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ABSTRACT 

 

Advanced manufacturing techniques, such as plasma cutting and water jet cutting, have 

not been fully capitalized on by the steel construction industry.  These precise cutting 

techniques have the potential to transform how steel structures are designed and 

constructed.  An innovative interlocking (herein referred to as “intermeshed”) steel 

connection system that relies on neither bolting nor welding has been proposed.  The 

intermeshed connection was designed to resist loads typical in steel moment frames, and 

four full-scale beam specimens utilizing this connection as a splice were fabricated using 

precise, fully automated cutting techniques.  An experimental testing program was 

conducted with these specimens to study the behavior of intermeshed connections under 

gravity loads.  The experimental investigation demonstrated how different components of 

an intermeshed connection may interact to create a strong yet robust connection that 

exhibits stable and ductile response to vertical loading.  The results of this study highlight 

how the steel construction industry can harness the advantages of advanced 

manufacturing techniques for intermeshed connections. 
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CHAPTER ONE 

Introduction 

 

1.1 Research Significance 

In modern times, steel connections have almost exclusively been made with bolts and 

welds.  There has not been significant research to develop alternative connection methods 

since bolting replaced riveting as the method of choice for connecting steel members.  

Both bolted and welded connections are labor intensive and represent a significant 

portion of the total cost of a steel structure.  In fact, material cost is typically only a 

fraction of the total construction cost when accounting for labor and fabrication (AISC, 

2019). 

Bolted and welded steel members are not often reused due to the difficulty of 

deconstruction, even though steel is a highly recyclable material.  Moreover, despite the 

introduction of new manufacturing equipment, few advances have been made in the 

development of alternative connections.  Alternative connections executed using 

advanced manufacturing methods may reduce the amount of labor needed to fabricate 

and erect a steel structure, and they may also allow for deconstruction and reuse.   

High definition plasma, laser, and water jet cutting, when combined with fully 

automated computer-controlled techniques, offer fast fabrication with high precision.  

This equipment is currently used to accelerate some conventional fabrication activities, 

such as the cutting of holes in lieu of drilling.  However, the steel construction industry 

has not fully capitalized on the potential of advanced manufacturing equipment.  The 

introduction of these cutting procedures may allow for an entirely new class of steel 

connections to be developed that improve both the efficiency of construction and the 

reuse of material.  An intermeshed connection system that relies on neither bolting nor 

welding has been proposed to transform how structural steel is fabricated, assembled, 

deconstructed, and reused (Schultz et al., 2019). 
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1.2 Research Objective  

The objective of this research is to develop an intermeshed steel connection that improves 

the efficiency of construction and reuse of material using advanced manufacturing 

techniques.  The intermeshed connection consists of interlocking pieces that act together 

without relying entirely on bolts or welds to transfer forces.  The primary objective of the 

connection is to resist gravity loads, although it may be able to transfer modest lateral 

loads, such as from wind.  However, it is presumed that an external lateral load resisting 

system (i.e. separate braced frames or shear walls) will be designed to carry all lateral 

loads from cases such as wind events and seismic activity. 

To gain acceptance from design professionals, an intermeshed connection design 

procedure that is accurate and can easily be replicated must be formulated.  The 

procedure must allow designers to efficiently select the geometry of a connection that 

satisfies strength requirements.  The validity of the proposed design procedure must be 

verified with experimental testing in order to be adopted by design and construction 

codes.   

1.3 Scope of Work 

The intermeshed steel connection project is a collaborative effort between University 

College Dublin (UCD), Queens University Belfast (QUB), New York University (NYU), 

and the University of Minnesota Twin Cities.  UCD proposed the initial idea for the 

intermeshed connection, and in conjunction with QUB have assisted with computational 

analysis and small-scale testing of interlocking (herein referred to as “intermeshed”) steel 

connections.  Finite element analysis was also performed at the University of Minnesota.  

This thesis focuses on the full-scale experimental testing conducted at the University of 

Minnesota.  

A procedure to design the intermeshed connection was developed to create a 

realistic and practical connection.  The procedure was based upon the 15th edition of the 

AISC Steel Construction Manual, the 2016 Seismic Provisions for Structural Steel 

Buildings, principles of statics, and properties of structural steel, as well as detailed 
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suggestions from the UCD research partners.  The connection was designed to resist 

forces that may exist in a typical moment-resisting frame structure, and the ductility and 

strength of the connection were considered in the design procedure. 

The experimental work involved four major-axis beam tests with the intermeshed 

connection located along the beam span and serving as splices.  Two pure bending 

moment tests were conducted, as well as two tests with single point loads.  In one of the 

pure bending tests, the connection was placed in the pure moment region, whereas in the 

other three tests, the connection was subjected to a combination of bending moment and 

shear forces.  The specimens were instrumented extensively for comparison between 

experimental results and the expectations from the design procedure and computational 

models. 
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CHAPTER TWO 

Background 

 

2.1  Alternative Connections 

In the past three decades, alternatives to traditional steel connections have been 

developed by several groups.  These connections are sometimes proprietary, for which 

cases their use requires financial compensation to the developers.  In this chapter, some 

of the alternative connections are described and reviewed.  Comparisons to the proposed 

intermeshed steel connection are made.  

2.1.1  Pin Fuse Connection 

 

The pin-fuse connection, developed by Skidmore, Owings & Merrill, is an alternative 

connection that connects a beam to a column stub.  The connection relies on slip critical 

bolts and a steel pin that resist axial and shear loads.  The pin is the center of the 

rotational hinge formed, and the fuse in the system is created through frictional resistance 

of the bolts within the slotted holes (Cordova & Hamburger, 2011).  The system is shown 

in Figure 2.1. 

  

 

Figure 2.1: Pin-fuse connection (Gerfen, 2009) 
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The pin-fuse joint is designed so that the frictional resistance of the fuse may 

dissipate energy in large seismic events.  In traditional moment frames, this could form 

plastic hinges that would affect the structural integrity of the frame.  Since the pin-fuse 

connection is designed to act elastically in this scenario, it could be reused and repaired 

by loosening and retightening bolts back into their original positions.  The ability to reuse 

material and avoid costly damages to the main load resisting system of beams and 

columns is congruent with the goals of the proposed intermeshed connection.  However, 

the pin-fuse joint heavily relies on field bolting and is not universally accepted or listed 

as a prequalified connection in ANSI/AISC 358-16 (AISC, 2016).  

2.1.2  ATLSS Connections 

 

Research performed at Lehigh University was conducted to investigate alternative beam 

to column connections referred to as ATLSS connections (Advanced Technology for 

Large Structural Systems).  A number of connections developed at Lehigh’s ATLSS 

Center are classified as ATLSS connections.  Pure shear, partial-moment, and full 

moment connections were proposed as part of the ATLSS connection research program.  

Most of the ATLSS connections involved dropping a beam with a male piece (tenon) into 

a column with a female piece (mortise), utilizing gravity loads to keep the connection in 

place (Perreira, Fleischman, Viscomi, & Lu, 1993).  In Figure 2.2, the mortise, which is 

welded to the column, is shown next to the tenon, which is bolted to the beam.  The 

ATLSS concepts were found to be most effective for shear transfer since moment 

connections required additional flanges that negatively affected the efficiency of 

assembly (Viana, Tommelein, & Formoso, 2017).   
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Figure 2.2: ATLSS Connection 

 

The ATLSS connection is like the intermeshed connection since it aimed to 

improve how structures are assembled on site.  However, the ATLSS connection has 

never been implemented commercially.  The mortise and tenon pieces require casting by 

an entity other than the steel fabricator, and this feature complicates the path to market.  

The research into the ATLSS connection was conducted over twenty years ago, and the 

advanced manufacturing techniques available today were not all widely offered then.  

Unlike the ATLSS connection, the intermeshed connection research has been conducted 

with the intention of commercialization by utilizing advanced manufacturing equipment 

that is available to, and often used by, many steel fabricators.  The newer manufacturing 

techniques may lead to a more marketable and universal connection system than what the 

ATLSS research produced. 

2.1.3  ConX System 

The ConX connection system was developed in the early 2000’s by a private company, 

ConXtech, and it is commercially available.  This connection consists of beams with 
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moment connections on as many as four sides of an HSS column.  The technology is 

marketed as being ideal for buildings of up to twelve stories in height (“ConX Systems,” 

n.d.).  

The connection itself requires no field welding, and bolting is not required until 

the assembly is already in place.  A “collar corner” assembly is welded in shop to the 

HSS columns, and a “collar flange” is welded in shop to the beam flanges.  Once the HSS 

columns in the structure are erected, they are filled in with concrete for stability.  The 

beams are lowered into place to create a stable assembly.  Then, high strength 

pretensioned bolts are used to interconnect the collar flanges and develop the full moment 

capacity of the system (Cordova & Hamburger, 2011).  The ConX connection system is 

shown below in Figure 2.3 (AISC, 2016). 

 

 
Figure 2.3: ConXtech connection 



8 

 

2.1.4  Comparison 

A recent study researched the cost and construction productivity between alternative 

methods and conventional methods for steel connections.  Both ATLSS and ConX 

connections were included in the study and referred to as steel quick connection systems 

(SQCS) (Shan, Kim, Goodrum, Caldas, & Haas, 2014).  Alternative connections that 

have already been developed can be used to estimate how the proposed intermeshed steel 

connection may fare in the realm of cost and productivity. 

Relative to traditional connection systems, the SQCS buildings were estimated to 

have a time savings of 51% during the construction process.  The reduction in the number 

of hours of construction work required to complete a project would lead to a significant 

reduction in labor costs.  However, the total cost of construction projects was found to be 

only negligibly lower for SQCS buildings in comparison to conventionally constructed 

buildings (Viana, Tommelein, & Formoso, 2017).  The close comparison arises because 

the cost savings from the fewer labor hours were offset by the increased cost of steel 

fabrication.  So, for the alternative connection methods already developed, there may not 

be significant cost savings at the end of the project.  However, when schedule is a priority 

over cost, SQCS buildings could be a significantly better option than a building with 

traditional steel connections. 

There are similarities between the intermeshed steel connection and the other 

alternatives researched, but there are also some stark differences.  None of the alternative 

connections that have been developed have achieved universal acceptance by the steel 

construction industry, but the proposed intermeshed connection aspires to achieve this.  

The intermeshed connection also stands out because it relies on the advanced techniques 

such as water jet and plasma cutting during fabrication.  Fabrication costs associated with 

the intermeshed steel connection will likely be different and potentially much lower than 

that of other SQCS systems.   

An important similarity the proposed connection could share with other 

alternatives is that it may have time and labor cost savings similar to the SQCS buildings 

studied.  Because of this, the studies on previous alternatives justify the development of 
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the intermeshed connection for increased construction efficiency.  If codified and widely 

accepted by the steel construction industry, the intermeshed steel connection could reach 

commercial success unprecedented by the other alternative steel connections. 

2.2  Intermeshed Steel Connection Conceptualization 

Like other alternative connections investigated, the proposed intermeshed steel 

connection may be used to connect beams to the columns that support them in steel frame 

structures.  Frames with uniform floor loads experience the highest negative moment at 

the face of each support and the highest positive moment at the center span.  The moment 

in the beam is zero where negative moment changes to positive moment.  This inflection 

point is located at roughly 20% of the span of the beam away from the support.  Since the 

internal forces in the beam greatly vary along the span, the location of the connection will 

influence what loads it must be designed to withstand.  

Due to interruption in load and stress path, it is unlikely that a connection 

consisting of intermeshed components will have the full capacity of the connected steel 

sections in axial, shear, and flexure (Schultz et al., 2019).  Because of this, the 

intermeshed steel connection is anticipated to be most efficient when located near the 

inflection point away from the support.  This can be achieved by executing the 

connections on-site to beam stubs that are shop welded to the columns prior to erection 

(Figure 2.4). 
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Figure 2.4: Conceptualization of connection locations 

 

Locating the connection away from the supports leads to a reduction in both shear 

and moment demand from gravity loads, but these forces may still be significant.  Shear 

forces are resisted in the beam web, so a connecting element in the web must be 

considered.  Moment is transferred in the top and bottom flanges.  Moment can be 

idealized as a force couple comprising of tension and compression resultants located at 

opposite (i.e. top and bottom) flanges.  In an intermeshed connection, the compressive 

forces can be resisted through direct bearing contact, but the stress concentrations created 

by the tensile forces must be carefully considered when designing a functional connection 

system.   

Since lateral loads are assumed to be resisted by structural core walls or braced 

frames, it is not necessary to use lateral loading as a controlling factor for connection 

design.  However, small lateral loads could still be attracted by the intermeshed 

connections, and these would be resisted by connecting elements in the flanges of the 

beam.  More importantly, gravity frames made using intermeshed connections must be 

able to resist the effects of lateral drifts imposed by the lateral load resisting system with 

no loss of vertical load capacity. 
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A “dovetail” type of flange connection with a stair stepped web was initially 

theorized.  With this configuration, referred to as a front intermeshed connection, the 

beam could simply be lowered into place.  This method assumed no reversal in direction 

of shear forces.  Another type of connection, referred to as a side intermeshed connection, 

was envisioned with notches cut into the sides of the beam flanges that are then 

connected to each other via steel angles with rectangular holes.  Both concepts are 

discussed in further detail in sections 2.4 and 2.5, and ultimately the side intermeshed 

connection was selected for the experimental testing program.  Both configurations can 

be fabricated with advanced manufacturing techniques. 

2.3  Advanced Manufacturing Techniques 

The manufacturing techniques used in this research were plasma cutting and water jet 

cutting.  Both techniques are appropriate for cuts that require high precision.  The 

connections in this experiment relied on these for fabrication. 

2.3.1 Plasma Cutting 

Plasma cutting was first developed in the 1950’s and introduced to the steel construction 

industry in the decades following.  It can be automated to cut all electrically conductive 

materials (“Facts About Plasma,” 2011).  High definition plasma cutting is a thermal 

process achieved through a concentrated high-speed plasma stream.  A concentrated 

electric plasma arc with a large kinetic energy is formed between a tungsten electrode and 

the material that is being cut (Krajcarz, 2014).  The plasma stream is extremely hot at up 

to 30,000 K, and it cuts through the material by melting it (“Facts About Plasma,” 2011).  

The plasma cutter may be attached to a robotic arm with multiple degrees of freedom, 

giving it unlimited possibilities regarding the position and configuration of the cut 

surfaces.  

2.3.2 Water Jet Cutting 

 

First developed in 1968 and further advanced in the decades following, water jet cutting 

can be used to cut various materials, including structural steel.  High pressure water jets 
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with abrasive additives are used to cut the material by eroding away at the surface 

(Krajcarz, 2014).  This form of cutting may be a desirable alternative to plasma cutting 

due to its environmental friendliness and lack of thermal effects on the cut material 

(Dahil, Dahil, & Karabulut, 2014).  Water jet cutting is also more precise than plasma 

cutting.  As an emerging technology with certain advantages over other cutting methods, 

its use may become more widespread in the future.  

2.4  Front Intermeshed Connection 

The first connection that was investigated was the front intermeshed connection.  The top 

and bottom flanges of connecting elements have teeth and notches cut into them that 

connect to each other like a dovetail joint.  Bearing and friction in the teeth transfer 

compressive and tensile forces in the flanges.  The stair stepped configuration of the 

beam web transfers the shear force through bearing.  The connection geometry used for 

the investigation was developed based upon the expected load path.  A basic mechanical 

model was used to aid with this (Shemshadian et al., 2019).  An image of the front 

intermeshed connection is pictured below in Figure 2.5.  

 

 

Figure 2.5: 3D printed model of the front intermeshed connection 
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To investigate the behavior of the front intermeshed connection, finite element 

analysis was performed in Abaqus under various loading conditions (Shemshadian et al., 

2019).  Initial analysis was performed to investigate failure modes and capacity of the 

connection, and further studies examined how different ratios of loads in compression, 

tension, shear, and flexure affected the capacity.  One side of the connecting elements 

was modeled with a fixed boundary condition to simulate the column stub. 

There was no reduction in beam capacity when shear and compressive forces 

were applied to the connection.  However, there was a significant reduction in total 

strength due to tensile loads.  In tension, the finite element model produced a failure that 

did not rupture the teeth.  Instead, plastic deformations enabled the teeth to slip out from 

one another.  This failure mode was consistent with small scale tests performed at QUB 

(Matis et al., 2019).  The failure was similar for the pure tension case as well as for the 

flexural case.  Once the teeth slipped out in tension there was no longer any flexural 

capacity. 

When shear loads were combined with flexural loading, multiple failure modes 

were observed.  Shear forces initially kept the flanges aligned and increased the strength 

of the connection.  However, when shear forces were increased, a failure mode in which 

the flanges slipped apart transversely was observed.  Therefore, the relative dominance of 

the shear forces over the flexural forces affected whether the combined loading scenario 

benefitted or impaired this type of connection (Shemshadian et al., 2019).  Because of 

this behavior, it was deemed important to include combined shear and flexural loading 

for the experimental portion of the research. 
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a) Flexure                 b) Flexure and low shear       c) Flexure and high shear 

Figure 2.6: Finite element results 

 

Although successful under certain loading combinations in the finite element 

analysis, the practicality of the front intermeshed connection was also questioned.  

Relative to traditional steel sections, the teeth have a complex geometry.  The connection 

lacks adjustability, which could lead to issues with the field assembly of the connections 

with tight manufacturing tolerances.  Ultimately, an alternative connection with similar 

features was selected for the experimental testing.  However, the performance 

characteristics of the front intermeshed connection were carefully considered and used as 

guidance for designing the alternative. 

 

2.5 Side Intermeshed Connection 

The alternative connection chosen for experimental testing is referred to as the side 

intermeshed connection.  Intermeshed external connectors located at the sides of the 

beam flanges transfer tensile and compressive flange forces.  The initial concept for the 

side intermeshed connection required no bolting and had a stair stepped web joint like the 

front intermeshed connection, and it is shown in Figure 2.7.  However, the stair stepped 

joint was ultimately replaced with a shear plate that requires minor bolting.  This change 

was deemed necessary to achieve greater acceptance in the construction industry. 
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Figure 2.7: Initial side intermeshed connection concept 

 

The side and front intermeshed connections are similar in that they rely on teeth 

cut into the flanges and rectangular holes to transfer tensile and compressive forces.  

However, the shape of the teeth and holes in the side intermeshed connection are 

rectangular instead of a dovetail shape.  Also, the teeth that transfer tension and 

compression forces are located on the sides of the beam flanges rather than at the 

connection.  The teeth are designed to resist minimal lateral loading only.  The 

connecting elements are either plates or angles with rectangular holes located at each side 

of the top and bottom beam flanges, and the holes correspond to the location of the flange 

teeth.  A pair of shear plates are bolted to the beam webs to transfer shear forces.  The 

modified configuration that was selected for the side intermeshed connection is shown in 

Figure 2.8. 
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a) Assembled view                                                b) Exploded view 

Figure 2.8: Modified side intermeshed connection 

 

The side intermeshed connection was developed primarily to have a greater ease 

of fabrication and assembly than the front intermeshed connection.  Larger tolerances are 

included in this configuration that correspond to allowable manufacturing tolerances 

specified by AISC.  Tolerances at the holes increase the adjustability of the connection, 

allow connecting elements to be placed safely and easily, and accommodate 

imperfections in the connected members.   

Another advantage of the side intermeshed connection could be the ease of the 

replacement of angles after an overloading event.  If such an event were to occur, the 

angles acting as connecting elements should be the weakest component of the frame so 

that they experience failure first.  This means the teeth should be designed more 

conservatively than the angles.  This can be accomplished by designing the angles for the 

applied loads and by designing the teeth for forces that correspond to the capacity of the 

angles.  This notion, referred to as capacity design, helps meet the goals of the 

intermeshed steel connection project for greater reuse of materials. 

A concern with the side intermeshed connection is that the angles could 

potentially have high stress concentrations at the corners of the rectangular holes.  Sharp 
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corners can experience a stress concentration factor of up to five (Sikora, 1973).  Such 

large stress concentrations at the hole corners could result in a premature failure of the 

angle connector.  To alleviate this issue, circular holes were added to the corners of the 

rectangular holes in the angles to create stress-reducing radii, and their effectiveness was 

verified with finite element analysis.  The analysis found that the stress concentration was 

reduced to 1.7 at the corners, thus proving the usefulness of the corner holes 

(Shemshadian et al., 2019).  Figure 2.9 shows the hole with the inclusion of circles at the 

corners, and the stress concentrations from the finite element analysis are also shown. 

 

 

Figure 2.9: Circular hole corners 

 

The qualitative configuration of the side intermeshed connection was decided 

upon for practicality purposes without consideration of the dimensions of the various 

connection elements.  Although the depth of teeth and holes in the angles correspond to 

flange thickness, many other parameters must be determined based upon rational 

calculations, fundamental mechanics and engineering judgment and design criteria.  The 

tooth length, number of teeth, and tolerances must be selected for the connecting angle 

elements to meet the expected connection performance.  In addition to this, the plate at 

the web must also be designed to conservatively resist shear forces.  A detailed design 

procedure for the side intermeshed connection was developed to select the connection 

geometries tested. 
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CHAPTER THREE 

Connection Design 

 

3.1 General 

 

The procedure used to design the side intermeshed connection requires the design of the 

angles and web shear plates separately.  In this procedure, it is assumed that the angles 

will take all the load due to moment, and the plates will take all the load due to shear.  

Several iterations may be necessary to develop an arrangement that is appropriate for a 

given combination of shear and moment.  A spreadsheet or other computational tool may 

be used to iterate by updating the properties of the connection until an adequate design is 

reached. 

As in a traditional steel structure, the connection would be designed after the 

beam section sizes have been selected to resist a given combination of gravity loads.  

Thus, some properties, such as the thickness of beam flanges and teeth, should not be 

adjusted when designing the connection.  Other geometric parameters, such as the length 

of a single tooth, the number of teeth, and the size of the angles are dependent upon one 

another and must be chosen during the design of the connection.  Once all geometries and 

material properties are stated, the capacity of the connection may be checked against the 

demand.  The size of the connection components may then be increased or decreased to 

produce an adequate and optimally efficient configuration. 

The method used to design the side intermeshed connection is extensively based 

upon the 15th edition of the AISC Steel Construction Manual.  To ensure the practicality 

and sufficiency of the design procedure, the properties of structural steel, principles of 

statics, and the 2016 Seismic Provisions for Structural Steel Buildings were also 

referenced.  Since this project is a collaborative effort with researchers in Europe, the 

Eurocode 3 (1992) requirements for steel connections were also carefully studied.  

However, ultimately no adaptations to the design procedure were adopted from the 

Eurocode. 
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3.2 Angle Connection 

The angles and flange teeth are the defining characteristics of the side intermeshed 

connection.  It requires a total of four angles: two for the top flange and two for the 

bottom flange.  For simplicity and symmetry, all four angles and the corresponding 

flange teeth are identical.  Since the side intermeshed connection can resist compressive 

forces through bearing contact of the beam sections, once such contact is established, 

tensile forces are assumed to be the controlling factor for the design of flange teeth and 

angles.  The following section describes the process used to design the angles and flange 

teeth for tensile loads due to flexure. 

3.2.1 Assumptions 

 

The design of the angle connection follows the Load and Resistance Factor Design 

(LRFD) methods.  The following assumptions are made. 

 

• LRFD resistance factor, bending and yielding,  = 0.9 

• LRFD resistance factor, rupture,  = 0.75 

• Shear lag factor, U = 0.80.   

• Yield strength factor, 𝑅𝑦 = 1.5 or 1.1 (Grades 36 and 50, respectively) 

 

The resistance factors selected are identical to those found in Chapter D of the 

AISC Specification.  The shear lag factor, U, may be found in the same section.  AISC 

Table D3.1 states that single angles “with four or more fasteners per line in the direction 

of loading” will have a shear lag factor of 0.80 (AISC, 2017).  Side intermeshed 

connections have at least four teeth connecting to each angle in a typical loading 

scenario, and the flange teeth are essentially “fasteners”.  It is assumed that the side 

intermeshed connection is similar enough to the criteria described in AISC that the shear 

lag factor of 0.80 is an appropriate approximation. 

The ratio of the expected yield stress to the specified minimum yield stress is 

denoted as 𝑅𝑦 (AISC, 2017).  In steel manufacturing, the specified yield stress is the 
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minimum yield stress that the product must possess to meet the material specification 

from the American Society for Testing and Materials (ASTM).  The true yield stress 

values of steel are commonly higher than the specified yield stress values as producers 

seek to satisfy, by a reliable margin, minimum specified values for product acceptance.  

Due to this situation, the true capacity of an angle may exceed its minimum capacity 

based upon the material specification.  This issue is of importance in this project since 

failure should occur in the angles rather than the beams.  The 𝑅𝑦 value can provide a 

more realistic approximation for the capacity of the angles, and it may be estimated from 

the 2016 Seismic Provisions for Structural Steel Buildings Table A3.1.  Although there 

may be less plastic deformation in these tests than there is in seismic design, it is assumed 

that 𝑅𝑦 will provide a reasonable approximation for angle capacity. 

No eccentric forces are presumed to act on the angle.  Theoretically, force applied 

to the angle would have to be applied to the centroid of the angle for this to be true.  

Forces on the angle are small area loads from the bearing contact with the flange teeth.  

To keep actual eccentricities minimal, the location where flange teeth bear on the angle 

should coincide with the centroid of the angle.  To accomplish this, an angle with equal 

leg lengths may not be appropriate.  To move the centroid of the angle closer to the center 

of bearing contact with the teeth, the leg of the angle parallel to the beam web can be 

longer than the leg parallel to the flange. If the bearing forces coincide with the centroid 

of the angle, eccentric forces are assumed to be insignificant. 

3.2.2 Initial Inputs 

 

The following geometric properties must be specified to begin the design of the connection.  
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• Beam 

- Depth (d) 

- Width (w) 

- Flange thickness (𝑡𝑓) 

- Web thickness (𝑡𝑤) 

- Shape factor (𝑍𝑝) 

- Beam web area (𝐴𝑤) 

• Angle 

- Angle leg dimensions (𝑙𝑣 and 𝑙ℎ) 

- Thickness (𝑡𝑎) 

- Angle area (𝐴𝑎) 

- Angle to flange clearance (C) 

 

Each of these values may be found in the AISC Steel Construction Manual or 

product tables from steel producers.  Although the beam size will be known from the 

framing plan in a structure, the angle sizes must be selected as part of the design of the 

connection.  The clearance (C) refers to the distance from the outer face of the beam 

flange to the closest face of the angle leg parallel to the flange.  The clearance is shown in 

Figure 3.1.  The angle must be placed so that its clearance is greater than or equal to the 

radius at the corner of the angle.  In turn, the thickest steel element that a plasma or water 

jet cutting machine must penetrate is the legs of the angles.   
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Figure 3.1: Angle leg to beam flange clearance 

 

The following material properties should be used because they represent appropriate 

ratios of beam-to-angle strengths.   

 

• 𝐹𝑦 beam = 50 ksi  

• 𝐹𝑦 angle = 36 ksi  

• 𝐹𝑢 angle = 58 ksi 

 

Additionally, the yield and rupture strengths listed are what are most commonly 

used in the steel construction industry today.  The main load resisting elements, such as 

beams, are regularly Grade 50 steel.  The connecting elements, such as plates and angles, 

are most often Grade 36 steel.  These properties are recommended for side intermeshed 

connection design. 

Finally, the designer must select the configuration of teeth in the beam flanges.  

The following geometric parameters may be easily changed, but values must be chosen 

considering, in part, engineering judgment. 
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• Number of teeth (n) 

• Tooth width (b)  

• Tooth depth (𝑙𝑡)  

• Tolerances (𝑔0, 𝑔1, 𝑔2)  

  

The variable, n, refers to the number of teeth on one side of a single beam flange.  

Therefore, the number of holes cut into any given angle will be 2n since the angles 

connect to two beam flanges.  A tooth width at or near one inch was selected here.  The 

tooth depth must be adequate in length to fully support the angle, but it must not be so 

intrusive into the flange width that it greatly affects the capacity of the beam section.  A 

tooth depth of less than one inch was used in this study. 

Finally, values for the tolerances in the rectangular holes in the angles must be 

specified.  If the tolerances are not already identified, 1/16ʺ is recommended as being 

appropriate for each one.  Tolerances in beam section camber, determined from AISC 1-

22 through 1-26, were examined to obtain this value.  Figure 3.2 and Figure 3.3 show 

where the tolerances (𝑔0, 𝑔1, 𝑔2) are located around the flange teeth. 

 

 

Figure 3.2: Plan view of teeth 
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Figure 3.3: Elevation of teeth and angle 

 

Dimensions for the circular cuts at hole corners were chosen so that an adequate 

amount of stress could be relieved without significantly reducing the angle cross section.  

The geometry of the circular cuts is shown in Figure 3.4, and each cut will be identical 

for any angle.  

 

 

Figure 3.4: Circular hole dimensions 
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[1] 

3.2.3 Forces 

 

For practical reasons, these connections are not recommended for placement near the 

location where maximum moment will be experienced.  Therefore, the full moment 

capacity of the beam is not required for the connection.  The fraction of this capacity that 

is sought becomes a design choice.  One third the total moment capacity of the beam was 

selected as the design moment, but this value can easily be changed based upon 

engineering judgment.  Moreover, given the conservative approach that is outlined here 

for the connection design, it is likely that the connection will be stronger than assumed. 

The fraction value of one third was selected based upon the size of the connection 

and the probable moment demand.  It was important to limit the length of the connection 

for practicality purposes.  Excessively long connections (beyond approximately 1.5 times 

the beam depth) would affect the economy and constructability of this system.  The value 

of one third was found to produce connections of reasonable length for each case 

examined, and it resulted in ample moment capacity, thus allowing for some flexibility in 

exactly where the connection is placed.   

In practice, moment at the location of the connection should always be checked so 

that it does not exceed one third (or the value selected) of the beam capacity.  The 

calculation for design moment is given by Equation 1. 

 

𝑀𝑑 =
1

3
𝐹𝑦𝑍𝑝 

 

𝑀𝑑 = design moment 

𝑍𝑝 = shape factor, AISC Table 1-1 

 

The flange force in the selected angle section is determined from static 

equilibrium of moments and by neglecting the contribution of the web to moment 

resistance.  It is given by Equation 2. 
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[2] 

[4] 

[5] 

[6] 

[3] 

𝐹𝑓 =  
𝑀𝑑

𝑑𝑏 + 𝐶 + 𝑡𝑎
 

 

𝐹𝑓 = flange force 

 

The force per angle (𝐹𝑎) will be one half of the flange force. 

 

3.2.4 Angle Design 

 

The capacity of the angles must be investigated for the cases of both yielding and rupture.   

 

𝑃𝑦 =   𝐹𝑦𝐴𝑎 

 

𝑃𝑦 = yield capacity 

 

𝑃𝑟 =   𝐹𝑢𝐴𝑒𝑎 

 

𝑃𝑟 = rupture capacity 

𝐴𝑒𝑎 = angle cross section effective area 

 

𝐴𝑒𝑎 = 𝑈[𝐴𝑎 − 𝑡𝑎(𝑡𝑓 + 2𝑔1)] 

 

𝑈 = shear lag factor, 0.80  

 

Angle utilization (%) = max( 
𝐹𝑎

𝑃𝑦
 ,

𝐹𝑎

𝑃𝑟
) 𝑥 100 

 

Angle utilization should be below 100% to prevent yielding (𝐹𝑎 ≥ 𝑃𝑦) or fracture 

(𝐹𝑎 ≥ 𝑃𝑟) at the design moment.  The size of the angle must be increased if this 

requirement is not met, but a utilization approaching 90 to 100% is ideal for efficiency 



27 

 

[7] 

[8] 

[9] 

purposes.  Given the large reductions in cross-sectional area at the hole locations in the 

angles, rupture failure is most likely to control design. 

After yield and rupture strength has been checked, the shear force in a single tooth 

should also be checked.  The shear force in each tooth is determined from the maximum 

force an angle will likely experience when it fails due to gross section yielding.  This is 

an ideal scenario because when failure occurs it will do so in the angles rather than the 

beams.  

 

𝐹𝑎𝑚𝑎𝑥 =  1.1𝐴𝑎𝐹𝑦𝑅𝑦  

 

𝐹𝑎𝑚𝑎𝑥 = maximum force from an angle 

𝑅𝑦 = 1.5 (from grade 36 angle) 

1.1 = accounting for uncertainties, adapted from seismic provisions (see seismic 

design provisions Chapter E, section 6b).  

 

 

𝑉𝑒𝑑 =  
𝐹𝑎𝑚𝑎𝑥

𝑛
 

 

𝑉𝑒𝑑 = force in a single tooth 

 

𝑉𝑟𝑑 =  
𝑅𝑦𝐴𝑡𝐹𝑦

√3
 

 

𝑉𝑟𝑑 = tooth resistance  

𝐴𝑡 = area of single tooth = 𝑏 ∗ 𝑡𝑓   

√3  = Reduction in tensile capacity of √3 from Von Mises yield criterion  

𝑅𝑦 = 1.1 for a Grade 50 beam 
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[10] Shear utilization (%) =  
𝑉𝑒𝑑

𝑉𝑟𝑑
 𝑥 100 

 

Shear utilization should be below 100% to ensure that a failure does not occur in 

the teeth on the flange.  If a value of greater than 100% is obtained, the number of teeth 

should be increased.   

To ensure the teeth are not damaged, an upper limit should be chosen for shear 

utilization below 95%.  The 𝑅𝑦 values incorporated into the angle and tooth equations are 

based upon assumptions rather than factual data from testing.   

Finally, the moment experienced in each tooth must be checked.  No bending 

stress reduction factor is included.  In the European Standard EN 1993-1-1 section 6.2.8, 

a factor is included to account for the effect of shear force on moment resistance 

(Eurocode 3, 1992).  This standard utilizes the values of shear force and shear resistance 

to calculate a factor by which the yield strength of the steel may be reduced.  The AISC 

code does not contain any equivalent reduction factor.  Since the rest of the design 

process is conservative in nature and based upon the AISC code, a bending stress 

reduction factor was not used for this design.  The moment in a single tooth is based upon 

the loading shown in Figure 3.5. 

 

 

 
Figure 3.5: Loading on a single tooth 

 

 

𝑉𝑒𝑑 

𝑔0 

𝑡𝑎 
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[11] 

[12] 

[13] 

[14] 

𝑀𝑒𝑑 =  𝑉𝑒𝑑(
𝑡𝑎

2
+ 𝑔0) 

 

𝑀𝑒𝑑 = moment applied to tooth 

 

𝑀𝑟𝑑 =  𝑅𝑦𝐹𝑦𝑀𝑝𝑡 

 

𝑀𝑟𝑑 = tooth moment resistance 

𝑅𝑦 = 1.1 (grade 50 beam) 

𝑀𝑝𝑡 = plastic section modulus for tooth  

 

𝑀𝑝𝑡 =
𝑡𝑓𝑏2

4
 

 

Moment utilization (%) =  
𝑀𝑒𝑑

𝑀𝑟𝑑
 𝑥 100 

 

Moment utilization should always be below 100% to ensure that a failure does not 

occur in the teeth on the flange.  If a value of greater than 100% is obtained, the number 

of teeth should be increased. 

To avoid damaging the flange teeth, an upper limit for moment utilization may be 

chosen below 100%.  Like the shear utilization ratio, an upper limit of 95% is 

recommended if a reduction is desired, and engineering judgment should be used when 

selecting an acceptable upper limit for the moment utilization ratio. 

A spreadsheet or other computational tool can easily be used to iterate these 

design calculations and select a geometry that meets the requirements for yielding, 

rupture, tooth shear, and tooth moment.  The parameters that can be easily changed to 

design an appropriate section are the angle size and the number of teeth.  The final step in 

designing the side intermeshed connection is to design the shear plates that transfer shear 

in the beam web.  
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3.3 Shear Plates 

 

In a traditional wide flange beam, the web is responsible for carrying shear forces.  Since 

the angle connectors in the side intermeshed connection only contact the beam flanges, 

they are assumed to carry no shear force.  Because of this, a path must be provided to 

transfer shear forces from one side of the connection to the other within the beam webs.  

Therefore, bolted shear plates are included on both sides of the beam webs to transfer 

shear.  Although one of the original concepts included a stair stepped web, as shown in 

Figure 2.5, the bolted shear plate was deemed more effective.  This was due to the 

slipping seen in the finite element model and the added difficulty in fabrication and 

assembly. 

The shear plates are placed symmetrically at the connection, and they should be 

centered along the depth of the beam webs.  The shear splice connection is designed to 

nearly match the shear capacity of the beam section.  This is a conservative approach for 

the tests being performed since the forces are relatively low, and in reality the angles will 

carry at least some portion of the shear force.  Nonetheless, it is desirable to provide 

ample margin against shear failure in the web when testing the intermeshed connection.   

3.3.1 Initial Parameters 

 

The same geometric properties of the beam that were defined for the angle design were 

used to design the shear plates as well.  Additional properties that must be specified are 

the material properties and dimensions of the plates.  The material properties specified in 

this document are commonly used for connecting elements, but they can easily be 

modified.  The values of 𝐿𝑒𝑣 and 𝐿𝑒ℎ (Figure 3.6) are also commonly used for plates, but 

they may be modified if desired.  Eccentricity (Figure 3.6) is defined as the spacing 

between the lines of bolts on each side of the connection, and it may be taken as two 

times 𝐿𝑒ℎ.  AISC Figure 10-12 may be used to aid with the dimensioning of the shear 

plate, and it was used to produce Figure 3.6.   

Bolt type and bolt size must also be chosen as part of the design.  A325 bolts with a 

diameter of  ¾ʺ are commonly used and are recommended for this purpose.  The bolt 
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shear strength is based upon these properties, and it can be found in AISC Table 7-1.   

Three inches is the standard center to center spacing for bolts in the vertical direction, s, 

and it is the recommended spacing for this connection (Figure 3.6).   The relevant 

geometric and material properties for shear plates and bolts are defined below. 

 

• Plates 

- 𝐹𝑦 = 36 ksi 

- 𝐹𝑢 = 58 ksi 

- 𝐿𝑒𝑣 = 1.25ʺ 

- 𝐿𝑒ℎ = 1.50ʺ  

- l = Length  

- t = Thickness  

 

 

• Bolts 

- Bolt type  

- Bolt size  

-  𝑟𝑛𝑣 = Bolt shear strength 

- e = Eccentricity 

- s = Vertical bolt spacing  

3.3.2 Forces 

 

To find the shear capacity of a beam, the equation from AISC Specifications Section G2-

1 was adapted.  Shear strength is calculated by multiplying the web area by the yield 

strength of the material.  In Section G2-1, this value is multiplied by 0.6.  In the side 

intermeshed connection design, due to the conservative nature of the added shear plates, a 

factor of 0.6 was deemed appropriate.  The shear demand on the shear plates has been 

assumed to approximately equal the shear capacity of the beam, and the force in each 

plate, 𝑟𝑢, is half of the total shear demand. 
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[15] 

[16] 

[17] 

[18] 

 

𝑉𝑛 = 0.6𝐹𝑦𝐴𝑤 

 

𝑉𝑛 = total shear demand 

 

The bolt shear strength may be found in AISC Table 7-1, but the bolt bearing 

strength must be obtained using Equation 16.  Whichever one is more critical is used to 

find the total capacity of a vertical line of bolts.   

 

 𝑟𝑛𝑏 =  2.4 𝑑𝑏𝑡𝑤𝐹𝑢          

 

 𝑟𝑛𝑏 = Bolt bearing strength 

 = 0.75 

𝑑𝑏 = bolt diameter 

 

The bolts are designed for a single side of the connection, and both sides should 

be symmetrical.  An initial value for the number of bolts on one side of the connection 

must be selected.  One-half of the eccentricity, rounded up to the nearest inch, should be 

used to find the coefficient for eccentrically loaded bolt groups, C, in AISC Table 7-6.  

The value of C must be greater than 𝐶𝑚𝑖𝑛 in Eq. [17].  𝑟𝑛 for a single bolt is the 

minimum of the bolt bearing strength ( 𝑟𝑛𝑏) and the bolt shear strength ( 𝑟𝑛𝑣), and 𝑉𝑛 is 

the force per plate.   𝑟𝑛𝑣 is found in AISC Table 7-1. 

 

𝐶𝑚𝑖𝑛 =
𝑉𝑛

min ( 𝑟𝑛𝑏 , 𝑟𝑛𝑣)
 

 

 

 𝑟𝑛𝑡 = 𝐶 ∗ min( 𝑟𝑛𝑏 ,  𝑟𝑛𝑣) 
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 𝑟𝑛𝑡 = total capacity for a single vertical line of bolts 

 

The value of  𝑟𝑛𝑡 must be greater than the shear force per plate.  The number of 

bolts must be increased if this is not true. 

 

3.3.3 Shear Plate Design 

The vertical bolt spacing, 𝐿𝑒𝑣, 𝐿𝑒ℎ, and eccentricity have been used to determine the 

width and length of each shear plate.  Figure 3.6 demonstrates how plates are 

dimensioned using these parameters.  The thickness of the plate must be selected during 

design, and if the plate cannot resist the loads, plate thickness should be increased.  The 

plates must be checked for bolt bearing, flexural yielding, flexural rupture, shear yielding, 

shear rupture, and block shear.  For each of these checks, the capacity calculated ( 𝑟𝑛 or 

 𝑀𝑢) must exceed the demand (𝑟𝑢 or 𝑀𝑢).   

 

 
Figure 3.6: Shear plate geometry 

 

 

 

𝐿𝑒ℎ  𝐿𝑒𝑣 

      e 

 s 
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[21] 

[22] 

a. Bolt Bearing 

 

The bearing strength of a single plate is given by AISC J3-6a, and it is multiplied 

by the coefficient for eccentrically loaded bolt groups to give the total bolt 

bearing strength. 

 

 𝑟𝑛 = 𝐶 ∗ 2.4𝑑𝑏𝑡𝑝𝐹𝑢 

 

 𝑟𝑛= bolt bearing strength 

𝑡𝑝 = plate thickness 

 

 

b. Flexural Yielding 

 

The applied moment due to shear force and eccentricity is given by Equation 20.  

The moment capacity of the plate is given by Equation 21. 

 

𝑀𝑢 = 𝑅𝑢 ∗  
𝑒

2
 

 

𝑅𝑢 = Shear force on a single plate 

 

 𝑀𝑢 =   𝐹𝑦𝑆𝑥 

 

𝑆𝑥 = section modulus of the plate  

 

 

c. Flexural Rupture 

 

Equation 22 may be used to solve for the rupture capacity of the plate due to 

flexure.   

 𝑀𝑢 =   𝐹𝑢𝑆𝑛𝑒𝑡  
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[24] 

[25] 

𝑆𝑛𝑒𝑡 = net section modulus of plate, taken from AISC Table 12-1 (1994 

manual) 

 

 

d. Shear Yielding 

 

The yield strength of a steel plate may be calculated using Equation 23, which is 

from D2-1 in the AISC manual. 

 

 𝑟𝑛 =   𝐹𝑦𝐴𝑔 

 

𝐴𝑔 = gross area of shear plate  

 

 

e. Shear Rupture 

 

The rupture strength of a steel plate may be calculated using Equation 24, which 

is from D2-2 in the AISC manual.   

 

 𝑟𝑛 =  𝐹𝑢𝐴𝑛 

 

𝐴𝑛 = net area of plate 

 

𝐴𝑛 = [𝑙 − 𝑛(𝑑𝑏 + 2𝑔)]𝑡 

 

n = number of bolts 

g = bolt hole tolerance 1/16” 
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f. Block Shear 

 

Block shear should be checked, and it may be done so using AISC Tables 9-3a, 9-

3b, and 9-3c.  The final value is multiplied by two for the strength check since 

each side of the plate will have a column of bolts. 

 

 𝑟𝑛 = min [2(𝑉𝑣 + 𝑉𝑡)𝑡, 2(𝑉𝑣 + 𝑉𝑟)𝑡] 

 

𝑉𝑡 = tension value from 9-3a 

𝑉𝑣 = shear value from 9-3b 

𝑉𝑟 = rupture value from 9-3c 
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CHAPTER FOUR 

Laboratory Testing and Procedures 

 

4.1 Experimental Program 

The experimental program at the University of Minnesota aimed to investigate the 

performance of the side intermeshed connection and verify the design procedure 

described in Chapter 3.  The program consisted of four tests (Table 1).  One of the tests 

had the connection located in a pure bending moment region along the span of the beam, 

and the other three tests had the connection in locations that had combinations of bending 

moment and shear (Figure 4.7).  A pure moment test was important since the angle 

connectors and flange teeth were designed for the sole purpose of resisting a pre-selected 

value of bending moment.  Tests that included bending moment with shear were also 

imperative since in practice these connections would be placed in moment frames with 

shear forces.  These loading scenarios were created by placing one or two point loads 

along the span of the beam.   

Each connection was loaded about the major axis of bending of the beam sections 

to simulate the effect of gravity loads.  Originally, minor axis tests were also considered 

to demonstrate the effects of lateral loading on the connection.  However, ultimately 

minor axis tests were found to be of lesser importance for the testing program since the 

intermeshed connection was not envisioned for use in cases for which the beams resist 

lateral loads that produce minor axis bending.  

Wide flange Grade 50 steel beams were used for the testing since these are most 

commonly used for the framing in a structure.  The beam sizes, W18x46 and W21x57, 

were selected from sizes often used for beams and based upon engineering judgment.  

These beam sizes can be found in structural framing of buildings.  Twelve-foot span 

lengths were chosen for the testing program for economical constraints.  Beams that are 

significantly longer would be expensive and difficult to assemble in the laboratory, and, 

more importantly, realistic tests of the connection region do not require full-length 

beams.  Table 1 contains the description of each test. 
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Table 1: Side Intermeshed Connection Test Specimens 

Series 
Loading 

Description 

Point 

Loads 
Span (ft) 

Design Moment 

(k-ft) 
Rolled Shape 

1 Pure bending 2 12 126 W1846 

2 Bending plus shear 1 12 126 W1846 

3 Bending plus shear 1 12 179 W2157 

4 Bending plus shear 2 12 179 W2157 

 

The W18x46 and W21x57 side intermeshed connections were both designed 

according to the procedure described in Chapter 3.  Both W18x46 specimens were 

nominally identical, as were the two W21x57 specimens.  The W18x46 beam included 

2½ x 2 x 3/8 angles, and the W21x57 included 3 x 2 x 3/8 angles.  Once the specimens 

were designed, design (AutoCAD) drawings were created and sent to the selected 

fabricators.  Additional information about the connection design, including calculations 

and dimensioned AutoCAD drawings, are included in Appendix A. 

4.2 Fabrication 

Local and regional fabricators were contacted to investigate the feasibility of fabricating 

the beams, angles, and plates for the side intermeshed connection.  Due to the nature of 

this experiment, it was imperative to ensure that the fabricators chosen had the 

capabilities to cut the specimens with either high-definition plasma or water jet, while 

guaranteeing adequate precision.  Grunau Metals of Oak Creek, WI, was selected to 

fabricate the beams and plates.  Grunau Metals used a Python X Robotic CNC Plasma 

Cutting System for their fabrication.  The plasma cutting of one of the beam specimens is 

shown in Figure 4.1.  Grunau was originally selected to fabricate the side angles as well, 

but they could not guarantee that the circular cuts at hole corners could be cut with the 

necessary precision using the plasma cutter.  Am-Tec Designs of Scandia, MN, was 

selected to fabricate the angles.  Am-Tec used an OMAX A-Jet water jet cutting machine 

to cut the angles.  The water jet cutting of one of the angles is shown in Figure 4.2. 
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Figure 4.1: Plasma cutting 

 

 

Figure 4.2: Water jet cutting 
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Once the specimens arrived in the lab, they were measured with calipers to check 

the accuracy of the fabrication.  On the beams, every tooth was measured and found to be 

well within the specified tolerance value of a one-sixteenth of an inch.  Every hole on 

every angle was also measured.  Both the width and the height of each hole was found to 

be well within the tolerance value.  The measurements verified that both plasma cutting 

and water jet cutting are acceptable for this type of connection.  The measurements of the 

specimens are included in Appendix A. 

Mill test certificates were received from both fabricators, and the pertinent details 

of each mill test certificate are included in Table 2.  The values in the table are averaged 

values from multiple pieces.  The mill certificate documents are included in Appendix A.  

It is interesting to note that the angles and shear plates, cut from A36 steel, had actual 

yield stresses comparable to that for which the wide flange sections were cut from Grade 

50 steel.  It is also of interest to note that both steel grades had similar elongations, with 

values that exceeded 25%. 

 

Table 2: Mill Test Certificate Details 

Item Yield Strength 

(ksi) 

Tensile Strength 

(ksi) 

Gage Length 

(in) 
% Elongation 

W18x46 52.7 68.6 8 27.85 

W21x57 55.02 72.13 8 25.4 

L2½ x 2 x 3/8 58.6 75.3 8 26.65 

L3 x 2 x 3/8 51.95 72.65 8 27.5 

Shear Plate 53.2 74.7 8 27.5 

 

4.3 Testing Setup and Loading 

The experimental program was conducted at the University of Minnesota’s Theodore V. 

Galambos Structural Engineering Laboratory.  An MTS 600-kip load frame located in the 

Galambos Lab floor was selected as the loading mechanism.  The beams were simply 

supported with various loading schemes.  To create a pure bending moment scenario, a 

load distribution beam was attached to the load frame to apply two point loads to the 



41 

 

beam being tested (Figure 4.3).  When only one point load was applied, moment and 

shear forces both existed at any given location along the span.  The location of the 

connection was changed, thus creating slightly different ratios of moment to shear 

(Figures 4.4-4.6).  In the first two tests, the connection was placed at center-span, 

producing a moment to shear ratio of approximately 6 in Test 2.  In the final two tests, the 

connection was placed near one of the end supports, producing a moment to shear ratio of 

2. 

Stiffeners were welded to the beams by the fabricator at the point load locations, 

and they were also added at the end reaction locations.  Calculations performed to size 

the stiffeners are shown in Appendix B.  A 3D visualization of Test 1, the pure moment 

test, is shown in Figure 4.3.  Figures 4.4 – 4.6 show a 3D visualization of the tests that 

created both moment and shear at the connection.   Figure 4.7 is a dimensioned 2D 

drawing showing the locations of the connections and loads. 

 

 

Figure 4.3: Test 1 loading 
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Figure 4.4: Test 2 loading 

 

 

Figure 4.5: Test 3 loading 
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Figure 4.6: Test 4 loading 
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Figure 4.7: Loading locations for  a) Test 1;  b) Test 2 ; c) Test 3; and d) Test 4 

 

To avoid unwanted lateral deflections in the beams, bracing was added to the 

sides of the test specimen.  Bracing is commonly designed using the “two percent rule” 

(Winter, 1960), which means bracing should be able to resist at least two percent of the 

compressive load in the member it is restraining.  In this case, the member being 

restrained is the compression flange.  Calculations, included in Appendix B, show that 

a) 

b) 

c) 

d) 
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the bracing needed to resist lateral deflection, thus justifying the construction of the 

bracing system.   

The bracing design was modified as the program progressed from one test to the 

next due to the need for additional lateral restraint.  The bracing plan used in the first test 

(Figure 4.8) consisted of a light gage built-up steel section (EFCO) attached to two floor 

beams placed parallel to the test specimen.  Two wide flange support beams were also 

clamped to the floor beams to provide support for the test specimen.  Four three-foot-long 

EFCO steel members were attached vertically on top of the steel floor beams.  Two ¾” 

diameter rods were then attached to each of the EFCO members, and 3  3  ¼” steel 

angles were attached to the ends of the rods.  The angles contacted the flanges of the 

beams.  All components used for this bracing were readily available in the Galambos 

Lab, and they are listed in Table 3.  The bracing setup is depicted in a 3D visual 

representation (Figure 4.8).  The revised bracing details for the subsequent tests are 

included in Chapter 5 following the presentation of the results of Test 1. 

 

Table 3:  Bracing Components 

Item Description Quantity Size 

Floor beams Support beams clamped to these 2 W14 

Support beams Support the test specimen 2 W14 

Vertical bracing 

supports 

EFCO members 4 Three foot 

members 

Bracing rods Attach to EFCO and support angles 8 ¾” rods, ~30” in 

length 

Bracing angles 3 x 3 x ¼” size angles 4 Extend along the 

depth of the beam 

 



46 

 

[27] 

 

Figure 4.8: Bracing setup 

 

Although the connections were designed to resist a specific load under major axis 

bending, they were tested beyond this load to a peak load.  Since angle rupture controlled 

failure in the design procedure, the force capacity of the angle, F, was calculated by 

multiplying rupture strength by effective area.  This value was then multiplied by two 

since there are two angles resisting rupture, as shown in Equation 27. 

 

𝐹 = 2𝐹𝑢𝐴𝑒𝑅𝑡 
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[29] 

The value of moment at failure could be calculated by using Equation 28.  The 

couple forces between the top and bottom angle legs were used to calculate the moment.  

The value for distance, 𝑑𝑟, was taken as the distance between the center of the horizontal 

legs of the top and bottom angles.  Equation 29 was used to calculate 𝑑𝑟, in which the 

dimensions 𝐶 and 𝑡𝑓 are defined in Figure 3.1. 

 

𝑀 = 𝐹𝑑𝑟 

 

𝑑𝑟 = 𝑑 + 2𝐶 + 𝑡𝑓 

 

Once the failure moment was estimated, principles of statics were used to obtain 

the load, P, that was expected to occur at failure.  The calculations are included in 

Appendix C, and the maximum expected loads are tabulated in Table 4.    

 

Table 4: Anticipated Forces at Failure 

Series Shape Load P (k) # of Point Loads Shear (k) Moment (k-ft) 

1 W18x46 75 2  0 226 

2 W18x46 151 1 38 226 

3 W21x57 225 1 150 300 

4 W21x57 150 2 150  300 

 

4.4 Testing Considerations 

 

A locking mechanism to prevent the angles from slipping out, thus causing a premature 

failure, was considered for the testing.  The slip out force of the angles relative to the 

beams was estimated as two percent of the buckling force because of the two-percent rule 

for lateral restraint, and it was then compared to the frictional resistance from bearing 

contact.  This bearing contact surface is where the flange teeth meet the inside surface of 

the angle holes.  No excess deformation was predicted to occur at the hole due to bearing 

contact, and this check is included in Appendix B.  The frictional resistance of the teeth at 
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the angle holes exceeded the slip out force, so no extra restraint was deemed necessary.  

Calculations are included in Appendix B. 

Despite the high frictional resistance, a mechanism to prevent movement of the 

angles was deemed best practice for the testing program.  Assumptions made about the 

behavior of the angles may not be entirely accurate, so a simple restraint system was 

created.  Additionally, this restraint was also conceived as a means to determine the 

magnitude of the restraint forces needed to keep the angles from slipping out of the 

flange teeth and bending away from the beams.  Four ¾” strips of a C7x9.8 steel channel 

were placed above and below the angles to hold them in place, and the setup was kept in 

place with vertical steel members.  This scheme is shown in Figure 4.9.  Although steel 

washers were packed between the interior surfaces of the legs of the restraint channels 

and the exterior faces of the vertical legs of the side angles, small movements were still 

allowed by this restraint system.  However, it prevented the angles from moving 

excessively and slipping off the flanges.  One strain gage was placed on the top and 

bottom of the web of the channels.  The configuration of this restraint system was 

intended purely for the testing program, and the development of an alternative long-term 

solution is proposed Chapter 7. 
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Figure 4.9:  Channel restraints 

 

The maximum expected deflections at failure were also estimated.  First, the 

theoretical maximum deflection for each beam was calculated as if there was no splice 

along the span.  Then, the maximum amount of vertical deflection due to vertical 

tolerances at the holes was added.  Finally, since the beams could also slip apart 

horizontally due to tolerances at the holes, there could be additional vertical deflection 

associated with horizontal movement.  Each beam was estimated to deflect up to roughly 

1.5 inches for the maximum expected vertical loads given in Table 4, and calculations are 

included in Appendix C.  Larger deflections were possible due to plasticity of the 

specimen and the potential for higher failure loads than estimated. 
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Reuse of beams after the initial testing program was considered viable.  Although 

angles were not to be reused since they would be tested to failure, the beams were not 

expected to experience large permanent deformations.  Therefore, additional angles could 

theoretically be attached to the beam sections to run additional tests in the future.  To 

avoid retesting the same flange teeth that may have already experienced high stresses, 

each section of the test specimen could be reversed 180 degrees so that new flange teeth 

could be tested.  Figure 4.10 shows the test specimen with identical flange teeth cut into 

both ends. 

 

 

Figure 4.10: Beam end view 

 

Angles were attached with A325 steel bolts to the ends of the beams to act as 

stiffeners when reusing beams.  Angles were selected because they could easily be 

attached and removed.  The holes used to bolt the angles to the beam end were identical 

to the holes used at the connection for the shear plates.  In this way, the connection could 

be assembled the exact same way no matter which direction the section was facing.  
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Additional transverse stiffeners were also added to ensure there would always be a 

stiffener directly under point loads (Figure 4.10).   

4.5 Instrumentation Plan 

Each test required instrumentation to measure strains and displacements. The instruments 

consisted of strain gages, strain gage rosettes, string potentiometers, and Linear Variable 

Differential Transformers (LVDTs).  The strain gages measured strain in one direction, 

and the rosettes measured strain at angles of zero, forty-five, and ninety degrees with 

respect to a pre-selected direction (usually the direction of the longitudinal axis of the 

beams).  String potentiometers and LVDTs were used to measure displacements.  Strain 

gages and rosettes were ordered from Texas Measurements (College Station, Texas), and 

string potentiometers and LVDTs from the University of Minnesota’s MAST Laboratory 

were calibrated for reuse.  LVDTs with a range of +/- 1.0 inch were used on the beams, 

and smaller LVDTs with a range of +/- 0.1 inches were used on the angles.  Table 5 lists 

the measurement devices used as instrumentation.  In addition to these devices, the 

internal LVDT and load cell within the load frame also generated signals that were 

recorded along with those for the instruments described above. 

 

Table 5: Instrumentation Devices 

Item Supplier Type 

Strain Gage Texas Measurements FLA-3-11-3LJCT 

Strain Gage Rosette Texas Measurements FRAB-3-11-3LJBT 

LVDT (Large) Macro Sensors S01250-1000 

LVDT (Small) Macro Sensors PRH 812 100 

LVDT Conditioner Schaevitz Sensors ATA 2001 

String Potentiometer TE Connectivity Classic String Pot Series 

 

Additional materials were required for instrumentation installment.  When applied 

to steel surfaces, strain gages were applied to surfaces that had been smoothed, sanded, 

and cleaned.  A grinder, sandpaper, and acetone were used to accomplish this.  

Cyanoacrylate adhesive, obtained from Texas Measurements, was used to attach the 
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strain gages to the steel surfaces.  The gages were then protected by a layer of strong 

bond (SB) tape and covered with an aluminum adhesive located in the Galambos 

Laboratory.  Mounting bases and plastic twist ties were used to relieve wire stress and 

organize the wiring.   LVDTs were attached with discharge capacitor stud welds or 

clamps.   

4.5.1 Instrument Locations 

 

Identical instrumentation was initially intended for each test, but the instrumentation was 

slightly modified as testing progressed and data was collected and reviewed.  The 

instrumentation locations for Test 1 are presented in this section, and the revisions are 

given following the results of Test 1 in Chapter 5.  

The beams had strain gages installed on the flanges as well as the web.  Strain 

gages were attached on the bottom flange of the beam along the length of the connection.  

Finite element analysis performed by UCD produced the stress distribution shown in 

Figure 4.11. 

 

Figure 4.11:  Finite element beam flange stresses 

 

The UCD model showed the stresses radiating out from the teeth towards the 

center of the flange at roughly a forty-five-degree angle.  Because of these results, the 

strain gages on the flange were placed in the center at approximately forty-five-degrees 

from each tooth.  To understand the stress state in the beam, strain gages were also 
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located outside of the connection region on the top and bottom flanges, and a rosette was 

located at the center of the web as well. 

The same finite element model from UCD demonstrated the distribution of angle 

stresses.  Starting from the outside ends of an angle, the stresses built up from each 

additional tooth until the center of the angle was reached.  Therefore, stresses were 

always highest around the center two holes in the angle, and rupture would occur in this 

location.  The high stress concentration at the center of the angle is shown in Figure 4.12, 

which was taken from UCD’s finite element analysis. 

 

 

Figure 4.12:  Finite element angle stresses 

 

Since the maximum stresses and strains that occurred in the angle were towards 

the center in the finite element model, all instrumentation was placed at the center of the 

angle.  Strain gages were placed on the inside and outside of each leg of the angles.   

LVDTs were located on the tension flange of the beam and the tension angles.  

Two LVDTs on the beam measured the separation between the tension flanges.  The 

other two beam LVDTs measured vertical displacement by recording the change in 

distance between the bottom flange and the floor below.  On each tension angle, one 

LVDT was located under each of the two centermost holes.   

Images of the instrumentation for angles, shear plates, and beams are shown in 

Figures 4.13 – 4.19.  Squares denote strain gages, circles denote rosettes, and rectangles 

denote LVDTs. 

Highest stress 
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Figure 4.13: Outer angle instrumentation 

 

 

Figure 4.14: Inner angle instrumentation 

 

Figure 4.15: Shear plate instrumentation 



55 

 

 

 

 

 

Figure 4.16: Beam instrumentation side view 
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Figure 4.17: Beam bottom flange instrumentation 

 

 

Figure 4.18: LVDTs on tension angles 

LVDT 5 LVDT 6 LVDT 7 LVDT 8 
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Figure 4.19: LVDTs on tension flange 

 

4.6 Assembly Procedures 

 

The testing setup was constructed in the Galambos Lab.  Clamps were used to attach the 

vertical EFCO members to the beams below, and clamps were also used to secure the 

support beam.  The bracing rods were placed in the EFCO, and the bracing angles were 

cut and drilled.  Figures 4.20 and 4.21 show the bracing setup, and the wood members 

shown were temporarily in place of the angles before the angles were drilled. 

 

LVDT 1 

LVDT 3 LVDT 4 

LVDT 2 
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Figure 4.20:  Bracing with temporary wood braces 

 

Figure 4.21: Bracing viewed from above 
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The specimens were delivered with one shear plate attached and one unattached.  

The second shear plate was bolted before moving the beam.  The test specimen was 

lowered using the gantry crane in the Galambos Lab and placed on rollers, and then the 

temporary wood bracing members were moved into contact with the beam flanges.  With 

nearly the entire test setup in place, the crane was used to move the entire arrangement on 

to small dollies which were used, in turn, to roll the entire assembly underneath the load 

frame.  The instrumented beam in the testing setup is pictured in Figure 4.22, and Figure 

4.23 shows the entire arrangement being moved with crane.   

 

 

Figure 4.22: Test beam with temporary wood bracing 
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Figure 4.23:  Test setup being moved with the crane 

 

 

Figure 4.24:  Bracing with steel angles in place 
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Before LVDTs were attached, whitewash consisting of a mixture of lime and 

water was added to beam webs and angles.  The whitewash was used to demonstrate 

yielding of the specimen.  The angle LVDTs are pictured in Figure 4.25. 

 

 

Figure 4.25:  LVDT attachment to tension angle 

 

The spreader beam was lowered onto the test specimen, and the entire setup was 

rolled underneath the load frame.  The spreader beam was clamped onto the load frame, 

and the dollies were removed.  All wiring was attached, and working channels were 

verified in the data acquisition system.   
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CHAPTER FIVE 

Test Results 

5.1 Test 1 Results 

 

The first beam test was a pure bending moment test of a W18x46 steel wide-flange beam, 

and it was conducted in four separate stages using a displacement-controlled protocol.  

Loading was paused in each stage for photographs and visual inspection of the 

connection.  The first three stages were conducted to examine beam behavior under load 

checkpoints that were deemed significant, as noted in Table 6.  Deflections during the 

third stage caused the load distribution beam to interfere with and transfer some load to 

the bracing.  The bracing was adjusted to avoid this interference, and then the fourth 

stage of testing was conducted.  Table 6 describes each stage of testing. 

 

Table 6: Beam Test 1 Loading Stages 

Stage Maximum Load Load Pauses Comments 

1 28 k None 1/3 design load 

2 56 k 28 k 2/3 design load 

3 200 k 
84 k 

126 k 

Pauses at design load (84 k) and the 

estimated failure load (126 k).  Beam 

unloaded at approximately 200 k to 

adjust bracing. 

4 225 k None 
Peak load reached at lateral torsional 

buckling 

 

The figures presented in this section show LVDT and strain gage data for each of 

the four tests combined in single plots.  Some strain gages and strain gage rosettes did not 

measure data or did not record strains accurately, and these were omitted from the results.  

Where gages were located on both sides of a cross section, such as on the angles, strains 

were decomposed into axial and flexural components based upon superposition of linear, 

elastic stresses (Appendix D).  
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5.1.1 Test 1 Displacement Data 

  

The following plots, Figures 5.1.1 – 5.1.3, present the data recorded from LVDTs.  The 

sequence of loading and unloading for each of the four stages is clearly demonstrated in 

the peaks and valleys of the load vs. displacement plots.  Increasing displacements were 

measured at relatively low loads at the beginning of stage one due to the shear plate bolts 

slipping into place and engaging with the plate, and this is labeled as initial seating in 

Figure 5.1.1.  In each plot, elastic behavior is observed when the slope of the line is 

linear.  The initiation of global yielding in the load-deflection diagram is observed when 

the linear region of the curve changes slope and flattens.  This indicates that plasticity 

was experienced in at least one element of the connection. After yielding has occurred in 

an element, the unloading of the specimen is represented as a line that decreases to zero 

load but includes a residual displacement.  When the beam is then reloaded, it follows 

approximately the same curve as unloading until it reaches a load that had not previously 

been reached.  The curves are labeled in Figure 5.1.1.   

The vertical LVDT displacement is closely correlated with the horizontal LVDT 

displacement (Figures 5.1.1 and 5.1.2).  Each plot displays curves that follow the same 

pattern.  Based upon these plots, it may be concluded that horizontal displacement was 

directly correlated to vertical displacement.  Some of the displacements in the LVDT data 

were due to the closing of tolerances at bolt holes and angle holes.  The bolts were 

audibly slipping into contact with the plate and beam web, and the flange teeth were 

observed gradually moving into bearing contact with the angle holes when this was 

happening.  The beam flanges at the top moved closer together, and the flanges at the 

bottom moved farther apart. 

The angle LVDT data recorded one brief period in which the angles were carrying 

load asymmetrically (Figure 5.1.3).   LVDT 5 measured a reduction in displacement near 

its yield point, and at this point the adjacent LVDT 6 recorded an increase in 

displacement.  The displacement reduction measured in LVDT 5 appears to be from a 

brief period when the opposite side of the angle carried more load.  This irregularity was 

short-lived, and the LVDTs once again recorded symmetrical displacements soon after. 
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Figure 5.1.1: Test 1 total load vs. vertical LVDT displacement  

 

 

Figure 5.1.2: Test 1 total vertical load vs. horizontal LVDT displacement 
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Figure 5.1.3: Test 1 total vertical load vs. angle LVDT displacement 

 

5.1.2 Test 1 Strain Data 

 

Load vs. axial strain data is presented in Figures 5.1.4 – 5.1.8.  During the first two stages 

of loading, all elements in the connection behaved elastically.  All strain measurements 

returned to approximately zero after unloading.  Higher strain measurements were 

recorded once contact was established.   

Inelastic behavior was first observed in the third stage of loading, and it started in 

the angles at about 125 kips of load.  Yielding was recorded in the compression angles 

(Figure 5.1.4), but smaller strains were recorded in the tension angles due to strain gage 

placement in the center of the angle instead of the section over the first hole (Figure 

5.1.5).  The tension angle LVDTs recorded elongation of the centermost holes 

corresponding to approximately 20% strain (Figure 5.1.3), but the tension angle strain 

gages failed to record this elongation.   

After the beam was unloaded during the third stage, residual strains existed in the 

angles and bottom beam flange (Figures 5.1.5 - 5.1.7).  The shear plate instruments 
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measured no plasticity, and the plots have been excluded due to unreliable data from 

those strain gages.  During the fourth stage, a maximum load of 225 kips was recorded, 

and the specimen underwent lateral torsional buckling.  The angles in compression were 

forced to bend out-of-plane due to lateral torsional buckling, and this behavior was 

recorded near the peak load in Figure 5.1.4.  The various connection elements continued 

to deform inelastically after the peak load was reached, and the test was stopped.   

Two strain gages on the beam compression flange recorded inelastic behavior, as 

did three gages at the center of the bottom flange (Figure 5.1.6 and 5.1.7).  The gages on 

the bottom flange were located beneath the beam web in the connection region, as 

indicated in Figure 4.17.  The gages located farthest from the connection centerline 

recorded the highest strains (Figure 5.1.7).  This behavior was consistent with the 

predictions made in finite element analysis for the distribution of forces in the flange.   

The strain data recorded on the channels is in Figure 5.1.8, and one channel 

recorded unreliable data that was omitted.  The channels recorded strains that were either 

positive or negative depending on their placement at the top or bottom channels.  The 

axial strains were used to approximate the stress and lateral force acting on the channel.  

The maximum stress calculated was 11.6 ksi, and the maximum force calculated was 1.8 

kips. 
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Figure 5.1.4: Test 1 load vs. compressive angle axial strain 

 

Figure 5.1.5: Test 1 load vs. tensile angle axial strain 
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Figure 5.1.6 Test 1 load vs. flange strain 

 

 

Figure 5.1.7:  Test 1 load vs. beam bottom flange strain 
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Figure 5.1.8: Test 1 load vs. channel axial strain 

 

 

5.1.3 Test 1 Discussion 

 

The beam and connection responded to vertical loading that produced constant moment 

in the manner that was expected, at least initially.  However, the magnitude of deflection 

needed to fully engage the connection, about 0.75 inches, was much larger than expected.  

Once the flange teeth and the shear plate bolts had made contact with the corresponding 

surface in the angles and the beam webs, the connection generated internal resistance to 

offset the applied loads.  Figure 5.1.9 shows images of the connection before and after 

loading.  In the post-loading image, the teeth in compression have moved closer together, 

and the teeth in tension have moved farther apart.  Figure 5.1.10 contains images that 

show how the centermost holes in tensile angles deformed in comparison to the other 

holes. 
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Figure 5.1.9:  Test 1 connection after 28 kips of load 
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b) Necking above center holes  

Figure 5.1.10: Test 1 deformation in tension angles 

 

The angles in compression experienced relatively high strains that were measured 

at up to nearly 0.015 (Figure 5.1.4).  However, once the angles became plastic due to the 

large axial strains, connection resistance to lateral-torsional buckling was reduced.  This 

effect, combined with insufficient stiffness from the lateral bracing system, allowed the 

beam to undergo lateral-torsional buckling before the beam section reached its plastic 

moment capacity. Figure 5.1.11 contains images of the compression angle after the lateral 

torsional buckling failure of the beam.  The approximate lateral-torsional buckling load is 

labeled in Figure 5.1.1.  The curvature of the angle was due to the lateral pressure being 

applied by the beam as it deflected laterally and twisted.  The beam flanges were forced 

in opposite torsional directions, causing the angle to experience the bending observed 

after the test. 

Necking 
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Figure 5.1.11: Test 1 compression angle buckling 

 

Because of angle deformation, the channel restraints were necessary to keep the 

compression angles in place.  Unfortunately, the channels were not snug tight, so there 

was some room for movement of the angles before loading of the channel restraints 

occurred.  Figure 5.1.12 is a photo taken after one of the channels was removed post-

testing.   

  

 

Figure 5.1.12:  Compression angles post-testing 
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The results of the first beam test were generally consistent with the assumptions 

for the conceptual model used to define the design procedure, as well as the finite 

element analysis.  Additionally, unexpected issues, such as interference between the 

bracing and the loading beam, as well as the slightly premature failure due to lateral 

torsional buckling, were not anticipated.  Adjustments to the bracing system and 

instrumentation scheme were made to maximize the amount of behavioral data that could 

be obtained from subsequent tests.   

 

5.2 Modifications to Bracing and Instrumentation 

The first test was stopped when the vertical load capacity of the beam dropped to about 

93% of the peak value observed during the test.  The loss of capacity was due to lateral 

torsional buckling of the beam.  An end view of the final state of deformation of the beam 

after unloading is shown in Figure 5.2.3.  To avoid a lateral torsional buckling failure and 

permanent twisting deformation in subsequent tests, bracing restraints were added to the 

test setup at the support locations.  Additionally, the steel angle braces were made 

adjustable by slotting the connection holes to avoid interference with the loading beam 

when the deflections of the test beam became large (Figure 5.2.2).  Once the load 

distribution beam deflected downward several inches, the steel angles would need to be 

moved to avoid interference with the loading beam and subsequent sharing of the load.  

Slotted holes were drilled in the angles so they could be repositioned vertically without 

unloading the test beam (Figure 5.2.1). 
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Figure 5.2.1: Bracing slotted holes 

 

 

Figure 5.2.2: Test 1 load distribution beam loading the bracing 
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Figure 5.2.3:  Beam with permanent twist at support 

 

The instrumentation was modified as well.  In Test 1, the two LVDTs (LVDT 1 

and LVDT 2) that measured vertical displacement were reset at the beginning of each 

new stage of testing.  They could measure a range of displacements up to but not 

exceeding two inches, and actual displacements exceeded three inches.  To simplify the 

displacement measurements, these LVDTs were replaced with string potentiometers in 

the following tests.  The string potentiometers had a range of 10 inches, and they were 

attached to each beam flange approximately one inch from the connection centerline 

(Figure 5.2.4). 
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Figure 5.2.4: String potentiometers in place of LVDTs 1 and 2 

 

Strain gage locations were adjusted as well.  The gages on the tension angles did 

not measure strains in the first test that were as large as expected due to their placement 

at the center of the angle (Figure 5.1.9).  Unlike the UCD finite element stress 

distributions suggested (Figure 4.12), the region directly above the two centermost holes 

showed the most elongation.  In retrospect, these locations represented the smallest cross 

section for axial loading of the angles, and the largest strains should be expected at these 

locations.  The strain gages were moved to these locations (Figure 5.2.5).   

Since strain gages on the beam flanges were located on only one side of each 

flange (Figure 4.16), strains could not be separated into flexural and axial components.  

That is, any local flexural deformation of the flanges would produce strains that are 

localized to the strain gage location.  Thus, strain gages were placed on both sides of the 

beam flanges in subsequent tests (Figure 5.2.6). 

Some strain gage locations in Test 1 were removed for subsequent tests.  Only 

one plate was instrumented in the following tests (Figure 5.2.7).  On the bottom flanges 

of the beam, only three of the six gages recorded strains resulting from plasticity.  Out of 

the three that measured low strains, two of them were removed because a clear indication 

of the strain distribution could be obtained with fewer gages (Figure 5.1.7).  Finally, only 

beam flanges on one side of the connection were instrumented following Test 1 (Figure 
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5.2.6).  There were few differences in the measured strain distributions for the gages in 

the beam flanges on both sides of the connection.   

The modified angle strain gages are identified in plots of the resulting 

measurements based upon their location on the angle.  For example, Gage 1 and Gage 2 

are labeled as being at the “top” of a compression angle on the horizontal leg, and gages 3 

and 4 are labeled as being on the “side” of the angle on the vertical leg.  Gages 5 and 6 

correspond to locations at the hole on the angle.  These labels are included in the top right 

of Figure 5.2.4. 

 

 

 

 

 

 

Figure 5.2.5: Angle Instrumentation Modifications 

(Top) 
(Side) 

(Hole) 

(Hole 2) 
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(Hole 1 
Bottom) 
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Figure 5.2.6:  Beam instrumentation modifications 

 
Figure 5.2.7: Shear plate instrumentation modifications 
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5.3 Test 2 Results 

The second beam, another W18x46, was tested with a single point load over a stiffener, 

and with the connection under both shear force and bending moment, as noted in Table 1 

and Figure 4.4.  The test was conducted in one stage with two pauses.  The beam and 

connection responded to vertical loading that produced constant shear and moment in the 

manner that was expected.  Like the beam in Test 1, the magnitude of deflection needed 

to fully engage the connection was much larger than expected.  Once the flange teeth and 

the shear plate bolts had made contact with the corresponding surface in the angles and 

the beam webs, the connection generated internal resistance to offset the applied loads.  

The first pause in loading was after the beam had deflected roughly two inches, and this 

pause was done so that the bracing could be moved to avoid interference between the 

loading head and the bracing system by utilizing the new slotted holes.  The pauses can 

be observed as small load drops in the displacement (Figures 5.3.1, 5.3.4 and 5.3.5) and 

strain curves (Figures 5.3.6 through 5.3.12).  A peak load of 182 kips was reached, and 

the beam section failed at a moment equal to its calculated plastic moment capacity.  

Additional comments on plastic moment are included in Chapter 6. 

 

5.3.1 Test 2 Displacement Data 

 

The maximum deflection measured was 3.5 inches.  String Pot 2 measured slightly more 

displacement than String Pot 1 since it was located on the side of the connection adjacent 

to the point load.  The beam flanges on either side of the connection were not level with 

one another at the end of the test.  The vertical slip of the beam flanges was consistent 

with independently conducted finite element model predictions for connections loaded 

with both moment and shear.  An image of the uneven beam flanges after testing is 

pictured in Figure 5.3.2.  Out of plane movement of the beam was also observed at the 

peak load, and this is pictured in Figure 5.3.3. 
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Figure 5.3.1: Test 2 load vs. vertical displacement  

 

 

 

Figure 5.3.2: Test 2 uneven top flanges after testing 
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Figure 5.3.3: Lateral movement in the second beam test 

 

The LVDTs were placed identically to the first test, but the displacements 

measured were smaller due to the lower moment at the connection.  The shear forces and 

vertical slip of the beam flanges also influenced the measured displacements.  In Figure 

5.3.5, LVDT 5 and LVDT 8 show similar load displacement curves with higher 

displacements than the other two LVDTs.  This occurred because LVDT 5 and LVDT 8 

were both located on the sides of the angles nearest the point load.  The data from Test 2 

demonstrated that angles may not be loaded equally on each side of the connection when 

variable shear forces and bending moments are present.  This was also demonstrated in 

the data presented for Tests 3 and 4 in sections 5.4 and 5.5.   
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Figure 5.3.4: Load vs. horizontal LVDT displacement 

 

Figure 5.3.5: Load vs. angle LVDT displacement 

5.3.2 Test 2 Strain Data 

 

Strain gage data was recorded for the compression angles, tension angles, beam flanges, 
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flexural components in this test, as described in Appendix D, and data is presented in 

Figures 5.3.6 through 5.3.10.  Additional strain data is included in Appendix D.   

Several gages on the tension angles recorded a sudden loss in strain corresponding 

to loading in the strain hardening region of the load vs. strain curves (Figure 5.3.7).  

Despite the temporary decrease in strain, load continued to increase.  These temporary 

reductions in strain measurements are likely due to the redistribution of stress within the 

angles, potentially due to slip of connection components and/or lateral movement. 

Similar to Test 1, the bottom beam flange strain gages within the connection 

recorded plasticity only at Gages 34, 35, and 36 (Figure 5.3.8).  In the beam section, 

inelastic behavior was recorded in axial strain measurements in both the top and bottom 

flanges, but not until the approximate peak load had been reached (Figure 5.3.9).  The 

flexural strains, located in Appendix D, were insignificant in comparison.   

The shear plate instruments recorded low strains in tension, but compression 

strains were not properly recorded at the top of the plate due to an unreliable strain gage 

reading (Figure 5.3.10).  At the top, the plate was being compressed and bent from the 

out of plane movement of the specimen, and this may have crushed this strain gage.  The 

web of the beam adjacent to the shear plate demonstrated yielding, shown in Figure 

5.3.11.   
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Figure 5.3.6: Test 2 vs. compression angle load axial strain 
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Figure 5.3.7: Test 2 load vs. tension angle axial strain 
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Figure 5.3.8: Test 2 load vs. beam bottom flange strain 
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Figure 5.3.9: Test 2 load vs. beam flange axial strain 
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Figure 5.3.10: Test 2 load vs. shear plate axial strain  

 

 

Figure 5.3.11: Web strains in whitewash 
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which is where the strain measurement was recorded.  The flexural strain data for the 

channels restraining compression angles is presented in Figure 5.3.12.  The strain 

measurements did not decrease after unloading due to plastic behavior in the beam and 

compression angles.  

 

 

Figure 5.3.12: Test 2 load vs. channel flexural strain 
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However, the small lateral displacements that were observed indicated that the beam may 

have been experiencing the initiation of lateral-torsional buckling at the end of the test. 

 

 

a) View facing North 

 

b) View facing South 

Figure 5.3.13: Compression angles post-test viewed facing North and South 

Undulating shape 
due to shear 
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Figure 5.3.14: Lateral bending of the angles 

 

 Measurable out of plane movement at peak load occurred because the forces on 

the bracing were underestimated.  The bracing was not stiff enough to carry the lateral 

loads without experiencing significant deflections.  The bracing angles experienced local 

lateral deformations that allowed the beam to deflect (Figure 5.3.15).  The EFCO 

members were not stiff enough, and the most heavily loaded EFCO members deflected in 

a cantilever mode.   

 

 

Figure 5.3.15: Local deformation in a bracing angle 

Straight line for reference 
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 Because of the flexibility of the bracing in the second test, the EFCO braces were 

replaced with four W12x35 steel pedestals.  Rather than clamping these members to the 

beams below, each W12x35 bracing member was bolted to the support beams with four 

7/8-inch A490 bolts.  C8x11.5 channel sections were attached to the wide flange sections 

with 7/8-inch diameter rods (Figure 5.3.16).  The replacement of the braces was designed 

to increase the stiffness of the system enough to prevent measurable out of plane 

movements.  Calculations of the stiffness of the replacement bracing are included in 

Appendix C.   

 

 

Figure 5.3.16: Modified bracing for Test 3 and Test 4 

 

5.4 Test 3 Results 

The third beam, a W21x57, was tested with one point load and was subjected to a 

combination of bending moment and shear (Table 1 and Figure 4.7).  The test was paused 

once under load to prevent interference between the loading head and braces.  Additional 
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adjustments to bracing were not possible due to friction between the surface of the top 

beam flange and bracing.  Therefore, the beam was unloaded, the bracing was adjusted, 

and then the beam was reloaded.  A maximum load of 232 kips was reached, and the 

beam section reached its calculated plastic moment capacity.  Additional comments on 

the plastic moment capacity are included in Chapter 6 (Table 7).  The initiation of lateral-

torsional buckling was also observed at the failure. 

5.4.1 Test 3 Displacement Data  

 

A maximum displacement of nearly 2.5 inches was measured in Test 3.  Similar to Test 2 

(Figure 5.3.2), vertical misalignment of the flanges gradually occurred once load was 

applied.  The behavior can be seen in the load vs. deflection data shown in Figure 5.4.1.  

The data obtained using the LVDTs is included in Figures 5.4.2 and 5.4.3.  The pause, 

unloading, reloading, and initiation of lateral-torsional buckling is clearly displayed in the 

load vs. vertical displacement plot in Figure 5.4.1. 

LVDT 3 failed to record data properly when following the pause, and this data 

was omitted in Figure 5.4.2.  It is likely the result of a loose clamp that was restraining 

the LVDT rod.  Regarding asymmetrical displacement of the angle LVDTs, the data 

shown in Figure 5.4.3 is like the angle LVDT data from Test 2 (Figure 5.3.2). The two 

LVDTs located nearest the point load, LVDT 6 and LVDT 7, experienced more 

deflection than LVDT 8.  LVDT 5 did not properly record data and was omitted the 

results.  This, again, was most likely due to a loosened attachment of the LVDT rod.   



94 

 

 

Figure 5.4.1: Test 3 load vs. vertical displacement 

 
Figure 5.4.2: Test 3 load vs. horizontal LVDT displacement 
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Figure 5.4.3: Test 3 load vs. angle LVDT displacement 

 

 

5.4.2 Test 3 Strain Data 

 

The strain gages for the beam and connection in Test 3 generated deformations that are 

consistent with the expected behavior, including major axis bending and shearing of the 

beam section, axial tension and compression of the angles, and bending and shearing of 

the shear plates.  Strain data is presented in Figure 5.4.4 through Figure 5.4.9.  Axial 

strain data is given for beams, angles, and one plate.  One strain gage on the bottom 

flange of the beam section did not read data and was omitted.  Strain data was recorded 

for one channel. 

Just like Test 2, gages on the tension angles once again recorded a sudden loss in 

strain during the strain hardening region of the load vs. strain curves (Figure 5.4.5).  The 

compression angles measured plasticity in each region instrumented (Figure 5.4.4). 

The beam data was consistent with the measurements from Test 1 and Test 2.  
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inelastic behavior only in Gage 35 and Gage 36 (Figure 5.4.7).  The beam flanges once 

again did not record any inelastic behavior until approximately the peak load had been 

reached (Figure 5.4.6).   

The shear plate gages recorded a distribution of strains within the linear elastic 

region (Figure 5.4.8).  Additional comments on the distribution of strains in the shear 

plates are included in the discussion in Chapter 6.  Relatively small strains (-0.00045 to 

0.0004) existed in the top two strain gages due to permanent deformations existing in the 

beam section. 

 

 

 

Figure 5.4.4: Test 3 load vs. compression angle axial strain 
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Figure 5.4.5: Test 3 load vs. tension angle axial strain 
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Figure 5.4.6: Test 3 load vs. beam flanges axial strain 
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Figure 5.4.7: Test 3 load vs. beam bottom flange strain 

 

 
Figure 5.4.8: Test 3 load vs. shear plate axial strain 
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Nontrivial strain measurements were recorded in the flexural strain data for one of 

the channels in compression (Figure 5.4.9).  These strains are in excess of yield.  The 

axial strain measurements remained much lower and were consistent with the other tests 

(Figure 5.4.10).   

 

 
Figure 5.4.9: Test 3 load vs. compression channel flexural strain 

 

 
Figure 5.4.10: Test 3 load vs. compression region channel axial strain 
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5.4.3 Test 3 Discussion 

 

The general behavior of the connection was like that in Tests 1 and 2.  Due to the 

presence of shear, permanent deformations of the beam flanges occurred shortly after 

loading began.  This caused a similar deformation pattern in the angles due to vertical 

movement of the teeth relative to one another (Figures 5.4.11 and 5.4.14). 

The lateral bracing restrained the system well until the peak load was reached and 

the test was paused.  Since the bracing was slightly loosened for adjustment during the 

pause, some additional out of plane movement was allowed.  This caused the top flange 

to deflect out-of-plane, and it loaded one of the compression angles at the peak load 

(Figure 5.4.12).  Unfortunately, the movement allowed for the initiation of lateral 

buckling of the beam, even though the amount of lateral movement was small (~0.25 

inches).  The final deformed shape of the beam is visible in Figure 5.4.13.   

In Test 3, yielding of the beam web in shear was visible in the whitewash (Figure 

5.4.15).  This action is assumed to be due to the formation of tension fields in the web of 

the beam, and it was aided by the restraint provided by the top and bottom flanges as well 

as the stiffeners on either side of the panels that underwent these deformations.  The 

plastic moment of the beam section was developed, and additional comments on plastic 

moment are included in Chapter 6.  Yield lines in the whitewash were observed on either 

side of the stiffener that was located under the point load.   

 

 

Figure 5.4.11: Test 3 movement of teeth and tension angle 
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Figure 5.4.12: Deformed beam flange loading the angle at peak load 

 

 
Figure 5.4.13: Test 3 beam deformed shape 
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Figure 5.4.14: Test 3 connection post-test 

 

 

Figure 5.4.15: Test 3 beam web yielding 
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5.5 Test 4 Results 

The fourth and final beam, another W21x57, was tested with no pauses in the loading 

protocol.  The loading beam was elevated with steel plates to allow for up to six inches of 

beam vertical deflection without having to adjust the brace locations.  The data gathered 

from Test 4 was similar to that for Test 3 since the beams were identical and loaded with 

the same shear span-to-depth ratio.  A peak load of 287 kips was recorded, and the beam 

section reached peak load at its plastic moment capacity, which is demonstrated in 

Chapter 6. 

5.5.1 Test 4 Displacement Data 

 

The displacement data was similar to that of Test 2 and Test 3.  The load vs. deflection 

data from string potentiometers and LVDTs is included in Figures 5.5.1 through 5.5.3.  

The load vs. displacement plot shown in Figure 5.5.1 indicates unequal vertical 

displacements due to the presence of shear, similar to Tests 2 and 3.   

The horizontal LVDTs in Test 4 recorded the lowest horizontal movement of any 

of the four tests (Figure 5.5.2).  This was due to the connection assembly and bolt hole 

tolerances in the shear plate.  Although the connection was designed identically to the 

one in Test 3, it had smaller gaps from tolerances when assembled.  Figure 5.5.4 is an 

image of the beam prior to loading, and the gap between beam webs below the shear 

plate is visibly larger than it is above the shear plate.  Because of this serendipitous 

configuration, the angles started resisting load at relatively low beam deflections.  In the 

first test, the angles did not start carrying load until the beam had deflected roughly ¾ of 

an inch (Figure 5.1.2), but in the fourth test they started carrying load seemingly 

immediately (Figure 5.5.2).   

Once again, the angle LVDTs measured asymmetric behavior.  LVDT 7 failed to 

record data and was omitted from Figure 5.5.3.  A loosened restraint of the LVDT rod 

was likely the cause of this.  LVDT 5 and 6 were located nearest the point load and both 

yielded at a much lower load than LVDT 8, located away from the point load.  This is 

consistent with the plots from Test 2 and Test 3 (Figures 5.3.3 and 5.4.3). 



105 

 

 

Figure 5.5.1: Test 4 load vs. vertical displacement 

 

 
Figure 5.5.2: Test 4 load vs. horizontal LVDT displacement 
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Figure 5.5.3: Test 3 load vs. angle LVDT Displacement 

 

 

Figure 5.5.4: Test 4 connection prior to loading 
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5.5.2 Test 4 Strain Data 

 

Strain data is presented in Figure 5.5.5 through Figure 5.5.10.   Axial strain data is given 

for beams, angles, two channels, and one plate.  One strain gage on the beam flange 

section did not record any data and was omitted.   

Just like Tests 2 and 3, gages on one of the tension angles recorded a sudden loss 

in strain during the strain hardening region of the load vs. strain curves (Figure 5.5.6).  

The compression angles measured plasticity in each region instrumented (Figure 5.5.5). 

The beam data was consistent with the measurements from each of the other tests.  

The instruments on the bottom of the beam flange within the connection recorded 

inelastic behavior only in Gage 35 and Gage 36 (Figure 5.5.8).  The beam flanges, once 

again, did not record any inelastic behavior until approximately the peak load had been 

reached (Figure 5.5.7).  Most of the plasticity in the flanges of the beam sections occurred 

in the constant moment region of the span, which was not instrumented.  It was not 

instrumented because the connection was not located in that region. 

The shear plate gages measured strains similar to the ones measured in Test 3.  

Irregular strain data was measured in the “middle top” gage, and it occurred after the 

peak load had been reached (Figure 5.5.9).  It is possible that local stress redistribution 

occurred within the plate to cause this.  Prior to peak load, the strain distribution 

remained linear and elastic, and the maximum magnitude of strain recorded was 

approximately 0.00045. 
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Figure 5.5.5: Test 4 load vs. compression angle axial strain 
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Figure 5.5.6: Test 4 load vs. tension angle axial strain 
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Figure 5.5.7: Test 4 load vs. beam flange axial strain 
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Figure 5.5.8: Test 4 load vs. beam bottom flange strain 

 

 

Figure 5.5.9: Test 4 load vs. shear plate axial strain 
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Higher flexural than axial strains were recorded in the channels, similar to the other tests.  

The maximum axial strain did not exceed a value of 0.0004 (Appendix D).  The flexural 

strain data is presented in Figure 5.5.10. 

 

 

Figure 5.5.10: Test 4 load vs. channel flexural strain 

 

5.5.3 Test 4 Discussion 
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5.5.11 shows the yielding of this region after the plastic moment had been reached.  Shear 

yielding was also visible just outside the constant moment region (5.5.13).  Shear stresses 

were imposed on the web of the beam in the constant moment region by the flanges and 
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constant moment region (Figure 5.5.12).  The lateral buckling was observed between a 

W12x35 brace and a weaker EFCO section brace.  However, the connection region itself 

was not exposed to significant lateral movement (Figure 5.5.16).  The connection 

behaved nearly identically to the connections tested in Tests 2 and 3, and images of the 

connection are shown in Figures 5.5.14 and 5.5.15. 

 

 

Figure 5.5.11: Test 4 yielding of the beam web at center span  
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Figure 5.5.12: Deformed beam shape after bracing was loosened 

 

 
Figure 5.5.13: Shear yielding observed outside the constant moment region 



115 

 

 

 

Figure 5.5.14: Test 4 top flange movement at angle centerline 

 
Figure 5.5.15: Test 4 connection after unloading 
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Figure 5.5.16: Test 4 top view after unloading 

  

Straight lines for reference.  



117 

 

CHAPTER SIX 

Evaluation of Experimental Observations and Measurements 

 

6.1 Review of Test Observations 

 

The experimental program results demonstrated globally and locally how the beam and 

the connection behaved at various stages of loading.  In the figures presented for each 

test, there exists a linear elastic region, components that experienced nonlinear behavior, 

and a yield plateau is clearly visible.  Strain hardening was also observed for some of the 

components following the start of yielding, and a peak load was recorded for each test.  

Following the peak load, the specimens lost strength and the tests were stopped.  All of 

the beams experienced some degree of lateral-torsional buckling at peak load.  However, 

for several of the test beams, peak loads occurred at the time that plastic moment capacity 

was attained. 

6.2 Demands on Angles 

 

The distribution of strains in the tension and compression angles demonstrated that the 

magnitude of plasticity experienced in the angles varied.  Before any yielding occurred, 

the strain measurements recorded in tension and compression angles were roughly equal.  

After yielding was initiated, however, variation among strain measurements was 

recorded.  This is demonstrated in strain distribution data from Tests 3 and 4 (Figure 

6.2.1 and Figure 6.2.2).  One strain measurement from each of the four angles was 

recorded at various instances of load, and each measurement was taken at the same 

location underneath a hole at the center of the angle.  Test 1 and Test 2 did not have 

enough reliable data recorded to perform this same analysis. 
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Figure 6.2.1: Test 3 distribution of strain measurements in angles 

 

Figure 6.2.2: Test 4 distribution of strain measurements in angles 

 

In each test, the first instruments that recorded nonlinearity were the strain gages 

installed on the tension angles.  The strain gages on the compression angles were the next 

to demonstrate nonlinear behavior.  In Test 1, the pure moment test, the angles were 

loaded symmetrically and recorded similar strains on each side of the angle.  In the tests 

that included shear, the angles clearly began yielding on one side of the centerline before 

the other.  Since these tests did not load the specimen with constant moment along the 

entire length of the connection, the moment on one end of the connection region was 
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higher than it was on the other.  For example, in Test 3, the calculated bending moment at 

one end of the connection was over 300% higher than it was at the other end at peak load.   

Shear and moment diagrams in Figure 6.2.3 demonstrate this difference. 

 
Figure 6.2.3: Shear and moment diagram for Test 3 at peak load 

 

 When the angles were designed, the entire angle was assumed to undergo the 

moment experienced at the centerline.  Since this was not true in the angles loaded 

asymmetrically, some plasticity was observed in the tension angles of Tests 3 and 4 

before the design loads were reached.  These were the only instances of nonlinearity prior 

to reaching the design load that was observed in any of the four tests.    

 

6.3 Beam Flange Development 

 

As intended in the design procedure, the beams remained linear elastic when the angles 

started yielding.  In each test, the first region on the beam where nonlinearity was 

recorded was at the centerline of the bottom flange of the beam.  The highest strains on 

the bottom flange were recorded at the end of the connection region, and the lowest 

strains were recorded near the centerline of the connection.  This feature is demonstrated 
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in Figure 6.3.1.  The left side of the image is at the centerline of the connection (i.e. the 

end of a beam segment that is joined to another segment by means of the side 

intermeshed connection), and in this region accumulation of strain occurs from left to 

right along the flange.  As the strains accumulate from left to right, the axial force on the 

flange increases from zero to a maximum value after the rightmost tooth.  At the right 

side of the connection region, load transferred to the flange from all teeth was being 

recorded in the strain measurements.  The strains measured at 90% of peak load in Test 4 

are included above the image to demonstrate this.  Although the teeth on the left side of 

the image seem to have experienced relatively low strains, these teeth were necessary to 

pass the tooth shear force requirement in the design procedure.  All plasticity recorded on 

the beam bottom flanges occurred after the intended design load had been reached. 

 

 

 

Figure 6.3.1: Test 4 beam bottom flange strain distribution 

 

The remaining strain gages on the beam recorded flange strain measurements 
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6.4 Moment Capacity of Test Beams 

 

The plastic moment for each section was calculated using the material properties 

specified in the fabrication mill test certificates, and these calculations are included in 

Appendix C.  Based upon these calculations and the yielding observed in each specimen, 

the plastic moment was reached in Tests 2, 3, and 4.  It was not reached in Test 1 because 

of the early occurrence of lateral torsional buckling due to inadequate bracing.  The 

plastic moment analysis results are tabulated in Table 7.  It is also noted that in Tests 2, 3, 

and 4, the connections were not subject to the maximum moment due to their location 

along the beam. 

 

Table 7: Beam Plastic Moments 

Test 

Connection 

Design 

Moment 

(k-ft) 

Maximum 

Connection 

Moment 

(k-ft) 

Maximum 

Beam 

Moment 

(k-ft) 

Calculated 

Beam Plastic 

Moment   

(k-ft) 

Moment at 

Connection at 

Mp of Beam 

(k-ft) 

Max M in 

beam / 

Mp of 

beam 

1 126 337 337 398 398 0.84 

2 126 274 411 398 265 1.03 

3 179 310 620 592 296 1.10 

4 179 288 575 592 296 0.97 

 

 The first test was the only one where the connection was located in the region of 

maximum moment in the beam.  This was also the only test where the plastic moment 

capacity of the beam was not developed at the peak load.  In each of the other tests, the 

maximum moment occurred away from the connection and caused a failure in the beam 

section, a beam section that did not contain the side-intermeshed connection.  It is 

possible that the connection could have resisted additional load in Tests 2,3, and 4, but 

the beam section reached its peak load and controlled the failure of the specimen.  

Conversely, it is possible that the beam in Test 1 could have resisted more load if the 

bracing system had prevented lateral-torsional buckling as early as it occurred. 
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6.5 Sources of Moment Overstrength 

 

The peak moment that was reached in Test 1 indicated that the connection possessed 

more capacity than initially calculated.  The sources that contributed to this overstrength 

are listed and discussed in this section. 

 

6.5.1 Moment Contribution of the Shear Plates 

 

 

Although the connection was designed assuming only the angles resist bending moment 

forces, moment was resisted by the shear plates as well.  The data recorded in the shear 

plates can be used to estimate how much moment capacity they contributed.  In the shear 

plates, only linear elastic behavior was recorded.  Figures 6.5.1 and 6.5.2 show the 

distribution of strain measurements at 90% of peak load for the shear plates instrumented 

in Test 3 and Test 4.  The four data points represent the strain gages located from the top 

to the bottom of the plate.  The coefficient of determination of the trendline, R², is 

approximately 1.00 in each plot, and it indicates that the linear trendline matches the data 

points very closely. 

 

 

 

Figure 6.5.1: Test 3 shear plate strain distribution at 90% of peak load 
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[6.1] 

 
Figure 6.5.2: Test 4 shear plate strain distribution at 90% of peak load 

 

 Because of the linear elastic behavior recorded in the plate, the distribution of 

strains could be used to estimate curvature, 𝑘, in the shear plate.  Curvature is equal to the 

inverse of the slope of the linear regression line.  Curvature can then be used to solve for 

the moment in a single shear plate using equation 6.1. 

  

𝑀 = 𝐸𝐼𝑘 

 

 Although the side intermeshed connection was designed assuming that the angles 

were the only element resisting bending moment forces, the plate moment due to 

curvature proved that plates did resist some moment.  The moments resisted by shear  

plates at various stages of loading were calculated using the strain gage data, and the 

results are tabulated in Table 8 for Test 3 and Table 9 for Test 4.  The data in the tables 

indicates very high correlation between strain and location along height of the plates, as 

well as moments in the shear plates as large as 7.6% of the connection moment.   
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[6.2] 

Table 8: Test 3 Shear Plate Moments 

Load 

(k) 

Moment 

(k-ft) 

% of Peak 

Load 
R² 

Curvature 

(𝟏𝒙𝟏𝟎−𝟓) 

Moment in 

Plates (k-ft) 

% of Total Moment 

Resisted by Plates 

139 186 60 1.00 2.49 7.6 4.1 

186 247 80 1.00 3.86 11.9 4.8 

209 278 90 1.00 5.35 16.4 5.9 

220 294 95 0.99 6.49 19.9 6.8 

229 305 100 0.99 7.14 21.9 7.2 

 

Table 9: Test 4 Shear Plate Moments 

Load 

(k) 

Moment 

(k-ft) 

% of Peak 

Load 
R² 

Curvature 

(𝟏𝒙𝟏𝟎−𝟓) 

Moment in 

Plates (k-ft) 

% of Total Moment 

Resisted by Plates 

172 172 60 0.99 3.38 10.4 6.0 

229 229 80 1.00 5.0 15.3 6.7 

257 257 90 1.00 5.95 18.3 7.1 

272 272 95 0.99 6.58 20.2 7.4 

286 286 100 0.98 7.04 21.6 7.6 

 

6.5.2 Moment Contribution from Bearing of Beam Webs 

 

Moment forces at the connection were also resisted by bearing contact between the two 

beams.  As load increased, the top flanges of the two beams moved closer together until 

contact was established.  Additional resistance at the top flange would have theoretically 

elevated the neutral axis of the connection region.    

The couple comprising the compression from bearing in the top flange and added 

tension in the shear plates can be defined using the strain data in the shear plates. That is, 

the shear plates are subjected to combined flexure and axial tension, in addition to 

vertical shear.  The added tension stress can be computed from the strains measured in 

the shear plates because they remain linear elastic. The strains in the shear plates are 

obtained from the superposition of axial tension and bending.  Thus, the tensile strain is 

obtained as follows. 

 

e
sp,a

= 1
2

e
l
- e

s( )  
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[6.3] 

[6.4] 

 

e
l
= the larger (tensile) strain in the bottom fiber (face) of the shear plates

e
s
= the smaller (compressive) strain in the top fiber (face) of the shear plates

Tension is assumed to be positive and compression negative

 

 

The net tensile force in the bearing plates is obtained as follows. 

 

T
bg

= 2A
sp
E
s
e
sp,a

 

 

A
sp

= the area of one shear plate  

 

The moment from the bearing-plate tension mechanism is obtained as follows. 

 

M
bg ,2

= T
bg
d
sp, f

 

 

d
sp, f

= the distance from the shear plate center to beam compression flange centroid  

 

These calculations could be performed using the strain data from Test 3 and Test 4.  For 

each test, the moment from the bearing-plate tension mechanism was calculated to be 

nearly 30 kip-ft, which represented approximately 11% of the total moment at the 

connection. 

 

6.5.3 Decomposition of Moment Overstrength 

 

Analysis was performed to decompose the moment overstrength of the connection in Test 

1.  Test 1 was selected since the angles experienced the highest stresses in this test.  To 

perform the analysis, the stress in the angle was assumed to be the yield stress from mill 

test certificates (Table 2).  The moment from bearing-plate tension action was also 
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[6.5] 

[6.6] 

[6.7] 

[6.8] 

[6.9] 

[6.10] 

assumed to remain consistent between each test.  This produced a value of 30 kip-ft of 

moment, as calculated in Section 6.5.2. 

 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑀𝑚𝑎𝑥

𝑇𝑎𝑟𝑔𝑒𝑡 𝑀𝑚𝑎𝑥
=

0.84

1
3

= 2.52 

 

So, the connection experienced 2.52 times the moment that it was designed to resist.  The 

following calculations explain why this overstrength existed. 

 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐹𝑦

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝐹𝑦
=

58.6

36
= 1.63 

 

𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑜𝑣𝑒𝑟𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
2.52

1.63
= 1.55 

 

The shear plates were calculated to have contributed to nearly 8% of the bending moment 

capacity.  The overstrength can then be reduced by this amount. 

 

1.55

1.08
= 1.44 

 

Since the flexural contribution from the flange bearing and shear plate axial tension is 

assumed to remain at 30 kip-ft, this also reduces the overstrength. 

 

𝐹𝑙𝑎𝑛𝑔𝑒 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑚𝑜𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 =
30 𝑘 − 𝑓𝑡

398 𝑘 − 𝑓𝑡
𝑥 100% = 8%  

 

1.44

1.08
= 1.33 
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[6.11] 

[6.12] 

[6.13] 

[6.14] 

[6.15] 

Additional contribution from flange bearing and post-yield straining of the tension angles 

could also be calculated from the following equation. 

 

∆𝑓𝑦,𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑓𝑢,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑓𝑦,𝑎𝑐𝑡𝑢𝑎𝑙 = 75.3 − 58.6 = 16.7 𝑘𝑠𝑖 

 

∆𝑀 = 2𝐴𝑎𝑛𝑔𝑙𝑒∆𝑓𝑦,𝑎𝑐𝑡𝑢𝑎𝑙𝑑𝑐 = 2(1.55)(16.7)(18 − 0.605) 

= 75 𝑘 − 𝑓𝑡 

 

75 𝑘 − 𝑓𝑡

398 𝑘 − 𝑓𝑡
𝑥 100% = 19% 

 

1.33

1.19
= 1.12 

 

Since the design procedure included a factor of 1.1 when calculating the failure load of 

the angles, the remaining overstrength factor may be divided by 1.1. 

 

1.12

1.1
= 1.02 

 

Since a final value of 1.02 was calculated, it may be concluded that moment overstrength 

was likely due to the mechanisms outlined in the calculations performed in this section. 

 

6.6 Side Angle Contributions to Shear Resistance 

 

The side angles contributed to the resistance of shear forces.  Roughly 150 kips of shear 

force was resisted at the connection in Tests 3 and 4, and although this was well within 

the loads that the plates were designed to resist, it was evident that the side 

angles contributed to shear resistance also.  The deformed shape of the angles from Tests 

2, 3, and 4 demonstrated the presence of shear forces in the angles.  Had no shear force 
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been resisted, the angles would have deformed due to bending only and looked like the 

angles from Test 1.  A comparison of angles from Test 1 and Test 3 is pictured in Figure 

6.6.1. 

 Although the magnitude of the shear force that was resisted by the angles was 

unknown, it can still be inferred that the shear plates carried most of the shear load.  The 

angles had little stiffness and shear resistance, and even if they hadn’t contributed any 

shear capacity at all, the plates still would have been sufficient.   

 

 

a) Test 1 angle deformation with no shear 

 

b) Test 3 angle deformation with shear 

Figure 6.6.1: Angle deformation with and without shear 
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6.7 Channel Restraint Forces 

 

The channels used to restrain the angles proved the importance of a lateral restraint 

device on the angles.  The channels restraining the angles in compression experienced the 

highest strains, and the flexural strains were higher than the axial strains.  This was 

because the loads applied on the channels were eccentric and created bending in the web 

of the channel, as shown in Figure 6.7.1.  The maximum axial strain that was measured 

was approximately 0.0004 in Test 1 (Figure 5.1.8).  This strain corresponds to a stress of 

11.6 ksi and a lateral force of approximately 1.8 kips. 

 

 

Figure 6.7.1: Channel loading 

 

Since an axial force was measured in the channel restraints, it can be concluded 

that frictional resistance alone was not enough to prevent the angles from sliding off the 

teeth.  Table 10 summarizes the channel axial forces from each of the four tests.  The 

ratio of maximum compression angle axial strain to maximum channel axial strain is 

included in this table. 

 

Table 10: Load in Channel Restraints 

Test 
Max Axial 

Strain (micro)  

Max Axial 

Stress (ksi) 

Max Axial 

Force (k) 

Max Angle Axial Strain/ Max 

Channel Axial Strain 

1 400 11.6 1.8 37 

2 190 5.5 0.9 210 

3 395 11.5 1.8 44 

4 340 9.9 1.6 41 
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6.8 Local Nonlinearity  

 

Plasticity may have also occurred in various components of the specimens due to local 

yielding.  For example, in Test 3 the top flange buckled to where it came into contact and 

started loading the end of one of the angles.  This resulted in local plasticity at the end of 

the angle, and it is pictured in Figure 6.8.1. 

 

  

Figure 6.8.1: Local plasticity in Test 3 

  

Another location where local plasticity likely occurred was at the bolts in the 

shear plate.  Finite element modelling was conducted in conjunction with the 

experimental testing, and the model showed plastic behavior of the bolts and in the plates 

directly around the bolt holes.  It was not possible to measure these deformations with 

strain gages, and it was also not visible without disassembling the connection.  The 

resistance to removal by the bolts in the shear plates indicated that plastic deformation of 

the bolts did occur.   

 Restraint in the removal of the angles after the tests indicates that the permanent 

deformations in these angles kept them locked in place on the beam flange teeth. 
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6.9 Potential Design Procedure Modifications 

 

The experimental testing program proved that the intermeshed connection can 

successfully resist gravity loads.  The connection possessed the required strength for 

design loads, and it showed ductility at extreme loads.  Although the results from this 

experimental program were largely positive, modifications to the design procedure could 

lead to more optimal results.  The potential design procedure modifications are included 

in Table 11. 

 

Table 11: Potential Design Procedure Modifications 

Modification Description 

Asymmetrical connections 

Uniform load was not always applied along the length of the 

connection.  Asymmetrical connections could be designed in 

these cases. 

Include shear plate moment 

resistance 

The shear plates were proven to resist some of the bending 

moment forces.  These could be included in a future design to 

create a less conservative connection. 

Elimination of 1.1 factor in 

peak angle load calculations 
This factor contributed to the moment overstrength. 

 

6.9.1 Asymmetrical Connections 

 

As discussed in section 5.6, Tests 3 and 4 each had locations on the tensile angles that 

yielded before the design load was reached.  This happened because the connection was 

designed to resist loads at its centerline, but higher loads existed at one end of the 

connection region.  In future designs, the connection could be designed for the load 

experienced at the connection centerline initially.  Then, once the length of this initial 

connection is known, the maximum forces within the connection region could be 

identified.  If these forces are larger than what the initial design from analysis at the 

centerline can withstand, another design iteration may be performed.  However, this 

approach could lead to an overdesigned angle if load greatly varies over the length of the 

connection region as it did in tests three and four.  Because of this, perhaps the 

connection could be longer on one side of the centerline than on the other. 
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6.9.2 Moment Overstrength 

 

The connection resisted design loads well, but it generally resisted higher loads than it 

was expected to at peak load.  The design procedure intended for the angles to be the only 

component of the specimens that yielded.  Although the angles were the first component 

to yield, the beam sections experienced yielding prior to the ultimate load.  Part of this 

occurred because maximum moment was away from the connection in Tests 2, 3, and 4.  

Also, since the shear plate moment contribution was neglected during the design 

procedure, the angles were not required to resist as much moment as was calculated.   

 To better estimate loads in the angles, perhaps moment contribution from the 

shear plate could be estimated and included in the design procedure.  Stress distributions 

in wide flange beams create the highest tensile and compressive forces in flanges rather 

than the web, and this is largely due to the high width of the flange relative to the width 

of the web.   From the strains measured in the testing program, the shear plates were 

estimated to carry up to almost 8% of the moment.  In both W18x46 and W21x57 beams, 

the web thickness is approximately 6% of the beam flange width.  Perhaps the ratio of 

web thickness to beam flange width could be used in future designs to estimate how 

much moment is resisted by the shear plates.   

 The factor of 1.1 used to calculate peak angle load could also be eliminated in 

future designs.  This factor contributed to the moment overstrength that was observed in 

the testing program.  Additional moment overstrength did occur due to bearing of the 

flanges and webs of the beams, however, this moment contribution was only able to be 

calculated after the test.  A rational way to estimate this moment contribution in the 

design phase would need to be developed to include this in the design procedure.   
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CHAPTER SEVEN 

Summary, Observations, Conclusions and Recommendations 

 

7.1 Summary 

 

This new type of intermeshed steel connection was designed to connect steel beams.  The 

connections included four steel angles that were intermeshed onto rectangular teeth cut 

into the sides of the top and bottom flanges of wide flange steel sections.  A pair of 

bolted, rectangular plates was used to connect the beam webs.  The angles were intended 

to develop the axial forces in the beam flanges, and the plates the shear forces in the 

webs.  Simply supported beams featuring these connections were fabricated using high-

definition plasma cutting for the rectangular teeth in the flanges and water jet cutting for 

the holes in the angles.  Two variations of the side intermeshed connections were tested 

for a total of four simply supported beam tests.  Forces, strains and displacements were 

measured in each test, and data analysis was performed to verify the procedure that was 

developed to design the connection.  The results from this experimental study expanded 

the knowledge base concerning intermeshed steel connections and how they may be 

implemented in the design and construction of steel frame buildings in the future. 

 

7.2 Observations 

 

The intermeshed steel connection was proven to be a robust and ductile connection that 

could transfer bending moment and shear forces.  The connections were able to resist the 

imposed forces from the simulated gravity loading, develop ample plasticity in the 

intended components (the angles), undergo some unintended cycles of repeated loading, 

and ultimately enable the beam to develop bending moments that approached, matched, 

or exceeded the calculated plastic moment capacity of the beam section.  The angles were 

designed solely to resist axial forces to generate the moment resistance of the connection, 

but it was evident that they also experienced shear at high loads.  The shear plates located 

at the web were designed to resist only shear, but these elements resisted some bending 
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moment as well.   Linear elastic behavior was recorded at the design level loads the 

connections were designed to resist, and nonlinearity was observed at loads approaching 

and exceeding the strength limits of the beams.  Nonlinear behavior started in the angles, 

and as the peak load was approached, nonlinear behavior was observed in the beam 

sections as well. 

 It is concluded that the angles served to transfer loads across the joint between 

beam sections, and eventually became the sacrificial component of the connection once 

the beam capacity was reached.  The geometry of the teeth in the beam flanges and the 

rectangular holes in the angles, supplemented with the stress-reducing radii at the corners, 

performed as intended.  The angles developed plastic strains exceeding 20% without any 

evidence of fracture or ductile tearing in any of the tests. 

 Most observations from the testing were consistent with the predictions made 

prior to the experimental program.  Stress distributions created the highest local demands 

at the center of the side angles, and the highest local demands in the beams existed at the 

ends of the connections.  Local failures in the angles, namely fracture and ductile tearing, 

were avoided with the inclusion of radii at the hole corners, and some local failures in 

beams were avoided with stiffeners and lateral bracing.  In all four tests, there was some 

degree of lateral or lateral-torsional buckling, even though the measured moment in the 

last three tests matched or exceeded the plastic moment capacity calculated using the 

actual yield stress of the beam steel as reported in the mill certification documents.  The 

bracing system that was used did not provide sufficient stiffness to avoid the lateral and 

lateral-torsional modes, even though it was modified throughout the testing program to 

enhance its stiffness.  Channel restraints were necessary to keep the side angles in place 

during loading, but the axial force demands on the channels were relatively low, that is, 

under 2 kips, which represents less than 1% of the axial force in the compression angles.  

Higher initial seating and lateral loads than originally anticipated were observed, but 

otherwise testing assumptions projected the outcomes of the experimental program well. 

In three of the four tests, the plastic moment of the beam section was developed.  

The connection remained intact and maintained its ability to carry load in each of these 
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cases, but it was not located at the maximum moment region.  The only test that failed to 

develop the plastic moment of the beam was the only one with the connection located in 

the maximum constant moment region.  This specimen failed due to lateral torsional 

buckling of the beam, and this outcome is partly the result of an inadequate bracing 

system.  However, the design target for the moment capacity of the connection was much 

lower than the plastic moment capacity.  The connection was designed to develop one-

third of the moment capacity of the beam section calculated using the minimum specified 

yield stress for the beam steel.  By virtue of a larger actual yield stress, as well as strain 

hardening, and a conservative design procedure, which is patterned after the capacity 

approach for seismic design, the connection developed a moment capacity equal to 84% 

of the plastic moment capacity (calculated using the actual yield stress). 

7.3 Conclusions 

 

The experimental program confirmed that intermeshed steel connections can resist 

gravity loads experienced in typical moment frames.  The connections may be designed 

to remain linear elastic under the expected service loads.  If an overloading event were to 

occur, the angles would be the first element to experience inelastic behavior.  The tests 

also showed ample capacity to resist cases of large amounts of overloading. 

Intermeshed steel connections are ideally placed near inflection points for gravity 

loading for beams in moment frames, thus moment demands are relatively low.  Such an 

approach will reduce the length of the connection and number of cuts required during 

fabrication.  This may allow for connections to be designed with a shorter length and 

fewer teeth than what was tested in this study. 

 The side intermeshed connection is a complex system that relies on the interaction 

of many different elements.  The connection was designed to avoid stress concentrations 

and local plasticity when these elements interact.  Side angles resist most, but not all, of 

the bending moment force, and they are also subject to some shear forces.  Shear plates 

resist most, but not all, of the shear force in the connection, and they contribute to some 

bending moment resistance, thus increasing the total bending moment capacity of the 
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connection.  Initial seating was observed in test data, and visual observations indicated 

that beam deflection occurs before the elements of the connection (i.e. teeth, angles, bolts 

and plates) become engaged and resist load. 

Plasma cutting and water jet cutting were found to be successful procedures for 

creating the precise geometry of the intermeshed steel connection.  Moreover, this 

capability was found at steel fabrication shops near the University of Minnesota, and the 

fabricators were able to meet the needs of the projects without significant changes to their 

fabrication procedures.  The connection was quickly and easily assembled for each test 

and required no skilled or time-consuming labor.  Disassembly of the connection after 

testing was difficult due to the plasticity experienced in the angles and shear plate bolts.  

The use of a torch or pry bar may aid with disassembly.   

7.4 Recommendations 

 

Optimization of intermeshed steel connection geometry may also be investigated in 

future research.  Finite element analysis can be used to investigate in more detail the 

performance of these connections.  For example, the shear forces and bending moments 

at the base of the teeth would be difficult to obtain experimentally, and the distribution of 

these forces along the connection would help in efforts to improve the efficiency of the 

connection.  Additionally, the contributions of the angles to shear strength, and of the 

shear plates to bending moment strength, could be investigated in greater detail.  The 

influence of the magnitude an distribution of the gaps from tolerances to the various 

bearing surfaces could also be evaluated, as well as their influence on connection 

performance under vertical loads.  Finally, laboratory testing could explore alternatives to 

the geometry used in this study. 

 Different loading scenarios could be used for additional laboratory tests.  Every 

test conducted in this study was a simply supported beam test, but the connection was 

conceptualized for use in moment frames, in which large negative moments would be 

present at the supports.  Connection performance under these conditions is of interest.  

Additionally, while the intermeshed connection was not developed for lateral load 
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resisting elements, it would be part of a building that undergoes drift when subjected to 

lateral loads.  The ability of the gravity frames which feature these connections under 

such conditions is essential because vertical load capacity would have to be ensured for 

expected levels of drift.  Thus, a cruciform assembly with beams attached to either side of 

a column could simulate a moment frame and test the intermeshed connection under 

lateral drift with reversals in the load direction.  Lastly, testing of a full-scale moment 

frame that features intermeshed connections could be used to investigate the performance 

of an entire system, including any interactions between the connections and the other 

frame components.  Successes in future research could lead to code acceptance and 

commercialization of intermeshed steel connections for steel frame buildings. 

Future work should investigate construction methods that make the intermeshed 

steel connection marketable and practical in real building construction.  For example, the 

lateral restraint system using channels was important and could be easily instrumented for 

testing.  However, it would not be as practical in construction.  A pneumatic steel 

strapping tool could be used to lock steel restraint straps around the connection instead, 

or a simple restraint that utilizes threads and bolts could be attached to the connection.  

The advantage of these devices is that they could be installed minimizing flexural stresses 

in the restraint device, thus the only force demand would be from axial stress.  Vertical 

deflections, such as those observed during initial seating, would also be impractical in a 

building, and perhaps some camber could be introduced to eliminate deflections from 

floor deck weight.  Alternatives such as these must be studied in more detail.   
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APPENDIX A 

 

Connection Design 

 

This section contains details of the dimensions used to manufacture the side intermeshed 

connection specimens that were tested.  The dimensions were selected by using a 

spreadsheet that followed the design procedure presented in Chapter 3.  The spreadsheet 

data for the angles and beam teeth is presented in section A.1.  The drawings presented in 

A.2 are the same drawings that were used by Grunau Metals and Am-Tec Designs for 

fabrication.  Connections for two W18x46 beams and two W21x57 beams were detailed.  

The connection design for each beam size is different, but the details for the angles are 

identical for both W18x46 beams and for both W21x57 beams.  Tables that include 

dimensions from the actual specimen after delivery are also included.  Lastly, Section A.4 

includes the mill certificates for the steel components used for the beam specimens. 
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A.1 Design Spreadsheets 

 

 

 

Figure A1: W18x46 Design Spreadsheet 
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Figure A.2: W21x57 Design Spreadsheet 
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A.2 AutoCAD Design Details 

 

  

 

Figure A.3: Test 1 Beam Dimensions 

 

 

 
 

 

 
 

Figure A.4: Test 2 Beam Dimensions
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Figure A.5: Test 1 and 2 Connection Details 
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Figure A.6: Test 3 Beam Dimensions 

 

 

 

 
 

Figure A.7: Test 4 Beam Dimensions 
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Figure A.8: Test 3 and 4 Connection Details 

 

A.3 Specimen Measurements 

 

After the specimens were received, the critical components on them were measured to 

check the precision of the fabrication.  The critical components measured on the beams 

included the teeth dimensions on both flanges, and on the angles they were the hole width 

and height dimensions.  It was assumed that the members prior to cutting were selected 

by the fabricators to meet AISC criteria for imperfections and tolerances, and that the 

cutting processes would not alter member dimensions.  Tables are included for every 

beam and angle tested.  All measurements taken were well within the acceptable range of 

measurements. 

  



147 

 

Table A1: Beam 1 Specimen Measurements 

TOP FLANGE 

Tooth # Measurement (in) Design (in) Diff (in) Gap # Measurement (in) Design (in) Diff (in) 

1 0.882 0.9 -0.018 1 1.058 0.9625 0.0955 

2 0.8695 0.9 -0.0305 2 1.056 1.025 0.031 

3 0.8615 0.9 -0.0385 3 1.072 1.025 0.047 

4 0.8615 0.9 -0.0385 4 1.07 1.025 0.045 

5 0.8665 0.9 -0.0335 5 1.069 1.025 0.044 

6 0.8735 0.9 -0.0265 6 1.077 1.025 0.052 

7 0.866 0.9 -0.034 7 1.063 0.9625 0.1005 

8 0.867 0.9 -0.033 8 1.059 1.025 0.034 

9 0.8615 0.9 -0.0385 9 1.063 1.025 0.038 

10 0.8625 0.9 -0.0375 10 1.061 1.025 0.036 

11 0.855 0.9 -0.045 11 1.06 1.025 0.035 

12 0.854 0.9 -0.046 12 1.059 1.025 0.034 

13 0.865 0.9 -0.035 13 1.074 1.025 0.049 

14 0.855 0.9 -0.045 14 1.082 1.025 0.057 

15 0.868 0.9 -0.032 15 1.077 1.025 0.052 

16 0.855 0.9 -0.045 16 1.077 1.025 0.052 

17 0.859 0.9 -0.041 17 1.076 1.025 0.051 

18 0.853 0.9 -0.047 18 1.015 0.9625 0.0525 

19 0.869 0.9 -0.031 19 1.067 1.025 0.042 

20 0.865 0.9 -0.035 20 1.061 1.025 0.036 

21 0.867 0.9 -0.033 21 1.062 1.025 0.037 

22 0.859 0.9 -0.041 22 1.06 1.025 0.035 

23 0.867 0.9 -0.033 23 1.059 1.025 0.034 

24 0.861 0.9 -0.039 24 1 0.9625 0.0375 

    AVG: -0.037     AVG: 0.047 

BOTTOM FLANGE 

Tooth # Measurement (in) Design (in) Diff (in) Gap # Measurement (in) Design (in) Diff (in) 

1 0.903 0.9 0.003 1 1.071 0.9625 0.1085 

2 0.887 0.9 -0.013 2 1.049 1.025 0.024 

3 0.881 0.9 -0.019 3 1.065 1.025 0.04 

4 0.865 0.9 -0.035 4 1.06 1.025 0.035 

5 0.883 0.9 -0.017 5 1.065 1.025 0.04 

6 0.878 0.9 -0.022 6 1.06 1.025 0.035 

7 0.858 0.9 -0.042 7 1.06 0.9625 0.0975 

8 0.879 0.9 -0.021 8 1.066 1.025 0.041 

9 0.869 0.9 -0.031 9 1.069 1.025 0.044 

10 0.858 0.9 -0.042 10 1.069 1.025 0.044 

11 0.863 0.9 -0.037 11 1.068 1.025 0.043 

12 0.867 0.9 -0.033 12 1.079 1.025 0.054 

13 0.863 0.9 -0.037 13 1.061 1.025 0.036 

14 0.865 0.9 -0.035 14 1.073 1.025 0.048 

15 0.866 0.9 -0.034 15 1.064 1.025 0.039 

16 0.873 0.9 -0.027 16 1.058 1.025 0.033 

17 0.859 0.9 -0.041 17 1.064 1.025 0.039 

18 0.863 0.9 -0.037 18 1.012 0.9625 0.0495 

19 0.869 0.9 -0.031 19 1.065 1.025 0.04 

20 0.866 0.9 -0.034 20 1.071 1.025 0.046 

21 0.865 0.9 -0.035 21 1.07 1.025 0.045 
22 0.865 0.9 -0.035 22 1.066 1.025 0.041 

23 0.869 0.9 -0.031 23 1.067 1.025 0.042 

24 0.866 0.9 -0.034 24 1.004 0.9625 0.0415 

    AVG: -0.030     AVG: 0.046 

Table A 1: Beam 1 Specimen Measurements 
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Table A2: Beam 2 Specimen Measurements 
TOP FLANGE 

Tooth # Measurement (in) Design (in) Diff (in) Gap # Measurement (in) Design (in) Diff (in) 

1 0.861 0.9 -0.039 1 1.048 0.9625 0.0855 

2 0.867 0.9 -0.033 2 1.055 1.025 0.03 

3 0.869 0.9 -0.031 3 1.059 1.025 0.034 

4 0.867 0.9 -0.033 4 1.061 1.025 0.036 

5 0.865 0.9 -0.035 5 1.065 1.025 0.04 

6 0.88 0.9 -0.02 6 1.056 1.025 0.031 

7 0.846 0.9 -0.054 7 1.071 0.9625 0.1085 

8 0.871 0.9 -0.029 8 1.069 1.025 0.044 

9 0.852 0.9 -0.048 9 1.072 1.025 0.047 

10 0.858 0.9 -0.042 10 1.069 1.025 0.044 

11 0.863 0.9 -0.037 11 1.074 1.025 0.049 

12 0.865 0.9 -0.035 12 1.071 1.025 0.046 

13 0.857 0.9 -0.043 13 1.078 1.025 0.053 

14 0.856 0.9 -0.044 14 1.058 1.025 0.033 

15 0.846 0.9 -0.054 15 1.065 1.025 0.04 

16 0.855 0.9 -0.045 16 1.079 1.025 0.054 

17 0.854 0.9 -0.046 17 1.063 1.025 0.038 

18 0.848 0.9 -0.052 18 0.992 0.9625 0.0295 

19 0.863 0.9 -0.037 19 1.064 1.025 0.039 

20 0.863 0.9 -0.037 20 1.07 1.025 0.045 

21 0.86 0.9 -0.04 21 1.057 1.025 0.032 

22 0.866 0.9 -0.034 22 1.066 1.025 0.041 

23 0.861 0.9 -0.039 23 1.056 1.025 0.031 

24 0.862 0.9 -0.038 24 0.997 0.9625 0.0345 

    AVG: -0.039     AVG: #REF! 

BOTTOM FLANGE 

Tooth # Measurement (in) Design (in) Diff (in) Gap # Measurement (in) Design (in) Diff (in) 

1 0.873 0.9 -0.027 1 1.1052 0.9625 0.1427 

2 0.872 0.9 -0.028 2 1.06 1.025 0.035 

3 0.873 0.9 -0.027 3 1.066 1.025 0.041 

4 0.865 0.9 -0.035 4 1.061 1.025 0.036 

5 0.858 0.9 -0.042 5 1.068 1.025 0.043 

6 0.863 0.9 -0.037 6 1.068 1.025 0.043 

7 0.868 0.9 -0.032 7 1.061 0.9625 0.0985 

8 0.871 0.9 -0.029 8 1.063 1.025 0.038 

9 0.865 0.9 -0.035 9 1.06 1.025 0.035 

10 0.858 0.9 -0.042 10 1.064 1.025 0.039 

11 0.882 0.9 -0.018 11 1.067 1.025 0.042 

12 0.88 0.9 -0.02 12 1.053 1.025 0.028 

13 0.882 0.9 -0.018 13 1.063 1.025 0.038 

14 0.897 0.9 -0.003 14 1.062 1.025 0.037 

15 0.86 0.9 -0.04 15 1.051 1.025 0.026 

16 0.873 0.9 -0.027 16 1.06 1.025 0.035 

17 0.855 0.9 -0.045 17 1.065 1.025 0.04 

18 0.868 0.9 -0.032 18 1.008 0.9625 0.0455 

19 0.866 0.9 -0.034 19 1.047 1.025 0.022 

20 0.891 0.9 -0.009 20 1.067 1.025 0.042 

21 0.873 0.9 -0.027 21 1.069 1.025 0.044 

22 0.872 0.9 -0.028 22 1.07 1.025 0.045 

23 0.866 0.9 -0.034 23 1.065 1.025 0.04 

24 0.87 0.9 -0.03 24 1.006 0.9625 0.0435 

  AVG -0.029   AVG: 0.045 

Table A 2: Beam 2 Specimen Measurements 
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Table A3: Beam 3 Specimen Measurements 

TOP FLANGE 

Tooth # Measurement (in) Design (in) Diff (in) Gap # Measurement (in) Design (in) Diff (in) 

1 0.982 1 -0.018 1 1.097 1.0625 0.0345 

2 0.98 1 -0.02 2 1.153 1.125 0.028 

3 0.995 1 -0.005 3 1.159 1.125 0.034 

4 0.998 1 -0.002 4 1.141 1.125 0.016 

5 0.986 1 -0.014 5 1.15 1.125 0.025 

6 0.982 1 -0.018 6 1.16 1.125 0.035 

7 0.966 1 -0.034 7 1.084 1.0625 0.0215 

8 0.968 1 -0.032 8 1.138 1.125 0.013 

9 0.981 1 -0.019 9 1.132 1.125 0.007 

10 0.996 1 -0.004 10 1.128 1.125 0.003 

11 0.969 1 -0.031 11 1.138 1.125 0.013 

12 0.958 1 -0.042 12 1.145 1.125 0.02 

13 0.969 1 -0.031 13 1.143 1.125 0.018 

14 0.982 1 -0.018 14 1.156 1.125 0.031 

15 0.974 1 -0.026 15 1.141 1.125 0.016 

16 0.969 1 -0.031 16 1.153 1.125 0.028 

17 0.978 1 -0.022 17 1.161 1.125 0.036 

18 0.977 1 -0.023 18 1.097 1.0625 0.0345 

19 0.978 1 -0.022 19 1.126 1.125 0.001 

20 0.99 1 -0.01 20 1.144 1.125 0.019 

21 0.972 1 -0.028 21 1.127 1.125 0.002 

22 1.002 1 0.002 22 1.128 1.125 0.003 

23 0.975 1 -0.025 23 1.146 1.125 0.021 

24 0.968 1 -0.032 24 1.069 1.0625 0.0065 

    AVG -0.02092     AVG 0.01941667 

BOTTOM FLANGE 

Tooth # Measurement (in) Design (in) Diff (in) Gap # Measurement (in) Design (in) Diff (in) 

1 0.98 1 -0.02 1 1.099 1.0625 0.0365 

2 0.983 1 -0.017 2 1.164 1.125 0.039 

3 0.972 1 -0.028 3 1.159 1.125 0.034 

4 0.968 1 -0.032 4 1.159 1.125 0.034 

5 0.978 1 -0.022 5 1.162 1.125 0.037 

6 0.982 1 -0.018 6 1.156 1.125 0.031 

7 0.961 1 -0.039 7 1.102 1.0625 0.0395 

8 0.983 1 -0.017 8 1.175 1.125 0.05 

9 0.974 1 -0.026 9 1.171 1.125 0.046 

10 0.965 1 -0.035 10 1.167 1.125 0.042 

11 0.978 1 -0.022 11 1.163 1.125 0.038 

12 0.985 1 -0.015 12 1.151 1.125 0.026 

13 0.974 1 -0.026 13 1.171 1.125 0.046 

14 0.981 1 -0.019 14 1.165 1.125 0.04 

15 0.969 1 -0.031 15 1.164 1.125 0.039 

16 0.959 1 -0.041 16 1.156 1.125 0.031 

17 0.986 1 -0.014 17 1.16 1.125 0.035 

18 0.965 1 -0.035 18 1.106 1.0625 0.0435 

19 0.96 1 -0.04 19 1.176 1.125 0.051 

20 0.974 1 -0.026 20 1.167 1.125 0.042 

21 0.956 1 -0.044 21 1.153 1.125 0.028 

22 0.966 1 -0.034 22 1.165 1.125 0.04 

23 0.961 1 -0.039 23 1.161 1.125 0.036 

24 0.984 1 -0.016 24 1.098 1.0625 0.0355 

   AVG -0.027333333     AVG 0.03833333 

Table A 3: Beam 3 Specimen Measurements 



150 

 

Table A4: Beam 4 Specimen Measurements 
TOP FLANGE 

Tooth # Measurement (in) Design (in) Diff (in) Gap # Measurement (in) Design (in) Diff (in) 

1 0.977 1 -0.023 1 1.0875 1.0625 0.025 

2 0.981 1 -0.019 2 1.159 1.125 0.034 

3 0.993 1 -0.007 3 1.167 1.125 0.042 

4 0.982 1 -0.018 4 1.15 1.125 0.025 

5 0.975 1 -0.025 5 1.159 1.125 0.034 

6 0.977 1 -0.023 6 1.156 1.125 0.031 

7 0.975 1 -0.025 7 1.096 1.0625 0.0335 

8 0.962 1 -0.038 8 1.163 1.125 0.038 

9 0.976 1 -0.024 9 1.163 1.125 0.038 

10 0.969 1 -0.031 10 1.162 1.125 0.037 

11 0.977 1 -0.023 11 1.166 1.125 0.041 

12 0.958 1 -0.042 12 1.159 1.125 0.034 

13 0.972 1 -0.028 13 1.161 1.125 0.036 

14 0.982 1 -0.018 14 1.162 1.125 0.037 

15 0.997 1 -0.003 15 1.145 1.125 0.02 

16 0.985 1 -0.015 16 1.156 1.125 0.031 

17 0.975 1 -0.025 17 1.152 1.125 0.027 

18 0.988 1 -0.012 18 1.073 1.0625 0.0105 

19 0.955 1 -0.045 19 1.17 1.125 0.045 

20 0.962 1 -0.038 20 1.159 1.125 0.034 

21 0.971 1 -0.029 21 1.157 1.125 0.032 

22 0.972 1 -0.028 22 1.16 1.125 0.035 

23 0.975 1 -0.025 23 1.155 1.125 0.03 

24 0.995 1 -0.005 24 1.1 1.0625 0.0375 

    AVG: -0.023708333     AVG: 0.0328125 

BOTTOM FLANGE 

Tooth # Measurement (in) Design (in) Diff (in) Gap # Measurement (in) Design (in) Diff (in) 

1 0.966 1 -0.034 1 1.108 1.0625 0.0455 

2 0.964 1 -0.036 2 1.166 1.125 0.041 

3 0.965 1 -0.035 3 1.165 1.125 0.04 

4 0.965 1 -0.035 4 1.164 1.125 0.039 

5 0.968 1 -0.032 5 1.165 1.125 0.04 

6 0.958 1 -0.042 6 1.17 1.125 0.045 

7 0.96 1 -0.04 7 1.108 1.0625 0.0455 

8 0.961 1 -0.039 8 1.172 1.125 0.047 

9 0.965 1 -0.035 9 1.158 1.125 0.033 

10 0.981 1 -0.019 10 1.166 1.125 0.041 

11 0.984 1 -0.016 11 1.164 1.125 0.039 

12 0.971 1 -0.029 12 1.162 1.125 0.037 

13 0.977 1 -0.023 13 1.157 1.125 0.032 

14 0.964 1 -0.036 14 1.16 1.125 0.035 

15 0.964 1 -0.036 15 1.164 1.125 0.039 

16 0.965 1 -0.035 16 1.167 1.125 0.042 

17 0.985 1 -0.015 17 1.169 1.125 0.044 

18 0.959 1 -0.041 18 1.109 1.0625 0.0465 

19 0.966 1 -0.034 19 1.157 1.125 0.032 

20 0.971 1 -0.029 20 1.16 1.125 0.035 

21 0.967 1 -0.033 21 1.164 1.125 0.039 

22 0.967 1 -0.033 22 1.167 1.125 0.042 

23 0.984 1 -0.016 23 1.169 1.125 0.044 

24 0.961 1 -0.039 24 1.103 1.0625 0.0405 

    AVG -0.03175     AVG 0.040166667 

Table A 4: Beam 4 Specimen Measurements 
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Table A5: Angle Specimen Measurements 

L 2.5 X 2 X 3/8 

Hole Width (in) Height (in) Hole Width (in) Height (in) Hole Width (in) Height (in) Hole Width (in) Height (in) 

Angle 1 Angle 2 Angle 3 Angle 4 

1 1.018 0.724 1 1.019 0.724 1 1.019 0.731 1 1.02 0.727 

2 1.0205 0.726 2 1.021 0.725 2 1.019 0.738 2 1.02 0.736 

3 1.021 0.73 3 1.018 0.723 3 1.02 0.736 3 1.02 0.732 

4 1.021 0.734 4 1.018 0.728 4 1.02 0.739 4 1.018 0.734 

5 1.022 0.724 5 1.017 0.726 5 1.017 0.735 5 1.018 0.735 

6 1.02 0.732 6 1.021 0.731 6 1.019 0.736 6 1.02 0.73 

7 1.018 0.736 7 1.019 0.725 7 1.016 0.738 7 1.017 0.733 

8 1.02 0.732 8 1.018 0.736 8 1.018 0.738 8 1.017 0.734 

9 1.019 0.734 9 1.018 0.728 9 1.013 0.742 9 1.019 0.732 

10 1.021 0.729 10 1.019 0.726 10 1.018 0.731 10 1.021 0.739 

11 1.019 0.73 11 1.019 0.732 11 1.016 0.733 11 1.018 0.734 

12 1.018 0.735 12 1.02 0.733 12 1.018 0.731 12 1.02 0.729 

AVG 1.020 0.731   1.019 0.728   1.018 0.736   1.019 0.733 

Angle 5 Angle 6 Angle 7 Angle 8 

1 1.022 0.734 1 1.019 0.726 1 1.017 0.734 1 1.025 0.733 

2 1.02 0.737 2 1.02 0.727 2 1.017 0.739 2 1.022 0.73 

3 1.021 0.727 3 1.018 0.728 3 1.015 0.728 3 1.021 0.737 

4 1.018 0.734 4 1.019 0.734 4 1.015 0.731 4 1.02 0.726 

5 1.017 0.734 5 1.022 0.735 5 1.019 0.732 5 1.02 0.732 

6 1.021 0.736 6 1.02 0.729 6 1.013 0.729 6 1.02 0.726 

7 1.019 0.738 7 1.018 0.734 7 1.014 0.728 7 1.017 0.729 

8 1.019 0.732 8 1.02 0.729 8 1.016 0.728 8 1.018 0.732 

9 1.019 0.733 9 1.02 0.731 9 1.015 0.737 9 1.02 0.731 

10 1.02 0.735 10 1.019 0.736 10 1.016 0.732 10 1.018 0.726 

11 1.017 0.734 11 1.018 0.732 11 1.017 0.73 11 1.018 0.734 

12 1.018 0.733 12 1.016 0.734 12 1.016 0.728 12 1.016 0.735 

AVG 1.019 0.734   1.019 0.731   1.016 0.731   1.020 0.731 

L 3 X 2.5 X 3/8 

Angle 1 Angle 2 Angle 3 Angle 4 

1 1.115 0.778 1 1.116 0.773 1 1.117 0.776 1 1.119 0.779 

2 1.117 0.777 2 1.114 0.772 2 1.118 0.777 2 1.117 0.773 

3 1.115 0.785 3 1.118 0.775 3 1.115 0.777 3 1.117 0.775 

4 1.117 0.776 4 1.116 0.777 4 1.116 0.776 4 1.116 0.775 

5 1.118 0.774 5 1.116 0.776 5 1.118 0.775 5 1.116 0.775 

6 1.113 0.78 6 1.114 0.778 6 1.116 0.774 6 1.116 0.774 

7 1.118 0.777 7 1.115 0.775 7 1.113 0.776 7 1.113 0.777 

8 1.118 0.786 8 1.116 0.774 8 1.113 0.774 8 1.111 0.776 

9 1.118 0.774 9 1.116 0.775 9 1.117 0.778 9 1.113 0.775 

10 1.116 0.778 10 1.116 0.778 10 1.117 0.772 10 1.116 0.778 

11 1.117 0.775 11 1.119 0.779 11 1.116 0.775 11 1.115 0.777 

12 1.114 0.777 12 1.114 0.776 12 1.117 0.775 12 1.114 0.773 

AVG 1.116 0.778   1.116 0.776   1.116 0.775   1.115 0.776 

Angle 5 Angle 6 Angle 7 Angle 8 

1 1.116 0.775 1 1.117 0.77 1 1.121 0.781 1 1.125 0.776 

2 1.115 0.775 2 1.12 0.773 2 1.123 0.778 2 1.126 0.774 

3 1.115 0.773 3 1.117 0.778 3 1.126 0.781 3 1.126 0.778 

4 1.117 0.773 4 1.124 0.775 4 1.124 0.778 4 1.124 0.775 

5 1.118 0.776 5 1.123 0.771 5 1.126 0.773 5 1.125 0.773 

6 1.115 0.777 6 1.122 0.777 6 1.122 0.776 6 1.124   

7 1.113 0.776 7 1.112 0.778 7 1.123 0.774 7 1.126 0.776 

8 1.113 0.777 8 1.12 0.774 8 1.125 0.771 8 1.125 0.774 

9 1.117 0.775 9 1.122 0.774 9 1.123 0.776 9 1.124 0.776 

10 1.118 0.775 10 1.121 0.776 10 1.124 0.773 10 1.123 0.774 

11 1.116 0.777 11 1.123 0.776 11 1.125 0.773 11 1.123 0.773 

12 1.116 0.778 12 1.125 0.775 12 1.125 0.773 12 1.126 0.775 

AVG 1.116 0.776   1.121 0.775   1.124 0.776   1.125 0.775 

Table A 5:Angle Specimen Measurements 
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A.4 Mill Test Certificates 

 

 

 
 

a) W21x57 

 

 

 
 

b) W18x46 

 

Figure A.9: Grunau Metals mill test certificates for beams 
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a) 3 x 2 x 3/8  

 

 
b) 2½ x 2 x 3/8 

 

Figure A.10: Am-Tec Designs angle mill test certificates 
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Figure A.11: Shear plate mill test certificate 
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[B1] 

[B2] 

APPENDIX B 

Test Design Calculations 

 

 

Several calculations were necessary to properly design the testing setup.  This section 

contains information regarding the design of stiffeners and bracing that prevent local 

failures.  Checks were also performed on the surfaces where flange teeth bear on the 

angle holes.  Local bearing forces were examined, and they were used to study the 

potential for slip-out of the angles. 

 

B.1 Stiffener Design 

 

Stiffeners were located at point loads and reactions to help prevent local buckling.  The 

equations presented in this section were used to size the stiffeners. 

 

𝐼𝑠𝑡 ≥ 𝑏𝑡𝑤
3𝑗 

 

 𝐼𝑠𝑡 = Stiffener moment of inertia 

 𝑏 = beam flange width 

 𝑡𝑤 = web thickness 

 𝑗 = assumed as 0.5 

 

For the W18x46 beam, 𝐼𝑠𝑡 ≥ (6.05)(0.36)3(0.5) = 0.14 𝑖𝑛4.  For the 3/8” 

stiffener, 𝐼𝑠𝑡 =
1

12
(0.375)(2.5)3 = 0.49 𝑖𝑛4.  The stiffener capacity, 𝑃, is given by the 

equation below. 

𝑃 =  𝐴𝑝𝑏𝐹𝑦𝑠𝑡 

 

𝑃 = Stiffener plate capacity 

 𝐴𝑝𝑏 = Area of plate bearing 

 𝐹𝑦𝑠𝑡 = Stiffener yield strength, 36 ksi 
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[B3] 

Each stiffener used on the W18x46 beam has a capacity, 𝑃, of at least 46.9 kips 

from 𝑃 = (2.5)(0.375)(50) = 46.9.  Since there were stiffeners on each side of the 

web, at each load point there was additional capacity of at least 93.8 kips at stiffener 

locations for the W18x46 beam.   

Similarly, for the W21x57 beam, 𝐼𝑠𝑡 ≥ (6.56)(0.405)3(0.5) = 0.218 𝑖𝑛4.  A ½” 

stiffener was selected, and  𝐼𝑠𝑡 =
1

12
(0.5)(2.5)3 = 0.65 𝑖𝑛4.  The plate capacity was 

calculated to be 62.5 kips using equation B2, and the total additional capacity from 

stiffeners under point loads was 125 kips.   

Finally, both stiffeners were checked to meet the steel construction manual’s 

width-to-thickness ratio requirements for tension field action given by equation B3.   

 

(
𝑏

𝑡
)𝑠𝑡 ≤ 0.56√𝐸/𝐹𝑦𝑠𝑡  

 

For both plates, (
𝑏

𝑡
)𝑠𝑡 ≤ 0.56√29000/36 = 15.9.  The W18x46 beam stiffeners had a 

width-to-thickness ratio of about 6.7, and the W21x57 beam stiffeners had one of about 

5. 

B.2 Original Bracing Design 

 

The lateral force requirement for the bracing system was estimated using the two-percent 

rule (Winter 1960), which states that bracing must resist 2% of the compressive force in 

the member it braces.  The maximum design moment in the beam was about 180 kip-ft, 

but the maximum moment a W21x57 beam can be expected to withstand is 490 kip-ft.  

As an upper bound estimate, this moment was divided into couple forces, and the 

distance between the forces was taken as the distance between the centroids of the top 

and bottom flanges.  Example calculations using the W21x57 beam are provided below, 

and steel angles were deemed appropriate to resist the resulting lateral force of 5.5 kips. 
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𝑀 =  𝐹𝑜𝑟𝑐𝑒 𝑥 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

 

𝐹𝑜𝑟𝑐𝑒 =
(480)(12)

21
= 274 𝑘𝑖𝑝𝑠 

 

(0.02)(274) = 5.5 𝑘𝑖𝑝𝑠 

B.3 Revised Bracing Design 

 

The lateral restraint provided by the angles was deemed insufficient after running two 

tests.  Neither the angles nor the EFCO supporting them were stiff enough to resist the 

loads.  The two-percent rule seemed to have underestimated the lateral forces applied to 

the bracing.  As a result, the two percent value was replaced with ten percent, and this 

produced a demand of nearly 30 kips. 

 The EFCO was replaced with W12x35 beams, and the angles were replaced with 

C8x11.5 channels.  The beams were bolted to the support below with four 7/8” A490 

bolts.  The channels, wide flange beams, and bolts each had their capacities checked 

against the demand.  The loading for the system is shown in Figure B1. 

 

 

Figure B1: Loading on Revised Bracing 
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[B4] 

The bending moment in the channel was calculated by assuming the channel was 

a 6” long cantilever with a 30 kip point load on the end.  This loading created 15 kip-ft of 

bending moment, and the capacity of a C8x11.5 is around 26 kip-ft.  The W12x35 was 

also treated as a cantilever with a 30 kip point load and a 32” span.  This created a 

bending moment of 80 kip-ft, and the capacity of a W12x35 is around 192 kip-ft.  The 

beam’s maximum deflection was then checked using equation B4.  The maximum lateral 

deflection was estimated to be only 0.04 inches, and up to one eighth of an inch of 

deflection was considered acceptable. 

 

𝛥 =
𝑃𝐿3

3𝐸𝐼
 

 

𝛥 =
(30)(32)3

3(29000)(285)
 = 0.04 in 

 

Finally, the bolt capacity was checked.  Only two of the bolts were assumed to 

resist tensile forces.  The tensile force was estimated by using the maximum moment in 

the W12x35, 80 kip-ft, and separating it into couple forces acting on the beam’s two 

flanges.  This resulted in a tensile force of approximately 40 kips per bolt, and each bolt 

can carry a tensile force of 51.0 kips. 

 

B.4 Local Bearing at Angle Holes 

 

Since the teeth apply load to the angles on a relatively small surface, local bearing forces 

were checked.  The teeth had a higher yield stress than the angles do, therefore only the 

angles needed to be checked.  The bearing capacity was estimated by referencing section 

J3-6c in the steel construction manual (AISC  2017).  This is the bearing strength for a 

connection with long slotted holes, which is what the side intermeshed connection most 

closely resembles. An 𝑅𝑡 value was also included. The equation, B5, is provided below. 
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[B5] 

 

∅𝑅𝑛  = ∅2.0𝑑𝑡𝐹𝑢𝑅𝑡 

 

𝑅𝑛 = bearing capacity  

 𝑑 = depth of surface 

 𝑡 = thickness of surface 

 𝑅𝑡 = factor from seismic design provisions 

 

The design force from a single tooth in the W18x46 was 15.3 kips, and in the W21x57 it 

was 17.3 kips.  The bearing capacity of the angles for each specimen is calculated below.  

The capacity of each angle exceeded the demand. 

 

∅𝑅𝑛(18𝑥46)  = (0.75)(2)(0.451)(0.375)(58)(1.1) = 16.3 𝑘𝑖𝑝𝑠 > 15.3 𝑘𝑖𝑝𝑠  

 

∅𝑅𝑛(21𝑥57)  = (0.75)(2)(0.496)(0.375)(58)(1.1) = 17.8 𝑘𝑖𝑝𝑠 > 17.3 𝑘𝑖𝑝𝑠  

 

B.5 Potential for Slippage of Angle 

 

The friction forces at the surfaces where the teeth and angles meet help to keep the angles 

in place once they are loaded.  Calculations were performed to see if the friction force 

would be high enough to keep the angles in place without any sort of external restraint.  

The angles could potentially move whenever they reach their buckling load.  The 

buckling load is the same as the angle capacity that was used in the connection design 

procedure.  The two percent rule may be used to estimate the amount of friction force 

required to restrain the angles.  For example, the capacity of one of the 3x2.5x3/8 angles 

is 56.7 kips.  Two percent of this value is 1.13 kips.  Therefore, the friction force 

provided between a single tooth and the angle must be at least 1.13 kips to avoid an 

external restraint system. 
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 The bearing force on a single tooth must be calculated.  Since there are six teeth 

on each side of one flange, the angle capacity may be divided by six for a single tooth.  

This force may then be multiplied by the coefficient of friction between the surfaces.  The 

coefficient of friction was estimated as 0.15.  This was a conservative lower bound 

estimate that would more closely represent a lubricated surface.  The friction force 

calculated was 1.4 kips, so no external restraint system was deemed necessary.  However, 

the channel restraints were provided for safety purposes and to measure lateral forces 

with strain gages.  The calculations performed in this section are provided below. 

 

𝑅𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑜𝑟 3 𝑥 2
1

2
𝑥

3

8
=  56.7(0.02) = 1.13 𝑘𝑖𝑝𝑠 

 

𝐵𝑒𝑎𝑟𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒 =
56.7 

6 𝑡𝑒𝑒𝑡ℎ
= 9.45 𝑘𝑖𝑝𝑠 𝑝𝑒𝑟 𝑡𝑜𝑜𝑡ℎ 

 

𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 = 𝐹 ∗  𝜇 = (9.45)(0.15) = 1.4 𝑘𝑖𝑝𝑠  

 

1.4 𝑘𝑖𝑝𝑠 > 1.13 𝑘𝑖𝑝𝑠 
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[C1] 

[C2] 

[C3] 

APPENDIX C 

Testing Prediction Calculations 

 

C.1 Expected Failure Load for Connection 

 

The moment at which the connection failed was estimated for each beam prior to testing.  

Since angle rupture controlled the design, the expected failure load of the connection is 

when the angle ruptures.  The 𝑅𝑡 factor was again included in these calculations.  The 

equations used to estimate moment and the connection when it fails are provided below. 

 

𝐹 = 𝐹𝑢𝐴𝑒𝑅𝑡 

𝐹𝑢 = specified rupture stress 

 𝐴𝑒 = effective area of the angle 

 𝑅𝑡 = factor from seismic design provisions, 1.2 

 

𝐹𝑡𝑜𝑡 = 2𝐹 

 

𝐹𝑡𝑜𝑡 = Total force both tension angles can resist together 

 

𝑀 = 𝐹𝑡𝑜𝑡𝑑𝑟 

 

𝑑𝑟 = distance between the centroids of the top and bottom angle legs parallel to 

the ground  

 

Once the maximum moment was estimated, the corresponding point loads in Table 3 

were obtained using static equilibrium and the geometry from Figure 4.7.  C.1.1 and 

C.1.2 show the maximum moment calculations performed for each beam size. 
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C.1.1 W18x46 Maximum Moment Calculation 

 

𝐹 = (58)(1.02)(1.2) = 71 𝑘𝑖𝑝𝑠 

 

𝐹𝑡𝑜𝑡 = 2(71) = 142 𝑘𝑖𝑝𝑠 

 

𝑀 = (142)(18.1 + 2(0.3125) + 0.375) = 226 𝑘𝑖𝑝 − 𝑓𝑡  

 

C.1.2 W21x57 Maximum Moment Calculation 

 

𝐹 = (58)(1.17)(1.2) = 81.4 𝑘𝑖𝑝𝑠 

 

𝐹𝑡𝑜𝑡 = 2(81.4) = 162.9 𝑘𝑖𝑝𝑠 

 

𝑀 = (162.9)(21.1 + 2(0.3125) + 0.375) = 300 𝑘𝑖𝑝 − 𝑓𝑡  

 

C.2 Deflection Estimation 

 

The maximum deflection was estimated using the maximum point loads expected into the 

beam deflection equations or the various beam configurations in the test program.  The 

equations for simply supported beams with one and two point loads were used.  

Deflections during the tests exceeded these calculations because the beams were loaded 

to forces exceeding the maximum expected values.   

Additional deflection was predicted since the beams may slip due to the 

tolerances at the angle holes.   Since there is a vertical tolerance at angle holes of 1/16” 

both above and below a single tooth, a total of 1/8” of additional deflection may occur 

due to vertical tolerances.  An additional inch of deflection was then added to this total to 

account for plasticity and vertical deflection due to horizontal movement.  As an 

example, the deflection calculations for the first beam test are given in C.2.1. 
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[C4] 

[C5] 

 

𝛥 =
𝑃𝑎𝑏(𝑎 + 2𝑏)√3𝑎(𝑎 + 2𝑏)

27𝐸𝐼𝑙
 

 

𝛥 =
𝑃𝑎

24𝐸𝐼
(3𝑙2 − 4𝑎2) 

 

C.2.1 Deflection Calculations  

 

a) Beam test 1 

 

𝛥 =
(75.3)(3)(12)

(24)(29000)(712)
(3(12𝑥12)2 − 4(3𝑥12)2) = 0.31" 

 

0.31 + 0.125 + 1.0 = 1.44" 

 

b) Beam test 2 

𝛥 =
(150.7)(3𝑥12)(9𝑥12)(3𝑥12 + 2(9𝑥12))√3(3𝑥12)(3𝑥12 + 2(9𝑥12))

(27)(29000)(712)(12𝑥12)

= 0.30" 

 

0.30 + 0.125 + 1.0 = 1.43" 

 

c) Beam test 3 

 

𝛥 =
(225)(4𝑥12)(8𝑥12)(4𝑥12 + 2(8𝑥12))√3(4𝑥12)(4𝑥12 + 2(8𝑥12))

(27)(29000)(1170)(12𝑥12)
=  0.35 

 

0.35 + 0.125 + 1.0 = 1.48" 
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d) Beam test 4 

 

𝛥 =
(150)(4)(12)

(24)(29000)(1170)
(3(12𝑥12)2 − 4(4𝑥12)2) = 0.47" 

 

0.47 + 0.125 + 1.0 = 1.59" 

 

C.3 Plastic Moment Calculations 

 

𝑀𝑝 = 𝜎𝑦𝑍𝑝 

 

W18x46: 

𝑀𝑝 =
(52.7)(90.7)

12
= 398.3 𝑘 − 𝑓𝑡 

 

W21x57: 

𝑀𝑝 =
(55.02)(129)

12
= 591.5 𝑘 − 𝑓𝑡 
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[D1] 

[D2] 

APPENDIX D 

 

Additional Data 

 

D.1 Strain Calculations 

 

Most strain gages were placed in groups of two so that strain data could be separated into 

axial and flexural components, as demonstrated in Figure D1.  The calculations used for 

each component of strain are given in equations D1 and D2.  Compressive strain was 

negative, and tensile strain was positive. 

 

 

 

 

Figure D1: Strain components 

 

 

𝜀𝑎𝑥𝑖𝑎𝑙 =
1

2
(𝜀𝑡𝑜𝑝 + 𝜀𝑏𝑜𝑡𝑡𝑜𝑚) 

 

 

𝜀𝑓𝑙𝑒𝑥𝑢𝑟𝑒 =
1

2
(𝜀𝑡𝑜𝑝− 𝜀𝑏𝑜𝑡𝑡𝑜𝑚) 
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D.2 Test 1 Supplementary Figures 

 

 
Figure D2: Test 1 compression angle load vs. flexural strain 

 
Figure D3: Test 1 tension angle load vs. flexural strain 

 
Figure D4: Test 1 channel load vs. flexural strain 
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D.3 Test 2 Supplementary Figures 

 

 
a) Compression Angle 1   b) Compression Angle 2 

 

 
c) Tension Angle 1    d) Tension Angle 2 

 

Figure D5: Test 2 angle load vs. flexural strain 
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a) Top Flange     b) Bottom Flange 

 
Figure D6: Test 2 beam flange load vs. flexural strain 

 
Figure D7: Test 2 shear plate load vs. flexural strain 

 
Figure D8: Test 2 compression region channel load vs. axial strain 
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D.4 Test 3 Supplementary Figures 

 

  
a) Compression Angle 1    b) Compression Angle 2 

 

  
c) Tension Angle 1    d) Tension Angle 2 

 

Figure D9: Test 3 angle load vs. flexural strain 
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a) Top Flange       b) Bottom Flange 

 

Figure D10: Test 3 beam flange load vs. flexural strain 

 

 
Figure D11: Test 3 shear plate load vs. flexural strain 
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D.5 Test 4 Supplementary Figures 

 

  
a) Compression Angle 1    b) Compression Angle 2 

 

  
c) Tension Angle 1     d) Tension Angle 2 

 

Figure D13: Test 4 angle load vs. flexural strain 
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a) Top Flange    b) Bottom Flange 

 

Figure D14: Test 4 beam flange load vs. flexural strain 

 

 
Figure D15: Test 4 shear plate load vs. flexural strain 

 
Figure D16: Test 4 compression region channel load vs. axial strain 
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