuring the authenticity of the devices might not be enough 

sometimes. There is another rising security concern induced by the counterfeit electronics, 

most of which are recycled and remarked ICs. They are usually recovered from old printed 

circuits boards (PCBs) and then relabeled and sold as new parts for profits; so they are 

authentic chips, but they can pose great concerns for customers, since they may function 

correctly at the beginning, but fails much earlier than expected. Detecting and preventing 

those counterfeit electronics from entering the market is a critical aspect of ensuring 

hardware security. 

 To fulfill the goal of running AI workloads efficiently and securely on edge devices, 

innovative computing architectures and circuit techniques have been proposed in this 

dissertation.  

1.1 Time based MLP Neural Networks 

 The greatly improved hardware computing ability enables the deep learning 

algorithms to achieve great performances in many applications. To further improve the 

performance and energy efficiency for deep learning applications, a fully scalable light-

weight integrate-and-fire neuromorphic core with brain-inspired leak and local lateral 

inhibition features is proposed in this dissertation. This is a fundamentally different way of 
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implementing MLP DNNs: time domain computing, which is a much more efficient way 

of computation than the traditional method. The conventional approaches to implement 

MLP neural networks are based on bulky digital multipliers and adders to calculate the 

inner product, which usually has a higher precision but consumes more power and occupies 

more area. Therefore, the conventional approaches are not suitable for edge devices. In our 

proposed time based approach, we use a chain of inverters, which are one of the most basic 

and simplest digital circuits, with programmable delays as processing elements. The inner 

product function 𝑦 = ∑ 𝑥𝑖 ∙ 𝑤𝑖𝑖  is computed purely in the time domain, where 𝑥𝑖 is the 

input data, 𝑤𝑖 is the synaptic weight and the individual stage delay is 𝑥𝑖 ∙ 𝑤𝑖. The 

computation result is reflected as the accumulated delay of the inverter chain, and it can be 

measured by a simple readout circuit (i.e. frequency counter). 

1.2 Binarized LSTM Architecture 

Long short-term memory (LSTM) networks have shown to be successful in learning 

sequences of data. However, due to its high computation complexity and memory 

requirement, which leads to high power consumption, it is hard to deploy the LSTM 

networks on embedded devices. And Binarized Neural Networks (BNN) [5-6] become 

popular recently and have demonstrated to approach state-of-the-art classification 

accuracy. In this work, a binarized LSTM neural network is proposed and a hardware 

architecture is designed for accelerating this binarized LSTM network on embedded 

devices. This proposed network is demonstrated to be area and energy efficient, using an 

application of heart rate prediction from photoplethysmorgrahy (PPG) signals, and 

achieves a good heart rate prediction accuracy. 
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1.3 Chip Fingerprint based on Memory Circuits 

PUF is a unique hardware that can generate a “fingerprint” for each chip based on the 

underlying manufacturing variation. The start-up value of an SRAM cell is unique, random, 

and unclonable as it is determined by the inherent process mismatch between transistors. 

These properties make SRAM an attractive PUF circuit for generating unique IDs/keys. 

The primary challenge for SRAM based key generation, however, is the poor stability when 

the circuit is subject to random noise, temperature and voltage changes, and device aging. 

Temporal majority voting (TMV) and bit masking were used in previous works to identify 

and store the location of unstable or marginally stable SRAM cells. However, TMV 

requires a long test time and significant hardware resources. In addition, the number of 

repetitive power-ups required to find the most stable cells is prohibitively high. To 

overcome the shortcomings of TMV, we propose a novel data remanence based technique 

to detect SRAM cells with the highest stability for reliable key generation. This approach 

requires only two remanence tests: writing ‘1’ (or ‘0’) to the entire array and momentarily 

shutting down the power until a few cells flip. We exploit the fact that the cells that are 

easily flipped are the most robust cells when written with the opposite data. The proposed 

method is more effective in finding the most stable cells in a large SRAM array than a 

TMV scheme with 1,000 power-up tests. Experimental studies show that the 256-bit key 

generated from a 512 kbit SRAM using the proposed data remanence method is 100% 

stable under different temperatures, power ramp up times, and device aging. 
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1.4 Passive Counterfeit IC Sensor 

The rising security and reliability concerns induced by the counterfeit electronics 

necessitate the design to efficiently identify counterfeit electronics from the complex global 

supply chain nowadays, which is extremely challenging. To help alleviate this challenge, 

we present an embedded flash (eflash) memory based powerless non-volatile tamper sensor 

for efficiently detecting counterfeit ICs. By exposing the floating gate (FG) node of a logic-

compatible eflash cell to the environment, the proposed sensor can record any subtle 

physical event that affects the charge stored on the exposed FG. The proposed sensor is 

demonstrated in both 65nm and 0.35µm standard CMOS technologies, proving that this 

technique is agnostic to different technology processes. Extensive test results confirm that 

suspicious activities such as temperature charge injection, humidity rises, and increased 

dust particle density in the cavity can be recorded powerlessly using the proposed sensor. 

1.5 Summary of Dissertation Contribution 

Several contributions have been made in this dissertation to improve the efficiency of 

the state-of-the-art neural network hardware architectures and enhance the security for 

hardware devices.  

To summarize the key contributions of this research: 1) a time-based computing 

architecture has been proposed, which is much more area and energy efficient compared 

to the traditional digital or analog computing schemes. 2) To deploy the LSTM neural 

network, which has high computation complexity and memory requirement, on embedded 

devices, a binarized LSTM architecture is proposed. It greatly simplifies the circuit 
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complexity and reduces the memory footprint of the LSTM neural network. 3) A data 

remanence based stable cell selection technique is presented to be able to generate 100% 

stable responses from a SRAM based PUF circuit. 4) A passive counterfeit electronics 

detection sensor is demonstrated to be effective in detecting abnormal physical attacks to 

the chip, thus identifying the counterfeit electronics that have been physically attacked.  

The remainder of this dissertation is organized as follows. Chapter 2 presents the design 

details of the time based MLP neural network in 65nm CMOS technology and the 

measurement results of the digit recognition application. Chapter 3 demonstrates the basic 

idea of the proposed binarized LSTM neural network and the design overview of the 

hardware architecture. The simulation results of the heart rate prediction from PPG signals 

is also presented. Chapter 4 discusses the proposed data remanence based stable cell 

selection technique, and the measurement results from commercial SRAM chips. Chapter 

5 illustrates the proposed counterfeit IC sensor implemented in both 65nm and 0.35µm 

technology. The physical attack measurement results are also demonstrated. Finally 

chapter 6 summarizes this dissertation.  
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Chapter 2. Time-based Integrate-and-Fire 

Neuromorphic Core Design 

 

2.1 Introduction 

Deep learning is a sub-class of machine learning algorithms, which is a brain-

inspired computing algorithm. Deep learning architectures always include multiple layers 

of non-linear processing units, and the layers used in deep learning mostly refer to the 

hidden layers of an artificial neural network [7]. Artificial neural network is not a new 

concept, it has been around for decades [8]. The development of artificial neural network 

was slow in the past until the computers have gained greater computing power recently. 

The artificial neural network is based on a simple artificial neuron model, which is a 

weighted sum of the inputs, followed by an activation function. These artificial neurons 

are the basic processing units of the neural network and a huge amount of neurons are 

working in parallel to handle complex algorithms in real applications. There are two stages 

in deep learning tasks, training (or learning) and inference (or prediction), and the weights 

is determined by the training process. In this work, we focus on the inference phase. Deep 

learning applications usually involves millions of weights, which costs a lot of time and 

energy to access from memory, and large amount of parallel matrix operations, which is 

also a demanding task for processors. Nowadays, as the processing power of the computers 
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are developing at an extremely fast pace, the implementation of such large scale network 

becomes possible. The challenge is how to perform the task efficiently so that it can be 

applied in mobile applications and in real-time embedded systems.  

There are several common hardware implementations of artificial neural networks, 

including using CPU, GPU and custom ASIC. Since CPUs are optimized for latency, they 

are more suitable for sequential operations, so it’s not the best choice to use CPUs in 

massively parallel neural network applications. GPUs are optimized for memory 

bandwidth and the thread parallelism in GPUs can hide memory access latency, so GPUs 

are better suited for deep learning than CPUs. However, one big drawback of using GPUs 

to implement neural networks is that it always has a high power consumption, making it 

not suitable for mobile applications. Many researchers believe that major improvements of 

energy efficiency and performance should come from the specially designed hardware [9]. 

In [9], the Tensor Processing Unit (TPU), which is a custom ASIC developed by Google, 

achieved a peak throughput of 92 TeraOps/second (TOPS), which is on average about 15X-

30X faster than its contemporary GPU or CPU. 

Many approaches have been presented to implement the neural processing elements 

(PE) in custom ASIC hardware, aiming at higher power and area efficiency. Early 

approaches relied on analog circuits to mimic synapse and neuron functions [10]. However, 

using analog circuits to implement brain-inspired neural networks suffers from noise and 

process variation issues, so homogeneity and precision cannot be guaranteed for large scale 

networks. Scaling of CMOS technology also poses a challenge for analog circuits. Digital 

implementation of neural processing elements has been more popular recently. Compared 
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to analog implementation, they are more robust against noise and process variation, and 

can benefit from technology scaling, enabling massively parallel neuromorphic ASIC 

systems, such as IBM’s Turenorth [11]. However for digital implementation of neural 

networks, it usually requires a large amount of adders and multipliers to implement the 

MAC operations, which is area and power consuming. 

There are three types of popular neural networks: Multi-Layer Perceptron (MLP), 

Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN). According 

to [9], they represent 95% of the inference workload in Google’s datacenters. While there 

are many works focusing on accelerating CNNs [12]-[18], they represent 5% of Google’s 

datacenter workload [9]. We have dedicated to improve the efficiency in Multi-Layer 

Perceptron (MLP) neural network in this work. 

In this work, we present an implementation of fully connected MLP neural network 

based on integrate-and-fire neuron model in time domain, which improves the area and 

power efficiency compared to digital implementation. Instead of using adders and 

multipliers to implement the multiply and accumulate operations, we do the calculation in 

time domain using digital circuits, which is more area and power efficient. And data 

moving can be more energy consuming than computation, as is reported in [19]-[20], so to 

reduce the memory access power and latency, each PE in our work has its exclusive 

weights, which eliminates the energy consumption of moving data from memory. This 

further improves the energy efficiency. 
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2.2 MLP Neural Network Background 

In this section, we first briefly introduce the architecture of MLP neural network, 

then we discuss the integrate-and-fire neuron model we used in this work. 

2.2.1 Multi-Layer Perceptron (MLP) Neural Network 

Multi-layer perceptron (MLP) neural network is a popular feedforward neural network 

with one or more hidden layers between input and output layers [21], which is shown in 

Fig. 2.1 (a). Each node in this MLP represents an artificial neuron model that uses a non-

linear activation function, shown in Fig. 2.1 (b). A supervised learning technique called 

backpropagation is used to train a MLP neural network. Two common activation functions 

for MLP are hyperbolic tangent 𝑦(𝑢𝑖) = tanh⁡(𝑢𝑖) and the logistic function 𝑦(𝑢𝑖) =

(1 + 𝑒−𝑢𝑖)−1, where 𝑦(𝑢𝑖) is the output of the ith node (neuron), and 𝑢𝑖 is the weighted 

sum of the inputs of the ith node (neuron). They are both sigmoids, so the shape of the two 

functions are similar, the difference is that the former function is centered around 0, ranging 

from -1 to 1, while the latter one ranges from 0 to 1. Most of the time, tanh can be more 

quickly converged than logistic function, and performs better accuracy [22]. And it is a 

good idea to make the input, output and hidden layers have mean values of 0 and standard 

deviation of 1, since in general if the average input shifts away from zero, it will bias the 

weight updates in a particular direction, making the learning slower [23]. However, due to 

the fact that we need to apply the MLP neural network in hardware and there is no negative 

inputs in our design, so we used the logistic function with range from 0 to 1 as the activation 

function in this work  
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Fig. 2.1: Architecture of multi-layer perceptron (MLP) neural network with one 

hidden layer (a) and artificial neuron model (b). 

 

2.2.2 Integrate-and-fire Neuron Model 

Integrate-and-fire neuron model is one of the earliest models of a neuron, which 

was first investigated in 1907 by Louis Lapicque [24]. A neuron can be modeled by  

𝐼(𝑡) = ⁡𝐶𝑚
𝑑𝑉𝑚(𝑡)

𝑑𝑡
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.1) 
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which is just like a capacitor. However, the neuron cell membrane is not a perfect insulator, 

the charges will leak away through the membrane over time. So to be more accurate, we 

should add a leaky term in the model [25], 

𝐼(𝑡) = ⁡𝐶
𝑑𝑉𝑚(𝑡)

𝑑𝑡
+
𝑉𝑚(𝑡)

𝑅
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.2) 

which is equivalent to a capacitor C in parallel with a resistor R. This model is also referred 

to as leaky integrate-and-fire (LIF) neuron model. In this work, we implemented the 

integrate-and-fire neuron model with leaky feature as a selective option. 

2.3 Time-based Integrate-and-Fire DCO Neuromorphic 

In this section, we first introduce the advantages of using time-based circuits to 

implement neural networks over digital implementation. Then we present the detailed 

implementation and characterization of our proposed time-based neuromorphic core [26]. 

2.3.1 Advantages of Time-based Implementation of Neural Network 

Time-based circuits have several known advantages, since time is also an analog 

signal, so it has higher area and energy efficiency than digital implementation in low-

precision computation applications [27], the time-based circuits is implemented using the 

same standard digital logic gates as digital circuits, so compared to voltage mode or current 

mode analog computing, it has excellent compatibility with advanced CMOS technologies 

and can tolerate low operating voltages. Besides, due to its digital nature, time-based 

circuits is compatible with EDA tools, thus can allow for large-scale integrated design [28]. 
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Fig. 2.2: Comparison of time-based and digital implementation of neural networks. 

 

Fig. 2.2 shows the comparison of time-based and digital implementation of neural 

networks. In this work, we use the programmable delay circuits as the processing elements, 

calculating the multiplication results, and the integration is implemented by accumulating 

the delay in time domain. Compared to traditional digital implementation which requires 

lots of adders and multipliers, time-based implementation is more area and power efficient. 

We can achieve 16bits/32bits fixed point or even floating point computation using digital 

implementation, while time-based circuits usually has a lower resolution, which is a main 

drawback. However, for deep learning applications, the resolution is not so critical. 

Recently, the binarized neural network (BNN) [5-6] has gained popularity and it has 

approached state-of-the-art classification accuracy. BNNs are neural networks with binary 

(1-bit) weights and activations. This proves that neural networks with lower resolution can 

also work well and it’s more favorable for hardware implementation. There have been 
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several successful hardware implementation of BNNs in time domain which show good 

energy and hardware efficiency [29-31]. 

2.3.2 Implementation of Time-based DCO Neuromorphic Core 
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Fig. 2.3: Circuit diagram of the proposed time-based integrate & fire (I&F) DCO 

neuromorphic core. 
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Fig. 2.3 shows the proposed time-based integrate-and-fire neuromorphic core [26]. 

The main innovation is that it computes 𝑦 = ∑ 𝑥𝑖 ∙ 𝑤𝑖𝑖  purely in time domain, where 𝑥𝑖 is 

the input data and 𝑤𝑖 is the synaptic weight. The upper part is a digitally controlled 

oscillator (DCO) with 128 programmable delay stages and one enable stage, which can 

compute up to 128 multiply and accumulate (MAC) operations at a time, and each 

programmable delay stage is the processing element (PE). The lower part is the readout 

circuits, implementing the leaky integrate and fire and local lateral inhibition features. Each 

PE computes one 𝑥𝑖 ∙ 𝑤𝑖, and the computation result is converted to the delay of that stage. 

Delay of all stages are accumulated naturally in the DCO loop, which is the integration of 

the multiplication results. The overall delay in the DCO loop is converted to an oscillation 

frequency and fed to an 8-bit counter in the readout circuits. The counter increments every 

DCO cycle, and when the count value reaches a target count, which corresponds to the 

spiking threshold, a spike is generated and the counter is self-reset. The compare & fire 

block checks the current counter count and if the count matches the threshold, a pulse is 

generated as the spike. The spike is fed into the neuron control logic and the reset signal is 

generated to clear the counter. The output of each DCO unit is the number of spikes 

generated within a certain sampling period. The measurement precision of the time based 

DCO neuromorphic core can be easily programmed by changing the spiking threshold. For 

instance, with a higher spiking threshold, a smaller DCO frequency difference can be 

detected at the cost of longer delay, thus higher energy consumption. 



 

 17 

SRAMSRAM

Xi

SRA

M

Wi<2:0>

4C

SRA

M

WL

Xi

wi<2> wi<1> wi<0>

2C C

SRA

M

SRA

M

Xi Xi

*BL,BLB omitted 

for simplicity

 

Fig. 2.4: Detailed implementation of one processing element, which is a 

programmable delay stage. 
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Fig. 2.5: Load capacitor configuration table of all possible states. 

 

 Fig. 4 shows the detailed implementation of one processing element (PE), which is 

a programmable delay stage of the DCO core. Our design has a weight resolution of 3 bits, 

so each stage accepts 1-bit pixel 𝑥𝑖 and 3-bit weight 𝑤𝑖 as inputs. Each stage of the DCO 

core is composed of an inverter and binary-weighted MOSFET capacitors controlled by 
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the input pixel and the 3-bit weight. Input pixels determine whether a stage is activated or 

not, and weights determine how many capacitors are turned on as load in that stage. Since 

there are both excitatory and inhibitory synapses, the delay should be able to change in 

both directions. So weight 1002 is defined as weight zero, it’s also the default weight when 

the delay stage is disabled. If weights are smaller than 1002 (i.e. 001~0112), fewer load 

capacitors are turned on, reducing the delay of that stage. These weights represent 

excitatory synapses. Contrarily, weights larger than 1002 (i.e. 101~1112) represent 

inhibitory synapse. Fig. 5 shows all the possible load capacitor configurations and the 

corresponding states. To save the power consumption of data movement during 

computation, each PE has its exclusive memory for use. In each programmable delay stage, 

there are three SRAM cells storing the 3-bit weight for each PE.  This architecture is called 

completely parallel or fully spatially unrolled architecture [29-30]. 

3 SRAM cells

5
.9

µ
m

8.1µm

3 SRAM cells

SRAMSRAMSRA

M

SRAMSRAM
SRA

M

 

Fig. 2.6: Unit cell layout of two processing elements. 
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The unit cell layout that is composed of two PEs is shown in Fig. 2.6. The two PEs are 

made as symmetric as possible to reduce the process variation induced delay mismatch 

between different stages. Each unit cell has a size of 8.1µm by 5.9µm, so every PE takes 

an area of approximately 24µm2 (in 65nm process), which is very compact compared to the 

bulky adders and multipliers in digital implementation. So this time-based implementation 

of neural networks can be more area and power efficient than traditional digital 

implementation. And because of the fully spatially unrolled architecture, after loading the 

weights in the SRAM cells initially, the weights don’t change during the entire inference 

application period, so there’s no power consumption for moving the data from memory to 

PEs. This can further increase the energy efficiency of this core. 
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Fig. 2.7: Neural network accuracy and processing element (PE) area with different 

weight precision. 

 

The reason why we use the 3-bit weight is based on the accuracy and circuit area 

and power tradeoff, which is shown in Fig. 2.7. We train a single layer perceptron neural 
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network for digit recognition appication. The accuracy in the dashed line is for the floating 

number weight we got from training, and the black curve shows the accuracy when we 

round the weight to different number of bit precisions. The grey curve shows the 

corresponding area estimation under different weight precisions, except for the 3-bit case. 

The area and power consumption increases exponentially with weight precisions, however 

the accuracy doesn’t increase that much. According to our study, 3-bit weight has the best 

accuracy and area tradeoff, so we decide to use 3-bit weights in this work. 
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Fig. 2.8: Architecture of the proposed time-based DCO neuromorphic. 

 

Fig 2.8 shows the overall architecture of the proposed time-based neuromorphic 

core with 64 DCO circuits array in parallel. The DCO array is divided into 8 groups, each 
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consisting of 8 DCOs, to realize the local lateral inhibition feature (discussed in next 

section). Each DCO can be enabled or disabled independently, so any number of DCOs 

can be activated simultaneously according to different applications, demonstrating the 

scalability of this proposed neural network. The proposed neuromorphic core compares the 

raw spike count of each DCO to determine which neuron output is dominant. If we define 

the multiply and accumulate computation results as the score of each neuron, so the higher 

the score, the more likely it’s the correct prediction. In our proposed neuromorphic core, 

computation results are represented by the overall delay in the DCO loop, and the DCOs 

with higher score has smaller delay (higher frequency), thus can generate more spikes. The 

dominant DCO with the most spikes is the final prediction result. However, due to process 

variation, different DCOs have different oscillation frequencies for identical inputs. It is 

critical to have a uniform DCO frequency to start with. Unlike process variation, voltage 

and temperature variation affect all DCOs in the same direction, so although the absolute 

spike counts may vary, the dominant DCO will always stay the same under V and T 

variations. To compensate for process variation, in our design, 7 of the 128 DCO stages 

are reserved for frequency calibration while the remaining 121 stages are used for the 

normal neural network function. For frequency calibration, all DCOs are configured to 

have the same pixel inputs and weights, and the spike counts are measured for a fixed 

period of time. By tuning the weights of the 7 frequency calibration stages, we can get a 

uniform baseline DCO frequency. And this is a one-time calibration, since after this 

calibration, further voltage and temperature variations affect all the DCO frequencies in 

the same way, the relative order of different DCOs won’t change, so no further calibration 
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is required. Fig. 2.9 shows the measurement results of the frequency calibration of 10 

DCOs. After calibration, the frequency variation reduces from 1.17% to 0.10%. Although 

due to jitters and noises, the DCO frequency will vary from time to time, as long as the 

frequency variation is smaller than the frequency mismatch between different DCOs, the 

final prediction result will not be affected. And the frequency mismatches between 

different DCOs are determined by the weights obtained in the training process, which can 

be tuned and is measured to be much larger than 0.10%. 
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Fig. 2.9: Measurement results of DCO frequency calibration. 

 

2.3.3 Characterization of DCO Neuromorphic Core 

Before applying this time-based neuromorphic core in real applications, we need to do 

some further characterization to ensure the accuracy of the computation results. Linearity 

of the DCO frequency is one important factor that affects the computation accuracy and it 
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determines whether the hardware results match the software simulation results. Fig. 2.10 

shows the measurement results of DCO linearity characterization. It plots the mean and 3σ 

error bars of the frequency count when different number of stages are activated. The gray 

curve shows the case when only 1 out of 128 DCO delay stages is enabled, the rest stages 

are all turned off. In this case, when the weight is swept from 000 to 111, only 1 unit of 

weight is changed every time, so it corresponds to the minimum tunable frequency this 

DCO can achieve. The measurement results confirm a good linearity.   
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Fig. 2.10: Measurement results of DCO linearity characterization. 
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Fig. 2.11: Measurement results of injection locking phenomenon in adjacent DCOs.  

 

Due to the fact that in this work an array of 64 oscillators can oscillate at the same 

time with similar oscillation frequencies, and they are in a close vicinity to each other, so 

injection locking might happen. To measure whether there’s injection locking in this 

proposed architecture, we select 10 adjacent DCOs, turn on all the stages and vary the 

weight of the middle DCO, weights of the rest DCOs are fixed at 0. The measurement 

results are shown in Fig. 2.11. As the weight of the middle DCO was swept from -10 to 10, 

we observed that in the range of -5 to 5, when the weight of the middle DCO changed, its 

oscillation frequency changed little and was similar to its adjacent DCOs, so we believed 

that when the difference of the computation results between adjacent DCOs were smaller 

than 5, there was injection locking in this architecture. This injection locking phenomenon 

is not necessarily a bad thing in our system. Since the measurement results of classification 

applications show that the output difference between the dominant DCO and the rest DCOs 

is larger than 5, so the dominant DCO will never be affected by injection locking. And it’s 
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a favorable phenomenon that the rest DCOs are locked at a similar frequency, which makes 

it easier to select the dominant DCO. 

2.4 Leak and Local Lateral Inhibition 
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Fig. 2.12: Illustration of time-based leaky integrate-and-fire neuron and local lateral 

inhibition operations. 
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We also implemented brain-inspired leak and local lateral inhibition (LLI) features 

in this work to improve the performance. These two features can enhance the contrast 

between different neuron outputs. Fig. 2.12 illustrates the circuit implementation of leaky 

integrate-and-fire neuron and LLI features. We can decide separately whether to enable the 

leaky and LLI features or not. When the leaky feature is enabled, the LSB of the 8-bit 

counter in the readout circuit is not only reset by the generated spikes, but also periodically 

reset by a low frequency LEAK signal. This has the effect of gradually decrease the stored 

count value, mimicking a leaky neuron whose charge slowly leaks away through the cell 

membrane. The timing diagram illustrating the leaky feature is shown in Fig. 2.13 (middle), 

for comparison, the nominal operation without leaky or LLI features is shown in Fig. 2.13 

(top). The threshold is 8 in this example. After enabling the leaky feature, the number of 

DCO cycles required to generate a spike gradually increases from 8 to 10. Note that the 

period of the LEAK signal need not be very stable and accurate, but should be several times 

longer than that of the DCO, otherwise the count value might increase. We also found that 

the pulse width of this LEAK signal can also affect the extent to which the count value is 

decreased. So we used an on-chip free-running VCO and pulse generator to tune the 

frequency and pulse width of this LEAK signal. 
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Fig. 2.13: Timing diagrams showing DCO frequency and neuron spike output with 

(solid waveform) and without (dashed waveforms) leaky or LLI features. Spiking 

threshold is 8 in this example. 

 

Lateral inhibition is a phenomenon in which the active neuron strives to suppress 

the activities of its neighbors. In our design, every 8 DCOs are grouped together to realize 

LLI, so each DCO has 7 neighbors in its group. We can decide the inhibition amount, which 

is the count decrease in the counter, by setting which bits of the counter are reset. When 

LLI is enabled, once a DCO in the group generates a spike, there is a pulse generated as 

LLI signal, which resets the bits we previously defined in the neighboring counters. The 

fastest DCO in the group resets the other DCOs more often than it is reset by the other 

DCOs, enhancing the contrast between different DCO outputs. The timing diagram 

illustrating the LLI feature is shown in Fig. 2.13 (bottom). There are two DCOs in this 

example and DCO<0> is the dominant one. If there’s no LLI, they need 8 cycles to generate 

a spike. After enabling LLI feature, the faster DCO (DCO<0>) resets the slower DCO 

(DCO<1> three times, so it takes the slower DCO 17 cycles to generate its first spike. So 

the output contrast between these two DCOs increases further after enabling the LLI 

feature. 

The effects of leak and LLI features are illustrated in Fig. 2.14. The main benefit of 

the leak operation is that it can increase the relative difference between DCO spike outputs, 

since the absolute difference between different DCOs stays relatively the same, but the 

overall level of the DCO frequencies decreases, so the relative difference increases, making 

the prediction more accurate. And for LLI feature, the faster DCO becomes faster and 

slower DCO becomes slower. The contrast between different DCO outputs is sharper, so 
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it ensures that the prediction results are more reliable. But there is usually a greater 

frequency drop than leaky feature, so it makes the operation slower. 
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Fig. 2.14: Effects of leak and LLI features. 

 

2.5 Digit Recognition Application and Measurement Results 

A test chip was fabricated in a 1.2V, 65nm LP CMOS to demonstrate the time-based 

neuromorphic core. Due to chip size limitations, we opted for a single neuromorphic core 

implementation with 64 DCO neurons. However, as the chip is fully scalable, we can either 

tile more DCOs in one neuromorphic core or tile several neuromorphic cores and operate 

them in parallel to handle complex deep learning algorithms. 

We tested the chip with handwritten digit recognition application to showcase the 

versatility of the proposed core. Handwritten digit images were obtained from the MNIST 

database [32]. The original image size from MNIST was 28x28 pixels, while in our test 

chip, each DCO can accept at most 121 effective input pixels, so we did some 

preprocessing of the image data, which is shown in Fig. 2. 15. We first removed 3 pixels 

on each side without affecting the images, as they were almost all blank pixels, containing 
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little information. Then we had two options, one is to directly scale the image from 22x22 

pixels to 11x11 pixels, so that a single DCO circuit can process one complete image. 

Obviously, this degrades the image and deteriorates the recognition accuracy, so this is just 

used for proof-of-concept test architectures. In most of the applications, the pixel count is 

far more than 121, so to demonstrate that our core is able to handle larger images, we also 

crop the 22x22 images to 4-patch images with 11x11 pixels in each patch. In this case, four 

DCO circuits can work concurrently to process one image, which improved the throughput 

and recognition accuracy.  The training network we used was the multi-layer perceptron 

neural network, and all weights were trained off-chip using supervised learning and 

downloaded to the chip. In the training process, we used all 60,000 images in the MNIST 

database and used 10,000 images for inference. The summary of the training process is 

shown in Fig. 2.15. 

28x28 pixels 
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Crop

Scale

11x11 pixels

4-patch 

11x11 pixels
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Crop

Learning Method Supervised Learning

Training Network
Single-layer & Multi-layer 

Perceptron Network

Input Database
MNIST (training: 60,000 images; 

inference: 10,000 images)

Application Handwritten Digit Recognition

 

Fig. 2.15: Data preprocessing for digit recognition application and summary for the 

training process. 
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Fig. 2.16: Single-layer digit recognition application for proof-of-concept. 
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Fig. 2.17: Multi-layer digit recognition test architecture with 11x11 input images. 
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Fig. 2.18: Multi-layer digit recognition test architecture with 4-patched 22x22 input 

images. 

 

First of all, for proof-of-concept, we tested the chip using a simple single-layer 

architecture with no hidden layers. It’s a fully connected network with one input layer and 

one output layer, which is shown in Fig. 2.16. The input images are scaled version with 

11x11 pixels. The output layer is the time-based classifier layer. There are 10 DCO neurons 

in the classifier layer, each neuron is trained to recognize one digit and the spike outputs 

from the 10 neurons are recorded. The neuron with the most spikes are the recognition 

output. Next, we ran the chip on a MLP architecture with one hidden layer, which is shown 

as time-based feature extraction layer in Fig. 2.17. The input images in this case are still 

11x11 pixels. The feature extraction layer extracts 60 features from each input image. The 

output classifier layer is the same as before. Finally, we did our formal test of using 4-

patched images with 22x22 pixels in a MLP network with one hidden layer, which is shown 

in Fig. 2.18. Each patch has 11x11 pixels and 4 DCOs handle the same image in parallel. 



 

 33 

60 features are extracted from each patch by the feature extraction layer. Then we did the 

off-chip data processing to sum and encode the results from the feature extraction layers 

and feed these results to the output classifier layer to get the final recognition results. The 

reason why we chose a hidden layer of size 60 is based on the tradeoff between the 

simulated accuracy result and the circuit implementation complexity, as is shown in Fig. 

19. The accuracy generally increases with the size of the hidden layer, but the increasing 

speed is gradually decreasing because of overfitting. And as our core has 64 DCO circuits, 

so if the hidden layer size is larger than 64, then it requires a multi-chip implementation, 

which greatly increase the complexity. In this work, we decide to use a simpler chip 

implementation and achieve an accuracy as high as possible. As is shown in the zoomed-

in area in Fig. 2.19, the accuracy of using a hidden layer size of 60 reaches the highest and 

if we increase the size to 64, the accuracy doesn’t improve further due to overfitting, so we 

decide to use the hidden layer size of 60. 
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Fig. 2.19: Hidden layer size selection based on accuracy and circuit implementation 

complexity trade-off. 
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Fig. 2.20: Measured accuracy results of handwritten digit recognition application. 
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Fig. 2.21: Measured results of digit recognition application with local lateral 

inhibition (LLI) feature enabled. 
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The measured accuracy results from the above three architectures are shown in Fig. 

2.20. The two-layer architecture with 4-patch inputs (22x22 pixels) achieves the highest 

recognition accuracy of 91.4%. With the leak feature enabled, the accuracy increases 

modestly to 91.9%. The measured accuracy from hardware is comparable to software 

simulation results, which is due to the DCO circuits have a good linearity. As seen from 

the measurement results in Fig. 2.20, the recognition accuracy of a single-layer architecture 

increases from 84.1% to 85.0% after enabling the leak feature, while the accuracy doesn’t 

improve as much in the two-layer architecture. This is because in the two-layer 

architecture, we have more weights available to improve the contrast between different 

neuron outputs, which means the output contrast for two layer architecture has already been 

pretty large. This make the leak feature less effective. Fig. 2.21 shows the measurement 

results of digit recognition application with LLI enabled. This figure shows the outputs 

from 10 DCOs in the classifier layer. For an image of digit “2”, before enabling the LLI 

feature, the spike count differences between different DCO neurons are very small, the 

minimum difference is 1.7%, which is very hard to get the correct recognition result. After 

enabling the LLI feature, this difference increases to 17.7%. So with a larger difference, 

we can make the prediction more confidently, and this prediction result is more reliable 

than without LLI case. The reliability of the prediction results is very important in some 

applications, for example, in medical field, if the doctors want to diagnose some diseases 

from some examination results with the help of deep learning algorithms, the reliability of 

the prediction result is of critical importance to the patients. We always want the doctor to 

be as confident as possible of the diagnosis result. Fig. 2.22 shows the measured power 
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consumption and DCO frequency under different supply voltages. The test chip can work 

under a wide range of supply from 1.2V to 0.7V. The DCO circuit oscillates at 99MHz 

consuming 320.4µW under a nominal 1.2V supply voltage. At 0.7V supply, the DCO 

oscillates at 20MHz with 17.5µW power consumption. 
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Fig. 2.22: Measured power consumption and DCO frequency of the test chip under 

different supply voltages. 

 

Table 2.1 shows the performance comparison with recent neuromorphic chip 

designs [30, 31, 33, 34]. It’s worth noting that an apples-to-apples comparison between our 

time-based scheme and traditional ASIC chips can be tricky. Here, we chose to present 

metrics (e.g. µW/DCO, spikes/s/W) specific and relevant to our design, and we also 

provide the comparison of our work with prior arts in different metrics. The proposed DCO 

neuron can generate 3.09x1011/16 = 1.93x1010 spikes per second per watt, for a spiking 

threshold value N of 16. Compared with the previous time-based neural network [29-30], 
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our core has a slightly lower power efficiency, but the hardware efficiency is 4X better 

than the previous work. If we define one multiply and accumulate (MAC) as one operation 

(OP), our core achieves 37.4 TOPS/W efficiency, which is better than previous works [31, 

33]. Note that different works have different weight resolutions, so it might not be the 

fairest comparison. All the performance numbers listed in the above table for this work is 

based on the spiking threshold value of 16. The performance can be better if smaller 

threshold is chosen, but it will slightly reduce the accuracy. 

Table 2.1: Performance Comparison with Prior Arts 

This work

Application
Hand writing 

recognition

Technology 65nm

Area 0.24mm
2
 (64 DCOs)

Voltage 1.2V

Frequency 99MHz (nominal DCO freq.)

Neural Network 

Type

Multi-layer perceptron 

network

Performance 

Comparison

16.6GE/PE
c

Power

ISSCC 16 [31]

Object detection + 

intention prediction

65nm

16.0mm
2

1.2V

250MHz

Deep neural 

network

330mW

Power 

Efficiency
309G ÷ N spikes/s/W

(N=spiking threshold
a
)

-

320.4 µW/DCO

Circuit Type Time-based Analog + Digital

VLSI 15 [32]

Object 

Recognition

65nm

1.8mm
2

0.45V

SAILnet

5.7pJ/pixel 

(memory+logic)

3.65mW

-

Digital

40MHz (Inference)

JSSC 17 [28]

Hand writing  

recognition

65nm

3.61mm
2 
(32K PEs)

-

Binary neural 

network

48.2TSOp/s/W

-

Time-based

-

862GOPS/W

862GOPS/W

-

-
5.7pJ/pixel 

(memory+logic)

-

-

37.4TOPS/W
d

0.43pJ/pixel (logic)
e

Note

a. N=16 in our measurements.

b. SOp/s/W: Synaptic operation 

(SOp). In DCO based time-

domain neural network, one 

oscillation of DCO is equivalent 

to 121 SOp. 

c. 1GE: 1.44um
2
(65nm). PE: 

processing element.

d. Operation: One operation is 

defined as one multiplication 

and accumulation (MAC). In 

DCO based time-domain neural 

network, one oscillation of 

DCO is equivalent to 121 3-bit 

MAC.

e. Used spiking threshold of 16, 

and only accounted for the 

power consumption of core 

logic circuits,  memory power 

is not included, since weight is 

not updated during the 

inference. 

f. 1 MULADD = 2OPs

Hardware 

Efficiency
- 76.5GE/PE - -

76.5GE/PE

48.2TSOp/s/W37.4TSOp/s/W
b

- -

VLSI 17 [29]

Hand writing 

recognition

65nm

3.9mm
2

0.55-1.0V

100-400MHz

Binary DNN

0.05-0.6W

-

Digital

6.0-2.3TOPS/W

6.0-2.3TOPS/W
f

-

-

-

 

Fig. 2.23 shows the die photo and the performance summary of the test chip. The 

neuromorphic core with 64 DCO circuits takes an area of 0.24mm2. There are around 8K 

synapses and 3.1K bytes of on-chip memory. 
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Fig. 2.23: Die photo and performance summary of the test chip. 

 

In this work, we have focused on the implementation of MLP using our proposed time-

based neuromorphic core, however, the proposed time-based architecture is not limited to 

MLP only. With some modifications, we can also apply the proposed neuromorphic core 

in convolutional neural network (CNN), as is shown in Fig. 2.24. We take an input image 

of 22x22 pixels and filter size of 5x5 as an example. Each DCO can do the computation of 

convolution between filters and inputs. We can group 4 DCOs together for the max pooling 

layer to subsampling the feature maps to a smaller size by taking advantage of the LLI 

feature in this work. Instead of sliding the filter over input images, we fix the filters and 

shift the input images to feed into different DCOs, which can save the memory access cost. 

One limitation of the proposed work is that the outputs of the DCOs are spikes, so we need 

to convert this information to digital domain to feed to the next layer, and we also need 

some on-chip memory to store the intermediate results for implementing CNN. The main 
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modification required is to add one conversion and memory block. And this is our possible 

future works for this time-based neuromorphic core. 
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Fig. 2.24: Implementation of convolutional neural network (CNN) using our proposed 

time-based neuromorphic core with some modifications.  

 

2.6 Conclusion 

In this work, we present the implementation of neuromorphic function in time domain 

with programmable delay stages. Brain-inspired leak and local lateral inhibition (LLI) 

features are also implemented on chip. The processing element of the proposed time-based 

neuromorphic core is based on inverter which is tiny and compact, and each processing 

element has its exclusive memory for use, eliminating the power for data movement, 

making the proposed core highly efficient in area and power. The proposed time-based 



 

 40 

neuromorphic core is tested with digit recognition application and achieves a 91.4% 

recognition accuracy. The energy-efficiency and versatility of the presented time-based 

DCO neuromorphic core makes it a promising building block for future large scale deep 

neural network applications.  
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Chapter 3. Binarized LSTM Neural 

Network Architecture Design 

 

3.1 Introduction 

Recurrent neural network (RNN) is very powerful in processing sequential data, and it 

has been proven to be successful in many applications, such as natural language processing 

(NLP) [35], machine translation [36], etc. Long short-term memory (LSTM) is a popular 

type of RNN that is good at dealing with sequential data that has long term dependencies. 

Photoplethysmorgraphy (PPG) signal is such a type of data, which is a popular and 

convenient way for heart rate monitoring. However it suffers from motion artifacts (MA) 

problem, deteriorating the accuracy of heart rate estimation. Recently, LSTM neural 

networks accompanied with convolution neural networks (CNNs) and fully connected (FC) 

layers are shown to work well in predicting heart rate from PPG signals [37]. This data-

driven and learning-based network obviates the necessity of feature engineering, which 

requires domain knowledge to select hand-crafted features. 

Despite the versatility of the LSTM neural networks, it is hard to implement in 

hardware due to its high computation complexity and memory requirement. In this work, 

to deploy the neural network for heart rate prediction on embedded devices, an efficient 

binarized LSTM hardware architecture that reduces the computation complexity and the 
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memory footprint is proposed and the performance is evaluated with various PPG datasets. 

The proposed LSTM architecture is tested using the custom collected PPG signals and the 

simulation results demonstrates that the proposed binarized LSTM architecture achieves a 

good heart rate prediction accuracy. 

3.2 LSTM and PPG Background 

3.2.1 LSTM Neural Network 

LSTM

xt

ht

ht-1

W

 

Fig. 3.1: LSTM unit and equations. 

 

The LSTM unit is composed of an input gate, a forget gate, an output gate and a cell. 

Each gate can be viewed as a feed-forward neural network, implementing the multiply and 

accumulation (MAC) computation followed by an activation function, as is shown in Fig. 

3.1 [38]. The subscript t indexes the time step, σg represents the sigmoid function, and σc, 

σh are tanh. The operator ° denotes the element-wise product. Each gate computes the 



 

 43 

element-wise addition of two weighted sums 𝑊𝑥𝑥𝑡 and 𝑊ℎℎ𝑡−1, and a bias 𝑏. To simplify 

the neural network, we remove the bias term in this work. Therefore, each gate now 

computes the element-wise addition of two dot products of inputs 𝑥𝑡 and hidden states ℎ𝑡−1 

and their corresponding weights, followed by an activation function. There are two input 

ports for each gate, one is the actual external input signal of the current time step 𝑥𝑡; the 

other is the output (hidden state) from the previous time step ℎ𝑡−1, which allows 

information to persist, and this is the loop shown in the LSTM unit in Fig. 3.1.  

In this work, a binarized LSTM neural network is proposed to reduce the memory 

requirement and simplify the circuit implementation in hardware. During the training, the 

weights are binarized using loss-aware binarization scheme [39]. Instead of simply finding 

the closest binary approximation of weights, this loss-aware binarization also considers the 

loss during binarization. So in this work, the weight in each layer is binarized as  

𝒘𝑙 = 𝛼𝑙𝒃𝑙⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3.1) 

where 𝛼𝑙 > 0 and 𝒃𝑙 is binary. In terms of the hardware implementation, we can still fully 

utilize the benefit of binary computation, and simply multiply a constant at the end of each 

multiply and accumulate (MAC) operation, since for each gate, 𝛼𝑙 is a constant. And a 

multiplication operation with a constant number can be simplified to predefined bit shifts. 

During the inference mode, all the weights are available and fixed, so this multiplication is 

reduced to bit shifts, incurring little hardware overhead. 
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3.2.2 PPG Signal Basics 

 

Fig. 3.2: Raw ECG (top), PPG (middle) signals and spectrums (bottom) while walking 

(left) and during transition from walking to running (right) respectively. The highest 

PPG spectral peak does not coincide with true HR (encircled) during intense motion. 

 

PPG signals are optically obtained and are caused by the blood volume change. A PPG 

is usually measured by a pulse oximeter, emitting light on the skin and measuring the 

changes in reflected or transmitted light intensity [40]. The periodic change in the blood 

volume causes the light intensity to change periodically. The periodicity of the light 

corresponds to the cardiac rhythm, which is often used to estimate heart rate (HR). PPG 

signals can be acquired from peripheral locations such as fingertips, earlobes or wrist, 

which provides a distinct advantage of incurring low-cost and having a small form factor, 

making them a popular alternative for measuring HR. The conventional way of monitoring 
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HR is using electrocardiography (ECG), which is limited by its placement for signal 

fidelity. ECG measurement requires ground connection and reference sensors proximal to 

chest, so it is inefficient in terms of wearability for continuous HR monitoring in daily 

living conditions. While PPG signal can be easily embedded into wearable devices due to 

its small form factor and low-cost. However, PPG signals always suffer from motion 

artifacts (MA) problem, which distorts the signal fidelity and inhibit the robust estimation 

of HR. Fig. 3.2 illustrates the comparison between ECG and PPG signals and the effect of 

MA on the signal quality [41]. In ECG signals, the highest peak in the spectrum does not 

coincide with the true HR. However, in PPG signals, due to the interference of MA, the 

HR peak is no longer the highest, and this causes the inaccuracy in HR monitoring.  

MA are caused by various factors, such as physical activities, ambient light leaking 

through the gap between sensor and the skin, and change in blood volume due to 

movements. This can cause the spectral component of MA to coincide or even overpower 

the heart-beat related component [42]. Conventional methods to solve this problem often 

rely on signal processing techniques to remove or attenuate MA using filtering [43-45], 

spectral subtraction [42] and feature-engineering based learning algorithms [46-47]. To 

avoid the necessity of feature engineering, which always requires using domain knowledge 

to select hand-crafted features, a learning-based framework is proposed in [41]. This 

proposed framework is based on the fundamentals of deep neural network (DNN), which 

is data-driven and has been demonstrated to be successful in predicting HR from PPG 

signals based on a convolution neural network (CNN) accompanied with long short-term 

memory (LSTM) neural network. In this work, we try to implement the LSTM neural 
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network in the proposed framework, so that the whole framework can be embedded on the 

wearable devices.  

3.3 Proposed LSTM Hardware Architecture 

3.3.1 System Overview 

Fig. 3.1 illustrates the overall neural network based heart rate prediction system 

[37]. The input PPG signal is divided into 8 seconds windows, and new data arrives in 

every 2 seconds. The minimum requirement is that the system must finish the computation 

in 2 seconds. The overall system composes of 2 1-dimensional CNN layers, 2 LSTM layers 

and a fully connected layer. LSTM layer is the most computation and memory intensive 

part in this system. In this work, we focus on accelerating LSTM layers and the final dense 

layer in hardware so that we can achieve real time heart rate prediction on embedded 

devices. The system parameters are illustrated in Fig. 3.1. There are 256 data points in each 

input PPG window, and 32 filters in both CNN layers, with size 40*1 and 40*32 

respectively. There are 128 hidden units in LSTM layer. The output data with size 3*32 

from the second CNN layer is the input for the first LSTM layer, so there are 3 time steps 

in LSTM layer and each time step has 32 data points. The second LSTM layer is basically 

the same as the first one, except the input size. The input of the second LSTM layer is the 

output from the first LSTM layer, with size 3*128, so it has 3 time steps and each time step 

has 128 data points. 
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3.3.2 Implementation Details of LSTM Layer 
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Fig. 3.3: LSTM based heart rate prediction system [37].  
 

To accelerate the computation and alleviate the memory requirement in LSTM 

layers, a binarized LSTM architecture is proposed in this work. Both the input data and 

weight are binary numbers, either 0 or 1, this will greatly simplify the MAC computation 

and reduce the memory footprint. Fig. 3.3 shows the details of the proposed hardware 

implementation of the first LSTM layer. The LSTM layer implementation is divided into 

2 stages: MAC computation in parallel (stage 0) and Ci and hi computation in serial (stage 

1). In this proposed binarized LSTM network, both the inputs and weights are binary, so 

the MAC computation is reduced to bit-wise XNOR followed by a population count, thus 

allowing the parallel computation, which is shown in Fig. 3.4 (a). For LSTM1, the input 
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vector size is 32, the weight matrix is 32 by 128, so the MAC unit for each gate is 

computing the dot product of the above two matrixes, and the output vector has size 128. 

The MAC unit contains 128 XNOR units in parallel, and each unit computes 32 bit-wise 

XNOR. The input vector is shared by 128 units. This is combinational logic, which can be 

finished within one clock cycle, however, this requires all 32 1-bit inputs and 32*128 1-bit 

weights are available at the same time, which consumes a large memory bandwidth. While 

in this application, the computation latency requirement is not that strict, to reduce the 

memory bandwidth requirement, an optimized MAC computation is proposed, which is 

shown in Fig. 3.4 (b). The 128 parallel MAC computation units are broken into 32 groups 

and within each clock cycle only 1 group is computed, so only 4 XNOR units are left in 

each MAC unit and they are reused 32 times. We tradeoff the computation time for memory 

requirement. This increases the computation time, but reduces the memory footprint by 32 

times. We choose 32 to have a balanced computation time and memory footprint. To 

achieve the best possible computation accuracy, we use 24-b data to represent intermediate 

calculation results. 
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Fig. 3.4: Proposed binarized first LSTM layer architecture. 

 

The non-linearity blocks, including sigmoid and tanh, are implemented with 

CORDIC module [48]. It is a relatively large block, so parallel implementation is not 

allowed. The parallel data is serialized before being fed into the non-linearity block. We 

reuse the CORDIC block for the element-wise multiplication to save area. A first-in-first-

out (FIFO) buffer is inserted to save the current cell state for the next time step 

computation, which is shown in Fig. 3.5. In each clock cycle, a 1-bit output ℎ𝑡 is computed, 

and the serial to parallel (S2P) block collects the 1-bit ℎ𝑡 and outputs the final 128-bit ℎ𝑡 

after 128 clock cycles and then feeds it to the next time step computation. The LSTM2 

architecture is almost the same with the LSTM1 architecture, except that the input X is the 

output ℎ𝑡 from LSTM1, which is 128 in size. So the input MAC computes the dot product 

of two matrixes with size 128 and 128 by 128. 
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Fig. 3.5: Detailed MAC implementation, original (a) and optimized (b). 

 

The final fully connected dense layer computes the dot product of input vector and 

weights, which are both 128 in size. The input is binary, which is the 128-bit output from 

the LSTM2 layer, and the weight is non-binary, since the output of the dense layer is the 

predicted heart rate. Due to the binary input, dense layer MAC computation can be 

implemented with an accumulator, and the input ℎ𝑡 decides whether to add or subtract the 

current weight to the accumulated result, which is shown in Fig. 3.6. This dense layer 
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computation is implemented in parallel with the LSTM2 layer during the final time step 

computation. 
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Fig. 3.6: FIFO implementation for storing the current time step and the previous time 

step cell states. 
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The overall timing diagram of the system, including two LSTM layers and the final 

dense layer, is shown in Fig. 3.7. The entire system can be pipelined, so that the HR 

prediction can be finished in (n+1) time steps, where n is the time steps in each LSTM 

layer. There are 3 time steps in the dataset shown in this application. When the first time 

step of the first LSTM layer is computing, the other blocks should wait. After the output 

from the first time step of LSTM1 is ready, the first time step computation of LSTM2 can 

start. So the output ℎ1 is fed to both LSTM1 and LSTM2. It’s similar for the rest of the 

time step computations. During the final time step of LSTM2 computation, the output ℎ3 

comes out 1-bit by 1-bit, without being collected by the S2P module as that in the previous 

time step computations. This 1-bit ℎ3 output directly goes to the input port of the final 

dense layer, which accumulates the input data bit by bit. Thus the dense layer requires no 

extra computation time. As soon as the computation of the final LSTM layer is finished, 

the dense layer is also finished. So in this case, only 4 time steps of computation time is 

required to finish the computation of the entire system. The block diagram of the proposed 

system is shown in Fig. 3.8. 
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Fig. 3.8: Timing diagram of the proposed LSTM based heart rate prediction system. 
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Fig. 3.9: Block diagram of the proposed LSTM based heart rate prediction system 

(with only LSTM layers and the final dense layer). 

 

3.4 Heart Rate Estimation using the Proposed LSTM 

Architecture 

To demonstrate the performance of this proposed binarized LSTM neural network, we 

simulated the neural network using custom collected PPG and ECG signals. The ECG 

signals are used as the true HR label during the training process. Fig. 3.10 shows both the 

ECG and PPG sensing platform [41]. The raw PPG data is first preprocessed before feeding 

into the proposed neural network. The ECG and PPG signals were originally sampled at 

256 Hz, so there are 2048 data points in each 8s window. To save training time and reduce 

the memory requirement, we used wavelet transform to down-sample the PPG data into 

256 data points in 8s window. There is a limited accuracy degradation after the data down-

sampling according to the software simulation results.  
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Fig. 3.10: Customized chest patch supporting two-lead ECG acquisition (left) and 

wristband with green LED PPG component. 

 

For proof-of-concept, we feed the output data from the second CNN layer to the 

proposed system, including 2 LSTM layers and the final dense layer, and we also compare 

the HR estimation result with the software simulation result. The comparison of HR 

estimation results is shown in Table 3.1. The estimation results shown in the table is the 

average HR of one 8s window. We can see from the table that the proposed hardware 

system achieves a relatively good accuracy. 

Table 3.1: Comparison of HR Estimation Results 

 Estimated HR (BPM) Error (BPM) 

Hardware 65.81 2.99 

Software 61.92 0.9 

HR Label 62.82 - 
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3.5 Conclusion 

In this work, we implement a binarized LSTM neural network architecture in hardware. 

This proposed binarized LSTM architecture reduces the circuit complexity and memory 

footprint compared to a normal LSTM network, making it possible to be deployed in 

embedded devices. The proposed architecture is simulated using the custom collected PPG 

data and achieves a good HR estimation accuracy. 
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Chapter 4. A Data Remanence based 

Approach to Generate 100% Stable Keys 

from an SRAM Physical Unclonable 

Function 

 

4.1 Introduction 

Physical Unclonable Function (PUF) is a circuit that harnesses inherent manufacturing 

variation to generate a random and unique key used for secure hardware authentication. 

The input to a PUF is referred to as “challenge”, and is provided by the server. The output 

of a PUF is called “response” which is sent back to the server for authentication purposes. 

If the response from the PUF matches the correct response stored on the server, then the 

user is granted to access to the system. 

Two categories of PUFs exist: “strong” PUF and “weak” PUF. Strong PUFs like 

Arbiter PUF [49] and ring oscillator PUF [50] can generate an exponential number of 

unique challenge response pairs (CRPs), making them suitable for authentication 

applications without the use of encryption algorithms. Weak PUFs on the other hand, can 

only generate a linear number of CRPs and hence are used for key generation. Keys 

generated by weak PUFs can be used in conjunction with encryption algorithms for 
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authentication applications [51]. The main requirement for keys generated by weak PUFs 

is that their value should not change with temperature and voltage changes, or with device 

aging. 

SRAM is an attractive option for weak PUFs [52] since it is readily available in digital 

processors. Compared to dedicate PUFs such as arbiter PUF or ring oscillator PUF, the 

amount of effort needed to implement an SRAM PUF is negligible. The “challenge” to an 

SRAM PUF is the memory cell address while the “response” is the uninitialized power-up 

value of the cell. The layout of a 6T SRAM cell is perfectly symmetric and hence no 

systematic offset exists. Hence, the power-up state is determined by process variation 

induced mismatch between the two cross-coupled inverters. The manufacturing variability 

is random, unclonable and uncontrollable, which gives each chip a unique key. The main 

design consideration for SRAM PUFs is making sure the key is 100% stable. Given the 

same challenge, we expect the PUF to generate the same key regardless of the operating 

condition. This is difficult to achieve since the static mismatch of a SRAM cell may not 

always be large enough to overpower the random thermal noise under all operating 

conditions. 

Temporal majority voting (TMV) is a popular technique for improving the stability of 

PUF responses [53-54]. The basic principle is to repetitively test the PUF using the same 

challenge and take the majority value of the responses as the final output. Increasing the 

number of repetitive tests allows the tester to find keys that are more stable. The main 

drawback of TMV is that it usually involves a large number of tests (e.g. 100’s or 1000’s 

of power-ups for SRAM PUF), which is prohibitive in terms of test time and test hardware. 
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Furthermore, even with such a large number of trials, the stability criterion cannot be made 

very stringent, so there’s a high possibility that the stable cells found using TMV will 

become unstable in future evaluations. In [53], a combination of TMV, burn-in hardening 

and ECC circuits were used to meet the stability requirement. However, these techniques 

introduce significant hardware overhead. To make matters worse, TMV may have to be 

performed under extreme voltage and temperature conditions to ensure the responses are 

truly stable. This is very time consuming and difficult to implement in a high-volume 

production flow. A bit selection algorithm proposed in [55] utilizes just two test conditions; 

high-temperature/low-voltage and low-temperature/low-voltage. This is more efficient and 

less costly for selecting stable bits, however, it involves changing the test temperature 

which is undesirable. Error Correcting Codes (ECC) can be used to correct the unstable 

outputs using a software algorithm. However, ECC may leak secret information and 

introduce extra design complexity and communication overhead. 

The instability of TMV selected cells stems from the marginally stable cells, i.e., cells 

that appear to be stable during TMV tests but become unstable under extreme 

environmental conditions. These cells are more stable than an average cell, but less stable 

than the strongest cells that consistently produce the same response. Finding the strongest 

cells in a large SRAM array requires a prohibitively large number of repetitive tests and 

may involve changing the voltage and/or temperature. To overcome the limitations of 

TMV, we propose a method for selecting the most stable cells in an SRAM array based on 

just two power-up tests. Compared to TMV, our approach reduces the test time and obtains 

more accurate information pertaining to the stability of cells. Experiment results from off-
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the-shelf SRAM chips show that the cells selected by our proposed strategy are 100% 

stable under extreme test conditions. 

4.2 Data Remanence Based Stable Key Selection 

4.2.1 Data Remanence Based Approach 
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Fig. 4.1: Proposed data remanence based technique to rapidly select the most stable 

cells in a large SRAM array. 

 

Fig. 4.1 illustrates the basic principle of the proposed data remanence based stable 

cell selection method. According to Wikipedia, remanence is defined as “the magnetization 

left behind in a ferromagnetic material after an external magnetic field is removed” [56]. 
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Similar to this concept, we remove the supply voltage for a short period after initializing 

the array to all 0’s or all 1’s.  
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Fig. 4.2: Required power down period to flip SRAM data with different skew. 

 

As shown in Fig. 4.2, the first few bits to flip after the brief power down period are 

ones that are strongly biased to the opposite value. For instance, if the entire array is 

initialized to 0’s, the first bits to flip to 1’s after the short power down period are the 

strongest ‘1’ bits in the array. In traditional SRAM PUF power up operation, the response 

is only related to the inherent transistor mismatch of each SRAM cell. Data written to the 

cell doesn’t affect the power up state because all storage nodes have fully discharged to an 

unbiased state due to leakage current. In other words, the data remanence is fully decayed. 

However, if the cell is powered back immediately after a power down, then the storage 

node data will revert to the previous data because the data remanence is very strong. If the 

power down time is long enough to make the data remanence comparable to the transistor 

mismatch, then some cells will revert to the previous data, while other cells will flip to the 

opposite value. As shown in Fig. 4.1 (top), if ‘0’ is written to all the cells, node Q will be 

0V and node QB will be VDD before the power down. After a short power down period, 
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the majority of the QB nodes will revert back to VDD upon a power up due to the 

remanence charge on the Q and QB nodes. However, the cells with the strongest bias 

towards the opposite value will flip to ‘1’ as illustrated in Fig. 4.1 (top). The transistor 

mismatch in these cells produces a strong bias which cannot be overpowered by the small 

data remanence.  We utilize this behavior to find the most stable ‘1’s in a large SRAM 

array. Similarly, by writing ‘1’ to all the cells in the SRAM array and asserting a short 

power down period, we can find the most stable ‘0’s, which are the first cells to flip when 

the power is turned back on, as highlighted in Fig 4.1 (bottom). 

Note that a “remanence decay” based side-channel attack method was proposed in 

[57] where a pulsed power supply was used to recover the secret keys generated by an 

SRAM based PUF. Our approach employs the same method but for a totally different 

application: i.e., finding the most stable bits in an SRAM PUF with minimal test time and 

test hardware overhead. 

4.2.2 Characterization of Data Remanence Effect 

To verify the proposed technique in real hardware, we performed data remanence 

tests on off-the-shelf SRAM chips from Microchip Technology. Each chip contains 512 k 

memory cells. The first step is to determine the appropriate power down time. If the power 

down time is too long, then the data stored in the array is completely collapsed and the 

SRAM will power up to its uninitialized state. On the other hand, if the power down period 

is too short, then the data will deterministically revert to the previous written state. 

Therefore, the power down period should be carefully characterized. Fig. 4.3 shows the 

percentage of flipped cells when the power down time is swept from 100ms to 1000ms. 
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The SRAM chips we tested were fabricated in an ultra-low leakage technology, requiring 

a relatively long power down time to observe data remanence effects. We expect a much 

shorter data remanence time (e.g. microseconds) for SRAMs built in advanced CMOS 

technologies. The overall data remanence trends will be agnostic to the technology node.  
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Fig. 4.3: Percentage of flipped cell versus when writing all ‘1’s (upper) and writing all 

‘0’s (lower) to the SRAM cells. 

 

Data was collected from all 512 k cells of each SRAM chip. In both write ‘1’ and write 

‘0’ cases, the cells start to flip after a power down period of about 130ms. When the power 

down period increases to about 600ms, the flip ratio reaches 50% which corresponds to the 

SRAM power up state. For authentication applications, we are only interested in finding 
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the most stable ‘1’s and ‘0’s in the entire array, and therefore we need to select a power 

down period that is short enough so that only the most oppositely biased cells flip. This 

time is usually less than 200ms, which is about 3 times shorter than the power down time 

required for a standard SRAM PUF evaluation (approximately 600ms in our case). 

Although the proposed data remanence method requires all SRAM cells to be written to 

‘1’ or ‘0’ before the power down, the time needed to write data into the array is negligible 

compared to the power down time required to clear the data remanence in the SRAM. 

Moreover, our approach only requires two tests to select the most stable cells in the SRAM 

array; one test for selecting stable ‘1’ cells and the other for selecting stable ‘0’ cells. TMV 

may require hundreds or more power ups to find the robustly stable cells, and we must wait 

at least 600ms between two consecutive power-up tests. In short, compared to TMV, the 

proposed technique requires not only fewer power-ups (hundreds or thousands  2) but 

also shorter power down periods (600ms  200ms) which significantly reduces the overall 

test time. 

For a better understanding of the proposed technique, Fig. 4.4 shows data remanence 

of a small 1kbit sub-array for different power down periods. Fig. 4.4 (upper) shows the bit 

map for selecting stable ‘1’s. Data ‘0’, denoted in black, is first written to the whole array, 

and then the power supply is turned off, letting the data stored in the SRAM to decay. When 

the power supply is turned on after 130ms, the first cell in the 1kbit array flips. This cell 

corresponds to the most stable ‘1’ cell in this array. When the power down period increases 

further, more cells flip, which are the next most stable ‘1’ cells. Depending on the number 

of stable cells we want to select, the amount of data remanence needs to be tuned 
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accordingly by changing the power off period. Stable ‘0’s can be selected in a similar way, 

as shown in Fig. 4.4 (lower). 
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Fig. 4.4: Cell flip maps of randomly selected 1K SRAM cells under different power 

down periods (PD). 

 

As seen in Fig. 4.4, the data remanence based technique allows us to measure the 

extent to which a cell is stable, by looking at the order of the cell flips. By sweeping the 

power down time and recording the order of the cell flips, we can sort and list the strength 

levels of each cells from the strongest ‘0’ cell to the strongest ‘1’ cell. As such, we can 

obtain complete knowledge of the cell’s strength of the whole SRAM array by sweeping 

the power down time. For example, if we want to sort the cells from strongest ‘0’ to 

balanced ‘0’, we first write data ‘1’ to the whole array and sweep the power down period 

from 100ms to 600ms for the SRAM chips used in our experiment. The responses of all 

cells are recorded and sorted by retention time, as shown in Fig. 4.5 (upper). The sorting 

order is shown for 50% of the cells (i.e., 256 k), since the other half will always generate a 

‘1’ irrespective of the power down time. When applying the data remanence method to 

generate stable keys, we only select the strongest cells. The most biased cells can be seen 

more clearly in the zoomed-in plot. Depending on how many stable bits we want to select, 

we can vary the power off period. For example, for a 256-bit key, we select roughly 128 

stable ‘0’s and 128 stable ‘1’s from 512 kbit cells, which is 0.05% of the total cells 

available. The power off period should be around 185ms. If we want to select 512 bits, we 

can increase the power off period to around 195ms to allow more flips. In a realistic 

scenario, we can select more bits than we need and then pick the number of stable bits 

requested by our target application. Similar plots of the data ‘1’ case are shown in Fig. 4.5 

(lower). The bit index shows the order from the strongest ‘0’s to balanced cells to strongest 

‘1’s, from top to bottom. We can observe from Fig. 4.5 that by using the proposed data 
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remanence technique and sweeping the power down period, we can sort the cell strength 

levels in very fine steps. For comparison, we used the conventional TMV method to find 

stable bits in the same SRAM array. 1,000 power-up tests were performed and the 

probability of each cell being ‘1’ or ‘0’ were calculated. We found that 40% of the cells 

are stable ‘1’ through all 1,000 tests and 41% of the cells are stable ‘0’ all the time. 

However, many of the allegedly stable cells will show unstable behavior at different 

voltage and temperature conditions, or when the SRAM is subject to aging. To determine 

the 256 most stable bits from a 512 kbit SRAM array, which is only 256/512k = 0.05%, 

we may need millions of repetitive power up tests for TMV, which is impractical. 
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Fig. 4.5: Measured SRAM data remanence for data 1 (upper) and data 0 (lower). Cells 

with the shortest retention times are highlighted in the zoom-in plots. 
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Fig. 4.6 (left) summarizes the test flow for characterizing data remanence while 

sweeping the power down time. Note that we perform this extensive test on one of the chips 

to determine the appropriate power down period of all chips. An attractive feature of the 

data remanence test is that it can be performed at any temperature. The top 0.05% stable 

cells found from the power down sweep test will remain stable at different temperatures 

and voltage conditions. For actual SRAM PUF applications, we use the power down period 

found from the extensive data remanence test and run the test only two times; one for 

selecting strong ‘1’s and the other for selecting strong ‘0’s.  The enrollment test shown in 

Fig. 4.6 (middle) stores the location of the most stable bits on-chip. In the key generation 

phase, we simply power up the SRAM, and key values are retrieved from the stable bit 

locations. 
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Fig. 4.6: Flow chart for data remanence test, enrolment test, and key generation test. 

The power down time T for enrolment phase can be determined based on a one-time 

data remanence test performed at any temperature. 

 

4.3 SRAM PUF Measurement Results 

This section shows detailed measurement results verifying that the stable cells selected 

using our proposed technique are indeed stable across different environmental and aging 

conditions. Fig. 4.7 shows the measurement set up. The pulsed power supply and other 

digital signals are provided by a PXI based data acquisition system. GPIB controlled power 

supplies were used to stress the chip. Chips were measured inside a temperature controlled 

chamber. 
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SRAM PUF 

(tested inside 

chamber)

 
 

Fig. 4.7: SRAM PUF measurement set up including a temperature control chamber. 
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4.3.1 Uniqueness of Key 

The maximum number of bits for encryption algorithms like AES, is usually 256 

bits [51]. So, the target number of bits for our SRAM PUF based key generation is 256 

bits. However, we also present results for generating 512 bit and 1024 bit keys for better 

understanding. Each SRAM chip we tested has 512 kbits in total, so the goal is to select 

the 128 most stable ‘1’s and the 128 most stable ‘0’s from 512 kbits, which correspond to 

the most stable 0.05% of the bits. The power supply off period for selecting 256 stable bits 

in this test was about 190ms. Alternatively, we can select more than 256 bits and randomly 

pick 256 cells and record their locations to generate the bit location address. Fig. 4.8 shows 

256 bit keys generated from 4 different SRAM chips showing an average inter-chip 

Hamming distance of 0.4935, confirming the uniqueness of the keys. Note that the precise 

location of the stable bits is different in each SRAM chip. 

Chip 1: 256-bit Key

Data  1 Data  0 

Chip 2: 256-bit Key

Chip 3: 256-bit Key Chip 4: 256-bit Key

 

Fig. 4.8: Keys generated from 4 different SRAM chips. The inter-chip Hamming 

distance between the 4 different keys is 0.4935. 
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4.3.2 Effect of Power Ramp-up Time and Temperature 
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Fig. 4.9: Measured SER cross-section for inverter, NAND and NOR gates at multiple 

supply voltages. 

 

To verify that the key selected using the proposed technique is stable under different 

environmental conditions, the voltage ramp up rate and temperature were varied. Note that 

during the SRAM power up, the state is resolved during the very beginning of the power 

supply ramp up, so the final power supply level will not affect the stability of the SRAM 

PUF. Instead, the ramp up rate of the power supply may have an effect on the stability of 

the responses. To evaluate this effect, the ramp up rate of the supply voltage was changed 

from 0.78µV/s to 8.33µV/s. Testing was performed at three temperatures; 80
o
C, 25 oC and 

-10
 o

C. Fig. 4.9 (a) shows the measured SRAM PUF responses and the average intra-chip 
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Hamming distances under different test conditions using the proposed technique. Power up 

tests were repeated 10 times under each condition to ensure that the responses are 

absolutely stable. Since the responses are always stable, there is no need for further 

processing of the responses using ECC. This reduces the circuit complexity and 

communication overhead. For comparison, we also select 256 stable bits using the TMV 

method based on 1,000 repetitive power ups. That is, we only chose the cells that are 

consistently ‘0’ or consistently ‘1’ throughout the entire 1,000 trials. As mentioned earlier, 

even with 1,000 repetitive power up tests, we are only able to discriminate the top 81% 

stable cells which includes marginally stable cells. As a reminder, the proposed data 

remanence technique can select the top 0.05% stable cells with just two power-up tests. 

The responses using the 1,000 trial TMV method are shown in Fig. 4.9 (b). The unstable 

bits are highlighted in red. It can be seen from the cell maps that 4 cells are unstable when 

the temperature or power supply ramp up rate changes, which is not acceptable for ECC-

less key generation. Finally, the power up responses from 256 randomly selected SRAM 

cells are shown in Fig. 4.9 (c). As expected, many bits are unstable when tested under 

different conditions. These measurement results confirm that the data remanence technique 

proposed in this chapter can reliably identify the most stable bits in an SRAM array with 

only two power-up tests. The stable keys can be selected under the nominal voltage and 

room temperature condition, so it can greatly reduce the test cost and test time. We also 

selected the 512 most stable bits and 1024 most stables bits and their responses were proven 

to be 100% stable under various voltage and temperature conditions, confirming the 

effectiveness of this technique.  
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4.3.3 Effect of Device Aging 

Device aging may cause the PUF response to change over the lifetime of a product, 

which is undesirable [58]. In particular, bias temperature instability (BTI) is known to be 

the dominant aging mechanism in SRAM cells due to the low activity factor and DC stress 

nature [59-60]. BTI manifests as an increase in threshold voltage, and occurs when PMOS 

or NMOS transistors are biased with a negative or positive gate voltage, respectively [61]. 

Depending on the data stored in the SRAM cell during stress, BTI can either emphasize or 

de-emphasize the process variation induced mismatch. Emphasizing the mismatch will 

harden the responses and make them more stable, while de-emphasizing the mismatch will 

have the opposite effect [58]. Since our goal is to verify the stability under the worst case 

condition, we stress the SRAM array with the power-up state which will decrease the 

mismatch between the two cross-coupled inverters. This de-emphasizes the mismatch and 

makes the bits more unstable during the actual power up test. The SRAM chips were 

stressed under a static DC condition (i.e., no switching or toggling) for 72 hours using a 

1.5xVDD supply voltage. Before applying the stress voltage, the fresh PUF response is 

read out for reference. The SRAM PUF responses of the selected 256/512/1024 most stable 

cells are read out every hour and the intra-chip Hamming distances are calculated against 

the fresh response (Fig. 4.10). 

For comparison, the intra-chip Hamming distances of stable cells selected using the 

TMV method and the random selection method are also shown in Fig. 4.10. We can see 

that the stable cells selected using the proposed technique are 100% stable throughout the 

entire stress experiment. TMV leads to 8% bit flips at the end of the 72 hour stress period, 
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while the number of bit flips for randomly selected cells is 15%. Experimental results 

confirm that the cells selected using the proposed technique remain 100% stable for the 

stress condition used in this work. 
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Fig. 4.10: Average intra-chip Hamming distances of different techniques (i.e., 

proposed, TMV, and random selection) versus stress time for 256, 512, 1024 selected 

bits. 

 

4.4 Conclusion 

In this work, we proposed a data remanence based technique, to efficiently generate 

100% stable keys from an SRAM PUF. By writing ‘1’s or ‘0’s to the entire SRAM array 

and recording the bit flip locations after a brief power down period, we can identify the 

strongest ‘1’ and strongest ‘0’ cells in a large SRAM array with just two power-up tests. 

We have confirmed that the responses selected based on the proposed technique are 100% 
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stable under different voltage and temperature variations, as well as under BTI aging. The 

proposed technique doesn’t require repetitive power-up tests as in conventional TMV 

methods. Since the responses are 100% stable, there’s no need for ECC, which simplifies 

the authentication hardware. 
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Chapter 5. A Passive IC Tamper Sensor 

Design based on an Exposed Floating Gate 

Device in Standard Logic Processes 

 

5.1 Introduction 

Counterfeit ICs entering the supply chain have been causing significant financial 

damage to the electronics industry. According to recent estimates, the electronics industry 

is losing $100 billion in terms of worldwide revenue every year because of counterfeit parts 

[62-65]. Different types of counterfeit methods have been reported, including recycling, 

remarking, overproducing, cloning, forged documentation, defective and tampered chips 

[66]. Among them, recycled and remarked counterfeit electronics account for more than 

80% of all reported counterfeiting cases [67]. Recycled ICs are usually recovered from old 

printed circuits boards (PCBs) and then relabeled and disguised as new parts. Recycled ICs 

can pose great concern for customers, since they may function correctly initially, but cause 

early failures down the road. Detecting these counterfeit electronics efficiently is a critical 

aspect of preventing counterfeit ICs. Several techniques have been proposed to detect 

counterfeit electronics. They can be broadly classified into two categories: physical 

inspection and electrical test [68]. Physical tests are usually destructive and must utilize 
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test instruments, making it very costly and time-consuming. Furthermore, it usually 

requires a human expert to interpret the test results [69]. Electrical inspection on the other 

hand uses on-chip sensors [70-71] to automatically flag compromised chips. Despite their 

promise, on-chip sensors cannot stop untrusted foundries from overproducing chips [68], 

and they cannot fully detect physical attacks such as die removal and desoldering. These 

physical attacks are known to be very common in today’s global supply chain. 

 In this work, we present a logic-compatible embedded flash (eflash) based tamper 

sensor which utilizes an exposed floating gate (FG) structure to detect whether or not an 

IC has been physically compromised. The proposed eflash based sensor doesn’t require 

any power source for the sensing operation which is a critical requirement for counterfeit 

IC detection. Additionally, the sensor can be implemented using IO devices readily 

available in any standard CMOS technology. Part of this work was presented in [72]. 

5.2 5T Eflash Basics 

The sensor utilizes an eflash cell whose FG node is exposed to the environment such 

as the chip cavity. Fleeting changes in the electron charge stored in the eflash cell can be 

captured by the proposed sensor. The eflash circuit is implemented using discrete IO 

devices available in a standard CMOS process so no modification is required to the process 

technology [73]. The proposed eflash based sensing has the advantage of offering a secure 

non-volatile storage solution as well as the ability to retain stored data without a power 

source. Fig. 5.1 shows the 5T eflash cell schematic and layout along with the bird’s eye 

view of the cell [74]. The eflash cell consists of five transistors: coupling device M1, erase 

device M2, program/read device M3 and two selection devices S1 and S2. The FG node is 
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formed by connecting the transistors M1-M3 in a back-to-back fashion. The width of M1 is 

made larger than those of M2 and M3 to achieve a high coupling ratio (CR). A large CR 

ensures that the FG voltage closely follows the PWL voltage applied to the coupling device, 

maximizing the electric field for efficient Fowler-Nordheim (FN) tunneling through the 

dielectric of M2 and M3. 
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Fig. 5.1: (Left) 5T eflash cell structure; (middle) layout view; (right) bird’s eye view 

of the cell. 

 

M3
FG

BL

M1

M2

M3

PWL

WWL
EWL
CSL

RWL

FG

BLA

M1

M2

M3

ON

OFF

Erase

e
-

e
-

FG

M1

M2

M3 Iread

OFF

OFF

BL

FG

M1

M2

OFF

OFF

e
-

BLB

Program & Inhibit Read

Programmed Program-Inhibited  

Fig. 5.2: Three operating modes of the 5T eflash cell. 



 

 79 

 

Fig. 5.2 shows the three operating modes of the proposed eflash cell. In erase mode, a 

high erase voltage is applied to WWL which removes the electrons from FG through M2. 

In program mode, the upper selection device is turned on while a high program voltage is 

applied to both PWL and WWL, causing electrons to tunnel from M3 into FG. The 5T 

eflash cell also has program inhibit capability, which is achieved by turning off the upper 

selection device during the program operation. During program inhibition, the source 

voltage of the read device is boosted, preventing the electrons from being injected to the 

FG node via M3, thus the program operation in this cell is inhibited. This allows us to 

selectively program a specific eflash cell in a row. 

Electron charge stored on the FG node affect the threshold voltage of M3, and in read 

mode, the threshold is read out by measuring the bitline (BL) current. In our proposed 

eflash based sensor, the FG node is exposed to the chip cavity through pad openings, so 

any physical sources that affect the number of electrons in the FG node can be detected. 

To activate the sensor, the eflash cells must be programmed once to populate the FG with 

electrons. After that, the sensor can record tamper events without a power source. 

5.3 Sensor Test Structure in 65nm Technology 

5.3.1 Basic Concept 

To validate the proposed eflash based sensor concept, we first implemented a single 

test structure shown in Fig. 5.3 in a 65nm CMOS technology. All the transistors in the 

eflash cell are standard 2.5V I/O devices with a tunnel oxide thickness (TOX) of 
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approximately 5nm [73]. The FG node of the eflash cell is exposed to the environment by 

connecting a stack of metals from the bottom M1 layer to the top M7 layer as shown in 

Fig. 5.3. The dimension of the opening window is 7µmx7µm. Dummy floating metals are 

placed around the FG opening window to serve as charge collection metals. The opening 

windows of the surrounding dummy metals can be seed in Fig. 5.3 (left). Since the dummy 

metals are very close to the FG, they can help attract and collect electrons from the FG, 

which enhances the sensitivity. Threshold voltage of the read transistor is a function of the 

FG charge; i.e. fewer electrons on the FG node translates into a lower threshold voltage 

and hence a higher BL current. 

M1

M2

M3

M7

Gate

Si Substrate

M4

M5

M6

M7 M7

Dielectric

e
-

e
-

e
-e

-Al Pad Al Pad Al Pad
e

-

Dummy Metal 

Opening

e
-

Exposed FG

Exposed 

FG

Dummy Metal 

Opening

7µm

7
µ

m

 

Fig. 5.3: (Left) Cross section view of eflash with exposed FG; (right) top layout view 

of exposed FG and surrounding dummy metals. 

 

Since recycled ICs are usually recovered from a discarded circuit board, the chips 

are likely to be exposed to high temperatures during the removal process. High temperature 

facilitates FN tunneling of electrons, so this type of physical attack can be detected by our 
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proposed eflash sensor. Another form of physical attack is opening the chip package to 

gain access to the silicon die. When the chip package is opened, even temporarily, the 

humidity or the dust particle density may change. Increased moisture in the air increases 

the surface conductivity of the FG node, thereby causing electrons on the FG to escape 

more rapidly. Dust particles with a positive net charge are attracted to the exposed FG node 

containing electrons with a negative charge. It’s also possible that the parasitic capacitance 

surrounding the FG node changes due to the presence of extra particles, which affects the 

erase and program operations. These can all cause variations in the FG node charge, and 

thus can be detected by the proposed sensor. 

5.3.2 Measurement Results 

We performed temperature and humidity tests mimicking physical attacks that a 

chip may encounter. Fig. 5.4 (left column) shows a permanent BL current jump after the 

temperature spike. This indicates that the electrons on the FG node are permanently lost, 

allowing the sensor to successfully record the event. Note that between the readout 

intervals, the power supply of the eflash sensor was shut down. In other words, the sensor 

is able to record physical attacks without any power. 

Humidity test results are shown in Fig. 5.4 (right). We opened the lid of the chip 

and increased the moisture content in the air. The experiment was performed in an enclosed 

room, and the relative humidity near the chip was monitored. When the relative humidity 

was increased, a permanent jump in the cell current was observed. The measurements were 

highly repeatable which indicates that the proposed sensor can reliably detect humidity 

changes. 
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Fig. 5.4: Temperature (left) and humidity (right) attack test results of 65nm eflash 

sensor test structure. 

 

After several humidity tests, we were no longer able to erase or program the sensor. 

The same behavior was found in multiple chips. Interestingly, we found that all chips with 

this specific behavior had particles landed on the FG node as shown in Fig. 5.5. The erase 

and program characteristics of the cells before and after the particle landing are shown in 

Fig. 5.6. This suggests that the proposed sensor can even detect particles entering the chip 

cavity which is another indication that a chip has been compromised. 
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Fig. 5.5: Microscope images of 4 different chips with particles landed on the FG node 

of 65nm eflash sensor test structure. 
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Fig. 5.6: Program (left) and erase (right) characteristics for eflash sensor with 

particles landed on the FG node. 
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5.4 16x16 Sensor Array in 0.35µm Technology 

Encouraged by the 65nm test structure results, we implemented an array based test chip 

with complete peripheral circuitry. The new chip was fabricated in a 0.35µm technology 

for cost reasons. It’s worth reiterating that the proposed sensor is agnostic to process 

technology so long as transistors with an oxide thickness greater than 5nm are available. 

5.4.1 Implementation  

A 16x16 sensor array was fabricated in a 0.35µm logic process. The differential cell 

structure with exposed and buried floating gates is shown in Fig. 5.7 [72]. The exposed cell 

is the working sensor and the buried cell is the reference cell. A differential read out enables 

higher sensitivity. Standard core devices in the 0.35µm technology with a nominal supply 

voltage of 3.3V and a typical 7.6nm tunnel oxide thickness (TOX) was used for the cell 

implementation. No special devices were needed for the sensor implementation. Each 

sensing unit consists of one working sensor with an exposed FG and a reference sensor 

with a buried FG.  
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Fig. 5.7: Differential eflash sensor cell with exposed and buried floating gates 

implemented in 0.35µm technology. 
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Fig. 5.8: 16x16 sensor array architecture. 

 

The complete 16x16 array architecture is shown in Fig. 5.8. A high voltage switch 

(HVS) circuit is used to generate the high voltage signals for erase and program operations 

with correct timing, as well as the read voltages. Cascoding (or device stacking) was used 

extensively to prevent overstress issues in the high voltage switch circuit. The working 

sensors and reference sensors share the same readout path which cancels out common 
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process, voltage, and temperature variation effects. The readout circuit consists of a voltage 

controlled oscillator (VCO) and a counter. The detailed readout operation is shown in Fig. 

5.9. The BL voltage which reflects the charge stored on the FG node is converted to the 

corresponding frequency by the VCO circuit. Simulation results show that a 10mV 

difference caused by the FG node charge difference translates to a BL voltage of 0.3V. As 

mentioned earlier, more electrons on the FG means a higher threshold voltage and a lower 

BL current. This means that the final BL voltage is higher for the same pull up bias voltage 

PBIAS, resulting in a higher output frequency count. 
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Fig. 5.9: VCO based sensor readout circuit and timing diagram. 

 

To test a wide range of design choices, the sensor array consists of eflash cells with 

different transistor sizes and different opening sizes. The detailed sensor size and opening 

size configuration are shown in Fig. 5.10 (left). There are 16 different transistor size and 

opening size combinations. The die photo is shown in Fig. 5.10 (right). 
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Fig. 5.10: Sensor circuit and opening size configurations (left). Die photo (right). 

 

5.4.2 Basic Functionality Tests 

Fig. 5.11 shows the VCO frequency characterization results before any program or 

erase operations. The frequency variation of the same VCO for different readout trials was 

0.27% while the frequency variation between different VCOs was 1.51%. Process, voltage, 

and temperature (PVT) effects can be cancelled out by measuring the frequency difference 

between the working sensor and the reference sensor. Also note that the frequency shift 

caused by physical attacks, which will be shown later, is usually 20% or more. This shift 

is significantly higher than the frequency variation induced by PVT effects. 
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Fig. 5.11: Characterization of VCO frequency variation of the readout circuits. 
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Fig. 5.12: (Left) Erase, program and program-inhibit characteristics and (right) cell 

retention results. 

 

Fig. 5.12 (left) shows the erase, program and program inhibit characteristics of the 

16x16 sensor array. The entire array was initially erased, and alternating columns were 

programmed while the other columns were program inhibited. The program inhibited cells 

remain in the erased state. Since the electron charge stored on the FG is directly 

proportional to the readout frequency count, the programmed cells have a higher count and 
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the erased cells have a lower count. Fig. 5.12 (left) displays the frequency change of the 

sensor array after the erase and program operations. Yellow blocks represent frequency 

increase (electron increase), corresponding to the programmed cells, and blue blocks 

correspond to the erased cells. The cell color becomes darker on the right side of the color 

map, meaning that with higher CR, the eflash cell can be more efficiently 

programmed/erased and with higher read transistor size, a similar threshold change can be 

amplified further. The retention characteristics of the program operation is shown in Fig. 

5.12 (right). This figure displays the frequency count over time for 4 cells on the same row 

with different CR and read transistor size. Note that in this figure, the raw frequency count 

is plotted without canceling the intrinsic frequency variation between different VCOs, so 

only the frequency change of different curves over time matters in this figure. Comparing 

the top two curves, we can see that eflash cells with a higher CR of 0.99 has a larger 

retention loss. This might due to the eflash cell with a higher CR has more abundance of 

charges on the FG, so there is also a higher amount of charge loss. Comparing the bottom 

three curves with the same CR but different device sizing, a larger device size results in a 

higher retention loss. For a given amount of the charge loss on the FG nodes, which results 

in a similar threshold change on the read transistors, the larger device will have a larger 

current change, reflected as a larger frequency count drop. Due to the limited number of 

chips and the lack of an accurate temperature control setup, we only performed retention 

tests at room temperature. Considering that the gate oxide thickness of this 0.35µm process 

is 50% thicker than that in a previous work [73], we expect the cell retention to be adequate 

at different PVT conditions. We have verified that under normal operating conditions, the 
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sensor readout frequency is relatively constant. Therefore, we can say with high confidence 

that any significant changes in the output frequency is attributed to a physical attack. 

5.4.3 Physical Attack Tests 

We performed temperature, humidity and particle/debris attack tests to evaluate the 

array based sensor. Before the tests, the rows of the sensor array were alternately erased 

and programmed. The programmed rows are the sensing nodes, and the erased rows serve 

as the charge collection metals. Fig. 5.13 (top) shows the temperature test results. We used 

a simple heat gun to raise the temperature of the chip, mimicking an attempt to desolder 

the package from the printed circuit board. This was repeated three times. The red curve in 

Fig. 5.13 (top) plots the temperature profile during the test. The sensor frequency was 

readout between the temperature spikes, and the power supply of the test chip was shut off 

between the readouts. The test chip was packaged in a ceramic DIP48 package with a 

removable lid. During the first attack, the lid of the chip was kept closed. This did not result 

in any appreciable frequency change so for the second and third attacks, we opened the lid 

for better heat exposure. Note that this was necessary only because of the large DIP package 

and small test dies used in our experiments. Smaller packages are expected to be 

significantly more susceptible to temperature attacks due to their low thermal mass. After 

the heat is removed for the second temperature attack, the readout frequency of the exposed 

and unexposed cells went down, indicating a charge loss in the FG nodes. After the third 

temperature attack, the readout frequency remained low. This indicates that high 

temperature facilitates the FN tunneling and once the electrons have gained enough energy 

to pass the barrier, later attacks with similar temperature won’t cause further frequency 
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change. FN tunneling induced by high temperature affects both exposed and unexposed 

cells, so as expected, permanent charge loss occurs in both type of cells. 
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Fig. 5.13: Temperature (top) and humidity (bottom) attack test results. 

 

Fig. 5.13 (bottom) shows humidity attack test results. High humidity was applied three 

times, which is shown in the blue curve. The black/white bars in Fig. 5.13 (bottom) plot 

the frequency readout of the exposed and unexposed cells before and after humidity 
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attacks. After each humidity attack, the frequency of only the exposed sensor decreased 

further, which matches the previous results from the 65nm test structure. The frequency of 

the unexposed reference sensor remained at the same level after each humidity attack. 

These measurement results indicate that humidity causes a permanent charge loss only in 

the exposed sensor. Humidity attack only changes the surface conductivity of the exposed 

sensors, so we can only observe frequency shift in the exposed sensors. By comparing the 

frequency change of the exposed sensor and unexposed sensor, we can determine the 

source of the attack. 
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Fig. 5.14: Frequency change maps of temperature attack (left) and humidity attack 

(right). 

 

By analyzing the entire frequency map data for the sensor array, which is shown in Fig. 

5.14, we can extract further information on the type of attack. For instance, temperature 

attack results in frequency change in both the exposed and unexposed sensors, while the 

exposed cells have a larger drop due to better exposure to the heat source. This trend can 

be seen in Fig. 5.14 (left), where the cells on the programmed rows generally have a 
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brighter color, with the exposed cells having the brightest color. Abnormal behavior can 

be seen in the upper right or lower left regions which underscores the importance of having 

an array structure rather than a single node sensor. Unlike temperature attack, humidity 

attack causes a large frequency drop only in the exposed cells, which is illustrated in Fig. 

5.14 (right). Most of the non-blue color blocks appear on the odd columns, which represent 

the frequency change in exposed cells. Some abnormal cells can be found in the bottom 

left corner. Note that in this frequency change map, the programmed working sensors are 

only on the even rows, so the frequency change happens only in the even rows. 
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Fig. 5.15: Particle/debris test results. Frequency change map (top) and microscope 

images of the region that was affected by the particles (bottom). 

 

Finally, particle/debris attacks were performed, which is shown in Fig. 5.15. We 

introduced some fine particles to the chip cavity intentionally to speed up the test. Rows in 

the sensor array were programmed and erased in an alternating fashion for better charge 

collection. During the measurement, the frequency of the sensor cells was continuously 

recorded. The chip lid was opened and some talc particles were introduced right after 100 
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minutes. The frequency of some cells dropped almost instantaneously). The locations of 

the 4 cells showing large frequency drops are highlighted in the red box in Fig. 5.15 (top). 

The microscope images before and after the particle/debris attack shows the sensor array 

area inside the red box in the frequency change map. By cross-checking the microscope 

image with the location of the sensor cells showing a large frequency drop, we found that 

the particles/debris tend to be attracted to the erased sensor cells, while frequency drops 

occur in the adjacent programmed cells. This suggests that either the electrons on those 

programmed cells have been collected by the nearby particles/debris or the parasitic 

capacitance of the FG changes because of the particles/debris landed on the die. We could 

also observe that in the frequency change map of particles attack, there are only several 

nearby exposed cells showing frequency change, illustrated by the yellow blocks, which 

indicates the possible locations of the particles. This pattern is different from the 

temperature and humidity tests, so the proposed sensor array can also discriminate the 

particle/debris effects from other forms of attacks. 

5.5 Conclusion 

In this work, we presented an eflash based counterfeit IC detection sensor with an 

exposed FG node. The proposed 5T eflash cell is built using I/O transistors readily 

available in any logic process, and hence incurs no process overhead. Measurement results 

from a 65nm sensor test structure and a 0.35µm sensor array test chip validates that the 

proposed eflash sensor can sense and distinguish between different physical attacks. Any 

physical source that changes the charge stored on the exposed FG can be detected by this 

sensor. This includes humidity, high temperature, dust particles, chemicals, and 
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electrostatic charges. Test chip results shows that the proposed eflash based sensor can 

efficiently and reliably detect many types of counterfeit attempts. 
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Chapter 6. Summary  

 

In this dissertation, in order to efficiently and securely deploy the AI workloads on edge 

devices, several hardware architectures and circuit techniques are proposed to improve the 

energy and area efficiency of the MLP and LSTM neural networks, and enhance the 

hardware security as well. The performance of the proposed designs are verified with the 

simulation results, as well as the measurement results from the working test chips 

fabricated in advanced CMOS technologies.  

Chapter 2 introduces a novel time-based computing scheme to implement MLP neural 

network, which is a much more efficient way of computing multiply and accumulate 

(MAC) than the traditional methods. The proposed neural network is based on integrate-

and-fire neuron model and is featured with brain-inspired leak and local lateral inhibition 

capabilities, which can be enabled to further improve the classification accuracy. The 

processing element of the proposed time-based neuromorphic core is based on inverters, 

which is tiny and compact, and each processing element has its exclusive memory, 

avoiding the extra power for data movement, thus the proposed neuromorphic core is 

highly efficient in area and power. The performance of the proposed core is tested with 

digit recognition application and achieves a 91.4% accuracy. 

Another neural network architecture: LSTM neural network is explored in Chapter 3. 

LSTM neural network is very powerful in processing sequential data and has been proven 

to be successful in various applications. The high computation complexity and memory 

requirement of the LSTM neural network make it difficult to be implemented in hardware. 
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In order to deploy the LSTM based neural networks on embedded devices, a binarized 

LSTM architecture is proposed and implemented in our work. The binarized LSTM 

architecture greatly simplifies the MAC computation complexity and reduces the memory 

requirement for storing the weights. A pipelined architecture is proposed to reduce the total 

computation time of the multi-layer neural network system. The performance of the 

proposed LSTM neural network is verified with the application of heart rate estimation 

from PPG signals. 

Chapter 4 discusses a data remanence technique to generate 100% stable keys from 

an SRAM PUF to enhance the hardware security. The power-up state of a SRAM array is 

a very attractive option for weak PUFs, but it is not always stable. The proposed data 

remanence technique can efficiently select the stable SRAM cells in a large SRAM array, 

and the PUF response is generated with only the stable cells, thus the stability of the PUF 

response is guaranteed. The efficacy of the proposed technique is demonstrated with the 

measurement results from the off-the-shelf SRAM chips. The PUF response generated 

using the proposed technique is 100% stable under various temperature, voltage ramp up 

rate and aging conditions. 

Finally chapter 5 illustrates a passive IC tamper sensor design based on an exposed 

floating gate device in standard logic processes. This proposed tamper IC is based on a 

non-volatile eflash memory cell, and can record the event history powerlessly, which can 

be used to detect and record suspicious tampering attacks to the chip. The performance of 

the proposed sensor is tested with physical tamper attacks, such as high temperature 

cycling, humidity rises, and increased dust particle density in the chip cavity. The 
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measurement results prove that the proposed sensor is able to detect many type of 

counterfeit attempts efficiently and reliably. 
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