
DeepFGSS: Anomalous Pattern Detection using Deep
Learning

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Akash Kulkarni

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Edward McFowland III

May, 2019

c© Akash Kulkarni 2019

ALL RIGHTS RESERVED

Acknowledgements

Firstly, I would like to thank my adviser, Prof. Edward McFowland III for his guidance,

mentorship and bringing out the researcher in me.

I would also like to thank my thesis committee members, Prof. Vipin Kumar and

Prof. Erika Helgeson for providing their valuable feedback on my thesis.

Finally, I would like to thank my parents for their constant love, my friends for their un-

wavering support and encouragement and my brother, Vishal, for pushing me to pursue

masters abroad.

i

Dedication

To my mom, dad and best buddy, Anurag Kakati.

ii

Abstract

Anomaly detection refers to finding observations which do not conform to expected

behavior. It is widely applied in many domains such as image processing, fraud detec-

tion, intrusion detection, medical health, etc. However, most of the anomaly detection

techniques focus on detecting a single anomalous instance. Such techniques fail when

there is only a slight difference between the anomalous instance and a non-anomalous

instance. Various collective anomaly detection techniques (based on clustering, deep

learning, etc) have been developed that determine whether a group of records form an

anomaly even though they are only slightly anomalous instances. However, they do not

provide any information about the attributes that make the group anomalous. In other

words, they are focussed only on detecting records that are collectively anomalous and

are not able to detect anomalous patterns in general. FGSS [45] is a scalable anomalous

pattern detection technique that searches over both records and attributes. However,

FGSS has several limitations preventing it from functioning on continuous, unstructured

and high dimensional data such as images, etc. We propose a general framework called

DeepFGSS, which uses Autoencoder, enabling it to operate on any kind of data. We

evaluate its performance using four experiments on both structured and unstructured

data to determine its accuracy of detecting anomalies and efficiency of distinguishing

between datasets containing anomalies and ones that do not.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Point Anomaly Detection . 2

1.2 Limitations . 3

2 Collective Anomaly Detection 5

2.1 Background . 5

2.2 Detection of Anomalous Patterns . 7

2.2.1 Problem Statement . 7

2.2.2 Anomaly Pattern Detection (APD) 8

2.2.3 Anomalous Group Detection (AGD) 9

2.2.4 FGSS using Bayesian Network 10

3 Motivation 13

3.1 Preliminary Theory . 13

3.1.1 Bayesian Network . 13

3.1.2 Autoencoder . 17

iv

3.2 Addressing limitations . 18

4 Proposed Solution 23

4.1 Property of reconstruction error . 23

4.2 p-value ranges . 24

4.3 Testing Hypothesis . 26

4.4 Metric to determine atypicality of subets 27

4.5 Efficient Search Technique . 29

4.6 DeepFGSS Algorithm . 32

4.7 Computational Complexity . 33

5 Evaluations 35

5.1 Experiments . 35

5.1.1 Power curve . 35

5.1.2 ROC curve . 36

5.1.3 Jaccard curve . 37

5.1.4 Precision-Recall curve . 38

5.2 Datasets . 39

5.2.1 Network Intrusion . 39

5.2.2 Handwritten Digits . 42

6 Conclusion and Discussion 50

References 52

Appendix A. Precision-Recall Plots for KDD Dataset: Apache2 59

Appendix B. Precision-Recall Plots for KDD Dataset: Neptune 62

Appendix C. Precision-Recall Plots for MNIST Dataset 65

v

List of Tables

3.1 Four cases for BN learning problems . 16

vi

List of Figures

2.1 Collective anomaly corresponding to an Atrial Premature Contraction in

an human ECG output . 6

2.2 Collective anomaly corresponding to an Atrial Premature Contraction in

an human ECG output . 7

3.1 Illustration of software run completion using Bayesian Network 16

3.2 Autoencoder with one hidden layer illustrating its two components: en-

coder and decoder . 19

5.1 Power curves for KDD dataset for two types of anomalies: Apache2 and

Neptune . 40

5.2 Area under ROC for Apache2 . 41

5.3 Area under ROC for Neptune . 41

5.4 Jaccard curves for KDD dataset for two types of anomalies: Apache2 and

Neptune . 42

5.5 Precision-Recall curves for KDD dataset with N=1000 and Apache2 anomaly 43

5.6 Precision-Recall curves for KDD dataset with N=1000 and Neptune anomaly 44

5.7 Area under Precision-Recall curve for Apache2 45

5.8 Area under Precision-Recall curve for Neptune 45

5.9 Power curves for MNIST dataset . 46

5.10 Area under ROC curve for MNIST dataset with different dataset size and

proportion of anomalies . 47

5.11 Jaccard curves for MNIST dataset . 48

5.12 Precision-Recall curves for MNIST dataset for N=1000 48

5.13 Area under Precision-Recall curve for MNIST dataset with different dataset

size and proportion of anomalies . 49

vii

A.1 Precision-Recall curves for KDD dataset with N=100 and Apache2 anomaly 59

A.2 Precision-Recall curves for KDD dataset with N=250 and Apache2 anomaly 60

A.3 Precision-Recall curves for KDD dataset with N=500 and Apache2 anomaly 60

A.4 Precision-Recall curves for KDD dataset with N=750 and Apache2 anomaly 61

B.1 Precision-Recall curves for KDD dataset with N=100 and Neptune anomaly 62

B.2 Precision-Recall curves for KDD dataset with N=250 and Neptune anomaly 63

B.3 Precision-Recall curves for KDD dataset with N=500 and Neptune anomaly 63

B.4 Precision-Recall curves for KDD dataset with N=750 and Neptune anomaly 64

C.1 Precision-Recall curves for MNIST dataset for N=100 65

C.2 Precision-Recall curves for MNIST dataset for N=250 66

C.3 Precision-Recall curves for MNIST dataset for N=500 66

C.4 Precision-Recall curves for MNIST dataset for N=750 67

viii

Chapter 1

Introduction

Any data instance is considered to be an anomaly if its characteristics deviate from

what is considered normal, expected or standard. Such deviations can be outliers, or an

exception, or a novel instance, or some contaminant or simply noise. Hence, the purpose

of detecting anomalies can be outlier detection, noise removal, or sometimes detecting

interesting patterns. Generally, anomaly detection refers to the problem of finding any

pattern in data that does not conform to expected behavior. Anomaly detection is

significantly used in applications such as banking systems, health care, cyber-security,

military surveillance for enemy activities and other safety-critical systems.

Usually, anomalies are recognized as harmful deviations. For example, as mentioned

previously, detecting fraudulent transaction in bank statements, detecting a tumor in

MRI, detecting unusual network traffic and so on. However, anomalies do not necessarily

have to be bad either. For example, for an advertisement company getting Rate Of

Interest exceedingly high for this month compared to the gain from previous months is

a good sign.

Irrespective of whether an anomaly is harmful or not, techniques used for detecting

such aberrations are the same. Over time, there have been various techniques developed

which work on different principles and assumptions. Most of the techniques developed

so far focuss on detecting point anomalies. In the next section, we will explain what are

point anomalies along with techniques to detect them followed by limitations of such

techniques.

1

2

1.1 Point Anomaly Detection

Point anomaly is an anomaly when a single data instance is anomalous. Chandola,

Banerjee, and Kumar [11] provided an exhaustive categorization of anomaly detection

techniques and their assumptions and principles.

Classification based anomaly detection techniques are supervised. First, a model is

trained on the training dataset to classify a data instance. Then, the model classifies

the data instance into anomalous or normal class. Examples of such machine learning

techniques are logistic regression, SVM, etc.

Nearest neighbor based anomaly detection techniques, first, calculate the neighbor-

hood of the data instance based on some distance metric (for eg, Euclidean distance for

continuous attributes, matching the coefficient for categorical attributes, etc) and then,

label data instances falling in the dense neighborhood as normal and those far from

their nearest neighbor as anomalies. Examples of such techniques can be K-Nearest

Neighbor (KNN), or intelligent data structures such as k-d trees, etc.

Anomaly detection techniques based on clustering work on different principles:-

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)[28], Shared

Nearest Neighbor (SNN) [27], WaveClustering [58]- classifies those data instances as

anomalies which do not belong to any cluster; Self Organizing Map (SOM) [65], K-

means clustering, Expectation Maximization labels those data instances as anomalies

that are far from the centroid of their nearest cluster; Cluster-Based Local Outlier Fac-

tor(CBLOF) [35], CDtrees [61] labels those data instances as anomalous which belong

to a cluster which is either small or sparse.

Statistical anomaly detection techniques learn a model which can generate the data

seen in the training dataset and then statistical inference test is applied to determine

if a given test instance is an anomaly or not based on whether it occurs in a high

probabilistic regions or low. These can be parametric such as Gaussian-based model like

Z-score or extreme value analysis [59], or non-parametric techniques (such as histogram

based outlier score[32], Generative Adversarial Networks [33], etc).

3

1.2 Limitations

These anomaly detection methods focus on the identification of a single anomalous data

record. For example, detecting a fraudulent transaction in financial data, detecting

a system malfunction while analyzing system log files, detecting bots that generate

fake reviews on social media platform, detecting energy leakage in smart houses or

detecting excessive power utilization in data centers, etc. Some of the anomaly detection

techniques devised are also domain specific, making them hard to adapt to a different

problem.

However, in the real world, sometimes it’s hard to detect anomalous behavior where

each individual data instance can be slightly anomalous making it difficult for anomaly

detection techniques to be effective, mentioned in the previous section, to detect. For

example, in the case of detecting fraudulent transactions in financial data, an intelligent

fraudster will attempt to disguise their activity so that it closely resembles legitimate

transactions making each fraudulent transaction only slightly anomalous. This makes

the situation worse to discern the malign activity. Similarly, an intelligent hacker might

also try to mimic normal network activity while sniffing data. In the case of customs

officials responsible for detecting smuggled items, they must decide which shipments to

inspect. An intelligent smuggler would intelligently sneak in contrabands by making

similar illegal shipments - let’s say, with same declared contents on the contraband,

shipping through the same company name, to the same port.

In such cases, classification techniques will not be able to learn a clear decision

boundary between normal and anomalous instances. Nearest neighbor based techniques

also fail to detect such anomalies as the records are only slightly anomalous and hence

might fall into a denser region with other normal instances. Clustering based techniques

might also fail as anomalous instances which almost resemble normal instances might

not be farther from the centroid of the cluster or anomalous instances might themselves

be part of a larger cluster. Traditional statistical techniques will also not be able to

distinguish slightly anomalous instances because they might not necessarily fall in a

region with low probability density.

One way to detect such anomalous behaviors is by searching for groups of these

similar data instances each of which is only slightly anomalous. Such anomalies are

4

called collective anomalies whereas all the previous anomaly detection techniques aim

for detecting point anomalies (where a single data point in a dataset is sufficiently

anomalous)

Chapter 2

Collective Anomaly Detection

Collective anomaly is defined as a collection of related data instances that are anoma-

lous compared to the entire data set but individual data instances may not be anomalies

themselves. For example, in a UDP flooding attack in the network domain, the attacker

sends multiple concurrent UDP packets which causes the host application to throttle

and reply with an ICMP destination unreachable packet. This event overloads the

host machine and renders it inaccessible. A single UDP packet sent on a port is not

an anomalous event. However, when their frequency exceeds a certain level, it be-

comes collectively anomalous. Figure 2.2 illustrates a famous example [11] of a human

electrocardiogram output with a small region being highlighted in red which denotes

a collective anomaly. Note that the low value of ECG itself is not an indication of

abnormal behavior.

2.1 Background

The survey by Chandola, Banerjee, and Kumar [11] provides an exhaustive survey of

various collective anomaly detection techniques developed until 2009. Collective anoma-

lies majorly have two kinds of relations: sequential and spatial. Some techniques [9]

convert the sequences into a finite set of features and run a point anomaly detection

algorithm. One challenge in such methods is that the sequences can be of variable

length. One of the techniques to overcome that challenge is box-modeling [10] which

maps each term in the sequence to one of the boxes based on its value and use those

5

6

Figure 2.1: Collective anomaly corresponding to an Atrial Premature Contraction in an
human ECG output

boxes as a set of features to use any of the point anomaly detection techniques. Re-

cently, deep learning based techniques have also been developed to detect anomalous

sequences with variable length. One such technique utilizes Long Short Term Memory

RNNs [7] which predicts several time steps ahead of the input. If the prediction error

is greater than some threshold for a given number of time steps, it indicates that the

most recent sequence is a collective anomaly. Several clustering based techniques [8]

have also been developed with similarity metric such as longest common subsequence,

etc. to detect collective anomalies as a cluster. NKICAD algorithm [3] is another clus-

tering based algorithm which first runs x-means algorithm [49] and then the features of

the data are aggregated to form a new set of features and each cluster is re-clustered.

The cluster with the minimum variance is returned as a collective anomaly. Informa-

tion theoretic based co-clustering technique [2] has also been developed which return

the largest row cluster as the candidate collective anomalies. Hurst Parameter based

Collective Anomaly Detection (HCADET) [1] is a method which first runs x-means

clustering on the entire dataset and then sorts the clusters based on their H [14] value

and returns top-η clusters as a set of collective anomaly candidates.

Most of these techniques work in an unsupervised fashion with no need for labeled

7

Figure 2.2: Collective anomaly corresponding to an Atrial Premature Contraction in an
human ECG output

data. However, these techniques do not provide any insights about the attributes which

are anomalous with respect to normal data.

In the next section, we will explain three techniques which can detect both anomalous

records and attributes (called as anomalous patterns) along with their limitations.

2.2 Detection of Anomalous Patterns

2.2.1 Problem Statement

Anomalous Pattern Detection is slightly different from anomaly detection. Instead of

identifying individual anomalies, the aim is to identify a set of records and attributes

that together form an anomalous pattern. The underlying assumption of anomalous

pattern detection is that the majority of data generated belongs to the same distri-

bution representing normal behavior of the system and the groups of records that are

unexpected given the typical data distribution are called anomalous patterns.

McFowland et al. [45] defines the anomalous pattern detection problem as ”detect-

ing groups of anomalous records and also categorizing their features with the intention

of understanding the anomalous process that generated these groups”. The premise on

8

which anomalous pattern detection techniques work is that most records in the data are

normal which follow an expected behavior and are generated by a single background

process. A very small amount of data contains anomalous records that possess char-

acteristics different from the expected behavior as they are generated by an alternate

process. Most techniques are able to detect such anomalous records due to their signifi-

cant difference in behavior. However, these techniques fail when the anomalous process

is only slightly different than the background (normal) process. Anomalous pattern

detection techniques rely on the assumption that records generated by the anomalous

process are also self-similar just like normal records are expected to have similar char-

acteristics among themselves. For example, in the case of network intrusion, the same

task might be repeated a number of times to gain unauthorized access to a system.

In health monitoring, a disease outbreak can lead to a large number of disease cases

with almost identical features being reported. Anomalous pattern detection techniques

rely on this assumption and try to look for collective anomalies by analyzing groups of

records together.

We explain three major anomalous pattern detection techniques in this section. All

three techniques extend the idea of Bayesian Network Anomaly Detector [20] where

they first learn the distribution under null hypothesis H0 using a Bayesian Network and

then compute the likelihood of all records under H0. Then, records with low likelihood

values are reported as anomalies. As explained before, this is one of the point anomaly

detection techniques and fails to detect records if they are only slightly anomalous

under H0. This limitation exists because a Bayesian Network can only learn the joint

probability distribution of the entire data and none of the characteristics embedded

in the group structure of the records. The three techniques that we will explain in

this section utilize the Bayesian Network to detect groups of records and a subset of

attributes that makes the group a collective anomaly.

2.2.2 Anomaly Pattern Detection (APD)

Anomaly Pattern Detection (APD)[21] technique utilizes Bayesian Network to detect

anomalous subsets instead of anomalous records. It works in four steps. Step 1, by

learning the distribution through Bayesian Network, it computes the likelihood of each

record. Step 2, given a fixed anomaly score threshold,it makes all records exceeding it

9

as candidate anomalies. Step 3, it evaluates a set of candidate rules, each consisting of a

conjunction of attribute values. For example, in KDD Cup Network Intrusion dataset,

one possible rule could be ”protocol type=tcp AND service=http”. For each possible

rule Q, it computes the number of records matching the rule Q. Formally, for any rule

Q constituting of attributes {Am = v AND An = u}, records Ri and Rj can be in the

group if and only if Aim = Bjm = v and Ain = Bjn = u. Step 4, it then checks if the

observed number of anomalies in the test set is significantly larger than the expected

number of anomalies using Fisher’s Exact Test. If the observed count is large then APD

signals that some records in that subset might be anomalous and it also provides the

set of attributes from the rule that was selected.

However, APD has several limitations. First, it considers grouping those records

with matching attribute values per the selected rule. Such a strict constraint lowers the

probability of detecting a subset of anomalous records with non-matching attributes

according to the selected rule. Second, APD scores each record based on its individual

anomalous behavior which limits its capability to detect records when they are collec-

tively compared to normal records. Third, it can not detect patterns that are affected

over more than 2 attributes as it considers rules comprising of only two attributes. Con-

sidering all possible combinations of attributes is computationally impractical. Hence, it

might not be suited for high dimensional data. Four, it does not leverage self-similarity

of anomalous records and hence records in the subset might not be generated by the

same anomalous process. Hence, it is difficult to tell if the subset that is detected is

truly an anomalous pattern or simply noise. Last, attributes detected by APD are the

ones corresponding to the selected rule and hence might not correspond to the truly

anomalous subset of attributes. Hence, APD doesn’t provide any information about

attributes that are affected by the anomalous process.

2.2.3 Anomalous Group Detection (AGD)

Anomalous Group Detection is another technique that detects a group of records in a

categorical dataset such that they have similar characteristics. AGD overcomes some

limitations of APD. Unlike APD, AGD makes sure that records detected are not noise

or generated by a different anomalous process. Secondly, it also allows records to be

10

detected even when their attribute values do not match. Also, it enhances it’s detec-

tion power by utilizing self-similarity among the attributes generated by the anomalous

process.

First, AGD learns the probability distribution of the data under H0 using Bayesian

Network. Second, it identifies all the candidate subsets, based on a greedy search

heuristic. It forms each subset iteratively based on a search heuristic which works as

follows:

For each Ri ∈ Datatest, initialize S ← Ri, and then, add any Rj ∈ Datatest − DataS
such that F (S ∪Rj) > F (S) where F (S) is likelihood ratio statistic defined as follows:

F (S) =
P (DataS |H1(S))

P (DataS |H0)
=

∏
i∈S P (Ri|H1(S))∏
i∈S P (Ri|H0)

(2.1)

where H1(S) represents an alternative hypothesis learned from the records in S. Third,

for each subset S, compute the score as the likelihood ratio statistic of that subset,

F (S). Finally, the subset with the highest score is obtained as the most anomalous

group. This scoring metric gives a higher score to anomalous records, as well as setting

a constraint of similarity between records in a group. If the records in S are similar

to each other, then the alternate hypothesis, H1(S) will be able to model them tightly.

This will result in a high value of the likelihood P (DataS |H1(S)), thus increasing the

score F (S). Also, records that do not belong to the distribution under H0 will have a

low value of the likelihood P (DataS |H0), again increasing the group score F (S).

Still, AGD addresses only some of APD’s limitations. AGD has several limitations

too. To generate all possible subsets of records in a computationally feasible manner,

it relies on the greedy search heuristic to reduce the search space. Because of this, the

algorithm may fail to identify the most anomalous subset of the data. Furthermore,

AGD does not provide any insights into the attributes that make the group of records

anomalous.

2.2.4 FGSS using Bayesian Network

Fast Generalized Subset Scan (FGSS) [45] is the method which detects anomalous pat-

tern by searching over subsets of records and attributes both. FGSS overcomes the

limitations of both APD and AGD. It detects self-similar anomalous records and also

provides information about the set of attributes that make the group anomalous. Unlike

11

APD which depends on the pre-defined rules or AGD which follows a greedy approach

which limits their capability to find the most optimal pattern globally, FGSS guaran-

tees the detection of the subset which is the most anomalous in the entire dataset. It

assumes that all attributes are categorical variables.

Formally, let a set of records be denoted as R1...RN and set of attributes as A1...AM

and for each record Ri, vij is the value of each attribute Aj . Any subset S is defined as

S=R×A, where R ⊆ {R1...RN} and A ⊆ {A1...AM}. FGSS finds the most anomalous

subset as

S∗ = R∗ ×A∗ = argmaxS F (S) (2.2)

where R∗ and A∗ denotes the most anomalous set of records and attributes respectively

and the score function F (S) defines the anomalousness of the subset.

First, a Bayesian Network learns the distribution of data under H0 that no anomalies

are present. Second, for each value vij of the attribute Aj of record Ri, FGSS computes

its likelihood lij given H0. lij represents the conditional probability of the observed

value vij given all its parent attribute values for record Ri under the null hypothesis

H0. Third, for each lij it computes an empirical p-value range pij (we explain this in

more detail in further section) which serves as a measure of how uncommon it is to see

a likelihood as low as lij under H0. Fourth, it then begins searching for the subset S∗

such that F (S∗) is maximum in the following way; it first selects a random subset of

attributes A′ and it then looks for the subset of records R′ that maximizes F (R′ ×A′);
then it fixes the set of records as R′ and then it finds next set of attributes A′′ which

maximizes F (R′×A′′). It keeps repeating this alternating process until it finds R∗ and

A∗ and returns S∗=R∗ ×A∗ as the most anomalous subset.

FGSS is currently the state of the art technique in terms of scalability, flexibility,

and accuracy. FGSS uses the Higher Criticism (HC) statistic [25] and the Berk-Jones

(BJ) statistic [6] as F (S). Also, McFowland et al. [45] proved that these statistics

follow LTSS property [48] which enables FGSS to scan both records and attributes by

evaluating a linear number of subsets, making it scalable to datasets containing large

number of records. We plan to explain FGSS in more detail in further sections.

Despite being such a powerful technique, FGSS framework has few limitations be-

cause it uses Bayesian Network to model the distribution of the data under the null.

We first explain the theory of Bayesian Network and then understand how it limits the

12

capability of FGSS to detect collective anomalies.

Chapter 3

Motivation

3.1 Preliminary Theory

To understand the problems in the state of the art technique in collective anomaly

detection i.e. FGSS, we need to understand what Bayesian Networks are and how

they work. Then, we will go through its limitations and understand how it limits

the effectiveness of FGSS framework. Then, we will explain how to overcome those

limitations using deep neural networks. One such network is Autoencoder which we

will embed in FGSS framework that is explained in more detail in the next section.

3.1.1 Bayesian Network

Probabilistic Graphical Model (PGM)[41] is a probabilistic model in the form of a graph

structure to represent the conditional dependence between random variables. Each node

in the graph represents a random variable, where the edges between the nodes represent

probabilistic dependencies among the corresponding random variables.

Probabilistic graphical models with the directed acyclic graph (DAG) as its model

structure are called as Bayesian Network [5]. A DAG is determined by vertices (or

nodes) V and a set of directed edges E between those vertices. Each Ai ∈ V represents

a random variable (or an attribute) and an edge eij ∈ E directed from a random

variable Ai to Aj indicates a causal relation where the value of Aj is dependent of the

value of Ai. We call Ai as the parent of Aj and Aj as the child of Ai. A Bayesian

Network must satisfy two conditions. First, there should be no cyclic dependency in

13

14

the DAG structure, or in other words, no node should be the ancestor of itself. Second,

each node is conditionally independent of other nodes given its markov blanket, or in

other words, a node is only dependent on its parents, its children and other parents

of its children. These two conditions enable the Bayesian Network to learn the joint

distribution of variables in a computationally efficient way. This is achieved because of

a significant reduction in the number of parameters (initially 2M) required to represent

the joint probability distribution. Apart from deciding the structure of the Bayesian

Network, one needs need to compute the conditional probability distribution (CPD)

at each node that depends only on its parents. In case of discrete random variables,

CPD for each node can be written in the form of a table with each row representing

a particular combination of its parent values based on which its value is determined.

These individual CPD tables can be used to compute the joint probability distribution

of the occurrence of more than one variable together.

Formal Definition

Formally, Bayesian Network [29] can be defined as follows: A Bayesian Network is

defined by the pair < G,Θ >, where G =< V,E > represents a directed acyclic graph

consisting of a set of vertices V and edges E. Each node Ai ∈ V represents a random

variable annotated by its conditional probability table, and each edge eij ∈ E represents

a causal connection from node Ai to node Aj . Bayesian Network represents the joint

probability distribution over the set of all random variables V determined by a set of

parameters Θ. Let P (Ai) denote the set of all parents of Ai. The conditional probability

table of Ai is determined by θAi ∈ Θ as follows:

For each value ai ∈ Ai and a particular instantiation of parents of Ai as πi ∈ P (Xi),

θAi contains a parameters θai|πi defined as

θai|πi = p(ai|πi) (3.1)

Once we compute θai|πi ∀ai ∈ Ai for i ∈ (1, N), a Bayesian Network specifies the joint

probability distribution ∀Ai ∈ V as follows:

p(A1, A2, ..., AN) =

N∏
i=1

p(Ai|P (Ai)) (3.2)

15

Figure 3.1 illustrates a simple example of Bayesian Network which depicts the proba-

bility of the software run to complete, denoted by C. This is only dependent on whether

the software is run at a high speed or low speed, denoted by S. The speed of the soft-

ware is further dependent on whether there is a hardware issue, represented by H, or if

the WiFi speed is slow, represented by W . Also, there is high chance that if the wifi is

slow, another website which is rendering some content also might be affected, denoted

by Web.

The joint probability distribution of all variables can be calculated as follows:

P (H,W,S,Web, C) = P (H).P (W |H).P (S|H,W).P (Web|H,W,S,C)

.P (C|H,W,S,Web)
(3.3)

The total number of parameters required to compute this is 25 − 1 = 31. However,

based on this structure, we can observe some of the properties of Bayesian Network. H

and W do not depend on any other variables. However, when S is given, they both fall

in each other’s markov blanket and are conditionally dependent. Also, given a value

for W , S and W are conditionally independent as they are outside markov blanket of

each other. Similarly, C is independent of all other variables given S. Because of such

properties, Bayesian Network provides a compact factorization of the equation 3.3 as

follows:

P (H,W,S,Web, C) = P (H).P (W).P (S|H,W).P (Web|W).P (C|S) (3.4)

Now, we can observe from the equation 3.4 that we need 1 parameter each for P (H) and

P (W), 2 parameters each for P (Web|W) and P (C|S) and 4 parameters for P (S|H,W).

Hence, the BN form reduces the number of the model parameters, which belong to a

multinomial distribution in this case, from 31 to 10 (1+1+2+2+4) parameters. This

reduction not only makes the learning computationally faster but it also makes the

inference efficient by being robust to bias-variance trade-off.

Compared to learning the parameters of Bayesian Network, structure learning is

a lot more difficult task. Learning a good topology of the Bayesian Network might

require some prior information such as known causal relationships between attributes

or other expert knowledge. With no prior knowledge, learning the best DAG structure is

considered to be an NP-Complete [12] problem because the number of DAG structures

16

Figure 3.1: Illustration of software run completion using Bayesian Network

possible is exponential in terms of the number of random variables. Table 3.1 mentions

the four scenarios for bayesian learning. Except for the first case, all other cases are

computationally intractable [5]. For the second case, one can use EM to find a locally

optimal maximum-likelihood estimate of the parameters. Third and fourth case requires

searching through a model space in a greedy fashion which we will not be focusing on.

Case BN structure Observability Proposed learning method

1 Known Full Maximum-likelihood estimation
2 Known Partial EM (or gradient ascent), MCMC
3 Unknown Full Search through model space
4 Unknown Partial EM + search through model space

Table 3.1: Four cases for BN learning problems

17

3.1.2 Autoencoder

Ian Goodfellow et al.[39] explains Deep Learning as ”a subset of Machine Learning that

achieves great power and flexibility by learning to represent the world as nested hierarchy

of concepts, with each concept defined in relation to simpler concepts, and more abstract

representations computed in terms of less abstract ones”. Deep learning techniques[57]

learn the mapping of input space to some output space incrementally through its hidden

layer architecture, defining low-level features (such as words in text, peripheral edges

of an object in image) and then higher level features (such as sentences in text, specific

entities in the image). Each hidden unit of a trained deep learning network represents

one aspect of the whole and together they help represent the mapping from input space

to final output space.

One of the deep learning networks used for the task of representation learning in

an unsupervised manner is Autoencoders [53]. Autoencoders are the deep learning

models which aim to understand the representation of the data by trying to reconstruct

it. Figure 3.2 shows the simplest auto-encoder which has a multi-layer perceptron

(MLP) - like structure with one hidden layer. The difference between an MLP and

an autoencoder is that the output layer in the autoencoder has the same cardinality

of its input layer whilst the cardinality of the output layer in an MLP is the number

of classes the perceptron should be capable of classifying. The motivation for this

architecture is that hidden layer represents latent features [4] which, in other words, are

the representation of the input in smaller latent space. Hence, an autoencoder plays an

important role in dimensionality reduction: after the training phase, the output layer is

usually thrown away and the encoder network is used to build a new dataset of samples

with lower dimensions.

Formal Definition

Formally, for a kth input vector xk, w1 and b1 represent the weights and bias of en-

coder network E, and w2 and b2 represent the weights and bias of the decoder network

D. A simple encoder could be represented as a network such that D(E(x)) = x. En-

coder network E learns a stochastic mapping from input vector x to hidden vector

18

h as pencoder(h|x). Similarly, decoder network’s task is to learn the reverse stochas-

tic mapping as pdecoder(x̃|h) where x̃ represents generated input. Just like any deep

learning network, autoencoders are also trained using gradient descent technique where

gradients are getting updated using backpropagation. The feed-forward computation in

autoencoder can be mathematically written as follows:

h1 = a(w1x+ b1)

h2 = a(w2h1 + b2)

.

.

.

x̃ = a(wnhn−1 + bn)

where a is an activation function. The loss function for an autoencoder can be defined

as follows:

L(x,D(E(x)) =
1

2

∑
k

(x̃k − xk)2 (3.5)

where, hidden layer h for an autoencoder with single hidden layer (as shown in figure

3.2) is computed as

E(x) = h = a(xk.w1 + b1) (3.6)

where a represents some activation function, and output layer x̃ can be generated as

D(h) = x̂ = a(h.w2 + b2) (3.7)

Here, x̃k is the kth generated input and xk is the kth real input and L represents total

squared reconstruction error.

3.2 Addressing limitations

Bayesian Network is a suitable machine learning model in many applications for various

reasons [64]. One, Bayesian Network can give good generalization error even with fewer

19

Figure 3.2: Autoencoder with one hidden layer illustrating its two components: encoder
and decoder

data. Two, Bayesian Network work even when the data is missing [52] which makes it a

popular model for data imputation or interpolation [43] [23] as it encodes all variables.

Three, Bayesian Network is very powerful for it can also learn the best structure [44] to

represent the conditional dependence among the features. This improves the explain-

ability aspect of the model. Four, because it learns the dependence of variables on each

other, it can also be used for causal inference urther helping in understanding the prob-

lem domain better. In fact, one can compute consequences given a cause and vice versa.

This is done by calculating the probability of distributions of child nodes given parent

nodes and vice versa. Five, Bayesian Network can be quick in answering queries once

the model learns the structure and parameters as it contains the conditional probability

distribution for every feature per every possible combination of its parent features.

However, Bayesian Network has several limitations [18], especially in the domain of

collective anomaly detection when the anomalies are subtly anomalous when considered

individually. We divide these limitations into 4 categories and explain each category of

limitation and how they can be overcome by autoencoders.

First, Bayesian Networks work best with discrete variables. However, most of the

real world data is continuous or a combination of discrete and continuous variables.

Many techniques have been developed to deal with continuous variables. One such type

20

is discretization of continuous variables into intervals [30] [47] (i.e. changing continu-

ous data into multinomial data). However, discretization might lead to some loss of

information and Bayesian Network might end up learning approximate characteristics

of the true distribution model. This might make the Bayesian Network lose its sta-

tistical capability to detect subtle anomalies. Another type of approach is using naive

bayesian structure [66], and then learn the distribution in a non-parametric way. Some

techniques deal with continuous variables directly by assuming a certain distribution

for every node in the network [37] and then learning its parameters. Real world data

is too complex and such probabilistic assumptions might not often be true leading to

loosely learned probability distribution. These techniques do not learn the true char-

acteristics of the data [15] because of various assumptions which might be significant

in detecting anomalies especially if they are subtly anomalous. On the other hand, au-

toencoder is a non-parametric deep learning model that doesn’t assume anything about

the data and can directly work with continuous data. Hence, it ends up learning the

true characteristics of the data with more confidence.

Second, in order for Bayesian Network to be effective, the data must have some

structure in it in terms of features being well defined. However, most real world data

is unstructured. Furthermore, Bayesian Network needs to be pre-fed with extracted

meaningful features [51] [60]. On the other hand, autoencoder can directly work with

raw unstructured data. For example, for detecting heart irregularities through its sound,

one needs to compute features such as audio signal type, strength, duration of the sound,

frequency, etc. to come up with a structure in order to use Bayesian Network whereas

audio signals can be directly fed to an autoencoder which can learn the probability

distribution of the sound. For unstructured data, learning latent variables becomes

extremely important in order to learn a better approximation of the true distribution

of the data. However, it is difficult to learn latent variables using Bayesian Networks.

Even though there are many techniques [16] [54] which can make Bayesian Networks

learn latent variables, one needs to specify information such as the number of hidden

variables, cardinality of each hidden node, etc. Identifying all possible combination

of random variables is exponential [26] and hence, providing an optimal number of

variables is challenging. Autoencoders, on the other end automatically learn latent

variables representing significant features in hidden layers. This is convenient when the

21

underlying anomalous process is only subtly anomalous and can only be distinguished

in latent space. Also, Bayesian Networks are not effective in learning high dimensional

unstructured data such as images, genomic data, etc. As the dimension increases,

the efficacy of Bayesian Network in learning conditional dependence among features

decreases. Several techniques that use Bayesian Network to work with images, audio,

etc., require extraction of meaningful features [50]. On the other, Autoencoder can work

with such high dimensional data as it learns significant features given a large number of

features and then anomalies can be detected based only on the small set of significant

latent features learned.

Third, the power of Bayesian Network depends heavily on the structure learned.

However, defining and learning the structure which represents the true data is a difficult

task [13]. In order to provide good priors to the network, expert knowledge [42] is needed

for modeling Bayesian Network. For instance, initial order of variables that are needed

to be learned, subjective probability of a given variable to be the parent of another

variable [55] for the nodes keeping the order of nodes specified under consideration,

etc. Such knowledge is hard to be specified by an expert. Even though there are

techniques developed for obtaining such prior knowledge based on statistical property

of the data, it still relies on approximate assumptions. Such assumptions might give

away crucial information making it hard to identify slightly anomalous records. On the

other hand, autoencoder doesn’t assume anything in prior and instead starts with a

randomly initialized weights and other defined hyperparameters and then tries to fit

the data to that structure by updating weights, learning the statistical distribution that

closely matches with the true distribution. Also, Bayesian Networks fail to learn the

cyclic dependency among variables (for example, A depends B and B depends on A)

and hence, can not learn the correlation between variables or combination of variables.

In order for Bayesian Networks to learn the conditional dependence among features, all

features must obey local markov property [5]. In fact, the structure learning problem

itself is an N-P Complete problem. Though some techniques exist to relax the time

complexity, they either follow a greedy approach based on some heuristics [56] [63] or

restrict the space of models. In both cases, it might miss the best structure possible

and learn an approximate model with high bias. Autoencoders, being a variant of

Artificial Neural Network (ANN) which acts as a universal approximator [38], can learn

22

any structure without any restrictions like the absence of cyclic dependency, etc. This

enables autoencoder to capture all dependencies and correlations in the data which

might then make the detection of subtle collective anomalies efficient.

Four, there are several issues in training a Bayesian Network. One such issue is

that learning the structure and parameters together is an NP-Complete problem [12].

This is because the objective function of the Bayesian Network is not a convex function.

Although techniques [34] have been developed to make the objective function convex, it

makes too many assumptions and as a result, the final learned model could actually be

worse compared to the one obtained without the convex function. On the other hand, the

objective function of autoencoders is based on the squared reconstruction error which is

convex (refer equation 3.5). Also, in order to achieve good accuracy, Bayesian Network

must learn all conditional dependencies among all variables. This might increase the

model’s complexity drastically. One can say, as the accuracy increases, complexity could

also increase. However, in case of autoencoder, one can fix the model’s complexity by

various hyper-parameters like activation functions, number of hidden layers, number of

hidden units in each layer, etc. And using gradient descent, it learns the best weights

to fit the probability distribution and achieve desirable accuracy. From the qualitative

perspective, one cannot justify how close the learned model is from true distribution

because during the training process of Bayesian Network, the directions of dependence

among variables might change multiple times and stop at a sub-optimal model. It can

not be predicted if continuing the training process to next step gives a better model or

worse. On the other hand, autoencoder’s training process involves finding a good local

minima in a convex objective function using gradient descent and hence gives an idea of

how far the given model is from the true model based on how soon the training process

is halted.

There are many other limitations of Bayesian Network such as a Bayesian Network

cannot be applied in an online setting. Generally, a block of data is given to the learning

algorithm to learn the structure and its parameters. On the other hand, autoencoder

being a deep learning network can be trained by providing one sample at a time using

stochastic gradient descent with batch size being 1 and hence, can be used in an online

setting. However, we will not be focussing on such limitations in this thesis.

Chapter 4

Proposed Solution

We employ a deep autoencoder network to learn the probability distribution of the

data. More specifically, we use autoencoder to learn the hidden significant features

in the normal data records under the H0. Using these hidden features, autoencoder

then reconstructs the input and provides reconstruction error for that particular input.

We then convert these reconstruction errors into empirical p-value ranges and then run

FGSS on them to get a subset S such that F (S) is maximum.

4.1 Property of reconstruction error

An autoencoder learns the significant features hidden in the latent space and recon-

structs the input from those features with some errors. These reconstruction errors

are independent and follow a normal distribution even though attributes are correlated.

For one dimensional input, the magnitude of the reconstruction error tells how anoma-

lous that input is. For multivariate input, one way to find out the anomalousness of

the input instance is the summation of reconstruction errors across all attributes for

that input. However, we focus on individual attribute’s reconstruction error because

our approach not only detects anomalous records but also provides information of the

attributes whose reconstruction errors are unexpectedly high under H0.

First, we split the dataset containing only normal records into two sets, Datamodel

and Dataexp. We train the autoencoder on Datamodel to learn the probability dis-

tribution of the normal process that generated those records. Then, we generate the

23

24

reconstruction errors by feeding the Dataexp to autoencoder. Let xij and x̃ij represent

the jth attribute of iith record for the original input xi ∈ Dataexp and reconstructed

input x̃i respectively, where j ∈ [1,m] for m attributes, reconstruction vector ri can be

represented as follows:

ri =< ri1, ri2, ..., rij , ..., rim >= (xi − x̃i)2 (4.1)

where,

xi =< xi1, xi2, ..., xij , ..., xim > (4.2)

x̃i =< x̃i1, x̃i2, ..., x̃ij , ..., x̃im > (4.3)

Here, rij indicates how likely is it to observe an attribute value for attribute j for

given record xi. Higher the reconstruction error rij , the more anomalous that attribute

value is for the record.

4.2 p-value ranges

While performing the hypothesis test in statistics, the p-value helps to determine the

significance of the results. A p-value is a measure of the evidence against the null hy-

pothesis. Lower p-value (typically ≤ 0.05) indicates a stronger evidence against the null

hypothesis, hence we reject the null hypothesis and accept the alternative hypothesis.

In the case of anomaly detection, a null hypothesis states that there are no anomalies

present in the data and an alternative hypothesis states that the data contains anoma-

lies. Typically, a lesser p-value for an instance indicates that the instance is an anomaly.

For example, in Bayesian network [45], lesser p-value indicates lesser likelihood of that

data instance under H0. However, in autoencoder, anomalous data instances tend to

have higher reconstruction error under H0. Thus, we define p-value metric such that

higher reconstruction errors correspond to lower p-values.

In order to compute the p-value, we first split the data containing no anomalies

into Datamodel and Dataexp, train the autoencoder on Datamodel and calculate the

reconstruction errors on Dataexp. These reconstruction errors represent the distribution

of the errors of each attribute under H0, represented by rij . Now, we take the test data

DataTest which contains some anomalies and calculate reconstruction errors using the

25

trained autoencoder under H0. Let rtij represent the reconstruction error of jth attribute

of ith test record.

Traditionally, an empirical p-value for jth attribute of ith test record can be computed

as

pij = p(rtij) =
1

n

Ntrain∑
k=1

I(rkj ≥ rtij) (4.4)

where Ntrain denotes the total number of samples in Dataexp. One can note that at-

tributes which are anomalous will have lower pij because of corresponding reconstruction

error rtij being larger. Apart from the test records having some true distribution, the

reconstruction error rj of an attribute j also has some distribution of reconstruction

errors under H0. Since we know that Dataexp contains no anomalies in it, an empirical

cumulative distribution function can be calculated using equation 4.4. If Datatest has

no anomalies present in it, then rtij is from the same distribution as rij . In this case,

pij asymptotically follows a uniform distribution(0,1) for each j ∈ [1,m]. If Datatest

has few records which are slightly anomalous, then pij will not follow uniform distri-

bution(0,1) under H0. Similarly, the attribute which has slightly anomalous values for

some records are also not distributed as Uniform(0,1). This helps in getting insights

about the attribute values which are slightly anomalous under H0.

McFowland et al. [45] suggested to use empirical p-value ranges instead of p-values

to avoid the bias towards larger p-values when there is a chance of having tied likelihood

values in the case of Bayesian networks, in our case, tied reconstruction error values. For

example, consider a column j with all identical values. It will result in pij = 1 for each

record hence making it significant at some α. However, having all rtij with identical

values and similar to rij should not result in significant p-values. The occurrence of

this scenario is really low when the attributes are continuous. However, for discrete

attributes (for eg. xij=0 for some xi), the autoencoder might reconstruct the exact

same value for that attribute, xtij resulting in identical p values. This leads to ties in

reconstruction errors. Since most of the dataset might contain a mixture of continuous

and discrete attributes, it is safer to use empirical p-value ranges compared to p-values.

To compute p-value range for the reconstruction error of jth attribute of ith record,

26

we compute two terms

Nbeat(r
t
ij) =

Ntrain∑
k=1

I(rtij < rkj) (4.5)

Ntie(r
t
ij) =

Ntrain∑
k=1

I(rtij = rkj) (4.6)

Then, p-value range is a range bounded by two terms pmin and pmax i.e. [pmin(pij),

pmax(pij)] where,

pmin(pij) =
Nbeat(r

t
ij)

Ntrain + 1
(4.7)

pmax(pij) =
Nbeat(r

t
ij) +Ntie(r

t
ij) + 1

Ntrain + 1
(4.8)

Once we have empirical p-value ranges for each rtij , we can draw an empirical p-value

from this range and if Datatest and Dataexp were from same distribution i.e. no anoma-

lies were present in Datatest, then the drawn empirical p-values will be asymptotically

distributed as Uniform(0,1). With reference to the example of identical column values

mentioned before, this approach would lead to Nbeat(r
t
ij) = 0 and Ntie(r

t
ij) = 1. Hence,

this will result into an empirical p-value range of (0,1), and randomly drawing a p-value

from this range would result into Uniform(0,1) which verifies our intuition.

4.3 Testing Hypothesis

To carry out statistical hypothesis testing, we need to find a significance level α which

is the probability of rejecting the null hypothesis when it is true. Typically, to detect

whether a uni-variate data point is drawn from a given distribution, we first compute

the p-value of that data point under the null hypothesis that the data point belongs

to the given distribution. Then, at a particular significance level α, we reject the null

hypothesis if p-value < α or p-value > 1 − α. We define the significance of a given

p-value as

psig = I(p < α or p > 1− α) (4.9)

In our approach, in order to determine whether a given subset is generated from an

anomalous process, we first calculate p-value range for that subset. Then, we determine

27

the proportion of p-value range significant at α. In other words, the probability of a

value drawn from [pmin(pij),pmax(pij)] is < α or > (1− α). In case of an autoencoder,

anomalous records or attributes tend to have higher reconstruction error under H0 lead-

ing to lower p-values. In other words, for the anomalous set of records, attributes which

are anomalous have their corresponding pij < α. Hence, we determine the significance

of th jth attribute of ith record as follows:

psig(pij) =

0 if pmin(pij) > α

1 if pmax(pij) < α

α−pmin(pij)
pmax(pij)−pmin(pij)

otherwise

Then, significance of the subset S = RS × AS can be determined by adding all the

significance values in the subset as follows:

psig(S) =
∑
i∈RS

∑
j∈AS

psig(pij) (4.10)

If we were considering a uni-variate data point such as psig(pij), we reject H0 if

psig(pij) < α. However, in order to carry out hypothesis testing over the entire subset

S, we first compute the expected count of psig(pij) ∈ psig(S) significant at α as

pexp(S) = α×NS , where NS =
∑
i∈RS

∑
j∈AS

1 (4.11)

Informally, psig(S) denotes the observed number of p-value ranges in a subset S that

are significant at α. Each p-value range is determined by the proportion of the range

significant at α. On the other hand, pexp(S) denotes the expected number of p-value

ranges in a subset S that should be significant at α. Based on these two terms, we reject

null hypothesis H0, if psig(S) > pexp(S), otherwise we assume that the subset contains

normal records.

4.4 Metric to determine atypicality of subets

If the autoencoder is perfectly trained (i.e. it has learned the true typical characteristics

of the normal records), it would be able to reconstruct the records with 0 reconstruc-

tion error. However, for the anomalous records, the attributes which diverge more from

28

normal behavior tend to have higher reconstruction errors. We can note that the atypi-

cality of the attribute value is measured by how far it’s reconstruction error is from the

true expected value i.e. 0. Similarly, in order to determine the atypicality of the subset,

we employ a non-parametric scan statistic called as the Berk Jones (BJ) statistic [6].

The BJ statistic for a given S gives us a score which indicates the divergence of the

subset from the normal behavior. This divergence depends on the number of significant

p-value ranges in the subset S. Formally, we employ the BJ statistic for a given S as

follows:

τS = ΦBJ(psig(S), NS , α) = NS ×K(
psig
NS

, α) (4.12)

where K measures the Kullback-Liebler divergence between the observed proportion of

significant p-values at α i.e.
psig
NS

and expected proportion of p-values i.e. α.

Once we compute all the candidate subsets, the algorithm should calculate τS ∀ S,

and then returns the most anomalous subset S∗ such that τS∗ is maximum. However,

computing all possible candidate subsets is exponential in N , and is infeasible for even

moderately sized datasets.

29

Algorithm 1 Deep FGSS

1. Given Training dataset Dtrain, Testing dataset Dtest

2. Split Dtrain into Datamodel and Dataexp

3. Train Autoencoder on Dmodel

4. Compute reconstruction error matrix Eexp = {rij}

5. Compute reconstruction error matrix Etest = {rtij}

6. Compute p-value matrix P = {pij}

7. For each Ri, form search group SGi = {Rj}

8. For each SGg where g ∈ (1, G) and G denotes total

number of search groups

(a) Repeat for β number of iterations

i. Initialize A ← random set of {Aj}

ii. Repeat until convergence:

A. Set R = maxR′ F (R
′ ×A)

B. Set A = maxA′ F (R×A′)

iii. Set Sg = R∗ ×A∗

9. Output S∗ = maxSg F (Sg)

4.5 Efficient Search Technique

In order to resolve the issue of exponential time complexity of computing all possible

subsets, most of the anomalous pattern detection techniques put some restrictions in

the search space or follow a greedy approach to find the best set of subsets. Hence,

these techniques might miss the most anomalous subset present in the dataset. Also,

these techniques do not scale well with the size of the dataset, making it infeasible for

larger datasets.

30

Daniel B. Neill [48] devised LTSS property which enables searching only N of the

2N possible subsets of records and still provides us the guarantee of finding the most

anomalous subset. The LTSS property states that If we have a scoring function F (S)

to maximize over all subsets of records, and a ranking function G(Ri) which assigns a

rank Γi ∈ (1, N) to Ri, the subset S∗ with the maximum score F (S∗) consists of the

top-k ranked records. In our case we have

F (S) = τS (4.13)

G(Ri) =
∑

j∈(1,M)

psig(pij) (4.14)

The intuition behind the above ranking function is that the anomalous records tend

to have larger reconstruction error rij for some of the attributes, and inturn a larger

reconstruction error ri for the entire record. This results in a larger number of significant

p-value ranges at level α for that record. This leads to a higher G(Ri) value for the more

anomalous record than the record which is slightly lesser anomalous. The records which

are not generated by any anomalous process will have very fewer or no significant p-

value ranges leading to lower G(Ri) values. If we sort all the records in descending order

based on their corresponding G(Ri) values, we can form the subset S(k) = R(k)×A in a

smarter way by including only the set of top-k ranked records R(k) = {Ri} ∀ Γi ∈ (1, k)

such that F (S(k)) > F (S(k+1)). This happens when the (k+1)th ranked record has zero

or very less number of significant p-value ranges and is likely a normal record. Hence,

intuitively all the subsequently lower ranked records with Γi ≥ k + 1 are also likely to

be generated by the normal process.

This way we can find the most anomalous subset of records given all the attributes.

In order to identify the most anomalous subset of columns for a given set of records, we

can perform the same optimization step for columns. For the given set of records, we can

rank all the columns according to their corresponding values of G(Aj) and incorporate

only the top-k attributes in the subset S(k
′
) = R×A(k

′
) where A(k

′
) = {Aj} ∀ Γj ∈ (1, k)

such that F (S(k
′
)) > F (S(k

′
+1)). Note that, here Γj indicates the rank of the attribute

instead of record.

Formally, we define the above two optimization [36] steps for some α, total number

of records N and total number of columns M as follows:

31

Step 1: For the set of columns Aj for j ∈ (1,M), rank all the records Ri for i ∈ (1, N)

using the ranking function as

G(Ri) =
∑

j∈(1,M)

psig(pij) (4.15)

and then find R(k) = {Rl : Γl ∈ (1, k)} such that F (R(k) ×A) > F (R(k+1) ×A)

Step 2: For the set of rows Ri for i ∈ (1, N), rank all the columns Aj for j ∈ (1,M)

using the ranking function as

G(Aj) =
∑

i∈(1,N)

psig(pij) (4.16)

and then find A(k) = {Al : Γl ∈ (1, k)} such that F (R×A(k)) > F (R×A(k+1))

Once we find R(k) in the Step 1, we set R = R(k). Step 2 gives A(k) for the current set

of records R. We then set A = A(k). We repeat the above two steps alternatively and

at the end of every iteration we keep getting a better set of records and columns which

maximizes F (S). We stop this alternative process until we find the most optimal subset

S∗ = R∗×A∗ such that F (S∗) is maximum. Intuitively, we treat the entire data as the

subset and keep shortening the subset by removing a set of records and columns. The

criteria for the removal is that the difference between the observed number and expected

number of significant p-value ranges should increase. This repeats until it converges i.e.

when the difference is maximum. At this point, we obtain the most anomalous subset

in the entire dataset. Note that we always start the alternating optimization process

with a random set of columns or records. Hence, we repeat this convergence process for

different random initialization and return the subset with a maximum score among all

such iterations.

The underlying assumption is that all normal records are generated by a single back-

ground process and we learn the characteristics of this process using autoencoder under

H0. Also, there is a separate anomalous process that generates anomalous records whose

characteristics are different compared to the normal process. We can take advantage of

such a disparity by inducing similarity constraint to group similar records. We then run

the above optimization process within each group. This will return not only the most

optimal subset but also ensures that all the detected records have self-similar charac-

teristics. Another advantage of enforcing a similarity constraint is that in the presence

32

of different types of anomalies, it will ensure that the detected subset contains all the

records that belong to a single anomaly type. Different types of anomalies are generated

by their corresponding anomalous processes which differ slightly from each other. To

compute the similarity between two records, we can use metrics like Euclidean distance,

Correlation-coefficient, Cosine similarity, etc. Formally, a search group for a record Ri of

radius r can be defined as {Rj : d(Ri, Rj) ≤ r} where d measures the similarity between

two data records. We can choose r depending on how strictly we want to enforce the

similarity constraint. Also, one should be careful in choosing the metric as it depends

on the input type. For instance, choosing Euclidean distance as the distance metric

for images might not be suitable. A similarity metric should give a high value while

comparing two normal records and a low value if we compare a normal record with an

anomalous record.

4.6 DeepFGSS Algorithm

DeepFGSS algorithm is an extension of the original FGSS algorithm [45] developed by

McFowland et al. which uses deep networks like autoencoders to enable FGSS to work

with high dimensional unstructured data with both discrete and continuous attributes.

Note that DeepFGSS works not only with autoencoder but any deep neural network

architecture for learning the probability distribution under the null hypothesis.

We illustrate the main steps of DeepFGSS in algorithm 1. We first split the training

data that contains no anomalies into two parts: Datamodel and Dataexp and train

autoencoder on Datamodel to learn the probability distribution of normal records under

the null hypothesis H0 that no anomalies are present. We then calculate reconstruction

error of Dataexp as Eexp which represents the expected distribution of reconstruction

errors of data under H0. We also calculate reconstruction errors of the Datatest as Etest

and then, compute p-value ranges for the reconstruction errors of each record’s attribute

value rtij ∈ Etest by comparing it with the reconstruction errors rij ∈ Eexp ∀i ∈ (1, N)

of the same column j. We then randomly draw a p-value pij ∈ Uniform[pmin(pij),

pmax(pij)] for all the attributes for each record. Optionally, we can enforce similarity

constraints by forming search groups for each Ri in Datatest using some distance metric

d and radius r. Then, we can run the two alternating optimization steps within each

33

search group and identify the most anomalous subset in that search group as Sg. The

algorithm then returns the subset Sg with maximum BJ statistic score F (Sg) as S∗.

Note that, unlike FGSS, there is an additional requirement in DeepFGSS to store

the distribution of the normal data Eexp along with the trained model which represents

the expected probability distribution of the normal data. Autoencoder maps the raw

input space to the probability distribution space of reconstruction errors.

There are various parameters that can be manually tuned in DeepFGSS. In order

to choose the significance level α, one can consider all the unique reconstruction error

values in the test dataset within some αmax and run the optimization steps for each of

the unique α ≤ αmax. The value of the αmax can be set depending on the disparity

between anomalous and normal records. Anomalies which are easily detectable lie on

the extreme corners when you plot the distribution of the normal records. However,

anomalies which are slightly anomalous, when considered individually, tend to share

many characteristics with the normal records and hence do not necessarily lie on the

extreme ends of the distribution. Also, one can choose any distance metric d depending

on the data and radius r depending on how small/strict the neighborhood should be.

Apart from these, if we have some prior expert knowledge of the data, we can add tweaks

such as the minimum or the maximum number of records a neighborhood can have. We

can also choose other non-parametric scan statistics such as the Higher Criticism (HC)

[25] statistics which can determine the similarity between two subsets. Along with these

parameters, the deep learning model itself can be treated as a parameter where one can

choose models such as Bidirectional Generative Adversarial Network [24] , Long Short

Term Memory [7] for time series data, etc. We do not employ any other model in this

thesis but the similar idea can be extended to other deep learning models and use FGSS

on top of it.

4.7 Computational Complexity

The most critical challenge in anomalous pattern detection is the infeasibility of eval-

uating all the possible subsets of the dataset. Even for a moderately sized dataset

consisting of N records and M attributes, there are a total number of 2N × 2M possible

subsets.

34

FGSS takes advantage of LTSS property to reduce the problem of evaluating all

subsets from O(2N × 2M) to O(N). To compute ranks for each record, we need to

sum over the psig of all the attributes in O(M) complexity for each record leading

to O(NM) for all records. After computing the ranks for all the records, sorting them

takes O(N logN). The worse case time complexity for evaluating top-k ranked subsets is

O(N). Similarly, for ranking each column, computing psig for all records takes O(MN)

and sorting them takes O(M logM). Hence, evaluating top-k ranked subsets of columns

takes the worst case time complexity of O(M). Each single optimization run comprises

of maximizing over both records and columns that takes time complexity of

O(NM) +O(N logN) +O(N) +O(MN) +O(M logM) +O(M) =

O(NM +N logN +M logM)
(4.17)

Considering γ is the average number of times the optimization ran before converging

for each β number of iterations, and u is number of unique alpha values ≤ αmax, the

total time complexity becomes

u× β × γ ×O(NM +N logN +M logM) = O(uβγ(NM +N logN +M logM)) (4.18)

On enforcing similarity constraints, FGSS runs within each neighborhood. The max-

imum number of neighborhoods possible is N with k being the maximum number of

records a neighborhood can be comprised of. In case of constrained FGSS, total time

complexity across all neighborhood becomes

O(uβγN(kM + klogk +M logM)) (4.19)

Note that the above time complexity is still less than O(2N×2M). Also, one can enforce

stricter constraints on the number of neighborhoods, minimum/maximum neighborhood

size (k) and number of unique alpha values (u) to improve the running time with a

reduced chance of finding the most optimal subset.

Chapter 5

Evaluations

In this section, we explain the performance of DeepFGSS on two datasets: network

intrusion and handwritten digits. We evaluate the performance in two ways. One, we

measure the efficiency of how well DeepFGSS can distinguish between datasets contain-

ing and not containing anomalies. We plot power curve and ROC curve for evaluating

this measure. The other performance metric determines how well DeepFGSS can detect

anomalies in the dataset. We plot jaccard curve and precision-recall curve for determin-

ing the detection accuracy. We compute these metrics for varying dataset sizes, namely

100, 250, 500, 750 and 1000 with varying proportion of anomalies, namely 0%, 3%, 6%,

9%, 12% and 15%.

5.1 Experiments

5.1.1 Power curve

Power of an algorithm is defined as the probability of rejecting the null hypothesis when

it is false. In our case, null hypothesis H0 represents no anomalies are present in the

dataset and alternative hypothesis H1 represents the dataset contains some anomalies.

Mathematically, power can be defined as follows:

power = p(reject H0 |H1 is true) (5.1)

Power of DeepFGSS depends on three primary factors: significance criterion, size of the

dataset and the proportion of anomalous records. We study the power of DeepFGSS

35

36

at a significance criterion, αp = 0.05, for dataset size N varying as 100, 250, 500, 750

and 1000 with proportion of anomalies prop increasing as 0%, 3%, 6%, 9%, 12% and

15%. To calculate the power at a given N and prop, we first randomly draw 100 datasets

Dnormal consisting of N number of records with no anomalies in it and 10 datasets Dtest

of N number of records with prop % anomalies in it and calculate the dataset score for

each of them. We define the dataset score as the score of the most anomalous subset

found in that dataset i.e.

τDi = τS∗⊆Di (5.2)

where S∗ is the most anomalous subset in ith drawn dataset Di. We then compute the

power of DeepFGSS for Dtest at a given dataset size N and proportion of anomalies

prop as follows:

Oibeats =

100∑
j=1

I(τDi
test

> τ
Dj

normal
)

Ebeats = 100× (1− αp)

power(Dtest) =

∑10
i=1 I(Oibeats > Ebeats)

10

Here, Obeats is the observed number of times the score of the anomalous dataset is

greater than scores of normal datasets drawn whereas Ebeats is the expected number

of times the score of the anomalous dataset must be greater than the scores of normal

datasets drawn.

Informally, power of the DeepFGSS tells what should be the minimum proportion of

anomalies in order for the algorithm to perform well for a given dataset size at a given

significance criterion. For example, a power of 0.7 means that 7/10 times DeepFGSS

is able to detect anomalous subsets (which makes the score of the dataset higher) in a

given sized dataset and given proportion of anomalies.

5.1.2 ROC curve

In this experiment, we treat the task of distinguishing normal and anomalous datasets

as a binary classification problem and plot Receiver Operating Characteristic (ROC)

37

curve. In our case,

True Positive Rate(TPR) = Proportion of anomalous datasets detected as anomalous

False Positive Rate(FPR) = Proportion of normal datasets detected as anomalous

The ROC curve signifies the the ability of DeepFGSS algorithm to differentiate between

anomalous and normal datasets as its discriminating dataset score’s threshold is varied.

Area under the ROC curve determines the probability of ranking anomalous datasets

higher than the normal datasets. In other words, we will obtain a higher area under the

curve when DeepFGSS assigns high scores to anomalous datasets compared to normal

datasets. Also, it is worth noting the fact that the power curve tells about the power of

DeepFGSS for a given dataset size and proportion of anomalies at a fixed significance

criterion αp. However, ROC curve tells about the efficiency of DeepFGSS for a given

dataset size and proportion of anomalies as we vary αp because αp is equivalent to the

false positive rate.

To plot ROC curve, we randomly draw 5 sample datasets from the normal datasets

under H0 and 5 sample datasets of size N containing prop % anomalies in it. We then

compute scores for all 10 datasets and compute TPR and FPR at varying threshold

values and then plot ROC curve and compute the area under that curve.

5.1.3 Jaccard curve

In order to evaluate how well DeepFGSS is identifying the anomalies as a subset, we

evaluated the accuracy within the detected subset using the Jaccard index. Jaccard

index (also called as the Jaccard similarity coefficient) is simply a ratio of the size of

the intersection to the size of the union. Jaccard index, in other words, is a measure of

the similarity between two sample sets.

We use Jaccard index to evaluate the similarity between how the predicted set of

anomalous records and the actual set of anomalous records as we increase the proportion

of anomalies in the dataset. To compute Jaccard index, we define two sets T a and T p

of size N as follows:

38

T ai =

1, if Rti is anomaly

0, otherwise

T pi =

1, if Rti ∈ S∗

0, otherwise

and, then compute Jaccard index as follows:

J =

∑N
i I(T ai = 1 and T pi = 1)∑N
i I(T ai = 1 or T pi = 1)

(5.3)

We compute J for a given dataset size N with prop increasing as 0%, 3%, 6%, 9%, 12%

and 15%. We generate 5 jaccard curve plots each for N = 100, 250, 500, 750 and 1000.

5.1.4 Precision-Recall curve

Another way to assess the quality of the subset detected by DeepFGSS is by evaluating

how well it ranks more anomalous subsets over less anomalous subsets. To evaluate

this, we obtain 5 most anomalous subsets and assign each record a score that is a

summation of two terms: the score of the subset that it belongs to (otherwise 0) and

its reconstruction error. Formally, we can write the score of the record Ri as:

L(Ri) = τS +
M∑
j=1

rij where Ri ∈ S (5.4)

The idea being all subsets are first ranked based on the subset scores τS and then all

records within the subset S are ranked based on their individual record’s reconstruction

ri. This scoring metric allows records to have higher score either because they are similar

to other anomalous records or are individually anomalous. Also, it helps in detecting

For Ri 6∈ {S1, S2, S3, S4, S5}, where Si is ith most anomalous subset, L(Ri) = 0. We

then compute precision and recall at various thresholds and plot the precision-recall

curve for N = 100, 250, 500, 750 and 1000, and prop = 0%, 3%, 6%, 9%, 12% and

15%. We then report the area under precision-recall curve. Higher area indicates that

DeepFGSS is able to rank more anomalous subsets higher than less anomalous subsets

within a dataset. Within the ranked subset, DeepFGSS is ranking more anomalous

records higher than the less anomalous records.

39

5.2 Datasets

5.2.1 Network Intrusion

We use KDD Dataset [17] which is a famous benchmark dataset in the field of Network

Intrusion Detection. This was developed as part of The Third International Knowl-

edge Discovery and Data Mining Tools Competition to build a system which can detect

bad connections (called as intrusions or attacks) in a simulated military network en-

vironment. KDD training dataset contains approximately 4,000,000 single connection

records. Each connection record consists of 41 features and a label. These 41 features

include basic characteristics of an individual TCP connection like protocol type, du-

ration, total bytes transferred etc; domain specific features like total number of failed

login attempts, total number of operations to create file etc or; traffic features computed

in a two second time window like count of the connections to the same host or same

service or to different hosts etc. There is a total of 7 discrete and 34 continuous features.

FGSS requires all the continuous features to be discretized into 5 levels losing crucial

characteristics of 34 out of 41 features. On the other hand, DeepFGSS directly works

on continuous and discrete variables. We have selected two of the common attacks for

our evaluation: Apache2 and Neptune.

We use autoencoder with 3 hidden layers. The first and third hidden layers contain

10 units and the second layer contains 5 units. We used ReLU activation function and

RMSProp optimizer to train the model at a learning rate of 0.001, batch size of 50 and

20000 epochs. We also used Euclidean distance to enforce similarity constraints with a

mean of the Euclidean distance between any two instances as the radius.

Figure 5.1 shows the power curves for different dataset sizes showing how the average

power of DeepFGSS changes with an increase in the proportion of anomalies. DeepFGSS

is able to distinguish datasets perfectly at 12% anomalies or greater for Apache2 and

6% or greater for Neptune. Also, the steady increase in power is also proportional to the

size of the dataset. It is clearer in the case of Apache2. When the proportion of anomaly

is 9%, power is 0.2 for dataset size of 100 records and 250 records, then power grows

to 0.25 for dataset size of 500 records, 0.3 for dataset size of 750 records and power

reaches 0.47 when the dataset contains 1000 records. For Neptune, at 6% there is a

slight increase in the power from 0.8 reaching 1.0 when the dataset contains at least 500

40

records. At lower proportions of anomalies, the tendency of DeepFGSS to differentiate

between anomalous and normal datasets is very low. This is because DeepFGSS is

focussed on detecting the subset with maximum score τS and this score can be higher

for a larger subset even though it contains only normal records with each individual

record adding to τS . However, for larger proportions of anomalies, the smaller subsets

formed by anomalous records are sufficiently large to be detected as the most anomalous

subset leading to a higher power value. Minor errors in the power values (for example at

smaller proportions of anomalies when N=100) can be due to the random sampling of

the datasets. We can conclude from figure 5.1 that it is easier to differentiate datasets

containing Neptune attacks than Apache2 attacks.

Figure 5.1: Power curves for KDD dataset for two types of anomalies: Apache2 and
Neptune

Figure 5.2.1 shows a heatmap of the area under the ROC curve for KDD dataset for

both the attack types. We observe similar trends through ROC curves that the ability of

DeepFGSS to rank anomalous datasets higher than normal datasets increases with the

increase in the proportion of anomalies. DeepFGSS can perfectly rank all the anomalous

datasets higher than all the normal datasets when the proportion of anomalies is greater

41

than 12% in the case of Apache2 and 6% in the case of Neptune. Also, it is interesting

to note that for a fixed proportion of anomalies, the area under ROC curve increases

gradually with the increase in the dataset size.

Figure 5.2: Area under ROC for Apache2 Figure 5.3: Area under ROC for Neptune

Figure 5.4 shows the jaccard curve for different dataset sizes for both anomaly types.

As the proportion of anomalies increases, the average Jaccard index also increases. We

observe that the Jaccard index reaches around 0.8 at 12% anomalies in the case of

Apache2 and at 6% in the case of Neptune. The maximum value of Jaccard index is

observed to be around 0.85 and 0.95 for Apache2 and Neptune respectively. From our

experiments, we identified that the reason for the steady increase in the Jaccard index

is the increase in precision without much drop in the recall.

Figure 5.5 and 5.6 shows the precision-recall plots for the dataset size of 1000 records

for both Apache2 and Neptune, respectively. We can observe that precision starts from

low value for both Apache2 and Neptune at some cases. This indicates that sometimes

the highest ranked subset might contain mostly normal records. However, it is being

ranked high because of its size being large making the cumulative score of the entire

subset high. After this initial low precision, we see a sudden jump in the precision value.

This provides some confidence that the subsequently ranked subsets are the anomalous

ones containing records most of which are anomalies. Precision-recall plots for all other

dataset sizes can be found in Appendix A and Appendix B.

Figure 5.2.1 shows a heatmap of the area under precision-recall curve for KDD

dataset for both anomaly types. It can be clearly observed that the area under precision-

recall curve increases as the proportion of anomalies also increases. This is more evident

42

Figure 5.4: Jaccard curves for KDD dataset for two types of anomalies: Apache2 and
Neptune

in the case of Apache2 attack type. DeepFGSS is able to rank the subsets and records

within the subset best when the proportion of anomalies is greater than 12% for Apache2

and 6% for Neptune. Also, since the area under precision-recall curve is not 1, it means

that some of the records in the detected subset are normal records but most of the

records are anomalous.

5.2.2 Handwritten Digits

The MNIST database is a famous benchmark dataset for testing machine learning per-

formance on images. It consists of 60,000 training and 100,000 test samples of hand-

written digits. Each record in the dataset is flattened out vector of pixel intensities of a

28 × 28 image. Each digit is labeled as one of the digits from 0-9 which tells the number

written in the image. For the anomaly detection dataset, we treat all the images of 0

digit as the training set under the H0 and all the images of digit 7 as anomalies. In

order to create test dataset, we inject some of the images from class 7 into the images

of class 0 and then run DeepFGSS on it.

43

Figure 5.5: Precision-Recall curves for KDD dataset with N=1000 and Apache2 anomaly

We learned the distribution of the data belonging to the class 0 using the autoencoder

with the same architecture as we used for KDD dataset and learning rate of 0.001. We

use sigmoid activation function for learning the distribution of pixels after scaling all

the pixel values to 0-1 scale. We used a smaller batch size of 5 and 1000 epochs. We

did not enforce similarity constraints for this dataset.

We can see similar trends of increase in the power with the increase in the propor-

tion of anomalies (refer figure 5.9). DeepFGSS is able to differentiate between normal

datasets and anomalous datasets perfectly when 9% of the dataset is comprised of

anomalies at a size of 100 records and for larger datasets at least 6% anomalies. Also,

when the proportion of anomalies is 3%, the power grows steadily from 0.3 at dataset

size of 100 records to 0.8 when the number of records reaches 1000. This can be ex-

plained by a simple intuition that 3% of 1000 is greater than 3% of 100 leading to

a greater possibility of finding a larger dense subset comprising of a relatively large

number of anomalies.

From figure 5.10, we can observe that DeepFGSS is able to rank all the anomalous

datasets higher than the dataset containing no anomalies perfectly when there is at

44

Figure 5.6: Precision-Recall curves for KDD dataset with N=1000 and Neptune anomaly

least 6% anomalies in it. For larger datasets, DeepFGSS can easily differentiate between

normal and anomalous datasets evident by higher AUC values. Also, at 3% anomalies,

we see an increase in AUC with the increase in the size of the dataset.

We can infer similar results from the jaccard curve plots for MNIST (refer figure

5.11). Also, the increase in the Jaccard index slightly becomes steady above 9% propor-

tion of anomalies in the dataset. It can be noted that the highest Jaccard index score

obtained among all dataset sizes is around 0.6 compared to a Jaccard index of 0.8 in

case of KDD dataset. This is because of not enforcing similarity constraints leading to

slightly lesser precision.

From the precision-recall plots for dataset size of 1000 records shown in figure 5.12,

we can infer similar trend as we have seen in the case of KDD dataset. Refer Appendix

C for precision-recall plots for other dataset sizes. Also, the heatmap shown in figure

5.13 shows a higher area under the precision-recall curve for all dataset sizes when the

proportion of anomalies is at least 9%. It can be noted that the area under precision-

recall curve here is slightly lesser compared to KDD dataset. This can be improved by

inducing similar constraints which can increase the precision of DeepFGSS by obtaining

45

Figure 5.7: Area under Precision-Recall
curve for Apache2

Figure 5.8: Area under Precision-Recall
curve for Neptune

subsets in a smaller neighborhood.

From all the experiments, we can infer that the performance of DeepFGSS increases

with an increase in both dataset size and proportion of anomaly. Also, DeepFGSS

is able to perform sufficiently well at 12% anomalies for Apache2 and 6% anomalies

for Neptune in KDD dataset and 9% for images of digit 7 in MNIST dataset. Note

that FGSS is not able to work with MNIST dataset as it is a high dimensional and

unstructured data whereas DeepFGSS is able to predict anomalies in such a dataset

with sufficient accuracy.

46

Figure 5.9: Power curves for MNIST dataset

47

Figure 5.10: Area under ROC curve for MNIST dataset with different dataset size and
proportion of anomalies

48

Figure 5.11: Jaccard curves for MNIST dataset

Figure 5.12: Precision-Recall curves for MNIST dataset for N=1000

49

Figure 5.13: Area under Precision-Recall curve for MNIST dataset with different dataset
size and proportion of anomalies

Chapter 6

Conclusion and Discussion

In this thesis, we focus on the anomalous pattern detection technique. We first explain

various point anomaly detection techniques along with its limitations. We then mention

some of the recent collective anomaly detection techniques based on clustering and deep

learning that overcome the limitations of point anomaly detection techniques. However,

they fail in detecting anomalous patterns in the data as they focus only on a group of

records that collectively form an anomaly. APD, AGD, and FGSS are the three major

anomalous pattern detection techniques that provide a subset of records and attributes

which together do not conform to the expected behavior. We then propose a deep

learning based framework, called DeepFGSS, which extends the capabilities of FGSS

to work with continuous, unstructured and high dimensional data along with more

advantages. We evaluated it on both structured and unstructured datasets. We show

that DeepFGSS is able to distinguish normal datasets from the anomalous datasets

at smaller proportions of anomalies using power curves and ROC curves. We then

demonstrated that DeepFGSS is able to detect anomalous patterns with high accuracy

using precision-recall curves and Jaccard curves.

Currently, we have only evaluated the accuracy on the detection of anomalous

records. New approaches/metrics need to formed for evaluating the predicted set of

columns. Also, we have used the Berk Jones scan statistic to score subsets. We can

use various other scan statistics such as the Higher Criticism [25] etc and see if they

enhance the detection capability of DeepFGSS. We have used Autoencoder to compute

reconstruction errors which are then converted into empirical p-value ranges. We can

50

51

use other deep learning networks such as Variational Autoencoders [40], Bi-directional

Generative Adversarial Networks [24] which learns the mapping of input data onto some

normal distribution. The values from the normal distribution corresponding to input

records can then be used to convert into empirical p-value ranges. Also, DeepFGSS is

currently being evaluated over datasets containing anomalies of a single type. Because it

has the capability of enforcing similarity constraints, it would be interesting to observe

its performance to detect subsets corresponding to single anomaly type when multiple

types of anomalies are present. Finally, we can also evaluate the efficacy of DeepFGSS

in a multiple model setting where M0 will learn the distribution of data under the null

hypothesis that no anomalies are present and multiple Mis each learning the distribu-

tion of ith anomaly type. The idea will be to detect anomalies which have not been

detected before by any of Mis.

References

[1] Mohiuddin Ahmed. “Collective anomaly detection techniques for network traffic

analysis”. In: Annals of Data Science (2018), pp. 1–16.

[2] Mohiuddin Ahmed and Abdun Naser Mahmood. “Network traffic pattern anal-

ysis using improved information theoretic co-clustering based collective anomaly

detection”. In: International conference on security and privacy in communication

networks. Springer. 2014, pp. 204–219.

[3] Mohiuddin Ahmed and Abdun Naser Mahmood. “Novel approach for network

traffic pattern analysis using clustering-based collective anomaly detection”. In:

Annals of Data Science 2.1 (2015), pp. 111–130.

[4] Dana H Ballard. “Modular Learning in Neural Networks.” In: AAAI. 1987, pp. 279–

284.

[5] Irad Ben-Gal. “Bayesian networks”. In: Encyclopedia of statistics in quality and

reliability 1 (2008).

[6] Robert H Berk and Douglas H Jones. “Goodness-of-fit test statistics that domi-

nate the Kolmogorov statistics”. In: Zeitschrift für Wahrscheinlichkeitstheorie und

verwandte Gebiete 47.1 (1979), pp. 47–59.

[7] Löıc Bontemps, James McDermott, Nhien-An Le-Khac, et al. “Collective anomaly

detection based on long short-term memory recurrent neural networks”. In: In-

ternational Conference on Future Data and Security Engineering. Springer. 2016,

pp. 141–152.

[8] Suratna Budalakoti et al. “Anomaly detection in large sets of high-dimensional

symbol sequences”. In: (2006).

52

53

[9] T Caudell and D Newman. “An adaptive resonance architecture to define normal-

ity and detect novelties in time series and databases”. In: IEEE World Congress

on Neural Networks, Portland, Oregon. 1993, pp. 166–176.

[10] Philip K Chan and Matthew V Mahoney. “Modeling multiple time series for

anomaly detection”. In: Fifth IEEE International Conference on Data Mining

(ICDM’05). IEEE. 2005, 8–pp.

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A

survey”. In: ACM computing surveys (CSUR) 41.3 (2009), p. 15.

[12] David Maxwell Chickering. “Learning Bayesian networks is NP-complete”. In:

Learning from data. Springer, 1996, pp. 121–130.

[13] David Maxwell Chickering, David Heckerman, and Christopher Meek. “Large-

sample learning of Bayesian networks is NP-hard”. In: Journal of Machine Learn-

ing Research 5.Oct (2004), pp. 1287–1330.

[14] Richard G Clegg. “A practical guide to measuring the Hurst parameter”. In: arXiv

preprint math/0610756 (2006).

[15] Barry R. Cobb, Rafael Rumı́, and Antonio Salmerón. “Bayesian Network Models

with Discrete and Continuous Variables”. In: 2007.

[16] HerskovitsE CooperG. “A Bayesian method for the induction of probabilistic net-

works from data”. In: Machine Learning 9.4 (1992), pp. 309–347.

[17] KDD Cup. Available on: http://kdd. ics. uci. edu/databases/kddcup99/kddcup99.

html. 2007.

[18] Rónán Daly, Qiang Shen, and Stuart Aitken. “Learning Bayesian networks: ap-

proaches and issues”. In: The knowledge engineering review 26.2 (2011), pp. 99–

157.

[19] Kaustav Das. Detecting patterns of anomalies. Tech. rep. CARNEGIE-MELLON

UNIV PITTSBURGH PA MACHINE LEARNING DEPT, 2009.

[20] Kaustav Das and Jeff Schneider. “Detecting anomalous records in categorical

datasets”. In: Proceedings of the 13th ACM SIGKDD international conference

on Knowledge discovery and data mining. ACM. 2007, pp. 220–229.

54

[21] Kaustav Das, Jeff Schneider, and Daniel B Neill. “Anomaly pattern detection in

categorical datasets”. In: Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining. ACM. 2008, pp. 169–176.

[22] Atabak Dehban et al. “Denoising auto-encoders for learning of objects and tools

affordances in continuous space”. In: 2016 IEEE International Conference on

Robotics and Automation (ICRA). IEEE. 2016, pp. 4866–4871.

[23] Marco Di Zio et al. “Bayesian networks for imputation”. In: Journal of the Royal

Statistical Society: Series A (Statistics in Society) 167.2 (2004), pp. 309–322.

[24] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. “Adversarial feature learn-

ing”. In: arXiv preprint arXiv:1605.09782 (2016).

[25] David Donoho, Jiashun Jin, et al. “Higher criticism for detecting sparse heteroge-

neous mixtures”. In: The Annals of Statistics 32.3 (2004), pp. 962–994.

[26] Frederick Eberhardt, Clark Glymour, and Richard Scheines. “On the number of

experiments sufficient and in the worst case necessary to identify all causal rela-

tions among n variables”. In: arXiv preprint arXiv:1207.1389 (2012).

[27] Levent Ertöz, Michael Steinbach, and Vipin Kumar. “Finding topics in collections

of documents: A shared nearest neighbor approach”. In: Clustering and Informa-

tion Retrieval. Springer, 2004, pp. 83–103.

[28] Martin Ester et al. “A density-based algorithm for discovering clusters in large

spatial databases with noise.” In: Kdd. Vol. 96. 34. 1996, pp. 226–231.

[29] Nir Friedman, Iftach Nachman, and Dana Peér. “Learning bayesian network struc-

ture from massive datasets: the sparse candidate algorithm”. In: Proceedings of the

Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann

Publishers Inc. 1999, pp. 206–215.

[30] Nir Friedman, Moises Goldszmidt, et al. “Discretizing continuous attributes while

learning Bayesian networks”. In: ICML. 1996, pp. 157–165.

[31] Jonas Gehring et al. “Extracting deep bottleneck features using stacked auto-

encoders”. In: 2013 IEEE international conference on acoustics, speech and signal

processing. IEEE. 2013, pp. 3377–3381.

55

[32] Markus Goldstein and Andreas Dengel. “Histogram-based outlier score (hbos): A

fast unsupervised anomaly detection algorithm”. In: (2012).

[33] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural infor-

mation processing systems. 2014, pp. 2672–2680.

[34] Yuhong Guo and Dale Schuurmans. “Convex structure learning for Bayesian net-

works: Polynomial feature selection and approximate ordering”. In: arXiv preprint

arXiv:1206.6832 (2012).

[35] Zengyou He, Xiaofei Xu, and Shengchun Deng. “Discovering cluster-based local

outliers”. In: Pattern Recognition Letters 24.9-10 (2003), pp. 1641–1650.

[36] Yu-Chi Ho, R S Sreenivas, and P Vakili. “Ordinal optimization of DEDS”. In:

Discrete event dynamic systems 2.1 (1992), pp. 61–88.

[37] Reimar Hofmann and Volker Tresp. “Discovering structure in continuous variables

using Bayesian networks”. In: Advances in neural information processing systems.

1996, pp. 500–506.

[38] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward

networks are universal approximators”. In: Neural networks 2.5 (1989), pp. 359–

366.

[39] Yoshua Bengio Ian Goodfellow and Aaron Courville. Deep Learning. http://

www.deeplearningbook.org. MIT Press, 2016.

[40] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In:

arXiv preprint arXiv:1312.6114 (2013).

[41] Daphne Koller, Nir Friedman, and Francis Bach. Probabilistic graphical models:

principles and techniques. MIT press, 2009.

[42] Wai Lam and Fahiem Bacchus. “Using causal information and local measures to

learn Bayesian networks”. In: Proceedings of the Ninth international conference

on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc. 1993,

pp. 243–250.

[43] Jau-Huei Lin and Peter J Haug. “Exploiting missing clinical data in Bayesian

network modeling for predicting medical problems”. In: Journal of biomedical

informatics 41.1 (2008), pp. 1–14.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

56

[44] Dimitris Margaritis. Learning Bayesian network model structure from data. Tech.

rep. Carnegie-Mellon Univ Pittsburgh Pa School of Computer Science, 2003.

[45] Edward McFowland, Skyler Speakman, and Daniel B Neill. “Fast generalized sub-

set scan for anomalous pattern detection”. In: The Journal of Machine Learning

Research 14.1 (2013), pp. 1533–1561.

[46] Yisroel Mirsky et al. “Kitsune: an ensemble of autoencoders for online network

intrusion detection”. In: arXiv preprint arXiv:1802.09089 (2018).

[47] Stefano Monti and Gregory F Cooper. “A multivariate discretization method for

learning Bayesian networks from mixed data”. In: Proceedings of the Fourteenth

conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers

Inc. 1998, pp. 404–413.

[48] Daniel B Neill. “Fast and flexible outbreak detection by linear-time subset scan-

ning”. In: Advances in Disease Surveillance 5 (2008), p. 48.

[49] Dan Pelleg, Andrew W Moore, et al. “X-means: extending k-means with efficient

estimation of the number of clusters.” In: Icml. Vol. 1. 2000, pp. 727–734.

[50] Maleeha Qazi et al. “Automated Heart Wall Motion Abnormality Detection from

Ultrasound Images Using Bayesian Networks.” In: IJCAI. Vol. 7. 2007, pp. 519–

525.

[51] Quratulain N Rajput and Sajjad Haider. “Use of Bayesian network in information

extraction from unstructured data sources”. In: International Journal of Informa-

tion Technology 5.4 (2009), pp. 207–213.

[52] Carsten Riggelsen and Ad Feelders. “Learning Bayesian Network Models from

Incomplete Data using Importance Sampling.” In: AISTATS. Citeseer. 2005.

[53] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Tech. rep. California Univ San Diego La Jolla

Inst for Cognitive Science, 1985.

[54] Manon J Sanscartier and Eric Neufeld. “Identifying Hidden Variables from Context-

Specific Independencies.” In: FLAIRS Conference. 2007, pp. 472–478.

57

[55] Adamo L de Santana et al. “Strategies for improving the modeling and inter-

pretability of Bayesian networks”. In: Data & Knowledge Engineering 63.1 (2007),

pp. 91–107.

[56] Mauro Scanagatta et al. “Learning Bayesian networks with thousands of vari-

ables”. In: Advances in neural information processing systems. 2015, pp. 1864–

1872.

[57] Jürgen Schmidhuber. “Deep learning in neural networks: An overview”. In: Neural

networks 61 (2015), pp. 85–117.

[58] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang. “Waveclus-

ter: A multi-resolution clustering approach for very large spatial databases”. In:

VLDB. Vol. 98. 1998, pp. 428–439.

[59] Alban Siffer et al. “Anomaly detection in streams with extreme value theory”. In:

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. ACM. 2017, pp. 1067–1075.

[60] Rajiv Subrahmanyam and Hector Aguilar-Macias. Extracting information from

unstructured data and mapping the information to a structured schema using the

näıve bayesian probability model. US Patent 8,577,829. Nov. 2013.

[61] Huanliang Sun et al. “CD-trees: An efficient index structure for outlier detection”.

In: International Conference on Web-Age Information Management. Springer.

2004, pp. 600–609.

[62] Cheng Tan et al. “Netbouncer: active device and link failure localization in data

center networks”. In: Proceedings of the 16th USENIX Conference on Networked

Systems Design and Implementation. USENIX Association. 2019, pp. 599–613.

[63] Ioannis Tsamardinos et al. “Scaling-up bayesian network learning to thousands of

variables using local learning techniques”. In: Vanderbilt University DSL TR-03-

02 (2003).

[64] Laura Uusitalo. “Advantages and challenges of Bayesian networks in environmen-

tal modelling”. In: Ecological modelling 203.3-4 (2007), pp. 312–318.

[65] Juha Vesanto, Esa Alhoniemi, et al. “Clustering of the self-organizing map”. In:

IEEE Transactions on neural networks 11.3 (2000), pp. 586–600.

58

[66] Qiong Wang et al. “Naive Bayesian classifier for rapid assignment of rRNA se-

quences into the new bacterial taxonomy”. In: Appl. Environ. Microbiol. 73.16

(2007), pp. 5261–5267.

Appendix A

Precision-Recall Plots for KDD

Dataset: Apache2

Figure A.1: Precision-Recall curves for KDD dataset with N=100 and Apache2 anomaly

59

60

Figure A.2: Precision-Recall curves for KDD dataset with N=250 and Apache2 anomaly

Figure A.3: Precision-Recall curves for KDD dataset with N=500 and Apache2 anomaly

61

Figure A.4: Precision-Recall curves for KDD dataset with N=750 and Apache2 anomaly

Appendix B

Precision-Recall Plots for KDD

Dataset: Neptune

Figure B.1: Precision-Recall curves for KDD dataset with N=100 and Neptune anomaly

62

63

Figure B.2: Precision-Recall curves for KDD dataset with N=250 and Neptune anomaly

Figure B.3: Precision-Recall curves for KDD dataset with N=500 and Neptune anomaly

64

Figure B.4: Precision-Recall curves for KDD dataset with N=750 and Neptune anomaly

Appendix C

Precision-Recall Plots for MNIST

Dataset

Figure C.1: Precision-Recall curves for MNIST dataset for N=100

65

66

Figure C.2: Precision-Recall curves for MNIST dataset for N=250

Figure C.3: Precision-Recall curves for MNIST dataset for N=500

67

Figure C.4: Precision-Recall curves for MNIST dataset for N=750

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Point Anomaly Detection
	Limitations

	Collective Anomaly Detection
	Background
	Detection of Anomalous Patterns
	Problem Statement
	Anomaly Pattern Detection (APD)
	Anomalous Group Detection (AGD)
	FGSS using Bayesian Network

	Motivation
	Preliminary Theory
	Bayesian Network
	Autoencoder

	Addressing limitations

	Proposed Solution
	Property of reconstruction error
	p-value ranges
	Testing Hypothesis
	Metric to determine atypicality of subets
	Efficient Search Technique
	DeepFGSS Algorithm
	Computational Complexity

	Evaluations
	Experiments
	Power curve
	ROC curve
	Jaccard curve
	Precision-Recall curve

	Datasets
	Network Intrusion
	Handwritten Digits

	Conclusion and Discussion
	References
	 Appendix A. Precision-Recall Plots for KDD Dataset: Apache2
	 Appendix B. Precision-Recall Plots for KDD Dataset: Neptune
	 Appendix C. Precision-Recall Plots for MNIST Dataset

