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Abstract 

 
Painful peripheral neuropathy is a common dose-limiting side effect associated with 

cisplatin treatment. Cisplatin is unable to cross the blood-brain barrier, and its neurotoxicity 

is limited to the peripheral nervous system (PNS). In the PNS, Schwann cells are an 

essential component supporting dorsal root ganglion (DRG) neuron viability, and 

impairments in Schwann cell biology contribute to cisplatin-induced painful neuropathy. 

We explored the role of Schwann cell-derived exosomes in the development of cisplatin-

induced hyperalgesia. Consistent with our previous reports, daily injection of cisplatin (1 

mg/kg, i.p.) for 7 days produced mechanical hyperalgesia in C3H/HeN mice. To investigate 

the impact of exosome signaling in the development of cisplatin-induced hyperalgesia, 

exosomes isolated from the sciatic nerves of cisplatin-treated mice were injected 

intrathecally into naïve mice for 5 consecutive days (7 µg of total protein/10 µl, i.t.). 

Mechanical hyperalgesia was observed after the second injection of exosomes, mimicking 

the effect of cisplatin alone and supporting the involvement of integrated exosome 

signaling in hyperalgesia produced by cisplatin. Intrathecal administration of Schwann 

cell-derived exosomes activated microglia, and analysis of exosomal content indicated 

mediators of neuronal sensitization at the central level. Collectively, our results indicate 

that Schwann cells affected by cisplatin contribute to mechanical hyperalgesia and 

exosomes are an important signaling mediator for glia-neuronal communication.  
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1. Introduction 
 

More than one million new cases of cancer occur in the United States each year 

(American Cancer Society, 2017). Cisplatin is a platinum-derived chemotherapeutic drug 

that continues to be one of the most effective and widely used of anticancer drugs in the 

clinics (Florea and Busselberg, 2011). However, the use of cisplatin is associated with 

unwanted side effects, including painful peripheral neuropathy that is a dose-limiting 

factor affecting survival. More than 50% of leukemia, lymphoma, colorectal- and breast 

cancer patients develop some degree of chemotherapy-induced peripheral neuropathy, 

and the prevalence of cisplatin-induced peripheral neuropathy is as high as 57% in cancer 

survivors (Streckmann et al., 2018; Travis et al., 2014).  

 

Cisplatin does not cross the blood-brain barrier but accumulates in the dorsal root ganglia 

(DRGs) and peripheral nerves (Gregg et al., 1992). Hyperalgesia results from cisplatin-

induced neurotoxicity to DRG neurons responsible for transmitting pain (Grisgold et al., 

2012). Cisplatin produces cytotoxicity when platinum-DNA adducts are formed and 

compromises nuclear and mitochondrial DNA (mtDNA) transcription. This causes DNA 

damage and subsequently induces apoptosis in cancer cells (Dasari and Tchounwou, 

2014). Research shows that cisplatin-evoked mtDNA damage causes functional changes 

within the mitochondria of DRG neuronal cells (Podratz et al., 2011). Mitochondrial 

function is mandatory for the maintenance of cellular respiration, regulation of 

intracellular calcium levels, and protection from oxidative stress via the regulation of 

reactive oxygen species (ROS) accumulation (Carrozzi et al., 2015). When ROS 
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increases, oxidative stress is induced and damages cellular functions, leading to apoptosis 

(Martindale and Holbrook, 2002; Dasari and Tchounwou, 2014). However, the 

intercellular mechanisms, particularly within the glial-neuron interaction, by which 

cisplatin-induced neuropathic pain occurs is yet unknown.  

 

Mechanisms underlying cisplatin-induced hyperalgesia include the activation and 

interaction of glial cells and neurons (Tsuda, 2017). Among these glial cells are Schwann 

cells (SCs) and microglia. Microglia are a type of glial cell that function as the immune 

cells of the central nervous system (CNS) (Prinz and Priller, 2014). Microglia release 

pro-inflammatory cytokines, including TNF-a, which sensitize nociceptive dorsal horn 

neurons and cause central sensitization and hyperalgesia (Berta et al., 2014). Microglia 

also act as phagocytes that clear up injured cells and debris (Kuno et al., 2005). 

Following injury, microglia are activated and engaged in both innate and adaptive 

immune response of the CNS. In particular, microglia of the spinal cord have been shown 

to be key players of CNS immune response during neuropathic pain (Olson, 2010).  

 

Schwann cells (SCs) are a type of peripheral glial cell that play a crucial role in 

maintaining the structure and function of both myelinated and unmyelinated peripheral 

axons whose cell bodies are located in the DRGs (Lopez-Verrilli et al., 2013). SCs are 

involved in axonal regeneration, neuroprotection, and neuro-immune interactions and 

affect neuronal survival (Quintes et al., 2010; Fields and Stevens-Graham, 2002; Glenn 

and Talbot, 2013). Whether cisplatin-evoked damage of SCs alter normal interactions 
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between SCs and DRG neurons, and thereby contribute to cisplatin-induced hyperalgesia, 

remains unclear. The cytotoxicity of cisplatin treatment affects SCs as they are post-

mitotic cells residing outside of the blood-brain barrier. Given the role of SCs in 

myelination of peripheral nerves, the malfunctioning of SCs may play a part in neuronal 

sensitization (Lopez-Verrilli et al., 2013). With cisplatin treatment, lack of myelination 

and support by SCs may cause quicker deterioration of myelinated nerves, or the release 

of pro-apoptotic signaling may facilitate irreversible degeneration of nearby non-

myelinated nerves.  

 

Of the several mechanisms implicated in glia-neuron communication, such as Calcium 

signaling or gliotransmitter release, one key player suggested to be the mediator in the 

pathogenesis of inflammation and neurodegeneration is exosomes (Araque and 

Navarrete, 2010; Gupta and Pulliam, 2014). Exosomes are nanovesicles, ranging from 

30-100 nm in size, that carry various signaling molecules including proteins, mRNA, and 

miRNA from host to target cells. Exosomes are generated by inward budding of the 

endosomal limiting membrane and stored in multivesicular bodies (MVBs) before release 

(Colombo et al., 2014). They are released into the extracellular space by fusion of MVBs 

with the plasma membrane (Fröhlich et al., 2014). In the CNS, exosomes have been 

implicated in neurodegenerative diseases (Kalani et al., 2013). It has also been shown that 

astrocyte-derived exosomes may have a role in disease spreading and motor neuron 

pathology. Direct involvement of exosomes in contributing to oxidative stress has been 

demonstrated in the interplay between motor neurons and glial cells using a murine 
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model of Amyotrophic lateral sclerosis disease, where astrocyte-derived exosomes were 

shown to efficiently transfer mutant SOD1 to spinal neurons and induce selective motor 

neuron death (Basso et al., 2013). Importantly, oxidative stress is an important factor 

related to neuropathic pain following nerve injury (Kuo et al., 2017), as well as in disease 

states including sickle cell disease (Tran et al., 2017) and chemotherapy-induced 

peripheral neuropathy (Joseph and Levine, 2009; Xiao et al., 2011). Also, macrophage-

derived exosomes have been shown to release cytokines and miRNAs that mediate 

inflammation and pain in both innate and adaptive immune pathways (McDonald et al., 

2014) Exosomes secreted by oligodendrocytes have been shown to enter neurons to make 

their cargo functionally available to the neuronal metabolism (Fruhbeis et al., 2013). 

Similarly, in the peripheral nervous system, SC-derived exosomes are known to be 

involved in peripheral nerve regeneration (Lopez-Verrilli et al., 2013). Exosomes 

secreted by SCs represent one potential avenue by which SCs interact with DRG neurons, 

and SC-derived exosomes from cisplatin-damaged SCs may contribute to cisplatin-

induced neurotoxicity and hyperalgesia. Specifically, exosomes from SCs following 

cisplatin treatment may carry mediators that facilitate sensitization of peripheral 

nociceptive neurons and activation of microglia in the spinal cord.  

 

In the present study, we investigated whether SC-derived exosomes were involved in 

cisplatin-evoked hyperalgesia by examining behavioral changes induced in naïve mice 

when SC-derived exosomes from cisplatin-treated mice are administered intrathecally. 

We then identified molecules within these exosomes that may contribute to pro-
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inflammatory signaling that can cause neuronal sensitization and hyperalgesia, and the 

potential activation of microglia following exosome administration as a potential 

mediator for the underlying central sensitization.  

 

It must be clarified that exosomes identified as SC-derived exosomes within this study 

are exosomes isolated from the whole sciatic nerve. These exosomes isolated from the 

whole sciatic nerve contain exosomes from SCs but also others, including satellite cells 

and neurons. Unfortunately, SCs are difficult to culture and exosomes from SC culture is 

even more limited in quantity following cisplatin treatment. In order to verify that 

exosomes from SCs alone have same hyperalgesic effect, preliminary data was collected 

using exosomes from SC culture. Hyperalgesia was observed in naïve mice injected with 

exosomes from cisplatin-treated SCs (data included in Figure 4A).  
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2. Materials and Methods 

 

2.1 Animals 

Adult male C3H/HeJ mice (Jackson Laboratories), 2 to 4 months of age were used. Mice 

were housed in cages of three to four mice per cage, maintained on a 12-h light-dark 

cycle, and had free access to food and water. Behavioral testing occurred between 8:00 

AM and 5:00 PM. All protocols and procedures were approved by the University of 

Minnesota Institutional Animal Care and Use Committee.  

 

2.1 Drug Treatment  

The platinum chemotherapy agent cis-dichlorodiammine platinum(II) (cisplatin; LKT 

Laboratories) was prepared in a 1 mg/ml solution in normal saline and administered 

intraperitoneally at 1 ml/kg.  

 

2.3 Behavioral Assessment of Mechanical Hyperalgesia  

Withdrawal response frequency evoked by a standard calibrated von Frey monofilament 

was used to assess the development of mechanical hyperalgesia. Baseline measurements 

were taken prior to drug injection to acclimate the mice to the experimental testing 

environment and to evaluate initial level of response prior to any injections. Mice were 

placed under isolated glass containers on an elevated mesh platform and were given at 

least 30 minutes to acclimate prior to testing. Withdrawal responses of hind paw was 

assessed using a von Frey monofilament of 0.4g (3.9mN). The monofilament was applied 
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to the plantar surface of each hind-paw for approximately 2 s and the withdrawal 

response was indicated by the rapid removal of the paw and was occasionally followed 

by brief flinching and/or licking of the paw. The monofilament was applied ten times 

with an inter-stimulus interval of approximately 5 s, and the total number of withdrawal 

responses were recorded. For cisplatin-treated mice from which exosomes were isolated, 

only subjects exhibiting consistent mechanical allodynia (withdrawal frequencies of at 

least 60%) in both hind paws were used. The experimenter was blind to the treatment 

conditions.  

 

2.4 Exosome Isolation and Administration 

The protocol provided from Invitrogen™ was used as a reference using the Total 

Exosome Isolation reagent (4478359). Samples were prepared by mashing the extracted 

sciatic nerves using a 10-mL syringe plunger against a sterile mesh inside a petri dish. 

The mashed exosomes were re-suspended in complete DMEM media, and more media 

was added (if needed) to total the final volume to be 1000 µL. Samples were centrifuged 

for 10 minutes at 1200 rpm. Supernatant was transferred to 1.5-mL micro-centrifuge 

tubes. 500µL of Total Exosome Isolation reagent was added (1:2 ratio per suggested 

protocol). Culture media/reagent mixture was vortexed to ensure thorough mixture and 

incubated at 4°C overnight. After overnight incubation, samples were centrifuged at 

10,000 rcf for 1 hour. Supernatant was removed, and exosomes were suspended in PBS 

and stored at 4°C until use. Exosomes were aliquoted at 7 µg of protein per 10 µL and 
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each 10 µL were administrated intrathecally to naïve mice for five consecutive days.  

 

2.5. Intrathecal injection  

Intrathecal injections were delivered by spinal cord puncture. Spinal cord puncture was 

made with a 30 G needle between the L5 and L6 to deliver 10 µL of exosomes suspended 

in saline to the cerebral spinal fluid. All drugs were administered to conscious mice 

according to the method of Hylden and Wilcox (1980) for i.t. injections. Mice were 

observed in their home cages at least 15 min following injection to monitor potential 

occurrence of paralysis.  

 

2.6 Nanoparticle Tracking Analysis 

Particle size distribution of exosomes isolated from the sciatic nerves was analyzed in 

order to verify that the re-suspended exosomes are in the exosome size range of 30 to 100 

nm. Particle size distributions were determined using the Nanosight LM-10 (Malvern 

Instruments, Malvern UK), based on the technique of nanoparticle tracking analysis 

(NTA). The NTA process directs intense laser light at particles suspended in a sample 

cell. The particles undergo Brownian motion in the suspending fluid, with the smaller 

lighter particles moving more quickly than the larger, more massive particles. The light 

scattered by these particles is collected by a microscope objective and directed to a very 

sensitive CMOS camera, which records video of the moving particles at 30 frames per 

second. Image analysis software is used to track the motion of each particle over several 

seconds, then calculates a diffusion coefficient D of each particle based on its recorded 
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motion. These diffusion coefficients can then be used calculate particle sizes, using the 

Stokes-Einstein equation: 

 

𝐷 =
𝑅𝑇
𝑁&

1
6𝜋𝜂𝑎 

 
 

where R is the universal gas constant, T the absolute temperature, NA is Avogadro’s 

number, h is the dynamic viscosity of the suspending fluid (water in this case), and a is the 

particle’s hydrodynamic diameter. The Nanosight calculates particle diameters for 103 to 

104 particles per sample and outputs a number-weighted size distribution.  

  

2.7 Western Blot 

In order to have a secondary confirmation of successful exosome isolation, western 

blotting was performed to confirm the presence of CD-63, a primary surface protein 

marker of exosomes (Choi et al., 2012; Menay et al., 2017). Western blotting of 

exosomes was performed on 4-20% precast polyacrylamide gel Bio-Rad Mini Trans-Blot 

Electrophoretic Transfer Cell system for 1 h. 30 µg of protein was loaded on each lane, 

and the proteins were transferred to a PVDF membrane after running SDS-PAGE. 

Transferred membranes were blocked for 1 h, CD-63 primary antibody was applied at 

1:500, and the blots were incubated overnight at 4 °C. The blots were washed three times 

(10 min each) with 10 mL TBS/T and were incubated with secondary antibody (1:15,000) 

on a shaker for 1 h at room temperature. Then, the blots were washed three times with 

TBS/T and imaged.  
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2.7 Immunohistochemistry 

Spinal cords and DRGs were isolated from treated mice on post-injection day (PID) 7, 

and tissues were fixed in 4% paraformaldehyde for 24 h. Tissues were transferred to 70% 

ethanol for another 24 h, then was paraffin embedded. Embedded tissues were sectioned 

with a microtome at 5 µm. Mounted sections were washed with xylene, then 100%, 95%, 

70% and 50% ethanol, and incubated in citrate buffer overnight at 60 °C. Following day, 

the slides were blocked with blocking buffer (2% BSA in PBS + 0.05% Tween-20) for 1 

h. Slides were washed then treated with anti-Iba-1 rabbit polyclonal antibody at 1:1000 

(Wako, 019-19741) and incubated overnight at 4 °C. Following day, the slides were 

washed and incubated with biotinylated secondary antibody, then detected by 

Streptavidin HRP and TSA Plus Cyanine 3 system (PerkinElmer), and captured using a 

confocal microscope. Images were then exported to ImageJ software for quantitative 

analysis. Analysis of the immunofluorescent Iba-1+ cells was performed using a constant 

set of parameters (exposure time, gain and post-image processing) and the total area and 

mean integrated intensity of activated cells was compared between groups.  

 

2.8 Schwann Cell culture  

In order to identify the contents and role of exosomes derived specifically from Schwann 

cells, Schwann cell primary culture was used for mass spectrometry analysis. Sciatic 

nerves of naïve mice were isolated and incubated at 37 °C for 2 weeks in complete 

DMEM. After incubation, nerves were transferred to a fresh plate containing complete 



 

11 

DMEM with 0.125% Collagenase IV and 1.25u/mL Dispase I and incubated for 20 h at 

37 °C. Nerves were dissociated with a Pasteur pipette, and centrifuged for 10 min at 1200 

rpm. Cells were washed in melanocyte growth media and forskolin and centrifuged once 

more for 10 min at 1200 rpm and were carefully re-suspended on pre-coated plates. Cells 

were incubated at 37 °C with necessary media changes until confluent. Cells were treated 

with cisplatin (4µg/ml) for 48 h, which has been shown in previous literature to mimic 

the cytotoxic effect seen the in vivo treatment (Khasabova et al., 2012).  

 

2.9 Mass Spectrometry 

Mass spectrometry analysis was performed in order to identify the potential cargo of the 

exosomes and to identify possible pro-inflammatory or cytotoxic components that may be 

released from Schwann cells. In order to isolate exosomes released from Schwann cells 

only, Schwann cell culture was used and treated with cisplatin. Exosomes released from 

cisplatin-treated Schwann cells in vitro were isolated and protein levels were quantified. 

Proteins were run on the polyacrylamide gel and digested with trypsin.  Digested proteins 

were subjected to a desalted, using UltraMicro spin tips. LC-MS/MS analyses were 

performed using an RSLCnano system (Dionex) and Orbitrap Elite Hybrid (Thermo 

Scientific) mass spectrometer. Each fraction was fractionated using a column (75 µm 

inner diameter, 35 cm) manufactured in-house and eluted at 300 nl/min using an 80-min 

gradient with 0.1% formic acid in water and 0.1% formic acid in acetonitrile. A data-

dependent acquisition was performed set at 60,000 resolutions over 350–1500 m/z range. 

High-energy collision dissociation (HCD) fragmentation was carried out with 1.4 m/z 



 

12 

isolation window and normalized collision energy (NCE) of 40%. The maximum 

injection times were 100 and 500 ms, and ion targets were 106 and 5 x 104 for MS and 

MS/MS (at 15,000 m/z resolution) (Dator et al.,2017; Blanden et al., 2018). The .raw 

files were analyzed with MaxQuant version 1.6.0.16 and searched against the mouse 

proteome database. Data was exported to Microsoft Excel and peptides were sorted by 

coverage. 

 

2.10 Data Analysis 

Two-way analysis of variance (ANOVA) with repeated measure was used to compare the 

effects of daily administration of cisplatin, and i.t injections of exosomes (or vehicle) on 

withdrawal response frequency over time. Nanoparticle tracking analysis was reported as 

mean +/- standard deviation and mode +/- standard deviation. Western blot of CD-63 was 

quantified by comparison of expression relative to the control group. For images of 

activated immunofluorescent Iba-1+ cells, Student’s t-test was used to compare and 

evaluate the statistical differences between groups.   
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3. Results 
 
3.1 Mechanical Hyperalgesia produce by Cisplatin 

Consistent with our previous reports (Khasabova et al., 2012; 2013), daily injection of 

cisplatin (1 mg/kg, i.p.) for 7 days produced mechanical hyperalgesia in C3H/HeN mice. 

Mechanical hyperalgesia developed by 24 h after the third injection with p < 0.001 

compared to saline-treated mice as well as compared to baseline. Withdrawal response 

frequency for control mice remained near baseline for the duration of the treatment 

period (Fig. 1).  

  

3.2 Confirmation of Sciatic nerve-derived Exosomes 

Nanoparticle tracking analysis of exosomes re-suspended in PBS verified the successful 

isolation of exosomes with mode of 107.8 +/- 13.6 nm and mean of 167.8 +/- 4.5 nm 

(Fig. 2). Particle size suggests that majority of the injected content contains exosomes 

isolated from the sciatic nerves. We next verified the isolation of sciatic nerve-derived 

exosomes using a western blot for CD-63, a common surface protein found on exosomes 

(Choi et al., 2012; Menay et al., 2017) and identified the presence of CD-63 in exosomes 

isolated from the sciatic nerves of saline-treated mice, as well as exosomes from 

cisplatin-treated mice (Fig. 3).   

 

3.3 Hyperalgesic Effect of Exosomes from Cisplatin-treated Mice 

Five consecutive intrathecal injections of exosomes isolated from the sciatic nerves of 

cisplatin-treated mice induced mechanical hyperalgesia in naïve mice by 24 h after fourth 
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injection, with p < 0.001 compared to the naïve-exosome treated mice as well as 

compared to baseline (Fig. 4B). Withdrawal response frequencies for control mice 

remained near baseline for the duration of the treatment period. The hyperalgesic effect 

of exosomes isolated from sciatic nerves of cisplatin-treated mice mirrors the effect of 

systemic treatment of cisplatin alone.  

 

3.4 Increased Activation of Microglia 

Comparison of microglial activation with Ionized calcium binding adaptor molecule 1 

(Iba-1) in the spinal cords of mice treated with cisplatin-exosomes showed upregulation 

and greater activation of microglia than compared to the control-exosomes (Fig. 5). The 

increase in mean integrated intensity of microglia in the treated conditions was 

statistically significant with p < 0.005 compared to control, with 88% increase in the total 

area of activated glia.  

 

3.5 Potential contents of Exosomes from Cisplatin-treated Mice 

Mass spectrometry and proteome analysis of Schwann cell-derived exosomes under 

cisplatin and control conditions indicate the presence of proteins involved in the TNF-

a pro-apoptotic pathway (data not shown). Proteins involved in inflammatory response, 

including annexin and perilipin, were present in the exosomes released from SCs treated 

with cisplatin. Lack of ATP synthase, a protein regulating mitochondrial function, was 

also noted in the exosomes released from SCs treated with cisplatin when compared to 

the non-treated SC exosomes. 
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4. Discussion 

 
The present study showed that cisplatin treatment causes mechanical hyperalgesia and 

that this occurs, at least in part, by SC-derived exosomes that may contribute to neuronal 

sensitization during cisplatin-induced peripheral neuropathy. Seven daily injections of 

cisplatin administered systemically into naïve mice resulted in increased withdrawal 

frequency response of the hind paw to the von Frey stimulus of 0.4 g, confirming the 

development of mechanical hyperalgesia, consistent with our previous reports 

(Khasabova et al., 2012; Uhelski et al., 2015). This increase in withdrawal frequency was 

over 60% by the end of the 7-day treatment (from a baseline of less than 20%), and was 

statistically significant compared to baseline, as well as to the control group. The 

withdrawal frequency response of the saline-treated mice remained near baseline 

throughout the 7-day period (Fig. 1).  

 

As a general rule, two different methods of exosome characterization are necessary to 

confirm successful isolation of exosomes (Tang et al., 2017). In this study, the isolation 

of exosomes from sciatic nerve was confirmed by nanoparticle tracking analysis and 

western blotting. Size distribution of exosomes agreed with the designated size range of 

exosomes, with mean of 167.8 +/- 4.5 nm and mode of 107.8 +/- 13.6 nm (Fig. 2). From 

our analysis of the nanoparticles, it is possible that amongst the exosomes there may be 

microvesicles, apoptotic bodies, and other debris that may be responsible for particles 

detected at larger size ranges (Willms et al., 2016). This amount of variability in size is 
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consistent with previous studies on exosomes (Alvarez et al., 2012; Colombo et al., 

2014). One common criticism of this methodology is that it utilizes light scattering to 

rapidly calculate the total number and size distribution of samples. Unfortunately, it does 

not distinguish between vesicles, protein aggregates, or debris, and may over-estimate the 

quantity of exosomes (Gercel-Taylor et al, 2012; Helwa et al., 2017; Tang et al., 2017). 

To address this issue, we standardized the amount of exosomes injected using protein 

quantification. Proteins were quantified using a Pierce BCA Protein Assay (Thermo 

Fisher), and mice were injected with exosomes at 7µg of protein each day. The second 

characterization of exosomes was performed via western blotting. Once again, the total 

protein loading was used as an internal control. The results showed vivid expression of 

exosome-enriched protein CD-63 (Fig. 3). CD-63 is a transmembrane tetraspanin protein 

characteristic of exosomes and is commonly used to identify exosomes (Choi et al., 2012; 

Menay et al., 2017; Lankford et al., 2018; Willms et al., 2016).  

 

The isolated exosomes were injected intrathecally into naïve mice to observe changes in 

mechanical hyperalgesia. This route of administration was chosen in order to deliver 

exosomes as close to the peripheral nerve as possible so that direct effect on neuronal 

sensitization could be studied. Because of the size of the mouse paw, we were concerned 

about tissue damage from repeated intraplantar injections. The limitation of this method 

is that multiple intrathecal injection could induce paralysis in hind legs of mice. Mice that 

become paralyzed (n= 3) were excluded from the study because withdrawal responses to 

mechanical stimuli could not be properly assessed.  Another caveat of intrathecal 
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administration is that it is difficult to isolate the peripheral effect of neuronal 

sensitization. Since the exosomes are being delivered to the CSF, a greater involvement 

of the CNS may be induced, leading to downstream peripheral nerve damage. In order to 

observe any acute peripheral effect of exosomes on nerves, exosomes were administered 

directly into the hind paw via a single intraplantar injection, and this did not produce 

hyperalgesia. It is difficult to identify whether it is the amount of exosomes or the time 

window tested that resulted in no acute hyperalgesic effect. Unfortunately, multi-day 

intraplantar injections to mice is not feasible, and exosomes were therefore delivered 

intrathecally.  

 

Our results show that intrathecal injections of exosomes isolated from the sciatic nerve of 

cisplatin treated mice for five consecutive days of resulted in the development of 

mechanical hyperalgesia. These mice exhibited an increase in withdrawal frequency by 

24 h after the 4th intrathecal injection, with continuous increase in withdrawal frequency 

in the following days (Fig. 4B). This response was statistically significant when 

compared to baseline, as well as to the control group. The withdrawal frequency response 

of the mice treated with exosomes isolated from saline-treated mice had no changes in 

behavior. This behavioral change mirrors the effect of systemic injection of cisplatin 

treatment. Since exosomes can freely cross the blood brain barrier, intravenous 

administration of exosomes may produce similar changes in behavior. Although the 

isolation of exosomes is very limited, a dose response of exosomes isolated from the 

sciatic nerve of cisplatin-treated mice may be conducted in the future. Our results suggest 
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that exosomes play an important role in communication between glia and neurons to 

induce neuronal sensitization. This agrees with previous studies where neuronal 

exosomes have been shown to activate microglia to promote activity-dependent pruning, 

and oligodendroglial exosomes mediate antigen transfer to dendritic cells (Bahrini et al., 

2015; Frubeis et al., 2012). For our study, exosomal activation of microglia will help 

identify whether SC-derived exosomes induce an immune response during transfer of 

cytotoxic contents to nearby neurons.   

 

We hypothesized that these exosomes from SCs contribute to the hyperalgesia. However, 

exosomes isolated from the whole sciatic nerve contains other host cells from which 

some of these exosomes may be derived, including satellite cells and neurons. Therefore, 

the behavioral results of this study do not isolate the role of SC-derived exosomes. In 

order to verify the pro-inflammatory role of SC derived exosomes, we used SC culture to 

determine the contents of exosome cargo. Primary SC culture was treated with cisplatin 

13µM for 48 h, as this concentration and duration was tested to induce cytotoxicity in 

vitro, without completely killing all cells. Exosomes were collected from media and 

subjected to mass spectrometry analysis.  

 

Mass spectrometry analysis suggests multiple pro-inflammatory and pro-apoptotic 

proteins, as well as vesicle-related proteins, to be found in Schwann cell-derived 

exosomes following cisplatin treatment. Some of the most notable proteins were: tumor 

necrosis factor (TNF) ligand, NF-kappa-B inhibitor-interacting Ras-like protein, and 
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Amyloid β precursor protein. Tumor necrosis factor alpha is an inflammatory cytokine 

released by activated glia and is involved in neuronal sensitization (Lewitus et al., 2016).  

NF-kappa-B is known to induce pro-inflammatory signaling cascade upon injury or 

infection (Lawrence et al., 2009). Specifically, macrophage-derived exosomes from 

lipopolysaccharide-stimulated cells has been shown to induce NF-kappa-B activation in 

naïve cells (McDonald et al., 2014). Amyloid β is a toxic protein aggregate responsible 

for the development of Alzheimer’s disease and has been shown to get effectively 

packaged into exosomes to induce a pro-inflammatory cascade (Gupta and Pulliam, 2014; 

Murphy and LeVine, 2010; Rajendran et al., 2006). Results of the mass spectrometry 

analysis agrees with previous studies showing that cisplatin activates NF-kappa-B 

pathway, contributing to cisplatin resistance as well as in inducing mechanical 

hyperalgesia (Lagunas et al., 2008; Park et al., 2014). 

 

Given these results, it appears that cisplatin treatment results in activation of glial cells. 

Using a primary culture of SCs gives us the confidence that SCs are damaged by 

cisplatin, and that during this process, SCs release exosomes that carry pro-inflammatory 

and pro-apoptotic signaling molecules. It is necessary to perform these behavioral 

experiments using these exosomes treated in with cisplatin in culture. Preliminary 

assessment of exosomes from Schwann cell culture has similar effect (data not shown 

due to small sample size). By the analysis of exosomes derived from SCs in vitro, we are 

able to conclude that amongst many potential mechanisms that SCs are affected by 

cisplatin and that SC-derived exosomes contribute to mechanical hyperalgesia via pro-



 

20 

inflammatory and pro-apoptotic signaling.  

 

Glia play an important role in inflammation in the CNS and specifically have been noted 

to be involved in the development of peripheral neuropathy (Ji et al., 2013). The 

suggestion of glial activation following cisplatin treatment prompted us to look at 

microglial activation in the spinal cords of the treated mice. Microglial activation marker 

Iba-1 was used, as it is a microglia and macrophage specific calcium-binding protein, 

present on activated microglia. Compared to the spinal cords of control mice, a notable 

increase in microglial activation was observed in mice injected with exosomes isolated 

from the sciatic nerves of cisplatin-treated mice. Activation of microglia suggests central 

sensitization induced by intrathecal administration of exosomes. Given the intrathecal 

route of exosome administration, it is unclear whether SC-derived exosomes will induce 

increased microglial recruitment and activation under biological conditions when mice 

are treated with cisplatin. Although it is difficult to isolate central and peripheral effects 

on neurons with an intrathecal administration of exosomes, the results of this study 

demonstrate that SC-derived exosomes contribute to neuronal sensitization at the central 

level by recruitment and activation of microglia.  

 

Exosomes are known to carry mRNA miRNA in their cargo, and these contents reflect 

the origin of host cells (Kowal et al., 2014; Santangelo et al., 2017; Vlassov et al, 2012). 

Exosomes have been shown to release miRNA from viruses upon infection and spread 

viral miRNA to monocytes (Pegtel et al., 2010). Particularly, under pathological 
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conditions, miRNAs with pro-inflammtory functions have been shown to be found in 

exosomes (De Toro et al., 2015; Guo and Guo, 2015).  These studies suggest that future 

analysis of mRNA and miRNA may provide further insight to the pro-inflammatory 

nature of exosomes and mechanisms by which they produce neuronal sensitization and 

pain.  

 

A better understanding of glia-neuron communication, and specifically the interaction of 

SCs and peripheral neurons will provide further insight in addressing chemotherapy-

induced neuropathic pain.  The understanding of SC-neuron interaction in evoking 

hyperalgesia can potentially provide new avenues of treatment for reducing neurotoxicity 

and neuropathic pain from chemotherapy. Furthermore, greater insight on neural 

mechanisms underlying cisplatin-induced peripheral neuropathy, specifically the role of 

exosomes in the generation and maintenance of pain, can be extended to understand the 

role of exosomes in other types of chronic pain. An understanding of contributions of 

SCs and their exosomes may provide a greater understanding of the mechanism 

underlying painful peripheral neuropathy that decreases efficacy of cisplatin treatment. 
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5. Conclusion 
 
In conclusion, this study demonstrates that SC-derived exosomes contribute to cisplatin-

induced mechanical hyperalgesia by the releasing pro-inflammatory and cytotoxic cargo 

to nearby neurons. A better understanding of the mechanisms underlying cisplatin-

induced peripheral neuropathy can provide potential ways of addressing and minimizing 

this painful side effect of chemotherapy treatment. Furthermore, the results of this study 

suggest exosomes to be an essential route of intracellular communication in the pain 

signaling pathway and may provide novel targets for the development of new 

pharmacological agents that prevent cisplatin-induced neuropathic pain.  
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Figure Legends  
 
Figure 1. Cisplatin administration was associated with increased hind paw withdrawal 
frequencies relative to both baseline assessments and saline-treated mice starting on post-
injection day 3. Withdrawal responses in saline controls remained near baseline 
throughout the treatment period. *P < .001 vs. saline; #P < .001 vs. baseline. 
 
Figure 2. Size analysis of exosomes isolated from the sciatic nerves of cisplatin-treated 
mice show presence of exosomes with mode of 107.8 +/- 13.6 nm and mean of 167.8 +/- 
4.5 nm.  
 
Figure 3. Exosomes were subjected to SDS-Page and western blot, using a common 
exosome surface protein marker, CD-63, and the western blot bands were quantified and 
normalized to control. Both exosomes isolated from sciatic nerves of saline-treated mice 
(lane 1) and cisplatin-treated mice (lane 2) show presence of CD-63.  
 
Figure 4. A) Administration of exosomes isolated from cisplatin-treated Schwann cells 
was associated with increased hind paw withdrawal frequencies relative to exosomes 
isolated from naïve Schwan cell culture (n= 2). B) Administration of exosomes isolated 
from cisplatin-treated mice was associated with increased hind paw withdrawal 
frequencies relative to both baseline assessments and saline-treated mice starting on post-
injection day 4. Withdrawal responses in controls remained near baseline throughout the 
treatment period. *P < .001 vs. saline; #P < .001 vs. baseline. 
 
Figure 5. Staining of microglia show upregulation and activation of microglia in lumbar 
spinal cord sections of mice injected with exosomes from cisplatin-treated mice (B,D) 
compared to control (A,C). Red indicates Iba+ microglia, and blue indicates DAPI.  
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Figure 1. 
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